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Abstract
The rule files and the pattern files given here are the ones for emulating a reversible and conserva-
tive elementary square partitioned cellular automaton (ESPCA) with the hexadecimal ID number
“01caef” on Golly, a general purpose CA simulator. Despite its simplicity of the local transition
function, the ESPCA shows fascinating behavior. In particular, there exists a useful space-moving
pattern called a glider in it. Colliding a glider with another pattern called a blinker, interesting
phenomena appear. We observe that, using only these two patterns and three kinds of phenomena
as basic operations, any reversible Turing machines (RTMs) can be constructed. Examples of
whole computing processes of RTMs can be seen on Golly using the files given here.

Elementary square partitioned cellular automaton (ESPCA)
A 4-neighbor square partitioned cellular automaton (SPCA) is a two-dimensional CA whose cell is
divided into four parts as in Fig. 1 (a). The next state of a cell is determined depending on the present
states of the four adjacent parts of the neighboring cells as shown in Fig. 1 (b).
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Figure 1: (a) Cellular space of a 4-neighbor square partitioned cellular automaton (SPCA), and (b)
its local transition rule

An elementary SPCA (ESPCA) is a subclass of SPCAs such that its local transition function is
rotation-symmetric, and each of four parts of a cell has only two states. Since an ESPCA is rotation-
symmetric, its local transition function is defined by only six local transition rules, and hence very
simple. Figure 2 shows a set of local transition rules of a particular ESPCA 01caef. The hexadecimal
ID number 01caef is obtained by reading the dot patterns of the right-hand sides of the local rules as
binary numbers. Since we consider this ESPCA here, we denote it by P0 for short in the following.

The ESPAC P0 is reversible since there is no pair of local transition rules that have the same right-
hand sides as seen in Fig. 2. Hence, every configuration has exactly one predecessor configuration
(see, e.g., [1] for the details of reversible CAs). The ESPCA P0 is also conservative, since the number
of particles is conserved in each local transition rule.
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Figure 2: Local transition function defined by the six local transition rules of a particular reversible
and conservative ESPCA 01caef, which is denoted by P0 hereafter

Useful patterns in ESPCA P0

The pattern shown in Fig. 3 is called a glider that flies one cell diagonally in 12 steps.
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Figure 3: Glider in P0

The pattern in Fig. 4 (a) is called a blinker. It is a periodic pattern of period 2. The pattern in
Fig. 4 (b) is called a block. It is a stable pattern, i.e., a periodic pattern of period 1 . The latter will be
used only for writing comments and indicating a border of a logic element in the cellular space.
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Figure 4: Periodic patterns in P0. (a) Blinker, and (b) block
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Three useful phenomena in ESPCA P0

The first useful phenomenon is shown in Fig. 5. Colliding a glider with a blinker in this manner, a
right-turn of a glider is realized.
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Figure 5: Right-turn of a glider in P0

The second is in Fig. 6. By this, a glider makes a U-turn. This operation is used to test if a blinker
exists at a specified position.
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Figure 6: U-turn of a glider in P0

The third is in Fig. 7. By this, the position of the blinker is shifted by 6 cells, and the glider makes
a right-turn. Using this operation, a kind of memory device is realized, where the memory states are
kept by the positions of the blinker. It is also used to test if a blinker exists at a specified position.
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Figure 7: Shifting a blinker by a glider in P0
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Reversible logic element with memory (RLEM)
Using only three phenomena shown above,, we can compose reversible Turing machines (RTMs).
Here we employ a reversible logic element with memory (RLEM) [1, 3] rather than a reversible logic
gate as a logical primitive. By this, construction of RTMs is greatly simplified.

A reversible logic element with memory (RLEM) is a kind of a finite automaton having output
symbols as well as input symbols. It is known that every 2-state RLEM that has three or more
symbols is universal, which means any RLEM is composed only of it [1]. In the following we use the
2-state 4-symbol universal RLEM No. 4-31 for composing RTMs.

The move function of RLEM 4-31 is represented in a graphical form as in Fig. 8. Two rectangles in
the figure correspond to the two states 0 and 1. Solid and dotted lines show the input-output relation.
If an input signal goes through a dotted line, then the state does not change (Fig. 9 (a)). If a signal
goes through a solid line, then the state changes (Fig. 9 (b)).
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Figure 8: A four-symbol two-state RLEM 4-31
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Figure 9: Operations of RLEM 4-31. (a) A case where a signal goes through a dotted line, and (b) a
case where it goes through a solid line

We first show that RLEM 2-2 (Fig. 10) can be realized in the cellular space of ESPCA P0. Al-
though RLEM 2-2 is not universal [1], it is implemented rather simply. Therefore, it is convenient for
explaining how we can design a pattern that simulates an RLEM in P0.
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Figure 10: A two-symbol two-state RLEM 2-2

Figure 11 shows a pattern that simulates RLEM 2-2. There are seven blinkers in this pattern. One
is used as a position marker for keeping the memory state 0 or 1, and six are used for turning a signal.
Small two circles near the center of the pattern show possible positions of the marker. If the marker
is at the left (right, respectively) position, we regard that the RLEM is in the state 0 (1).

First, consider the case where it is in the state 0 and a glider is given to the input port b as in
Fig. 11. The glider first turns right at the upper right blinker. Then, at P it shifts the marker to the
position of the right circle, and it turns right. By this, the state changes from 0 to 1. Finally, it further
turns right at the upper left blinker, and goes out from the output port x.
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Next, consider the case where it is in the state 0 and a glider is given to the input port a. The
glider first turns right at the lower left blinker. Then it goes straight ahead at Q without shifting the
position marker. It means that the glider knows that the state is 0. It further makes four right-turns,
and finally goes out from the output port x. It should be noted that at P two different signal paths of
the two cases are merged into one. When we want to reversibly merge two paths into one, knowing
the state is necessary.

The remaining two cases are similar, and thus we can see the pattern correctly simulates RLEM
2-2. Note that in the case of RLEM 2-2, only two operations, which are the right-turn of a glider
(Fig. 5) and the shifting of a blinker (Fig. 7), are used.
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Figure 11: RLEM 2-2 implemented in P0

A pattern that simulates RLEM 4-31 is given in Fig. 12. We use three markers to keep the state 0
or 1, and thus there are three pairs of small circles around the center of Fig. 12, which show possible
positions of the markers. If the three markers are all placed in the left (right, respectively) circles of
the three pairs, we assume that the state is 0 (1). Since there are eight cases of the combination of
states and symbols, we must prepare a sufficient number of access paths leading to the markers to
perform operations of testing the state, changing the state, and merging signal paths. By this reason,
we need three position markers. In this construction, we also use the U-turn operation (Fig. 6) for
testing the state and merging signal paths.

Figure 12 shows the case where the state is 0 and a glider is given to the input port d. In this case,
the glider first collides with the right position marker, and shifts it to the right. Then the glider shifts
the central and the left position markers to the right. By this, the state changes from 0 to 1. Finally,
the glider goes out from the output port w.

Next, consider the case where the state is 0 and a glider is given to the input port a. The glider
tests whether the state is 1 at the left position marker. But, since the state is 0 in this case, the glider
moves straight ahead at this position, and finally goes out from the output port w. Merging the two
paths into one, which leads to w, is performed at the left position marker.

Since other cases are similar, we can see that the pattern shown in Fig. 12 correctly simulates
RLEM 4-31.
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Figure 12: RLEM 4-31 implemented in P0

Reversible Turing machines implemented in ESPCA P0

A reversible Turing machine (RTM) is a deterministic TM that is also deterministic to the backward
time direction (see e.g., [1] for the detailed definitions).

Consider an RTM Tparity that has the set of quintuples.

{[q0,0,1,R,q1], [q1,0,1,L,qacc], [q1,1,0,R,q2], [q2,0,1,L,qrej], [q2,1,0,R,q1]}

For example, [q0,0,1,R,q1] means that if Tparity reads the symbol 0 in the state q0, then rewrite the
symbol to 1, shift the head to the right, and go to the state q1. Assume a symbol string 01n 0 (n =
0,1, . . .) is given. Then, Tparity halts in the accepting state qacc if and only if n is even, and all the read
symbols are complemented. Figure 13 shows the computing process for the input string 0110.

6



t = 0

✻
q0

0 1 1 0 0

t = 1

✻
q1

1 1 1 0 0

t = 2

✻
q2

1 0 1 0 0

t = 3

✻
q1

1 0 0 0 0

t = 4

✻
qacc

1 0 0 1 0

Figure 13: A computing process of the RTM Tparity for the given unary number 2

It has been shown that any RTM can be constructed out of RLEM 4-31 concisely [3]. Figure 14
gives the whole circuit for simulating Tparity for the input 1. The circuit consists of two components.
They are a finite control unit (left), and a tape unit (right). The tape unit is composed of an infinite
copies of a memory cell module, which is a vertical array of nine RLEMs. Each memory cell simu-
lates one square of the tape. The top RLEM of a memory cell keeps a tape symbol. The remaining
eight RLEMs execute read/write and head-shift commands sent from the finite control. They also
keep the head position. If the states of the eight RLEMs are all 1, then the head position is at this
memory cell. If they are all 0, the head is not here. If a particle is given to the “Begin” port, it starts
to compute. Its answer will be obtained at “Accept” or “Reject” port.
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Figure 14: RTM Tparity composed of RLEM 4-31 [3]

Putting copies of the pattern of RLEM 4-31 given in Fig. 12 at the positions corresponding to the
RLEMs in Fig. 14, and connecting them appropriately, we have a complete configuration of ESPCA
P0 that simulates Tparity.

Consider another RTM Tpower with the following set of quintuples.

{ [q0,0,0,R,q1], [q1,0,0,R,q2], [q2,0,0,L,q6], [q2,1,0,R,q3], [q3,0,1,L,q4], [q3,1,1,R,q3],
[q4,0,0,L,q7], [q4,1,0,L,q5], [q5,0,1,R,q2], [q5,1,1,L,q5], [q6,0,0,L,qrej], [q6,1,1,R,q1],
[q7,0,0,L,qacc], [q7,1,1,L,qrej] }

Assume a symbol string 001n 0 (n = 0,1, . . .) is given as an input. Then, Tpower halts in the accepting
state qacc if and only if n= 2k holds for some k ∈ {0,1,2, . . .}. Figure 15 shows the computing process
for the input string 0018 0. A circuit for Tpower is also constructed out of RLEM 4-31. Figure 16 shows
a configuration of P0 simulated on Golly that realizes the circuit for Tpower.

t = 0

✻
q0

0 0 1 1 1 1 1 1 1 1 0 0 0 0 0

|−−∗
t = 78

✻
qacc

0 0 1 1 1 1 0 1 1 0 1 0 0 1 0

Figure 15: A computing process of the RTM Tpower for the given unary number 8
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Figure 16: RTM Tpower in P0 simulated on Golly

Pattern files for Golly
The zipped file ESPCA 01caef.zip contains emulator files (*.rule) and pattern files (*.rle)
for Golly [4]. Putting ESPCA 01caef.zip in the “Patterns” folder of Golly, and accessing *.rle
files from Golly, evolving processes of configurations of P0 can be seen. In particular, whole comput-
ing processes of RTMs are observed. The pattern files given here are as follows.

• 1 glider and blinkers.rle
It shows how the three operations given in Figs. 5–7 work.

• 2 RLEM 2-2.rle
It simulates RLEM 2-2 shown in Fig. 11.

• 3 RLEM 4-31.rle
It simulates RLEM 4-31 shown in Fig. 12.

• 4 RTM parity.rle
It simulates RTM Tparity shown in Fig. 14 for the inputs n = 2 and 3.

• 5 RTM power.rle
It simulates RTM Tpower shown in Fig. 16 for the inputs n = 4, 6 and 8.

Acknowledgements: I express my gratitude to the developing and support teams of Golly.

Note: The contents of this report will be presented at [2].
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