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Fulde–Ferrell–Larkin–Ovchinnikov State in Perpendicular Magnetic Fields
in Strongly Pauli-Limited Quasi-Two-Dimensional Superconductors

Hiroshi Shimahara

Graduate School of Advanced Science and Engineering, Hiroshima University,
Higashi-Hiroshima 739-8530, Japan

(Received November 5, 2020)

We examine the Fermi-surface effect called the nesting effect for the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state
in strongly Pauli-limited quasi-two-dimensional superconductors, focusing on the effect of three-dimensional factors,
such as interlayer electron transfer, interlayer pairing, and off-plane magnetic fields including those perpendicular to
the most conductive layers (hereinafter called the perpendicular fields). We examine the systems with a large Maki
parameter so that the orbital pair-breaking effect is negligible, except for the locking of the direction of the FFLO vector
q in the magnetic-field direction. It is known that the nesting effect for the FFLO state can be strong in quasi-low-
dimensional systems in which the orbital pair-breaking effect is suppressed by applying the magnetic field parallel to
the layers. Hence, it has sometimes been suggested that the nesting effect may hardly enhance the stability of the FFLO
state for perpendicular fields. We illustrate that, contrary to this view, the nesting effect can strongly stabilize the FFLO
state for perpendicular fields as well as for parallel fields when tz is small so that the Fermi surfaces are open in the
kz-direction, where tz denotes the interlayer transfer energy. In particular, the nesting effect in perpendicular fields can
be strong in interlayer states. For example, in systems with cylindrical Fermi surfaces warped by tz , 0, interlayer states
with ∆k ∝ sin kz exhibit µeHc ≈ 1.65∆α0 for perpendicular fields, which is much larger than typical values for parallel
fields, such as µeHc = ∆s0 of the s-wave state and µeHc ≈ 1.28∆d0 of the d-wave state in cylindrical systems with tz = 0.
Here, µe and Hc are the electron magnetic moment and upper critical field of the FFLO state at T = 0, respectively,
and ∆α0 ≡ 2ωce−1/λα . We discuss the possible relevance of the nesting effect to the high-field superconducting phases
in perpendicular fields observed in the compounds CeCoIn5 and FeSe, which are candidates for the FFLO state. The
present result could potentially provide a physical reason for the fact that the areas in the phase diagrams occupied by
the high-field phases for the perpendicular and parallel fields are of the same order.

1. Introduction
The Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state1, 2)

has been examined in quasi-two-dimensional systems for can-
didate compounds, such as some organic and heavy fermion
superconductors.3–11) In many cases in theoretical studies,
two-dimensional models12) are useful as effective models of
quasi-two-dimensional systems; however, depending on the
problem under examination, the three-dimensionality of the
systems due to interlayer electron transfer must be treated ex-
plicitly, for example, when interlayer pairing and/or off-plane
magnetic fields play essential roles.

Since the FFLO state is a superconducting state induced
by Cooper pairs with a finite center-of-mass momentum q13)

(hereinafter called the FFLO vector), it significantly depends
on the Fermi-surface structure, for example, because of the
direction of q relative to the anisotropic Fermi surface. At the
same time, unless the orbital pair-breaking effect is too weak
or too strong,14–16) the direction of q is locked in the direction
of the magnetic field H; i.e., q ∥ H .14, 17) From this point
of view, it is physically interesting that all the candidates dis-
covered thus far are quasi-low-dimensional, which can be at-
tributed to the following two reasons: (i) the suppression of
the orbital pair-breaking effect when H is parallel to the most
conductive layers5, 18) (hereinafter called the ab-plane) and (ii)
the Fermi-surface nesting effect for the FFLO state.19–21)

For two of the strongest candidate compounds, CeCoIn5
and FeSe, reason (i) would not apply, because the conduction
electrons have large effective masses,8, 9, 22–24) which result in
large Maki parameters; hence, H would not need to be par-
allel to the ab-plane for the emergence of the FFLO state. In

fact, high-field superconducting phases, which can be consid-
ered to be the FFLO state, were observed22, 25) in these com-
pounds when H ∥ c as well as when H ⊥ c, where a, b, and
c denote the lattice vectors in the directions of the crystal a-,
b-, and c-axes.

The Fermi-surface nesting effect for the FFLO state men-
tioned in reason (ii) is an effect analogous with the nesting
effect for spin- and charge-density waves (SDW and CDW).
In quasi-low-dimensional systems, when nesting instabilities
such as SDW and CDW instabilities are suppressed by suffi-
cient distortion of the Fermi surfaces,21) the highly anisotropic
Fermi-surface structures help stabilize the FFLO state. The
nesting effect for the FFLO state can be examined by consid-
ering the overlap of one of the Fermi surfaces of the up- and
down-spin electrons and another that is shifted by q.20, 21) In
a simple two-dimensional model in which the interlayer elec-
tron transfer is neglected, the Fermi surfaces can touch on a
vertical line for H ⊥ c because q ∥ H as mentioned above,
whereas for H ∥ c, they cannot touch each other. Hence, it
may be thought that the nesting effect does not work when
H ∥ c in quasi-two-dimensional systems. For example, in
CeCoIn5 and FeSe, the high-field phases for H ∥ c may ap-
pear to be inconsistent with reason (ii) as well as with reason
(i). However, as shown in the following, the nesting effect can
work even when H ∥ c, in the presence of the warp of the
Fermi surfaces in the direction of c.

Motivated by these experimental and theoretical studies,
we examine the effects of three-dimensional factors, such
as interlayer electron transfer, interlayer pairing, and off-
plane magnetic fields including perpendicular fields. Off-
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plane magnetic fields can cause extreme phenomena, such as
vortex states with higher Landau-level indices, through the
orbital pair-breaking effect.15, 18, 26, 27) However, because the
orbital effect has been examined in previous studies, in the
present study we focus on the nesting effect in the absence of
the orbital effect. We also incorporate the possibility of inter-
layer pairing because, owing to the finite q, strong interplay
between the three-dimensional structures of the gap function
and the Fermi surface is expected. In addition, the FFLO state
is worth studying for interlayer pairing because of the com-
pound Sr2RuO4, for which both the FFLO state28) and inter-
layer pairing29, 30) can be considered.

For quasi-two-dimensional systems in perpendicular fields,
Song and Koshelev proposed a theory of interplay between
orbital-quantization effects and the FFLO state, and discussed
the FFLO state in FeSe when H ∥ c.31) In the present study,
we assume weaker magnetic fields.

In Sect. 2, we briefly review formulas and define the sys-
tems and states to be examined. In Sect. 3, we examine
systems with Fermi surfaces straight in the kz-direction. In
Sect. 4. we examine systems with warped Fermi surfaces. We
discuss the possible relevance of our results to the high-field
phases in the compounds CeCoIn5 and FeSe. The final sec-
tion summarizes and concludes the paper. We define the x-,
y-, and z-axes along the crystal a-, b-, and c-axes. The lattice
constants a, b, and c are absorbed into the definitions of the
momentum components kx, ky, and kz. We use units in which
ℏ = kB = 1, and we denote the electron magnetic moment by
µe = gµB/2. For convenience, we define the functions

fn(p) = −
∫ π

0

dx
π

cos(nx) ln
∣∣∣1 − p cos x

∣∣∣. (1)

Their explicit forms are shown in Appendix.

2. Formulas and Model
Formula for the Critical Field — We use the formula32) for

the upper critical field at T = 0

hc ≡ µeHc =
1
2
∆α0 max

q

[
e fα(q)] (2)

with

fα(q) = − 1

⟨|γα(k̂)|2⟩

〈
|γα(k̂)|2 ln

[
1 − vF · q

2hc

]〉
(3)

for the α-wave state with the gap function ∆k = ∆αγα(k̂),
where γα denotes a basis function of k̂ ≡ k/|k|, and ∆α0 ≡
2ωce−1/λα is a scale of the gap function.33) The average is de-
fined as

⟨g(k̂)⟩ =
∫

d2k̂

S 0

ρ(0, k̂)
N(0)

g(k̂) (4)

for an arbitrary g(k̂), where ρ(ξ, k̂) is the angle-dependent
density of states, N(ξ) is the density of states, and S 0 is an
appropriate normalization constant.34) The FFLO vector is the
vector q that gives the highest hc in accordance with the vari-
ational principle;21) however, only the magnitude q ≡ |q| is
optimized in Eq. (2) because q ∥ H in the present problem.
The formula in Eq. (2) is derived in the weak coupling the-
ory,32, 35) where a second-order transition is assumed. If the
second-order transition at hc is to occur, hc must exceed the
Pauli limit hP = µeHP.36)

The Pauli paramagnetic limit hP in anisotropic supercon-
ductors is given by the formula32, 35)

hP =

√
⟨|γα|2⟩
γ̄α

∆α0√
2
,

where γ̄α = exp[⟨|γα|2 ln |γα|⟩/⟨|γα|2⟩]. The inequality

hP ≤
∆α0√

2
(5)

can be proved in general as shown in Appendix. The equality
sign holds if and only if γα(k̂) is constant.

The real upper critical field would be smaller than the value
of hc given by Eq. (2) owing to negative effects, such as the or-
bital pair-breaking effect and the fluctuation effect. However,
the value of hc is useful because a higher hc must imply that
the free energy of the FFLO state at h ≡ µeH ∼ ∆0 is lower.
The value of hc can be regarded as an index of the strength of
the positive effects that stabilize the FFLO state.

Systems and States to be Examined — In the following, we
consider a three-dimensional structure of the order parameter
by assuming

γα(k̂) = γα(φ, kz) = γ∥α∥ (φ)γz
αz

(kz)

with α = (α∥, αz), where γ∥α∥ and γz
αz

are basis functions that
satisfy ∫ 2π

0

dφ
2π
|γ∥α∥ (φ)|2 =

∫ 2π

0

dkz

2π
|γz
αz

(kz)|2 = 1.

The Fourier transformation of ⟨ci↑c j↓⟩ verifies that γz
αz

(kz)
does not depend on kz if ⟨ci↑c j↓⟩ , 0 only for sites i and j
on the same layer, whereas γz

αz
(kz) depends on kz owing to

the factor e±ik·(Ri−R j) if ⟨ci↑c j↓⟩ , 0 for sites i and j on dif-
ferent layers, where ciσ denotes the operator of the electron
with spin σ on site i at Ri. We call the states of the former
and latter cases the intralayer and interlayer states, which are
induced by intralayer and interlayer attractive interactions, re-
spectively.37) We define the one-particle (electron or hole) en-
ergy

ξk = ϵ
∥
k∥
− 2tz cos kz − µ, (6)

where

ϵ∥
k∥
=

k2
x

2mx
+

k2
y

2my
(7)

with k∥ = (kx, ky).38) Equation (7) can be transformed into an
isotropic dispersion ϵ∥

k∥
= k̃2

∥ /2m by defining k̃∥ = (k̃x, k̃y),

k̃µ =
√

m/mµkµ, and m = √mxmy, and hence, all the equa-
tions for mx , my can be transformed into the corresponding
equations for mx = my = m (Appendix ). Therefore, we use

ϵ∥
k∥
=

k∥
2

2m
(8)

in the following for conciseness.
The present model can be effective for systems in which

the electron (or hole) density is small. For an arbitrary ϵ∥
k∥

, re-
defining the momentum coordinate appropriately and, if nec-
essary, making the electron-hole transformation, we can as-
sume that the minimum of ϵ∥

k∥
is at k∥ = (0, 0). Expanding ϵ∥

k∥
around k∥ = (0, 0) and redefining the kx- and ky-axes along
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the principal axes, we obtain Eq. (7) as an approximate form
when the carrier density is small.39)

3. Systems with Straight Fermi Surfaces
Before examining systems with tz , 0, let us examine sys-

tems with tz = 0. When tz = 0, the Fermi surfaces are straight
(elliptic) cylinders. The cylindrical system has been examined
in previous studies when the magnetic field is parallel to the
layers; however, the study in this section covers wider situa-
tions, including an arbitrary direction of H except for the c-
direction, interlayer pairing as well as intralayer pairing, and
systems with effective mass anisotropy mx , my. Equation (3)
reduces to

fα(q) = −
∫ 2π

0

dφ
2π
|γ∥α∥ (φ)|2 ln

∣∣∣1 − q̄ cosφ
∣∣∣, (9)

where q̄ = vFq∥/2hc, vF = k∥F/m, q∥ = |q∥|, and q∥ = (qx, qy).
Here, γz

αz
(kz) has disappeared from the equation; hence, the

argument in this section does not depend on αz.
First, we examine the states in which the symmetry of ∆k

is s-wave in each layer and arbitrary in the kz-direction.40) In
such states, γ∥s(φ) = 1, and hence, fα(q) = f0(q̄); i.e.,

fα(q) = −
∫ 2π

0

dθ
2π

ln
∣∣∣1 − q̄ cos θ

∣∣∣. (10)

Therefore, we obtain

fα(q̄) =
 − ln(q̄/2) for q̄ ≥ 1,
− ln
[{

1 + (1 − q̄2)1/2}/2] for q̄ ≤ 1, (11)

which is the same as the equation in the previous paper21)

except for the definition of q̄ and the extended applicability
mentioned above. From Eq. (2), it follows that hc = ∆α0 and
q̄ = 1. This result holds for an arbitrary symmetry in the kz-
direction and an arbitrary magnetic-field direction except for
H ∥ c.41)

The fact that Hc = ∆α0/µe is much larger than the Pauli
limit HP ≤ ∆α0/

√
2µe can be attributed to the nesting ef-

fect.21, 32, 35, 42–44) As shown in Fig. 1, the Fermi surfaces touch
on a line (hereinafter called the nesting line) by a displacing
vector q0 that has q∥ = 2hc/vF. The FFLO vector q obtained
above also has the same q∥ (= 2hc/vF), and the large value of
hc can be attributed to the fact that the Fermi surfaces touch
each other.

Next, we examine the states in which the symmetry of ∆k
is d-wave in each layer and arbitrary in the kz-direction.40)

For such states, we adopt γ∥d(φ) =
√

2 cos(2φ) as the principal
in-plane basis function. As many authors have reported,45) hc
depends on the direction of H∥, where H = (H∥,Hz). Let q0
denote the nesting vector that is parallel to H and has q∥ =
2hc/vF. When H∥ ∥ a, because ∆k is maximum on the nesting
line, the FFLO vector q is equal to q0, as in the s-wave state.
By contrast, when H∥ ∥ [1, 1, 0], because ∆k vanishes on the
nesting line, we obtain q , q0. This is shown by an explicit
calculation as outlined below. It can be easily verified that

fα(q) =
{

f0(q̄) + f4(q̄) for H∥ ∥ a,
f0(q̄) − f4(q̄) for H∥ ∥ [1, 1, 0], (12)

and the functions f0 and f4 can be obtained as shown in Ap-
pendix. This results in hc and q̄ as summarized in Table I.
The value q̄ = 1 for H∥ ∥ a implies that the Fermi surfaces
touch on a line. By contrast, the value q̄ ≈ 1.210 > 1 for

(a) (b)

Fig. 1. (Color online) Schematics of cylindrical Fermi surfaces for tz = 0
in the first Brillouin zone. (a) The red solid and blue dashed curves show
the Fermi surfaces of the down- and up-spin electrons, respectively, that split
because of the Zeeman energy. (b) The Fermi surface of the up-spin electrons
is shifted by a nesting vector q0 that has q∥ = 2hc/vF, for which the Fermi
surfaces touch on the vertical line shown by the red dotted line.

H∥ ∥ [1, 1, 0] implies that the Fermi surfaces are intersected
by two vertical lines. Because of the nesting effect for the
FFLO state, hc for H∥ ∥ a is approximately 30% larger than
that for H∥ ∥ [1, 1, 0].

Table I. Results for the states with a symmetry that is d-wave in each layer
and arbitrary in the kz-direction, when tz = 0 and H ∦ c.

H∥ ∥ a H∥ ∥ [1, 1, 0]

Max. of fd ln 2 +
1
4

1
2

ln(
√

3 + 1) +

√
3 − 1
4

q̄ 1
√

2 (
√

3 − 1)1/2 ≈ 1.210
Fermi surfaces Touch on a line Intersected by two lines

hc

∆d0
e1/4 ≈ 1.284

1
2

(
√

3 + 1)1/2e
√

3−1
4 ≈ 0.992

4. Systems with Warped Fermi Surfaces
In this section, we examine systems with tz , 0 in perpen-

dicular fields, i.e., H ∥ c, for which q = (0, 0, q). We assume
that tz is sufficiently small so that the Fermi surfaces are open
in the kz-direction. For the states with α = (α∥, αz), we obtain

fα(q) = −
∫ 2π

0

dkz

2π
|γz
αz

(kz)|2 ln
∣∣∣1 − q̄ sin kz

∣∣∣, (13)

where q̄ is redefined as q̄ = tzq/hc. Because γ∥α∥ (φ) has dis-
appeared from the equation, the following argument does not
depend on the in-plane symmetry α∥.

For the intralayer states, because γz
αz

(kz) = 1, Eq. (13) is
reduced to fα(q) = f0(q̄), i.e.,

fα(q) = −
∫ 2π

0

dkz

2π
ln
∣∣∣1 − q̄ sin kz

∣∣∣, (14)

which is mathematically equivalent to Eq. (10); however,
cos θ in Eq. (10) originates from the relative angle θ between
q∥ and k∥, whereas sin kz in Eq. (14) originates from the vari-
ation of the Fermi velocity in the kz-direction. The same cal-
culation leads to exactly the same equation as Eq. (11) except
for the definition of q̄, and hence, we obtain hc = ∆α0 and

3
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q̄ = 1. Interestingly, the results coincide for the completely
different systems, as summarized in Table II. The fact that hc
exceeds the Pauli limit hP = ∆α0/

√
2 implies that the FFLO

state can be stabilized, which is expected from the results of
previous studies.46) A new finding of the present study is that
hc substantially exceeds hP and it is of the same order as that
for parallel fields. This implies that the nesting effect signif-
icantly enhances the stability of the FFLO state, for perpen-
dicular as well as parallel fields.

Table II. Comparison of the results for the two types of nesting effect for
H ∦ c and H ∥ c.

Assumptions

Interlayer transfer tz = 0 tz , 0
Fermi surfaces Cylinders Warped cylinders
Direction of H Arbitrary (∦ c) H ∥ c

γ∥α∥ Constant (s-wave) Arbitrary

γz
αz Arbitrary Constant

(intralayer pairing)

Results

Equation Eq. (10) Eq. (14)

Optimum q̄
1

(q∥ = 2hc/vF)
1

(q = qz = hc/tz)

Nesting Vertical line Horizontal circle
hc ∆α0 ∆α0

Although the exact coincidence in hc is only a consequence
of the simplifications of the models, which lead to the mathe-
matical similarity of Eqs. (10) and (14), it is physically sig-
nificant that hc is of the same order in the two cases. The
physical reason is interpreted using Fig. 2. The split Fermi
surfaces shown in Fig. 2(a) touch on a circle (the red dotted
curve, hereinafter called the nesting curve) when one of the
Fermi surfaces is shifted by q ∥ c as shown in Fig. 2(b). The
nesting curve is a full circle (or ellipse) because all the cross
sections are circular (or elliptic). In general, when the shapes
of the cross sections perpendicular to the kz-axis are the same,
the Fermi surfaces touch in a similar manner when one of
them is shifted by the nesting vector q0 (∥ c) appropriate for
the Fermi-surface geometry. For this mechanism, the nesting
curve is not necessarily closed like a full circle. When parts
of the cross sections are similar, the nesting effect can work.

The quasi-low-dimensionality plays an essential role in
the present nesting effect even for perpendicular fields. In
Fig. 2(b), the smaller Fermi surface is completely inside the
larger Fermi surface. This implies that on the nesting curve,
the Fermi surfaces touch but do not cross. The open structure
of the Fermi surfaces in the kz-direction favors this behavior
because of the presence of the inflection points at kz = ±π/2.
In contrast, when tz is large, the Fermi surfaces are closed
and round near the kz-axis, and analogously with the spherical
system, hc is lower than ∆α0.47) Hence, for the present mech-
anism of the nesting effect in perpendicular fields, tz must be
sufficiently small. The upper limit of tz below which the Fermi
surfaces are open and touch on a curve decreases as the carrier
density decreases.

Interlayer pairing — In this part, we consider the inter-
layer states. For the interlayer pairing between electrons on

(a) (b)

Fig. 2. (Color online) Similar to Fig. 1, but the Fermi surfaces are warped
and q ∥ c. In (b), the Fermi surface of up-spin electrons is shifted by q0 with
|q0 | = hc/tz. For this value of |q0 |, the Fermi surfaces touch on the circle
shown by the red dotted curve.

adjacent layers, ∆k is proportional to γz
cz =

√
2 cos kz or

γz
sz =

√
2 sin kz, where the indices αz = cz and sz are de-

fined. When tz , 0 and H ∥ c, because the nesting curve is
at kz = π/2 as shown in Fig. 2(b), the nesting effect does not
work for the states with ∆k ∝ cos kz, whereas it significantly
enhances hc for the states with ∆k ∝ sin kz. This behavior is
shown in the following.

For the interlayer states, we obtain

fα(q) =
{

f0(q̄) + f2(q̄) for αz = sz
f0(q̄) − f2(q̄) for αz = cz, (15)

where the functions f0 and f2 are given in Appendix. The re-
sults for hc and q̄ are summarized in Table III. Equation (15)
and Table III are quite similar to Eq. (12) and Table I for the
d-wave state in parallel fields. The argument that applies the
relation between the value of q̄ and the nesting for the d-wave
state also applies to that for the present interlayer states. As
shown in Table III, the upper critical field hc = e1/2∆α0 for the
sz-wave states is much larger than hc = ∆α0/

√
2 for the cz-

wave states, although both values are larger than hP because
of Eq. (5). Their ratio, e1/2/(1/

√
2) ≈ 2.33, is much larger

than the corresponding ratio of hc (1.284/0.992 ≈ 1.29) for
the d-wave state in parallel fields shown in Table I.

To quantitatively estimate the critical fields of the interlayer
states, the orbital pair-breaking effect must be incorporated.
The possible difference in the orbital pair-breaking effect be-
tween the intralayer and interlayer states can be an interesting
subject to study.

Table III. Results for interlayer states with an arbitrary in-plane symmetry
α∥ when tz , 0 and H ∥ c.

αz sz cz

Nodes kz = 0,±π kz = ±π/2

Max. of fα ln 2 +
1
2

1
2

ln 2

q̄ 1
√

2 ≈ 1.414
Fermi surfaces Touch on a circle Intersected by two circles

hc

∆α0
e1/2 ≈ 1.649

1
√

2
≈ 0.707
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Compounds CeCoIn5 and FeSe — The present mechanism
may explain the existence of the high-field superconducting
phases for H ∥ c in the compounds CeCoIn5 and FeSe, which
are considered to be the FFLO state. At least, as illustrated
above, the perpendicular direction (H ∥ c) is not necessar-
ily disadvantageous to the nesting effect for the FFLO state
in quasi-low-dimensional systems. For FeSe, a small carrier
density and nearly cylindrical Fermi surfaces22–24) are com-
patible with the present model in Eqs. (6) or (7). For this
compound, the specific feature ∆ ∼ ϵF22, 24) should be incorpo-
rated in future research. In CeCoIn5, a first-principles calcula-
tion48) suggests that some of the Fermi surfaces are cylindrical
but corrugated. The present theory may be applicable to those
Fermi surfaces. For accurate prediction of the FFLO state, ex-
tremely accurate information on the Fermi-surface structure
would be required,32, 44) and analysis incorporating realistic
shapes of Fermi surfaces is a future research direction.

5. Summary and Conclusion
We examined the FFLO state in strongly Pauli-limited

quasi-two-dimensional superconductors in magnetic fields
perpendicular to the ab-plane, focusing on the Fermi-surface
nesting effect for the FFLO state; the orbital pair-breaking ef-
fect is neglected, except for the locking of the direction of q
in the direction of H . The nesting effect for the FFLO state
can enhance hc for perpendicular fields in systems with cylin-
drical Fermi surfaces warped by tz , 0. For intralayer states,
the nesting effect in perpendicular fields is as strong as that
for the s-wave state in parallel fields (Table II). For the in-
terlayer states, the nesting effect in perpendicular fields can
be more pronounced because of the kz-dependence in ∆k.
In fact, it was shown that states with ∆k ∝ sin kz exhibit
hc/∆α0 ≈ 1.649.

For systems with a Maki parameter that is not sufficiently
large, the upper critical field must be significantly reduced
from the values of hc, which were estimated in the absence of
the orbital pair-breaking effect. However, hc can be regarded
as the index of the strength of the nesting effect for enhancing
the stability of the FFLO state. For a fixed strength of orbital
pair-breaking effect, the larger the value of hc, the larger the
real upper critical field in the presence of the orbital effect.

In conclusion, the nesting effect for the FFLO state can
be significant for perpendicular fields as well as for paral-
lel fields. For the nesting effect in perpendicular fields, the
value of tz must be sufficiently small, and in particular, quasi-
low-dimensional systems with open Fermi surfaces favor the
present mechanism. The upper limit of tz decreases as the car-
rier density decreases.

Acknowledgments The author would like to thank
Y. Matsuda for useful discussions on the compound FeSe and
related works.

Appendix A: Explicit forms of fn(p)
The integral in Eq. (1) can be carried out explicitly. The

results for n = 0 are

f0(p) =


− ln | p

2
| for p ≥ 1,

− ln
1 +
√

1 − p2

2
for p ≤ 1,

and those for an integer n , 0 are

fn(p) =


1
n

cos
(
n arccos

1
p

)
for p ≥ 1,

1
n

( |p|
1 +
√

1 − p2

)n
for p ≤ 1.

The functions f2(p) and f4(p) can be expressed as

f2(p) = −1
2
+

1
p2 , f4(p) =

1
4
− 2

p2 +
2
p4

for p ≥ 1.

Appendix B: Proof of Eq. (5)
For an arbitrary function g(x) and an arbitrary average ⟨· · · ⟩

over an arbitrary variable x, it can be proved that if ⟨g⟩ = 1,

⟨g ln g⟩ ≥ 0, (B·1)

where the equality sign holds for g(x) = 1. Applying Eq. (B·1)
to the average defined in Eq. (4) and g = |γα|2/⟨|γα|2⟩, we
obtain

√
⟨|γα|2⟩ ≤ γ̄α, which leads to Eq. (5).

Proof of Eq. (B·1) — It is sufficient to prove this for a sim-
ple average such as

⟨g⟩ = 1
n

n∑
k=1

gk (B·2)

with an arbitrary positive integer n. In fact, an arbitrary prob-
ability function p(x) can be realized by a sufficiently dense
distribution of xk (k = 1, 2, · · · , n) on the x-axis as∫

dxp(x)g(x) ≈ 1
n

n∑
k=1

gk,

where gk = g(xk). For the average defined by Eq. (B·2), the
inequality in Eq. (B·1) is easily proved with mathematical in-
duction as follows. For n = 2, defining x with g1 = 1 + x and
g2 = 1 − x, f (x) ≡ ⟨g ln g⟩ satisfies f ′(x) ≥ 0 and f (0) = 0.
Hence, f (x) ≥ 0. When Eq. (B·1) is satisfied for n, Eq. (B·1)
is satisfied for n + 1. In fact, assuming gn+1 ≤ 1 without loss
of generality,

g̃k ≡
ngk

n + 1 − gn+1

satisfies

1
n

n∑
k

g̃k ln g̃k ≥ 0

because of the induction hypothesis. Hence,

1
n + 1

n+1∑
k=1

gk ln gk ≥ F(gn+1) ≥ 0

with

F(x) ≡ (n + 1 − x) ln
n + 1 − x

n
+ x ln x.

The last inequality holds because F(1) = 0 and F′(x) ≤ 0 for
x ≤ 1. It is evident that the equality sign holds when gk = 1
for all integers k.
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Appendix C: Effective Mass Anisotropy
It follows from the definitions

k̃µ =
√

m
mµ

kµ,

and m = √mxmy that dkxdky = dk̃xdk̃y and

ϵ∥
k∥
= k̃2
∥ /2m,

where k̃∥ and φ̃ are defined by

(k̃x, k̃y) = (k̃∥ cos φ̃, k̃∥ sin φ̃).

We also obtain ρ = m/2π and

d2k̂

S 0
=

dφ̃
2π

dkz

2π
.

The FFLO vector q is also transformed as q̃µ =
√

m/mµqµ
and

vF · q
2hc

=
ṽ∥Fq̃∥
2hc

cos θ̃ +
tzqz

2hc
sin kz,

where (q̃x, q̃y) = (q̃∥ cos θ̃q , q̃∥ sin θ̃q), and θ̃ ≡ φ̃ − θ̃q . Hence,
all the equations for mx , my have exactly the same form as
those for mx = my = m.

Here, we briefly explain the influence of the above trans-
formation on the orbital pair-breaking effect. The components
of the vector potential A(r), which appears in the gap equa-
tion and induces the orbital pair-breaking effect, are scaled
with different coefficients that depend on the effective masses,
whereas the Zeeman term is unaffected. Hence, the strength
of the orbital pair-breaking effect and the Maki parameter de-
pend on the in-plane field direction.49)
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