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Abstract

A cellular automaton(CA), introduced by Von Neumann as a self-reproducing model,
is a discrete dynamics system that evolves in discrete space and discrete time. A CA
consists of a grid (finite dimension) of cells of which states are finite numbers. Each
cell evolves by a local function of which arguments are its neighborhood cells. CA
is widely used as a modeling tool for a wide variety of fields, especially for physical
modeling. CAs for conserving mass or any quantity have also been studied. One of
them, the Number-Conserving CA(NCCA), can be interpreted as a model for particle
interaction. The state number of each cell is regarded as the number of particles in
the cell. The evolution of the NCCA is described by the particle movements between
cells. In addition, a motion representation which expressed NCCA as the movement of
particles was introduced. Unlike the rule table expressing CA, the motion representation
more intuitively represents the movement of the particles by the NCCA.

In the first part of this thesis, we propose an hierarchical motion representation
(HMR) that can be summarized and expressed more simply according to the complexity
of each motion (pattern length, number of 1) in a motion representation. The relation
between n-cell NCCA and (n—1)-cell NCCA, one of the main principles of HMR, shows
that NCCAs of different sizes can be efficiently expressed through HMR. Through this,
we propose an HMR tree that can express all NCCAs for one neighborhood size at once.

Any two-state NCCA with the state set, {0, 1} keeps the number of 1s on the
configuration constant. In other words, all the 1s on the configuration move without
disappearing or appearing at any time step. When 1s on a configuration are moved
by motions defined in a motion representation of a two-state NCCA, these motions are
determined by the related argument patterns of its local function of which value is 1.

In the second part of this thesis, we define a bundle quad (length n — 2) meaning 4
length n patterns and a bundle pair (length n — 1) meaning 2 length n patterns. Using
that structure, we showed that there are NCCAs that have perfectly identical evolution
between neighborhood size n and n — 2, and show some properties according to the
structure.
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Chapter 1

Introduction

1.1 Backgrounds

A cellular automaton (CA), which was introduced by Von Neumann as a biological
self-reproducing model, is a discrete dynamical system that evolves in discrete space
and time [26]. A CA consists of a grid (finite dimension) of cells of which states
are finite numbers. Each cell evolves by a local function of which arguments are its
neighborhood cells. One of the famous CA is Conway’s "the game of life". In this
CA, the state of each cell at time ¢ is either dead or alive. The state of the cell at time
t + 1 is determined by the states of its neighbors and a predetermined local function.
CAs can be used in a variety of applications depending on cell shape, neighborhood,
state, and local function [7, 23, 8]. Among many examples, it is often used as a
physical model such as car traffic, forest fires, earthquakes, urban growth rates, and
lattice gas [10, 12, 9]. CAs for conserving mass or any quantity have also been studied.
One of them, the Number-Conserving CA(NCCA), can be interpreted as a model for
particle interaction [20, 21]. The state number of each cell is regarded as the number of
particles in the cell. The evolution of the NCCA is described by the particle movements
between cells.

Number-conserving condition of CA was first discussed by Hattori et al. [11].
Boccara et al. studied NCCA on circular conditions in [2]. There have also been many
studies of two-dimensional NCCA [22, 25, 14]. Especially, Durand et al. studied the
relation between several boundary conditions and showed that the condition of number-
conservation is equivalent for both finite and infinite configurations [6]. The NCCA
is widely used to the research of lattice gas, traffic flow, etc. [28, 23] and it has been
continuously studied until recently [27].

Boccaraetal. also introduced motion representation [1, 2, 3]. Motion representation
is another representation of an NCCA. The state number of each cell is regarded as
the number of particles in the cell. The evolution of the NCCA is described by the
particle movements between cells. Fuks and Pivato showed that one-dimensional NCCA
always has motion representation, but various motion representations are possible for
an NCCA [4, 5]. However, Moreira et al. have shown that all one-dimensional NCCAs



can be uniquely represented as a canonical form of motion representation in [21]. And
they used motion representation to effectively express the 1 movement of each two-state
NCCA rule.

1.2 Our contributions

The evolution of the NCCA is described by the particle movements between cells.
Alhazov and Imai constructed a universal finite NCCA with five particles [13]. We
have shown the non-universality of NCCA with three or fewer particles, but four particles
an open problem [15].

An NCCA and a motion representation are inherently different computing models.
For an NCCA, its neighborhood size is essential in contrast to a motion representation.
Even in the case of a two-state simple shift NCCA for a large neighborhood size n,
you have to give a length-2" table. But in the case of motion representation, just
the information of a cell of state-1 is enough to identify the value-1 to be moved.
Thus only the motion representation is enough to describe the simple shift CA for any
neighborhood size.

However, a complicated NCCA also has a complicated motion representation. We
introduced a hierarchical motion representation (HMR) that minimizes the motion
expression according to the complexity of the motions [16]. In contrast to the normal
motion representations, motions in an HMR are arranged in the order of the size of
matching pattern and the number of 1’s in the pattern [17].

Any two-state NCCA with the state set, {0, 1}, keeps the number of 1s on the
configuration constant. In other words, all the 1s on the configuration move without
disappearing or appearing at any time step. Among the two-state NCCAs, there are
cases where the evolution is exactly the same, but the different neighborhood size. In
this case, the number of value-1 patterns of the NCCAs is different, but they have the
same HMR. The relation between n-cell NCCA and (n — 1)-cell NCCA, one of the main
principles of HMR, shows that NCCAs of different sizes can be efficiently expressed
through HMR. Through this, we propose an HMR tree that can express all NCCAs of
a neighborhood size at once. [17]

When 1s on a configuration are moved by motions defined in a motion representation
of a two-state NCCA, these motions are determined by the related argument patterns of
its local function of which value is 1.

We proposed a relation (bundle) between patterns of length n and n — 1, and showed
some properties of NCCAs with neighborhood size n and n — 1 in [17].

Also in [18], we proposed a new structure of value-1 patterns using a relation
between patterns of length n and n — 2. Using that structure, we showed that there are
NCCAs that have perfectly identical evolution between neighborhood size n and n — 2,
and show some properties according to the structure.

1.3 Contents of this thesis

The remaining of this thesis is organized as follows.



Chapter 2 describes NCCA and motion representation. We introduce some def-
initions that are often used in this thesis, and one of the applications of NCCA. In
addition, we define some useful relations such as bundle which is defined between
different-length patterns. And we also shows the universality of NCCA with less than
3 particles introduced as one of the applications of NCCA.

Chapter 3 proposes hierarchical motion representation (HMR), and shows an algo-
rithm which can compute an HMR from an NCCA, and also proposes an HMR tree
that expresses all NCCAs for a neighborhood size using HMR at once.

Chapter 4 proposes a new structure of NCCAs. This chapter introduces bundle pair
and bundle quad, which are the relation between patterns of the same length appeared
in an NCCA, and introduces some properties according to the structure of NCCAs.

Finally, Chapter 5 concludes this thesis together with some future works.



Chapter 2

Preliminaries

In this chapter, we describes NCCA and bundle that defines the relation between length
n and n—1 patterns and simple definitions related to them. And we introduces definition
of motion representation and some properties. And we shows the universality of NCCA
with less than 3 particles introduced as one of the applications of NCCA.

2.1 Number Conserving Cellular Automata

Definition 1 (one-dimensional two-state Cellular Automata). [18] A one-dimensional
two-state cellular automaton A is defined as A = (n, f), where its neighborhood size n
is a non-negative finite integer and f : {0,1}" — {0, 1} is a mapping called the local
Sunction of A. A configuration over{0, 1} is amapping ¢ : Z — {0, 1}, where Z is the set
of all integers. Then, Conf({0,1}) = {c|c : Z — {0, 1}} is the set of all configurations
over {0, 1}. The global function F of A is defined as F : Conf ({0, 1}) — Conf({0, 1}),
ie.,

Ve € Conf({0,1}), Vie Z : F(c)(i) = f(c(i)---c(i+n—1)).

Note that we use the Wolfram numbering [29] W ( f) to represent a local function f:
W(f) = X f(ay---ay)2*" " @2 Paxt+2an where the sum is applied on a; - - - a, €
{0, 1}"*. To represent a CA, we also use a pair of its neighborhood size and its Wolfram
number instead of its local function. The local function f is also referred to as the rule
of A.

global function F, local function f with neighborhood size 3

fo | c(i-2) ‘ c(i-1) ‘ i) | c(i+1) | c(i+2) |

F(c) | F()(i-2) ‘ FQ)(i-1) ‘ F)G) |F(c)(i+1) | F(c)('\+2)|

F(Q)(i) = f(c(i-1),c(i),c(i+1))

Figure 2.1: Configurations ¢ and F(c) with a 3-cell CA



In this paper, we simply call the CA with the neighborhood size n local function
n-cell CA. Figure 2.1 shows two configurations ¢ and F(c) with a one-dimensional
3-cell CA. Figure 2.2 shows the rule table and its space-time diagram of rule 110 which
is one of the famous CA rules.

Previous
pattern

Next state 0 1 1 1 1 0 0 0 | 110

111 | 110 | 101 | 100 | 011 [ 010 | 001 | 000 | Rule

Figure 2.2: The rule table and a space-time diagram of rule 110

State-1 (state-0) cells are shown in black (white), respectively in the diagram.

Definition 2 (Number Conserving CA). [18] A cellular automaton A = (n, f) is said
to be number-conserving iff F (ay) = ag and

lim un(F(a))

=1foralla € Conf({0,1}) — ag
n—eo iy, (@)

where F is the global function of A, ay is zero configuration, i.e., the value of every cell
is 0, and p, (@) = Y0 a(i)

i=—n

Since Durand et al. [6] showed that finite-number-conserving is equivalent to the
general infinite case, it is enough to show the number-conservation of a CA even for the
case of infinite number of nonzero cells.

Fig. 2.3 is the rule table of all 1-dimensional 3-cell NCCAs. In the five 3-cell NCCA
rules, 240, 204, and 170 are simple shifts as shown in Fig. 2.4. Especially, rules 184
and 226 are the most famous NCCA rules, the car traffic rules. As shown in Fig. 2.5,
during the time evolution of rule 184, the sum of all 1s (black cells) is not changed.
The NCCA is famous as a simple model of traffic flow which describes the property
that each vehicle moves forward only if there is a space in front of it [23].

NCCA, which the sum of states is conserved, can also be viewed as a particle-based
modeling of the mass conservation method. Changing of the number of states of a cell



can be regarded as a movement of ‘particles’ in each time step. Hence Boccara et al.
proposed a Motion Representation(MR) to describe the motions of states in [2].

240

1 1 1 1 0 0 0 0

1 1 0 0 il 1 0 0 204
i 0 1 0 1 0 1 0 170
il 0 1 1 ik 0 0 0 184
ab ik 1 0 0 0 1 0 226

Figure 2.3: 3-cell NCCA rules

. [N 27

Figure 2.4: Space-time diagram of 240,204,170

P

Figure 2.5: Space-time diagram of 184,226

2.2 Bundle

In this paper, we denote a configuration ¢ = - -+ ,c(i),c(i+1),--- ,c(i+n—1),--- by
-+ CiCiy] "+ Citn—1 - - - as an abbreviation. We regard a sub configuration of finite size
as a pattern and use it as the argument list of a local function f, i.e., we also denote
fle@), -+, c(i+n—=1)) by f(ci-Citn-1)-

We use the notation, | |, in several different ways. For a pattern set P, | P| means the
number of patterns of P. For a pattern p, |p| means the length of p as a pattern string.
But it is used in a slightly different way for configurations, i.e., for a configuration c, |c|
means the number of 1s.

10



Definition 3 (Pattern). [17] A pattern p = aya; - - - a, is a sequence of a; € {0,1} of a
finite length n.

We also use the notation of concatenation of two or more patterns to represent
another pattern. For example, if p = 010, then Op = 0010 and p1 = 0101.
In addition, a pattern containing the wildcard character "_" which represents both 0 and
1 is called an extended pattern. For example, _010 means two patterns: 1010 and 0010.

Definition 4 (Bundle). [17] For a length n(> 1) pattern r, if length n + 1 patterns p
and q satisfy the condition

p=0r, g=1r (tesp. p =10, g =rl),

then we call p(q) I-bundle (resp. r-bundle) of r. When r, p and r, q satisfy both cases,
we call r the bundle pattern of p and q.

As shown in Fig.2.6, pattern 011 can be I-bundle of 11 with 111, or an r-bundle of
01 with 010.

R-bundle of 01

L-bundle of 11

Figure 2.6: An example of bundle

Definition 5 (Value-1 pattern set). For a CA A = (n, f), we call the pattern set
Pa = {plf(p) = 1} the value-1 pattern set of A.

Definition 6 (Bundle pattern set). Let P be a pattern set of length n patterns and
I = |P| is even. For any length 1/2 set of pair p;,q; (i # j,pi,pj € P), if there exists
a set B s.t. each pairs in B has a bundle pattern by, (k = 1,---,1/2)} then we call
P={by,---, by2} a bundle pattern set of P.

If there is no such set, there is no bundle pattern set of P.

For example, {01, 11} can be a bundle pattern set of {001, 101, 110, 111}. Because
01 can be a bundle pattern of 001, 101 and 11 can be a bundle pattern of 110, 111. The
following sets have no bundle pattern set:

{001,010, 110,111}, {011, 110, 111},{01, 11,110, 111} .
2.3 Motion representation

Because an evolution of NCCA can be regarded as the movement of particles, there is
another representation of an NCCA rule, motion representation [1, 21].

11



Definition 7 (Motion Representation). Let p be an extended pattern for invoking a
motion u. A motion p is defined as u = (p, s, e, v) where s and e is a start location and
an end location, respectively. v is a finite nonzero integer which represents a moving
value from s to e. Let M be a set of motions {u,,...,u,}. For any configuration
¢ of an NCCA A = (n, f) with the global function F, for each position in ¢ to which
a translated p; (of u;) matches, subtract v; from the cell s; and add v; to the cell e;
simultaneously. If the resulting configuration is equal to F (c) for any ¢, M is a motion
representation of A.

We also graphically represent a motion y by an arrow over p from s to e whose
suffix is v. Fig. 2.7 is the graphical representation of

u={(01,1,3,1),(11,1,2, 1) }.
The suffix is omitted when v=1.

VR NN

(701,11}

Figure 2.7: Graphical representation of motion representation

It is shown that the motion representation of any 2-state CA can be composed of
motions with v = 1 [14]. We show the outline of the proof: suppose there is a motion
w1 = (p1,s1,e1,2) inamotion representation. The start cell should be the destination of
another motion, say u» = (p2, 52, €2, v2). Then if v, = 1 these motions can be replaced
by u} = (p1,s1,e1, 1) and u3 = (p3, 53, €3, 1) where p3 is a union of y; and y; and s3
(e3) is the related position to s; (e1), respectively. If vy = 2 then u) = (p2, 52,2, 1) is
also remained. In turn, it is possible to replace all motions of 2 (or more particles).

2.4 On particle complexity of number conserving cellu-
lar automata

A two-state NCCA with only O or 1 states always keeps the number of 1s on the
configuration. That is, all 1s in the configuration will move without disappearing or
appearing. Motion representation was used to effectively represent the movement of
1 in each 2-state NCCA rule [1, 2]. But when motion representation is applied to a
configuration, the state of each cell can be negative, and motion representation must
be applied to all cells. In contrast, HMR applies motion only to state-1 cells on a
configuration, and the state of cells should be 0 or positive. We have shown that all one-
dimensional two-state NCCAs have HMR, and we also introduced the algorithm [17].
This two-state NCCA is suitable for representing particle movement, and Alhazov and
Imai have shown that a universal finite NCCA with five particles can be constructed [13].
In this section, we show that NCCAs with two or three particles are not strong
Turing-universal, using ultimate periodicity and partwise ultimate periodicity.

12



Definition 8 (Strong Turing universality). A cellular automaton A is said to be strongly
Turing-universal if it can simulate any deterministic Turing machine from a finite
configuration.

Definition 9. A configuration ¢ of A is ultimately periodic if 3i, j(0 < i < j), Vx €
Z,F'(c(x)) = F/(c(x + o)) where F is the global function of A and o is a constant.

ﬁ:

Figure 2.8: An example of ultimately periodic configuration

Also, if a configuration ¢ can be divided into two ultimately periodic configurations,
c1 and ¢y, for some p € Z as follows:

0 i>p i>p

/|

Figure 2.9: An example of partwise ultimately periodic configuration

N < <
c1(i) = { c@) is<p (i) = { (c)(i) PSP we call ¢ partwise ultimately periodic.

Definition 10. A cellular automaton A is ultimately periodic if c is ultimately periodic
for any configuration c.

Definition 11. Two configurations c| and c; are independent if 3p, F' (¢1(s)) =0, s >
pand F'(cy(s)) =0,s <= p,Vt > 7 for some 7.



2.4.1 On particle complexity of NCCA

In this section, we show that NCCAs with two or three particles are not strongly
Turing-universal.

There is no universal finite NCCA with only one particle. Because the particle
always follow the basic motion of A.

Theorem 1. Finite NCCA with two particles is ultimately periodic.

Proof: We prove finite NCCA with only two particles is not strongly Turing-universal
by using that those NCCAs are ultimately periodic. Let A be an n-cell NCCA (n is
finite) and / be a gap length(the number of cells between the particles) of two particles.
There are only two cases of initial configurations with two particles: Iy > nand [y < n.

If Iy > n in the initial configuration, the two particles will each follow the basic
motion of A, and [; = [ for any #(> 0). Then A is ultimately periodic.

If l[p < n in the initial configuration, there exists a time step 7 and /; > n or
It =1,(0 <t < 7),since n is finite. Thus the both cases are ultimately periodic. ]

Theorem 2. Finite NCCA with three particles is not strongly Turing-universal.

Proof: We prove finite NCCA with only three particles are not strongly Turing-universal
by using ultimately periodicity or partwise ultimately periodicity.

Let A be an n-cell NCCA (n is finite) and /;, r; be two gap lengths of three particles
on a configuration F’ (c¢) of time ¢(> 0). There are three cases of the initial configuration
¢ with three particles as follows.

@ lp>n-2,ro>n-2
®d) lp<n-2,rg>n—-2o0rly>n—-2,ro<n-2
() lp+rg<2n—-4

If the initial configuration c satisfies (a), because [y and r( are longer than the size of
the neighborhood #, the three particles follow the basic motion of A, then for any ¢,
l; = l;+1 and 7, = ry41. Then A is ultimately periodic.

If ¢ satisfies (b), the three particles are split into one and two, and ¢ satisfies
Vt,l;+r; >2n—4or3t, st.l; +r; <2n-—4.

If ¢ satisfies V¢, 1, + r; > 2n — 4, one particle follow the basic motion of A, and the
two particles are ultimately periodic, as shown in Theorem 1. Since the three particles
split never meet, the configuration F*(c)(u > t) also can be split into configuration
c] containing one particle and configuration ¢, containing two particles. 3p,Vr >
u, F'(ci1(s)) = 0,s > p and F'(ca(s)) = 0,s <= p Then, A is partwise ultimately
periodic with the two independent configurations c; and c;.

If ¢ satisfies 3z, s.t. [; +r, < 2n—4, itis the same as in the case (c) described below.

If ¢ satisfies (¢), ¢ satisfies V¢, [, +r; < 2n—4or 3¢, s.t. [, +r, > 2n—4. If t satisfies
Vt,l; + r; < 2n — 4, since n is finite, 3¢’ s.t. I, = I;,rp = r,. Then A is ultimately
periodic. If ¢ satisfies 3¢, s.t. [, + r, > 2n — 4, the three particles are split and closed
repeatedly. Then 3, j(> 1) s.t. [; = [;, r; = r; because n is finite. Then A is ultimately
periodic.

Finally, A is ultimately periodic or partwise ultimately periodic with two indepen-
dent configurations. Then A is not strongly Turing-universal. O

14



2.4.2 Conclusion

In this section, we showed that NCCA with two particles was shown to be ultimately
periodic, whereas NCCA with three particles was shown to be ultimately periodic or
partwise ultimately periodic, showing that it is not strongly Turing-universal. In [13],
Alhazov et al. showed that it is possible to construct a universal NCCA with five
particles, so the case of four particles is still open.

15



Chapter 3

The structure of Hierarchical
Motion Representation of
2-state Number Conserving
Cellular Automata

An NCCA and a motion representation are inherently different computing models. For
an NCCA, its neighborhood size is essential in contrast to a motion representation. Even
in the case of a two-state simple shift NCCA for a large neighborhood size n, you have
to give length 2" table. But in the case of motion representation, just the information
of a cell of state 1 is enough to identify the value 1 to be moved. Thus only the motion
representation is enough to describe the simple shift CA for any neighborhood size.
The simplest car traffic rule 184 [23], can be regarded as the combination of such a
basic shift and a motion depending on a size-two pattern, even the evolution can be
embedded into an NCCA of any neighborhood size which is larger than three. So
any motion representation of a two-state NCCA seems to be constructed by the set of
motions that are ordered by their pattern size.

In this chapter, we propose a hierarchical motion representation (HMR) and an
algorithm to compute the HMR from an NCCA rule which is first appeared in our
article [16]. And we introduce a binary tree structure called a bundle tree which
represents a relation between a pattern set of the local function arguments of an n-cell
NCCA and that of less than n. We show the proof of the underline properties and give
the algorithm of computing HMR.

3.1 The Bundle tree

In this section, we show some properties of NCCA and the main principle of bundle
tree for any NCCA, they give the theoretical basis for the algorithml.

16



From now, we show the value-1 pattern set of each (n — 1)-cell NCCA is a bundle
pattern set of an n-cell NCCA as Theorem 3 which is the basis for an algorithm of
computing hierarchical motion representation (Algorithm 1).

Lemma 1. For a pattern p in a value-1 pattern set of an NCCA, there exists a pattern
q in the set and a pattern r s.t. p and q are either I-bundle or r-bundle of r.

Proof: Let F be the global function of an NCCA A = (n, f). For a configuration
---0cycy -+ - ¢, 0-- -, the following equation holds:
IF(--Ocicz---ca0-)| = £(0---0ct) + f(O---0cic)
bt f(e1ca-ea) -+ f(Cnica0---0) + f(ca0--0).
Considering the configuration:
c = "'OCICZ"'CnO"'OC_1C2C3"'Cn0"'0C102'"Cn_lc_nO"'(k > n),
N—— ——

k k
the following equation holds:

n
|c|=Zch+(c"1+c2+~--+cn_1+c"n),
k=1

where ¢ is the negation of ¢, i.e., ¢ + ¢ = 1. Since f(0---0) = 0 then

|F(C)| — |F("'OC] "'Cn()"')|+|F("'OC_]C2"'CnO"')|+|F("'OC] ...cn_lc_no...

= 2F(0---0ct - c0---0) = flcrea--ca) + f(0---c1)

+et f(ciea-ron) + fler-cnm1Cn) + fe2 - cnm16n0) + -+ + f(,0- -+ 0).

Moreover the next formula holds because F is the global function of an NCCA,
n
23kt (Gtcate o+ our +6) = |F(O)]. 3.1)
k=1

Because 2} _cx = |F(0---0ci---cy0---0)] and ¢y + co + -+ + Cpo) + G =
|[F(O---0¢1cy - cp_16,0- - - 0)[, we can get the following formula from (3.1):

f(cica - cpo1Cn) + f(cica - cp)
=f(C_102'~Cn)+f(Cl "‘Cn—lC_n) (32)

From (3.2), we can get the following result:
if f(cica---cy) =1then f(cicar---cy) =1or f(cicr- - cp_16n) = 1. O

By Lemma 1, we can know that there are always bundle pattern for all patterns
in value-1 pattern set of an NCCA. For example, When a pattern can be paired
with two different elements in the value-1 pattern set P of an NCCA, for example,
{101, 100,001} c P, we show that 000 is also in P by the next Lemma 2.

17
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Lemma 2. Let P4 is a value-1 pattern set of an NCCA A(n, f). If three patterns
ai---ap,ai---Aap-1ay,a1ay - - - a, are in P4 then pattern aas - --an—1da, is also in
Pa.

Proof:  Suppose ayay---an-1d, ¢ P4 and a;---au,a; - ay—1an,a1a2---an €

P4, in other words, f(ay---a,) = f(ay---an-1a,) = f(ajaz---a,) = 1, and
flaias---ay—1a,) = 0. Because A is NCCA, we can get following formula:

ar = flar---an)+ f(Oay---an-1) +-+++ f(0---0ar) = {f(Oaz---an) +---+ f(0---0az)}
= f(ar - ap1dn) + f(0ay - -ap-1) + -+ f(0---0a1) = {f(0az - - - an-1dn)
+--+ f(0---0az)}.

Then 0 = f(ai---an) = f(Oaz---an) — {f(ai---ap-1an) — f(Oaz---an-1da,} is
necessary. Since 0 = f(aj---ay,) = f(ay - ap-1a,) =1,

f(an te an) = f(0a2 ce an—]fin) (3.3)
In the same way,

ap =f(dlaZ'wa”)+f(0€z1a2-~~an,1)+~~+f(0~~0a'1)—{f(0a2~~an)+~-+f(0~'0a2)}
= flaraz---an-1dy) + f(O0araz -+~ ap-1) + -+ f(0---0a1) = {f(0az - - - an-1a,)
+-o 4 £(0---0a)}.

Then 0 = f(ayaz---an) — f(Oaz---a,) —{f(aaz---ap-1a,) — f(0az - - - ap-1da,}.
Since f(ajaz---ay) =1, f(aaz---a,-1a,) =0,

fOay---an) =1+ f(0ay---an-1an) (3.4

Formula (3.3) and (3.4) be a contradiction. O

In the making process of a bundle pattern set from the value-1 pattern set of an
NCCA, a pattern might have two different candidates for pairing to form a bundle. For
example, the value-1 pattern set of an NCCA rule 204 is {010,011, 110, 111}. In this
case, 010 can not only make a pair with 011 to 01 but also 110 to 10. But by Lemma 2,
there exist another pattern 111 which can be paired with 011 and 110. Therefore we can
make two distinct pairs like {010,011}, {110, 111} or {010, 110}, {011, 111}. Thus,
all patterns in the value-1 pattern set of an n-cell NCCA can always be paired, and the
bundle pattern set has exactly 2”2 patterns.

Therefore for all NCCA A, there exist a bundle pattern set P4 where [P 4| = |Pal/2.

Theorem 3. For an n-cell NCCA A (n > 2) with |P4| = 2"!, an (n — 1)-cell CA B
satisfying Pg = P4 is an (n — 1)-cell NCCA when |P 4| = 2" 2.

Proof: Let F be the global function of an NCCA A = (n, f). Because A is an NCCA,
|c| = |F(c)| for any configuration c(= ---c_jcocy--+). Let G be the global function
ofaCAB=(n-1,g). If |G(c)| = |F(c)| then |c| = |F(c)| = |G(c)|. i.e., B can be an
NCCA. Then we will show |G (¢)| = |F(c)| from now.

For each state-1 cell F(¢)(k) =1,k € Zon F(c),

Ap =ck - Cren-1 € Pas.t. f(p) =1.
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Also for a pattern ¢ € P, which is a bundle pattern of p, it can be satisfied g(¢) = 1(i.e.,
q € Pp). Thusif F(c)(k) = 1theneither G(c)(k) = 1or G(c)(k+1) = 1 holds. When
p is an I-bundle of ¢, G(c¢)(k) = 1 and when p is an r-bundle of ¢, G(c)(k +1) =1
like Fig. 3.1.

( p ) ( p
C H Ck . kau ‘ ‘Clﬁ-n—l‘ Ck+n H C ‘Ufk . ‘ Ci+1 ‘ ‘Ck+n—1U Ck+n H
- q J S J
FO -~ o [ [[ ] [ | [~ KO -~ [r&] [ [
~ ~
G - \ \y(q) \ \ \ \ - GQ) - \g(q) \ \ \ \ \
p is a |-bundle of q p is a r-bundle of q

Figure 3.1: Two evolutions according to the relation between p and g

If F(¢)(k) = F(c)(k+1) =1 then
(1) by F(c)(k) = 1, either G(c¢)(k) =1 or G(c)(k + 1) = 1 holds,
)by F(c)(k+1) =1, either G(¢)(k+1) =1 or G(c)(k +2) =1 holds.
So if G(c)(k + 1) = 1 occur simultaneously in (1) and (2), an overlap occurs. Thus
|F(c)| = |G(c)| is satisfied if there is no overlap.
Suppose that the above case has occurred. Then there are four patterns p = ck « - * Cr4n—1,
g = Ck+1 - Ck4n—1 Whichisanl-bundleof pand p’ = cx41 - Chan>q’ = Ciks1 " * Chan—-1
which is an r-bundle of p. Then ¢ is the same with ¢’. Because of two patterns ¢, g’ are
the same in Ppg, |Pg| = |P4|/2 — 1. This contradicts the assumption, |Pg| = |P4l/2.
In the result, G(c) is a 2-state configuration with |G(c)| = |F(c)| = |c|. Then B is an
NCCA.

The value-1 pattern set of 1-cell NCCA is {1}, so the number of elements in P4 of
n-cell NCCA (n > 2) is always 2! O

Theorem 3 shows that the value-1 pattern sets of an n-cell and an (n — 1)-cell NCCA

have a kind of hierarchical relation and we can extract the relation as a tree structure as
follows:
Let P, be the value-1 pattern set of an NCCA A,, = (n, f,,). By Theorem 3, we can
get a sequence of value-1 pattern sets P;(n > i > 1) of A; = (i, f;) where P;_; = P;
and |P;] = 2/~!. For each element r in P; (1 < i < n — 1), there are two elements
p,q € Piy1 where p(q) is an 1-(r-)bundle of r, respectively. We can construct a tree
Ts, = (V,E) where V is the set of all elements in all sets P; and E is the set of all
edges (r, p) and (r, g) described above. Clearly, T4, is a complete binary tree and its
root vertex is 1 and its height is n — 1. The height-i vertices of T4, are the elements of
the value-1 pattern set of A;. We call T4, a bundle tree of A,,. Fig. 3.2 is a bundle tree
of the CA (4, 62600).
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{0010, 1010, 0110, 0111, 1100, 1101, 1110, 1111 }
{010,011, 110, 111}
(01,11}

{1}

Figure 3.2: A bundle tree of (4,62600)

By Lemma 1, it is clear that a bundle tree exists for any NCCA rules. Moreover we
can get Corollary 1 and Theorem 4 by Theorem 3.

Corollary 1. For a bundle tree of A, Vi € Z, A; is an i-cell NCCA.
Theorem 4. Bundle tree of any NCCA is always a binary tree with root {1}.

Proof: The number of elements of value-1 pattern set of an NCCA (n, f) is always
2"~1 Then it is clear that the number of elements of pattern sets at i th level is 2/~ by
corollary2. Moreover the smallest cell NCCA is 1-cell NCCA 1. Then bundle tree of
any NCCA be a binary tree with root(the 1st level) 1. O

In the next section, we introduce HMR and an algorithm to compute an HMR from
an NCCA rule that was introduced in [16].

3.2 Hierarchical Motion Representation of NCCA

A Motion representation can illustrate an evolution of any NCCA by the movement
of particles when the number of each cell state is thought to repesent the number of
“particles” in the cell. In motion representation, where each motion consists of a start
and an end locations and a pattern, the start and end locations are set to the position
of the cell in the pattern, so it is difficult to specify the particle to be moved when the
pattern contains two or more state-1 cells.

In Hierarchical Motion Representation (HMR), which we propose in this paper,
motions are ordered by the complexity of their patterns, and only state-1 cells can be
the starting location of motions. In contrast to MR, a motion is not always applied to
any matching pattern in HMR. Although a simple algorithm is needed to choose the
applicable motion, it is easy to find particles to be moved.

In motion representation, any cells can be the start location regardless of cell state
(even the state 0), while in HMR it is only possible to move a particle in any non-
zero state cell (only state-1 cells can be the start locations). For each state-1 cell in
a configuration ¢, we have to determine its movement for the next configuration. An
assignment of arguments for the local function which value is 1 is responsible for
the movement. We only need to consider the patterns in a motion representation as
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its argument. The only problem is which 1 in the pattern is moved. We call the 1
the focusl. And we express the location of the focus 1 in the pattern (or extended
pattern) by index as follows.

01014

It means that if the pattern 0101 is in a configuration then the pattern 010 is a
neighbor of the focus 1 (located at the 4th number) which can get the movement (move
to left 3 cells). Moreover the focus 1 is an essential element to get the hierarchical
motion representation which will be proposed as follows.

Definition 12 (Hierarchical Motion Representation (2-state)). Let p be an extended
pattern for invoking a motion u. A motion u is defined as u = (p,l) where [ is
the location of the focus 1. Let HMR M be a list of motions {u1,...,un}. For
i €{1,2,---}, the p; of u; has the shorter length pattern which is excluded “_" than
Di+1’s or p; has the fewer the number of 1s than piy1. Also we call py of an HMR the
basic motion.

Also, the basic motion means the movement of the 1 when there is only one 1 on
the configuration as Fig. 3.3.

Figure 3.3: A space-time diagram of a basic motion _1

In addition to when applying the HMR on a configuration, the motion to the right
applies first.

[Application scheme of M] The application of Mto a configuration c is defined as
follows: for each x € L(c), check that p; of y; matches to ¢ at the position x (i.e., check
pi=clx—s+1)---c(x+|p;| —s) ornot) fori fromn to 1. If pp (n = k > 1) first
matches to ¢ then 1 at the cell x will move to the cell x — s + 1, i.e., the first position
related to py.

Contrary to motion representation, there is an application order of motions from
right to left in HMR. To place a motion with a shorter pattern to the left position, we
can represent a hierarchy of applicable motions.

Fig. 3.4 is an example of the application of an HMR to a configuration ¢. For
each cell of state-1 in ¢, check the pattern of each motion in f as its start location is
overlapped to the cell. This check is performed for all motions in /i from right to left.
If the matching motion is found, then the end location to move the 1 is determined.

Let ¢; be a state-1 cell. If ¢;41 = 0, c;zo = 1, then the 1 of ¢; will move to ¢;_q. If
ci+1 = 1, then the 1 of ¢; will move to c;_;. In other cases, the 1 will stay at ¢;. Through
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Figure 3.4: Evolution by the HMR of (4,58336)

this process, we can get F(c¢) in Fig.3.4.

The location of the focus 1 should be inherited through from the bundle patterns.
For example, we can think about the location of the focus 1 of 1101, be inherited from
110, or 101;. If 1101 is an r-bundle of 110 (resp. 1-bundle of 101), the location of the
focus 1 will be not changed (resp. the location of the focus 1 will be moved to “+1”-th
number). Thus the process of finding the location of the focus 1 of patterns called
“tracking the focus 17, and the figure formed in the process called a “constructing the
bundle tree”.

In this case, the location of the focus 1 is changed from 1 to 2 because the location
of the focus 1 is shifted to the second cell of 1101. If 11015, is an r-bundle of 110.

( neighborhood size, Motion
wolfram number) | representation HMR
) a
(2,12) {1} {1}
Y N I N
(3,226) | {_01,11} | {__1,11}
Y ) Y N
(4, 48770) (901,101, 1{_001,11,
110,111} 101,_111}

Figure 3.5: Motion representations and HMRs of rules

Fig. 3.5 shows motion representations and HMRs of several NCCA rules as exam-
ples. There are two differences between them. First, in (2,12) case, the stable motion
needs to be explicitly described in HMR contrary to its motion representation. Second,
motions in HMR has an ordering. Especially HMR always contains a motion with only
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one 1 what we called basic motion. And it is placed on leftmost in a HMR. There exist
n basic motions in all HMR of n-cell NCCA then we can classify every HMR of the
same cell NCCAs.

We can compute the HMR of the n-cell NCCA of Wolfram number w by Algorithm 1.

P = {0101,0110,0111,1000,1001,1101 1110, 1111}

{100,101,011,111}

{10,11}

{1}

Figure 3.6: A bundle tree of (4, 58336)

level4 {0101,0110,0111,100 1001;101,1110,1)‘111}

—

- ;;;\\\\ ///
Level 3 {{100_,7,1}, {/_»101,[,2}, {o11_,r,2}, Jlll_,T,Z}}
T — -
o —
g _—

Level 2 {16/__,7“,1}, _A11_,1,2
{ /{. }

Level 1 {1

[——)

Figure 3.7: An HMR formation process by Algorithm 1

Fig.3.6 and Fig.3.8 show the bundle tree and the tracking process of the focus 1 by
this algorithm about (4, 58336). We briefly describe the algorithm as follows:
Starting from the value-1 pattern set of A, for a pattern p which has the smallest number
of 1, find a bundle pattern w of p;
First, if p is an r-bundle of w (w0 = p) with another r-bundle ¢(= w1) of w will be in P,
then {w_ , r} will be a node of the one-step lower level. Otherwise, (if p is an I-bundle
of w (Ow = p) with there is not another r-bundle of w) then {_ w, [} will be a node of
the one-step lower level. By repeating the above process, the one-step lower level will
be consist of nodes {extended pattern, direction}. For each w in the above, repeat the
above process until the length of w will be 1. Then we can get a bundle tree of A like
Fig.3.6.
According to the bundle tree, we can track the location of the focus 1 (bold 1 in Fig. 3.7)
through the trees (represented by arrows in Fig. 3.7). Between three nodes connected
by bundle, when the location of the focus 1 of a mother node is i th number, the location
of the focus 1 of two nodes of the one-step upper level be according to the direction
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Algorithm 1 HMR(n,w)
/INPUT n: neighborhood size, w: Wolfram number

//IOUTPUT HMR
Constant [, r // direction
E : a two dimensional array of lists // each element has the structure

{extendedpattern, direction, [bundlepattern, [of fset]]}
{Constructing the bundle tree: }
P :=a value-1 pattern set of the rule (w, n) with ascending order as the list of binary
representations of integers.
fork=1ton—1do
for each element ¢ in E[k] do
Append(Remove[e[1],“_"])to P // When k = 1, E[k] = {} thus this line
is skipped.
end for
while Length[P] > 1 do
p := the pattern which contains the smallest number of 1 in the patterns in P
a :=Subseq(p, 1,1) // Subseq(p, i, j) returns p;pis1--- p;
b :=Subseq(p, n,n); w :=Subseq(p,2,n—1)
if awb € P then
add {aw_,r} to E[k]
remove awb, awb in P
if k£ > 1 then
i :=Position[P, awb]; j :=Position[P, awb]
E[k - 1][i] :=Append{E [k — 1][i], aw} // add bundle pattern
E[k - 1][j] :=Append{E [k — 1][], aw}
end if
else
if awb € P then
add {_wb, [} to E[k]
remove awb, awb in P
if £ > 1 then
i :=Position[P, awb]; j :=Position[P, awb]
E[k —1][i] :=Append{E [k — 1][{], wb}
E[k —1][j] :=Append{E[k — 1][j], wb}
end if
else
return { } // Non NCCA
end if
end if
end while
end for
TrackingTheFocusl(n, E) // Update E
return GeneratingHMR (7, E)
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Algorithm 2 Tracking the focus 1(n, E)

/INPUT n: neighborhood size, E : two dimensional array of lists
//OUTPUT null // but E will be modified.
e:=E[n—1][1] // E[n] only has a value at position 1.
if ¢[2] == [ then
e[3] :=2
else
e[3] =1
end if
for k =n—2downto 1do
P={}
for each element ¢ in E[k + 1] do
Append(Remove[e[1],“_"]) to P
end for
for each element ¢ in E[k] do
i :=Position[P, e[3]]
if e[2] == [ then
replace 4th element of e to the 4th element of E[k + 1][i] + 1
else
replace 4th element of e to the 4th element of E[k + 1][{]
end if
end for
end for

Algorithm 3 Generating HMR

/INPUT n: neighborhood size, E : two dimensional array of lists
//IOUTPUT HMR : list of motions {extendedpattern,of fset}
H:={E[n-1][1]}
fork=1ton—-2do
for each element ¢ in E[k + 1] do
Append(Remove[e[1],“_"]) to P
end for
for each element ¢ in E[k] do
i :=Position[P, e[3]]
if e[4] # 4th element of E[k + 1][i] then
Append e to H
end if
end for
end for
for each element 4 in H do
Collect(h[1], h[4]) to result // h[4] be an suffix of A[1]
end for
return result
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P ={0101,0110,0111,1000,1001,1101 1110,1111}

E[1]| {100_,7r,10,} { 101,,,10,} {fo11_,r,11,} {111_,r,11,}

E21| {10_,11,} {11,1,1,}
B3] {1,r,}

—
——] Tracking the focus 1 =
———

E[1]| {100_,r 10,1} | {101[f10,2} | f011_,r, 11,2} | {111 ,r,11,2}

21| {10_,r,1,1} , 2}

E[3] {1_,r,,1}

I
| Generating HMR —

E[1] /41007 740/ { 101,1,10,2} [A0IL 7 AX(28 | 4A11n 7112

P,

ER2) A0 #AA7  (11,L12F
E[3] A |

H= {{1_,r,1}{11,,1,2},{ 101,1,10,2}}
result = {1,,_11,, 101,}

Figure 3.8: Process of Algorithm1 (4,58336)

of each node. If the direction of a node is r then the location of the focus 1 be i th
number, otherwise, the location of the focus 1 be i + 1 th in the extended pattern. For
example, in Fig. 3.6, because the location of the focus 1 of 1 _ _ _ is 1, the location
of the focus 1 of 10 __, _ 11 _be 1 and 2 because of the direction is r and 1 respectively.

From the above step of the algorithm, the location of the focus 1 is added as the
third element of each node. If the directions of two nodes from a mother node are
the same, the motions can be replaced by that of their mother node. Thus the set of
motions depicted in the blue boxes is remained to be the HMR of the rule. In the final
step of the algorithm, blanks on the right-hand side of each pattern are removed and the
locations of the focus 1 are shifted by the suffix of the pattern then we can get the HMR
{11, _ 115, _101,}.

3.3 Representation of NCCAs by an HMR tree

In this section, we show HMRs of all NCCAs of neighborhood size 2, 3, 4, and 5. We
employ a tree form representation of HMRs (HMR tree). Each HMR of all NCCAs is
computed by the algorithm 1 from the rule based enumerated results of NCCA rules in
Fig. 3.10 and Fig. 3.12. Although number-conservation is a strong condition and the
number of NCCAs is very small, the number of 5-cell NCCAs is 428 and it is quite
difficult to understand the overall properties of them by just watching the list of all
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rules. Employing the HMR trees, we can express the structure of all NCCAs briefly.
The HMR trees of a k-cell NCCAs are composed by k-trees. The root node of each
tree is one of the k basic motions. Gathering motion(s) in each child node, we can get
all HMRs categorized in the basic motion.

There are three types of motions in a node. Motions in < > means that one of

the elements in < > is chosen. For example, {_ s, _ 111y, <7011?i40]014>} means
{____ 15, _ 1114, _ 1014} and {____ 15, _ 1114, 10114,01014}. The symbol [ ]

means that each element in the power set of all elements in [ ] is taken as the element
in the node!. For example, a branch with a node {1, [_ 11;]} means that there is two
branches, i.e., the branch with {1} and the branch with {1;, _ 11,}.

Fig. 3.9 and 3.11 are HMR trees of up to 4-cell NCCA rules.

N e

N 1, [_11]

1 B2
--------- 1

2 Yoy

1 7%

- 1,[11]
2-neighborhood 3-neighborhood

NCCA NCCA

Figure 3.9: HMR trees of 2 and 3-cell NCCAs

15
8
8

1011 [ 1

2
s
5
2

N 15 150 Y1 1 R O P 1 A 1 1 O R 8 =3
2
g
g
8
s

0010

3
8
2
3
8
8
8

rule
43690
43944
47288
48268
48770
49024
51448
52428
52930
53184
56528
57580
58082
58336
59946
60200
61680
62600
63544
64524
65026
65280

5 S S A P P 1SS A 5 P P O S =4
8

S S S P 5 P SN P S ) P O 14

[ [ | [ [ [ s [ | s [ [ | [ [ 2 | o [ o | | o [ 0| o
i s [ [ i i [ i 12| s | o [ o | @ [ @ | o [ i 1 | s 1 1=
A S Y Y Y PN PN P 1 PN P 19 PN PN 1O I P8 15 59 PN SN

10 13 P2 R0 ) Y PN PN N P iy PN (U U P 1S P P2 P P PSS
10 153 P 151 5% [ P ) e ) R PN P PN PO 1) P P 14 ) P9
olo|m|e|r|o|o|o|e|o|r|o|o|elr|o|e|o|m|e|o]| o
oln|olo|o|o|e|n|alr|o|e|o|r|e|o|o||o]o|o]m:
olo|ole|o|o|o|o|e|o|e|o|o|o|e|o|e|o|o|e|e]|e!

1 i s i o [ o o [ s i o [ i o o o [ o o i | o 1 2
[ fm] oo ]m| o [o] o i | fim [ ] fi= = | =[] =
I R Y P 1Y P F0 PN P 1SN PN PN S R P N ) PR 15 PN PENTSY
1 Y POY P 1N P PR Y Y TR I P PR ) PO PEF ) PR 123 P P
olo|olr|o|r|o|o|e|o|e|r|o|o|a|r]|o|o|o|m|o]| e

Figure 3.10: 4-cell NCCA rules

It is easily seen that HMR trees have two features in the structure of NCCA rules.
First, the HMR trees of k-cell NCCAs consist of k-trees. Second, the half of rule are
symmetric and you don’t need to show.

10 is also included.
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1 11,0101 Do 110011
31,7001, 11111 1
[F111] (1o1]
Ll 3 1{01] il Y1, ({107
1,901,17111] i1
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Figure 3.11: HMR trees of 4-cell NCCA rules

Definition 13. [16] [Symmetric motions] Let u, u’ are motions of some HMRs of n-cell
NCCAs such that u = {p,s}, W’ ={p’,s'}and p = ajay---ay, p = b\by---b, are
extended pattern. If ay = by,ay = by_1,--- ,a, = by withs =n+1—5s", u,u’ are
symmetric motions. Moreover we call two HMR M and M, are symmetric when if
|/Y(1| = | M| and for each motion p of M, there exists a symmetric motion of ji in

Mo,

In HMR trees of n-cell NCCAs, HMRs in k-th and (n — k + 1)-th HMR tree are
mutually symmetric. If n is odd then the half of HMRs in (n — 1)/2 + 1-th HMR tree
have their symmetric ones in the tree. Thus half of HMR trees is enough to represent
the all structures of HMRs.

Fig. 3.13 shows one of the HMR trees of 5-cell NCCAs. We can graphically
represent the structure of all NCCAs.

3.4 Conclusion

In this chapter, we showed some properties for the value-1 patterns of NCCAs, and show
that all n-cell NCCAs can be derived from (n—1)-cell NCCAs. Moreover we introduced
a binary tree structure called a bundle tree which represents a relation between a pattern
set of the local function arguments of an n-cell NCCA and that of less than n. Using the
relation, we also proposed hierarchical motion representation. Whereas normal motion
representation focuses on the position of the cell, hierarchical motion representation
focuses on actual moving particles. It is also convenient to describe the structure of all
NCCAs of a neighborhood size by merging their shared motions.
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Chapter 4

A new structure of two-state
NCCA

Two-state NCCA with the state set, {0, 1}, keeps the number of 1s on the configuration
constant. In other words, all the 1s on the configuration move without disappearing or
appearing at any time step. When 1s on a configuration have motion by two-state NCCA,
that motion is determined by the value-1 patterns of the NCCA rule. We introduced
hierarchical motion representation that systematically and simply expresses the value-
1 patterns, and thus introduced the HMR tree that NCCAs with similar motions can
express together. In this process, we found that the value-1 patterns of n-cell and
(n — 1)-cell NCCA rules were related to each other, and the relation was shown using
bundle in [17].

In this chapter we introduce bundle pair representing a relation between patterns of
length n and n — 1, and bundle quad representing a relation between patterns of length
n and n — 2. Value-1 pattern sets of all NCCA rules always have a structure consisting
of bundle pairs and bundle quads, and have different characteristics depending on what
structure they have. We introduce some properties of NCCA rules with only bundle
quads and NCCA rules without bundle quad.

4.1 Bundle pair

In this section, we introduce bundle pairs of value-1 patterns, and some related proper-
ties.

Definition 14. [18] [Bundle pair] Two patterns p and q are a bundle pair if p and q
are both l-bundle or r-bundle of a certain pattern r.

We use the following corollary of theorem3 in chapter 3, i.e., the value-1 pattern set
of an NCCA is a set of bundles.

Corollary 2. Let Q be the value-1 pattern set of an (n+1)-cell NCCA with 2" elements.
There exists a pattern set P = {p;|1 < i < 2""'}, which is the value-1 pattern set of an
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n-cell NCCA, where for each element p;, two patterns «, 8 € Q are bundle of p;, and
@, B are not for any other p j(j # i).

In brief, corollary 2 is directly derived from theorem 3 and means that (n — 1)-cell
NCCA with the number of elements of the value-1 pattern set is 2”2 can be obtained
from n-cell NCCA with the number of elements of the value-1 pattern set of elements
is 2771,

Because theorem 3 is a characterization of the value-1 pattern set by its bundle
patterns, the following corollary is also derived:

Corollary 3. Let P = {p;|1 <i < 2"} be the value-1 pattern set of an n-cell NCCA.
There exists a pattern set Q = {q ;|2 < j < 2" + 1}, which is the value-1 pattern set of
an (n+ 1)-cell NCCA, where q»;, q2ir1 are a bundle of p; for 1 <i <21

Corollary 3 means that n-cell NCCAs can be obtained from each (n — 1)-cell NCCA,
in contrast to corollary 2.

The bundle patterns from the value-1 pattern set of an NCCA forms a multiset, but
its multiplicity is at most two by the following lemma:

Lemma3. Let Q = {q;|1 < j < 2"} be the value-1 pattern set of an (n+1)-cell NCCA.
There always exists a multiset M = {m;|1 < i < 2""'} s.t. m; is a bundle pattern of
two patterns qo,qp in Q, and qq,qg are not for any m;(j # i). Each element of M
has a multiplicity at most two.

Proof: Let Q be the value-1 pattern set of an (n+ 1)-cell NCCA. Then, each element in
Q is one of a bundle pair by lemma 1. If there are three patterns p, g, r such that p and
q are 1-bundle of a certain pattern and g and r are r-bundle of a certain pattern. Then
there must be a pattern s that can be r-bundle with p or 1-bundle with r by lemma 2.
Then, a multiset M = {m;|1 < i < 2" '} always exists when m; is a bundle pattern of
two patterns p, g in Q. O

For example, there are sixteen 4-cell CAs of which bundle pattern set is the value-1
pattern set of Rule 184. Eight cases among them are NCCA. Fig. 4.1 shows one of
them, 4-cell NCCA Rule 60200.

Until now, we show the relation between n-cell and (n + 1)-cell NCCAs using
bundle. From now, we introduce the relation between n-cell and (n + 2)-cell NCCAs
using either 1-bundle or r-bundle. Lemma 4 is the description of the relation between
n-cell and (n + 1)-cell NCCAs using only 1-bundle.

Lemma 4. Let P = {p;|1 <i < 2""'} be the value-1 pattern set of an n-cell NCCA.
If O ={q12 < j < 2"+ 1} is a pattern set, where q»;, q2i+1 are I-bundle of p; for
1 <i < 2" then Q is the value-1 pattern set of an (n + 1)-cell NCCA.

Proof: Each element of Q is a pattern in P prefixed with a number O or 1. Then, the
number of elements of Q is 2" without any duplicated patterns. Hence, Q is the value-1
pattern set of an (n + 1)-cell NCCA by corollary 3 O.

When ¢g»;, g2i+1 are r-bundle of p; in lemma 4, Q is also the value-1 pattern set of an
(n+ 1)-cell NCCA.

Next, we think about the relation between n-cell and (n + 2)-cell NCCAs using the
combination of 1- and r-bundle.
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The value-1 pattern set of rule 60200 :
{1111, 1110, 1101, 0101, 1001, 1000, 1011, 0011 }

R ey W
{111_ _101, 100_, _011 }
— " 1—Remove "’

{111,101, 100, 011 }
: the value-1 pattern set of rule 184

.

A Space-time diagram of rule 60200

Figure 4.1: 4-cell NCCA rule 60200 whose bundle pattern set is the value-1 pattern set
of rule 184.

Lemma 5. Let P = {p;|1 < i < 2!} be the value-1 pattern set of an n-cell NCCA
and R = {ri|4 < k < 2 + 3} be a pattern set satisfied that r4;, Fais1, Fais2, F4is3 are
I-bundle of r-bundle of p; for 1 < i < 2"~'. Then, R is the value-1 pattern set of an
(n +2)-cell NCCA.

Proof: Each element in R is a pattern in P prefixed with a number, O or 1, and suffixed
with a number, O or 1. Then, the number of elements of R is 2*! without any duplicated
patterns. Hence, R is the value-1 pattern set of an (n+2)-cell NCCA by corollary 3 0.

When ry4;, r4i+1, F4i+2, ¥4i+3 are r-bundle of I-bundle of p; in lemma 5, R is also the
value-1 pattern set of an (n + 2)-cell NCCA.

By lemma 5, the value-1 pattern set can be extended from n-cell NCCA to (n + 2)-

cell NCCA without overlapping elements using the operations of generating 1-bundle
and r-bundle as shown in Fig. 4.2.

P = {p1,p2, -+, pon-1}

NN

Q= {qZ' 43,494, 9s, """, q2m, q2"+1}

R = {7‘4, 5,76, V7, ont+1, Von+1 g, Vontiy,, T2n+1+3}

Figure 4.2: Extension of value-1 pattern sets from n-cell to (n + 2)-cell
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4.2 Bundle quad

Although NCCA rules should be recursively generated by extending bundle pairs,
enumeration or indexing of NCCA rules is still difficult, because a similar value-1
pattern set could be generated by some different extending operations. To figure out the
difficulty, we introduce another structure on the value-1 patterns, a bundle quad.

Definition 15. [Bundle quad] Four patterns p,q,r, and s are a bundle quad if p
(resp.s) is a bundle pair with q and r simultaneously.

For example, in Fig 4.3, the four patterns 0010, 1010,0011, and 1011 are a bundle
quad because 0010 (resp. 1011) and 1010 are I-bundle (resp. r-bundle) of 010 (resp.
101). Also, 0010 (resp. 1011) and 0011 are r-bundle (resp. 1-bundle) of 001 (resp.
011). Further, those four patterns are 1-bundle of r-bundle (or r-bundle of 1-bundle) of
0l.

1010 0010—1010
1011 0011—1011
A bundle pair A bundle quad

Figure 4.3: A bundle pair and a bundle quad

Let four patterns p, g, r, and s of length n + 2 be a bundle quad and two patterns &
and g of length n + 1 be the bundle patterns of p, g and r, s, respectively. Moreover, let
a length n pattern vy be a bundle pattern of @, 5. Then, p, g, r, s are 1-bundle of r-bundle
of y. We call the pattern y, the seed of the bundle quad, and we denote the bundle quad
. For example, in Fig 4.3, the seed of 0010, 1010,0011, 1011 is 01, and we denote

them as .

We showed that the elements of the value-1 pattern set of any NCCA A form bundle
pairs. Moreover, some pairs of the bundle pairs may form bundle quads. Therefore, we
can represent the value-1 pattern set of A by the set of bundle quads and bundle pairs.
We call it the quad and pair set of A. The following theorem relates to the case where
value-1 patterns only form bundle quads.

Theorem 5. The number of n-cell NCCAs with 2" bundle quads is equal to the
number of (n — 2)-cell NCCAs.

Proof: Let X be the number of n-cell NCCA rules which has 2~3 bundle quads and ¥
be the number of (n — 2)-cell NCCA rules.

First, let P = {p;|1 < i < 2"} be the value-1 pattern set of an (n —2)-cell NCCA rule.
By def. 15, there exists only one pattern set {r;|4 < k < 2"*! + 3} that satisfies the
condition that r4;, 74i+1, F4i+2, 4i+3 are 1-bundle of r-bundle of p; () forl <i <23,
Also, the pattern set is the value-1 pattern set of an n-cell NCCA by lemma 5. Then,
Y <X.
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Second, let R = {ri|4 < k < 2" + 3} be the value-1 pattern set of an n-cell NCCA
rule with 23 bundle quads. Then, there exists only one multiset {p;|1 < i < 2773}
that satisfies the condition that r4;, r4;41, Fai+2, r4i+3 are for 1 <i <2"3bydef. 15
and lemma 3. Also, the multiset is the value-1 pattern set of an (n — 2)-cell NCCA rule
by corollary 3. Then, X <Y.

Therefore, the number of n-cell NCCA rules which has 2" bundle quads X is equal
to the number of (n — 2)-cell NCCA rules Y. O

For example, there are only two 2-cell NCCAs, 10 and 12. Also, there are only two

(2473) 4-cell NCCAs with two bundle quads, 52428 and 61680.

First, the value-1 pattern setof rule 10is {11, 01}, and(resp. ) is1111,1110,0111,0110
(resp. 1011, 1010,

0011,0010). A set of patterns {1111,1110,0111,0110, 1011,

1010,0011, 0010} is the value-1 pattern set of the 4-cell NCCA rule, 52428. Next, the
value-1 pattern set of rule 61680 is {1111,1110,0111,0110, 1101, 1100, 0101, 0100},

and 1111,1110,0111,0110 (resp. 1101, 1100,0101,0100) are (resp. ). The

set {11, 10}is the value-1 pattern set of the 2-cell NCCA rule 12.

The value-1 pattern set of rule 184 : { 111, 101, 100, 011 }
o
{[11 [1o1 fiod 11}

S
{11111, 11110, 01111, 01110, 11011, 11010, 01011, 01010,
11001, 11000, 01001, 01000, 10111, 10110, 00111, 00110 }
: the value-1 pattern set of rule 3485519808

A space-time diagram of rule 3485519808

Figure 4.4: 5-cell NCCA rule 3485519808 having the same space-time diagram as rule
184

As shown in Fig 4.4, an n-cell NCCA with full quads have the same space-time
diagram as any (n — 2)-cell NCCA of which value-1 pattern set is the set of the seeds
of the bundle quads of the n-cell NCCA rule.

Corollary 4. The maximum number of bundle quads of the value-1 pattern set of an
n-cell NCCA is 2"3.

n-cell NCCA rules can be classified by the structure of their value-1 patterns as
illustrated in Fig. 4.5. From the enumeration result of NCCAs using a computer[19, 21]
we show the number of NCCA rules for each combination of bundle pairs and bundle

35



Neighborhood Structure of value-1 patterns The number

size ( bundle quads & bundle pairs ) of rules
1-cell X 1
2-cell 1 bundle pair i ‘ 2
3-cell 1 bundle quad m 1
0 bundle quad & 2 bundle pairs Eg 4
Total 5
4-cell 2 bundle quads mm 2

i

1 bundle quad & 2 bundle pairs i:g ii ‘ 12
0 bundle quad & 4 bundle pairs gggg 8
Total 22

5-cell 4 bundle quads mmﬁm 5

3 bundle quads & 2 bundle pairs

eieredig
2 bundle quads & 4 bundle pairs mm igig : 185

1 bundle quad & 6 bundle pairs i:g ggiggg 150
0 bundle quad & 8 bundle pairs iigiiiii 24
Total 428
6-cell 8 bundle quads i:i i:g | 22
7 bundle quads & 2 bundle pairs i:g g:g gi 576
6 bundle quads & 4 bundle pairs mm iigi ( 5482
5 bundle quads & 6 bundle pairs mm iizi : 23416
4 bundle quads & 8 bundle pairs m i:i gg Ei | 46256
3 bundle quads & 10 bundle pairs m i:i gg ii | 40956
2 bundle quads & 12 bundle pairs mm gg gi | 14632
1 bundle quads & 14 bundle pairs m gi ii | 1780
0 bundle quads & 16 bundle pairs ii | 64
Total 133184

Figure 4.5: The number of NCCA rules by combination of bundle pairs and bundle
quads

quads up to 6-cell in Fig.4.5. By Theorem), it is easily verified that the number of
n-cell NCCA rules with 2"~ bundle quads, i.e., the number of “full quad’ rules is equal
to the number of (n — 2)-cell NCCA rules.

4.3 Full pair

In contrast to the number of the ‘full quad’ case, that of the ‘full pair’ case, i.e., no
bundle quad and 2”2 bundle pairs, is not shown in general. The following properties
are found so far:

Proposition 1. For any n-cell NCCA A = (n, fa) (n = 2) of full pair with its quad and
pair set U, the following properties hold:

1. Let U’ be the set of all symmetric elements in U, i.e., for each extended pattern
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ayaz---ay €U, a,---aza; € U'. U’ is also a quad and pair set of full pair.

2. Either 1---1_eUor_1---1€Uholds. If1---1_€ U (resp. _1---1¢€ U),
{_1---1}UOU\{1---1_}) (resp. {1---1_YyU(U\{_1---1}) is also a quad and
pair set of an n-cell NCCA.

The first property in Proposition 1 is trivial because the symmetric value-1 pattern
set of an NCCA is also that of another NCCA and U’ is also a full pair set because the
operation just changes r- or I-bundle pattern to its opposite direction.

The outline of a proof of the second property is as follows: fa(1---11) =
fa(1---10) =1 and f4(01---1) = 0 holds by the assumption. For a sub-configuration
sy = 1---10 (with f4(s;) = 1) of a configuration c;, the evolved sub-configuration is
s¢+1 = 1---10. In the case of A’ = (n, fa), where far(1---11) = fa(01---1) =1
and fa (1---10) = 0, thus the evolved sub-configuration is changed to 57, = 01---1.
But there are only two cases of its left-extension either Os; or 1s,. If Os;, the evolved
configuration is 1s;  and the application of f4- only switches these positions of 0 and 1.
If 1s,, we repeatedly check the above extension whether O1 - - - 1s; or 11 - - - 15,.Because
we start from s,, the case 01 --- 1s, should appear for any finite cyclic configuration
including s;. Because A is a full-pairs NCCA, A’ is also a full-pairs NCCA.

By proposition1-2
60200 : { 111_, _101, 011, 100_} ——= ( ,_101, _011, 1007?D
By proposition1 Jﬂ ﬂBy proposition1-1

{_111,101_ 110, _OO‘I@ {111_,101_ 110_, _001

>> the value-1 pattern set of @ : 43944, @ : 48770, ® : 65026

By proposition1-2
65280 : { 111_, 110_, 101_, 100_y—=> {[.111), 110_, 101_, 100&‘-D
By propositiorﬂ—?ﬂ ﬂBy proposition1-1

(_11‘1,_011,_‘101,_001@> (111_,_011,_101,_001@

>> the value-1 pattern set of @ : 49024 , ® : 43690, ® : 59946

Figure 4.6: Six 4-cell rules derived from two NCCA rules 60200, 65280

Fig. 4.6 shows quad and pair sets of two 4-cell full pair rules 60200 and 65280. By
Proposition 1, we get the other six rules from the above two rules in 4-cell full pair
cases as in Fig.4.6.

Proposition 2. For the quad and pair set U of any n-cell NCCA (2 < n < 4), the
derived set by deleting “_’ from all elements of U is the value-1 pattern set of a certain
(n = 1)-cell NCCA rule. Forn > 5, there exist n-cell NCCA rules which do not satisfy
the property.

Proposition 2 is easily verified for the case of 2 < n < 4 by the enumeration result
of NCCA rules.
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As Fig. 4.6, deleting °_’ form each element of their quad and pair sets, we get
{111,101,011, 100}, {111, 101, 110,001},{111, 110, 101, 100}, and {111,011, 101, 001}.
These sets are the value-1 pattern sets of 3-cell full pair rules 184,226, 240, and 170.

In the case of n-cell full pair (n > 5), the most of the rules, such as the rule 4294901760
in Fig. 4.7, satisfy Proposition 2 but there are some other rules which do not satisfy it,
e.g., rule 4021231776 in Fig.4.7. There are several extended patterns which share a

4294901760 : { 1111_, 1110_, 1101_, 1100_, 1011_, 1010_, 1001_, 1000_}
@ Remove "’
{1111,1110, 1101, 1100, 1011, 1010, 1001, 1000 }
: the value-1 pattern set of 65280

4021231776 : { 1111_, _1101, 1101_, 1100_, _0111, _0101, 1001_, 1000_}

@ Remove "'
{1111 [1101)(1101), 1100, 0111, 0101, 1001, 1000 )

: can not be the value-1 pattern set of any NCCA rule

Figure 4.7: Quad and pair sets of 5-cell NCCA rules 4294901760, 4021231776

same pattern from second to (n — 1)-th numbers but different extending directions in
the quad and pair sets of the rules.
Nevertheless, the following Proposition holds for any full pair case in general.

Proposition 3. For any n-cell NCCA (n > 2) of full pair, its quad and pair set U has
the following form:
U = {u;|u; = either aipi_ 01‘_[)[(1[}

where p; is the zero-padded binary representation of i of the lengthn—2 and a; € {0, 1}
for0<i<2"2-1.

Proof: Let U be the quad and pair set of any n-cell NCCA (rn > 2) of full pair and
let p; and p; be the length n — 2 sub-patterns from second to n — 1 positions of two
different element u; and u; of U (i # j). Suppose p; = p;. There are only two cases
according to the extending directions of u; and u;. First, if they are the same then

up = _pida;,uj = _piaj (OI' up =a;p; ,uj = ajpi_) with a; aj. These two bundle
pairs form a bundle quad, but U is a quad and pair set of full pair. Secondly, if they
are different, then u; = _p;a;,u; = a;p;,_ (a;,a; € {0,1}). u; is the [-bundle of

Opia;, 1p;a; and u; is the r-bundle of a;p;0,a;p;1. Among the four patterns, at least
two patterns are the same for any a; and a;. But all elements in the value-1 pattern
set of an NCCA should be different and the number of them is 272, The case of
u; = a;pi_,uj = _p;a; is shown in the same way and thus p; # p;. |

For example, Fig.4.8 shows a set derived from the quad and pair sets of the 6-cell
16987224761694323240.

In contrast to the full quad case, the value-1 pattern sets of the full pair case differ
each other only on the leftmost and rightmost number of each pattern. Although we did
not clearly characterized the full pair case as full quad derived by (n — 2)-cell NCCA
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16987224761694323240 : { 11111_, _11101, 11100_, _11011, 11010_, 11001_, _10111, 10110_, 10101_,
10011_, 10001, 01111, _01001, 00101, _00011, 10000_ }

<

{1111, 1110, 1100, 1101, 1010, 1001, 1011, 0110, 0101, 0011, 1000, 0111, 0100, 0010, 0001, 0000 }

Figure 4.8: Quad and pair set of 6-cell 16987224761694323240

rules, but it considered to be derived from all patterns of n — 2 cells. We also conjecture
that U in proposition 3 satisfies the following condition:

U = {u;|u; = either 1p;,_or _p;1}.

If the conjecture is true, only the assignment of extending directions accumulate the
recursive information of n — 1 or less NCCA rules.

4.4 Conclusion

In this chapter, we introduced a new structure of the value-1 patterns of each NCCA,
a bundle pair and a bundle quad. Any NCCA rule can be represented by some combi-
nations of bundle pairs and bundle quads. The structure reflects the relation between
NCCAs of different neighborhood sizes and we show the relation that the number of
(n — 2)-cell NCCA rules is equal to the number of n-cell NCCA rules only composed
of bundle quads. In addition, we show some propositions of full pair case and the full
pair case can be derived from all kinds of (n — 2)-cell patterns, unlike the full quad.
If the rules of large-neighborhood NCCAs are represented by the quads and pairs of
smaller-neighborhood NCCA, we can analyze large-neighborhood NCCAs more easily.
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Chapter 5

Conclusion

In this thesis, we showed NCCAs with different size at once using HMR, and showed
the relation between the NCCAs using the newly proposed structure.

First of all, we showed some properties about the value-1 patterns of NCCA rules,
and as the result, it was shown that all n-cell NCCAs can be derived from (n — 1)
cell NCCAs. In addition, we introduced HMR, which plays an important role for the
characterization. Unlike MR, which focuses on the location of all state-1 cells, HMR
only focuses on the particles actually to be moved. Also, since HMR has a tree structure
according to the order of the ‘complexity’ of patterns which invoke the movements of
Is, it is easy to express NCCAs of the same neighborhood length as an HMR tree.
Second, we proposed a new structure, bundle pair and bundle quad, and showed some
properties of the value-1 patterns of NCCAs using the structure. We showed that all
NCCAs can be represented as a combination of bundle pairs and bundle quads. We also
showed that the number of n-cell NCCAs consisting of only bundle quads is the same
as the number of all (n — 2) cell NCCAs. In addition, we show some propositions of
full pair case and the full pair case can be derived from all kinds of (n — 2)-cell patterns,
unlike the full quad case.

We focused on the relations of NCCAs of different neighborhood sizes. Ultimately,
we expect to find any method to find NCCAs that have their desired movements of 1s
regardless of their neighborhood size employing the structure of HMR in future study.
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