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Fulde–Ferrell–Larkin–Ovchinnikov State in Quasi-One-Dimensional Systems:
Correlation Between Fermi-Surface Distortion and Optimal In-Plane

Magnetic-Field Direction

Katsumi Itahashi ∗ and Hiroshi Shimahara†

Department of Quantum Matter Science, ADSM, Hiroshima University,
Higashi-Hiroshima, Hiroshima 739-8530, Japan

(Received October 7, 2019)

The Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state is systematically examined in a generic model of quasi-one-
dimensional (Q1D) type-II superconductors that has six hopping integrals of electrons as model parameters. For a mag-
netic field parallel to the conductive layers, the upper critical field Hc2 is strongly enhanced by the FFLO state at low
temperatures and sensitively depends on the angle ϕ between the in-plane magnetic field and the highly conductive
chain (the crystal a-axis). As a result, Hc2 exhibits sharp peaks at the optimal angles ϕ = ±ϕ0. Since the optimal angle ϕ0

strongly depends on the structure of the Fermi surface, we examine their correlation, searching for an intuitive method
to find ϕ0 from the shape of the Fermi surface. For this purpose, we define quantities that quantify the warp of each
sheet (kx > 0 or kx < 0) of the Q1D open Fermi surface and the shear distortion between the two sheets. We estimate
the optimal angles for numbers of the parameter sets chosen systematically from a large area of the parameter space.
It is found that in most cases, the optimal direction of the in-plane magnetic field tends to be roughly parallel to the
a-axis. This result, together with the fact that the orbital pair-breaking effect is weakest for ϕ = 0, implies that the FFLO
state is most stabilized for a small ϕ. However, when the warp is small while the shear distortion is moderate, the FFLO
state can be maximally stabilized for any in-plane magnetic-field direction except for the directions between the b- and
b′-axes, where the b′-axis is perpendicular to the a-axis. The phase diagrams of the optimal angle and the upper critical
field at zero temperature are also presented. A jump of the optimal angle ϕ0 when the pressure varies is predicted.

1. Introduction
In quasi-low-dimensional type-II superconductors, the ex-

istence of the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO)
state1, 2) has been suggested.3–19) The FFLO state can be stabi-
lized when the magnetic field is oriented parallel to the highly
conductive layers because such an orientation suppresses the
orbital pair-breaking effect.20–22) In the FFLO state in such
systems, dependences of the upper critical field Hc2 and the
transition temperature Tc on the direction of the in-plane mag-
netic field must be quite different23) from those in the conven-
tional BCS state because of the nonzero center-of-mass mo-
mentum q of the Cooper pairs,24) which is a characteristic of
the FFLO state. Therefore, they can be direct evidence for the
FFLO state, if they are experimentally observed and theoreti-
cally reproduced.

For example, in the quasi-one-dimensional (Q1D) organic
superconductor (TMTSF)2ClO4, the observed onset temper-
ature of superconductivity T onset

c (ϕ) exhibits an exotic field-
angle dependence at high fields,13–15) which is quite differ-
ent from that expected for the conventional BCS state. Here,
TMTSF stands for tetramethyltetraselenafulvalene, and ϕ de-
notes the angle between the in-plane magnetic field and the
crystal a-axis. From this fact and other circumstantial evi-
dence, the possibility of the FFLO state has been examined
by some authors as explained below.

In Q1D systems in which the Fermi velocity is approxi-
mately parallel to the a-axis everywhere on the Fermi surface,
the strength of the orbital pair-breaking effect on the BCS
state is principally determined by the magnetic-field compo-
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nents perpendicular to the a-axis. In fact, in the polar plot of
T onset

c (ϕ) observed in (TMTSF)2ClO4 at low fields, the prin-
cipal axes are parallel to the a-axis and the b′-axis, where the
b′-axis is perpendicular to the a-axis. Hence, the orbital pair-
breaking effect is considered to dominate the ϕ dependence of
T onset

c . At high fields, however, the latter principal axis devi-
ates from the b′-axis,13–15) which suggests the emergence of
an exotic high-field superconducting phase. The FFLO state
is considered to be a plausible candidate for this high-field
phase13–15, 25–28) because of the following circumstantial ev-
idence: (1) the quasi-low-dimensionality and narrow energy
band are advantageous to the FFLO state,4–7) and (2) the upper
critical field Hc2(T ) exhibits upturn,12, 15) which is consistent
with that in the FFLO state.6, 25)

Although the accurate theoretical reproduction of Tc(ϕ) is
desirable, it is difficult in practice because accurate informa-
tion for the electron dispersion, to which the FFLO state is
sensitive, is unavailable at present. However, it was shown by
a theory explained below26) that parameter values in a range
realistic for (TMTSF)2ClO4 can reproduce the observed di-
rection of the exotic principal axis.

The field-angle dependence characteristic of the FFLO
state principally originates from the direction of the FFLO
vector q relative to the anisotropic Fermi surface. In the FFLO
state, since the direction of q is locked in the direction of
the magnetic field H unless the orbital pair-breaking effect
is extremely weak,5, 20, 21, 29, 30) we obtain ϕq = ±ϕ, where ϕq
denotes the angle between q and the a-axis. Hence, the de-
pendence of Hc2 on the field direction is equivalent to that on
the direction of q. For each fixed ϕq (= ϕ), the magnitude
q = |q| is optimized so that the upper critical field is max-
imized and the free energy is minimized. The strong ϕ de-
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pendence of Hc2(ϕ) is due to the Fermi-surface effect called
the nesting effect for the FFLO state,6, 7, 31, 32) which is anal-
ogous to the nesting effect for the spin- and charge-density
waves (SDW and CDW, respectively). The optimal angle ϕ0
that maximizes Hc2(ϕ) is principally determined by the struc-
ture of the Fermi surface, although the orbital pair-breaking
effect may modify it.

In our previous study,26) we examined the upper critical
field in a model of the Q1D systems in which the inter-
layer electron motion is negligible, and we found sharp peaks
(cusps) in Hc2(ϕ) at particular angles ϕ = ±ϕcusp, which im-
plies that ϕ0 = ϕ

cusp in this case. The cusps originate from the
FFLO state, and the magnitudes of Hc2(ϕ) for ϕ ≈ ±ϕcusp ex-
ceed five times the Pauli paramagnetic limit HP. Such large
values imply that the FFLO state is strongly stabilized for
ϕ ≈ ±ϕcusp, although the value of the upper critical field
must be reduced by the orbital pair-breaking effect induced
by inter-layer electron motion, which occurs in the real com-
pounds. The cusp angle ϕcusp is determined by the Fermi-
surface effect mentioned above.

After the above study, we were interested in determining
whether the obtained optimal directions are common in Q1D
systems and whether a similar dependence on ϕ would be
likely observed in future experiments on Q1D compounds.
Hence, in this paper, we examine the correlation between the
optimal field direction and the structure of the Fermi surface.
We focus on the distortion of the sheets of the open Fermi
surfaces in Q1D superconductors that is characterized by the
warp of each sheet and the shear distortion between the two
sheets. We search for an intuitive method to predict ϕ0 from
the shape of the Fermi surface, examining ϕ0 for parameter
values chosen systematically from a broad range. The results
would be useful because the shape of the Fermi surface can
be provided by first-principles calculations for candidate com-
pounds for the FFLO state.

In Sec. 2, we briefly review the nesting effect and the ori-
gin of the cusps to clarify the purpose of the present study. In
Sec. 3, we define our model of electron dispersion, which con-
tains six hopping integrals. We define parameters kw and ks
that characterize the warp and the shear distortion of the Fermi
surface, respectively. In Sec. 4, we present numerical results.
The optimal angle ϕ0 and the upper critical field Hc2(ϕ0) as
functions of the hopping integrals are examined in detail. We
obtain phase diagrams and correlation maps, which clarify the
dependences of ϕ0 and Hc2(ϕ0) on the electron dispersion and
the distortion of the Q1D Fermi surface. In the final section,
we summarize the results.

2. Nesting Effect and Origin of Cusps
The distortion of the Fermi surface plays essential roles in

the FFLO state. First, a sufficient distortion of the Fermi sur-
face from the flat shape is indispensable for the emergence
of the FFLO state in Q1D systems because, otherwise, the
SDW or CDW transition would occur at a low temperature.
Furthermore, when the distortion is sufficiently large for the
transitions to SDW and CDW to be suppressed, the resul-
tant two-dimensional system can be a good candidate for an
FFLO superconductor because of the nesting effect for the
FFLO state.6, 7, 31, 32) The resultant Hc2(T ) does not diverge in
the limit T → 0, in contrast to the purely one-dimensional
system, and dHc2(T )/dT does not vanish in the same limit,

in contrast to the isotropic three-dimensional system. In this
context, Q1D organic superconductors with sufficiently large
distortion of the Fermi surfaces that suppresses SDW and
CDW, such as (TMTSF)2ClO4, should be classified as a quasi-
two-dimensional superconductor.6) In such systems, Hc2(T )
can exhibit a dimensional crossover from the purely one-
dimensional to the quasi-two-dimensional systems as the tem-
perature T decreases.25)

The nesting effect for the FFLO state cannot be pre-
dicted from simple consideration based only on the shape
of the Fermi surface.31, 32) For example, it may be speculated
from analogy with the one-dimensional FFLO superconduc-
tors33, 34) that a nearly flat portion of the Fermi surface can
strongly enhance the critical field, with q becoming perpen-
dicular to the nearly flat portion. However, these speculations
fail, as elucidated by detailed calculations in the previous
studies.7, 26, 31, 32)

This difficulty is due to the fact that the nesting effect for
the FFLO state concerns not only the shape of the Fermi sur-
face but also derivatives of the one-particle energy ϵ(k) of the
electrons on the Fermi surface, such as the Fermi velocity. To
explain this fact, we defined the difference ∆kFx of the Fermi
surfaces in our previous papers.26, 32) Let us refer to the one-
particle energy of the electrons as ξσ(k, h) ≡ ϵ(k) − σh − µ,
where µ is the chemical potential and h = µe|H | with the
electron magnetic moment µe and the magnetic field H .
The Fermi surfaces are expressed by kx = kσFx(ky, h), where
ξσ((kσFx(ky, h), ky), h) = 0 for σ =↑ and ↓. Because the FFLO
state is induced by the pairing of electrons with (k, ↑) and
(−k + q, ↓), we consider the difference

∆kFx(ky, q, h) ≡ k↓Fx(ky − qy, h) − k↑Fx(ky, h) + qx (1)

between the Fermi surface of up-spin electrons and that of
down-spin electrons shifted by q. This function is expanded
as

∆kFx(ky, q, h) =
∞∑

k=n

ck(q, h)
[
ky − k0

y (q, h)
]k

(2)

near ky = k0
y (q, h), which is defined by ∆kFx(k0

y (q, h), q, h) =
0, where n ≥ 1 and cn , 0. When n = 1, the Fermi sur-
faces cross each other as shown in Fig. 1(a), and Hc2 is not
strongly enhanced by the FFLO state. However, when n ≥ 2,
they touch each other as shown in Fig. 1(b) – (d), and thus,
the upper critical field is strongly enhanced. In general, for a
larger n, ∆kFx(ky, q, h) is smaller near ky = k0

y , and thus, the
upper critical field is more strongly enhanced because elec-
tron pairs having small ∆kFx substantially contribute to the
FFLO state. Note that in Fig. 1, the difference between the
Fermi surfaces of up- and down-spin electrons is magnified
for clarity. In actuality, because usually h ∼ µeHP ∼ ∆0 ≪ W
and we take the limit ∆0/W → 0 in the weak coupling the-
ory, the difference between the Fermi surfaces determined by
ξσ(k, h) = 0 and ξσ(k, 0) = 0 is too small to be visible in
the Brillouin zone, where ∆0 and W are the zero-field gap and
band width, respectively. (This is why we do not specify the
magnitude of the magnetic field when we use the phrase “the
shape of the Fermi surface.”)

It might be confusing that the equations ξσ(k, h) = 0 de-
termine the shapes of the Fermi surfaces at finite fields, and
hence, the information contained in the shapes of the Fermi
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surfaces might appear to be equivalent to that contained in the
equations ξσ(k, h) = 0, which lead to Eqs. (1) and (2). How-
ever, h in ξσ(k, h) = 0 does not affect the (visible) shape of
the Fermi surface, because h ≪ W. In contrast, we cannot
replace ξσ(k, h) with ξσ(k, 0) in the gap equation, even when
h ≪ W, because hc ∼ ∆0. Hence, the equations ξσ(k, h) con-
tain more information than just the shape of the Fermi surface
at zero field (or those at weak fields such that h ≪ W). The
derivatives of ϵ(k) on the Fermi surface cannot be obtained
from the shape of the Fermi surface, because they depend not
only on the values of ϵ(k) on the Fermi surface but also the
values infinitesimally off the Fermi surface.

On the basis of the argument around Eqs. (1) and (2), the
origin of the cusps can be generally explained as follows. Let
us consider the upper critical field Hc2(p) as a function of
a certain parameter p, such as ϕ and the hole density nh. It
is verified by a geometric consideration that when q is opti-
mized, n = 2 for almost all p in quasi-two-dimensional super-
conductors; however, at particular values of p, the factor c2
for the optimal q can vanish, which means n ≥ 3, and Hc2(p)
exhibits a cusp, as found in our previous papers.26, 31) We refer
to such a value of p as pcusp. In the square lattice system,31, 32)

the structure of the Fermi surface changes when nh changes,
and thus, Hc2 is a function of nh. In this case, the cusp occurs
in Hc2(nh) at the hole density ncusp

h = 0.630, where n = 4,
and Hc2 exceeds five times HP near nh = ncusp

h because of the
FFLO state. In the present Q1D system,26) the cusp occurs
in Hc(ϕ) at particular angles ±ϕcusp, and Hc2 is extremely en-
hanced near ϕ = ±ϕcusp as mentioned above. In contrast to
the former case, n = 3 at ϕ = ±ϕcusp (Ref. 35). These phe-
nomena are physically the same, except for the fact that the
controlled parameters are different. Other possible examples
of the controlled parameter p are a pressure, an electric field,
and a doping ratio of a chemical element.

kyky

0

kx

n = 1

kyky

0

kx

n = 2

(a) n = 1 (b) n = 2

kyky

0

kx

n = 3

kyky

0

kx

n = 4

(c) n = 3 (d) n = 4

Fig. 1. Schematics that explain the intersections of the Fermi surfaces at
ky = k0

y with different values of n. The solid black and dashed red curves rep-
resent the Fermi surfaces of up-spin electrons and those of down-spin elec-
trons shifted by q, respectively.

On the basis of the above argument, the purpose of the
present study can be explained as follows. Equation (2) clari-
fies that both the shape of the Fermi surface and derivatives of
ξ(k) concern the nesting effect for the FFLO state. It is eas-

ily verified that the expression for ϕcusp contains the deriva-
tives of ξ(k) up to the third order. Hence, we cannot precisely
predict the value of ϕcusp only from the shape of the Fermi
surface. However, if there exists any intuitive method to ap-
proximately predict ϕ0, it would be convenient for practical
use. We search for such a method in the following, examin-
ing ϕ0 for many parameter sets chosen systematically so that
a broad range of parameter sets is covered.

3. Model and Typical Theoretical Results
We examine a generic Q1D system having two intra-chain

hopping integrals tS1 and tS2 and four inter-chain hopping in-
tegrals tI1, tI2, tI3, and tI4, which are depicted in Fig. 2. We
consider this model because it includes an approximate model
of (TMTSF)2ClO4,26, 36, 37) where the anion order38, 39) is ig-
nored. When the molecules are dimerized, the sites A and
B are inequivalent, and each pair of adjacent sites A and B
constitutes a lattice site. For this lattice, we assume a half-
filled hole band, which corresponds to a quarter-filled hole
band when the sites A and B are equivalent.

For an explicit calculation of the optimal angle, we need
to assume cell parameters.40) As an example, we adopt those
for (TMTSF)2ClO4,36, 41) i.e., a = 7.083 Å, b = 7.667 Å,
c = 13.182 Å, α = 84.40◦, β = 87.62◦, and γ = 69.00◦, where
we halve the lattice constant b because the anion order is ig-
nored.

tI3

tS1
tS2

tI1 tI2

γ

tS1
tS2 tS1

tS1

tS2

tI4

A B A

BA A B

b

a

tI1

B

Fig. 2. Definitions of the hopping integrals presented in real space. The
nodes labeled by A and B correspond to TMTSF molecules that are inequiv-
alent in the unit cell. The hopping integrals between the sites A and B con-
nected by the thick black solid lines are tS1 and tS2. Those between the sites
connected by the thin red solid, thick blue dashed, thick green short-dashed,
and thin black dotted lines are tI1, tI2, tI3, and tI4, respectively. The angle γ and
the lengths of the lines reflect the real lattice parameters of (TMTSF)2ClO4
described in the text.

We define the components of the crystal momentum k as
kx = k ·a, ky = k · b, and kz = k · c, where a, b, and c are the
lattice vectors along the crystal a-, b-, and c-axes, respectively.
The electron dispersion relation is expressed as26, 37, 42)

ϵ(k) = ϵAA(k) − ϵAB(k), (3)

where

ϵAA(k) = −2tI3 cos ky − 2tI4 cos(kx − ky),

ϵAB(k) =
√
ϵ20 + [ϵ1(k)]2,

(4)
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and

ϵ20 = t2
S1 + t2

S2 + t2
I1 + t2

I2,

ϵ21 = 2tS1tS2 cos kx + 2(tS1tI1 + tS2tI2) cos ky

+ 2(tS1tI2 + tS2tI1) cos(kx − ky)

+ 2tI1tI2 cos(kx − 2ky).

(5)

We assume the d-wave pairing interaction43–45) presented in
our previous letter,26) which induces the gap function of the
form ∆(s, ky) = ∆dγd(s, ky), where kx = skFx(ky) and γd(ky) =√

2 cos ky. The equation for the critical field is shown in the
previous papers.25, 26, 31) For each ϕq = ϕ, the magnitude q =
|q| takes the value that maximizes the upper critical field.

Figure 3 shows the behaviors of hc(ϕ) ≡ µeHc2(ϕ) for sam-
ples of the parameter sets in which the cusps emerge. The
zero-field gap ∆d0 is defined by ∆d0 = 2ωc exp(−1/λd), where
λd and ωc denote the dimensionless coupling constant and the
cut-off frequency, respectively. The Pauli paramagnetic limit
is calculated by using the formula shown in Ref. 31. The pro-
file of Hc2(ϕ) sensitively changes when the inter-chain hop-
ping integrals vary. For example, the optimal direction can
fall in any quadrant depending on the inter-chain integrals,
whereas the maximum of Hc2(ϕ) tends to avoid the directions
near the crystal b- and b′-axes. We examine these behaviors
more systematically below.

−5

0

5

a

b′
b

h
c
(φ

) 
/ 
∆ d

0

φ

S1

S2
S3

tS1 tS2 tI1 tI2 tI3 tI4
S1 1 1 −1/6 −1/6 1/6 1/12
S2 1 1 −1/6 0 0 1/12
S3 1 1 −1/6 −1/3 1/3 0

Fig. 3. Upper critical fields at T = 0. The blue solid, blue dashed, and red
short-dashed curves show the results for the parameter sets S1, S2, and S3,
respectively.

To examine the effect of the distortion of the Fermi surface,
we define parameters that quantify the shape of the Fermi sur-
face. The open Q1D Fermi surface consists of two sheets with
kx > 0 and kx < 0, each of which is warped, and the two sheets
are shifted in opposite directions along the ky-axis, analogous
to the shear distortion of continuum media. Hence, we con-
sider two characteristics: the warp of each sheet and the shear
distortion between the two sheets, the degrees of which are
quantified by kw = kt

x − kb
x and ks = 2kt

y, respectively, where
(kt

x, k
t
y) ≡ kt and (kb

x, k
b
y ) ≡ kb are the top and bottom of the

warped sheet with kx > 0, respectively. These definitions are
depicted in Fig. 4 for clarification. The quantities kw and ks

are functions of tS ≡ (tS1, tS2) and tI ≡ (tI1, tI2, tI3, tI4), and ks
has the periodicity ks(tS, tI) = ks(tS,−tI) + 2π.

−0.5 0 0.5
−1

0

1

kx  / 2π

k y
  /

 π ks

kw

k
t

k
b

−k
t

−k
b

Fig. 4. Definitions of ks and kw. The black solid curves show the sheets of
the Q1D open Fermi surface. The black closed circles show the top and bot-
tom momenta ±kt and ±kb, respectively. The elements kx and ky are plotted
in the rectangular window for convenience; however, the angle between a
and b is properly treated in the calculation.

4. Numerical Results
In this section, we examine the correlations between the

optimal in-plane magnetic-field angle ϕ0 and the structure of
the Fermi surface and additionally investigate the maximum
value of the magnitude of the upper critical field Hc2(ϕ0).
First, we examine the effects of each hopping integral, and
then we examine the correlation between ϕ0 and the shape of
the Fermi surface.

4.1 Effect of staggered intra-chain hopping integrals
We examine the dependences of ϕ0 and hc(ϕ0) on the

ratio tS2/tS1 of the two intra-chain hopping integrals. For
(TMTSF)2ClO4, this ratio deviates from unity because of the
dimerization of TMTSF molecules. Figure 5 shows the nu-
merical results, which imply that ϕ0 and hc(ϕ0) are not sub-
stantially modified for small deviations realistic for conven-
tional Q1D organic conductors. For example, it has been sug-
gested in previous studies36, 46) that the deviation is 14–16%
in (TMTSF)2ClO4.

4.2 Dependence on inter-chain hopping integrals
The dependences of hc(ϕ0) and ϕ0 on the inter-chain hop-

ping integrals are much stronger than those on the intra-chain
hopping integrals. Among them, the value of tI4 affects ϕ0 and
hc(ϕ0) most significantly. Two examples are shown in Fig. 6.
As shown in the lower panel, ϕ0 varies substantially when tI4
varies. The upper panel shows that hc(ϕ0) also strongly de-
pends on tI4. This tendency is emphasized when the other
inter-chain hopping integrals are small. An example can be
found by comparison between the black solid and red dashed
curves in Fig. 6.

The dependence of ϕ0 on the other inter-chain hopping in-
tegrals tI1, tI2, and tI3 is relatively weak, as shown in Fig. 7. In
this figure, hc(ϕ0) significantly increases near tI1 = −tI2, when
tI3 = tI4 = 0 because the Fermi surface is flat at this point.
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0.8 1 1.2 1.4
−0.3

−0.2

−0.1

0

0

2

4

φ 0
 / 

π

tS2 / tS1

tI4 = tS1 /15

h
c
(φ

0
) 

/ 
∆ d

0

tI4 = tS1 /15

tI4 = 0

tI4 = 0

Fig. 5. tS2/tS1 dependence of the optimal angle ϕ0 (lower panel) and hc(ϕ0)
(upper panel) for (tI1, tI2, tI3) = (−1,−2, 2) tS1/6. The black solid and red
dashed curves are the results for tI4 = 0 and tI4 = tS1/15, respectively.

−0.1 0 0.1
−0.5

0

0.5

0

5

φ 0
 / 

π

tI4 / tS1

tI3 =  tS1 / 3

h
c
(φ

0
) 

/ 
∆ d

0

tI3 =  tS1 / 3

tI3 =  tS1 / 6

tI3 =  tS1 / 6

Fig. 6. tI4 dependences of ϕ0 and hc(ϕ0) when tS1 = tS2, tI1 = −tS1/6,
and tI2 = −tS1/3 are assumed. The black solid and red dashed curves are the
results for tI3 = tS1/6 and tI3 = tS1/3, respectively.

For such a flat Fermi surface, however, the FFLO state is sup-
pressed because the nesting instability to SDW or CDW is
induced by the strong short-range repulsions, electron–lattice
interactions, and lattice deformations, which exist in real ma-
terials.

In Figs. 6 and 7, ϕ0 jumps at some values of inter-chain
hopping integrals, and these jumps correspond to jumps of the
nesting vector. Because the inter-chain hopping integrals vary
with the applied pressure, the jumps of ϕ0 may be observed
in compounds with appropriate hopping integrals when the
applied pressure increases.

The behaviors of ϕ0 and hc(ϕ0) in wider ranges of the hop-
ping integrals are shown in Fig. 8. In the left panels, ϕ0 is
small in the light-blue and light-green areas. When tI4 = 0,
such areas are large, especially where hc(ϕ0) is large (the dark-
red area in the right panel). In the top-right panel, the curve of

−0.2 0 0.2
−0.5

0

0.5

0

10

20

φ 0
 / 

π

tI2 / tS1

tI3 =  tS1 / 6

tI3 = 0

h
c
(φ

0
) 

/ 
∆ d

0

tI3 = 0

tI3 =  tS1 / 6

Fig. 7. Behaviors of ϕ0 and hc(ϕ0) as functions of tI2 when tS1 = tS2, tI4 =
0, and tI1 = −tS1/6. The black solid and red dashed curves show the results
for tI3 = 0 and tI3 = tS1/6, respectively.

ϕ0 = 0 (the dashed curve) runs through the dark-red area. This
implies that the optimal direction, if the FFLO state is stabi-
lized, tends to be parallel to the a-axis when tI4 = 0. As tI4
increases, however, the blue and green areas become darker
where hc(ϕ0) is large. The curve of ϕ0 = 0 shifts, and the
dark-red area moves away from the dashed curve. The dark-
red areas in the right panels and the dark-blue or dark-green
areas in the left panels occupy a larger common area for a
larger tI4, which implies that the optimal direction approaches
the b′-axis (ϕ0 = ±π/2). The points marked by the closed cir-
cles represent the parameter sets Pave, M1, and M2, which can
be realistic for (TMTSF)2ClO4. These points are close to the
boundaries on which ϕ0 = ±π/2, and hc(ϕ0) is large at these
points, as found in our previous letter.26)

It is also found in the left panels in Fig. 8 that ϕ0 can jump
when the hopping parameters change, and such jumps corre-
spond to the jumps in ϕ0 found in Fig. 7. In particular, the
jump occurs on some parts of the boundaries between the ar-
eas of ϕ0 > 0 and ϕ0 < 0.

4.3 Effect of Fermi-surface distortion on optimal in-plane
magnetic-field direction

Next, we examine the correlation between the optimal an-
gle ϕ0 and the shape of the Fermi surface. (Note that h does
not affect the shape of the Fermi surface drawn in the Brillouin
zone, because h is much smaller than the hopping integrals.)
To find the correlation, we examine a wider region of the inter-
chain hopping integrals that is presented in Table I, where
tS2/tS1 = 0.85. In this region, we sample tI = (tI1, tI2, tI3, tI4)
using a 17 × 17 × 17 × 17 grid. We exclude tI for which the
warp of the Fermi surface is so large that kw > 0.2π or the
Fermi surface is closed.

Figure 9 shows the correlation between the shear distortion
of the Fermi surface quantified by ks and the optimal field
angle ϕ0. It is found that most points concentrate in the re-
gion −0.01 <∼ ϕ0/π <∼ 0.1, which implies that the optimal
field direction is roughly parallel to the a-axis. Therefore, con-
sidering the fact that the orbital pair-breaking effect is weak
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Fig. 8. Phase diagrams in the tI2tI3 planes for various values of tI4, where
tS2 = 0.85tS1 and tI1 = 0.129tS1 are assumed. The color scales are shown in
the bottom panels. The solid curves are the boundaries of the areas in which
the Fermi surface is open. The boundaries between the areas of ϕ0 > 0 and
ϕ0 < 0 are presented by the dashed and dotted curves, on which, where ϕ0
is continuous, ϕ0 = 0 and ϕ0 = ±π/2, respectively. The parameter sets Pave,
M1, and M2 have been defined in our previous letter.26)

when ϕ0 ≈ 0, we can predict that the FFLO state is stabilized
most likely when the magnetic field is roughly parallel to the
a-axis in Q1D systems with open Fermi surfaces. However,
when the shear distortion of the Fermi surface is in the region
|ks − π/2 ± π| <∼ 0.4π, the optimal angle ϕ0 can substantially
deviate from 0. The parameter sets Pave, M1, and M2 are sit-
uated in this region, as presented by the violet closed squares
in Fig. 9. As ks increases in the region |ks−π/2±π| <∼ 0.4π, ϕ0
tends to increase from −0.42π to γ, although the correlation
between ϕ0 and ks is weak. It is also found that the field direc-
tions nearly parallel to the open direction of the Q1D Fermi
surface (γ <∼ ϕ0 < π/2) cannot be the optimal direction. This
implies that the FFLO vector, i.e., the nesting vector for the

FFLO state, cannot point in this direction.

Table I. Parameter regions and intervals in sampling parameter sets, for
which the correlations between ϕ0 and the shape of the Fermi surface are
examined. We assume that tS2/tS1 = 0.85.

Parameter Region Interval
tI1/tS1 [−0.8, 0.8] 0.1
tI2/tS1 [−0.8, 0.8] 0.1
tI3/tS1 [−0.4, 0.4] 0.05
tI4/tS1 [−0.2, 0.2] 0.025
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Fig. 9. Correlation between ϕ0 and ks, where the parameter sets are sys-
tematically sampled as explained in Table I and the text. Only the points for
which hc > 3∆d0 are plotted. The short-dashed line represents ϕ0 = γ =

69.0◦. The violet closed squares represent the results for the parameter sets
Pave, M1, and M2. The red closed triangles, blue closed diamonds, and orange
closed inverted triangles are the results of parameter sets named Ak , Bk , and
Ck , respectively, which are explained in the text.

Let us focus on the parameter sets A1, A2, and A3, which
result in the red closed triangles in Fig. 9. They give ap-
proximately the same values (ks, kw) ≈ (−0.6π, 0.08π), which
implies that their Fermi surfaces have the same degrees of
shear distortion and warp, and thus, as shown in Fig. 10, their
shapes are similar. Despite this fact, the optimum angles ϕ0
for A1, A2, and A3 are quite different, as shown in Fig. 9, i.e.,
ϕ0 = 0.104π, 0.0111π, and −0.246π, respectively.

The parameter sets B1, B2, and B3, which result in the
blue closed diamonds in Fig. 9, give another example in
which the Fermi surfaces with approximately the same values
(ks, kw) ≈ (−0.4π, 0.05π) yield quite different optimum an-
gles: ϕ0 = 0.173π, 0.00559π, and −0.301π, respectively. For
B1, B2, and B3, the shapes of the Fermi surfaces are shown in
Fig. 10.

Conversely, Fermi surfaces with completely different
shapes can yield the same optimum directions. The param-
eter sets C1, C2, and C3, which result in the orange closed
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Fig. 10. Shapes of the Fermi surfaces for the parameter sets A1, A2, A3,
B1, B2, and B3 shown in Fig. 9.
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Fig. 11. Shapes of the Fermi surfaces for the parameter sets C1, C2, and
C3 shown in Fig. 9.

inverted triangles in Fig. 9, yield approximately the same op-
timum directions ϕ0 ≈ −0.08π, whereas they give quite dif-
ferent shapes of the Fermi surfaces, as shown in Fig. 11.

These results for Ak, Bk, and Ck imply that, when −0.8π <∼
ks <∼ −0.2π and 1.2π <∼ ks <∼ 1.8π, although there is a weak
tendency as mentioned above, the optimum direction cannot
be predicted by simple consideration based on the shape of
the Fermi surface.

Next, we examine the correlation between θs and ϕ0 and its
dependence on kw, where θs is the shear angle defined by

tan θs =
kt · b̂′
kt · â , (6)

where â and b̂′ are the unit vectors parallel to the a- and
b′-axes, respectively. As depicted in Fig. 12, θs is the angle
between the vector kt and the crystal a-axis in real space.
Figure 13 shows that most points concentrate in the region
−0.02π <∼ ϕ0 <∼ 0.1π, which means that the optimal field di-
rection is roughly parallel to the a-axis. However, when the
warp of the Fermi surface is small, as illustrated by the red
open circles for kw < 0.13π, while the shear distortion is mod-
erate, i.e., for −0.3 <∼ θs/π <∼ −0.1 or for 0.15 <∼ θs/π <∼ 0.3,
the optimal angle ϕ0 can substantially deviate from 0, exhibit-
ing a tendency to increase from −0.42π to γ for increasing θs
in these regions.

5. Summary and Discussion
We examined strongly Pauli-limited Q1D type-II supercon-

ductors using a model that has two intra-chain hopping in-
tegrals tS1 and tS2 and four inter-chain hopping integrals tI1,

Γ

X

Y

θ
s

k
t

Fig. 12. Definition of θs [Eq. (6)]. The dotted line represents the direction
of the a-axis.
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Fig. 13. Correlation between θs and ϕ0, where the parameter sets are sys-
tematically sampled as explained in Table I and the text. Only the points for
which hc > 3∆d0 are plotted. The red open circles and blue open triangles
show the points of kw < 0.13π and 0.2π > kw > 0.13π, respectively. The
short-dashed straight lines represent ϕ0 = γ and θs = γ, where γ = 69.0◦.

tI2, tI3, and tI4, as depicted in Fig. 2. We focused on the sys-
tems having an open Fermi surface that consists of two sheets
of kx > 0 and kx < 0. Because the upper critical field is
significantly enhanced for the in-plane magnetic field when
ϕ ≈ ±ϕ0, we examined the behaviors of ϕ0 and Hc2(ϕ0) that
depend on the structure of the Fermi surface.

First, we examined the effect of the deviation of the intra-
chain hopping integrals tS1 and tS2, which is present in organic
conductors such as (TMTSF)2ClO4. It was found that this de-
viation does not have a major effect on ϕ0 and Hc2(ϕ0). Next,
we examined the effects of changes in the inter-chain hop-
ping integrals, which can be induced by applied and chemical
pressures. It was found that they change both ϕ0 and Hc2(ϕ0)
significantly. In particular, jumps in ϕ0 were predicted, and
they would be interesting phenomena if observed. Among the
inter-chain hopping integrals, tI4 has the most significant ef-
fect on ϕ0. The optimal in-plane magnetic-field direction ap-
proaches the b′-axis when tI4 increases. If ϕ0 as observed in
(TMTSF)2ClO4 is to be realized, tI4 must be sufficiently large.

We also examined the correlation between ϕ0 and the shape
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of the Fermi surface. We defined kw to quantify the warp of
each sheet, and we defined ks and θs to quantify the shear dis-
tortion between the two sheets. Although the correlation is
weak, we found some tendencies: in most cases, the optimal
field direction is roughly parallel to the a-axis and tends to
be slightly rotated toward the b-axis (−0.01 <∼ ϕ0/π <∼ 0.1).
This asymmetry with respect to ϕ0 = 0 is due to the fact that
γ < π/2. In addition, the orbital pair-breaking effect, when in-
corporated, is weakest for a magnetic field parallel to the most
conductive chain. Therefore, the present result implies that in
most cases, the FFLO state is stabilized for magnetic-field di-
rections roughly parallel to the a-axis. In contrast, when the
warp is small while the shear distortion is moderate, ϕ0 can
take any value except for the values between the b- and b′-
axes. In terms of kw and ks, this condition is expressed as
kw <∼ 0.13π and |ks − π/2 ± π| <∼ 0.4π. When these conditions
are satisfied, Fermi surfaces with similar shapes can result in
quite different values of ϕ0, and conversely, Fermi surfaces
with entirely different shapes can result in the same value of
ϕ0.

We assumed d-wave pairing in the present calculation;
however, this assumption does not affect the behavior of ϕ0
significantly. We confirmed by explicit calculations that the
value of ϕ0 is not strongly affected by the difference in the
pairing symmetry, unless the node of the order parameter
is close to the nesting point on the Fermi surface. We also
confirmed that for the same reason, the order-parameter mix-
ing47–49) does not affect the value of ϕ0, although it affects the
magnitude of the upper critical field and the tricritical temper-
ature.

The present result does not explain the magnetic-field and
temperature dependences of the optimal angle ϕ0 observed in
(TMTSF)2ClO4. This discrepancy may be resolved if the or-
bital pair-breaking effect is incorporated: if vortex states with
higher Landau-level indexes occur, the order-parameter mod-
ulation in the direction perpendicular to the magnetic field
is practically a perpendicular component of the FFLO vector
q,4, 5, 21, 29) which implies that ϕq , ϕ. Therefore, the orbital
pair-breaking effect may cause the temperature dependence of
ϕ0.

The orbital pair-breaking effect also strongly reduces the
magnitude of the upper critical field. However, since the upper
critical fields near ϕ = ±ϕ0 are very large in the above result, it
is likely that they would exceed the Pauli paramagnetic limit
for such field directions, even if it is reduced by the orbital
pair-breaking effect.

In conclusion, the dependence of the optimal in-plane
magnetic-field direction on the structure of the Fermi surface
was clarified in Q1D systems with open Fermi surfaces. We
expect that the results summarized above can be useful for
future studies on the FFLO state in Q1D conductors.
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