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Vestigial Van Hove Singularity and Higher-Temperature Superconducting
Phase Induced by Perpendicular Uniaxial Pressures

in Quasi-Two-Dimensional Superconductors
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Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8530, Japan

(Received July 6, 2020)

We examine quasi-two-dimensional superconductors near half-filling under uniaxial pressures perpendicular to con-
ductive layers (hereafter called perpendicular pressures). It is a natural conjecture that the perpendicular pressure de-
creases the transition temperature Tc because it increases the interlayer electron hopping energy tz, which weakens the
logarithmic enhancement in the density of states due to the two-dimensional Van Hove singularity. It is shown that,
contrary to this conjecture, the perpendicular pressure can significantly enhance Tc in systems off half-filling before it
decreases Tc, and the strength of the enhancement significantly depends on the pairing symmetry. When the indices d,
d′, cz, and sz are defined for the basis functions γd ∝ cos kx − cos ky, γd′ ∝ sin kx sin ky, γcz ∝ cos kz, and γsz ∝ sin kz,
respectively, it is shown that for s-, d-, cz-, and cz-d-wave pairing, Tc steeply increases with increasing tz near a cusp
at a certain value of tz. On the other hand, for p-, cz-p-, sz-p-, and d′-wave pairing, Tc is almost unaffected by tz. For
sz- and sz-d-wave pairing, Tc exhibits a broad and weak peak. Here, for example, the cz-d-wave state is an interlayer
spin-singlet d-wave state with an order parameter proportional to γczγd. The enhancement in Tc is the largest for this state
and the second largest for the d-wave pairing and interlayer spin-singlet (cz-wave) pairing. These results may explain
recent observations in Sr2RuO4 under perpendicular pressures. A comparison between the theoretical and experimental
results indicates that the p-, cz-p-, and sz-p-wave states, including chiral states, and the d′-wave state are the most likely
candidates for the intrinsic 1.5-K phase, and the d-, cz-d-, and cz-wave states are the most likely candidates for the 3-K
phase induced by the perpendicular pressure. The cz-p- and sz-p-wave states are interlayer spin-triplet and interlayer
spin-singlet p-wave states with horizontal line nodes, respectively.

Introduction — It has been frequently pointed out that
the logarithmic Van Hove singularity in the density of states
can enhance the superconducting transition temperature Tc in
quasi-two-dimensional systems near half-filling.1–5) Despite
the long history of research on this mechanism, the effect of
interlayer electron motion on this mechanism has not been
frequently examined, probably because the interlayer hopping
energy tz increases the dimensions of the system and removes
the logarithmic singularity;5) hence, tz seems to decrease Tc.
In this study, however, we illustrate that tz can significantly
enhance the density of states and Tc.

The effect of tz on superconductivity might have been ob-
served recently in a real material. The compound Sr2RuO4 is a
quasi-two-dimensional superconductor with tetragonal sym-
metry,6, 7) and its pairing symmetry has been under debate
since the discovery of superconductivity in this compound.6–8)

To clarify the pairing symmetry, the application of uniax-
ial pressures in various directions can be a useful tool.9–13)

Hicks et al. examined shifts of Tc due to symmetry-breaking
in-plane strains9) and found that a [1, 0, 0] strain significantly
enhances Tc. They argued that the orthorhombic distortion
enhances the density of states owing to the Van Hove sin-
gularity,3) and this can be the origin of the enhancement in
Tc.9) Although this phenomenon under an in-plane pressure
is not directly related to the effect of tz that we examine be-
low, it suggests that the Van Hove singularity can enhance
Tc by an appreciable amount in this compound. Before their
study, Kittaka et al. examined Sr2RuO4 under uniaxial pres-
sures in the [0, 0, 1] direction, which is perpendicular to con-
ductive layers (hereafter called perpendicular pressures).10)

Their study suggests that a perpendicular pressure induces

superconductivity with an onset Tc above 3 K, while interest-
ingly, the transition to the intrinsic superconducting phase re-
mains with its transition temperature Tc ≈ 1.5 K appearing to
be unaffected. In contrast to the in-plane strains, the distortion
in this direction does not change the symmetry of the system
and weakens the enhancement in the density of states due to
the Van Hove singularity. Nevertheless, the observed phenom-
ena can be explained by a scenario based on a vestigial Van
Hove singularity, which will be explained below.

The tetragonal quasi-two-dimensional system can be mod-
eled by the one-particle electron energy

ϵk = ϵ
∥
k∥
− 2tz cos kz, (1)

where ϵ∥
k∥
= −2t(cos kx + cos ky) with k∥ = (kx, ky) and the lat-

tice constants a, b, and c have been absorbed into the defi-
nitions of the momentum components kx, ky, and kz, respec-
tively. When tz = 0, the saddle points of ϵ∥

k∥
at k∥ = (±π, 0)

and (0,±π) give rise to the Van Hove singularity. A perpendic-
ular pressure increases tz and removes the singularity. We de-
note the electron density per site and the chemical potential as
n and µ, respectively. When we apply the theory to Sr2RuO4,
the dispersion in Eq. (1) is a simplified model; however, the
model near half-filling can simulate the physical situation of
the γ band in this compound, in which the Fermi surface is
near the saddle points.9) We use units in which ℏ = kB = t = 1.

Density of states — The mechanism by which tz enhances
the density of states can be interpreted as follows. The density
of states defined by

ρ(ϵ) =
1
N

∑
k

δ(ϵ − ϵk)

1



J. Phys. Soc. Jpn. LETTERS

is expressed as

ρ(ϵ) =
∫ π
−π

dkz

2π
ρ∥(ϵ + 2tz cos kz) (2)

with

ρ∥(ϵ) ≡
∫

d2k
(2π)2 δ(ϵ − ϵ

∥
k

)

being the density of states of the square lattice system.14)

Here, N denotes the number of sites. ρ∥(ϵ) diverges logarith-
mically at ϵ = 0, and ρ∥ ≈ (2π2t)−1 ln(16t/|ϵ|) for |ϵ | ≪ t.
When tz , 0, the integration over kz in Eq. (2) removes this
divergence, and when tz increases, the peak height ρ(0) de-
creases, as expected; however, because

∫
ρ(ϵ)dϵ = 1 is a con-

stant, the suppression of the peak height leads to an increase
in ρ(ϵ) in some other regions of ϵ. It is evident from Eq. (2)
that when |µ| ≤ 2tz, the contribution to ρ(µ) from the electron
states near kz = ± arccos(−µ/2tz) is large because of the log-
arithmic enhancement in ρ∥. It is verified that ∂ρ/∂ϵ = 0 for
|ϵ | ≤ 2tz, which implies that the top of the vestigial peak is a
plateau.

Figure 1 illustrates how the perpendicular pressure en-
hances the density of states ρ(µ) at the Fermi level when the
system is nearly half-filled. The curves show ρ(ϵ), and the thin
vertical lines indicate ϵ = µ for n = 0.9. The logarithmic sin-
gularity in ρ(ϵ) disappears for any finite tz, and a plateau ap-
pears.5) The density of states at the Fermi level ρ(µ) increases
as tz increases from 0 when the system is not half-filled. For
example, ρ(µ) ≈ 0.231 for tz = 0.05, whereas ρ(µ) ≈ 0.257 for
tz = 0.1, as shown by the red dashed and black solid curves,
respectively. When tz increases further, ρ(µ) decreases. For
example, ρ(µ) ≈ 0.202 for tz = 0.3. In s-wave superconduc-
tors, the increase and decrease in ρ(µ) immediately result in
an increase and a decrease in Tc, respectively.
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Fig. 1. (Color online) Densities of states and the Fermi levels. The curves
and thin vertical lines show ρ(ϵ) and ϵ = µ, respectively, the intersections of
which yield ρ(µ) for various values of tz. The red dashed, black solid, and
green dot-dashed curves and lines show the results for tz = 0.05, 0.1, and 0.3,
respectively. The blue short-dashed curve shows ρ(ϵ) for tz = 0. The inset
shows overall profiles of ρ(ϵ). The orange thick solid curve shows ρ(ϵ) for
tz = 1.

Superconductivity — In anisotropic superconductors, Tc is
a function of an effective density of states, in which the mo-
mentum dependence of the order parameter is incorporated.

The pairing interaction is expanded as

Vkk′ = −
∑
α

ḡαγα(k)γα(k′), (3)

where α is the index of the basis function and ḡα is the cou-
pling constant for the α-wave state. The functions γα(k) are
orthonormal bases,3) which satisfy

1
N

∑
k

γα(k)γα′ (k) = δαα′ .

The pressure affects the values of ḡα; however, we leave the
effect of the change in ḡα for future research and focus on the
effect of the change in the density of states.

The order parameter is expanded as

∆k =
∑
α

∆αγα(k),

and the linearized gap equations are

∆α =
ḡα
N

∑
k

∑
α′

γα(k)W(ξk)γα′ (k)∆α′ ,

where W(ξk) = tanh(βξk/2)/2ξk. Because of the symmetry
of the system, these equations are decoupled into subsets by
the pairing symmetries. When the pairing state is not a mixed-
symmetry state, the order parameter ∆k is a linear combina-
tion of basis functions with the same symmetry, which is ex-
pressed as

∆k =
∑
α∈S λ
∆αγα(k), (4)

where S λ is a set of α values such that all γα have the same
symmetry λ. As a consequence of the superposition, the or-
der parameter of the most stable state is localized near the
Fermi surface in momentum space,15) reflecting the range of
interaction of the order of vF/ωc, which is much larger than
the lattice constants, where vF denotes the Fermi velocity.
In this paper, we simplify the problem by retaining a single
principal basis function γα for each pairing symmetry and re-
strict the range of interaction by introducing the cutoff energy
ωc instead of superposing many basis functions to localize
∆k near the Fermi surface. Hence, we retain a single α in
the summations in Eqs. (3) and (4) and replace γα(k) with
C θ(ωc − |ξk|) γα(k), where C is a normalization constant and
ξk ≡ ϵk − µ. The equation for Tc is

1 =
gα
N

∑
k

W(ξk)θ(ωc − |ξk|)[γα(k)]2,

and when ωc ≪ t, we obtain

Tc =
2eγ

π
ωce−1/λα , (5)

where λα = gαρα(µ), gα ≡ ḡαC2, and γ = 0.57721 · · · is the
Euler’s constant. Here, ρα(ϵ) is the effective density of states
for α-wave pairing, which is expressed as

ρα(ϵ) ≡
∫

d3k
(2π)3 δ(ϵ − ϵk)[γα(k)]2.

We adopt γpx (k) =
√

2 sin kx and γpy (k) =
√

2 sin ky as the
principal basis functions of the px- and py-wave states, respec-
tively. These states are degenerate in the tetragonal system,
and they and any superposition of them, for example, the chi-
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ral px ± ipy wave states, have the same transition temperature.
Hence, as far as Tc is concerned, we simply call them the p-
wave states. Among them, the one with the lowest free energy
occurs below Tc, and presumably, the chiral states have the
lowest free energy because they are full-gap states. We adopt
γs = 1 and γd = cos kx − cos ky, respectively, as the principal
bases of the s- and d-wave states. For the dxy-wave state, we
adopt γdxy = 2 sin kx sin ky. We also examine interlayer pair-
ing between adjacent layers,16) for which the order parameter
has a factor cos kz or sin kz. Hence, the resultant order param-
eter is a product of cos kz or sin kz and an in-plane basis, such
as γs, γp, and γd. For example, when the latter is the s-wave
function, i.e., γ̂s = 1, the principal bases are

γcz(k) =
√

2 cos kz, γsz(k) =
√

2 sin kz,

where we defined the indices cz and sz for cos kz and sin kz,
respectively. The cz-wave state is a spin singlet, whereas the
sz-wave state is a spin triplet. For the d- or p-wave in-plane
states, the principal bases are

γcz−d = γczγd, γsz−d = γszγd,

γcz−p = γczγp, γsz−p = γszγp.

The cz-d- and sz-p-wave states are spin singlets, whereas the
sz-d- and cz-p-wave states are spin triplets.
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Fig. 2. (Color online) Effective density of states ρd(ϵ) for the d-wave pair-
ing with ∆k ∝ cos kx − cos ky. The legend of this figure is the same as that of
Fig. 1.

Figure 2 shows that the effective density of states ρd(µ) at
the Fermi level is enhanced by the same mechanism as that for
ρ(µ), and the enhancement in ρd(µ) is much larger than that in
ρs(µ) = ρ(µ) because [γd(k)]2 is large near the saddle points
at (kx, ky) = (±π, 0) and (0,±π). This example illustrates that
the enhancement effect of the present mechanism significantly
depends on the pairing symmetry. For a comparison between
different pairing symmetries, we evaluate Tc under the condi-
tion that the values of Tc at tz = 0 are equated. For explicit
evaluations, we adopt specific values n = 0.9 and ωc = 300 K
and assume that Tc ≈ 1.5 K at tz = 0.17)

The results are shown in Fig. 3, and it is found that the en-
hancement in Tc is the largest and the next largest for the cz-
d-wave state and the d- and cz-wave states, respectively. For
these three states and s-wave states, Tc increases steeply near
a cusp at a certain value of tz. For the interlayer sz- and sz-d-

wave states, Tc exhibits a broad peak. For p-, sz-p-, cz-p-, and
dxy-wave states, Tc changes little when tz increases. (Strictly
speaking, Tc decreases slightly as shown in Fig. 4.) This orig-
inates from the fact that the order parameters of these states
vanish at the saddle points of ϵ∥

k∥
because of the in-plane bases

proportional to sin kx, sin ky, or sin kx + i sin ky. Note that this
result holds for any p-wave states because every term of the
order parameters of the p-wave states is proportional to one of
sin(mkx) and sin(mky) with m = 1, 2, · · · , which vanish at the
saddle points (kx, ky) = (±π, 0) and (0,±π).
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Fig. 3. (Color online) Transition temperatures for various pairing symme-
tries when Tc ≈ 1.5 K at tz = 0.17) The black solid and red dashed curves
present the results for the d- and s-wave states, respectively. The red, blue,
orange, and green thick dotted curves present the results for the p-, cz-p-, sz-
p-, and dxy-wave states, respectively. Most parts of the dotted curves overlap.
The blue short-dashed and orange dot-dashed curves present the results for
the cz- and cz-d-wave states, respectively. The green thin solid and dashed
curves present the results for the sz-s- and sz-d-wave states, respectively.
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Fig. 4. (Color online) Transition temperatures when n = 0.9, ωc = 300 K,
and gα = 0.91t for α = p, cz-p, sz-p, and dxy.

Ruthenate superconductors — The present model seems to
explain some of the experimental observations in Sr2RuO4.
In the experimental result,10) the transition temperature of the
intrinsic state is not changed by a perpendicular pressure. The
theoretical result shown in Figs. 3 and 4 indicates that this
can be explained if the intrinsic state is one of the p-, sz-
p-, cz-p-, and dxy-wave states. The sz- and sz-d-wave states
are the second-most likely candidates because their Tc val-
ues weakly depend on tz in the theoretical result. Table I lists
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the order-parameter structures and properties of some of the
most likely candidates for the intrinsic states. Among them,
only the sz-p and cz-p states exhibit horizontal line nodes,
which are suggested by the field-angle-dependent specific-
heat measurement.18) In particular, in the spin-triplet state [cz-
(px + ipy)]d̂ and the spin-singlet state sz-(px + ipy), the time-
reversal symmetry (TRS) is broken, which is suggested by
muon spin relaxation (µSR),19) where d denotes the d-vector
and d̂ ≡ d/|d|. Over twenty years, it had been considered that
the absence of the Knight shift20) supports equal-spin states;
however, recently, a pronounced drop of 17O NMR Knight
shift in the superconducting state was reported.21, 22) This im-
plies that the intrinsic state is an antiparallel spin state or at
least contains a component of antiparallel spin states, where
the spin quantization axis is taken in the direction parallel to
the magnetic field. The temperature dependence of the upper
critical field seems to support antiparallel spin states.8, 23)

Table I. Examples of candidates for the intrinsic state that is unaffected by
the perpendicular pressure. x̂, ŷ, and ẑ denote the unit vectors in the x-, y-,
and z-directions in the d-vector space, respectively. For the other unlisted can-
didates, such as the states with pxŷ±pyx̂, pxẑ, and (px ±py)d̂, the properties
of the nodes and TRS can easily be found from tables in previous studies, for
example, in Ref. 7. The only difference is the possibility of the factors cos kz
and sin kz, which add horizontal line nodes to the order parameter.

Structure of the order parameter Spin Line nodes TRS
pxx̂ ± pyŷ triplet none unbroken

cz-(pxx̂ ± pyŷ) triplet horizontal unbroken
pxŷ ± ipyx̂ triplet none broken

cz-(pxx̂ ± ipyŷ) triplet horizontal broken
(px + ipy)d̂ triplet none broken

[cz-(px + ipy)]d̂ triplet horizontal broken
sz-(px + ipy) singlet horizontal broken

dxy singlet vertical unbroken

The observed 3-K phase in Sr2RuO4 cannot be among p-,
sz-p-, cz-p-, and dxy-wave pairing in the present Van Hove
scenario, because their transition temperatures are almost un-
affected by tz , 0. If any one of them is the 3-K phase, Tc
must be approximately 3 K for any smaller tz, which is incon-
sistent with the experimental fact. Moreover, for the s-, sz-,
and sz-d-wave states, the enhancement of Tc is too weak to
be the 3-K phase. In contrast, the transition temperatures of
the cz-d-, d-, and cz-wave states are significantly enhanced
by tz , 0, as shown in Fig. 3, and hence, these states are most
likely the 3-K phase. All of these states are spin-singlet states.

Figure 5 depicts the Van Hove scenario for Sr2RuO4 un-
der perpendicular pressures. Since the transition temperature
given in Eq. (5) is the instability temperature of the normal
state, only the highest one is realized at each tz. Therefore,
the candidates for the intrinsic phase are the p-, cz-p-, and sz-
p-wave states, and the candidates for the higher-temperature
phase are the d-, cz-, and cz-d-wave states. Figures 5 (a) and
(b) present the results of two examples of combinations of
the intrinsic and higher-temperature phases, i.e., the p- and
d-wave states and the sz-p- and cz-d-wave states, respec-
tively. In both cases, because the higher-temperature phases
(d- and cz-d-wave states) have more nodes than the intrinsic
phases (chiral p- and chiral sz-p-wave states, respectively),
the transitions presented by the dotted curves must be com-
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Fig. 5. Transition temperatures when n = 0.9 and ωc = 300 K. (a) When
p-wave and d-wave pairing interactions coexist. gp = 0.91t and gd = 0.34t
are assumed. (b) When sz-p-wave and cz-d-wave pairing interactions coexist.
gsz−p = 0.91t and gcz−d = 0.30t are assumed.

pletely suppressed, whereas the dashed curves might sur-
vive as approximate transition temperatures to mixed states
or approximate first-order transition temperatures to the low-
temperature phases.

Conclusion — In conclusion, it was shown that the super-
conducting transition temperature can be strongly enhanced
by uniaxial pressures perpendicular to the most conductive
layers in quasi-two-dimensional superconductors off half-
filling because of a vestigial Van Hove singularity. We ex-
amined this effect for various types of pairing states includ-
ing those induced by interlayer pairing. Among them, the en-
hancement is the largest for the interlayer d-wave state with
∆k ∝ cos kz(cos kx − cos ky), and it is also large for the d-wave
state with ∆k ∝ cos kx − cos ky. In contrast, this effect does
not exist for the interlayer and intralayer p-wave states, be-
cause sin(mkx) and sin(mky) vanish at (kx, ky) = (±π, 0) and
(0,±π). These behaviors are consistent with experimental ob-
servations in Sr2RuO4 under perpendicular pressures,10) if we
assume that the higher-temperature phase is one of the in-
tralayer and interlayer spin-singlet d- and s-wave states and
the intrinsic 1.5-K phase is one of the intralayer and interlayer
p-wave states. The interlayer p-wave states can be either spin-
singlet or spin-triplet states depending on the factors cos kz

and sin kz, respectively.
As future studies, the structures of the mixed states below

the second (lower) transition temperature when the 3-K phase
occurs and the superconductivity under uniaxial pressures in
the other directions will be examined in separate papers. For a
close comparison with the observed facts in Sr2RuO4, details
of the Fermi-surface structures of all α, β, and γ bands may
need to be incorporated.
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