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Maladaptation to stress is a critical risk factor in stress-related disorders, such as major depression and post-traumatic stress disorder
(PTSD). Dopamine signaling in the nucleus accumbens (NAc) has been shown to modulate behavior by reinforcing learning and evad-
ing aversive stimuli, which are important for the survival of animals under environmental challenges such as stress. However, the
mechanisms through which dopaminergic transmission responds to stressful events and subsequently regulates its downstream neuro-
nal activity during stress remain unknown. To investigate how dopamine signaling modulates stress-coping behavior, we measured
the subsecond fluctuation of extracellular dopamine concentration and pH using fast scanning cyclic voltammetry (FSCV) in the NAc,
a postsynaptic target of midbrain dopaminergic neurons, in male mice engaged in a tail suspension test (TST). The results revealed a
transient decrease in dopamine concentration and an increase in pH levels when the animals changed behaviors, from being immobile
to struggling. Interestingly, optogenetic inhibition of dopamine release in NAc, potentiated the struggling behavior in animals under
the TST. We then addressed the causal relationship of such a dopaminergic transmission with behavioral alterations by knocking out
both the dopamine receptors, i.e., D1 and D2, in the NAc using viral vector-mediated genome editing. Behavioral analyses revealed
that male D1 knock-out mice showed significantly more struggling bouts and longer struggling durations during the TST, while male
D2 knock-out mice did not. Our results therefore indicate that D1 dopaminergic signaling in the NAc plays a pivotal role in the mod-
ulation of stress-coping behaviors in animals under tail suspension stress.
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The tail suspension test (TST) has been widely used as a despair-based behavioral assessment to screen the antidepressant so
long. Despite its prevalence in the animal studies, the neural substrate underlying the changes of behavior during the test
remains unclear. This study provides an evidence for a role of dopaminergic transmission in the modulation of stress-coping
behavior during the TST, a despair test widely used to screen the antidepressants in rodents. Taking into consideration the
fact that the dopamine metabolism is upregulated by almost all antidepressants, a part of which acts directly on the dopami-
nergic transmission, current results would uncover the molecular mechanism through which the dopaminergic signaling
mediates antidepressant effect with facilitation of the recovery from the despair-like behavior in the TST. /

&

ignificance Statement

Received Feb. 24, 2020; revised Aug. 10, 2020; accepted Aug. 16, 2020.

and a Grant-in-Aid for Integrated Research on Depression, Dementia and Development Disorders
Author contributions: W.C. and H.A. designed research; W.C., T.A., H.l, Ke.K., Y.W., and H.A. performed

(20dm0107093h) carried out under the Strategic Research Program for Brain Sciences by Japan

research; W.C, TA, KeK., SK, K1, Ka.K, T.I, K.T., and H.A. contributed unpublished reagents/analytic tools;
W.C, TA, H.I, TN, M.Z, and H.A. analyzed data; W.C. and H.A. wrote the paper.

This work was supported by the Program of the Network-type Joint Usage/Research Center for
Radiation Disaster Medical Science, Natural Science Center for Basic Research and Development,
Hiroshima University, and funds were provided by the Kato Memorial Bioscience Foundation. This
work was also supported by Grants-in-Aid for Scientific Research on Innovative Areas
(KAKENHI26112010 and JP19H05723), a Grant-in-Aid for Challenging Exploratory Research
(KAKENHI17K19459) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT),

Agency for Medical Research and Development (AMED) (to H.A.).

The authors declare no competing financial interests.

Acknowledgments: We thank Dr. Michael Heien, Dr. Christopher Atcherley, and Dr. Mark Wightman for
their technical advice on voltammetric analysis; Dr. Deepa Kamath Kasaragod for critical reading of the
manuscript; and Ms. Fumie Nishimura and Harumi Ishikubo for their technical assistance.

Correspondence should be addressed to Hidenori Aizawa at haizawa@hiroshima-u.ac.jp.

https://doi.org/10.1523/JNEUR0SCI.0444-20.2020
Copyright © 2020 the authors


https://orcid.org/0000-0003-0707-4486
mailto:haizawa@hiroshima-u.ac.jp

7242 - J. Neurosci., September 16, 2020 - 40(38):7241-7254

Introduction

Appropriate responses to stress are essential for an individual’s
survival and well-being. In psychiatric disorders such as major
depression and post-traumatic stress disorder (PTSD), stress-
coping strategies in patients are maladaptive, resulting in loss of
motivation and exaggerated fear responses under stress (Segal et
al,, 1992). The mesolimbic dopaminergic pathway is a projection
from the ventral tegmental area (VTA) to ventral striatal struc-
tures, such as the nucleus accumbens (NAc). The mesolimbic do-
pamine pathway is known for its role in incentive salience and
avoidance of harmful stimuli (Roitman et al., 2008; Hu, 2016;
Pultorak et al., 2018). Indeed, on tail shock as aversive stimuli, it
is shown that the differential response of the dopaminergic fibers
is dependent on the brain regions (i.e., upregulation of the dopa-
minergic activity in the prefrontal cortex but down regulation in
the NAc is observed; Kim et al., 2016). This might result from
the heterogeneity of the dopaminergic neurons in the midbrain
projecting differentially to the distant targets such as NAc and
prefrontal cortex under stress.

Accumulating studies have implicated the importance of the
mesolimbic pathway in the modulation of stress-coping strat-
egies in animals subjected to chronic stress (Berton et al., 2006;
Nestler and Carlezon, 2006; Krishnan et al., 2007). Indeed, mid-
brain dopaminergic neurons in depressive-like mice exhibited
higher firing rates than those in stress-resilient mice (Krishnan et
al., 2007; Friedman et al., 2014). Phasic activation of midbrain
dopaminergic neurons have been shown to induce depressive-
like symptoms with passive stress-coping behaviors in mice
treated with chronic stress (Chaudhury et al., 2013). However, a
study using optogenetics demonstrated that the activation of
midbrain dopaminergic neurons would potentiate active coping
behaviors in a despair-based test, as well as induce anhedonia-
like behaviors (Tye et al., 2013).

These results indicate that dopamine has differential effects
on stress coping that is dependent on the timing of release of do-
pamine as well as the brain regions. Thus, investigation of the
local dopamine dynamics with subsecond temporal resolution
would provide a deep insight into understanding the role of do-
pamine in behavioral modulation under stress.

The tail suspension test (TST) is a despair-based behavioral
test useful to screen antidepressants in rodents (Steru et al., 1985;
Cryan et al., 2005). Inescapable stress in this test drives the ani-
mal to adopt one of the two strategies: immobility, which is bene-
ficial as it saves energy for future events, or struggling, which is
to escape from the noxious stimulus. Despite the test’s frequent
use in studies using animal models of depression, few studies
have addressed the temporal changes of animal behaviors and
the underlying neural substrates in the TST. Studies have
reported that dopamine release transiently decreased in mouse
NAc on presentation of the cue previously paired with aversive
stimuli (Badrinarayan et al., 2012; Oleson et al., 2012). Since do-
pamine has been implicated in the modulation of behavioral
responses under repeated stress (Ortiz et al., 1996), we hypothe-
sized that mesolimbic dopaminergic signaling might control
stress coping strategy in the TST.

Here, to address this hypothesis, we used the electrochemical
measurement of dopamine in the NAc in animals under inescap-
able stress, using the TST. The results demonstrated that a
decrease in dopamine concentration and an increase in pH
occurred when animals transit from passive immobility to active
struggling in the TST. Optogenetic inhibition of dopamine
release in NAc potentiated the struggling behavior in mice under
the TST. Using in vivo genome editing to knock out the DIR
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gene in the NAc increased the struggling duration as well as the
number of bouts in the TST. Taken together, our findings pro-
vide the first evidence that dopamine signaling in the NAc
through D1R signaling modulates the behavioral shift from pas-
sive to active coping in the TST.

Materials and Methods

Subjects

All experimental procedures were performed in accordance with the
Animal Experiment and Recombinant DNA Experiment Plans approved
by the Committees of Hiroshima University. Eight- to 12-week-old male
C57BL/6] wild type (Japan SLC) were used for all recordings and behav-
ioral experiments. DAT-Cre knock-in mice (Bickman et al., 2006) were
used for optogenetic experiments. The mice were housed on a 12/12 h
light/dark cycle (light on from 7 A.M. to 7 P.M.) schedule and ad libitum
water and food.

CRISPR/Cas9 plasmid construction

The sgRNAs for Staphylococcus aureus Cas9 (SaCas9) targeting mouse
Drdla and Drd2 were designed using Benchling with parameters of 21
nucleotide spacer length and NNGRRT protospacer adjacent motif
(PAM). Pairs of oligo DNAs (Hokkaido Systems Science, Sapporo) cor-
responding to the spacers with adaptors were synthesized, hybridized,
and ligated using Quick Ligase (New England BioLabs) into linearized
pX601 plasmid (plasmid #61591, Addgene; Feng Zhang, MIT) digested
with Bsal (New England BioLabs). Sequence of oligo DNAs targeting
Drdla and Drd2 genes are listed in Tables 1, 2, respectively.

Cel-I assay in Neuro2A cells

Cel-T assays using Mouse Neuro2A cells were performed as described
previously (Aida et al., 2015). Briefly, Drdla-, Drd2-, or empty pX601
plasmids was transfected into Neuro2A cells in a 24-well plate using
Lipofectamine LTX (Life Technologies). After 72 h post-transfection,
genomic DNA was isolated using a DNeasy Blood & Tissue kit
(QIAGEN). Drdla and Drd2 loci were then PCR amplified from the
purified genomic DNA with primers (Tables 1, 2). PCR products were
denatured, digested at 42°C for 30min with a Surveyor Mutation
Detection kit (Transgenomic), and analyzed by electrophoresis in 3%
agarose gel stained with ethidium bromide. The gel images were
obtained with a ChemiDoc XRS system (Bio-Rad) and analyzed by
Image Lab software (Bio-Rad).

Adeno-associated virus (AAV) production and purification

AAV vectors for CRISPR/Cas9 were produced and purified as described
previously (Matsushita et al., 1998; Okada et al., 2005). In brief, HEK293
cells were co-transfected with pAAV vector plasmid harboring a gene of
interest, pAAV-RC2, and pHelper (catalog #VPK-422 and VPK-402;
Cell Biolabs, Inc). The crude viral lysate was purified with two rounds of
cesium chloride ultracentrifugation. The titer of the viral stock was
determined against plasmid standards by real-time PCR with primers
5'-CAAGGCTGTTAGAGAGATAATTGGA-3" and 5'-AAAACTGCA
AACTACCCAAGAAA-3" amplifying the fragment for U6 promoter;
subsequently, the stock was dissolved in HN buffer [50 mm HEPES (pH
7.4) and 0.15 M NaCl] and stored at 80°C. For optogenetic inhibition
experiments, AAV5-EF1a-DIO-EYFP and AAV5-EFla-DIO-eNpHR3.0-
EYFP were purchased from University of North Carolina vector core.

Injection of adeno-associated viral vectors

C57BL/6] male mice who were eight-week-old were anesthetized with
pentobarbital (50 mg/kg, i.p.) and mounted onto a stereotaxic apparatus
(SR-8N, Narishige) with a micromanipulator (Model 1760-61, David
Kopf Instruments). The body temperature of the animal was maintained
at 37°C by a heat pad throughout the experiment. Bilateral holes were
made in the skull to target the NAc core (1.1 mm anterior and 1.1 mm
lateral to the bregma) using a microdrill. Glass capillary containing the
viral solution was lowered to a depth of 4.1 mm from the pial surface of
the brain, and 0.3 ul of AAV solution (2.1-3.0 x 1010 genome copies/
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Table 1. Optimization of short guide RNA targeting murine Drd7a gene Cel-l assay and off-target prediction in silico

No. Primers Sequence Strand Domain PAM (leavage efficiency (%) Off target score (predicted)

1 Forward 5’-CACCGATGGCTCCTAACACTTCTACC3! - N-term ATGGAT 9.4 83.9
Reverse 5’-AAACGGTAGAAGTGTTAGGAGCCATC-3’

2 Forward 5’-CACCGAGATTGCTGGCTTTTGGCCCT-3" - ™2 TTGGGT 5.2 715
Reverse 5’-AAACAGGGCCAAAAGCCAGCAATCTC-3'

3 Forward 5’-CACCGCATAAATAATGGGGTTCAGGG-3' + ™7 AGGAAT 0.0 59.9
Reverse 5’-AAACCCCTGAACCCCATTATTTATGC-3'

4 Forward 5'-CACCGCCTGATGACAGCGGCACAGAC-3’ + ™1 AAGGGT 12.0 78.0
Reverse 5’-AAACGTCTGTGCCGCTGTCATCAGGC-3'

5 Forward 5’-CACCGACAGACAAGGGTATTCCCTAA-3' + ™2 GAGAGT 6.0 87.6
Reverse 5’-AAACTTAGGGAATACCCTTGTCTGTC-3'

6 Forward 5’-CACCGCTTATCCTGTCCACTCTCTTA-3' - ™1 GGGAAT 221 733
Reverse 5'-AAACTAAGAGAGTGGACAGGATAAGC-3'

7 Forward 5’-CACCGGGTATTCCCTAAGAGAGTGGA-3’ + ™2 CAGGAT 1n7 73.0
Reverse 5’-AAACTCCACTCTCTTAGGGAATACCC-3!

8 Forward 5’-CACCGCAGGGACAGAAAACAGGCTGT-3' + ™1 GAGGAT 2.7 48.4
Reverse 5'-AAACACAGCCTGTTTTCTGTCCCTGC-3'

Table 2. Optimization of short guide RNA targeting murine Drd2 gene by Cel-l assay and off-target prediction in silico

No. Primers Sequence Strand Domain PAM (leavage efficiency (%) Off target score (predicted)

1 Forward 5'-CACCGAAGATGTCACAGTGAATCCTG-3' - ™3 (TGAAT 0.0 65.9
Reverse 5'-AAACCAGGATTCACTGTGACATCTTC-3'

2 Forward 5’-CACCGCGGTGCAGAGTTTCATGTCCT-3' - 13 CAGGGT 0.0 744
Reverse 5’-AAACAGGACATGAAACTCTGCACCGC-3”

3 Forward 5'-CACCGTTAGACTTCATGATAACGGTG-3" - I3 CAGAGT NA 91.2
Reverse 5’-AAACCACCGTTATCATGAAGTCTAAC-3'

4 Forward 5'-CACCGACCGTTATCATGAAGTCTAAT-3’ + 13 GGGAGT NA 89.1
Reverse 5'-AAACATTAGACTTCATGATAACGGTC-3'

5 Forward 5'-CACCGGAGTTTCCCAGTGAACAGGCG-3' + 13 GAGAAT 5.1 84.6
Reverse 5’-AAACCGCCTGTTCACTGGGAAACTCC-3’

6 Forward 5’-CACCGCATCGTACCAGGACAGGTTCA-3' - N-term GTGGAT 37 88.8
Reverse 5’-AAACTGAACCTGTCCTGGTACGATGC-3'

7 Forward 5'-CACCGAGAACTGGAGCCGGCCCTTCA-3' + N-term ATGGGT 0.0 84.0
Reverse 5’-AAACTGAAGGGCCGGCTCCAGTTCTC-3

8 Forward 5’-CACCGAAAGACGATGATAAAGATGAG-3’ - ™1 GAGGGT 9.5 49.9
Reverse 5'-AAACCTCATCTTTATCATCGTCTTTC-3'

9 Forward 5’-CACCGGGTGGCCACACTGGTTATGCC-3’ + ™2 (TGGGT 11.0 88.6
Reverse 5’-AAACGGCATAACCAGTGTGGCCACCC-3'

10 Forward 5"-CACCGCACACGCTACAGCTCCAAGCG-3' + 12 CCGAGT 0.0 87.8
Reverse 5'-AAACCGCTTGGAGCTGTAGCGTGTGC-3”

n Forward 5’-CACCGTACTGTCATGATCGCCATTGT-3" + ™4 (TGGGT 72 85.0
Reverse 5'-AAACACAATGGCGATCATGACAGTAC-3

ml) was injected into the NAc bilaterally at a speed of 0.02 ul/min. 10
min after the injection, the glass capillary was withdrawn gently from the
brain. For optogenetic inhibition experiments, male DAT::Cre mice were
injected with AAV5-EF1a-DIO-EYFP or AAV5-EFla-DIO-eNpHR3.0-
EYFP bilaterally in VTA region (N=9 for each group). For gene knock-
out experiments, wild-type mice were injected with AAV's for CRISPR/
Cas9 targeting the Drdla or Drd2 genes in NAc (N =15 for each group).
After the histologic analysis of the injection sites, mice with mistargeting
were excluded for the behavioral analysis.

The skin was then sutured, and the animals were allowed to recover
for four weeks before the behavioral experiments.

Next generation sequencing of the genomic DNA after genome editing

Mice that received AAV vectors carrying CRISPR/Cas9 cassette targeting
Drdla [AAV-CMV-SaCas9-U6-sgRNA(Drdla), N=3], Drd2 [AAV-
CMV-SaCas9-U6-sgRNA(Drd2), N=3] and Bsal site as control [AAV-
CMV-SaCas9-U6-sgRNA(Bsal), N=3] were used. Fourteen days after
AAV-injections targeting the NAc, mice were killed to collect tissue
punches of the NAc in 500-pm-thick sections. Genomic DNA was sub-
sequently extracted and quantified (Qubit fluorometer, ThermoFisher

Scientific). One nanogram of genomic DNA was used to amplify the
fragment flanking the PAM sequence of the genes using the following
primer sets (lowercase and uppercase letters represent the adapters for
sequencing and gene-specific sequence, respectively): 5-acactctttccctac
acgacgctcttccgatct GAGTGATTGGGGGAAGTCTG-3" and 5-gtgactg
gagttcagacgtgtgctcttecgatct TGTCAAAGGCTACCCAAATG-3' for Drdla;
5’-acactctttccctacacgacgetcttccgatct GACAAGGGGGAAGGTCTTAG-3'
and 5-gtgactggagttcagacgtgtgctcttccgatct TCCAGCCTCCTTAGAGTTAG-
3’ for Drd2. Sequencing was performed using MiSeq (Illumina) with the
MiSeq Reagent Kit Nano ver 2 (Illumina).

Behavioral tests
All behavioral tests were performed after habituation of the mice to the
test room for at least 1 h before the test.

Open-field test

An open-field arena (50 x 50 x 40 cm) under the illumination 500 lux
was used for the test. Mice were placed at the corner of the arena, and
movement of the animals was recorded for 30 min using a CCD camera
at 60 fps. Video images were subsequently processed for analysis using
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an ImageOF (Mouse Phenotype Database; http://www.mouse-phenotype.
org/software.html) based on the Image] program (Schneider et al., 2012;
https://imagej.nih.gov/ij/).

TST

The tail of the mouse was suspended by attaching the tail to a smooth
Plexiglas plate, and the mouse was hung from the roof of a sound attenu-
ation box. Animal movement was recorded using a camera for 6 min.
After that, the duration of the animal’s immobility was scored and ana-
lyzed using ImageFZ software (Mouse Phenotype Database; http://www.
mouse-phenotype.org/software.html). Criteria for the immobile and
struggling sessions were set as immobile and struggling for longer than
3 s each. For the temporal analysis of immobility, the time spent immo-
bile was calculated with bins of 60 s. To analyze the effect of repeated ex-
posure to the TST on behaviors, a group of mice were subjected to a
second TST 48 h after the first TST. For simultaneous recording of the
behavior with fast scanning cyclic voltammetry (FSCV), a TTL signal
generated by stimulator (Master-8 PULSE STIMULATOR, AM.P.L)
was used to synchronize the FSCV signal with the behavioral video
recorded at 10 frames per second in the TST. To detect the behavioral
events, we first identified the immobile behaviors by <5% pixels change
from the previous frame in the body (including head, trunk, limbs, and
tail) lasting longer than 3 s. Then, frames with >5% pixels’ change last-
ing longer than 3 s were identified as struggling. To analyze the dopa-
mine and pH fluctuation in freely behaving animals, baseline of
dopamine and pH was obtained by subtracting the background signal 10
s before each behavioral transition. By preliminary temporal analysis of
the mouse body movement in TST, we observed duration of single strug-
gling bout was shorter than 20 s (mean half peak width = SEM,
7.35%+ 3.56 s). To cover the transition between immobility and strug-
gling and a half of the struggling bout duration, temporal window start-
ing 10 s before and ending 10 s after the transition between immobility
and struggling was used for analysis of the dopamine and pH change.

Histology

For immunohistochemistry, animals were killed using an overdose of keta-
mine and fixed by transcardiac perfusion of 4% paraformaldehyde (PFA) in
0.1 M PBS (pH 7.4) two weeks after AAV injection. After postfixation over-
night, 50-pm-thick sections (100 pm apart) were cut using a vibratome and
processed for immunohistochemistry. Sections containing the NAc from
different groups were stained together for further semi-quantification.
Monoclonal mouse anti-hemagglutinin (HA; 1:1000, RRID: AB_2565335,
901513, BioLegend), polyclonal guinea pig anti-dopamine receptor 1 (1:500,
RRID: AB_2571595, D1R-GP-Af500, Frontier Institute Co Ltd), polyclonal
rabbit anti-dopamine receptor 2 (1:500, RRID: AB 2571596, D2R-Rb-
Af960, Frontier Institute Co Ltd; Narushima et al., 2006; Uchigashima et al.,
2007), donkey anti-mouse IgG-Alexa Fluor 488 (1:1000, RRID:AB_
2732856, ab150105, Abcam), donkey anti-mouse IgG-Alexa Fluor 594
(1:1000, RRID:AB_2340621, 711-585-152, Jackson ImmunoResearch), and
donkey anti-guinea pig IgG-Alexa Fluor 594 (1:1000, RRID:AB_2340475,
706-586-148, Jackson ImmunoResearch) were used for fluorescent immu-
nostaining, After the primary and secondary antibody reactions, sections
were counterstained with DAPL

Quantification of the DIR and D2R protein after immunostaining
was done using sections containing the NAc. Images were acquired
using a confocal laser scanning microscope (LSM510 PASCAL, Zeiss)
under the same gain and offset between groups. Region of interest (ROI)
for the integrated intensity analyses was determined by choosing the
area with cells immunoreactive to the HA as a tag to SaCas9. Mean inte-
grated intensity was then calculated by dividing the integrated intensity
with the area of the ROI using Image].

For identification of the recording sites, the animals were killed by an
overdose of pentobarbital sodium and fixed by transcardiac perfusion of
4% PFA; 100-pum-thick sections were cut and stained with thionine for
Nissl staining.

Carbon fiber electrodes fabrication
Dopamine measurement in freely behaving animals was performed by
implanting microsensors in vivo as reported before, with a slight
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modification (Clark et al., 2010). Carbon fiber microsensors for chronic
implantation were made by inserting a 7-um carbon fiber (T650,
Goodfellow Corporation) into a 10-mm in length fused silica tube (di-
ameter 20 um, Polymicro Technologies). One end of the microsensor
was sealed with 30-min Devcon epoxy (ITW Devcon). Excessive epoxy
on the carbon fiber was removed by acetone. Epoxy seal was allowed to
cure overnight at room temperature before use. The other end of the
exposed carbon fiber electrode was connected to a half pitch gold pin
using electroconductives (Dotite, Fujikura Kasei Co, Ltd). Ultraviolet-
sensitive dental resin was applied to strengthen the connection between
the gold pin and the carbon fiber electrode. The protruded carbon fiber
length was then trimmed to around 150 pm under a microscope with oc-
ular micrometer. Before use, all microsensors were soaked in purified
isopropanol for at least 10 min to increase sensitivity (Bath et al., 2000).

FSCV

Before the in vitro calibration, microsensors were etched at 60 Hz for
30 min using a triangular scanning waveform from —0.4 V (vs Ag/AgCl)
to 1.3 V and back to —0.4 V at a scan rate of 400 V/s to increase the sta-
bility of baseline and sensitivity. Implantations were performed on
deeply anesthetized eight-week-old male C57BL/6] mice. Mice were
anesthetized with pentobarbital (50 mg/kg, i.p.) and affixed to the stereo-
tactic apparatus (SR-8N, Narishige). Four anchor screws were placed on
the skull, and a microsensor was implanted in the NAc (1.1 mm anterior
and 1.1 mm lateral to the bregma and 4.1 mm deep). A parallel bipolar
stimulating electrode (MS303/3-B/SPC, Plastic One) targeting the medial
forebrain bundle (MFB) was implanted 1.3 mm posterior and 1.3 mm
lateral to the bregma and 5.0 mm deep. Ag/AgCl reference electrodes
(E255A, In Vivo Metric) were pretreated with Nafion coating to avoid
the potential shift of the oxidative peak of dopamine as reported previ-
ously (Hashemi et al.,, 2011). Ag/AgCl reference electrodes were then
implanted on the contralateral side of the brain at a convenient location.
Position of the stimulating electrode was adjusted until a clear dopamine
response was observed when MFB was stimulated. Dental cement was
used to fix the electrodes and anchor screws onto the skull. Animals
were allowed to recover for at least 5 d before the recordings.

The FSCV recording and MFB stimulation were done by a multi-
function input/output device (PCle-6363, National Instruments) trigger-
ing the isolating stimulator (Isoflex, AM.P.I) and HDCV software
(Bucher et al.,, 2013). Triangular waveform was ramped from —0.4 to 1.3
V (vs Ag/AgCl) and back to —0.4 V at a scan rate of 400 V/s. Cyclic
scans were repeated every 100 ms to obtain a 10-Hz sampling rate, and
microsensors were applied with —0.4-V potential between scans. Mice
implanted with microsensor were used for the recording in freely behav-
ing conditions. Before the recording, microsensors were connected to a
custom-made head-mounted amplifier (Takmakov et al., 2011) and
habituated to the recording box for 1 h. Animal behaviors were recorded
at 60 fps (AQ-VU, TEAC), and synchronized with the FSCV signal by a
TTL signal generated from the multifunction input/output device. At
the end of the tail suspension recording, an MFB stimulation (60 pulses,
60 Hz for 1 s) was delivered to the freely behaving animal to obtain the
evoked dopamine release as reference. After the recording, an electrolytic
lesion current was delivered to the microsensor to verify the recording
site in the NAc.

Optogenetics

Optogenetic experiments was performed as described before with a
slight modification (Tye et al, 2013). DAT::Cre mice were injected
with AAV5-EF1a-DIO-EYFP or AAV5-EF1a-DIO-eNPHR3.0-EYFP in
VTA region (AP: —3.2 mm, ML: 0.35 mm, DV: 4.2 mm). Two weeks af-
ter AAV injection, mice were implanted with two custom made fiber-
optical cannulae with protrusion of 10 mm (CFLC230-10, Thorlabs) using
the procedure described above for the implantation of carbon fiber elec-
trode. NAc was targeted with micromanipulator tilted to 5° (AP: 1.0 mm,
ML: 1.3 mm, DV: 3.8 mm). Fiber-optical cannulae were connected to a
Y-shaped dual polymer optical fiber for bilateral inhibition (Optogenetics-
Fiber-2 x 500, Goldstone Scientific) using zirconia sleeves. Optogenetic in-
hibition was performed from 180 to 240 s after the onset of the TST in both
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Figure 1.

Alternative stress-coping behaviors in mice under the tail suspension stress. A, A line plot showing time course of body movement of a (57BL/6J male mouse under the tail sus-

pension stress condition with alternations between struggling (red bracket) and immobility (blue bracket). B, Scatter plot of time spent immobile under the tail suspension stress condition
showing an increase in the immobile behavior in the latter stage (from 180 to 360 s) of the test than in the initial stage (from 60 to 120 s) by dividing a 360-s test into six bins (V=111 mice;
*¥*¥p < 0.0001 one-way ANOVA followed by Tukey’s multiple comparison test). C, Line plots of temporal changes in mean body movement of mice under tail suspension during the onset
(red) and offset (blue) of the struggling bouts. Shaded area represents the SEM. D, A bar graph of the velocity of body movement during the onset (red) and end (blue) of the struggling bouts.
Values are represented as mean == SEM; ***p << 0.001. E, F, Scatter plots showing the number of struggling bouts and the latency to immobility of the mice in the first (blue) and second TST

(N=10 mice; *p < 0.05, paired ¢ test).

group of mice through a LED light source (M595F2, Thorlabs) connected
to a stimulator (Master-8 PULSE STIMULATOR, A.M.P.L).

FSCV data analyses

In vitro calibration of dopamine and pH was done using a flow injection
system. Dopamine ranging from 25 to 125 nm and an artificial CSF (ACSF)
solution with pH from 7.0 to 7.5 were used to calibrate the microsensor
(Clark et al., 2010). Analyses of the in vivo recording was done using the
HDCV Analysis software (Bucher et al., 2013). The in vivo training sets of
dopamine and pH for the principal component regression were obtained
from the stimulation of MFB in each mouse. After extraction of the dopa-
mine concentration from the signal by principal component regression,
data for each trial (totally 55 trials) from five mice was inspected and ana-
lyzed using custom-written MATLAB scripts.

Statistical analysis

Test of mean difference between groups were analyzed by the two-tailed
Student’s ¢ test for two groups of data and one-way ANOVA followed by
Tukey’s post hoc test for multiple comparisons for data with three or
more groups unless otherwise specified. We applied paired t test and
two-way repeated measures ANOVA followed by Sidak’s post hoc test to
the subjects in Figure 1E,F and the optogenetic experiment data, respec-
tively. Analyses were done using SPSS Statistics 19 software (IBM) and
GraphPad Prism (GraphPad Software Inc.). The level of significance was
defined as p < 0.05, and all values are indicated as mean * SEM, if not
specified otherwise.

Results

Alternate active and passive coping behaviors observed
under tail suspension stress

To study the animals’ stress-coping strategy during inescapable
stress, we analyzed temporal changes of the body movement of
the mice in the TST. Mice stereotypically exhibited alternations
between struggling (Fig. 1A, red brackets) and immobility (Fig.
1A, blue brackets). The alternation of the two strategies became

more obvious during the latter part of the tail suspension session,
showing longer intervals of immobility between struggling bouts
i.e., 180 s after the start of the session (one-way ANOVA, Fs g0
= 2.505, p<<0.0001; Fig. 1B). Interestingly, detailed analysis
revealed that the body movement at the onset of struggling was
faster than at the end (p <0.001; Fig. 1C,D), implying the pres-
ence of a brain machinery underlying such transitions from
immobility to struggling. These consistent transition between
two states were more frequently found on the first day of the
TST than during the subsequent test after the second day, as we
observed a decrease in the number of struggling bouts (paired ¢
test, fo) = 3.134, p=0.012; Fig. 1E) and latency to immobility
(paired t test, £y = 2.850, p =0.019; Fig. 1F). Thus, for the further
examination of the neural substrate underlying the initiation of
struggling, we focused on the behavior of mice naive to the TST.

Reduction of dopamine release in the NAc while
transitioning from immobility to struggling during the TST
To address a role of dopamine in controlling the transition
between immobility and struggling during the TST at subsecond
resolution, we measured the extracellular dopamine levels using
FSCV with carbon fiber-based microsensors (Fig. 2A; Clark et
al.,, 2010). Flow injection analysis in vitro revealed that the micro-
sensor exhibited a high sensitivity for dopamine (0.405nA/nM)
and pH change (—0.408 nA/pH; Fig. 2B-D), exhibiting a strong
linear correlation of the dopamine concentration or pH change
with the current measured by the microsensor [p < 0.0001,
Pearson r=0.9997 (Fig. 2C) and p<<0.0001, Pearson r
—0.9995 (Fig. 2E)]. The sensitivity was further substantiated by
application of the sensor to the in vivo measurement of dopa-
mine in the NAc by stimulation of the MFB, which the cyclic vol-
tammogram peaked at 0.6 V consistent with the known
oxidative peak of dopamine that typically follows (Fig. 2F). The
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Detection of dopamine using the carbon fiber microsensors in vitro and in vivo. A, Carbon fiber microsensor used for the in vitro and in vivo experiments. It consists of carbon fibers

encased in a fused silica tube (blue bracket) and a gold pin (red bracket) connected with an adhesive, which is electrically conductive, and a dental resin (black bracket). B, Background-sub-
tracted cyclic voltammograms of five different concentrations of dopamine tested in vitro using the microsensors. ¢, Dopamine concentration/current response curve obtained from in vitro cali-
brations (V= 8). D, Background-subtracted cyclic voltammograms of five different pH increase tested in vitro. () pH change/current response curve obtained from in vitro calibrations (N = 10).
F, Color plot of dopamine release and pH shift elicited by in vivo stimulation of the MFB (60 Hz, 180 pulses at 120 pA; black bar). G, Representative dopamine and pH training sets obtained
from MFB stimulations and used for principal component regression (PCR). H, P(R-extracted dopamine concentration change (top) and pH shift (bottom) from F MFB stimulation. Error bars rep-

resent the SEM.

same analysis also corroborated the basic shift of tissue pH at the
recording site with increased pH which presumably resulted
from the increased blood flow on removal of carbon dioxide after
the stimulation which is associated with increased neuronal
excitability (Chesler, 2003; Venton et al., 2003).

To quantify the extracellular dopamine and pH change in
vivo with statistical validity, we performed a principal compo-
nent regression analysis of the voltammetric recordings in the
NAc with electrical stimulation of the MFB (Heien et al., 2005).
Using training datasets that detect differential levels of dopamine
(Fig. 2G, top) and pH (Fig. 2G, bottom), the analysis successfully
extracted the signal for the released dopamine; a continuous
increase in the released dopamine during stimulation and an im-
mediate decay after cessation of stimulation, reflecting the activ-
ity of dopamine transporters, was observed (Fig. 2H, top). PCR
also allowed us to check the temporal changes of pH at the same
recording site, demonstrating the gradual increase of pH on a ba-
sic shift for the increased neuronal excitability, which lasted for
60 s from the onset of recording (Fig. 2H, bottom).

We applied this strategy to examine the temporal dynamics
of dopamine in the NAc underlying the behavioral transition of
animals under tail suspension stress. According to histologic ver-
ification, the majority of our recordings were found in the core
region of the NAc (Fig. 3A). We characterized the dopamine
concentration fluctuations when the behavior changed between
the immobile and struggling states under the TST. In FSCV
recordings in the freely behaving animals under the TST, we

frequently observed a transient reduction of the current at the
oxidative peak of 0.6 V consistent with dopamine in the NAc
when the mice switched from the immobile phase (Fig. 3B, blue)
to the active struggle phase (Fig. 3B, red). Signal extracted by
PCR indicated that the reduction of extracellular dopamine levels
preceded the onset of struggling as represented by increased
body movement (Fig. 3C, bottom, red dashed line). Population
analyses of all bouts of struggling in the TST revealed that signifi-
cant reduction of extracellular dopamine in NAc started 3.826 =
0.685 s before the onset of struggling, indicating that the changes
in dopamine metabolism preceded the behavioral outcome. This
resulted in the reduction of extracellular dopamine levels before
and after the onset of struggling in the TST (p=0.0066, t10s) =
2.771, two-tailed Student’s ¢ test; Fig. 3D,E).

Concurrently, we also observed a basic shift in the pH that
was accompanied by a decrease in the dopamine levels during
the switch from immobility to struggling in the TST (Fig. 4A).
This change occurred later than the onset of dopamine reduction
ie, 0.891 £0.573 s after the onset of struggling (p=4.226 x
1077, tnosy = 5283, two-tailed Student’s t test; Fig. 4B).
Quantitative analysis revealed a significant shift of pH toward ba-
sic values during the transition from immobile to struggling
behaviors (p=0.0025, t105) = 3.101, two-tailed Student’s ¢ test;
Fig. 4E).

These changes were unique to the struggling onset because
we did not observe any changes of extracellular dopamine
(p=0.2899, t(g5) = 1.065, two-tailed Student’s ¢ test; Fig. 5A,B)
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Figure 3. Reduction of dopamine release in NAc while transitioning from immobility to struggling during tail suspension. A, Schematic diagram of a mouse engaging in a FSCV recording
during tail suspension (left). Histologically verified recording sites in the NAc (right) for all animals. B, A representative color plot of cyclic voltammogram showing dopamine release while the
mouse’s behavior changed from the immobility to the struggling stage. Inset represents the background-subtracted cyclic voltammogram of dopamine. C, Synchronization of dopamine concen-
tration change (top) and body movement of mice under the TST (bottom). D, Event-triggered average of body movement (top) and extracellular dopamine concentration (bottom) during the
transition from the immobile to the struggling stage (N =5 mice; 55 trials). Shaded areas represent the mean = SEM. E, Quantification of dopamine concentration before and after the onset
of struggling behavior. Summation of dopamine concentration in the NAc for 10 s before (blue bar) and after (red bar) the transition from immobile to struggling behavior was calculated as
the area under the curve in all trials (N =5 mice; 55 trials, **p << 0.001, two-tailed Student’s ¢ test). Error bars represent the SEM. Scale bar: 1 mm (4).
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Figure 4.  Basic shift of pH in NAc during the transition from the immobility to the struggling stage under the TST. A, A representative trial showing synchronization of pH increase (top) and
body movement of mice under tail suspension stress (bottom). B, Event-triggered average of the body movement (top) and extracellular pH change (bottom) during the transition from the
immobile to the struggling stage (V=5 mice; 55 trials). Shaded areas represent mean = SEM. C, Quantification of pH change before and after the onset of struggling behavior. Summation of
pH in the NAc for 10 s before (blue bar) and after (red bar) the transition from the immobile to the struggling behaviors was calculated as the area under the curve in all trials (V=5 mice; 55
trials, **p < 0.001, two-tailed Student’s ¢ test). Error bars represent the SEM.

and pH (p =0.3354, f(36) = 0.9688, two-tailed Student’s ¢ test;
Fig. 5C,D) during a shift from struggling to immobility under
the TST. These results suggest a critical role of dopaminergic
transmission in the NAc in active coping behaviors under
the TST

Optogenetic inhibition of dopaminergic transmission in
NAc facilitates active coping in the TST

To check a causal relationship between reduced dopamine
release in NAc and struggling for active coping in the TST, we
induced expression of enhanced halorhodopsin (eNpHR3.0) in

the midbrain dopaminergic neurons by injection of AAV to the
ventral tegmental area of the DAT::Cre mice (Fig. 6A). Fourteen
days after the injection of AAV5-EF1a-DIO-EYFP or AAVS5-
EF1la-DIO-eNpHR3.0-EYFP, DAT:Cre mice were implanted
with fiber-optic cannulae targeting NAc to inhibit the dopamine
release during the TST (Fig. 6B,C). Injection of the AAVs to
DAT::Cre mice enabled specific labeling of the dopaminergic
neurons projecting the axons to NAc with EYFP or eNPHR3.0-
EYFP (Fig. 6D). Since mice stabilized the duration of struggling
from 180 s after the onset of the TST (Fig. 1B), we photo-inhib-
ited the dopaminergic terminals in NAc by applying yellow light
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Figure 6.  Optogenetic inhibition of dopaminergic terminals in NAc promotes struggling behavior during the TST. A, Schematic diagram showing injection of Cre-dependent AAV expressing
EYFP or eNPHR3.0-EYFP in VTA dopaminergic neurons of DAT::Cre mice. Optogenetic inhibition of dopaminergic terminals was performed in the NAc by implantation of fiber-optic cannula. B,
Representative images of the VTA (top) and striatum (bottom) showing successful transduction of AAV expressing EYFP (green) and tyrosine hydroxylase protein (TH, red) in DAT::Cre mice. A
white vertical bar depicts a representative position of the implanted optical fiber. Dotted line encircles the nucleus accumbens core. €, Schematic representation of the fiber optics position
implanted into the NAc of the mice with AAV expressing EYFP (blue) and eNpHR3.0-EYFP (red). D, Confocal images of NAc showing the colocalization of EYFP (green in D) signal with dopami-
nergic neuron marker tyrosine hydroxylase (TH, red in D) in NAc region after injection of AAV5-EF1a-DIO-EYFP (top) or AAV5-EF1a-DI0-eNpHR3.0-EYFP (bottom) in VTA. Scale bars: 500 pum (B)
and 10 um (D). E, Optogenetic inhibition of dopamine release in NAc promoted the struggling behavior during the TST. Optogenetic inhibition using yellow light was performed at 180 s from
the onset of the TST, and terminated at 240 s as indicated by shading with yellow color (N =7 mice for EYFP group, N =7 mice for eNpHR3.0 group); **p << 0.01. Two-way ANOVA followed
by Sidak’s post hoc test. Values are presented as the mean = SEM.
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during this period in the TST. Interestingly, results showed that
inhibiting the dopamine release in NAc promoted the struggling
behavior in mice with eNpHR3.0-EYFP compared with mice
with EYFP (p <0.01 at 210 s after the onset of the TST, signifi-
cant group X time interaction, Fq; 6 = 2.974, p=0.0031, two-
way ANOVA followed by Sidak’s post hoc test; Fig. 6E). These
results suggested that suppressing the dopamine release in NAc
led to the struggling behavior for active stress-coping, which is
consistent with reduction of dopamine in the transition from
immobility to struggling.

Region-specific deletion of dopamine receptors using in vivo
genome editing

Dopaminergic transmission is mediated by the family of dopa-
mine receptors, which primarily consists of the D1 and D2 subfa-
milies. To examine the downstream signaling mechanisms of the
released dopamine in the modulation of the behavioral transition
from passive to active coping, we adopted a viral vector-mediated
gene knock-out strategy using CRISPR/Cas9 targeting the Drdla
or Drd2 genes in the NAc.

First, candidate guide RNAs targeting murine Drdla and
Drd2 genes were screened for optimal cleavage efficiency of
the genomic DNA by Cel-I assay using the genome of the
N2A cell lines transfected with plasmid carrying candidate
guide RNAs (Tables 1, 2 for Drdla and Drd2 genes, respec-
tively). We chose Drdla#6 and Drd2#9 showing higher cleav-
age efficiency and off target score predicted in silico to
generate AAV viruses harboring the saCas9 without (AAV-
saCas9) or with guide RNA targeting either the first trans-
membrane domain of Drdla (AAV-saCas9-Drdlsg; Table 1,
hashed rows) or fourth transmembrane domain of Drd2
(AAV-saCas9-Drd2sg; Table 2, hashed rows).

Injection of these AAVs targeting the NAc of wild-type mice
transduced a substantial number of ventral striatal neurons in all
mice that received the AAV injection (Fig. 7A,E,LN,R,V).
Quantitative analyses for detecting the D1R protein revealed that
the AAV-saCas9-Drdlsg group (NAc-DIR KO) showed a 61.4%
lower D1R expression in the NAc than did the control group
that was injected with AAV-saCas9 (p=0.0001, F, 1) = 0.868,
one-way ANOVA; Fig. 7M). This effect of AAV-saCas9-Drdlsg
was specific to the Drdla, since we did not observe significant
D2R expression reduction in the NAc-DIR KO. Specific reduc-
tion of the gene of our interest was also achieved when we tar-
geted the NAc by AAV-saCas9-Drd2sg (NAc-D2R KO), which
showed a significant decrease in D2R expression in the NAc
(p <0.0001, F3,10) = 0.806, one-way ANOVA; Fig. 7Z).

These results were further validated by deep sequencing of
the genome edited by AAV carrying the CRISPR/Cas9 cassette.
Results using next generation sequencing revealed that genomic
DNA in NAc-DIR and NAc-D2R KOs, but not the control, fre-
quently showed modification of the Drdla (Fig. 8A) and Drd2
gene (Fig. 8B), respectively. Specifically, mutation consisted pri-
marily of 1bp insertion (63.3% and 64.1% for NAc-D1R KO and
NAc-D2R KO, respectively) or deletion (36.7% and 35.9% for
NAc-DIR KO and NAc-D2R KO, respectively), both of which
resulted in the generation of a premature stop codon (Fig.
8C-E). Since the antibodies used to detect D1R and D2R proteins
are supposed to recognize the domains located on the carboxyl-
terminal side of the targets (Fig. 8D,E), they are likely to fail to
detect the truncated protein encoded by genes mutated by the in
vivo genome editing.

Collectively, in vivo genome editing successfully knocked out the
Drdla or Drd2 genes, specifically in the NAc with high efficiency
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and specificity, which provided us with a valuable tool for manipu-
lating dopaminergic signaling in the following experiments.

Ablation of DIR transmission in the NAc potentiates
struggling behavior in the TST

We first checked the effect of knocking out the dopaminergic re-
ceptor in the NAc on locomotor activity. Open-field tests
revealed that traveled distance of the NAc-D2R KO mice (Fig.
9A, red) was significantly shorter than that of both the control
(p=0.0405, F(534) = 2.694, one-way ANOVA; Fig. 9A,B, black)
and NAc-DIR KO (F(334) = 2.694, one-way ANOVA; blue in
Fig. 9A,B) mice, suggesting that the locomotor activity was
affected by D2 but not by D1 transmission in the NAc.

We next subjected the KO mice to the TST to examine
the effect of dopaminergic receptor deletion on the stress-
coping behavior under tail suspension. During the time
course of the body movement in the mice, we observed
struggling behaviors more frequently in NAc-D1R KO (Fig.
9D) mice than in the control (Fig. 9C) and NAc-D2R KO
(Fig. 9E) mice. Population analysis revealed that the num-
ber of struggling bouts in NAc-D1R KO mice were signifi-
cantly higher than those in the control and NAc-D2R KO
mice (p=0.026 and p =0.023, respectively, F(;,9) = 0.147,
one-way ANOVA; Fig. 9F). These differences in behaviors
were associated with an elongation of latency to immobility
in NAc-DIR KOs (p=0.048 and p=0.004, respectively,
F,27) = 3.672, one-way ANOVA; Fig. 9G), suggesting that
the deletion of DI1R function in the NAc made the mice
more prone to show struggling rather than immobile behav-
iors. This view was further supported by the shortening of
the immobility duration (p=0.031 and p=0.025, respec-
tively, F(2,26) = 0.650, one-way ANOVA; Fig. 9H).

Taken together, behavioral analysis of the mice with condi-
tional knock-out of D1 and D2 function in the NAc unraveled a
novel role of dopaminergic transmission through D1Rs in stress-
coping behaviors under tail suspension stress.

Discussion

The current study uncovered the dynamics of dopaminergic
transmission during the transition of coping behaviors and pro-
vided multiple lines of evidence to support the dopamine trans-
mission and the frequency of stress-coping behaviors. These
results indicate that dopaminergic signaling through D1Rs in the
NAc controls stress-coping behaviors in animals under inescap-
able stress. We discuss below the possible mechanisms by which
dopamine modulates the coping with acute stress during the
TST.

Dopaminergic transmission in the brain under inescapable
stress
Immobility, also known as despair-like behavior, could be a conse-
quence of the animal giving up its intent to escape. An alternate
view is that immobility is a behavioral choice to conserve energy for
later activity and to wait for the precarious situation to improve
(Lyons and Schatzberg, 2020). Not only a strategic shift of coping
behavior to escape or to save energy but also accumulating fatigue
and fear for predation during struggling might also facilitate the
immobility and struggling, respectively (Cryan et al, 2005).
Examining the effects of those additional factors on dopamine me-
tabolism will further deepen our understanding of the neural sub-
strate for coping with stress.

Recent studies have suggested that dopaminergic transmission
encodes the prediction error to reinforce the behavioral choice so
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Viral vector-mediated gene transduction encoding Cas9 and guide RNA specifically reduces protein expression of the type 1 and type 2 dopamine receptors in the nucleus accum-

bens. A-L, Coronal sections of NAc of mice that received injections of AAV-CRISPR/Cas9 vectors with no target [AAV-SaCas9 (control); A-D, targeting Drd7a [AAV-SaCas9-Drd1sg (NAc-D1R KO);
E-H] and Drd2 [AAV-SaCas9-Drd2 (NAc-D2R KO); /-L] showing HA-tagged Cas9 (green in 4, G, E, G, 1, K), D1R (red in B, C, F, G, J, K), and nucleus (DAPI; blue in D, H, L). M, Bar graph show-
ing the normalized integrated density of the fluorescence labeling for the D1R in the NAc of the Control (black), NAc-D1R KO (red), and NAc-D2R KO mice (blue) expressing Cas9. N-¥, Coronal
sections of the NAc of the mice that received injections of AAV-CRISPR/Cas9 vectors with no target [AAV-SaCas9 (control); N-Q], targeting Drd7a [AAV-SaCas9-Drd1sg (NAc-D1R KO); R-U] and
Drd2 [AAV-SaCas9-Drd2 (NAc-D2R KO); V-¥] showing HA-tagged Cas9 (greenin N, R, V, P, T, X), D2R (red in 0, S, W, P, T, X), and nucleus (DAPI; blue in @, U, Y). Z, Bar graph showing the
normalized integrated density of the fluorescence labeling for the D2R in the NAc of the control (black), NAc-D1R KO (red), and NAc-D2R KO mice (blue) expressing Cas9; N =5 mice for each
group, ***p < 0.001 (one-way ANOVA followed by Tukey’s multiple comparison test). Scale bar: 100 pm (A). NS, not significant; aca, anterior part of the anterior commissure.

that the difference between the prediction and the outcome is mini-
mized (Matsumoto and Hikosaka, 2009; Bromberg-Martin et al,,
2010). Measurements of dopamine release in the current study
revealed a transient reduction of extracellular dopamine in the NAc
preceding the initiation of struggling behaviors during tail suspen-
sion. This suggests that dopaminergic transmission in the NAc
might be involved in initiating the body movements to cope with
inescapable stress, as is assumed to occur in the tail suspension con-
dition. Since the direction of change in dopamine concentration is
opposite to that in the rewarding condition, this change might
reflect the negative prediction error, which predicts a negative out-
come based on learning in the environment with inescapable stress.
The firing of dopaminergic neurons displays a negative modulation
by effort level during the task performance of the animal, while it
displays a reliable positive encoding of the reward size (Walton and
Bouret, 2019). Thus, transient dopamine reduction at the onset of

struggling under tail suspension might be involved with a negative
prediction error for choice with presumptively high effort.

In contrast, dopamine has been implicated in the processing
of aversive information such as those encoding fear and anxiety
to avoid negative outcomes that threaten survival (Badrinarayan
et al,, 2012; Oleson et al., 2012; Wenzel et al., 2015). Recent stud-
ies have reported that distinct subtypes of dopaminergic neurons
in the midbrain respond differentially to aversive stimuli to
orchestrate neural information underlying the avoidance behav-
iors (Ungless et al, 2004; Bromberg-Martin et al, 2010;
Takahashi et al,, 2017). Indeed, dopamine release was shown to
transiently decrease on perception of a conditioned stimulus pre-
dicting footshock (Badrinarayan et al., 2012) and on inescapable
footshock (Oleson et al., 2012; Wenzel et al., 2018). Since fear
and anxiety are likely to accumulate and peak at the end of the
immobility period, the reduction of dopamine levels as observed
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Figure 8. Viral vector-mediated gene transduction knocked out the dopamine receptor genes by generation of a premature stop code in vivo. A-C, A’-C’, Bar graphs showing a histogram
of the frequency of indels in Drd7a (A-C) and Drd2 (A’—C’) genes of the control (A, A’), NAc-D1R KO (B, B’), and NAc-D2R KO mice (C, ). Note that indels were observed exclusively in B, C. D,
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Figure 9.

Impaired D1 transmission resulted in frequent struggling behaviors under the TST. A, (—E, Representative open-field traces (4) and time course of body movement during the TST

of control (€), NA-D1R KO (D), and NAc-D2R KO mice (E). Arrowheads in E represent the onset of struggling bouts. B, F-H, Dot plots showing the total distance moved in the open-field test
(B), the number of struggling bouts (F), latency to immobility (G), and immobility duration during tail suspension (H) of control (black dots), NAc-D1R KO (blue dots), and NAc-D2R KO (red
dots) injections into the NAc (N =8-11 mice, *p << 0.05, **p << 0.01 with one-way ANOVA followed by Tukey's multiple comparison test). Values are presented as the mean == SEM.

in the current study might occur dependent on such an increase
in aversive information.

Healthy subjects could develop resilience to stress; however, this
behavioral adaptation is impaired in patients with major depressive
disorder (MDD). Dysregulation of dopamine transmission in NAc
may control the adaptation to stress. Since we observed a decrease
of dopaminergic signaling when the animals shifted behaviors
from passive (immobility) to active coping (struggling), our study
provides new insight on dopamine transmission in regulation of
stress coping strategy which is impaired in MDD.

Current analysis used male mice to avoid possible effect varia-
tion of the CNS function according to the estrus cycle. Indeed, it
is reported that the TST is sensitive to the stage in the estrus cycle
in female C57BL6/] mice (Meziane et al., 2007). Taking into con-
sideration the fact that the prevalence of MDD is higher in
women than in men (Cyranowski et al., 2000), examining female
mouse under the TST would provide deeper insight into the sim-
ilarities and differences of the role of dopaminergic transmission
in stress coping between sexes.

«—

occur. E, E’, Schematics of D1R (E) and D2R (E') proteins showing the transmembrane do-
main targeted by the guide RNA (indicted by orange, transmembrane domains | and IV for
D1R and D2R, respectively). Position of the amino acid sequences recognized by the antibod-
ies used in immunohistochemistry are indicated by red. F, F’, G, G, Partial genomic (top)
and predicted amino acid sequences for Drd7a (F, G) and Drd2 (F), G’) genes of wild-type
(top) and modified genome (M1 to M5) with indels (red). PAM sequences were underlined.
Indels resulted in the frame shift of predicted amino acids (blue) as well as premature stop
codon (red in G, ). Data were from N =3 mice for each group.

Dopamine receptor subtypes in NAc and its role in
behavioral modulations

D1 and D2 receptors are two major subtypes in the dopaminer-
gic receptors family and play critical roles in defining two distinct
pathways in the dorsal striatum (Albin et al., 1989; Beaulieu and
Gainetdinov, 2011). Despite their known roles in the dorsal stria-
tum, their differential roles in the ventral striatum remains
unclear, because, at least in part, they are expressed in presynap-
tic axonal terminals of neurons outside the NAc as well as in the
dendrites and soma of the postsynaptic NAc neurons (Gerfen et
al., 1990; Gerfen, 1992; Surmeier et al., 1996; De Mei et al., 2009).
Results by knocking out these receptors in NAc neurons in this
study clarified the role of postsynaptic dopaminergic receptors in
the NAc in the stress coping behaviors.

For dopaminergic receptor genes, a germline knock-out strat-
egy to address distinct roles of D1 and D2 have been frequently
used. Although the behavioral phenotypes of mice lacking D1
and D2 receptors showed contradictory results (Kelly et al., 1998;
Tran et al., 2002, 2005; McNamara et al., 2003), a recent analysis
with the same genetic background demonstrated that D2 germ-
line knock-out resulted in hypolocomotion (Nakamura et al,,
2014). Our data from the open-field tests were consistent with
this, further validating this strategy to analyze the dopaminergic
receptor genes.

Neural pathway regulating accumbal dopamine release
under the inescapable stress

Although current study revealed a role of DIR signaling in mod-
ulation of the active coping in the TST, mechanisms underlying



Cuietal.  Dopamine Signaling and Depressive-Like Behaviors

how or why the dopamine release was altered during the TST
remains elusive. Pathways underlying the transient inhibition of
dopamine release on initiation of struggling behavior in the TST
still needs further investigation.

A recent study suggested that D1 expression in medium spiny
neurons (MSNs) in the lateral division of NAc (NAcLat) pre-
dominantly inhibit GABA neurons in the VTA, which disinhibits
the dopamine neurons projecting back to NAcLat (Yang et al,,
2018). In contrast, dopaminergic transmission is proposed to
affect the activity of MSNs in the NAc, which, in turn, provides a
significant inhibitory feedback innervation of the dopaminergic
neurons (Beier et al., 2015).

In our study, we found that a D1R ablation in the NAc region
effectively increased the active coping behavior in animals under
stress, suggesting that the reduced dopamine release in the NAc
region initiated an active coping behavior. Assuming that the
reduction of dopamine release results from a decrease in the fir-
ing rate of a subpopulation of dopamine neurons, dopamine
neurons projecting to NAcLat might further decrease their activ-
ity because of the loss of disinhibition from NAcLat-D1MSNs.
Since multiple lines of evidence support the view that the con-
nectivity of NAc and VTA are significantly shaped by conditions
such as social stress (Krishnan et al., 2007; Lammel et al., 2008;
Holly et al., 2016; Edwards et al., 2017), it would be interesting to
test whether the reciprocal connectivity between NAc and VTA
are modified in coping with inescapable stress. Examining the
dopamine release by FSCV in D1R or D2R KO mice may clarify
arole of interplay between NAc and VTA in the TST.

Another candidate region underlying the processing of stress-
related behavior is the lateral habenula, which receives massive
innervation of dopaminergic neurons and which inhibits the ac-
tivity of midbrain dopaminergic neurons via activation of
GABAergic neurons in the rostromedial tegmental nucleus
(Aizawa and Zhu, 2019). Since it is frequently reported that lat-
eral habenular neurons are activated in response to aversive stim-
uli (Gao et al., 1996) and negative prediction error (Matsumoto
and Hikosaka, 2009), enhanced aversion and negative prediction
errors might result in the transient inhibition of midbrain dopa-
minergic neurons via this pathway.

In our study, we also observed a basic shift of pH in animal’s
transition from immobile to struggling, which suggests enhanced
neural activity of neurons in NAc. Since majority of excitatory
input to NAc are from the cortex, the enhanced cortical input in
the transition to struggling behavior may be important for the
potentiation and maintenance of the struggling behavior (Li et
al,, 2018).

Taking the heterogeneity of the NAc afferents into consid-
eration, to address the questions asked above, analysis using
pathway-specific genetic manipulation would be one of the
most promising and effective approaches (Lammel et al., 2008,
2011; Marinelli and McCutcheon, 2014). Application of these
technologies to animals under tail suspension stress would
deepen our understanding of the neural substrates underlying
stress-coping during inescapable stress including those impli-
cated in stress-related psychiatric disorders, such as MDD and
PTSD.
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