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Abstract

This dissertation discusses logistic regression analysis-based retailer competition

analysis, and hybrid deep learning architectures-based multi-conditional time

series forecasting, respectively. We will introduce them successively.

Customer relationship analysis is vital for retail stores, especially for super-

markets. POS systems make it possible to record the daily purchasing behaviors

of customers as an ID-POS database, which can be used to analyze customer

behaviors of a supermarket. The customer value is an indicator based on ID-

POS database for detecting the customer loyalty of a store. In general, there are

many supermarkets in a city, and other nearby competitor supermarkets signif-

icantly affect the customer value of customers of a supermarket. However, it is

impossible to get detailed ID-POS databases of competitor supermarkets. This

study firstly focused on the customer value and distance between a customer’s

home and supermarkets in a city, and then constructed the models based on

logistic regression analysis to analyze correlations between distance and pur-

chasing behaviors only from a POS database of a supermarket chain. During

the modeling process, there are three primary problems existed. Intuitively, the

incomparable problem of customer values, the multicollinearity problem among

customer value and distance data, and the number of valid partial regression

coefficients. The improved customer value, Huff’s gravity model, and inverse

attractiveness frequency are considered to solve these problems. This thesis

presents three types of models based on these three methods for loyal customer

classification and competitors’ influence analysis. In numerical experiments, all

types of models are useful for loyal customer classification. The type of model,

including all three methods, is the most superior one for evaluating the influence

of the other nearby supermarkets on customers’ purchasing of a supermarket

chain from the viewpoint of valid partial regression coefficients and accuracy.

Traditional time series forecasting techniques can not extract good enough

sequence data features, and their accuracies are limited. The deep learning struc-

ture SeriesNet is an advanced method, which adopts hybrid neural networks, in-

cluding dilated causal convolutional neural network (DC-CNN) and Long-short

term memory recurrent neural network (LSTM-RNN), to learn multi-range

and multi-level features from multi-conditional time series with higher accu-
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racy. However, they didn’t consider the attention mechanisms to learn temporal

features. Besides, the conditioning method for CNN and RNN is not specific,

and the number of parameters in each layer is tremendous. This thesis proposes

the conditioning method for two types of neural networks, and respectively uses

the gated recurrent unit network (GRU) and the dilated depthwise separable

temporal convolutional networks (DDSTCNs) instead of LSTM and DC-CNN

for reducing the parameters. Furthermore, this thesis presents the lightweight

RNN-based hidden state attention module (HSAM) combined with the proposed

CNN-based convolutional block attention module (CBAM) for time series fore-

casting. Experimental results show our proposed model, attention-based Series-

Net (A-SeriesNet), is superior to other models from the viewpoint of forecasting

accuracy and computation efficiency.

The A-SeriesNet combined augmented attention residual learning module-

based convolutional neural network (augmented ARLM-CNN) subnetwork with

hidden state attention module-based recurrent neural network (HSAM-RNN)

subnetwork for conditional time series prediction with high accuracy. The aug-

mented ARLM-CNN subnetwork has defects in extracting latent features of

the multi-condition series. The forecasting accuracy will decrease when the fea-

ture dimension of the multi-condition series becomes high. The same problem

also occurs in the HSAM-RNN subnetwork of A-SeriesNet. The dual-stage at-

tention recurrent neural network (DA-RNN) proved that the attention-based

encoder-decoder framework is an effective model for dealing with the above

problem. This thesis applies the DA-RNN to the HSAM-RNN subnetwork of

A-SeriesNet and presents the triple-stage attention-based recurrent neural net-

work (TA-RNN) subnetworks. Furthermore, this thesis considers a CNN-based

encoder-decoder structure named dual attention residual learning module-based

convolutional neural network (DARLM-CNN) subnetwork to improve the aug-

mented ARLM-CNN subnetwork of A-SeriesNet. Finally, this thesis presents

the triple-stage attention-based SeriesNet (TA-SeriesNet), which uses a new

concatenation method instead of the element-wise multiplication of A-SeriesNet

to parallel connect the proposed subnetworks and reduce the dependence of

forecasting results on a certain subnetwork. The experimental results show our

TA-SeriesNet is superior to other state-of-art deep learning models from the



v

viewpoint of forecasting accuracy evaluation metrics.
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Chapter 1

Introduction

In today’s supermarket business, the ID-POS database enables supermarkets to

analyze customer behavior and adopt more targeted and personalized market-

ing strategies such as customer relationship management (CRM) [1], to improve

the competitiveness of supermarkets. The ID-POS database digitally records

customer ID, customer information, sales records., etc. Therefore, customer

behavior is measurable by counting their daily shopping records as customer

values. Generally speaking, customer value analysis, which is also known as

RFM analysis [1]- [3], mainly depends on three parametric indicators, customer

shopping recency, frequency, and monetary. They can reflect the customer loy-

alty of a store. The models consist of RFM indicators with other statistical

parameters that are trainable by clustering analysis [4] and other machine learn-

ing methods to investigate the customer shopping preference. Tanaka et al. [5],

proposed a model, including RFM indicators with the proportion of purchased

products of each customer in a supermarket chain. They define the loyal cus-

tomer by Decyl analysis [5], and then use logistic regression analysis [6]- [9] to

find loyal customers and detect the loyal customers’ preferences for each product

simultaneously. Logistic regression analysis is widely used in parametric impact

analysis. The coefficients of logistic regression mathematically considered as the

parameters in the Odds ratio [10]. The Odds ratio can reflect the influence of

variable parameters on a particular parameter. As a result, they built a loyal

customer analysis model with high classification accuracy. There is a lot of the

other customer’s information in the ID-POS database, such as the customer’s

address. Therefore, Tanaka’s method is also useful to detect different aspects

1
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of the customer’s behavior. For example, the distance between a customer’s

home and all supermarkets in a city is computable. The influence of nearby

competitors is discoverable by analyzing the relationship between distance and

the customer’s shopping amount of the target supermarket. The customers who

live close to competitors are more likely to be influenced by them, resulting in

decreased shopping amounts in the target supermarket. However, logistic re-

gression cannot train the raw distance data without preprocessing directly since

the multicollinearity problem [11] may occur between the distance data and

RFM indicators. Therefore, it is essential to find a method that can transform

the distance data into probability similar to Tanaka’s work. This thesis first

considers three types of models for loyal customer classification and retailer

competition anaysis.

In big data analysis, time series forecasting is an essential branch developed

in recent years. Traditional methods have some limitations for time series fore-

casting since the time series possess characteristics such as non-linearity, non-

stationarity and unknown dependencies. Deep learning is an advanced approach

to overcome these problems. It depends on non-linear modules to learn the fully

features from the input data. Shen et al. [27] proposed a deep learning struc-

ture named SeriesNet, which combined the dilated causal convolutional neural

networks (DC-CNN) [37] and the long-short term memory (LSTM) [30]. They

evaluated that their model has higher forecasting accuracy and greater sta-

bleness. LSTM and DC-CNN are widely applied to time series forecasting with

excellent performance. However, DC-CNN and LSTM include a large number of

parameters, resulting in tremendous computation cost. Gated recurrent unit net-

work (GRU) [33] and LSTM have a comparable performance on time series fore-

casting, but parameter quantity significantly reduced. So does the dilated depth-

wise separable temporal convolutional networks (DDSTCNs) [36] compared with

DC-CNN. The SeriesNet can directly input raw time series sequences by condi-

tioning the target time series on the additional time series. But the specific con-

ditioning method is not clarified in their work. In addition, they did not consider

the attention mechanisms in SeriesNet. Recently, most researches focus on the

recurrent neural network (RNN) based attention to improve the deep learning

structure. However, the heavyweight attention mechanism within massive train-
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ing parameters will influence the computation efficiency. The convolutional block

attention module (CBAM) [35] is a lightweight attention structure, but has only

been successfully applied to image recognition so far. This thesis presents the

attention-based SeriesNet (A-SeriesNet) to solve the above problems. Fig. 3.2

demonstrates the overall structure of A-SeriesNet. The A-SeriesNet has two sub-

networks. The CNN-based [29] subnetwork used augmented attention residual

learning module (augmented ARLM) [32] for conditioning the multi-condition

series (Condition) on target time series (Input). The conditioning method of the

RNN-based [31] subnetwork fed the multi-condition series into the first gated

recurrent unit (GRU) [33] layer’s initial hidden state via a flatten operation

and a full-connection layer (FC). We adopted batch normalization (BN) [34]

and convolutional block attention module-based (CBAM) [35] dilated depth-

wise separable temporal convolutional networks (DDSTCNs) [36, 45] instead

of dilated causal convolutional neural network (DC-CNN) [37] in the residual

learning module of SeriesNet [27] for parameter reduction and precision im-

provement. The CBAM [35] is a lightweight attention mechanism for image

recognition and time series prediction, which focuses on global max pooling

and global average pooling of a CNN [29] layer. The DDSTCNs [45] simplifies

training parameters of DC-CNN [37] via depthwise convolution and pointwise

convolution. Besides, we propose a variant of CBAM [35] named hidden state

attention module (HSAM), which focuses on global max pooling and global

average pooling of hidden states between two RNN [31] layers. Although the

A-SeriesNet has excellent forecasting performance, the element-wise multiplica-

tion of two subnetworks structure restricts the forecasting accuracy. When there

is a large forecasting deviation among two subnetworks, the overall accuracy is

sensitive to either of them and not appropriate to the parallel connection of

more than two subnetworks.

On the other hand, The A-SeriesNet didn’t learn the multi-condition series’

potential features before conditioning them on target time series in both sub-

networks of A-SeriesNet. The prediction accuracy will decline when the feature

dimension (series number) of multi-condition series increased. Yao et al. [38] pro-

posed the dual-stage attention-based recurrent neural network (DA-RNN) [38]

to deal with the above problem. The DA-RNN [38] encodes multi-condition se-
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ries as feature context vectors via an RNN [31] encoder with input attention and

decodes the context vectors conditioned on the target series via an RNN [31]

decoder with temporal attention. The DA-RNN [38] proved the encoder-decoder

framework is an excellent solution to the above problem. However, the encoder-

decoder structure has a performance deterioration problem for a long time se-

quence [39]. The HSAM concentrates on hidden states between two RNN [31]

layers, which is also appropriate for further improving the DA-RNN [38]. Accord-

ing to the disadvantages of A-SeriesNet, We improve A-SeriesNet and present

the triple-stage attention-based SeriesNet (TA-SeriesNet) in this dissertation.

The organization of this dissertation is as follows. The logistic regression

analysis-based retailer competition analysis is shown in Section 2. Section 3 in-

troduces the details of hybrid deep learning architectures-based multi-conditional

time series forecasting including A-SeriesNet, TA-SeriesNet and the experiments

of them. Section 4 gives the conclusions and future work.



Chapter 2

Enterprise Competition
Analysis

2.1 Related work

2.1.1 Retailer Competition Analysis

In economic, Reilly [14] applied the law of gravity in physics to analyze the retail

industry, which indicated that consumers are willing to drive a further distance

to larger retail stores for shopping. However, this law only considers the macro

aspect and lacks the investigation of the micro aspect of consumer decision-

making in actual shopping activities. Reilly’s law assumes that consumers will

choose a fixed retail store for shopping. In fact, consumers expect to go shopping

at two retail stores in close geographical locations simultaneously. Huff’s gravity

model [13] made a breakthrough against this theoretical flaw later.

Figure 2.1: The customer location and gravity based patronage probability
model

5
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Huff’s gravity model uses probability to describe the spatial relations be-

tween stores and consumers in a district. The attraction of a store to a given

consumer is related to its size and geographical distance between them. The

proportion of its attraction to all stores’ total attractions in a region is the

probability that a given consumer will purchase at this store. Retailers use this

theory extensively for new site selection. However, the accuracy of the shopping

store’s preference for consumers is not precise enough. Nakanishi [15] et al.,

considered the other factors except for retail store area and distance factors to

improve Huff’s model, which is called the multiplicative competitive interaction

(MCI) model. It still can’t make a breakthrough. Fig. 2.1 [16] shows the theo-

retical store trade area. The blue, green, yellow and red progression represents

zones of increasing patronage probability. Different circles denote the different

circular trade area of the retailer store.

2.1.2 Customer Analysis

In customer analysis, RFM analysis [1], [2], [3] is to build a model that differenti-

ates important customers from large transaction data. Chen and colleagues [17]

propose an extended model of RFM analysis for the challenge prediction problem

of customers in the logistics industry. Later, the research that combines machine

learning methods has also been reported. Tanaka and colleagues [5] considered

the RFM and logistic regression analysis to detect the loyal customer’s pref-

erence for various supermarket products. They set the month elapsed from a

customer’s last shopping record to the data statistic day, the frequency of a

customer comes to store, and the purchase amount of a customer has spent

in a time interval for R, F and M values, respectively. Although in Tanaka’s

work, they obtained relatively precise results, the partial regression coefficients

of RFM indicators are uncomparable since they have different magnitude. The

principal component analysis (PCA) [18] and normalization analysis [19] can

also play a role in data magnitude reduction. However, they have the defects

of poor interpretability. Ref. [4], [12] proposed a method that can uniform the

magnitude of RFM values where they group the RFM values and give a score

of each group, respectively.

Decyl analysis [5] is another analysis method that calculates the purchase
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ratio and the sales composition ratio of each rank by dividing the consumption of

all customers into ten equal parts based on purchase history data. By purchase

ratio and composition ratio, it is possible to know a loyal customer group with

a high contribution to sales. The purpose of Decyl analysis is to grasp a loyal

customer group and concentrate on it to implement efficient marketing.

2.1.3 Regression Analysis

Regression analysis is a statistical technique for estimating the relationship be-

tween dependent and a set of independent explanatory variables. Polynomial

regression [20] is commonly used to analyze the curvilinear data when the power

of an independent variable is more than one. It plays a crucial role in regression

analysis because any function can be approximated piecewise by a polynomial.

Zenker [21] et al., proposed a method including polynomial regression and re-

sponse surface methodology for place marketing.

Logistic regression [6], [7], [8], [9] is also a regression analysis method for

the dichotomous problem. It quantifies the correlation between a series of in-

dependent variables and a dependent variable as a logit odds ratio. The logit

odds ratio is the natural logarithm of an odds ratio that represents the influ-

ence of the fluctuation of a given variable on the dependent variable. Yeung and

Yee [22] predicted consumer purchase propensity by logistic regression analysis.

They demonstrate how logistic regression can be used to predict consumer be-

havior where the explanatory variables are dichotomous and interact with each

other. Constantin [23] used a logistic regression model in supporting decisions

of establishing marketing strategies for accommodation analysis. Tanaka [5] et

al., built a loyal customer analysis model consist of original RFM values and the

proportion of item purchasing of a customer. They define the loyal customer of

a supermarket chain by Decyl analysis and tag them as target variables. After

that, they use logistic regression analysis to find loyal customers and detect the

item preference of them effectively.
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2.2 Loyal Customer Analysis Model

2.2.1 RFM Analysis

RFM analysis [1], [2], [3] contains three indicators, how recently a customer

has purchased (Recency), how often they purchase (Frequency), and how much

they spend (Monetary). To solve the problem that different magnitude RFM

indicators are uncomparable in Tanaka’s work [5] and make the analysis results

more accurate. This study considers converting the original RFM values into

the form of customer RFM scores based on Ref. [4], [12]. The analytic models

set R value as days elapsed from last sales record to data statistics day, F

value as the frequency of customer come to store and M value as the average

of one time purchase amount in a time interval from first shopping day to data

statistics day. R value is ordered by ascending and F, M value is ordered by

descending. Each of them is divided into five groups according to top rank 20%,

20% to 40%, 40% to 60%, 60% to 80%, 80% to 100%, respectively. Each group

of R, F and M value is scored from level 1 to 5 based on their group rank. If a

customer owns three high RFM scores such as (5, 5, 5) or (5, 4, 4), this customer

has a high loyalty in a store. Suppose a store has 100 customers, each with

a different RFM value. The examples of the R, F and M score are shown in

table 2.1, 2.2 and 2.3. The units of RFM values are days, times and amounts

of money, respectively. Table 2.4 shows the concrete structure of experimental

data for the first proposal of this thesis, the RFM type model.

Table 2.1: The example of R score

Customer R R rank Percentage R group R score

1 65 48 48% 40%-60% 3

2 354 87 87% 80%-100% 1

3 30 28 28% 20%-40% 4
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Table 2.2: The example of F score

Customer F F rank Percentage F group F score

1 28 80 80% 60%-80% 2

2 23 82 82% 80%-100% 1

3 96 20 20% 0-20% 5

Table 2.3: The example of M score

Customer M M rank Percentage M group M score

1 1926 49 49% 40%-60% 3

2 150 95 95% 80%-100% 1

3 2111 44 44% 40%-60% 3

2.2.2 Huff’s Gravity Model

The ID-POS database contains the customer information and two year customer

shopping record of target supermarket chain A including supermarkets A1 and

A2 in the experimental city. This thesis converts the customer address to lon-

gitude and latitude and uses Euclidean distance [24] to compute the distance

to each supermarket in the experimental city. There are seven supermarket

chains in that city, including one target supermarket chain A and six competi-

tive supermarket chains B, C, F, H, J and N. The chain name will combine with

a number to denote each individual supermarket of supermarket chains. The

horizontal axis of Fig. 2.7 and 2.8 shows all supermarkets in the experimental

city. A new method based on Huff’s gravity model [13] is considered to convert

the distance factors into uniform attractiveness probability.

hfij =

sj
dαij

Σn
j=1

sj
dαij

, Σn
j=1hfij = 1 (2.1)

In a district, the attraction of a retail store to a given customer is the ratio

of its size denoted as s to distance between them denoted as d. Therefore,

hfij indicates the attractiveness probability of customer i will go shopping at

store j and α denotes the distance decline coefficient. If the size of every store



10 CHAPTER 2. ENTERPRISE COMPETITION ANALYSIS

Figure 2.2: The interaction between circular trade area of stores in a district

is fixed, distance can convert into a uniform attractiveness probability. The

attractiveness probability is a negative correlation to the distance. The customer

obtains a significant influence when he lives close to a supermarket, vice versa.

The multicollinearity problem [2] will avoid since the sum of the attractiveness

probability of a customer is one, irrespective of the high or low of the RFM score.

Table 2.5 shows the structure of experimental data for the second proposal, the

RFM+ type model including RFM score and hf score.

2.2.3 Inverse Attractiveness Frequency

The third proposal is based on Tanaka’s work [5]. They proposed inverse shop

frequency to reduce the customer’s item preference between different individ-

ual supermarkets of a supermarket chain, and obtained precise results for loyal

customer classification. This thesis focuses on the influence of competitive su-

permarkets with different radius of their circular trade area impact on the cus-

tomers of affiliated target supermarkets. Fig. 2.2 [25] shows an example of the

interaction between the trade area of stores. It reflects the competition between

the stores in a district. For different stores, the customer’s shopping preference

and shopping frequency are affected by distance, store area., etc. Therefore,

how to mathematically measure the influence of competitors is an important

issue. The polynomial regression analysis [20] is used to detect the impact of

competitors firstly. This thesis conducts two experiments of polynomial regres-

sion analysis on the customer shopping data and distance data of A1 and A2.

Fig. 2.3 shows the tendency of distance and each customer monthly purchased
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Figure 2.3: The correlation between distance and sales for A1

Figure 2.4: The comparison of A1 with 2 competitors

Figure 2.5: The correlation between distance and sales for A2

item number of A1. The closer the distance to A1, the higher the shopping

quota is. Fig. 2.4 shows the comparison of A1 with two competitors. This the-

sis chooses the distance that lives around the competitors less than 3km trade

area and closer than A1. The customers of A1 close to the competitors are af-

fected since B and C are lower than A1. So do the tendencies in Fig. 2.5 and 2.6

for A2.

According to Fig. 2.3 and 2.5, this thesis defines the customers that pur-

chased item number per month is higher than the polynomial regression curve
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Figure 2.6: The comparison of A2 with 2 competitors

Figure 2.7: The proportion of dominated customers of A1 and A2

Figure 2.8: The iaf score of A1 and A2

as the dominated customers by target supermarkets. The more significant the

proportion of these customers surrounding the competitive supermarkets, the

powerful the target supermarkets have the influences in this area. Fig. 2.7 shows

the proportion of dominated customers of A1 and A2 surrounding a 3km radius

of the trade area of all supermarkets in the experimental city. The difference

between A1 and A2 is from 10% to 20%. The inverse attractiveness frequency

score of each supermarket is formulated to reduce this difference for feature
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quantity expression as below.

iafi,s = log
ci
di,s

(2.2)

The ci denotes the total number of customers in the specific radius of the trade

area of the ith competitive supermarket. The di,s indicates the number of

dominated customers by target supermarket s surrounding the specific radius

of the trade area of the ith competitive supermarket. The iaf vector is defined by

each customer of the target supermarket chain A. The high proportion in Fig. 2.7

will have a low iaf value, which means that the target supermarket has a powerful

impact on customers surrounding competitive supermarkets. Oppositely, a weak

impact has a high value. In this thesis, the customers purchased at affiliated

target supermarkets may be far from some competitors since this study detects

almost all supermarkets in a city. The value of ci or di,s perhaps zero. The

Laplacian smoothing is considered to avoid this situation.

iafi,s = log
ci + nλ

di,s + λ
(2.3)

The n denotes the total number of supermarkets in a city. The λ is a smoothing

coefficient. The hf score matrix for all customers in target supermarkets A1

and A2 are computable by Eq. 2.1, and then multiply by the corresponding

iaf score vector of A1 and A2 to obtain a hf-iaf score matrix, respectively. In

consideration of the heterogeneity of the influence tendency of A1 and A2 shown

in Fig. 2.7, the hf-iaf score is used to acquire the feature quantity expression

of the customers for the third proposal. Fig. 2.8 demonstrates the iaf score of

A1 and A2, where the radius of the trade area of all supermarkets is 3km. The

trend is reversed from Fig 2.7. Table 2.6 shows the structure of experimental

data for the RFM++ type model including RFM score and hf-iaf score.

2.2.4 Decyl Analysis

In economics, there is a theory which is known as 80/20 rule that 20 percent

of customers account for 80 percent of sales. Decyl analysis is derived from

this theory. This thesis refers to Tanaka’s [5] research and uses Decyl analysis

to define loyal customers of supermarket chain A. Decyl analysis arranges cus-

tomers in descending order of customer’s consumption and then divides them

into ten equal groups in terms of headcount, as shown in Fig 2.9. The top three



14 CHAPTER 2. ENTERPRISE COMPETITION ANALYSIS

groups generated 80.01% sales in the first year. Therefore, loyal customers of

supermarket chain A are defined as the top three groups. These three groups

are considered as the target variables of logistic regression analysis to build the

model for loyal customer classification in the first year. Decyl analysis also con-

ducts on the customer shopping data in the second year for testing the built

models.

Figure 2.9: Pareto chart of customer Decyl analysis

Table 2.4: The structure of experimental data for RFM type model

Customer R score F score M score

1 5 5 1

2 5 3 5

...

n 4 3 2
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Table 2.5: The structure of experimental data for RFM+ type model

Customer R score F score M score hf score vector

1 5 5 1 . . .

2 5 3 5 . . .

...

n 4 3 2 . . .

Table 2.6: The structure of experimental data for RFM++ type model

Customer R score F score M score hf-iaf score vector

1 5 5 1 . . .

2 5 3 5 . . .

...

n 4 3 2 . . .

2.3 Analytical methods

2.3.1 Logistic Regression Analysis

The formulation of logistic regression [6], [7], [8], [9] is defined as follows, where

pc is a probability that customer c is a loyal customer, ω denotes partial regres-

sion coefficients, x indicates explanatory variables, and d represents bias.

pc =
1

1 + e(d+ω1x1,c+ω2x2,c+...+ωkxk,c)
(2.4)

This thesis uses logistic regression analysis for detecting the influence degree of

the competitive supermarket on loyal customers of target supermarket chain A.

The top three customer groups of Decyl analysis are tagged as target variables

for the loyal customer classification. For the explanatory variables, this study

adopts three RFM score indicators and the transformed distance factors by the

proposed methods of this thesis.
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2.3.2 Evaluation Criteria

This thesis uses the Accuracy, the Precision, the Recall and the F1-score as

evaluation criteria. The formulas are defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(2.5)

Precision =
TP

TP + FP
(2.6)

Recall =
TP

TP + FN
(2.7)

F1-score =
2 · Precision ·Recall
Precision+Recall

(2.8)

Let TP be true positives that samples correctly classified as positive, FN be false

negatives that samples incorrectly classified as negative, FP be false positives

that samples incorrectly classified as positive, and TN be true negatives that

samples correctly classified as negative. For supermarket competition analysis,

this study detects the value of all partial regression coefficients and rejects all

cases where the statistical significance level (p value) [19] is greater than 5%.

2.4 Experiment

2.4.1 Experimental Data

This study uses 2 year ID-POS data of a supermarket chain A including A1

and A2 in Higashihiroshima city, Hiroshima, Japan. There are 40,977,672 sales

records in the ID-POS data where the number of IDs and categorized products is

176076 and 2251, respectively. In addition, there are 30 supermarkets including

two target supermarkets in that city. Table 2.7 shows the detail of experimental

data. The 2 year ID-POS data is segmented into the first year and the second

year. The first year data is divided into train data and validation data to build

the models. The second year data (test data) is a measurement for testing the

constructed models.
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Table 2.7: The experimental data of target supermarket chain A

First year (2016.04-2017.03) Second year (2017.04-2018.03)

Train data Validation data Test data

A 82029 27344 111772

A1 32690 10897 44020

A2 49339 16447 67752

2.4.2 Experimental Procedure

The experiments are executed on Windows 8 with 2.50GHz Intel Core i7 and

8GB memory and conducted on the python environment. For all cases, the store

area is fixed as 1000m2 and the distance decline coefficient is fixed as 2. The

smoothing coefficient is fixed as 1.

The 2 year ID-POS data of the target supermarket chain A is divided into

the first year as current customer information and the second year as future

customer information. RFM score indicators will combine with 30 converted

distance indicators of competitors to build feature quantities as shown in ta-

ble 2.4, 2.5, 2.6. Decyl analysis will also conduct on 2 year ID-POS data to

define the loyal customers, respectively. This research uses the customer ID, 33

feature quantities as explanatory variables and loyal customers as target vari-

ables to build experimental data in logistic regression analysis. The first year

experimental data is divided into 2 pieces, 75% for training data and 25% for

validation data. The oversampling and undersampling problems [26] are judged

that it is unnecessary in this experiment. The first year experimental data is

utilized to construct the models. The constructed model will implement on the

second year data (test data) to classify the loyal customers. There are 2 stages

of the experiments in this research. The first stage is an experiment of loyal

customer classification on the entire supermarket chain A. The second stage is

an experiment of loyal customer classification on individual supermarkets of the

target supermarket chain A. Both of the stages contain three types of model

analysis, the RFM, RFM+ and RFM++ type model. The evaluation of the

model is carried out from the viewpoints of accuracy, precision, recall rate, clas-

sification accuracy (F1-score), and feature understanding of loyal customers.
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2.4.3 Experiment of Supermarket Chain

Table 2.8 presents the classification results of the proposed models for target

supermarket chain A. In the experiments, this thesis generates five models.

’RFM-A’ model only includes 3 RFM score indicators. ’RFM+A’ model con-

tains 3 RFM score indicators and 30 hf score indicators. This research chooses

3km, 4km and 5km radius of the trade area of each supermarket in the exper-

imental city to generate the three ’RFM++A’ models for supermarket chain

A. The RFM++ type model is superior to the other two type models for loyal

customer classification from the viewpoint of four evaluation criteria.

Table 2.8: The accuracy analysis for chain A

Accuracy Precision Recall F1-score

RFM-A 91.89% 79.82% 97.47% 0.878

RFM+A 92.05% 80.28% 97.67% 0.881

RFM++3km-A 92.06% 80.31% 97.73% 0.882

RFM++4km-A 92.10% 80.46% 97.73% 0.883

RFM++5km-A 92.23% 80.78% 97.82% 0.885

Table 2.9: The RFM model for chain A

Variables Coefficients P values

Intercept -20.01 0.0%

R score 0.26 0.0%

F score 3.47 0.0%

M score 1.96 0.0%
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Table 2.10: The RFM+ model for chain A

Variables Coefficients P values

Intercept -22.27 0.0%

R score 0.25 0.0%

F score 3.77 0.0%

M score 2.06 0.0%

A2 0.15 0.0%

A1 0.07 0.0%

C2 0.06 0.1%

C7 0.03 1.5%

C6 0.03 3.2%

G -0.03 0.0%

C9 -0.03 0.1%

C5 -0.04 0.0%

C3 -0.04 0.1%

B2 -0.04 0.0%

J2 -0.05 0.0%

E -0.06 0.0%

C8 -0.06 0.0%

K -0.06 0.0%

D -0.44 0.0%
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Table 2.11: The RFM++3km model for chain A

Variables Coefficients P values

Intercept -21.90 0.0%

R score 0.28 0.0%

F score 3.74 0.0%

M score 2.12 0.0%

A2 0.85 0.1%

C2 0.37 0.0%

C7 0.22 0.0%

A1 0.19 0.0%

B1 0.13 0.0%

C6 0.10 0.0%

I -0.03 0.0%

J1 -0.03 0.0%

N1 -0.05 0.0%

M -0.11 0.0%

C1 -0.18 0.0%

F3 -0.19 0.0%

F1 -0.23 0.0%

E -0.38 1.8%

C5 -0.39 0.1%

C9 -0.40 1.6%

B3 -0.41 0.0%

H1 -0.45 0.5%

C4 -0.46 0.0%

C3 -0.49 0.4%

G -0.49 0.0%

B2 -0.50 0.0%

L -0.51 0.0%

C8 -0.54 0.0%

H2 -0.58 0.2%

J2 -0.62 0.0%

N2 -0.88 3.6%

K -1.13 0.0%

F2 -1.76 2.6%

D -5.39 0.0%
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Table 2.12: The RFM++4km model for chain A

Variables Coefficients P values

Intercept -23.51 0.0%

R score 0.28 0.0%

F score 3.81 0.0%

M score 2.14 0.0%

F2 1.63 0.0%

B1 1.54 0.0%

I 1.47 0.0%

A2 1.34 0.0%

A1 1.31 0.0%

C2 1.21 0.0%

N2 1.10 1.1%

C6 1.09 0.0%

F3 0.94 0.0%

C7 0.93 0.0%

M 0.91 0.1%

J1 0.84 0.0%

L 0.81 1.5%

F1 0.70 0.0%

C9 0.59 0.1%

H1 0.56 0.1%

H2 0.45 2.6%

G 0.45 0.4%

B3 0.45 0.0%

C5 0.41 0.4%

B2 0.40 0.3%

C4 0.37 0.0%

C3 0.25 0.0%

E 0.23 0.0%

J2 0.20 0.0%

C8 0.17 0.0%

N1 -0.13 0.0%

K -0.30 0.0%

C1 -0.63 0.0%

D -4.49 0.0%
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Table 2.13: The RFM++5km model for chain A

Variables Coefficients P values

Intercept -23.79 0.0%

R score 0.27 0.0%

F score 3.77 0.0%

M score 2.11 0.0%

B1 1.84 0.0%

A2 1.83 0.0%

A1 1.76 0.0%

M 1.72 0.0%

C2 1.67 0.0%

C6 1.48 0.0%

I 1.45 0.0%

C7 1.43 0.0%

J1 1.26 0.0%

C4 1.25 0.0%

L 1.19 0.0%

N2 1.06 1.0%

F1 1.03 0.0%

H1 0.98 0.0%

H2 0.97 0.0%

C9 0.96 0.0%

F3 0.91 0.0%

F2 0.86 0.0%

G 0.83 0.0%

N1 0.80 0.0%

B2 0.77 0.0%

C5 0.76 0.0%

J2 0.68 0.0%

E 0.66 0.1%

B3 0.59 2.7%

C8 0.54 0.1%

C3 0.53 0.9%

K 0.26 0.0%

C1 -0.31 0.0%

D -2.52 0.6%
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Table 2.9 shows the partial regression coefficients of the RFM type model

for target supermarket chain A. The loyal customers have the attribution of

high RFM scores since three partial regression coefficients are positive. This

is consistent with intuitive understanding. By unifying the magnitude of the

three indicators, the F value seems more critical for loyal customers because its

value is maximal. However, it is difficult to thoroughly analyze the influence of

supermarket competition by these three indicators.

Table 2.10 presents the competition analysis by the partial regression coef-

ficients of the RFM+ type model. The coefficients are ordered by descending

except for RFM scores and intercept. All competitors give loyal customers of

the target supermarket chain A negative influence except for supermarket C2,

C6, C7. The most of statistical significance level is less than 5%. This the-

sis omits the cases that the statistical significance level higher than 5%. The

values of target supermarkets A1 and A2 are positive, which is consistent with

the intuitive idea since the closer to them, the more likely it becomes a loyal

customer. The loyal customers are most active affected by supermarket D.

Table 2.11, 2.12 and 2.13 demonstrate the partial regression coefficients

of three RFM++ type models. The competitors have a powerful impact on

customers of supermarket chain A who live in their 3km radius of the trade

area because most of the coefficients of the ’RFM++3km-A’ model are neg-

ative. When the radius of the trade area increased to 4km for all supermar-

kets, the influence of competitors become worse because most coefficients of

the ’RFM++4km-A’ model are positive. This tendency is also found in the

case of the ’RFM++5km-A’ model. The values of coefficients become positive

and greater than the ’RFM++4km-A’ model. From these results, the analysis

diversity of the RFM++ type model is superior to the other two type mod-

els. In addition, the RFM++ type model can grasp the impact of all nearby

competitors since the statistical significance level is all less than 5%.

2.4.4 Experiment of Individual Supermarkets

Table 2.14 and 2.17 show the comparison of three type models for A1 and A2.

Similar to the experiments of supermarket chain A, this thesis employs the

first year customer shopping data of A1 and A2 to build the RFM and RFM+
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type models, and then classify the loyal customer in the second year. For the

RFM++ type model, the constructed 3 models of target supermarket chain A

as shown in table 2.11, 2.12 and 2.13 are used to classify the loyal customers

of A1 and A2 in the second year. The results demonstrate the RFM++ type

model is the most superior one in the loyal customer classification of individual

supermarkets.

Table 2.15 and 2.18 present the RFM type model for A1 and A2, respectively.

Similar to the cases in supermarket chain A, the RFM scores in both cases are

all positive. The RFM+ type model for A1 and A2 are shown in table 2.16

and 2.19. It is interesting that even among A1 and A2 have competition with

each other. In the case of the RFM+ type model of A1, A2 has a negative value.

So does the case in the RFM+ type model of A2. The statistical significance

level is confirmed that most of the cases are less than 5%.

Table 2.14: The accuracy analysis for A1

Accuracy Precision Recall F1-score

RFM-A1 92.33% 79.71% 95.34% 0.868

RFM+A1 92.63% 80.51% 95.38% 0.873

RFM++3km-A 92.71% 80.81% 95.84% 0.877

RFM++4km-A 92.73% 80.81% 95.87% 0.877

RFM++5km-A 92.76% 80.94% 95.92% 0.878

Table 2.15: The RFM model for A1

Variables Coefficients P values

Intercept -26.76 0.0%

R score 0.38 0.0%

F score 4.64 0.0%

M score 1.99 0.0%
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Table 2.16: The RFM+ model for A1

Variables Coefficients P values

Intercept -25.89 0.0%

R score 0.39 0.0%

F score 4.51 0.0%

M score 2.09 0.0%

B1 0.26 0.0%

A1 0.05 0.0%

G -0.03 1.1%

B2 -0.04 0.0%

C9 -0.04 0.1%

C8 -0.05 0.0%

E -0.05 0.8%

C5 -0.05 0.0%

A2 -0.06 0.0%

K -0.06 1.0%

J2 -0.06 0.0%

C1 -0.07 0.0%

D -0.55 0.3%

Table 2.17: The accuracy analysis for A2

Accuracy Precision Recall F1-score

RFM-A2 91.48% 80.33% 94.80% 0.870

RFM+A2 91.58% 80.72% 96.53% 0.879

RFM++3km-A 92.85% 83.43% 97.12% 0.898

RFM++4km-A 92.98% 83.90% 96.80% 0.899

RFM++5km-A 93.05% 83.99% 96.74% 0.899
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Table 2.18: The RFM model for A2

Variables Coefficients P values

Intercept -23.15 0.0%

R score 0.23 0.0%

F score 3.85 0.0%

M score 2.40 0.0%

Table 2.19: The RFM+ model for A2

Variables Coefficients P values

Intercept -22.76 0.0%

R score 0.23 0.0%

F score 3.85 0.0%

M score 2.48 0.0%

A2 0.17 0.0%

B1 0.16 0.0%

C2 0.09 0.0%

B3 0.05 1.2%

F1 0.04 0.4%

B2 -0.02 0.0%

G -0.03 0.1%

K -0.04 3.8%

J2 -0.04 0.0%

M -0.04 0.2%

C3 -0.05 0.8%

C8 -0.05 0.0%

A1 -0.09 0.0%

C1 -0.15 0.4%

D -0.63 0.0%



Chapter 3

Multi-conditional time
series forecasting

3.1 Related Work

The autoregressive integrated moving average (ARIMA) [40] model was a mile-

stone in the development of modern time series forecasting. The ARIMA [40]

model can transform a non-stationary sequence into stationary via a differ-

encing operation. However, the differencing process limits the performance of

ARIMA [40] model, which generally amplifies high-frequency noise in time se-

ries. The support vector machine (SVM) [41] is another promising model applied

to classification tasks. The support vector regression (SVR) [42] is a derivation

method of SVM [41] for time series forecasting, which maps the time series into

a high-dimension feature space via a non-linear mapping and performs a linear

regression in this space. The SVR [42] only considers the time series globally

and lacks the flexibility to capture the local trend.

The artificial neural network (ANN) [43] is a further forecasting model that

imitates a biological neural network structure, which updates the internal sys-

tem of artificial neurons to generate an approximate model via learning the

non-linear characteristics of external information. Since the ANN [43] is not ap-

propriate for a sequence with dependencies between variables, the recurrent neu-

ral network (RNN) [31] and improved RNN [31] named long-short term memory

(LSTM) [30] appeared successively. The LSTM [30] adopts a three gates mem-

ory unit to avoid the gradient disappearance problem [44] of RNN [31] and can

remember short-term memory and maintain a part of long-term memory for

27
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a long time sequence. The variants of LSTM [30], named gated recurrent unit

(GRU) [33], integrates the cell state and the hidden state of LSTM [30] into a

whole, and reduces the number of gate units to improve computational efficiency

while ensuring the same performance as LSTM [30].

The convolutional neural networks (CNN) [29] is another branch of ANN [43],

originally applied for image recognition. The time series prediction is a variant

of image recognition from a 3D to a 2D problem. The width and channels of an

image are the time steps (width) and feature dimensions (channels) of a time se-

ries. The CNN [29] introduced a movable filter like a human visual reception field

with fewer weight parameters than ANN [43] to observe the entire time series,

which slides on a time series from left to right or the opposite direction. Since

time series has contextual correlation, this mechanism outperforms ANN [43] in

computational efficiency and spatial relationship extraction. The dilated causal

convolutional neural networks (DC-CNN) [37] improved CNN [29] via an input

skipping method to increase the receptive field without tuning filter size. The

dilated depthwise separable temporal convolutional networks (DDSTCNs) [45],

known from Google’s Xception architecture [45] for image classification, fur-

ther improved DC-CNN [37] via a depthwise separable convolution [45] and a

pointwise convolution to separate input channels and merge output channels,

respectively.

Subsequently, the hybrid neural network framework that aggregates multiple

neural networks, such as [46,47,49], has developed significantly. Shen et al. [27]

considered the SeriesNet for time series forecasting as illustrated in Fig. 3.1,

where the DC-CNN-based [37] residual learning module [28] and LSTM [30]

subnetworks have the ability for time series feature extraction.

The deep learning structures focus on the inputs from a global perspec-

tive and ignore its local trends until the emergence of the attention mecha-

nism changed this situation. The squeeze-and-excitation networks (SeNet) [50]

and the convolutional block attention module (CBAM) [35] adopt in Google

ResNet [51] represent the lightweight CNN-based [29] attention mechanisms for

image recognition. SeNet [50] only uses global average pooling attention in the

residual learning module, but CBAM-based [35] ResNet [51] improved SeNet [50]

from global average pooling and global max pooling perspective. Nauta et al. [36]
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proved attention mechanism is successful in combining with the DDSTCNs [45]

for time series forecasting. Unlike single attention-based structures, the encoder-

decoder framework enables the multiple attention mechanisms to appear in

two modules simultaneously. The previous attention has a particular influence

on the latter. Yao et al. [38] verified the dual-stage attention-based encoder-

decoder structure is appropriate for time series forecasting and superior to single

attention-based networks.

Figure 3.1: The structure of the SeriesNet.

3.2 Definition of multi-conditional time series

Given a one-dimensional target time series with T time steps (Input) y =

{y1, y2, . . . , yT } ∈ R1×T , the next value yt conditional on the sequence’s his-

tory, y1, ..., yt−1 is predictable by maximizing the likelihood function as below:

p(y) =
T∏

t=1

p(yt|y1, y2, . . . , yt−1), (3.1)

There exists multi-condition series (Condition) x = {x1,x2, . . . ,xT } = {x1,x2,

. . . ,xn} ∈ Rn×T , where n is the feature dimension. The given target time se-

ries y = {y1, y2, . . . , yT } ∈ R1×T conditional on these additional time series is
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mathematically defined by:

p(y|x) =
T∏

t=1

p(yt|y1, y2, . . . , yt−1,x). (3.2)

3.3 Attention-Based SeriesNet

This thesis improves Shen’s work [27] by using two different attention mecha-

nisms on two sub-networks of SeriesNet, respectively. The first subnet utilizes

CBAM-based DDSTCNs to instead of DC-CNN [37] to learn short interval fea-

tures. The stacked deep residual connection blocks [51] with different dilated

rates can learn long interval features with different reception fields. The batch

normalization (BN) [34] is added to solve the gradient vanishing problem. For

the second subnet, HSAM-based GRU is applied instead of LSTM for learning

the holistic features followed by a full connection (FC) layer to set the output

dimensionality. Finally, the outputs of two sub-networks will be element-wise

multiplied together for time series forecasting. The attention-based SeriesNet

can directly conduct on the raw time series by conditioning methods.

Figure 3.2: The structure of the attention-based SeriesNet.

3.3.1 Conditioning

The conditioning method for CNN is similar to Borovykh’s work [32] except

for the activation function. This thesis adopts the scaled exponential linear



3.3. ATTENTION-BASED SERIESNET 31

unit (SeLU) [53] instead of the rectified linear unit (ReLU) [54] since the self-

normalizing properties of the SeLU has more robust representations of the time

series. As shown in Figure 3.3, the input and condition are conditioned in the

first residual layer (L), followed by the CBAM [35] and the 1 × 1 convolution,

and summed with the parametrized skip connections. The result from this layer

is the input in the subsequent convolution layer with a residual connection,

which is repeated to obtain the output from layer L and forwarded to a 1 × 1

convolution to generate the final CNN output.

This thesis presents the conditioning method for RNN based on Philip-

peremy’s [48] work as demonstrated in Figure 3.2. The given multi-conditions

y ∈ Ri×T is considered as the initial state of the first RNN layer by transforming

its shape into y ∈ Rp×m, where m is the unit number of the first RNN layer and

p’s value is 1 or 2 for GRU and LSTM, respectively. Since LSTM owns hidden

state and cell state, GRU only has hidden state. In case of GRU, the flatten op-

eration is implemented on y ∈ Ri×T to convert its shape into y ∈ R1×v, where

v is the product of i and T . The FC layer with a sigmoid activation function is

followed with the flatten operation to obtain the target shape y ∈ R1×m. For

LSTM, this thesis first adopts flatten operation followed by a FC layer with a

sigmoid activation function to transform the shape of y ∈ Ri×T into y ∈ R1×2m,

and then reshapes it into y ∈ R2×m. Each row of y ∈ R2×m is considered as

the initial hidden state and initial cell state,respectively. This approach natu-

rally solves the shape problem of multi-conditions, and also avoids polluting the

inputs with additional information.
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Figure 3.3: The structure of the conditional CNN sub-networks.

3.3.2 Dilated Depthwise Separable Temporal Convolutional Net-
works

The DDSTCNs introduced in [36] based on the depthwise separable convo-

lution [45], which is well known by Google’s Xception architecture for image

classification [45]. A depthwise separable convolution splits a kernel into two

separate kernels that do two convolutions: the depthwise convolution and the

pointwise convolution. The depthwise convolution separates the channels by

applying a different kernel to each input channel. The pointwise convolution

adopts a one times one kernel to each output channel of depthwise convolution

and merges them together. This architecture is different from normal CNN that

two convolutions improve computation performance than only one kernel per

layer. The separate channels can correctly handle each dimension of input data

impacts on output data, followed by a pointwise convolution tunes the num-

ber of output channels where the multiplications between parameters reduced

significantly. Our architecture consists of k channels, one for each output from

batch normalization (BN) [34] layer. An overview of this architecture is shown

in left subfigure of Figure 3.4. The right subfigure of Figure 3.4 is an example of

stacked temporal DC-CNN, which explains the details of the left zero padding

to predict the first values. The dilation rate 1, 2, 4, ..., 2n is considered in the
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depthwise convolution of each DDSTCNs layer to adjust the receptive field.

Figure 3.4: Structure of dilated depthwise separable temporal convolutional
networks (left) and dilated causal convolutional neural networks (right).

3.3.3 Convolutional Block Attention Module

The CBAM [35] as shown in Fig. 3.5 adopts global average pooling and max

pooling both in channel and spatial direction of a 2D image within an inter-

mediate feature map satisfying F ∈ RC×H×W , where C,H and W denotes the

channel, height and width, respectively. Fig. 3.6 illustrates the details of channel

attention module Mc ∈ RC×1×1 and spatial attention module Ms ∈ R1×H×W

of CBAM for 1D time series. Given an intermediate feature map F ∈ Rn×T

as input, this thesis uses feature dimension n and time steps T of the previous

layer output instead of C and W in a image. The feature (channel) attention

generates time step context descriptors Fn
avg ∈ Rn×1 and Fn

max ∈ Rn×1 of a fea-

ture map by using both average and max pooling operation along the time step

axis, and then fowards to a shared multi-layer perception (MLP) to produce the

feature (channel) attention map Mn ∈ Rn×1 as:

Mn(F) = σ(MLP (AvgPool(F))) +MLP (MaxPool(F))

= σ(W1(W0(Fn
avg)) + W1(W0(Fn

max))), (3.3)

where σ indicates the sigmoid activation function, the MLP weights W0 ∈

Rn/r×n and W1 ∈ Rn×n/r respectively followed by a ReLU and sigmoid activa-

tion function are shared for both inputs. r is the reduction ratio used to reduce

the parameters in W0. The feature attention map Mn ∈ Rn×1 element-wise
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multiplies the intermediate feature map F ∈ Rn×T to generate a new interme-

diate map F
′ ∈ Rn×T to feed in time step (spatial) attention module:

F
′

= Mn (F)⊗ F, (3.4)

where ⊗ is an element-wise multiplication. The time step (spatial) attention

module generates a concatenated feature descriptor [F
′T
avg; F

′T
max] ∈ R2×T by

applying average pooling and max pooling along the feature axis, followed by a

standard convolution layer. The time step (spatial) attention map MT ∈ R1×T

is computed as:

MT (F
′
) = σ(f1×7([AvgPool(F

′
);MaxPool(F

′
)]))

= σ(f1×7([F
′T
avg; F

′T
max])), (3.5)

where f1×7 indicates a 1× 7 kernel size convolution operation. At last, the element-

wise multiplication between MT ∈ R1×T and F
′ ∈ Rn×T is executed to renew

the intermediate feature map as:

F
′′

= MT

(
F

′
)
⊗ F

′
, (3.6)

where F
′′ ∈ Rn×T and wil be input to next layer.

Figure 3.5: The overview of CBAM.
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Figure 3.6: Overview of convolutional block attention module included channel
attention module (top) and spatial attention module (bottom).

3.3.4 Hidden State Attention Module

This thesis presents the RNN-based HSAM by integrating the two modules of

CBAM together. The HSAM is implemented between every two GRU layers

as illustrated in Figure 3.7. The GRU unit merges the memory cell state and

hidden state of LSTM unit into one hidden state, and reduces the three sigmoid

gates of LSTM unit to two gates: reset gate rt and update gate zt to simplify

the structure. Feeding the given one-dimensional time series with T time steps

x = {x1,x2, . . . ,xT } ∈ R1×T in a GRU layer, the update formulas of the GRU

unit are summarized as:

zt = σ(Wz[ht−1; xt]), (3.7)

rt = σ(Wr[ht−1; xt]), (3.8)

h̃t = tanh(W[rt ⊗ ht−1; xt]), (3.9)

ht = (1− zt)⊗ ht−1 + zt ⊗ h̃t, (3.10)

where ht ∈ Rm×1 is the hidden state with size m and ⊗ is an element-wise

multiplication. [ht−1; xt] ∈ R(m+n)×1 is a concatenation of the previous hidden

state ht−1 and the current input xt. Wz, Wr, W ∈ Rm×(m+n) are weight

parameters to learn. The multi GRU layers utilize per time step hidden state

of previous GRU layer as an input forwarding to the corresponding state of the
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next GRU layer. The input at each time step (feature axis) has great influence

on the related hidden state output of the next GRU layer. Therefore, this thesis

aims to extract the average pooling and max pooling only along the hidden state

feature axis of the previous GRU layer. There is an intermediate feature map

h ∈ Rm×T represents all hidden states of previous GRU layer. The hidden state

attention produces feature context descriptors hT
avg ∈ R1×T and hT

max ∈ R1×T

through average pooling and max pooling along feature axis, and feeds them

into a shared MLP layer. The outputs of the shared MLP layer are concatenated

together as [W1(W0(hT
avg)); W1(W0(hT

max))] ∈ R2×T followed by a standard

convolution layer to obtain the hidden state map HT ∈ R1×T as below:

HT (h) = σ(f1×7([MLP (AvgPool(h)));MLP (MaxPool(h)]))

= σ(f1×7([W1(W0(hT
avg)); W1(W0(hT

max))])), (3.11)

where the MLP weights W0 ∈ Rm/r×1 and W1 ∈ R1×m/r with reduction ratio

r are also followed by a ReLU and sigmoid activation function, respectively. Fi-

nally, the hidden state map HT element-wise multiplies the intermediate feature

map h to produce a renewed intermediate feature map h
′ ∈ Rm×T feeding in

next GRU layer:

h
′

= HT (h)⊗ h. (3.12)
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Figure 3.7: The overview of HSAM.
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3.4 Triple-stage attention-based SeriesNet

This section mainly introduces the overall improvement of TA-SeriesNet com-

pared with A-SeriesNet and clarifies the two types of subnetworks and their

concatenation method of TA-SeriesNet in detail.

3.4.1 Structure of TA-SeriesNet

This thesis presents the triple-stage attention-based SeriesNet (TA-SeriesNet)

as shown in Fig. 3.8 to learn this likelihood function, which includes the triple-

stage attention-based long-short term memory (TA-LSTM), the triple-stage

attention-based gated recurrent unit (TA-GRU) and the dual attention residual

learning module-based covolutional neural network (DARLM-CNN). Since the

TA-SeriesNet is reformed from A-SeriesNet, we briefly clarify their difference

and improvement first according to Fig. 3.2 and Fig. 3.8.

Figure 3.8: Overview of triple-stage attention-based SeriesNet included three
encoder-decoder subnetworks.
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3.4.1.1 Disadvantages of A-SeriesNet

The A-SeriesNet is a two subnetworks hybrid neural network architecture as

illustrated in Fig. 3.2. Although it is a lightweight architecture, both of its

subnetworks are not encoder-decoder structures. Therefore, it is not suitable

for a high feature dimensional time series dataset that feature dimension higher

than 15. We proved this point of view in our experiment section.

The CNN subnetwork conditions the multi-condition series on a target time

series by simultaneously feeding them to an augmented residual learning mod-

ule. With the multi-condition series’s feature dimension increasing, the relation

between multi-condition series becomes more complicated. Without prior fea-

ture extraction of raw multi-condition series may pollute the target time series

to some extent.

The conditioning method of the RNN subnetwork reshapes the multi-condition

series into the first GRU [33] layer’s hidden state size in advance. The reshaped

multi-condition series are fed to the first GRU [33] layer as its initial hid-

den state. When the multi-condition series own large feature dimensions, this

method may lose some information during the reshaping process. The high di-

mensional multi-condition series are reshaped from Rn×T to R1×v, where R1×v

is the first GRU [33] layer’s hidden state size.

The RNN subnetwork only has a global HSAM attention mechanism which

generates an attention weights vector for all hidden states after the first GRU [33]

layer performed all its update steps. The GRU [33] layers and the HSAM are

independent of each other. The mere HSAM can’t detect each multi-condition

series’s importance for prediction results due to the reshaping preprocess.

The concatenation method of A-SeriesNet limits the number of its subnet-

works. The overall prediction is liable to be impacted by either of its subnet-

works.

3.4.1.2 Distinctions between A-SeriesNet and TA-SeriesNet

Aim to above disadvantages of A-SeriesNet, the improvement of TA-SeriesNet

are summarized as:

• The DARLM-CNN subnetwork used ARLM-CNN as the encoder and aug-

mented ARLM-CNN as the decoder. The TA-LSTM and TA-GRU subnet-
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works simplify the DA-RNN’s [38] framework and append HSAM between

its encoder and decoder. All subnetworks of TA-SeriesNet are encoder-

decoder structures more effective for high dimensional time series.

• The DARLM-CNN structure extracts the feature context vector from

high feature dimensional multi-condition series by its ARLM-CNN en-

coder. The augmented ARLM-CNN is fed by the generated feature con-

text vector and the target time series to reduce the raw multi-condition

series’s pollution for the target time series.

• In the TA-RNN subnetwork, the multi-condition series are fed to an RNN

encoder as the input (not a hidden state) directly without shape variation,

which ensures the information integrity of the multi-condition series.

• The TA-RNN subnetworks have one global HSAM attention and two local

attention mechanisms, input attention and temporal attention. They ex-

tract the importance of each multi-condition series for feature context vec-

tor generation from the feature dimension axis and the time step axis. The

input attention weights are updated by each time unit states of the RNN

encoder. The learned each time input attention weights are element-wise

multiplied by each time multi-condition series and fed to the RNN encoder

again to generate its next unit states. This process will not terminate un-

til the RNN encoder performed all its time steps. Similarly, this update

process also happens between the temporal attention and the RNN de-

coder. The input attention, the temporal attention and the RNN encoder-

decoder are not independent as illustrated in Fig. 3.8.

• This thesis adopts a new concatenation method instead of the element-

wise multiplication of A-SeriesNet to free the parallel connection number

of subnetworks. Each subnetwork’s learnable output weight promotes to

reduce the output dependence of TA-SeriesNet on a certain subnetwork.

3.4.2 Structure of DARLM-CNN subnetwork

This thesis first presents attention residual learning module-based encoder-

decoder subnetwork as illustrated in Fig. 3.9 to learn the likelihood function

in subsection 3.2.
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Figure 3.9: Structure of dual attention residual learning module-based convo-
lutional neural network included ARLM-CNN encoder (red) and augmented
ARLM-CNN decoder (green).

3.4.2.1 Encoder within ARLM-CNN

Traditional CNN-based [29] conditioning method [J-1,32] applied an augmented

ARLM-CNN to condition multi-condition series (Condition) on target time

sequence (Input) as introduced in Fig. 3.2. This structure can’t extract the

underlying features of multi-condition series in advance. With the increase of

multi-condition series characteristic dimension (series number), the prediction

accuracy will decrease gradually. Therefore, this thesis further considered an

attention residual learning module as encoder to extract the latent features of

the multi-condition series. As illustrated in Fig. 3.8 and 3.9, the multi-condition

series x ∈ Rn×T are first fed forward to a causal convolution to ensure the causal

relationship, followed by a batch normalization (BN) [34].

In deep neural networks, the input of the current layer is the output of

the previous layer. When the neural network is trained by an optimization al-

gorithm, such as the stochastic gradient descent (SGD) [52], each parameter

variation in the previous layer will result in a different weight distribution in

the current layer. The gradient vanishing named internal covariate shift [34] will

occur during the training. The deeper the neural network, the more pronounced

this problem is. The BN [34] layer normalizes neural network layers to keep their

weight distribution stable.
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The DDSTCNs [45] is the next layer, which merges the ability of DC-

CNN [37] and depthwise separable convolution [45] to reduce computational pa-

rameters as illustrated in the left subgraph of Fig. 3.4. The depthwise separable

convolution [45] first applies the depthwise convolution with different kernels to

separate the input channels. The depthwise convolution of each DDSTCNs [45]

layer adopts different dilation rate 1, 2, 4, ..., 2n to expand the receptive field

without adjusting the kernel size. The left zero padding is considered in the

depthwise convolution of each DDSTCNs [45] layer to ensure the shape of

output is same as the input. This process is similar to the stacked temporal

DC-CNN [37] as shown in the right subgraph of Fig. 3.4. Then the pointwise

convolution with 1 × 1 kernel size integrates each output channel of depthwise

convolution together and tunes the number of output channels. The output of

BN [34] layer x ∈ Rk×T is fed forward to the DDSTCNs [45] layer followed by

a scaled exponential linear unit (SeLU) [53] activation function as:

F = SeLU(f1×h
d (x)), (3.13)

where f1×h
d denotes the filter size 1 × h and the dilation rate d of depth-

wise convolution. The pointwise convolution adjusts the channel number (fea-

ture dimension) of depthwise convolution to generate the output F ∈ Rj×T of

DDSTCNs [45].

The followed CBAM [35] concentrates on the output of DDSTCNs [45]

from the perspecitve of channel attention and spatial attention as illustrated

in Fig. 3.6. The channel (feature) attention adopts average pooling and max

pooling operation along the time step axis of F ∈ Rj×T to generate two con-

text descriptors Fj
avg ∈ Rj×1 and Fj

max ∈ Rj×1. The channel attention map

Mc ∈ Rj×1 is produced by a shared multi-layer perception (MLP) including

two FC layers:

Mc(F) = σ(MLP (AvgPool(F)))

+MLP (MaxPool(F))

= σ(W1(W0(Fj
avg)) + W1(W0(Fj

max))), (3.14)

where σ represents the sigmoid activation function. The rectified linear unit

(ReLU) [54] activation function is behind the first FC layer with weights W0 ∈
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Rj/r×j . The second FC layer with weights W1 ∈ Rj×j/r is followed by a sig-

moid activation function. The reduction ratio r is considered for parameters

reduction of W0. The ReLU [54] activation function and bias parameters are

ommitted in the above equation for brief. The channel attention map Mc ∈ Rj×1

element-wise multiplies by the DDSTCNs’s [45] output F ∈ Rj×T to generate

an intermediate map F
′ ∈ Rj×T , which will be fed forward to spatial attention

module:

F
′

= Mc (F)⊗ F, (3.15)

where ⊗ indicates an element-wise multiplication. The spatial attention module

adopts average pooling and max pooling along the feature axis to generate a

concatenated feature descriptor [F
′T
avg; F

′T
max] ∈ R2×T . A standard convolution

operation f1×7 with 1× 7 kernel size followed by a sigmoid activation function

is implemented on the concatenated feature descriptor to obtain the spatial

attention map Ms ∈ R1×T as below:

Ms(F
′
) = σ(f1×7([AvgPool(F

′
);MaxPool(F

′
)]))

= σ(f1×7([F
′T
avg; F

′T
max])). (3.16)

The final feature map F
′′ ∈ Rj×T of CBAM [35] is updated by the element-wise

multiplication between Ms and F
′
:

F
′′

= Ms

(
F

′
)
⊗ F

′
. (3.17)

The output of CBAM [35] passes through a standard 1 × 1 convolution to

generate the output of each residual layer and unify their feature dimension. The

skip-connection [28] is considered in residual layer to reduce the gradient van-

ishment [44]. The encoder stacks J residual layers to substitute the desired

mapping H(x) by H(x)− x. The identity mapping of the input can be learned

by approximating their difference to zero. This method further improved the

network degradation problem [44], where deep learning structure can’t find the

optimal weights via standard back-propagation. The residual-connection [28]

followed by a 1 × 1 convolution reduces the number of filters back to one to

produce a feature context vector c ∈ R1×T , which will be input to the decoder.
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3.4.2.2 Decoder within augmented ARLM-CNN

The decoder is similar to the encoder except the first residual layer of decoder,

which contains two inputs, the target time series y = {y1, y2, . . . , yT } ∈ R1×T

and the context vector of the encoder c ∈ R1×T . This structure herits from

the augmented ARLM-CNN of A-SeriesNet. After the given target time series

passes through a causal convolution, the context vector c ∈ R1×T and the causal

convolution’s output is input to the BN [34] layer, respectively. The target time

series (Input) conditional on the multi-condition series (Condition) x ∈ Rn×T

is calculated by the activation function of the convolution as below:

SeLU(f1×k
d (c) + f1×h

d (y)), (3.18)

where c ∈ R1×T and y ∈ R1×T indicates the output of BN [34] layer for the

context vector and the target time series, respectively. The f1×k
d and f1×h

d dif-

ferentially represents the 1×k and 1×h depthwise convolution of DDSTCNs [45]

with dilation rate d. As illustrated in Fig. 3.8 and 3.9, the conditioned series se-

quentially accesses to the CBAM [35] and the 1×1 convolution in the first resid-

ual layer, and then sums with the two parametrized skip connections [32]. This

layer’s output connects with other residual layers that have only one input and

repeated L − 1 times. The last 1 × 1 convolution is applied to adjust the fea-

ture dimension (channel) of output layer L to produce the final DARLM-CNN

output ÔCNN ∈ R1×T .

3.4.3 Structure of TA-RNN subnetwork

The structure of TA-LSTM (top) and TA-GRU (bottom) subnetworks included

DA-RNN [38] and HSAM are illustrated in Fig. 3.10. The DA-RNN [38] applies

encoder with input attention to extract the latent feature of multi-condition

series as context vectors to reduce the high feature dimension’s (series number)

influence on prediction results. The decoder with temporal attention conditions

context vectors on target time series for time series forecasting. The HSAM aims

to further detect the importance of each hidden state of the encoder for context

vector generation.
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Figure 3.10: Structure of triple-stage attention-based long-short term memory
(top) and triple-stage attention-based gated recurrent unit (bottom).

3.4.3.1 Encoder with input attention

The encoder learns a feature representation of the given multi-condition series

x = {x1,x2, . . . ,xT } ∈ Rn×T via a linear mapping from xt to ht as below:

ht = f1(ht−1,xt), (3.19)

where ht ∈ Rm×1 is the hidden state of the encoder at time step t, f1 de-

notes a non-linear relation could be learned by a RNN [31]. This thesis applies

LSTM [30] as the first f1 for learning holistic dependencies. The update formula

of a LSTM [30] unit is summarized by a combination of three sigmoid functions:

ft = σ(Wf [ht−1; xt] + bf ), (3.20)

it = σ(Wi[ht−1; xt] + bi), (3.21)

ot = σ(Wo[ht−1; xt] + bo), (3.22)

st = ft ⊗ st−1 + it ⊗ tanh(Ws[ht−1; xt] + bs), (3.23)

ht = ot ⊗ tanh(st), (3.24)

where forget gate ft, input gate it and output gate ot control the information

access into the LSTM [30] unit at time step t and generate the corresponding cell

state st ∈ Rm×1 and hidden state ht ∈ Rm×1. [ht−1; xt] ∈ R(m+n)×1 represents a

concatenation of hidden state h at time t−1 and multi-condition series x at time
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t. Wf , Wi, Wo ∈ Rm×(m+n) and bf , bi, bo ∈ Rm×1 are weight parameters

and bias parameters to learn. σ and ⊗ denotes sigmoid activation function

and element-wise multiplication, respectively. The given multi-condition series

(Condition), the hidden state and the cell state are fed into the input attention

simultaneously:

ekt = We[ht−1; st−1; xk], 1 ≤ k ≤ n, (3.25)

where [ht−1; st−1; xk] ∈ R(2m+T )×1 is a concatenation of hidden state h at time

t−1, cell state s at time t−1 and kth multi-condition series. We ∈ R1×(2m+T ) is

the learnable weight parameters of a FC layer. This thesis adopts one FC layer

in the input attention to simplify the structure, where DA-RNN [38] adopted

two FC layers with a tanh activation function.

The GRU [33] is considered as the second f1 in this thesis, which reduces

three sigmoid gates of LSTM [30] unit to two gates: reset gate rt and update

gate zt. Given the same multi-condition series x ∈ Rn×T , the update formulas

of the GRU [33] unit are summarized as:

zt = σ(Wz[ht−1; xt] + bz), (3.26)

rt = σ(Wr[ht−1; xt] + br), (3.27)

h̃t = tanh(W[rt ⊗ ht−1; xt] + bh̃), (3.28)

ht = (1− zt)⊗ ht−1 + zt ⊗ h̃t, (3.29)

where ht is the hidden state with size m and ⊗ is an element-wise multiplica-

tion. σ and tanh represents sigmoid and tanh activation function, repecitively. [ht−1; xt] ∈

R(m+n)×1 is a concatenation of the hidden state h at time t− 1 and the multi-

condition series x at time t. Wz, Wr, W ∈ Rm×(m+n) and bz,br,bh̃ ∈ Rm×1

are parameters to learn. Different from TA-LSTM, the input attention aims at

the hidden state h at time t and kth multi-condition series for TA-GRU as:

ekt = We[ht−1; xk], 1 ≤ k ≤ n, (3.30)

where [ht−1; xk] ∈ R(m+T )×1 and We ∈ R1×(m+T ) denote the concatenation

input and learnble weight of the FC layer.

The softmax function follows with the input attention to ensure the sum of

n attention weights at each time is one, which is denoted as:

αk
t =

ekt
Σn

i=1e
i
t

. (3.31)
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The n attention weights at each time element-wise multiply by the related multi-

condition series as:

x̃t = (α1
tx

1
t , α

2
tx

2
t , . . . , α

n
t x

n
t ), (3.32)

where x̃t ∈ Rm×1 is the renewed multi-condition series at time t. The hidden

state ht is updated by x̃t as follows:

ht = f1(ht−1, x̃t). (3.33)

3.4.3.2 Hidden state attention module

Figure 3.11: Overview of hidden state attention module between the encoder
and the temporal attention.

The hidden state attention module (HSAM) is a variant of CBAM [35] as il-

lustrated in Fig. 3.11. Given a two RNN [31] layers structure, the previous

RNN [31] layer’s hidden state at each time step (feature axis) is the next

RNN [31] layer’s corresponding input and will significantly impact each time

output of the next RNN [31] layer. The HSAM focuses on global max pool-

ing and global average pooling of hidden states between two RNN [31] lay-

ers along feature axis, which successfully transplanted the idea of CBAM [35]

from CNN [29] to RNN [31]. The DA-RNN [38] presented input attention

and temporal attention to deal with the performance deterioration of encoder-

decoder framework for the long input sequence [39]. This thesis further con-

sidered HSAM between input attention and temporal attention to improve the

above problem. The given hidden states of encoder is described by an interme-

diate feature map h ∈ Rm×T . The HSAM produces feature context descriptors

hT
avg ∈ R1×T and hT

max ∈ R1×T via average pooling and max pooling along

feature axis. The feature context descriptors are fed forward to two shared

FC layers. The outputs of the shared FC layers are concatenated together as
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[W1(W0(hT
avg)); W1(W0(hT

max))] ∈ R2×T followed by a standard convolution

layer to obtain the hidden state map HT ∈ R1×T as below:

HT (h) = σ(f1×7([MLP (AvgPool(h)));

MLP (MaxPool(h)]))

= σ(f1×7([W1(W0(hT
avg));

W1(W0(hT
max))])), (3.34)

where W0 ∈ Rm/r×1 and W1 ∈ R1×m/r are the learnable weights with reduc-

tion ratio r. The first share FC layer is sequentially followed by a ReLU [54] acti-

vation function, the second share FC layer and a sigmoid activation function. We

also omit the [54] activation function and bias parameters in Eqn. (3.34). Fi-

nally, the hidden state map HT element-wise multiplies by the intermediate

feature map h to generate an updated feature map h
′ ∈ Rm×T , which is the

input of temporal attention:

h
′

= HT (h)⊗ h. (3.35)

3.4.3.3 Decoder with temporal attention

The temporal attention is applied to alleviate the encoder-decoder framework’s

performance deterioration one more time, which screens the HSAM’s output

before decoded by the next RNN [31] layer. Since the TA-LSTM subnetwork

adopts a LSTM [30] decoder, the temporal attention of TA-LSTM concatenates

the decoder’s hidden state d and cell state s
′

at time t−1 with the ith HSAM’s

output, which is denoted as [dt−1; s
′

t−1; h
′

i] ∈ R(2p+m)×1. p is the state size of

the decoder. The concatenation is fed forward into a FC layer followed by a

tanh activation function and another FC layer:

lit = W
′

d(tanh(Wd[dt−1; s
′

t−1; h
′

i])), 1 ≤ i ≤ T, (3.36)

where Wd ∈ R(2p+m)×(2p+m) and W
′

d ∈ R1×(2p+m) are weight parameters to

learn.

The temporal attention of TA-GRU subnetwork is different from TA-LSTM

since TA-GRU adopts a GRU [33] decoder. Therefore, the Eqn. (3.36) becomes

to:

lit = W
′

d(tanh(Wd[dt−1; h
′

i])), 1 ≤ i ≤ T, (3.37)
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where the concatenation only contains the decoder’s (GRU) hidden state d at

time t−1 and the ith HSAM’s output. The shape of learnable weight parameters

satisfy Wd ∈ R(p+m)×(p+m) and W
′

d ∈ R1×(p+m). We omit the bias parameters

in Eqn. (3.36) and (3.37) to be concise.

Then we keep the T temporal attention weights at each time step sum to

one via the followed softmax function:

βi
t =

lit

ΣT
j=1l

j
t

, (3.38)

Each context vector is the weighted sum of element-wise multiplication between

temporal attention weights per time step and corresponding HSAM’s output:

ct = ΣT
i=1β

i
th

′

i. (3.39)

We concatenate the context vector ct ∈ Rm×1 with the given target time series

y = {y1, y2, . . . , yT } ∈ R1×T at each time step as [ct−1; yt−1] ∈ R(m+1)×1 and

input it to a FC layer:

ỹt−1 = W̃[ct−1; yt−1] + b̃, (3.40)

where the learnable weight W̃ ∈ R1×(m+1) and bias b̃ ∈ R map the concatena-

tion as ỹt to be input to the decoder. The decoder’s hidden state is updated by

the new input as:

dt = f2(dt−1, ỹt−1). (3.41)

The TA-LSTM subnetwork adopts a LSTM [30] decoder as f2. The update

formula of dt becomes to:

f
′

t = σ(W
′

f [dt−1; ỹt−1] + b
′

f ), (3.42)

i
′

t = σ(W
′

i[dt−1; ỹt−1] + b
′

i), (3.43)

o
′

t = σ(W
′

o[dt−1; ỹt−1] + b
′

o), (3.44)

s
′

t = f
′

t ⊗ s
′

t−1 + i
′

t ⊗ tanh(W
′

s[dt−1; ỹt−1] + b
′

s), (3.45)

dt = o
′

t ⊗ tanh(s
′

t), (3.46)

where [dt−1; ỹt−1] ∈ R(p+1)×1 represents a concatenation of previous hidden

state dt−1 and decoder input ỹt−1. W
′

f , W
′

i, W
′

o, W
′

s ∈ Rp×(p+1) and b
′

f , b
′

i,

b
′

o, b
′

s ∈ Rp×1 are parameters to learn.
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The TA-GRU subnetwork applies a GRU [33] decoder as f2. The decoder

hidden state dt is updated by:

z
′

t = σ(W
′

z[dt−1; ỹt−1] + b
′

z), (3.47)

r
′

t = σ(W
′

r[dt−1; ỹt−1] + b
′

r), (3.48)

d̃
′

t = tanh(W
′
[rt ⊗ dt−1; ỹt−1] + b

′

d̃
), (3.49)

dt = (1− z
′

t)⊗ dt−1 + z
′

t ⊗ d̃
′

t, (3.50)

where the concatenation of previous hidden state dt−1 and decoder input ỹt−1

satifies [dt−1; ỹt−1] ∈ R(p+1)×1. W
′

z, W
′

r, W
′ ∈ Rp×(p+1) and b

′

z, b
′

r, b
′

d̃
∈ Rp×1

are weight and bias parameters to learn.

Finally, we feed the concatenation of the current decoder hidden state dt

and the current context vector ct, denoted as [dt; ct] ∈ R(p+m)×1, to an FC

layer to approximate the current output ŷt:

ŷt = Wy[dt; ct] + bw, (3.51)

where Wy ∈ R1×(p+m) and bw ∈ R are learnable parameters. Unlike the final

step of DA-RNN [38], we simplify its two FC layers to one FC layer. The final

output of TA-LSTM and TA-GRU subnetwork satisfies ÔLSTM ∈ R1×T and

ÔGRU ∈ R1×T , respectively.

3.4.4 Concatenation of subnetworks

This thesis presents a new concatenation method for the subnetwork number

of hybrid neural network structure more than two. The final output of three

subnetworks are concatenated together and fed forward to a convolution followed

by a ReLU [54] activation function as:

Ô = ReLU(f1×7([ÔCNN ; ÔLSTM ; ÔGRU ])), (3.52)

where [ÔCNN ; ÔLSTM ; ÔGRU ] ∈ R3×T denotes a concatenation of three sub-

networks’ ouputs. f1×7 is a 1× 7 convolution with same padding. Ô ∈ R1×T is

the output of TA-SeriesNet. This idea is inspired by the CBAM [35] and HSAM

to know each subnetwork’s influence on forecasting results via learning their

weight parameters.
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3.5 Experiments of A-SeriesNet

This thesis uses five typical open time series datasets, including three economic

data: S&P500 Index, Shanghai Composite Index, Tesla Stock Price and two

temperature data: NewYork hourly temperature and Weather in Szeged as

shown in Table 3.1 to evaluate the models. The attention-based SeriesNet is

compared with the SeriesNet [27], the Augmented WaveNet [32], the SVR [42]

and the GRU networks [33]. Each model is evaluated by 4 metrics: the root-

mean-square error (RMSE), the mean absolute error (MAE), the coefficient of

determination (R2) and the computation time of specific epoch numbers. This

thesis takes an average of ten times of training results as the final accuracy of

each model.

Table 3.1: Time series dataset.

Time Series Time Range Train Data Validation Data Test Data

S&P500 Index 1950.01–2015.12 3297 320 320

Shanghai Composite Index 2004.01–2019.06 2430 280 280

Tesla Stock Price 2010.06–2017.03 1049 160 160

NewYork temperature 2016.01–2016.07 2430 320 320

Weather in Szeged 2006.04–2016.09 1700 240 240

This section uses A SeriesNet and WaveNet instead of the attention-based

SeriesNet and the augmented WaveNet for short. The experiments are executed

on Windows 10 with 2.50 GHz Intel Core i7 and 8 GB memory and conducted

on the python environment with Keras deep learning structure. The hyper-

parameters of A SeriesNet shown in Table 3.2, Tables 3.3 and 3.4 are slightly

adjusted when it applies to different datasets. The reduction ratio of CBAM and

HSAM shown in Tables 3.3 and 3.4 is one. The padding of depthwise convolution

and pointwise convolution of DDSTCNs is causal and valid, respectively. In

the case of three economic datasets, this thesis uses daily average stock price

as the target time series (Input) by taking the average of daily high and low

stock price. The part of the other time series in two economic datasets, such

as the daily trading volume and the daily close stock price, is chosen as the

conditions. For the two temperature datasets, the temperature is considered as

the target time series (Input), the Dew point and the humidity are chosen as
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the conditions. This thesis adopts the MAE as the loss function as below:

lossmin =
1

T

T∑
t=1

|Ft −At| , (3.53)

where Ft and At denotes the target value and predicted value at time t, re-

spectively. The weights of all CNN layers of A SeriesNet are initialized with a

truncated normal distribution with zero mean and constant variance of 0.05. The

GRU layers of A SeriesNet are initialized with he normal distribution. The

Adam optimizer [55] is used with the learning rate 0.001 and β1 of 0.9. The

related layer numbers of SeriesNet and WaveNet are unified with A SeriesNet as

shown in Table 3.2. This thesis removed CBAM and HSAM and used DC-CNN

and LSTM instead of DDSTCNs and GRU in Figure 3.2 as the conditional

structure of SeriesNet. All the models except for SVR used the conditioning

method for the experiments.

This thesis computes each layer’s complexity for detecting our model’s com-

putational performance, as demonstrated in Tables 3.2–3.4. The shape of input

time series and condition is respectively specified to x ∈ R1×T and y ∈ R1×T for

easy calculating the complexity. The evaluation is only limited to the forward

propagation of the computational process. The complexity of a standard 1D

CNN layer is defined as below:

Complexity ∼ O(M ·K · Cin · Cout), (3.54)

where M is the width of the output feature map, K denotes the width of the

kernel, Cin and Cout represents the channel input and channel output, respec-

tively. We ignore the bias of all CNN layers and full connection layers for con-

venience to compute the complexity. The complexity of a 1D DDSTCNs layer

is computable as follows:

Complexity ∼ O(M ·K · Cin +M · Cin · Cout). (3.55)
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Table 3.2: Hyper parameters and complexity of attention-based SeriesNet.

Type Units/Filters Size Dilation Rate Padding Output Complexity

Conv1D(Input) 1 30 1 causal (50, 1) 1500

BN (50, 1) 0

DDSTCNs 8 7 1 causal/valid (50, 8) 750

Conv1D(Condition) 1 20 1 causal (50, 1) 1000

BN (50, 1) 0

DDSTCNs 8 4 1 causal/valid (50, 8) 600

Add (50, 8) 0

SeLU (50, 8) 0

CBAM (50, 8) 956

Conv1D 1 1 1 same (50, 1) 400

Add (50, 1) 0

BN (50, 1) 0

DDSTCNs 8 7 2 causal/valid (50, 8) 750

SeLU (50, 8) 0

CBAM (50, 8) 956

Conv1D 1 1 1 same (50, 1) 400

Add (50, 1) 0
...

BN (50, 1) 0

DDSTCNs 8 7 16 causal/valid (50, 8) 750

SeLU (50, 8) 0

CBAM (50, 8) 956

Conv1D 1 1 1 same (50, 1) 400

Add(Skip-Connection) (50, 1) 0

Conv1D 1 1 1 same (50, 1) 50

Condition (1, 20) 1000

GRU(Input, Condition) 20 (50, 20) 66,000

HSAM (50, 20) 780

GRU 20 (50, 20) 123,000

FC 1 (50, 1) 20

Multiply (50, 1) 0

ReLU (50, 1) 0

Total 204,480
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Table 3.3: Hyper parameters and complexity of HSAM.

Type Units/Filters Size Dilation Rate Padding Output Complexity

Lambda Mean(GRU) (50, 1) 0

FC 20 (50, 20) 20

ReLU (50, 20) 0

FC 1 (50, 1) 20

Lambda Max(GRU) (50, 1) 0

FC 20 (50, 20) 20

ReLU (50, 20) 0

FC 1 (50, 1) 20

Concatenate (50, 2) 0

Conv1D 1 7 1 same (50, 1) 700

Sigmoid (50, 1) 0

Multiply(GRU, Sigmoid) (50, 20) 0

Total 780

Table 3.4: Hyper parameters and complexity of CBAM.

Type Units/Filters Size Dilation Rate Padding Output Complexity

GlobalAvgPooling1D(SeLU) (1, 8) 0

FC 8 (1, 8) 64

ReLU (1, 8) 0

FC 8 (1, 8) 64

GlobalMaxPooling1D(SeLU) (1, 8) 0

FC 8 (1, 8) 64

ReLU (1, 8) 0

FC 8 (1, 8) 64

Add (1, 8) 0

Sigmoid (1, 8) 0

Multiply1(SeLU, Sigmoid) (50, 8) 0

Lambda Mean(Multiply1) (50, 1) 0

Lambda Max(Multiply1) (50, 1) 0

Concatenate (50, 2) 0

Conv1D 1 7 1 same (50, 1) 700

Sigmoid (50, 1) 0

Multiply2(Multiply1, Sigmoid) (50, 8) 0

Total 956
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On the other hand, LSTM is local in space and time, which means that the

input length does not affect the storage requirements of the network and for

each time step, the time complexity per weight is O(1). Therefore, the overall

complexity of an LSTM per time step is equal to O(w), where w is the number

of weights. The complexity of a standard LSTM layer per time step is calculated

as:

Complexity ∼ O(4 · (I ·H +H2 +H)), (3.56)

where I denotes the dimension of input data, H represents the hidden unit

numbers. The Complexity of a standard GRU layer per time step is simpler

than LSTM, which is given as:

Complexity ∼ O(3 · (I ·H +H2 +H)). (3.57)

The overall complexity of our model is the sum of the complexity of all layers.

Table 3.5 shows the experimental results when the forecast sliding window

representing the future time span is 1. GRU2
20 denotes using 2 layers of GRU cell

and each layer contains 20 neurons. The A SeriesNet has the best performance

on both non-linear and non-stationary economic datasets and relatively station-

ary time series temperature dataset compared with the other models. The lower

RMSE, MAE and higher R2 close to 1 means better model fitting. This thesis

performs the models except for SVR for 64 epochs with 64 mini-batch size one

time. This epoch number allows the models to achieve a satisfactory convergence

on five datasets.

Table 3.5: The result of accuracy comparison.

Time Series A SeriesNet SeriesNet WaveNet GRU2
20 SV R

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

S&P500 Index 8.90 7.17 0.98 10.08 8.11 0.97 11.13 8.73 0.97 10.57 8.39 0.97 16.16 12.61 0.96

Shanghai Composite Index 56.69 36.49 0.98 71.96 55.50 0.97 80.52 60.10 0.97 79.29 50.17 0.97 82.25 63.19 0.97

Tesla Stock Price 4.56 3.36 0.97 4.82 3.68 0.96 5.50 4.36 0.95 5.59 4.38 0.95 4.74 3.36 0.96

NewYork temperature 1.63 1.20 0.97 1.68 1.22 0.97 1.76 1.25 0.96 1.72 1.25 0.97 1.79 1.23 0.96

Weather in Szeged 1.22 0.71 0.96 1.29 0.79 0.96 1.44 0.90 0.95 1.42 0.88 0.95 1.41 0.83 0.95

Table 3.6 demonstrates the average computation time (in seconds) of the

models for one-time training. The computation time of A SeriesNet is in rank

3, which is faster than SeriesNet and slower than GRU2
50. The SVR takes longer

training time to obtain the results close to the other models.
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Table 3.6: The result of performance comparison.

Time Series A SeriesNet SeriesNet WaveNet GRU2
20 SV R

S&P500 Index 100.80 103.62 17.99 74.37 273.49

Shanghai Composite Index 92.72 94.42 18.73 76.10 237.40

Tesla Stock Price 61.90 64.69 36.36 41.37 124.97

NewYork temperature 99.78 101.38 17.80 74.73 107.08

Weather in Szeged 89.24 96.56 17.54 62.93 115.96

Table 3.7 shows the results of GRU combined with HSAM (HSAM GRU)

compared with GRU. This paper adopts GRU2
20 with 2 layers of GRU cell and

each layer contains 20 neurons and GRU4
20 with 4 layers of GRU cell and each

layer contains 20 neurons for the experiments. The results show that the different

layers of HSAM GRU are superior to related GRU networks. When the number

of layers increased, the accuracy of GRU for 3 datasets decreases. HSAM can

keep the accuracy of deep GRU networks. The computation time of HSAM GRU

is close to GRU as demonstrated in Table 3.8.

Table 3.7: The accuracy comparison of HSAM GRU and GRU.

Time Series HSAM GRU2
20 GRU2

20 HSAM GRU4
20 GRU4

20

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

S&P500 Index 9.51 7.77 0.98 10.57 8.39 0.97 10.18 8.01 0.97 12.23 9.92 0.96

Shanghai Composite Index 78.44 48.49 0.97 79.29 50.17 0.97 80.46 54.74 0.97 92.83 66.70 0.96

Tesla Stock Price 5.02 3.89 0.96 5.59 4.38 0.95 6.24 4.63 0.94 6.29 5.00 0.94

NewYork temperature 1.68 1.23 0.97 1.72 1.25 0.97 1.73 1.27 0.97 1.76 1.28 0.97

Weather in Szeged 1.33 0.80 0.96 1.42 0.88 0.95 1.41 0.82 0.95 1.56 1.00 0.94

Table 3.8: The performance comparison of HSAM GRU and GRU.

Time Series HSAM GRU2
20 GRU2

20 HSAM GRU4
20 GRU4

20

S&P500 Index 81.94 74.37 167.42 145.09

Shanghai Composite Index 82.87 76.10 172.13 141.04

Tesla Stock Price 39.44 36.36 86.82 76.52

NewYork temperature 81.21 74.73 170.77 147.92

Weather in Szeged 66.20 62.93 125.95 117.07

Tables 3.9–3.11 show the hyper parameters and complexity of SeriesNet and

WaveNet in our experiments. The shape of input time series and condition in

the tables is also appointed to x ∈ R1×T and y ∈ R1×T , respectively. We also
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ignore the bias of all CNN layers and full connection layers for computing the

overall complexity of these models. The structure of GRU4
20 is similar to GRU2

20

in Tables 3.10 and 3.12 gives the complexity comparison results of deep learning

models. The complexity of our model is between GRU2
20 and SeriesNet.

Table 3.9: Hyper parameters and complexity of augmented WaveNet.

Type Units/Filters Size Dilation Rate Padding Output Complexity

Conv1D(Input) 8 7 1 causal (50, 8) 2800

ReLU (50, 8) 0

Conv1D(Condition) 8 7 1 causal (50, 8) 2800

ReLU (50, 8) 0

Add (50, 8) 0

Conv1D 8 7 2 causal (50, 8) 22,400

ReLU (50, 8) 0

Add (50, 8) 0
...

Conv1D 8 7 16 causal (50, 8) 22,400

ReLU (50, 8) 0

Add(Skip-Connection) (50, 8) 0

Conv1D 1 1 1 same (50, 1) 400

Table 3.10: Hyper parameters and complexity of GRU2
20.

Type Units/Filters Size Dilation Rate Padding Output Complexity

Condition (1, 20) 1000

GRU(Input, Condition) 20 (50, 20) 66,000

GRU 20 (50, 20) 123,000

FC 1 (50, 1) 20

Total 190,020
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Table 3.11: Hyper parameters and complexity of SeriesNet.

Type Units/Filters Size Dilation Rate Padding Output Complexity

Conv1D(Input) 1 20 1 causal (50, 1) 1000

BN (50, 1) 0

Conv1D 8 7 1 causal (50, 8) 2800

Conv1D(Condition) 1 20 1 causal (50, 1) 1000

BN (50, 1) 0

Conv1D 8 4 1 causal (50, 8) 1600

Add (50, 8) 0

Conv1D 1 1 1 same (50, 1) 400

Add (50, 1) 0

BN (50, 1) 0

Conv1D 8 7 2 causal (50, 8) 2800

Conv1D 1 1 1 same (50, 1) 400

Add (50, 1) 0
...

BN (50, 1) 0

Conv1D 8 7 16 causal (50, 8) 2800

Conv1D 1 1 1 same (50, 1) 400

Add(Skip-Connection) (50, 1) 0

Conv1D 1 1 1 same (50, 1) 50

Condition (2, 20) 2000

LSTM(Input, Condition) 20 (50, 20) 88,000

LSTM 20 (50, 20) 164,000

FC 1 (50, 1) 20

Multiply (50, 1) 0

ReLU (50, 1) 0

Total 273,670

Table 3.12: The result of complexity comparison.

A SeriesNet SeriesNet WaveNet GRU2
20 GRU4

20

Complexity 204,480 273,670 95,600 190,020 436,020
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3.6 Experiments of TA-SeriesNet

3.6.1 Training procedure and evaluation metrics

This thesis first uses the mean absolute error as the loss function: MAE =

1
T

∑T
t=1

∣∣∣yt − Ôt

∣∣∣, where yt and Ôt represents the target value and predicted

value at time t, respectively. We use the Adam optimizer [55] with learning rate

0.001 for training. The size of minibath is 64. The model accuracy are evaluated

by 2 metrics: the root-mean-square error: RMSE =

√
1
T

∑T
t=1

(
yt − Ôt

)2

, and

the coefficient of determination: R2 = 1 −
∑T
t=1(yt−Ôt)

2∑T
t=1(yt−ȳ)2

. Oppositely, we apply

RMSE as the loss function and adopt MAE and R2 as the evaluation metrics

to verify the first training results. We use tensorflow framework to generate and

train the models.

3.6.2 Model parameter adjustment

The hyper-parameters of DARLM-CNN are illustrated in table. 3.13 and 3.14,

where its encoder and decoder residual layer number J = L = 5 and time step

T = 10. ’Type’, ’Filters’, ’Size’, ’Dilation’, ’Padding’ and ’Output’ represents

layers of DARLM-CNN, filter number, kernel size, dilation rate, padding way

and output shape of each layer, respectively.

Table. 3.15 and 3.16 introduce the hyper-parameters of TA-LSTM with

the same hidden state size of encoder and decoder m = p = 64. We use a

time series dataset with feature dimension six and unfold the structure of TA-

LSTM by T = 10 time steps to generate these two tables. The structure of

TA-GRU is similar to TA-LSTM. In these 4 tables, there are some layers fol-

lowed by a bracket with some parameters in it, which denotes the input of that

layer. We use the new concatenation method to integrate the above tables to

generate the TA-SeriesNet model and compare our proposed models with the

A-SeriesNet, the DA-RNN [38], the augmented ARLM-CNN and the augmented

WaveNet [32].
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Table 3.13: Hyper-parameters of ARLM-CNN (Encoder of DARLM-CNN).

Type Filters Size Dilation Padding Output

Conv1D(x) 1 20 1 causal (10, 1)

BN (10, 1)

DDSTCNs 8 7 1 causal/valid (10, 8)

SeLU (10, 8)

CBAM (10, 8)

Conv1D 1 1 1 same (10, 1)

Add (10, 1)

BN (10, 1)

DDSTCNs 8 7 2 causal/valid (10, 8)

SeLU (10, 8)

CBAM (10, 8)

Conv1D 1 1 1 same (10, 1)

Add (10, 1)
...

BN (10, 1)

DDSTCNs 8 7 16 causal/valid (10, 8)

SeLU (10, 8)

CBAM (10, 8)

Conv1D 1 1 1 same (10, 1)

Add(Skip-connections) (10, 1)

Conv1D 1 1 1 same (10, 1)
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Table 3.14: Hyper-parameters of augmented ARLM-CNN (Decoder of DARLM-
CNN).

Type Filters Size Dilation Padding Output

BN(c) (10, 1)

DDSTCNs 8 4 1 causal/valid (10, 8)

Conv1D(y) 1 30 1 causal (10, 1)

BN (10, 1)

DDSTCNs 8 7 1 causal/valid (10, 8)

Add (10, 8)

SeLU (10, 8)

CBAM (10, 8)

Conv1D 1 1 1 same (10, 1)

Add (10, 1)

BN (10, 1)

DDSTCNs 8 7 2 causal/valid (10, 8)

SeLU (10, 8)

CBAM (10, 8)

Conv1D 1 1 1 same (10, 1)

Add (10, 1)
...

BN (10, 1)

DDSTCNs 8 7 16 causal/valid (10, 8)

SeLU (10, 8)

CBAM (10, 8)

Conv1D 1 1 1 same (10, 1)

Add(Skip-connections) (10, 1)

Conv1D 1 1 1 same (10, 1)
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Table 3.15: Hyper-parameters of TA-LSTM (Encoder with input attention and
HSAM).

Type Units Output

RepeatVector(5, s0) (5, 64)

RepeatVector(5, h0) (5, 64)

Permute(x) (5, 10)

Concatenate(s0, h0, x) (5, 138)

Full-connection 1 (5, 1)

Permute (1, 5)

Softmax (1, 5)

Multiply(α1, x1) (1, 5)

Encoder-LSTM1 64 (1, 64)
...

RepeatVector(5, s9) (5, 64)

RepeatVector(5, h9) (5, 64)

Permute(x) (5, 10)

Concatenate(s9, h9, x) (5, 138)

Full-connection 1 (5, 1)

Permute (1, 5)

Softmax (1, 5)

Multiply(α10, x10) (1, 5)

Encoder-LSTM10 64 (1, 64)

HSAM (10, 64)
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Table 3.16: Hyper-parameters of TA-LSTM (Decoder with temperal attention).

Type Units Output

RepeatVector(10, s
′

0) (10, 64)

RepeatVector(10, d0) (10, 64)

Concatenate(s
′

0, d0, h
′
) (10, 192)

Full-connection 128 (10, 128)

Tanh (10, 128)

Full-connection 1 (10, 1)

Permute (1, 10)

Softmax (1, 10)

Permute (10, 1)

Multiply(β1, h
′
) (10, 64)

Sum (1, 64)

Concatenate(c1, y1) (1, 65)

Decoder-LSTM1 64 (1, 64)

Concatenate(d1, c1) (1, 128)

Full-connection 1 (1, 1)
...

RepeatVector(10, s
′

9) (10, 64)

RepeatVector(10, d9) (10, 64)

Concatenate(s
′

9, d9, h
′
) (10, 192)

Full-connection 128 (10, 128)

Tanh (10, 128)

Full-connection 1 (10, 1)

Permute (1, 10)

Softmax (1, 10)

Permute (10, 1)

Multiply(β10, h
′
) (10, 64)

Sum (1, 64)

Concatenate(c10, y10) (1, 65)

Decoder-LSTM10 64 (1, 64)

Concatenate(d10, c10) (1, 128)

Full-connection 1 (1, 1)
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It’s necessary to determine five parameters to know our proposed mod-

els’ performance. Respectively are the time step T , the encoder’s hidden state

size m and decoder’s hidden state size p for TA-LSTM, TA-GRU and TA-

SeriesNet, the encoder’s residual layer number L and decoder’s residual layer

number J for DARLM-CNN and TA-SeriesNet. First of all, we set up the

DARLM-CNN by J = L = {5, 6, 7, 8, 9, 10} for simplicity and choose the best

performed layer number J = L = 10 over the validation set. Then we en-

sembly 3 subnetworks to generate the TA-SeriesNet. Since the DA-RNN [38]

measured T = {5, 10, 15, 20, 25}, m = p = {16, 32, 64, 128, 256} and verified

T = 10,m = p = 64 achieved the best results in their experiments. We use

the grid search over T = {10, 20, 30, 40, 50} and m = p = {16, 32, 64, 128, 256}

to determine the parameters that the TA-LSTM, TA-GRU and TA-SeriesNet

can achieve the best performance. The two TA-RNN subnetworks respectively

attained the best performance when T = 50, m = p = 64 over the validation

set. Coincidentally, the TA-SeriesNet also achieves optimum performance by the

same parameters. We also choose the best parameters via the same method for

the other models. This thesis trains each model ten times and records the av-

erage metrics for model comparison. The experiments are implemented on raw

datasets without preprocessing.

3.6.3 Experimental results

3.6.3.1 Forecasting accuracy comparison

Table. 3.17 summarizes all models’ prediction precision with time step T = 50,

which uses MAE as the loss function and RMSE and R2 as the evalution indi-

cators for the testing set of four datasets. Table. 3.18 shows the inverse training

results, which adopts RMSE as the loss function and uses MAE and R2 as

the evaluation metrics to verify the results of table. 3.17. We split the models

into two types for both tables. The non-encoder-decoder type contains the first

three models, which have the corresponding residual layer number written in the

followed brackets. The two values behind the A-SeriesNet is the residual layer

number of its ARLM-CNN subnetwork and the hidden state size of its HSAM-

based GRU subnetwork. The others are the encoder-decoder type models with

the same residual layer number or same hidden state size for their encoder and
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Table 3.17: MAE loss function-based model accuracy comparison for the four
datasets.

NewYork temperature S&P500 Index SML 2010 NASDAQ 100 Stock

Models RMSE R2 RMSE R2 RMSE R2 RMSE R2

Augmented WaveNet (10) 2.14 0.96 15.67 0.97 0.38 0.97 13.65 0.95

Augmented ARLM-CNN (10) 1.99 0.96 15.02 0.97 0.34 0.97 11.46 0.96

A-SeriesNet (10, 64) 1.77 0.96 14.15 0.97 0.32 0.97 9.89 0.96

DA-LSTM (64) 1.63 0.96 13.31 0.98 0.27 0.98 7.43 0.97

DARLM-CNN (10) 1.83 0.96 14.79 0.97 0.29 0.98 7.64 0.97

TA-LSTM (64) 1.41 0.97 12.75 0.98 0.26 0.98 6.93 0.97

TA-GRU (64) 1.54 0.96 12.07 0.98 0.22 0.98 6.75 0.97

TA-SeriesNet (10, 64, 3) 1.31 0.97 11.29 0.98 0.21 0.98 5.57 0.98

Table 3.18: RMSE loss function-based model accuracy comparison for the four
datasets.

NewYork temperature S&P500 Index SML 2010 NASDAQ 100 Stock

Models MAE R2 MAE R2 MAE R2 MAE R2

Augmented WaveNet (10) 1.97 0.96 14.88 0.97 0.29 0.97 12.48 0.95

Augmented ARLM-CNN (10) 1.86 0.96 14.27 0.97 0.26 0.97 10.98 0.96

A-SeriesNet (10, 64) 1.64 0.96 13.11 0.97 0.22 0.97 8.15 0.96

DA-LSTM (64) 1.51 0.96 12.84 0.98 0.17 0.98 6.10 0.97

DARLM-CNN (10) 1.75 0.96 13.67 0.97 0.18 0.98 6.44 0.97

TA-LSTM (64) 1.29 0.97 11.25 0.98 0.15 0.98 5.29 0.97

TA-GRU (64) 1.37 0.97 11.32 0.98 0.14 0.98 5.79 0.97

TA-SeriesNet (10, 64, 3) 1.22 0.97 10.14 0.98 0.12 0.98 4.45 0.98

decoder. The three values of TA-SeriesNet indicate the residual layer number,

the hidden state size of its related subnetwork and its subnetwork number, re-

spectively. We apply the LSTM [30] for the encoder and decoder of DA-RNN [38]

and replace the DA-RNN [38] with the DA-LSTM in the experiment section.

In table. 3.17, all the models perform good forecasting results for the first

three datasets with feature dimensions less than 20. The forecasting accuracy

of non-encoder-decoder type models declined for the fourth dataset with high

feature dimension. The encoder-decoder type models maintain a stable forecast-

ing accuracy than the non-encoder-decoder ones. Our proposed TA-RNNs and
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(a) Augmented WaveNet (b) A-SeriesNet

(c) DA-RNN (d) TA-SeriesNet

Figure 3.12: Model comparison for the testing set of NASDAQ 100 Stock dataset
with 81 feature dimensions.

TA-SeriesNet are outperform to the other models for the four datasets. The pre-

cision of DARLM-CNN falls in between the A-SeriesNet and the DA-LSTM for

the four datasets. Fig. 3.12 demonstrates the visual comparison of TA-SeriesNet

with other three state-of-art models over the testing set of NASDAQ Stock 100

dataset. The TA-SeriesNet fits the ground truth better than the others. The

results of table. 3.18 have the same tendency as table. 3.17 except for some

nuances.

3.6.3.2 Model sensitivity analysis

The sensitivity detection of each model to the feature dimension variation is

our second experiment. We separate the NASDAQ 100 Stock dataset with 81

feature dimensions into 5 subdatasets according to different feature dimension

numbers. We successively select the top 16, 32, 48, 64, and 80 feature dimensions

from the multi-condition series and respectively combine them with the target

time series, the index of NASDAQ 100, as each subdataset. Similar to the first

experiment, we respectively train subdatasets by loss function MAE and RMSE
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Table 3.19: MAE loss function-based model sensitivity evaluation for different
feature dimensions.

F=17 F=33 F=49 F=65

Models RMSE R2 RMSE R2 RMSE R2 RMSE R2

Augmented WaveNet (10) 5.86 0.98 8.40 0.97 10.77 0.96 12.42 0.95

Augmented ARLM-CNN (10) 5.59 0.98 6.91 0.97 8.58 0.97 10.01 0.96

A-SeriesNet (10, 64) 4.35 0.98 5.04 0.98 7.09 0.97 8.11 0.97

DA-LSTM (64) 4.04 0.98 4.77 0.98 5.96 0.98 6.53 0.97

DARLM-CNN (10) 4.26 0.98 4.98 0.98 5.62 0.98 6.61 0.97

TA-LSTM (64) 3.86 0.98 4.21 0.98 5.58 0.98 6.20 0.97

TA-GRU (64) 3.34 0.98 4.52 0.98 5.32 0.98 6.25 0.97

TA-SeriesNet (10, 64, 3) 3.32 0.98 3.46 0.98 4.57 0.98 5.08 0.98

Table 3.20: RMSE loss function-based model sensitivity evaluation for different
feature dimensions.

F=17 F=33 F=49 F=65

Models MAE R2 MAE R2 MAE R2 MAE R2

Augmented WaveNet (10) 4.59 0.98 7.66 0.97 9.58 0.96 11.27 0.95

Augmented ARLM-CNN (10) 4.34 0.98 5.75 0.97 7.81 0.97 9.23 0.96

A-SeriesNet (10, 64) 3.40 0.98 4.56 0.98 6.02 0.97 7.39 0.97

DA-LSTM (64) 3.11 0.98 3.86 0.98 4.75 0.98 5.47 0.97

DARLM-CNN (10) 3.32 0.98 3.93 0.98 4.81 0.98 5.69 0.97

TA-LSTM (64) 2.25 0.98 3.46 0.98 4.63 0.98 5.35 0.97

TA-GRU (64) 2.43 0.98 3.49 0.98 4.52 0.98 5.30 0.97

TA-SeriesNet (10, 64, 3) 2.02 0.98 2.69 0.98 3.48 0.98 4.04 0.98

and summarize the results in table. 3.19 and 3.20. The accuracy of the last sub-

dataset with 81 feature dimensions is the results of NASDAQ Stock 100 dataset

shown in table. 3.17 and 3.18. We detect the forecasting accuracy variation of

each model from subdataset one to five. Table. 3.19 demonstrates that the ac-

curacy of all models decreased with the feature dimension (F) increasing. The

decline of non-encoder-decoder type models sharper than the encoder-decoder

type ones. The same tendency also can be observed in table. 3.20. Fig. 3.13

visually shows each model’s RMSE and MAE evalution indicator fluctuation,

which is respectively trained by loss function MAE and RMSE for the 5 sub-

datasets. The sensitivity of DARLM-CNN is neck and neck with DA-LSTM. The
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(a) MAE loss function-based RMSE indicator vari-
ation tendency.

(b) RMSE loss function-based MAE indicator
variation tendency.

Figure 3.13: Evaluation metrics fluctuation of each model for different feature
dimensions.

TA-LSTM, TA-GRU and TA-SeriesNet are superior to others.

3.6.3.3 Concatenation method evaluation

The third experiment is to verify the validity of the concatenation method. In

this experiment, we increase the subnetwork number of TA-SeriesNet and eval-

uate its performance for the four datasets. We also train the generated models

by loss function MAE first as shown in table. 3.21. The TA-SeriesNet (10, 64,

4) with four subnetworks consists of a TA-LSTM, a TA-GRU and two DARLM-

CNN subnetworks. The TA-SeriesNet (10, 64, 5) with five subnetworks con-

tains a TA-GRU, two TA-LSTM and two DARLM-CNN subnetworks. The TA-

SeriesNet (10, 64, 6) with six subnetworks includes TA-LSTM, TA-GRU and

DARLM-CNN, two for each. The prediction accuracy of them remains stable

when the subnetwork number increased. The results of table. 3.22 are trained by

loss function RMSE, where its results are similar to table. 3.21. All the models in

these two tables maintain an excellent performance compare to the other models

in table. 3.17 and 3.18 for both low and high feature dimensional datasets.
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Table 3.21: MAE loss function-based concatenation method evaluation for TA-
SeriesNet.

NewYork temperature S&P500 Index SML 2010 NASDAQ 100 Stock

Models RMSE R2 RMSE R2 RMSE R2 RMSE R2

TA-SeriesNet (10, 64, 4) 1.47 0.97 11.48 0.98 0.23 0.98 5.69 0.98

TA-SeriesNet (10, 64, 5) 1.51 0.97 12.14 0.98 0.25 0.98 6.16 0.97

TA-SeriesNet (10, 64, 6) 1.56 0.96 12.80 0.98 0.28 0.98 7.01 0.97

Table 3.22: RMSE loss function-based concatenation method evaluation for
TA-SeriesNet.

NewYork temperature S&P500 Index SML 2010 NASDAQ 100 Stock

Models MAE R2 MAE R2 MAE R2 MAE R2

TA-SeriesNet (10, 64, 4) 1.24 0.97 10.29 0.98 0.14 0.98 4.51 0.98

TA-SeriesNet (10, 64, 5) 1.32 0.97 11.25 0.98 0.16 0.98 4.58 0.98

TA-SeriesNet (10, 64, 6) 1.35 0.97 11.60 0.98 0.17 0.98 5.74 0.97
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Chapter 4

Conclusion

This thesis constructs the supermarket competition analysis models and makes

loyal customer classification for a supermarket chain. In the experiments, this

study estimates the RFM, RFM+ and RFM++ type model by accuracy and

logistic regression coefficient analysis. All three type models can make loyal

customer classification adequately. The RFM++ type model is superior to the

other two type models from the viewpoint of accuracy and analysis diversity.

The supermarket managers can grasp the influence degree of competitive su-

permarkets and understand the behavior of loyal customers. In the future, the

presented models will implement on sensitivity analysis of neural networks for

supermarket competition analysis and loyal customer classification.

Furthermore, this thesis proposed a deep learning neural network structure

named attention-based SeriesNet, which desires to predict the future value of

time series. The attention-based SeriesNet applies DDSTCNs and GRU instead

of DC-CNN and LSTM in SerieNet to accelerate the training. Furthermore,

this model adopts CBAM attention on residual learning module and proposed

HSAM attention on GRU networks to better extract the potential features from

the input time series. We succeeded in improving SeriesNet since our model’s

accuracy, and complexity is superior to the SeriesNet. The experiment results

also show that attention-based SeriesNet has higher forecasting accuracy than

other models. This thesis only explored the performance of the SeriesNet models

on the economic and temperature datasets. Further analysis of different types

of datasets is required to examine the capability of attention-based SeriesNet

to forecast from different data distributions for varying forecast horizons. This
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thesis didn’t evaluate the performance of hidden state attention mechanisms

on recurrent neural networks with deep structure. The only two or four layers

GRU can not adequately describe its performance. It was also found that the

forecasts were very sensitive to layer weight initialization, receptive field and

training duration. The parameter tuning is necessary for different datasets.

Finally, this thesis presents a novel hybrid neural network that included two

types of attention-based encoder-decoder architectures. Most of the encoder-

decoder framework is based on the recurrent neural network at present. This

thesis first considered the attention residual learning module-based encoder-

decoder model and proved this architecture useful in predicting time series with

high feature dimensions. Furthermore, this thesis testified that the performance

of DA-RNN is improvable by adding the hidden state attention module between

encoder and decoder architecture. The concatenation method is a successful idea

to parallel connect different neural network architectures without losing their

performance. The concatenation of subnetworks can learn a related weight for

each subnetwork to reduce the overall output’s dependence on low forecasting

accuracy subnetwork. This thesis only measured the forecasting accuracy of the

new proposals. Since the concatenation method realized the parallel connection

of multiple neural network architectures, we can parallel train them for computa-

tional performance improvement. In the future, we’ll improve the TA-SeriesNet

from this perspective.



Bibliography

[1] M. Khajvand, K. Zolfaghar, S. Ashoori, S. Alizadeh, ”Estimating customer

lifetime value based on RFM analysis of customer purchase behavior: case

study,” Procedia Computer Science 3, pp. 57-63, 2011.

[2] A. M. Hughes, Strategic database marketing, Chicago: Probus Publishing

Company, 1994.

[3] H. C. Chang, H. P. Tsai, ”Group RFM analysis as a novel framework

to discover better customer consumption behavior,” Expert Systems with

Applications 38, pp. 14499-14513, 2011.

[4] J. Wu, Z. Lin, ”Research on customer segmentation model by clustering,”

In Proceedings of the 7th ACM ICEC international conference on electronic

commerce, 2005.

[5] T. Tanaka, T. Hamaguchi, T. Saigo, K. Tsuda, ”Classifying and Under-

standing Prospective Customers via Heterogeneity of Supermarket Stores,”

International Conference on Knowledge Based and Intelligent Information

and Engineering Systems, pp. 956-964, 2017.

[6] D. W. Hosmer, S. Lemeshow, Applied Logistic Regression, 2nd ed. John

Wiley & Sons, Inc, 2000.

[7] T. Tjur, ”Coefficients of determination in logistic regression models,”

American Statistician: pp. 366-372, 2009.

[8] D. A. Freedman, Statistical Models: Theory and Practice, Cambridge Uni-

versity Press, pp. 128, 2009.

73



74 BIBLIOGRAPHY

[9] F. E. Harrell, Regression Modeling Strategies: With Applications to Linear

Models, Logistic Regression, and Survival Analysis. New York: Springer,

2010.

[10] J. A. Morris, M. J. Gardner, ”Calculating confidence intervals for rela-

tive risks (odds ratios) and standardised ratios and rates,” British Medical

Journal, 1988.

[11] D. E. Farrar, R. R. Glauber, ”Multicollinearity in Regression Analysis: The

Problem Revisited,” Review of Economics and Statistics, 49, issue 1, pp.

92-107, 1967.

[12] J. Correia, RFM-analysis, GitHub repository, 2016. [Online]. Available:

https://github.com/joaolcorreia/RFM-analysis

[13] D. L. Huff, ”Defining and Estimating a Trade Area,” Journal of Marketing,

vol. 28, pp. 34-38, 1964.

[14] W. J. Reilly, The law of retail gravitation, New York: Knickerbocker Press,

1931.

[15] M. Nakanishi, L. G. Cooper, ”Parameter estimation for a multiplicative

competitive interaction model-least squares approach,” Journal of Market-

ing Research, 11, pp. 303-311, 1974.

[16] D. B. Segal, ”Retail Trade Area Analysis: Concepts and New Approaches,”

The Journal of Database Marketing, vol. 6, no. 3, pp. 267-277, 1999.

[17] K. Chen, Y. H. Hu, Y. C. Hsieh, ”Predicting customer churn from valuable

B2B customers in the logistics industry: a case study,” Information Systems

and e-Business Management, vol. 13, no. 3, pp. 475-494, 2015.

[18] H. Abdi, L. J. Williams, ”Principal component analysis,” Wiley Interdis-

ciplinary Reviews: Computational Statistics, vol. 2, no. 4, pp. 433-459,

2010.

[19] D. Freedman, R. Pisani, R. Purves, Statistics: Fourth International Student

Edition. W.W. Norton & Company, 2007.



BIBLIOGRAPHY 75

[20] J. Fan, I. Gijbels, Local Polynomial Modelling and Its Applications: Mono-

graphs on Statistics and Applied Probability, Chapman & Hall/CRC, 1996.

[21] S. Zenker, T. Gollan, N. V. Quaquebeke, ”Using Polynomial Regression

Analysis and Response Surface Methodology to Make a Stronger Case for

Value Congruence in Place Marketing,” Psychology and Marketing, vol. 31,

issue 3, pp. 184-202, 2014.

[22] Ruth M. W. Yeung, Wallace M. S. Yee, ”Logistic Regression: An advance-

ment of predicting consumer purchase propensity,” The Marketing Review,

vol. 11, no. 1, 2011.

[23] C. Constantin, ”Using the Logistic Regression model in supporting de-

cisions of establishing marketing strategies,” Bulletin of the Transilvania
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