1	Title page
2	
3	• The name(s) of the author(s)
4	Yusuke Imanaka
5	
6	• A concise and informative title
7	Inherited CARD9 deficiency in a child with invasive disease due to Exophiala dermatitidis and two
8	older but asymptomatic siblings
9	
10	• The affiliation(s) and address(es) of the author(s)
11	
12	• Yusuke Imanaka
13	Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science,
14	Hiroshima, Japan
15	<u>lowiqyou@yahoo.co.jp</u>
16	
17	• Maki Taniguchi
18	Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science,
19	Hiroshima, Japan
20	<u>taniguchi-mk@hiroshima-u.ac.jp</u>
21	
22	• Takehiko Doi
23	Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science,
24	Hiroshima, Japan
25	take-doi02@hiroshima-u.ac.jp
26	
27	• Miyuki Tsumura
28	Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science,
29	Hiroshima, Japan
30	m055@hiroshima-u.ac.jp
31	
32	• Rie Nagaoka
33	Division of Infectious Diseases Laboratory Medicine, Hiroshima University Hospital, Hiroshima, Japan
54 25	pmarie(@nirosnima-u.ac.jp
33 26	• Maika Shimamura
, ()	

37	Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science,
38	Hiroshima, Japan
39	shimomai0105@hiroshima-u.ac.jp
40	
41	• Takaki Asano
42	Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science,
43	Hiroshima, Japan
44	St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller
45	tasano@rockefeller.edu
46	
47	• Reiko Kagawa
48	Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science,
49	Hiroshima, Japan
50	ykagawa@ja2.so-net.ne.jp
51	
52	• Yoko Mizoguchi
53	Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science,
54	Hiroshima, Japan
55	ymizoguchi@gmail.com
56	
57	• Shuhei Karakawa
58	Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science,
59	Hiroshima, Japan
60	kara1224@hiroshima-u.ac.jp
61	
62	• Koji Arihiro
63	Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
64	arihiro@hiroshima-u.ac.jp
65	
66	• Kohsuke Imai
67	Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences,
68	Tokyo Medical and Dental University, Tokyo, Japan
69	kimai.ped@tmd.ac.jp
70	

71 • Tomohiro Morio

72	Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences,
73	Tokyo Medical and Dental University, Tokyo, Japan
74	tmorio.ped@tmd.ac.jp
75	
76	• Jean-Laurent Casanova
77	St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University,
78	New York, NY, United States
79	Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine
80	Institute, Paris, France
81	University of Paris, Paris, France, EU
82	Howard Hughes Medical Institute, New York, USA
83	casanova@rockefeller.edu
84	
85	• Anne Puel
86	St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University,
87	New York, NY, United States
88	Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine
89	Institute, Paris, France
90	University of Paris, Paris, France, EU
91	anne.puel@inserm.fr
92	
93	• Osamu Ohara
94	Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
95	<u>ohara@kazusa.or.jp</u>
96	
97	• Katsuhiko Kamei
98	Department of Medical Mycology Research Center, Chiba University, Japan
99	kkamei-chiba@umin.ac.jp
100	
101	• Masao Kobayashi
102	Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science,
103	Hiroshima, Japan
104	Japan Red Cross, Chugoku-Shikoku Block Blood Center, Hiroshima, Japan
105	masak@hiroshima-u.ac.jp
106	

107 • Satoshi Okada

- 108 Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science,
- 109 Hiroshima, Japan
- 110 <u>sokada@hiroshima-u.ac.jp</u>
- 111

112 • The e-mail address, telephone and fax numbers of the corresponding author

- 113 Correspondence to Satoshi Okada
- 114 Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences
- 115 1-2-3 Kasumi, Minami-Ku, Hiroshima-Shi, Hiroshima, 734-8551, Japan
- 116 E-mail: sokada@hiroshima-u.ac.jp
- 117 Tell: +81-82-257-5212
- 118 Fax: +81-82-257-5214

120	Inherited CARD9 deficiency in a child with invasive disease due to Exophiala dermatitidis and two
121	older but asymptomatic siblings
122	
123	Authors
124	Yusuke Imanaka ¹ , Maki Taniguchi ¹ , Takehiko Doi ¹ , Miyuki Tsumura ¹ , Rie Nagaoka ² , Maiko
125	Shimomura ¹ , Takaki Asano ^{1, 3Φ} , Reiko Kagawa ¹ , Yoko Mizoguchi ¹ , Shuhei Karakawa ¹ , Koji Arihiro ⁴ ,
126	Kohsuke Imai ⁵ , Tomohiro Morio ⁵ , Jean-Laurent Casanova ^{3, 6, 7, 8} , Anne Puel ^{3, 6, 7} , Osamu Ohara ⁹ ,
127	Katsuhiko Kamei ¹⁰ , Masao Kobayashi ^{1, 11Φ} , Satoshi Okada ¹
128	
129	Institutions
130	¹ Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science,
131	Hiroshima, Japan
132	² Division of Infectious Diseases Laboratory Medicine, Hiroshima University Hospital, Hiroshima, Japan
133	³ St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller
134	University, New York, NY, United States
135	⁴ Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
136	⁵ Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences,
137	Tokyo Medical and Dental University, Tokyo, Japan

138	⁶ Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine
139	Institute, Paris, France
140	⁷ University of Paris, Paris, France, EU
141	⁸ Howard Hughes Medical Institute, New York, USA
142	⁹ Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
143	¹⁰ Department of Medical Mycology Research Center, Chiba University, Japan
144	¹¹ Japan Red Cross, Chugoku-Shikoku Block Blood Center, Hiroshima, Japan
145	
146	^Φ current affiliation
147	
148	Corresponding Author
149	Satoshi Okada, MD, PhD
150	Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences
151	1-2-3 Kasumi, Minami-Ku, Hiroshima-Shi, Hiroshima, 734-8551, Japan
152	Tell: +81-82-257-5212
153	Fax: +81-82-257-5214
154	E-mail: <u>sokada@hiroshima-u.ac.jp</u>
155	
156	Abstract

157 Purpose

158	Autosomal recessive CARD9 deficiency predisposes patients to invasive fungal disease. Candida and
159	Trichophyton species are major causes of fungal disease in these patients. Other CARD9-deficient patients
160	display invasive disease caused by other fungi, such as <i>Exophiala spp</i> . The clinical penetrance of CARD9
161	deficiency regarding fungal disease is surprisingly not complete until adulthood, though the age remains
162	unclear. Moreover, the immunological features of genetically confirmed yet asymptomatic individuals with
163	CARD9 deficiency have not been reported.
164	Methods
165	Identification of CARD9 mutations by gene panel sequencing and characterization of the cellular phenotype
166	by quantitative PCR, immunoblot, luciferase reporter, and cytometric bead array assays were performed.
167	Results
168	Gene panel sequencing identified compound heterozygous CARD9 variants, c.1118G>C (p.R373P) and
169	c.586A>G (p.K196E), in a 4-year-old patient with multiple cerebral lesions and systemic lymphadenopathy
170	due to Exophiala dermatitidis. The p.R373P is a known disease-causing variant, whereas the p.K196E is a
171	private variant. Although the patient's siblings, a 10-year-old brother and an 8-year-old sister, were also
172	compound heterozygous, they have been asymptomatic to date. Normal CARD9 mRNA and protein
173	expression were found in the patient's CD14 ⁺ monocytes. However, these cells exhibited markedly

174	impaired pro-inflammatory	cytokine production	in response to fungal	stimulation. Monocytes fro	m both
-----	---------------------------	---------------------	-----------------------	----------------------------	--------

asymptomatic siblings displayed the same cellular phenotype.

176	Conclusions
-----	-------------

- 177 CARD9 deficiency should be considered in previously healthy patients with invasive Exophiala
- 178 dermatitidis disease. Asymptomatic relatives of all ages should be tested for CARD9 deficiency. Detecting
- 179 cellular defects in asymptomatic individuals is useful for diagnosing CARD9 deficiency.
- 180
- 181 Keywords: CARD9 deficiency, invasive fungal disease (IFD), *Exophiala dermatitidis*, asymptomatic
 182 siblings, cytokine production
- 183
- 184 **Declarations**
- 185 Funding
- 186 This study was supported by Grants-in-Aid for Scientific Research from the Japan Society for the
- 187 Promotion of Science (16H05355 and 19H03620 to SO), Promotion of Joint International Research from
- 188 the Japan Society for the Promotion of Science (18KK0228 to SO), and the Practical Research Project for
- 189 Rare/Intractable Diseases from Japan Agency for Medical Research and Development, AMED (Grant
- 190 Number: JP16ek0109179, JP19ek0109209, and JP20ek0109480) to S.O.
- 191

192 Conflicts of Interest

- 193 The authors declare that they have no conflicts of interest.
- 194

195 Availability of data and material

- 196 The datasets during and/or analyzed during the current study are available from the corresponding author
- 197 on reasonable request.
- 198

199	Code	availa	bility
1))	Cout	a vana	omey

- 200 Not applicable
- 201

202 Authors' contributions

- 203 All authors contributed to the accrual of subjects and/or data. SO contributed to the conception and design
- 204 of the study. YI, TA, AP, and JLC drafted the manuscript. YI, MT, RK, and YM performed cellular assay
- and gene expression experiment. MT, TD, RN, MS, SK, KA, KI, TM, KK, and MK performed the clinical
- 206 work and collected data. OO and SO analyzed data obtained by gene panel sequencing. All authors have
- 207 revised the manuscript for important intellectual content and approved the final version.

208

209 Ethics approval

210	The study was approved by the Ethics Committees and Institutional Review Board of Hiroshima University.
211	All experiments were carried out with adherence to the Declaration of Helsinki.
212	
213	Consent to participate
214	Informed consent was obtained from the guardians of the pediatric patients or directly from participants.
215	
216	Consent for publication
217	Informed consent was obtained from the guardians of the pediatric patients for publication of this case
218	report and accompanying images.
219	
220	Introduction
221	Caspase-associated recruitment domain-9 (CARD9) deficiency is an autosomal recessive (AR) primary
222	immunodeficiency caused by loss-of-function mutations in the CARD9 gene(1), which encodes a signaling
223	protein located downstream of C-type lectin receptors that recognizes fungal pathogen-associated
224	molecular patterns. Accordingly, AR CARD9 deficiency results in specific susceptibility to invasive and/or
225	superficial fungal disease (2, 3). Since its first report in 2009, AR CARD9 deficiency has been identified
226	in 78 patients from 55 kindreds from 17 countries, with 28 mutations identified as disease causing (1, 3-
227	20). With descriptions of an increasing number of patients, the clinical characteristics, pathophysiology,

229

and genetic background of AR CARD9 deficiency are gradually being deciphered. Nonetheless, many questions remain unanswered (3).

- AR CARD9 deficiency is characterized by invasive fungal diseases (IFD) that often affect the central
- 231 nervous system (CNS) (21). Candida and Trychophyton represent the two major disease-causing fungal
- species in patients with AR CARD9 deficiency (Fig. S1) (3); Aspergillus (8, 14, 19, 22), Auerobasidum
- 233 (23), Corynespora (7, 24), Exophiala (13, 14, 17, 25), Microsprorum (9), Mucor (6), Ochroconis (17),
- 234 Pallidocercospora (11), Phialophora (10, 26), Saprochaete (15), and Trichosporon (4) species have less
- frequently been reported. In particular, IFD caused by *Exophiala dermatitidis* has only been reported in 2
- previously healthy patients with AR CARD9 deficiency at the ages of 8 and 23 years (13, 25).
- 237 Because all patients with disease-causing CARD9 mutations develop fungal disease, the clinical
- 238 penetrance of AR CARD9 deficiency is thought to be complete (3). However, the age at onset ranges from
- childhood to adulthood (3.5–58 years) (3, 27), suggesting that there are asymptomatic children or adults
- 240 who carry disease-causing mutations in CARD9, and such individuals are expected to develop fungal
- disease later in life. Overall, the mortality rate of CARD9-deficient patients who develop IFD is >20% (3-
- 5, 7, 8, 12, 13, 15, 16, 18). Therefore, to reduce the mortality rate, it is important to diagnose patients with
- 243 AR CARD9 deficiency prior to the onset of IFD. Presymptomatic diagnosis of this disorder enables us to
- 244 monitor the patient closely and consider institutional therapy with antifungal prophylaxis. Although
- 245 diagnosing AR CARD9 deficiency is relatively easy when patients display characteristic clinical features

246	and carry previously reported disease-causing mutations, it becomes more challenging when patients
247	display an atypical clinical course, carry novel CARD9 variants, or carry reported disease-causing mutations
248	but are asymptomatic.

250 Materials and methods

251 Fungal identification

252 PrepManTM Ultra Sample Preparation Reagent (Applied Biosystems, Waltham, Massachusetts, USA) was

253 used to extract genomic DNA from a lymph node biopsy that was cultured in Sabouraud dextrose agar

- according to the manufacturer's protocol. The DNA was amplified and sequenced from the D2 region of
- 255 the nuclear large subunit ribosomal RNA gene using MicroSEQTM D2 rDNA Fungal Identification Kit
- 256 (Applied Biosystems) according to the manufacturer's protocol. For species assignment, sequences were
- aligned using BLAST (NCBI, Washington, DC).

258

259 **DNA sequencing**

- 260 Genomic DNA was extracted from peripheral blood leukocytes and subjected to gene panel sequencing
- and/or Sanger sequencing. The former revealed enriched PID-related genes reported in IUIS2017 (28). The
- 262 detailed method was described previously (29).

264 Isolation of CD14⁺ monocytes from peripheral whole blood

265	Peripheral blood mononuclear cells (PBMCs) were isolated from peripheral whole blood by density
266	gradient centrifugation using Lymphoprep TM (Alere Technologies AS, Oslo, Norway). CD14 ⁺ monocytes
267	were separated from PBMCs using IMag TM Cell Separation System (BD Biosciences, San Jose, CA, USA)
268	according to the manufacturer's protocol and resuspended in RPMI 1640 medium (Gibco, Thermo Fischer
269	Scientific, Waltham, MA, USA) supplemented with 10% heat-inactivated fetal bovine serum (FBS)
270	(HyClone, Logan, UT, USA) and 100 μ g/ml penicillin/streptomycin.
271	
272	Quantitative PCR
273	Total RNA was extracted from isolated CD14 ⁺ monocytes with Qiagen RNeasy Mini kit (Qiagen, Hilden,
274	Germany) according to the manufacturer's protocol and transcribed by using Superscript III Reverse
275	Transcriptase (Invitrogen, Carlsbad, CA, USA). Quantitative PCR was performed in triplicate using
276	TaqMan primer/probe sets for CARD9 (Hs00364485_m1), GAPDH (Hs99999905_m1) (Applied
277	Biosystems), TaqMan Fast Advanced Master Mix Reagents Kit (Applied Biosystems) according to the
278	manufacturer's protocol and the StepOne Real-Time PCR system (Applied Biosystems). GAPDH was used
279	as normalization control. The data were analyzed with the 2- $\Delta\Delta$ CT method.
280	

281 Immunoblot analysis

282	Equal amounts of protein from isolated CD14 ⁺ monocytes were separated by 10% SDS-PAGE and
283	transferred to PVDF membranes (Merck KgaA, Darmstadt, Germany). The membranes were blocked with
284	low-fat bovine milk. Proteins were probed with a rabbit anti-human CARD9 polyclonal antibody (Protein
285	Tech, Thermo Fisher Scientific, Waltham, MA, USA, catalog 10669-1-AP) or a mouse anti-ß-actin
286	monoclonal antibody (Sigma-Aldrich, St. Louis, MO, USA, catalog A5316). HRP-conjugated goat anti-
287	mouse and anti-rabbit antibodies (GE Healthcare, Buckinghamshire, England, UK) were used as secondary
288	antibodies. Antibody binding was detected using enhanced chemiluminescence reagent (Thermo Fisher
289	Scientific, Waltham, MA, USA), and the band intensity was quantified using ImageJ software (National
290	Institutes of Health, Bethesda, MD).
291	
291 292	Mutagenesis and transient transfections
291 292 293	Mutagenesis and transient transfections We used pcDNA3.1 V5-His-wild-type (WT)-CARD9 and -mutant-CARD9 (p.R35Q and p.R70W), as
291 292 293 294	Mutagenesis and transient transfections We used pcDNA3.1 V5-His-wild-type (WT)- <i>CARD9</i> and -mutant- <i>CARD9</i> (p.R35Q and p.R70W), as described previously (21), for this study. We generated expression vectors encoding p.K196E and p.R373P
291 292 293 294 295	Mutagenesis and transient transfections We used pcDNA3.1 V5-His-wild-type (WT)- <i>CARD9</i> and -mutant- <i>CARD9</i> (p.R35Q and p.R70W), as described previously (21), for this study. We generated expression vectors encoding p.K196E and p.R373P CARD9 variants using PCR-based mutagenesis of the pcDNA3.1 V5-His-WT- <i>CARD9</i> vector with
 291 292 293 294 295 296 	Mutagenesis and transient transfections We used pcDNA3.1 V5-His-wild-type (WT)- <i>CARD9</i> and -mutant- <i>CARD9</i> (p.R35Q and p.R70W), as described previously (21), for this study. We generated expression vectors encoding p.K196E and p.R373P CARD9 variants using PCR-based mutagenesis of the pcDNA3.1 V5-His-WT- <i>CARD9</i> vector with mismatched PCR primers. The primer sequences and PCR conditions are available upon request.
 291 292 293 294 295 296 297 	Mutagenesis and transient transfections We used pcDNA3.1 V5-His-wild-type (WT)-CARD9 and -mutant-CARD9 (p.R35Q and p.R70W), as described previously (21), for this study. We generated expression vectors encoding p.K196E and p.R373P CARD9 variants using PCR-based mutagenesis of the pcDNA3.1 V5-His-WT-CARD9 vector with mismatched PCR primers. The primer sequences and PCR conditions are available upon request. HEK293T cells were plated for 18 h in 6-well plates at 7.5×10 ⁵ cells/well in DMEM (Gibco) supplemented
 291 292 293 294 295 296 297 298 	Mutagenesis and transient transfections We used pcDNA3.1 V5-His-wild-type (WT)- <i>CARD9</i> and -mutant- <i>CARD9</i> (p.R35Q and p.R70W), as described previously (21), for this study. We generated expression vectors encoding p.K196E and p.R373P CARD9 variants using PCR-based mutagenesis of the pcDNA3.1 V5-His-WT- <i>CARD9</i> vector with mismatched PCR primers. The primer sequences and PCR conditions are available upon request. HEK293T cells were plated for 18 h in 6-well plates at 7.5×10 ⁵ cells/well in DMEM (Gibco) supplemented with 100 µg/ml penicillin/streptomycin. Then, plasmids carrying the WT <i>CARD9</i> allele or each mutant

Scientific) according to the manufacturer's protocol. After 24 h, the transfected HEK293T cells were subjected to immunoblot analysis.

302

301

303 Luciferase reporter assay

- 304 HEK293T cells were plated for 18 h in 96-well plates at 2.5×10⁴ cells/well in DMEM (Gibco) supplemented
- 305 with 100 µg/ml penicillin/streptomycin. The cells were transfected with DECTIN-, SYK-, and BCL10-
- 306 expressing pcDNA3.1 vectors with the WT CARD9- or mutant CARD9 (p.R70W, p.K196E or p.R373P)-
- 307 expressing pcDNA3.1 vector, Igkcona-Luc (provided by S. Yamaoka) and pRL-TK (Promega, Madison,
- 308 Wisconsin, USA) using Lipofectamine LTX Reagent according to the manufacturer's protocol. The cells
- 309 were stimulated with heat-killed *Exophiala dermatitidis* (1×10⁶ particles/well) for 24 h. Luciferase reporter
- 310 gene activities were determined with Dual-Luciferase Reporter Assay System (Promega). The experiments

311 were performed in triplicate, and data are expressed in relative luciferase units (RLU).

312

313 Cytokine analysis

315 stimulated with lipopolysaccharide (LPS) (from *Escherichia coli*, serotype O111: B4; Sigma-Aldrich) (10

- 316 ng/ml) for 2 h or with heat-killed Candida albicans (1×10⁶ particles/well), heat-killed Candida glabrata
- 317 $(1 \times 10^6 \text{ particles/well})$, or heat-killed *Exophiala dermatitidis* $(1 \times 10^6 \text{ particles/well})$ for 24 h. The details of

318	heat-killed fungus preparation are described previously (30). Cytokine levels (TNF- α , IL-6) were measured
319	in the culture supernatants using a cytometric bead array (CBA) (BD Biosciences) and analyzed according
320	to the manufacturer's instructions using CBA Flex Set (BD Biosciences). The experiments were performed
321	in triplicate.
322	
323	Results
324	Case report
325	The patient was a previously healthy 4-year-old Japanese girl born to non-consanguineous parents. There
326	was no history of any severe disease in her parents or her two siblings, a 10-year-old brother and an 8-year-
327	old sister. She received all the vaccines for her age, according to the recommendation by the Japan Pediatric
328	Society, without any adverse effects.
329	At the age of 4 years, she was hospitalized with speech disorder and right hemiparesis that continued for
330	one month. Physical examination showed muscle weakness in the right upper and lower limbs.
331	Lymphadenopathies in the supraclavicular and axillary regions (10 mm) and a mass in the abdomen (30
332	mm) were also noted. Brain magnetic resonance imaging (MRI) revealed multiple masses up to 20 mm in
333	diameter on the left side of the cerebellum, mesencephalon, temporal lobe and basal ganglia (Fig. 1Aa, b).
334	Chest and abdominal computed tomography (CT) scans showed supraclavicular, axillary, and intra-
335	abdominal lymphadenopathies and multiple low-density lesions in the spleen (Fig. 1Ac, d). Cerebrospinal

336	fluid (CSF) leukocyte counts were normal, as were CSF levels of protein and glucose. Blood and CSF
337	cultures were negative for bacterial, fungal, and acid-fast bacilli; gastric juice culture was also negative for
338	acid-fast bacilli. Interferon-gamma release assays (IGRAs) showed negative results, ruling out
339	Mycobacterium tuberculosis infection. Based on histopathology of the axillary lymph nodes, necrotizing
340	granuloma with low neutrophil infiltration was present (Fig. 1Ba, b). Periodic acid Schiff (PAS) and
341	Grocott staining revealed yeast-like fungi (Fig. 1Bc, d). Exophiala dermatitidis was suspected by direct
342	microscopic examination of the fungal culture (Fig. 1C) and was confirmed by sequencing the D2 region
343	of the large subunit ribosomal RNA gene. The patient was thus diagnosed with invasive
344	phaeohyphomycosis (brain, lymph nodes, spleen) due to <i>E. dermatitidis</i> .
345	The patient was initially treated with a 16-mg voriconazole/kg/day infusion as empiric therapy. Her
346	symptoms gradually improved with a month of treatment, though with little impact on the multiple cerebral
347	lesions and systemic lymphadenopathies. She then received 2.5 mg liposomal amphotericin B/kg/day in
348	addition to voriconazole based on the identification and drug sensitivity of <i>E. dermatitidis</i> , and the multiple
349	cerebral lesions and systemic lymphadenopathy gradually improved. After 5 months of administration of
350	liposomal amphotericin B, the multiple cerebral lesions shrank and stabilized, but not fully disappeared.
351	Then the patient was subsequently treated with oral 800 mg voriconazole, and 125 mg terbinafine has been
352	continued to date. Follow-up at 2 years indicated no evidence of recurrence.

354 Identification of CARD9 variants

355	Due to the IFD caused by E. dermatitidis in this otherwise healthy 4-year-old girl, we suspected the
356	possibility of an inborn error of immunity and performed gene panel sequencing. After the filtering process
357	(minor allele frequency (MAF) <0.01), 15 rare variants were identified (Table S1). Among them, rare
358	variants in AK2, BCL11B, IL10RA, IL17RC, IRAK1, KMT2D, LRBA, ORAI1, PRF1, SH3BP2, and
359	SLC29A3 were unlikely to be disease causing based on their inheritance patterns or the patient's clinical
360	phenotype. As no other candidate rare variants that could explain the patient's manifestations were
361	identified by gene panel sequencing, two variants, c.586A>G (p.K196E) and c.1118G>C (p.R373P), of
362	CARD9 (Fig. 2) were considered to be the best candidates. Both variants were confirmed by Sanger
363	sequencing (Fig. 3A). The p.K196E variant, which was inherited from her asymptomatic mother, has never
364	been reported. In contrast, the p.R373P variant, inherited from her asymptomatic father, has previously
365	been reported as disease causing, either in the homozygous or compound heterozygous state (9, 11, 31).
366	The patient's 10-year-old brother and 8-year-old sister were totally asymptomatic, even though they were
367	both compound heterozygous for CARD9 p.K196E and p.R373P, similarly to their affected sister (Fig. 3B).
368	Computational assessment of the predicted pathological significance of these two variants using combined
369	annotation-dependent depletion (CADD) showed that their CADD scores (p.K196E: 22.9; p.R373P: 16.0)
370	were higher than the 99% confidence mutation significant cutoff (MSC: 10.26) (32-34); in addition, a low
371	MAF (p.K196E: 4.4×10^{-5} ; p.R373P: 2.3×10^{-5}) in the general population was determined for both. These

372	compound heterozygous variants were thus expected to be very rare, even though each MAF was not much
373	different from that of heterozygous variants reported in the general population (Fig. S2). Moreover, disease-
374	causing nonsense, frameshift, and essential splicing mutations showed lower MAFs and/or higher CADD
375	scores than the homozygous variants reported in the general population. In contrast, some disease-causing
376	missense variants, including the two identified variants p.K196E and p.R373P, had MAFs and/or CADD
377	scores equivalent to those of some homozygous variants reported in the general population (Fig. 3C).
378	Collectively, these data suggest that the identified biallelic CARD9 variants are disease causing and
379	strengthen the importance of functional testing to validate the pathogenicity of identified variants.

380

381 CARD9 mRNA and protein expression

382 We first investigated CARD9 mRNA expression levels in peripheral blood by quantitative PCR. CARD9 383 mRNA was strongly expressed in the neutrophils, monocytes, and natural killer (NK) cells of healthy 384 donors (Fig. S3). Therefore, we assessed CARD9 mRNA levels in the CD14⁺ monocytes of the patient and 385 found levels comparable to those of two controls tested in parallel (Fig. 4A). We next assessed CARD9 386 protein expression in her CD14⁺ monocytes by immunoblotting and found levels similar to those of control 387 cells (Fig 4B, C). Taken together, the biallelic variants of CARD9 did not affect mRNA or protein expression in the patient's cells. To confirm these findings, we transiently expressed WT or mutant 388 389 p.K196E, p.R373P, p.R35Q, or p.R70W CARD9 alleles in HEK293T cells; p.R35Q and p.R70W have

previously been reported as disease causing (8, 18, 21, 35). In cells transfected with the p.K196E or
p.R373P allele, CARD9 protein levels were similar to those in cells transfected with the WT, p.R35Q, or
p.R70W allele (Fig. 4D, E).

393

394 Functional impact of p.K196E and p.R373P CARD9 alleles

- 395 We next evaluated the functional impact of each *CARD9* allele using an NF-κB reporter assay, as previously
- 396 reported (21). In cells transfected with the CARD9 p.K196E or p.R373P allele, NF-κB transcriptional
- 397 activity was comparable to that in cells transfected with the WT allele, both at the basal level and after
- 398 stimulation with *E. dermatitidis*. In contrast, cells transfected with the *CARD9* p.R70W allele displayed
- 399 impaired NF-кВ transcriptional activity, consistent with a previous report (Fig. 4F) (21). Therefore, the
- 400 NF-κB reporter assay using HEK293T cells did not allow us to draw a conclusion about the impact of the
- 401 identified CARD9 variants, and further analyses were carried out.

402

403 Cytokine production in response to fungal stimulation

404	We next evaluated the biological impact of the p.K196E and p.R373P variants by measuring the production
405	of pro-inflammatory cytokines from CD14 ⁺ monocytes from the patient, patient's mother's or siblings
406	stimulated with heat-killed C. albicans, C. glabrata, E. dermatitidis and LPS. The patient's CD14 ⁺
407	monocytes (p.K196E/p.R373P) displayed markedly impaired TNF- α and IL-6 production after stimulation

408	with C. albicans, C. glabrata, and E. dermatitidis compared with cells from healthy controls (Fig. 5A, B).
409	In contrast, cytokine production following LPS stimulation was normal in the patient's CD14 ⁺ monocytes.
410	Similarly, the CD14 ⁺ monocytes from the patient's asymptomatic siblings (p.K196E/p.R373P) were also
411	markedly impaired in TNF- α and IL-6 production in response to fungal stimulation, which were normal in
412	response to LPS. The CD14 ⁺ monocytes from the patient's mother (p.K196E/WT) displayed an
413	intermediate cellular phenotype; cells from her father (p.R373P/WT) were not available. Altogether, these
414	results showed monocytes carrying biallelic variants, p.K196E/p.R373P, to be impaired with regard to
415	TNF- α and IL-6 production in response to various fungal ligands but normal in response to LPS. These <i>ex</i>
416	vivo observations, together with the clinical manifestations of the patient, suggested that both CARD9
417	mutations are pathogenic.

419 Immunological findings

The immunological findings for the patient at the age of 4 (before starting antifungal treatment) and 5 (after treatment) years are shown in Tables S1 and S2. Briefly, blood analysis indicated normal percentages of neutrophils, monocytes, and lymphocytes; however, leukocyte counts were high at 15,540/mm³, and the percentages of eosinophils were also high, at 26.1%, before treatment. The serum level of IgE was normal, whereas that of IgG was high at 4,254 mg/dL. The leukocytosis, including eosinophilia, and elevated IgG resolved after antifungal treatments. T lymphocyte proliferation was normal in response to PHA and Con-

426	A. In addition, the leukocyte oxidative burst, as assessed by the dihydrorhodamine (DHR) test, was normal.
427	HIV infection was ruled out by laboratory testing. Furthermore a detailed lymphocyte subpopulation
428	analysis was performed by multicolor flow cytometry, as previously described (36), and the percentages of
429	T, B, and NK cells were within the normal ranges; however, slightly decreased Th17 cell (CCR6 ⁺ CXCR3 ⁻
430	/CD3 ⁺ CD4 ⁺ CD45RO ⁺) percentages were noticed.
431	Immunological findings for the patient's brother (at 12 years) and sister (at 11 years) as well as her mother
432	are shown in Tables S1 and S2. Briefly, blood analysis in the patient's siblings revealed normal percentages
433	of leukocytes, neutrophils, lymphocytes, and monocytes, though the percentages of eosinophils in her
434	brother were slightly high at 8.9%; serum levels of IgE in the brother and sister were also high, at 339
435	IU/mL and 342 IU/mL, respectively. The percentages of T cells, B cells, and NK cells in the patient's
436	siblings and mother were within normal ranges, with no decrease in Th17 cell counts.
437	
438	Discussion
439	We report a patient with compound heterozygous $CARD9$ mutations who developed IFD caused by E.
440	dermatitidis, a dematiaceous fungus distributed in the environment (37). Although E. dermatitidis is found
441	worldwide, it is particularly common in East Asia (38). E. dermatitidis is a pathogen that causes a number
442	of clinical manifestations of phaeohyphomycosis, including skin, subcutaneous, and sinus infections. In
443	rare instances, it can cause invasive phaeohyphomycosis in the CNS and liver (13). In a summary report of

444	43 patients with invasive phaeohyphomycosis caused by E. dermatitidis, the state of secondary
445	immunosuppression, including presenting with malignant tumors, cystic fibrosis, and steroid treatment,
446	was reported to involve host factors in 18 patients. Moreover, primary immunodeficiency (AR CARD9
447	deficiency in 1 patient and chronic granulomatous disease in 1 patient (39)) was reported as a host factor;
448	no known host factors were reported for the other 23 cases (25). In patients with primary immunodeficiency,
449	the onset of invasive phaeohyphomycosis caused by <i>E. dermatitidis</i> has only been reported in 1 additional
450	patient aside from those previously mentioned, and this patient was diagnosed with AR CARD9 deficiency
451	(13). Among two patients with AR CARD9 deficiency, one died by severe pneumonia and central nervous
452	infection which resulted in brain herniation (13). The other patient developed IFD, but successfully treated
453	with antifungal therapy. She is alive, although she experienced the recurrence of invasive
454	phaeohyphomycosis caused by <i>E. dermatitidis</i> in spite of antifungal prophylaxis (25). Therefore, our case
455	is the third report of invasive phaeohyphomycosis caused by <i>E. dermatitidis</i> in association with AR CARD9
456	deficiency. The target organs in our patient were the brain, systemic lymph nodes, and spleen. The
457	histopathology of the lymph nodes in our patient showed not only the presence of fungi, but also necrotizing
458	granuloma with low neutrophil infiltration. These findings are consistent to the previous studies which
459	described impaired neutrophil infiltration to the infection sites, such as CSF (21, 31, 40), skin (17, 19, 37),
460	lymph node (22), and adrenal masses (22), in patients with AR CARD9 deficiency. Lack of CXC-
461	chemokine induction at the infection sites have been reported as a cause of impaired neutrophil infiltration

462	(40, 41). CNS disease was reported in both patients with AR CARD9 deficiency who developed invasive
463	E. dermatitidis disease (13, 25). Nevertheless, fungal disease of the CNS has been frequently reported in
464	patients with AR CARD9 deficiency; among 26 patients who developed invasive Candida species disease,
465	20 (76.9%) developed CNS disease (3, 4, 8, 16, 18, 23). Overall, it is suspected that many patients who
466	develop invasive phaeohyphomycosis caused by E. dermatitidis without known host factors have not
467	undergone genetic evaluations. Among these, AR CARD9 deficiency may require differentiation,
468	particularly in patients with CNS disease.
469	In our patient, AR CARD9 deficiency was diagnosed based on the presence of various symptoms,
470	identification of CARD9 mutations and impaired production of pro-inflammatory cytokines specific to
471	fungal stimulation in CD14 ⁺ monocytes. Although p.K196E and p.R373P, identified in our patient, are
472	considered loss-of-function mutations, impaired function caused by each mutation could not be adequately
473	evaluated <i>in vitro</i> or computational analysis, MAFs and CADD scores. The CARD9 gene contains 13 exons;
474	the encoded protein has CARD and coiled-coil (CC) domains (42). The mutation p.K196E located in exon
475	4 within the CC domain and p.R373P in exon 8 within the CC domain. p.K196E is a novel mutation,
476	whereas p.R373P is a known disease-causing mutation identified in 3 patients from 3 kindreds (9, 11, 31).
477	CARD9 protein expression in patients with p.R373P homozygous mutations is reportedly normal (11),
478	though it is impaired in patients with p.R373P/p.G72S compound heterozygous mutations (31).
479	Accordingly, there is no consensus on the effect of p.R373P mutation on CARD9 protein expression. In

480	our patient, levels of both CARD9 mRNA and protein expression were normal; hence, p.R373P was
481	determined to be normally expressed at the protein level. The transient gene expression experiment
482	confirmed this finding. Indeed, both p.K196E and p.R373P alleles were normally expression in protein
483	level. Subsequently, we sought to assess the pathological significance of p.K196E and p.R373P mutations
484	using transient gene expression experiments; however, the results of NF- κ B transcriptional activity
485	assessment failed to demonstrate dysfunction. Previous study investigated CARD9 mutants in CARD
486	domain (p.R18W, p.R35Q, and p.R70W) and CC domain (p.Q289* and p.Q295*) by NF-KB transcriptional
487	activity. This assay revealed impaired NF-KB activity in three mutations in CARD domain, whereas two
488	mutations in CC domain predicted to have normal activity (21, 25). Since two mutations in CC domain are
489	nonsense and recurrently found in patients with IFD, they should be pathogenic. Therefore, NF-kB reporter
490	assay might not be suitable for evaluating pathogenicity of mutations in CC domain. We thus suspect that
491	NF-kB reporter assay failed to confirm the pathogenicity of p.R373P and p.K196E allele because they
492	locate in CC domain. Including our study, there have been no in vitro evaluations that can accurately
493	measure the effects of CARD9 mutations, and this is a topic for future study.
494	Although our patient's siblings, a 10-year-old brother and an 8-year-old sister, did not develop fungal
495	disease, similar to the patient, both harbored p.K196E/p.R373P CARD9 mutations. Thus, asymptomatic
496	siblings of all ages should be tested for AR CARD9 deficiency. Because cases of adulthood onset have
497	been reported, it is possible that there are individuals with AR CARD9 deficiency who do not develop

498	fungal disease in childhood. Nonetheless, there have been no reports to date on detailed investigations in
499	presymptomatic individuals carrying disease-causing CARD9 mutations. Indeed, this is the first report of
500	impaired production of pro-inflammatory cytokines against fungi in a patient prior to the onset of fungal
501	disease. This may fit with a previous observation which described complete penetrance of AR CARD9
502	deficiency (3). We started antifungal prophylaxis with oral fluconazole (100 mg/day) and close monitoring
503	of patient's siblings because they are considered at high risk for future fungal disease. After starting
504	prophylaxis, they have no episodes of fungal infections. On the other side, we need to say that there still
505	remains a possibility that the penetrance of AR CARD9 deficiency is not complete because some of the
506	patients with AR CARD9 deficiency are asymptomatic until middle age (3). Further accumulation of the
507	cases is required to fully understand a global epidemiology of this disorder. Regardless of the presence or
508	absence of fungal disease, a reduction in the production of pro-inflammatory cytokines was demonstrated
509	in this study by using a cellular assay for CD14 ⁺ monocytes from both patients and presymptomatic
510	individuals, and this evaluation system might be used to assess the biological effects of CARD9 variants of
511	unknown pathological significance identified using comprehensive genetic analyses.
512	

Appendix

Acknowledgment 516 The sequence analysis was supported by the Analysis Center of Life Science, Natural Science Center for

517 Basic Research and Development, Hiroshima University.

- 518
- 519 References

Glocker EO, Hennigs A, Nabavi M, Schaffer AA, Woellner C, Salzer U, et al. A homozygous
 CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361(18):1727 35.

523 2. Shiokawa M, Yamasaki S, Saijo S. C-type lectin receptors in anti-fungal immunity. Curr Opin
524 Microbiol. 2017;40:123-30.

Scorvilain E, Casanova JL, Puel A. Inherited CARD9 Deficiency: Invasive Disease Caused by
Ascomycete Fungi in Previously Healthy Children and Adults. J Clin Immunol. 2018;38(6):656-93.

4. Quan C, Li X, Shi RF, Zhao XQ, Xu H, Wang B, et al. Recurrent fungal infections in a Chinese
patient with CARD9 deficiency and a review of 48 cases. Br J Dermatol. 2019;180(5):1221-5.

Sari S, Dalgic B, Muehlenbachs A, DeLeon-Carnes M, Goldsmith CS, Ekinci O, et al. Prototheca
 zopfii Colitis in Inherited CARD9 Deficiency. J Infect Dis. 2018;218(3):485-9.

6. Wang X, Wang A, Wang X, Li R, Yu J. Cutaneous mucormycosis caused by Mucor irregularis
in a patient with CARD9 deficiency. Br J Dermatol. 2019;180(1):213-4.

Arango-Franco CA, Moncada-Velez M, Beltran CP, Berrio I, Mogollon C, Restrepo A, et al.
Early-Onset Invasive Infection Due to Corynespora cassiicola Associated with Compound Heterozygous
CARD9 Mutations in a Colombian Patient. J Clin Immunol. 2018;38(7):794-803.

De Bruyne M, Hoste L, Bogaert DJ, Van den Bossche L, Tavernier SJ, Parthoens E, et al. A
 CARD9 Founder Mutation Disrupts NF-kappaB Signaling by Inhibiting BCL10 and MALT1 Recruitment
 and Signalosome Formation. Front Immunol. 2018;9:2366.

539 9. Zhang Y, Mijiti J, Huang C, Song Y, Wan Z, Li R, et al. Deep dermatophytosis caused by
540 Microsporum ferrugineum in a patient with CARD9 mutations. Br J Dermatol. 2019;181(5):1093-5.

Huang C, Zhang Y, Song Y, Wan Z, Wang X, Li R. Phaeohyphomycosis caused by Phialophora
americana with CARD9 mutation and 20-year literature review in China. Mycoses. 2019;62(10):908-19.

543 11. Guo Y, Zhu Z, Gao J, Zhang C, Zhang X, Dang E, et al. The Phytopathogenic Fungus 544 Pallidocercospora crystallina-Caused Localized Subcutaneous Phaeohyphomycosis in a Patient with a

545 Homozygous Missense CARD9 Mutation. J Clin Immunol. 2019;39(7):713-25.

Nazarian RM, Lilly E, Gavino C, Hamilos DL, Felsenstein D, Vinh DC, et al. Novel CARD9
mutation in a patient with chronic invasive dermatophyte infection (tinea profunda). J Cutan Pathol.
2020;47(2):166-70.

Wang C, Xing H, Jiang X, Zeng J, Liu Z, Chen J, et al. Cerebral Phaeohyphomycosis Caused by
Exophiala dermatitidis in a Chinese CARD9-Deficient Patient: A Case Report and Literature Review. Front
Neurol. 2019;10:938.

Perez L, Messina F, Negroni R, Arechavala A, Bustamante J, Oleastro M, et al. Inherited CARD9
Deficiency in a Patient with Both Exophiala spinifera and Aspergillus nomius Severe Infections. J Clin
Immunol. 2020;40(2):359-66.

Erman B, Firtina S, Aksoy BA, Aydogdu S, Genc GE, Dogan O, et al. Invasive Saprochaete
capitata Infection in a Patient with Autosomal Recessive CARD9 Deficiency and a Review of the Literature.
J Clin Immunol. 2020;40(3):466-74.

Du B, Shen N, Hu J, Tao Y, Mo X, Cao Q. Complete clinical remission of invasive Candida
infection with CARD9 deficiency after G-CSF treatment. Comp Immunol Microbiol Infect Dis.
2020;70:101417.

17. Wang X, Zhang R, Wu W, Song Y, Wan Z, Han W, et al. Impaired Specific Antifungal Immunity
 in CARD9-Deficient Patients with Phaeohyphomycosis. J Invest Dermatol. 2018;138(3):607-17.

Martin S, Balligand E, Peeters J, Nassogne MC, Mondovits B, Loop M, et al. A 7-Year-Old
Child With Headaches and Prolonged Fever Associated With Oral and Nail Lesions. Open Forum Infect
Dis. 2019;6(11):ofz229.

566 19. Zhang Y, Huang C, Song Y, Ma Y, Wan Z, Zhu X, et al. Primary Cutaneous Aspergillosis in a
567 Patient with CARD9 Deficiency and Aspergillus Susceptibility of Card9 Knockout Mice. J Clin Immunol.
568 2020.

20. Queiroz-Telles F, Mercier T, Maertens J, Sola CBS, Bonfim C, Lortholary O, et al. Successful
Allogenic Stem Cell Transplantation in Patients with Inherited CARD9 Deficiency. J Clin Immunol.
2019;39(5):462-9.

Lanternier F, Mahdaviani SA, Barbati E, Chaussade H, Koumar Y, Levy R, et al. Inherited
CARD9 deficiency in otherwise healthy children and adults with Candida species-induced
meningoencephalitis, colitis, or both. J Allergy Clin Immunol. 2015;135(6):1558-68 e2.

Rieber N, Gazendam RP, Freeman AF, Hsu AP, Collar AL, Sugui JA, et al. Extrapulmonary
Aspergillus infection in patients with CARD9 deficiency. JCI Insight. 2016;1(17):e89890.

577 23. Gavino C, Mellinghoff S, Cornely OA, Landekic M, Le C, Langelier M, et al. Novel bi-allelic 578 splice mutations in CARD9 causing adult-onset Candida endophthalmitis. Mycoses. 2017;12:3218-21.

Yan XX, Yu CP, Fu XA, Bao FF, Du DH, Wang C, et al. CARD9 mutation linked to Corynespora
cassiicola infection in a Chinese patient. Br J Dermatol. 2016;174(1):176-9.

581 25. Lanternier F, Barbati E, Meinzer U, Liu L, Pedergnana V, Migaud M, et al. Inherited CARD9 582 deficiency in 2 unrelated patients with invasive Exophiala infection. J Infect Dis. 2015;211(8):1241-50. 583 Wang X, Wang W, Lin Z, Wang X, Li T, Yu J, et al. CARD9 mutations linked to subcutaneous 26. 584 phaeohyphomycosis and TH17 cell deficiencies. J Allergy Clin Immunol. 2014;133(3):905-8 e3. 585 27. Puel A. Human inborn errors of immunity underlying superficial or invasive candidiasis. Hum 586 Genet. 2020;139(6):1011-22. 587 28. Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, et al. The 2017 IUIS 588 Phenotypic Classification for Primary Immunodeficiencies. J Clin Immunol. 2018;38(1):129-43. 589 Fujiki R, Ikeda M, Yoshida A, Akiko M, Yao Y, Nishimura M, et al. Assessing the Accuracy of 29. 590 Variant Detection in Cost-Effective Gene Panel Testing by Next-Generation Sequencing. J Mol Diagn. 591 2018;20(5):572-82. 592 30. Liang P, Wang X, Wang R, Wan Z, Han W, Li R. CARD9 deficiencies linked to impaired 593 neutrophil functions against Phialophora verrucosa. Mycopathologia. 2015;179(5-6):347-57. 594 Drewniak A, Gazendam RP, Tool AT, van Houdt M, Jansen MH, van Hamme JL, et al. Invasive 31. 595 fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood. 2013;121(13):2385-596 92. 32. 597 Itan Y, Shang L, Boisson B, Ciancanelli MJ, Markle JG, Martinez-Barricarte R, et al. The 598 mutation significance cutoff: gene-level thresholds for variant predictions. Nat Methods. 2016;13(2):109-599 10. 600 33. Zhang P, Bigio B, Rapaport F, Zhang SY, Casanova JL, Abel L, et al. PopViz: a webserver for 601 visualizing minor allele frequencies and damage prediction scores of human genetic variations. 602 Bioinformatics. 2018;34(24):4307-9. 603 34. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the 604 deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47(D1):D886-D94. 605 35. Alves de Medeiros AK, Lodewick E, Bogaert DJ, Haerynck F, Van Daele S, Lambrecht B, et al. 606 Chronic and Invasive Fungal Infections in a Family with CARD9 Deficiency. J Clin Immunol. 607 2016;36(3):204-9. 608 36. Takashima T, Okamura M, Yeh TW, Okano T, Yamashita M, Tanaka K, et al. Multicolor Flow Cytometry for the Diagnosis of Primary Immunodeficiency Diseases. J Clin Immunol. 2017;37(5):486-95. 609 610 37. Kirchhoff L, Olsowski M, Rath PM, Steinmann J. Exophiala dermatitidis: Key issues of an 611 opportunistic fungal pathogen. Virulence. 2019;10(1):984-98. 612 Sudhadham M, Prakitsin S, Sivichai S, Chaiyarat R, Dorrestein GM, Menken SB, et al. The 38. 613 neurotropic black yeast Exophiala dermatitidis has a possible origin in the tropical rain forest. Stud Mycol. 614 2008;61:145-55.

615 39. Kenny RT, Kwon-Chung KJ, Waytes AT, Melnick DA, Pass HI, Merino MJ, et al. Successful

treatment of systemic Exophiala dermatitidis infection in a patient with chronic granulomatous disease.

617 Clin Infect Dis. 1992;14:235-42

618

.

40. Drummond RA, Collar AL, Swamydas M, Rodriguez CA, Lim JK, Mendez LM, et al. CARD9-

Dependent Neutrophil Recruitment Protects against Fungal Invasion of the Central Nervous System. PLoS
Pathog. 2015;11(12):e1005293.

- 41. Drummond RA, Swamydas M, Oikonomou V, Zhai B, Dambuza IM, Schaefer BC, et al.
 CARD9(+) microglia promote antifungal immunity via IL-1beta- and CXCL1-mediated neutrophil
 recruitment. Nat Immunol. 2019;20(5):559-70.
- 42. Bertin J, Guo Y, Wang L, Srinivasula SM, Jacobson MD, Poyet JL, et al. CARD9 is a novel
- 626 caspase recruitment domain-containing protein that interacts with BCL10/CLAP and activates NF-kappa
- 627 B. J Biol Chem. 2000;275(52):41082-6.


```
630 Figure 1
```


- 637 biopsy by Periodic acid Schiff and Grocott staining, respectively (c 200×, d 400×). C Macroscopic
- appearance of the fungus. Rough colonies of black color on Sabouraud dextrose agar.

643 Schematic representation of the human CARD9 protein with the CARD domain (residues 7-98) and coiled-

644 coiled domain (CCD) (residues 140-420). The proband's variants (p.K196E and p.R373P) are shown in red,

among other previously reported pathogenic mutations. The 13 exons are indicated by Roman numerals,

646 and the first	exon is no	nprotein co	oding
-------------------	------------	-------------	-------


```
649 Figure 3
```

Identification of *CARD9* variants and computational analysis. **A** Sanger sequencing results. The heterozygous p.K196E variant in exon 4 was present in the patient and her mother. The heterozygous p.R373P variant in exon 8 was present in the patient and her father. **B** Pedigree of the family. The arrow indicates the proband. **C** *In silico* analysis of *CARD9* variants. The graph shows the MAF and CADD v1.6 scores for disease-causing mutations previously reported in AR CARD9 deficiency and homozygous

655	variants in the general population, gnomAD v2.1.1 (<u>https://gnomad.broadinstitute.org</u>). The red dotted line
656	shows the CADD-MSC score (99% confidence interval) for CARD9. The variants identified in our patient
657	are indicated in red circles. Missense, nonsense, frameshift/essential splicing, and UTR (others) mutations
658	reported in AR CARD9 deficiency are indicated by light blue diamonds, yellow squares, blue squares, and
659	black triangles, respectively. Homozygous missense and essential splicing variants reported in the general
660	population are indicated by white circles and white squares, respectively. CADD scores were calculated at
661	http://cadd.gs.washington.edu. WT, wild-type; MAF, minor allele frequency; CADD, combined
662	annotation-dependent depletion; MSC, mutation significance cutoff.

666 Figure 4

667 CARD9 mRNA and protein expression and NF- κ B transcriptional activity. A Relative *CARD9* mRNA 668 expression normalized to *GAPDH* in CD14⁺ monocytes of the patient and healthy controls (n=2) by 669 quantitative PCR. **B**, **C** Immunoblot (B) and quantitative analysis (C) of CARD9 expression in CD14⁺

- 670 monocytes of the patient and healthy controls (n=4). The results in C show the ratio of CARD9 to β -actin
- 671 of each individual analyzed. **D**, **E** Immunoblot (D) and quantitative (E) analyses of CARD9 expression in
- $frac{1}{672}$ transfected HEK293T cells. The results in E show the ratio of CARD9 to β-actin of each individual analyzed.
- 673 **F** NF-κB transcriptional activity in transfected HEK293T cells by the NF-κB luciferase assay. HC, healthy
- 674 control; WT, wild-type; RLU, relative luciferase units.
- 675

679 Cytokine production in CD14⁺ monocytes of the patient (p.K196E/p.R373P), the patient's brother

680 (p.K196E/p.R373P), the patient's sister (p.K196E/p.R373P), the patient's mother (p.K196E/WT) and

- 681 healthy controls (n=2), stimulated with LPS for 2 h or heat-killed *Exophiala dermatitidis*, *Candida albicans*,
- 682 or Candida glabrata for 24 h, as measured by cytometric bead array analysis. A TNF-α production. B IL-
- 683 6 production. NS, not stimulated; HC, healthy control

ומ דמ אומש ד	Initial y UI Cally	anaare genes by	Some hanne sold	acutoning.		
Gene		dbSNP	ExAC_ALL	gnomAD_ALL	HGVS.c	HGVS.p
AK2	heterozygous	rs202182972	0.005	0.000016	c.614G>A	p.Gly205Glu
BCL11B	heterozygous				c.1151_1152insGTGCATAGGGTTGCC GCGGCCCGGGGGACACGGGGCCG	p.Arg384_Gly385insCyslleGlyLeu ProArgProGlyAspThrGlyArg
CARD9	heterozygous	rs149712114	0.00004542	0.000022	c.1118G>C	p.Arg373Pro
CARD9	heterozygous	rs768281299	0.00005277	0.000042	c.586A>G	p.Lys196Glu
IL I 0RA	heterozygous	rs188378450	0.00009914	0.000081	c.313G>A	p.Gly105Ser
IL 17RC	heterozygous	rs145374241	0.0001	0.000118	c.655G>A	p.Gly219Ser
IRAKI	heterozygous				c.1453_1466deITGCCCACCTGAGCT insAGCTCAGGTGGGCA	p.CysProProGluLeu485 SerSerGlyGlyGln
KMT2D	heterozygous				c.13885A>C	p.Thr4629Pro
KMT2D	heterozygous	·			c.5920A>T	p.Thr1974Ser
KMT2D	heterozygous	·			c.5918_5919insAGCCCG TCCAGGGGGCT	p.Trp1973fs
LRBA	heterozygous				c.80C>G	p.Pro27Arg
ORAH	homozygous	rs141919534			c.138_143delACCGCC	p.Pro47_Pro48del
PRFI	heterozygous	rs12161733	0.0014	0.000902	c.10C>T	p.Arg4Cys
SH3BP2	heterozygous	rs764213233	0.000009982	0.000013	c.1234C>T	p.His412Tyr
SLC29A3		rs2252997			c.714_715delTGinsCA	p.ThrVal238ThrIle

Table S1 Summary of candidate genes by gene panel sequencing

	Patient at	Patient at	7		
	4 years old	5 years old	Drouner at	SISIET al	Normal values
	(before treatment)	(after treatment)	12 years old	11 years old	
Leukocytes (/ml)	15,540	8,160	5,830	7,270	3,040-8,540
Neutrophils (%)	40.4	35.3	40.2	54.9	38.3-71.1
Eosinophils (%)	26.1	2.5	8.9	1.2	0.2-7.3
Monocytes (%)	3.4	5.4	5.8	4.5	2.7-7.6
Lymphocytes (%)	29.4	56.6	44.6	39.1	21.3-50.2
IgG (mg/dl)	4,254	920	928	972	870-1,700
IgA (mg/dl)	83	42	171	128	110-410
IgM (mg/dl)	163	142	114	118	46-260
IgE (IU/ml)	3.2	NA	339	342	<232
C3 (mg/dl)	150	NA	91	105	86-160
C4 (mg/dl)	33	NA	15	24	17-45
Proliferative response of lymphocytes to PHA (SI)	375	NA	905	500	102-2,644
roliferative response of lymphocytes to ConA (SI)	192	NA	343	274	74.1-1,793
Leukocyte oxidative burst (DHR)(%)	86.9	NA	86.5	99.3	>80
HIV serology	negative	NA	NA	NA	negative

685 Table S2 Characteristics of the patient, and her siblings

686

SI: stimulation index, DHR: dihydrorhodamine, NA: not available

		Patient at	Brother at	Sister at	Mother at		Normal values	
		5 years	12 years	11 years	37 years	2-6 years	7-19 years	>20 years
		old	old	old	old	old	old	old
T cells	CD3 ⁺ /lymphocyte (%)	67.8	68.9	70.1	67.5	69.0 ± 9.0	74.9 ± 12.3	67.8 ± 5.4
	$CD4^{+}/CD3^{+}$ (%)	68.8	53.1	56.4	56.1	60.7 ± 7.3	59.4 ± 4.5	59.9 ± 9.9
	CD45RA ⁺ /CD3 ⁺ CD4 ⁺ (naïve) (%)	85.6	64.1	71.9	35.5	75.9 ± 8.5	65.4 ± 6.0	47.2 ± 9.3
	$CCR7^{+}CD62\ L^{+}/CD3^{+}CD4^{+}CD45RO^{+}$	0.04	5 7		C 13			
	(central memory) (%)	40.2	41.2	49./	с.1с	41.9 ± 11.7	55.0 ± 20.5	50.9 ± 1.9
	CCR7-CD62 L ^{-/} CD3 ⁺ CD4 ⁺ CD45R0 ⁺	1 7 7			101			
	(effector memory) (%)	14./	1/.2	1 /.0	10.1	24.0 ± 0.0	C.01 ± V.12	$V.1 \pm V.00$
	CCR6-CXCR3 ⁺ /CD3 ⁺ CD4 ⁺ CD45RO ⁺ (Th1) (%)	22.2	25.9	33.7	22.7	25.0 ± 9.5	23.7 ± 11.1	22.6 ± 8.7
	CCR6-CXCR3-/CD3 ⁺ CD4 ⁺ CD45RO ⁺ (Th2) (%)	60.1	20.9	15.3	13.3	41.4 ± 10.6	40.2 ± 16.5	35.3 ± 13.8
	CCR6 ⁺ CXCR3 ⁻ /CD3 ⁺ CD4 ⁺ CD45RO ⁺ (Th17) (%)	13.3	24.6	26.7	41.3	22.2 ± 6.2	25.7 ± 4.7	23.7 ± 4.3
	IL-7R-CD25 ⁺ /CD3 ⁺ CD4 ⁺ CCR4 ⁺			¢	5 7	0001771	070-010	CO 1 - 11 C
	(regulatory T) (%)	7.10	7.00	1.42	2.41	co.u ± co.1	00.0 ± C1.2	0.11 ± 1.02
	CD8 ⁺ /CD3 ⁺ (%)	24.7	35.9	32.9	39.2	29.7 ± 6.7	33.4 ± 9.0	34.1 ± 8.7
B cells	CD19 ^{+/} lymphocyte (%)	18.2	18.4	17.0	10.2	16.1 ± 7.4	12.4 ± 6.3	12.2 ± 4.4
NK cells	$CD16^{+}CD56^{+}/Lym$ (%)	1.89	8.56	10.7	13.4	8.8 ± 6.5	7.1 ± 5.8	13.4 ± 4.1

Table S3 Lymphocyte subpopulations of the patient, her siblings, and her mother

687

688

Th: helper T, NK: natural killer

690 Figure S1

- 691 Causative fungi in patients with AR CARD9 deficiency. The percentage of each fungus causing invasive
- 692 disease in patients with AR CARD9 deficiency is shown.

697 In silico analysis of CARD9 variants. The graph shows the MAF and CADD v1.6 scores for disease-causing 698 variants identified in our patient and heterozygous variants in the general population, gnomAD v2.1.1 699 (https://gnomad.broadinstitute.org). The red dotted line shows the CADD-MSC score (99% confidence 700 interval) for CARD9. The variants identified in our patient are indicated in red circles. Missense, nonsense, 701 frameshift and essential splicing variants in the general population are indicated by light blue diamonds, 702 blue squares, yellow squares, and gray circles, respectively. CADD scores were calculated at 703 http://cadd.gs.washington.edu. MAF, minor allele frequency; CADD, combined annotation-dependent 704 depletion; MSC, mutation significance cutoff.

706

707 Figure S3

708 CARD9 mRNA expression in peripheral blood subpopulations. Relative CARD9 mRNA expression

normalized to GAPDH in CD66b⁺ neutrophils, CD14⁺ monocytes, CD16⁺56⁺ NK cells, CD19⁺ B cells,

710 $CD3^{+}4^{+}T$ cells and $CD3^{+}8^{+}T$ cells of healthy controls by quantitative PCR.

712 Supplemental materials and methods

713 Cell sorting

- Peripheral blood cells from healthy donors after the removal of erythrocytes were stained with fluorescently
- conjugated anti-human CD3, CD4, CD8, CD14, CD16, CD19, CD56, and CD66b (BD Biosciences)
- antibodies. After surface staining, CD66b⁺ neutrophils, CD14⁺ monocytes, CD16⁺56⁺ NK cells, CD19⁺ B
- 717 cells, CD3⁺CD4⁺ T cells and CD3⁺CD8⁺ T cells were sorted using a BDFACS AriaTM Cell Sorter (BD
- 718 Biosciences).
- 719

720 **Quantitative PCR**

- 721 Total RNA was extracted from the sorted cells with the Qiagen RNeasy Mini kit (Qiagen) according to the
- manufacturer's protocol. The detailed method of quantitative PCR is described in the materials and methods.