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The scaling theory for critical phenomena is extended to coupled magnetic systems that consist of two subsystems,
and some extended relations of critical exponents are derived. It is shown that the extended theory practically reduces to
the conventional scaling theory in ferromagnets and in non-ferromagnetic systems with β1 = β2; however, the extended
form of the theory can be relevant otherwise, where β1 and β2 are exponents of the order parameters in subsystems 1
and 2, respectively. The theory is applied to a model of the organic πd antiferromagnet λ-(BETS)2FeCl4, which contains
π- and d-spin subsystems, where BETS stands for bis(ethylenedithio)tetraselenafulvalene. It is shown that an effective
Hamiltonian for the π spins is reduced to the two-dimensional Ising model in the vicinity of the critical temperature
Tc. This supports a conjecture from a recent experimental observation. Consequently, β1 = 1/8 is obtained, where
subsystems 1 and 2 correspond to the π- and d-spin systems, respectively. Additional relations α = 1 − β1 − β2 and
β1 = β2 ≡ β are derived from specific features of the λ-(BETS)2FeCl4 system. These relations result in α = 1 − 2β,
which was previously obtained in a free-energy functional model. Critical exponents below Tc are obtained as α = 3/4,
β = 1/8, γ = 1, δ = 9, ψ = 1/5, and ν = 5/8. The value of α is close to a recent experimental result of α = 0.77 in
λ-(BETS)2FeCl4.

The phase transition and critical phenomena in coupled
magnetic systems have been examined experimentally1–5)

and theoretically6–9) in connection with the organic πd
antiferromagnet λ-(BETS)2FeCl4,10–17) where BETS stands
for bis(ethylenedithio)tetraselenafulvalene. In this compound,
the long-range order is principally sustained in a π-electron
system2) despite the large length of d spins. This phenomenon
originates from the fact that J1 ≫ J2 ≈ 0,12, 13) where J1
and J2 denote the coupling constants of the interactions be-
tween π electrons and between d spins, respectively. Despite
its large value, J1 does not induce the transition by itself, be-
cause the π-electron system is two-dimensional and isotropic
in the spin space.2, 6, 18, 19) Instead, an effective interaction be-
tween π-electrons via d-spins6–9) introduces anisotropy in the
spin space and induces the transition at a temperature Tc. Con-
sequently, J1 ≫ Tc ≫ J2 is satisfied, where we use units in
which kB = 1.

The phenomena in the vicinity of Tc are also intriguing;
for example, the magnetic specific heat C(T ) exhibits an
extremely sharp peak around Tc.1–5) This phenomenon can
be understood9) as a consequence of the mismatch between
the energy scales of Tc and J1, which is a unique feature
of this compound as mentioned above. Furthermore, it was
predicted9) that the system undergoes a pseudo second-order
phase transition with a small drop in the order parameter at Tc
(the transition finally becomes a first-order transition), which
originates from a reduction of the effective interaction be-
tween the π electrons7) due to a logarithmic divergence of
the fluctuations at Tc. The small drop in the order parame-
ter agrees with a small hysteresis in the specific heat, which
was observed recently.5) When the logarithmic divergence is
ignored, the first-order transition does not occur; instead, the
system undergoes a second-order transition with a transition
temperature T (2nd)

c that is slightly higher (<∼ 0.1 %) than the
true Tc.

The critical exponents can be defined in the temperature re-

gion where the influence of the first-order transition is negli-
gible. The width of the temperature region in which the first-
order transition is significant must be of the same order as
T (2nd)

c − Tc <∼ 10−3Tc, which is extremely small. In the previ-
ous study,9) the Gaussian approximation was adopted to ex-
amine the fluctuation near Tc, and the conventional results for
the critical exponents in the Gaussian model, such as α = 1/2,
were obtained; however, those values are artifacts due to the
approximation. In this Letter, we examine critical exponents
using the scaling theory,20–25) in which the Gaussian approxi-
mation is not used. In the first part, we extend the theory to a
generic coupled magnetic system. In the second part, we ap-
ply it to a model of the πd antiferromagnet λ-(BETS)2FeCl4,
taking into account specific features of this compound. We
consider the system below Tc.

Coupled magnetic systems – We consider generic coupled
systems that consist of two subsystems ℓ = 1, 2 on lattices
Lℓ in d dimensions. We refer to the spins on sites i ∈ L1 and
i′ ∈ L2 as si and Si′ , respectively, where the spin-quantization
axis z for the spin on each site is taken in the direction of each
magnetization below Tc so that the order parameters are de-
fined by m = ⟨sz

i ⟩ and M = ⟨S z
i′⟩. We refer to the magnitudes

of si and Si′ as s and S , respectively. We define τ = T − Tc
and symmetry-breaking fields h1 > 0 and h2 > 0, which are
coupled with sz

i and S z
i and stabilize m > 0 and M > 0, re-

spectively. We define the free energy per site f (τ, h1, h2) that
gives

m(τ, h1, h2) ≡ − ∂ f
∂h1

, M(τ, h1, h2) ≡ − ∂ f
∂h2

.

Here, h1 and h2 are formally distinguished; however, they are
equated as h1 = h2 ≡ h in the arguments of physical quantities
at the field h. For example, the order parameters of subsystems
1 and 2 at the field h are expressed as m(τ, h) = m(τ, h, h) and
M(τ, h) = M(τ, h, h), respectively. We refer to the numbers of
spins in subsystems ℓ as Nℓ.

1



J. Phys. Soc. Jpn. LETTERS

Block spins and scaling hypothesis – In the vicinity of the
critical point, we consider the scale transformation by block
spins of size b, where the coherence length ξ ≫ b ≫ 1. We
refer to the block (the cell) that contains bd spins around a
spatial position labeled by j as B j(b). We define

s̄ j =
1
bd

∑
i∈B j(b)

si, S̄ j′ =
1
bd

∑
i′∈B j′ (b)

Si′ ,

and the block spins s̃z
j = s̄z

jb
ψ1 and S̃ z

j′ = S̄ z
j′b

ψ2 , where ψ1
and ψ2 denote the scaling dimensions of the block spins so
that the magnitudes of the block spins coincide with s and S ,
respectively.

The scaling hypothesis20–25) can be extended as

f (τ̃, h̃1, h̃2) = bd f (τ, h1, h2) (1)

for coupled systems, where τ̃ = τb1/ν and h̃ℓ = hℓbd−ψℓ . The
definition of τ̃ is consistent with the definition of the exponent
ν, i.e., ξ ∼ |τ|−ν. The free energy can be written in the form

f (τ, h1, h2) = fs(h1, h2)|τ|p + fl(h1, h2)
τ2

2
ln |τ|

+ ∆ f (τ, h1, h2)

with appropriate factors fs and fl and a positive and noninte-
ger exponent p, where ∆ f denotes the remainder term, which
is negligible near the critical point.

Relations of critical exponents – The exponents that are
not directly related to the order parameters satisfy the same
relations as those in conventional systems that consist of a
single kind of magnetic degrees of freedom (hereafter called
the conventional systems). The critical exponent α of the spe-
cific heat cheat is defined by cheat ∼ |τ|−α and obtained in
the same manner as that for the conventional systems. When
fs(0, 0) , 0 and p > 2, the most singular term of the specific
heat satisfies cheat ∼ |τ|p−2; hence, we obtain p = 2 − α. The
scaling hypothesis results in p = νd and

α = 2 − νd. (2)

In contrast, when fs(0, 0) = 0 or p ≤ 2, the most singular term
becomes cheat ∼ ln τ, which is expressed as α = +0.

When the order parameters in two subsystems are consid-
ered, the scaling hypothesis needs to be extended as presented
in Eq. (1), which results in the scaling relations for the order
parameters

m(τ̃, h̃1, h̃2) = bψ1 m(τ, h1, h2),

M(τ̃, h̃1, h̃2) = bψ2 M(τ, h1, h2).
(3)

For h = 0 and T < Tc, we define exponents βℓ by

m(τ, 0) ∼ |τ|β1 , M(τ, 0) ∼ |τ|β2 ,

and hence, from Eq. (3), we obtain

βℓ = νψℓ. (4)

For T = Tc and h > 0, we define exponents δ(ℓ′)
ℓ

by

m(0, h1, 0) ∼ h
1/δ(1)

1
1 , m(0, 0, h2) ∼ h

1/δ(2)
1

2 ,

M(0, h1, 0) ∼ h
1/δ(1)

2
1 , M(0, 0, h2) ∼ h

1/δ(2)
2

2 .

From Eq. (3), it follows that d − ψℓ′ = ψℓδ(ℓ′)
ℓ

. We also define
exponents δℓ of the order parameters of subsystems ℓ (= 1, 2)

by

m(0, h) ∼ h1/δ1 , M(0, h) ∼ h1/δ2 .

Because the leading terms are retained in these definitions, we
obtain δℓ = max(δ(1)

ℓ
, δ(2)

ℓ
). Hence, using Eq. (2) and (4), we

obtain

ψ1δ1 = ψ2δ2 = d − ψ0,

β1δ1 = β2δ2 = νd − β0 = 2 − α − β0,
(5)

where we define ψ0 ≡ min(ψ1, ψ2) and β0 ≡ min(β1, β2).
Before examining the susceptibilities, we define the func-

tions χℓℓ′ and their exponents γℓℓ′ as

χ1ℓ ≡
[
∂m(τ, h1, h2)

∂hℓ

]
h1=h2=0

∼ |τ|−γ1ℓ ,

χ2ℓ ≡
[
∂M(τ, h1, h2)

∂hℓ

]
h1=h2=0

∼ |τ|−γ2ℓ .

It follows from Eq. (3) that

γℓℓ′ = (d − ψℓ − ψℓ′ )ν, (6)

and hence, Eqs. (2) and (4) result in

α + βℓ + βℓ′ + γℓℓ′ = 2, (7)

which is an extension of the famous scaling relation α + 2β +
γ = 2.

The susceptibilities of subsystems 1 and 2 for the field h =
h1 = h2 are expressed as

χ1 =

[
∂m(τ, h)
∂h

]
h=0
= χ11 + χ12,

χ2 =

[
∂M(τ, h)
∂h

]
h=0
= χ21 + χ22,

and the exponents are defined by χℓ ∼ |τ|−γℓ . Because the
most singular terms are retained in these definitions, γℓ =
max(γℓ1, γℓ2); hence,

γℓ = (d − ψℓ − ψ0) ν, (8)

α + βℓ + β0 + γℓ = 2, (9)

where we have used Eqs. (6) and (7). Equations (8) and (9)
are also extensions of the conventional scaling relations, and
Eq. (9) leads to β1 + γ1 = β2 + γ2.

Ferromagnets – In ferromagnets, the total magnetization
Mtotal and the total magnetic susceptibility χ are defined
by Mtotal = N1m + N2M and χ ≡ N1χ1 + N2χ2, respec-
tively, and their exponents are defined by Mtotal(τ, 0) ∼ |τ|β,
Mtotal(0, h) ∼ h1/δ, and χ ∼ |τ|−γ. These definitions result in
β = β0, γ = max(γ1, γ2), and δ = max(δ1, δ2); hence, from
Eqs. (4), (5), (8), and (9), we obtain

α + 2β + γ = 2, β = β0 = νψ0,

γ =
(
d − 2ψ0

)
ν, δ = d/ψ0 − 1.

(10)

Therefore, in ferromagnets, the relations for conventional sys-
tems are recovered, where ψ0 is regarded as ψ.

Non-ferromagnetic systems – In non-ferromagnetic sys-
tems in which summations N1m+N2M and N1χ1+N2χ2 do not
have a clear physical meaning, we cannot define β, δ, and γ in
the same manner as those in ferromagnetic systems, and the
relations in Eq. (10) are not necessarily satisfied. In fact, when
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ψ1 , ψ2, the free energy f (τ, h) = f (τ, h, h) does not satisfy
the scaling hypothesis. Therefore, the extended relations, such
as Eqs. (4)–(9), can be relevant to non-ferromagnetic systems
when ψ1 , ψ2. In contrast, when ψ1 = ψ2 ≡ ψ, Eq. (1) is
reduced to the conventional scaling hypothesis

f (τ̃, h̃) = bd f (τ, h),

where h̃ = hbd−ψ. In this case, Eqs. (4), (5), (8), and (9) are
reduced to the conventional relations as

β ≡ β1 = β2 = νψ,

γ ≡ γℓℓ′ = γℓ = (d − 2ψ)ν,

δ = δ(ℓ′)
ℓ
= δℓ = d/ψ − 1,

α + 2β + γ = 2

(11)

for arbitrary (ℓ, ℓ′). The relation β1 = β2 implies that M ∝ m
is satisfied for h = 0.

Application to the πd antiferromagnet λ-(BETS)2FeCl4 –
For this compound below Tc, because the system is insulat-
ing, simplification by localized spin models would be useful.
According to previous studies,1–13) we can assume that the π
spin system is isotropic in the spin space, and the π–d interac-
tion is anisotropic. Assuming that subsystems 1 and 2 corre-
spond to the π- and d-spin systems, respectively, we consider
the model of coupled antiferromagnets8, 13) expressed by the
Hamiltonian H = H1 + H2 + H12 with

H1 =
∑
(i, j)

J1si · s j −
∑

i

h(i)
1 sz

i ,

H2 = −
∑

i

h(i)
2 S z

i , H12 =
∑

i

J12sz
i S

z
i .

(12)

The magnitudes of d spins are S = 5/2 because each FeCl4
anion has five d electrons. For the π spins, we must take into
account the dimerization of BETS molecules, and thus, we
assume that N1 = N2 ≡ N and s = 1/2.26) We set the lat-
tice constants as unity for convenience. We split the lattice of
subsystem ℓ into two sublattices Aℓ and Bℓ. The site index i
in subsystem 1 is defined so that i is an odd and even integer
when i ∈ A1 and i ∈ B1, respectively. Because J12 > 0, i ∈ B2
when i ∈ A1, whereas i ∈ A2 when i ∈ B1. Therefore, the
symmetry-breaking fields are expressed as h(i)

ℓ
= hℓ(−1)i+ℓ. In

the π–d interaction H12, each d spin is coupled with only a
single π spin.27) Because they are labeled with the same in-
dex as defined above, the interaction can be regarded as being
“on-site.”

In order to apply the scaling theory presented above, we
redefine the spin-quantization axis and spin operators so that
the (redefined) up spin is favored on every site. The resultant
Hamiltonians are

H1 = −
∑

(i, j),µ

Jµ1 sµi sµj −
∑

i

h1sz
i ,

H2 = −
∑

i

h2S z
i , H12 = −

∑
i

J12sz
i S

z
i ,

(13)

where Jz
1 = Jx

1 = J1 and Jy
1 = −J1.

Block Hamiltonian and Ising fixed point – For the com-
pound λ-(BETS)2FeCl4 near the critical temperature, it has
been conjectured from the specific heat that the sublattice
magnetization in the π-electron system exhibits a tempera-
ture dependence similar to that in the two-dimensional Ising

model.1, 5, 28) In the following, using the block-spin analysis,
we show that this conjecture is true.

Let us rewrite the Hamiltonians in Eq. (13) in terms of the
block spins s̃z

i and S̃ z
i . Because ξ ≫ b ≫ 1, the majority of the

spins in the same block behave coherently. Hence, we replace
sz

i and S z
i on site i ∈ B j(b) with s̄z

j = b−ψ1 s̃z
j and S̄ z

j = b−ψ2 S̃ z
j,

respectively. This results in

H12 ≈ −
∑

j

(b)
J̃12 s̃z

jS̃
z
j, (14)

where the summation
∑(b)

j is taken over all b−dN block spins
and

J̃12 ≡ J12bd−ψ1−ψ2 = J12bγ12/ν, (15)

because each d spin is coupled with only a single π spin. The
last equation follows from Eq. (6). Because it is plausible that
γ12 > 0, which will be confirmed later, we obtain J̃12 ≫ kBT
when ξ ≫ b ≫ 1. Therefore, in this limit, the block spins can
take the values s̃z

j = ±s and

S̃ z
j = sign(s̃z

j)S (16)

only, for which H12 falls to the lower limit −Ñ J̃12sS ≡ Ē12,
where Ñ ≡ N/bd. This implies that the block spins behave
like Ising spins s̃i = (0, 0,±s) near the critical point. Hence,
we obtain the effective Hamiltonian

Heff
1 = HI({s̃z

j/s}; Ñ, J̃1) −
∑

j

(b)
h̃I s̃z

j + Ē12 (17)

for subsystem 1 near the critical point, where h̃I = h̃1 + h̃2S/s
and HI is the Ising Hamiltonian defined by

HI({σ j}; Ñ, J) = −
∑
(i, j)

(b)
Jσiσ j.

It is difficult to find a form of the coupling constant J̃1 of the
interactions between the block spins in contrast to J̃12; how-
ever, it is reasonable to assume that they exist only between
the nearest-neighbor block spins.20) This is because the range
of the original interactions does not exceed the lattice con-
stant. Note that the effective Hamiltonian in Eq. (17) for sub-
system 1 is not suitable for calculation of physical quantities
to which fluctuations of the spins in H12 are relevant.

Exponents β1 and β2 of the πd antiferromagnet – From
Eq. (17), it follows29) that

m(τ, 0) = b−ψ1 mI(τ̃, 0), (18)

where mI denotes the order parameter in the Ising model,
which satisfies mI(τ, 0) ∼ |τ|βI with βI being the exponent in
the Ising model. Hence, Eq. (18) leads to

|τ|β1 ∼ b−ψ1 |τ̃|βI = b−ψ1 |τ|βI bβI/ν,

which results in β1 = βI. For the d spins, it follows30) from
Eq. (16) that

M(τ, 0) = b−ψ2 s−1S mI(τ̃, 0), (19)

which results in β2 = βI. Because it is reasonable to assume
that d = 2 in the present system,1–13) we can use the result
βI = 1/8 obtained in a previous theory;31) hence, we obtain

β = β1 = β2 =
1
8
. (20)
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Note that as shown in the above derivations, β1 = β2 (i.e.,
ψ1 = ψ2) is a consequence of the on-site π–d interaction.27)

Because β1 = β2, the conventional scaling theory is recovered
as explained above.

The above argument implies neither that the system is com-
pletely reduced to the Ising system nor that all the critical ex-
ponents coincide with those of the Ising model. For example,
α does not necessarily coincide with the exponent αI = +0
of the specific heat of the two-dimensional Ising model, be-
cause the principal contribution to the specific heat is from
the interaction term H12,9, 13) which does not appear in the
Ising model.32) This paradox can be understood by consid-
ering the difference in the relevance of ∆H12 ≡ H12 − Ē12
to the specific heat and order parameter. The probability that
|s̃z

j| significantly deviates from s due to ∆H12 is proportional

to e−βJ̃12 ≪ 1, which is negligible as long as J̃12 ≫ kBT is
satisfied. For this reason, in the effective Hamiltonian Heff

1 in
Eq. (17), the interaction term H12 has been replaced with the
constant Ē12, which results in β1 = βI. In contrast, ∆H12 is
relevant to the specific heat because the constant term Ē12
does not contribute to it at all. For a similar reason, the ef-
fective Hamiltonian Heff

1 is not suitable for the calculation of
χ1. If H12 were replaced with the constant Ē12, the influence
of the fluctuations of the d spins on χ1 would be completely
excluded from the consideration. In calculation of physical
quantities to which the fluctuations are relevant, such as the
specific heat and spin susceptibility, H12 cannot be replaced
with the constant Ē12, even when b ≫ 1.

Exponent α of the πd antiferromagnet – When almost the
entire specific heat comes from E12(τ) ≡ ⟨H12⟩, it holds that

cheat ∼ N−1 dE12

dT
∼ |τ|−α,

and hence, E12(τ) ∼ NJ12|τ|1−α. From Eq. (14), E12(τ) satis-
fies

bdE12(τ) = −
∑

j

J̃12⟨s̃z
jS̃

z
j⟩ ≡ Ẽ12(τ̃).

If the system is scale invariant, the function Ẽ12 should have
the same form as that of E12, which results in E12(τ̃, J̃12) =
bdE12(τ, J12) and ψ1 + ψ2 = (1 − α)/ν, where we have used
Eq. (15) and τ̃ = τb1/ν. Therefore, from Eq. (4), we obtain the
relation

α = 1 − β1 − β2. (21)

Using Eq. (20), we obtain

α = 1 − 2β =
3
4
. (22)

The first equation coincides with the relation obtained in a
free-energy functional model.9) The theoretical value of α in
Eq. (22) agrees with the experimental value α = 0.77 ≡ α(obs)

obtained by Nishio et al.5) As shown in the previous Letter,9)

due to the two-dimensionality of the system, the specific heat
has a logarithmic term in the vicinity of Tc; however, this term
is less singular than the term proportional to |τ|−α = |τ|−3/4.

Other exponents of the πd antiferromagnet – As mentioned
above, we can use Eq. (11) because β1 = β2; hence, using
Eqs. (2), (11), and (22), we obtain

γ = 1, δ = 9, ν =
5
8
, ψ =

1
5
. (23)

It also follows from Eq. (11) that γℓℓ′ = 1 and δℓ = δ
(ℓ′)
ℓ
= 9

for arbitrary ℓ and ℓ′.
Possible reason for the error – The difference between the

theoretical prediction α = 0.75 and the experimental result
α(obs) = 0.77 can be due to an experimental error and/or the-
oretical assumptions. The latter includes the localized spin
model of the π-electron system and the neglect of the in-
terlayer coupling. If the equation β1 = βI has an error, where
β1 = β2 ≡ β is satisfied, the relation α(obs) = 1 − 2β leads to
β = 0.115, which is slightly smaller than βI = 1/8 = 0.125.

As mentioned above, the localized spin model might not
be precise for the π electrons in the λ-(BETS)2FeCl4 system,
which are metallic above Tc. Even when the π electrons are
mobile, the form of H12 in Eq. (12) has been considered to be
appropriate,10, 33–35) and as long as the system is ordered and
ξ ≫ b ≫ 1 is satisfied, the approximation given by Eq. (14)
and J̃12 ≫ kBT would also remain correct. Hence, the ef-
fective Hamiltonian may be expressed in a form of the Ising
model; however, in this case, the length of the effective Ising
spins for the π electrons might be smaller than s = 1/2 be-
cause of the Fermi degeneracy.

Summary and conclusion – The scaling theory was ex-
tended to coupled magnetic systems, and some relations of
the critical exponents were derived. This extension can be rel-
evant to non-ferromagnetic systems in which ψ1 , ψ2, i.e.,
β1 , β2; however, the extended theory is practically reduced
to the conventional scaling theory for ferromagnets and for
systems with ψ1 = ψ2.

In the application to the πd system in λ-(BETS)2FeCl4 be-
low Tc, we obtained the following results in the vicinity of
Tc. First, the π-spin system is reduced to the two-dimensional
Ising system near Tc, which results in β1 = βI = 1/8. How-
ever, this does not imply that the system is completely reduced
to the two-dimensional Ising model. Second, β1 = β2, which
is a consequence of the fact that each d spin principally inter-
acts with only a single π spin. Hence, the conventional scaling
hypothesis is recovered. Third, α = 1 − β1 − β2, which fol-
lows from the fact that H12 makes the principal contribution
to the specific heat. Fourth, the exponents α, γ, δ, ν, and ψ
were obtained as presented in Eqs. (22) and (23). The expo-
nent α = 3/4 explains the experimental value α(obs) = 0.77.

In conclusion, the block-spin picture explains the observed
critical behavior of the specific heat below Tc. In future stud-
ies, the metallic nature of the π-electron system above Tc and
the metal–insulator transition should be incorporated.
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