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Fundamental properties and asymptotic shapes of

the singular and classical radial solutions

for supercritical semilinear elliptic equations

Yasuhito Miyamoto

Graduate School of Mathematical Sciences, The University of Tokyo
3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

and

Yūki Naito∗

Department of Mathematics, Ehime University
2-5 Bunkyo, Matsuyama 790-8577, Japan

Abstract

We study singular radial solutions of the semilinear elliptic equation Δu + f(u) = 0
on finite balls in RN with N ≥ 3. We assume that f satisfies either f(u) = up + o(up)
with p > (N + 2)/(N − 2) or f(u) = eu + o(eu) as u → ∞. We provide the existence
and uniqueness of the singular radial solution, and show the convergence of regular radial
solutions to the singular solution. Some applications to the bifurcation diagram of an
elliptic Dirichlet problem are also given. Our results generalize and improve some known
results in the literature.

MSC: 35J61, 35A05, 35A24
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1 Introduction

We study singular radial solutions of the semilinear elliptic equation

Δu + f(u) = 0 in Ω \ {0},

where Ω ⊂ RN , with N ≥ 3, is a finite ball centered with the origin and f ∈ C1[0,∞). In

the study, we consider solutions to the ordinary differential equation

u′′ +
N − 1

r
u′ + f(u) = 0 for r > 0. (1.1)

By a singular solution u∗(r) of (1.1) we mean that u∗(r) is a classical solution of the equation

(1.1) for 0 < r ≤ r0 with some r0 > 0 and it satisfies u∗(r) → ∞ as r → 0. For α > 0, we
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denote by u(r, α) a regular solution of (1.1) satisfying u(0) = α and u′(0) = 0. In (1.1) we

assume that f(u) satisfies either

f(u) = up + o(up) or f(u) = eu + o(eu) as u → ∞,

where p > pS = (N + 2)/(N − 2). It is well known that the singular solution plays a

key role in the study of the solution structure of the supercritical problem (1.1). See, e.g.

[13, 17, 26, 27, 30]. In this paper, we prove the existence and uniqueness of the singular

solution of (1.1), and also the convergence of the regular solution u(r, α) to the singular

solution as α → ∞. These properties have been studied extensively in the literature, because

of various potential applications for both elliptic and parabolic problems. When f(u) = up,

(1.1) has the exact singular solution u∗(r) = Ar−2/(p−1) if p > N/(N − 2), where

A =
{

2
p − 1

(
N − 2 − 2

p − 1

)}1/(p−1)

. (1.2)

It was shown by Serrin–Zou [34, Proposition 3.1] that, if p > pS , the singular solution of (1.1)

is unique. On the other hand, it was shown in [34, 7] that, if N/(N − 2) < p < pS, (1.1) has

a continuum of singular solutions. When f(u) = up + u with p > pS , it was shown by Merle–

Peletier [24] that (1.1) has a singular solution and the regular solution u(r, α) converges to the

singular solution as α → ∞. See also [4]. When f(u) = up − u, Chern et al. [8] investigated

the entire structure of radial solutions according to their behaviors at the origin and infinity,

and showed that (1.1) possesses a unique singular solution in the case N > 10 and p is large.

In [26] the first author of the present paper showed the existence of the singular solution in

the case f(u) = up + g(u) with p > pS, where g satisfies

|g(u)| ≤ C0u
p−δ and |g′(u)| ≤ C0u

p−1−δ for u ≥ u0

with some constants C0 > 0, δ > 0 and u0 ≥ 0. In this case, the existence of singular extremal

solutions was studied in the previous paper [30].

In the case f(u) = eu, it was shown by Mignot-Puel [25] that u∗(r) = −2 log r+log 2(N−2)

is the unique singular solution of (1.1) when N ≥ 3. On the other hand, (1.1) has no singular

solution when N = 1, and (1.1) has a continuum of singular solutions when N = 2. (See Tello

[35, Theorem 1.1].) In [27] the author studied the case f(u) = eu + g(u), where g satisfies

|g(u)| ≤ C0e
(1−δ)u and |g′(u)| ≤ C0e

(1−δ)u

with some constants C0 > 0, δ > 0 and u0 ≥ 0. In [27], the existence of the singular solution

and the convergence property of regular solutions were obtained. On the other hand, the

uniqueness of the singular solution was left open.

For general supercritical nonlinearity, the existence of the singular solution was obtained

by Lin [21]. Recently, by [28], the existence and asymptotic behavior of the singular solution
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were shown for a certain class of supercritical nonlinearities. On the other hand, in [21, 28],

the uniqueness of the singular solution was left open, and it was unclear whether regular

solutions converge to the singular solution.

In this paper, we will show the qualitative properties of the singular solution to (1.1) with

the following two types of nonlinearities (F1) and (F2) by a unified approach.

(F1) f ∈ C1[0,∞) has the form f(u) = up + g(u) for u ≥ 0 with p > pS , where g(u) satisfies

g(u) = o(up) and g′(u) = o(up−1) as u → ∞. (1.3)

(F2) f ∈ C1[0,∞) has the form f(u) = eu + g(u) for u ≥ 0, where g(u) satisfies

g(u) = o(eu) and g′(u) = o(eu) as u → ∞. (1.4)

Our main result is the following.

Theorem 1.1. Assume that either (F1) or (F2) holds. Then there exists a unique singular

solution u∗(r) of (1.1) for 0 < r ≤ r0 with some r0 > 0, and the regular solution u(r, α)

satisfies

u(r, α) → u∗(r) in C2
loc(0, r0] as α → ∞. (1.5)

Furthermore, if (F1) holds, the singular solution u∗ satisfies

u∗(r) = Ar−2/(p−1)(1 + o(1)) as r → 0, (1.6)

where A is a constant defined by (1.2), and if (F2) holds, u∗ satisfies

u∗(r) = −2 log r + log 2(N − 2) + o(1) as r → 0. (1.7)

Remark 1.1. The Morse index of u∗ is determined by the linearized operator −Δ− f ′(u∗).
See [3, 26, 28] for detail. From (1.6) and (1.7), we see that

f ′(u∗(r)) =
C

r2
+ o(r−2) as r → 0,

where C = pAp−1 if (F1) holds and C = 2(N − 2) if (F2) holds.

In the proof of Theorem 1.1, we obtain the following characterization of the singular

solution of (1.1).

Theorem 1.2. Let u be a positive solution of (1.1) for 0 < r ≤ r0 with some r0 > 0.

(i) Assume that (F1) holds. Then u is a singular solution if and only if u satisfies

lim sup
r→0

r2/(p−1)u(r) > 0. (1.8)
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(ii) Assume that (F2) holds. Then u is a singular solution if and only if u satisfies

lim sup
r→0

(u(r) + 2 log r) > −∞. (1.9)

Remark 1.2. It is interesting to point out that both of the conditions (1.8) and (1.9) can

be reduced to a unified condition

lim sup
r→0

r2

G(u(r))
> 0, where G(u) =

∫ ∞

u

1
f(t)

dt.

The function G and its inverse function are effectively used in the recent paper [28].

As an application of Theorem 1.1, we consider the following nonlinear eigenvalue problem⎧⎪⎨
⎪⎩

Δv + λf(v) = 0 in B,

v > 0 in B,

v = 0 on ∂B,

(1.10)

where B is a unit ball in RN with N ≥ 3 and λ > 0 is a parameter. By the symmetry result

of Gidas-Ni-Nirenberg [16], every regular solution v of (1.10) must be radially symmetric at

the origin. It was shown by [5, 33, 14] that, if a solution v of (1.10) has the singularity at

x = {0}, then v must be radially symmetric about the origin.

Denote by (λ(α), v(r, α)) a solution of (1.10) with v(0, α) = α > 0. It is well known that

the solution set of (1.10) can be described as the curve {(λ(α), v(r, α)) : 0 < α < ∞}. (See,

e.g., [20, 26, 27].) The bifurcation diagram of the problem (1.10) was completely characterized

by Joseph-Lundgren [19] in the cases f(u) = (u + 1)p and f(u) = eu. In these cases, (1.10)

can be transformed into the autonomous system by the special changes of variables, and the

explicit singular solution can be obtained as a critical point of the system. For a general

nonlinearity we cannot expect to find such a change of variables, but we obtain the following

result as a consequence of Theorem 1.1.

Corollary 1.1. Assume that either (F1) or (F2) holds. Assume, in addition, that f(u) > 0

for u ≥ 0. Then the following (i) and (ii) hold.

(i) The problem (1.10) has a unique singular radial solution (λ∗, v∗), that is, there exists a

unique λ∗ > 0 such that the problem (1.10) with λ = λ∗ has a singular radial solution

v∗, and the solution v∗ is a unique singular radial solution of (1.10) with λ = λ∗.

(ii) As α → ∞, the solution (λ(α), v(r, α)) of (1.10) described above satisfies

λ(α) → λ∗ and v(r, α) → v∗(r) in C2
loc(0, 1], (1.11)

where (λ∗, v∗) is the singular radial solution in (i).
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Remark 1.3. (i) In Corollary 1.1, the curve of the solution set emanates from (λ, v) = (0, 0),

since f satisfies f(u) > 0 for u ≥ 0. The assertions (i) and (ii) also hold if f satisfies f(u) > 0

for u > 0, f(0) = 0 and f ′(0) �= 0. In this case, the solution curve emanates from the point

(μ1/f
′(0), 0), where μ1 is the first eigenvalue of −Δ in B with Dirichlet boundary data.

(ii) It is well known that the singular solution plays an important role in the study of the

bifurcation diagram of the problem (1.10). Brezis-Vázquez [3] gave a necessary and sufficient

condition for the non-existence of a turning point of the solution curve by using the singular

solution. Guo-Wei [17] investigated the Morse index of the singular solution, and showed that

the divergence of the Morse index indicates the existence of infinitely many turning points of

the solution curve. See also [26, 27, 28].

(iii) As mentioned above, the singular solution is radial if the singularity set is the origin

[5, 33, 14]. On the other hand, (1.10) may have a nonradial singular solution with the

singularity at x �= {0}. See, e.g., [23, 32, 7, 9].

(iv) For the study of singular radial solutions to the problem (1.10) with the critical or

subcritical growth of f(u), we refer to [2, 12, 15]

Next we consider the existence of radially symmetric solutions of the problem{
Δv + f(v) = 0 in RN \ {0},
v > 0 in RN \ {0}, (1.12)

where N ≥ 3. As a consequence of Theorem 1.1, we obtain the following result.

Corollary 1.2. Assume that either (F1) or (F2) holds. Then one of the following alternatives

holds:

(i) (1.10) has a unique singular radial solution (λ∗, v∗) and (1.12) has no singular radial

solution.

(ii) (1.10) has no singular radial solution and (1.12) has a unique singular radial solution.

Remark 1.4. (i) It was shown by Ni-Serrin [31, Theorem 3.1] that, if there exists α ≥
(N +2)/(N −2) such that (α+1)

∫ u
0 f(t)dt ≤ uf(u) for all u ≥ 0, then (1.10) has no singular

radial solution. In this case, (ii) occurs and then (1.12) has a unique singular radial solution.

(ii) In [34], Serrin-Zou fully described the set of positive radial solutions to (1.12) in the

case f(u) = up + uq with N/(N − 2) < q < p. See also [1, 6, 10].

(iii) The existence of nonradial singular solution of (1.12) was obtained by Dancer-Guo-

Wei [11] when f(u) = up with N ≥ 4 and some range of p, and by [29] when f(u) = eu with

4 ≤ N ≤ 10.

(iv) In [18], Johnson-Pan-Yi showed the existence of singular positive solutions in the

subcritical case f(u) = −u + up with 1 < p < pS .
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To prove Theorem 1.1, we derive some a priori estimates of positive regular and singu-

lar solutions near r = 0, and give the characterization of the singular solution. By using

Pohozaev’s identity and some comparison argument, we obtain the singular solution as a

limit of a sequence of regular solutions even if u(r, α) is not necessarily increasing in α. In

[24, 26, 27], the singular solution is constructed by the contraction mapping theorem, and in

the proof, it was crucial to obtain the precise asymptotic expansions of the singular solutoin

by using the presice form of f(u), assuming the existence of the solution. However, it seems

difficult to extend their results to more general class of f(u) as (F1) or (F2).

The paper is organized as follows. In Section 2, we obtain apriori estimates of both the

regular and singular solutions near r = 0, and in Section 3, we give the proof of Theorem 1.2.

We show the uniqueness of the singular solution in Section 4, and give the proofs of Theorem

1.1 and Corollaries 1.1 and 1.2 in Section 5.

2 Preliminaries

2.1 A priori estimates of positive solutions near the origin in the case (F1)

In this subsection we assume that (F1) holds. Then there exist constants u0 > 0, C∗ > 1 >

C∗ > 0 such that

0 < C∗up ≤ f(u) ≤ C∗up for u ≥ u0. (2.1)

Since f ′(u) = pup−1 + o(up−1) as u → ∞, we may assume that

f ′(u) > 0 for u ≥ u0. (2.2)

We consider a solution of (1.1) satisfying

u(r) ≥ u0 for 0 < r ≤ r0 (2.3)

with some r0 > 0. Note that u satisfies (2.3) if u(r) → ∞ as r → 0. First we show the

following results.

Lemma 2.1. Assume that (F1) holds, and that u0 is the constant in (2.1). Let u be a positive

solution of (1.1) satisfying (2.3) with some r0 > 0. Then

u(r) ≤ C1r
−2/(p−1) and 0 ≤ −u′(r) ≤ C2r

−(p+1)/(p−1) for 0 < r ≤ r0,

where constants C1 > 0 and C2 > 0 are independent of u. Furthermore, u satisfies

− rN−1u′(r) =
∫ r

0
sN−1f(u(s))ds for 0 < r ≤ r0. (2.4)
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Proof. From (2.1) and (2.3), we have

0 < C∗u(r)p ≤ f(u(r)) ≤ C∗u(r)p for 0 < r ≤ r0. (2.5)

We will show that

u′(r) ≤ 0 for 0 < r ≤ r0. (2.6)

In fact, put V (t) = u(r) with r = t−1/(N−2). Then V (t) satisfies

V ′′(t) = − 1
(N − 2)2

t−2(N−1)/(N−2)f(V (t)) < 0 for t ≥ t0

with t0 = r2−N
0 . Hence, V ′(t) is decreasing for t ≥ t0. We will show that V ′(t) ≥ 0 for

t ≥ t0. Assume to the contrary that there exists t1 ≥ t0 such that V ′(t1) < 0. Since V ′(t) is

decreasing, we have V ′(t) ≤ V ′(t1) < 0 for t ≥ t1. This implies that V (t) → −∞ as t → ∞,

which is a contradiction. Thus we obtain V ′(t) ≥ 0 for t ≥ t0, which implies that (2.6) holds.

Take r1 ∈ (0, r0) arbitrarily. Integrating (1.1) on (r1, r) with r ≤ r0, we obtain

−rN−1u′(r) = −rN−1
1 u′(r1) +

∫ r

r1

sN−1f(u(s))ds ≥
∫ r

r1

sN−1f(u(s))ds.

Since r1 > 0 is arbitrary, we obtain

− rN−1u′(r) ≥
∫ r

0
sN−1f(u(s))ds. (2.7)

Then it follows that

−rN−1u′(r) ≥ C∗
∫ r

0
sN−1u(s)pds ≥ C∗u(r)p

∫ r

0
sN−1ds =

C∗
N

u(r)prN .

This implies that

− u′(r)
u(r)p

≥ C∗
N

r.

Integrating the above on [ρ, r], and letting ρ → 0, we obtain u(r)1−p ≥ (p − 1)C∗r2/(2N),

and hence we obtain

u(r) ≤ C1r
−2/(p−1) (2.8)

with C1 = {(p − 1)C∗/(2N)}1/(p−1). Next we will show that

lim inf
r→0

(−rN−1u′(r)) = 0. (2.9)

Assume to the contrary that lim infr→0(−rN−1u′(r)) = c > 0. Then there exists r1 > 0 such

that

−rN−1u′(r) ≥ c

2
for 0 < r ≤ r1.
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Integrating above on (r, r1), we obtain

u(r) ≥ u(r1) +
c

2(N − 2)
(r2−N − r2−N

1 ).

This contradicts (2.8). Thus we obtain (2.9).

By (2.9) there exists rk → 0 such that rN−1
k u′(rk) → 0 as k → ∞. Integrating (1.1) on

[rk, r], and letting k → ∞, we obtain (2.4). It follows from (2.8) that

−rN−1u′(r) ≤ C∗
∫ r

0
sN−1u(s)pds ≤ C∗Cp

1

∫ r

0
sN−1−2p/(p−1)ds = C2r

N−2p/(p−1)

with C2 = C∗Cp
1/(N − 2p/(p − 1)). Thus we obtain −u′(r) ≤ C2r

−(p+1)/(p−1) for 0 < r ≤
r0.

Let u be a positive solution of the equation (1.1) for 0 < r ≤ r0. Define

w(t) = r2/(p−1)u(r) with t = − log r. (2.10)

Then w satisfies

w′′ − aw′ − Ap−1w + e−pθtf(eθtw(t)) = 0 for t ≥ t0, (2.11)

where θ = 2/(p − 1), a = N − 2 − 2θ > 0, and t0 = − log r0. Since f has the form

f(u) = up + g(u), the equation (2.11) can be written as

w′′ − aw′ − Ap−1w + wp + e−pθtg(eθtw(t)) = 0 for t ≥ t0. (2.12)

Lemma 2.2. Assume that (F1) holds. Let u be a singular solution of (1.1). Then

lim sup
r→0

r2/(p−1)u(r) > 0.

Proof. Assume to the contrary that

lim
r→0

r2/(p−1)u(r) = 0. (2.13)

Since u(r) → ∞ as r → 0, there exists r0 > 0 such that (2.3) holds. First we will show that

(r2/(p−1)u(r))′ ≥ 0 for 0 < r < r1 (2.14)

with some r1 ∈ (0, r0]. Define w(t) by (2.10). Then w satisfies (2.11). From (2.5) we have

w′′ − aw′ − Ap−1w + C∗wp ≥ 0 for t ≥ t0.

From (2.13) we have w(t) → 0 as t → ∞. Then there exists t1 ≥ t0 such that

(e−atw(t)′)′ ≥ e−at(Ap−1 − C∗w(t)p−1)w(t) > 0 for t ≥ t1,
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which implies that e−atw′(t) is increasing for t ≥ t1. We will show that

w′(t) ≤ 0 for all t ≥ t1. (2.15)

Assume to the contrary that there exists t2 ≥ t1 such that w′(t2) > 0. Then e−atw′(t) ≥
e−at2w′(t2) > 0 for t ≥ t2. This implies that w′(t) > e−at2w′(t2)eat for t > t2, and hence

w′(t) → ∞ as t → ∞. This contradicts that w(t) → 0 as t → ∞. Thus we obtain (2.15),

which implies that (2.14) holds.

From (2.5) and (2.13) we have

r2f(u(r))
u(r)

≤ C∗r2u(r)p−1 = C∗(rθu(r))p−1 → 0 as r → 0.

Take ε > 0 so that ε < 1/p. Then there exists r1 ∈ (0, r0] such that

r2f(u(r)) < (N − 2 − θ)εu(r) for 0 < r < r1.

Note here that N − 2 − θ > 0. From (2.14) we have∫ r

0
sN−1f(u(s))ds ≤ (N − 2 − θ)ε

∫ r

0
sN−3u(s)ds

≤ (N − 2 − θ)εrθu(r)
∫ r

0
sN−3−θds = εrN−2u(r)

for 0 < r < r1. From (2.4) it follows that

−rN−1u′(r) =
∫ r

0
sN−1f(u(s))ds ≤ εrN−2u(r) for 0 < r < r1.

This implies that (rεu(r))′ ≥ 0 for 0 < r ≤ r1, and hence rεu(r) ≤ rε
1u(r1) for 0 < r < r1.

Then we obtain u(r) = O(r−ε) as r → 0. From (2.4) and (2.5), we obtain

−rN−1u′(r) ≤ C∗
∫ r

0
sN−1u(s)pds ≤ C

∫ r

0
sN−1−pεds = C ′rN−pε

with some constants C,C ′ > 0. Thus u′(r) = O(r1−pε) as r → 0. Since ε < 1/p, we have

u′(r) → 0 as r → 0, and hence limr→0 u(r) < ∞. This is a contradiction. Thus we obtain

lim supr→0 r2/(p−1)u(r) > 0.

2.2 A priori estimates of positive solutions near the origin in the case (F2)

In this subsection we assume that (F2) holds. Then there exist constants u0 > 0, C∗ > 1 >

C∗ > 0 such that

0 < C∗eu ≤ f(u) ≤ C∗eu for u ≥ u0. (2.16)

We may assume that (2.2) holds. We obtain the following results.
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Lemma 2.3. Assume that (F2) holds, and that u0 is the constant in (2.16). Let u be a

positive solution of (1.1) satisfying (2.3) with some r0 > 0. Then

u(r) ≤ −2 log r + C1 and 0 ≤ −u′(r) ≤ C2

r
for 0 < r ≤ r0,

where constants C1 ∈ R and C2 > 0 are independent of u. Furthermore, u satisfies (2.4).

Proof. From (2.16) and (2.3), we have

0 < C∗eu(r) ≤ f(u(r)) ≤ C∗eu(r) for 0 < r ≤ r0. (2.17)

By a similar argument as in the proof of Lemma 2.1, we obtain (2.6) and (2.7). Then it

follows that

−rN−1u′(r) ≥ C∗
∫ r

0
sN−1eu(s)ds ≥ C∗eu(r)

∫ r

0
sN−1ds =

C∗
N

eu(r)rN .

This implies that

−u′(r)
eu(r)

≥ C∗
N

r.

Integrating the above on [ρ, r], and letting ρ → 0, we obtain e−u(r) ≥ C∗r2/(2N), and hence

u(r) ≤ −2 log r + C1 (2.18)

with C1 = log(2N/C∗). By a similar argument as in the proof of Lemma 2.1, we obtain (2.4).

From (2.17) and (2.18) we have

−rN−1u′(r) ≤ C∗
∫ r

0
sN−1eu(s)ds ≤ C∗eC1

∫ r

0
sN−1−2ds = C2r

N−2

with C2 = C∗eC1/(N − 2). Thus we obtain −u′(r) ≤ C2/r for 0 < r ≤ r0.

Let u be a positive solution of the equation (1.1) for 0 < r ≤ r0. Put κ = log 2(N − 2).

Define

w(t) = u(r) + 2 log r − κ with t = − log r. (2.19)

Then w satisfies

w′′ − (N − 2)w′ − 2(N − 2) + e−2tf(w + 2t + κ) = 0 for t ≥ t0 (2.20)

with t0 = − log r0. Since f has the form f(u) = eu + g(u), the equation (2.20) can be written

as

w′′ − (N − 2)w′ + 2(N − 2)(ew − 1) + e−2tg(w + 2t + κ) = 0 for t ≥ t0. (2.21)

Lemma 2.4. Assume that (F2) holds. Let u be a singular solution of (1.1). Then

lim sup
r→0

(u(r) + 2 log r) > −∞.
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Proof. Assume to the contrary that

lim
r→0

(u(r) + 2 log r) = −∞. (2.22)

Since u(r) → ∞ as r → 0, there exists r0 > 0 such that (2.3) holds. We will show that

ru′(r) + 2 ≥ 0 for 0 < r < r1 (2.23)

with some r1 ∈ (0, r0]. Define w(t) by (2.19). Then w satisfies (2.20) and w(t)+2t+κ = u(r).

Since (2.17) holds, we have

f(w(t) + 2t + κ) ≤ C∗ew(t)+2t+κ = 2(N − 2)C∗e2tew(t) for t ≥ t0

with some t0 ∈ R. Then w satisfies

w′′ − (N − 2)w′ + 2(N − 2)(C∗ew − 1) ≥ 0 for t ≥ t0.

From (2.22) we have w(t) → −∞ as t → ∞. Then there exists t1 ≥ t0 such that

(e−(N−2)tw′)′ ≥ −2(N − 2)e−(N−2)t(C∗ew(t) − 1) > 0 for t ≥ t1.

This implies that e−(N−2)tw′(t) is increasing for t ≥ t1. We will show that

w′(t) ≤ 0 for all t ≥ t1. (2.24)

Assume to the contrary that there exists t2 ≥ t1 such that w′(t2) > 0. Then e−(N−2)tw′(t) ≥
e−(N−2)t2w′(t2) > 0 for t ≥ t2. This implies that

w′(t) > e−(N−2)t2w′(t2)e(N−2)t for t > t2,

and hence w′(t) → ∞ as t → ∞. This contradicts that w(t) → −∞ as t → ∞. Thus we

obtain (2.24), which implies (2.23).

From (2.17) and (2.22) we obtain

r2f(u(r)) ≤ C∗r2eu(r) = C∗eu(r)+2 log r → 0 as r → 0.

Take ε ∈ (0, 1). Then there exists r1 ∈ (0, r0] such that

r2f(u(r)) < (N − 2)ε for 0 < r < r1.

It follows that ∫ r

0
sN−1f(u(s))ds ≤ (N − 2)ε

∫ r

0
sN−3ds = εrN−2

for 0 < r < r1. From (2.4) we have

−rN−1u′(r) =
∫ r

0
sN−1f(u(s))ds ≤ εrN−2 for 0 < r < r1,
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which implies that u′(r) + ε/r ≥ 0 for 0 < r ≤ r1. Observe that

(rεeu(r))′ = (eu(r)+ε log r)′ =
(
u′(r) +

ε

r

)
eu(r)+ε log r ≥ 0 for 0 < r ≤ r1.

Then rεeu(r) is nondecreasing for 0 < r ≤ r1, and hence rεeu(r) ≤ rε
1e

u(r1) for 0 < r ≤ r1.

Thus we obtain eu(r) = O(r−ε) as r → 0. From (2.4) and (2.17) we have

−rN−1u′(r) =
∫ r

0
sN−1f(u(s))ds ≤ C∗

∫ r

0
sN−1eu(s)ds ≤ C

∫ r

0
sN−1−εds = C ′rN−ε

with some constants C,C ′ > 0. Thus u′(r) = O(r1−ε) as r → 0. Since ε < 1, we have

u′(r) → 0 as r → 0, and hence limr→0 u(r) < ∞. This is a contradiction. Thus we obtain

lim supr→0(u(r) + 2 log r) > −∞.

3 Asymptotic behavior of singular solutions

In this section, we will show the following proposition, which specifies the behavior of the

singular solution as r → 0.

Proposition 3.1. Let u be a positive solution of (1.1) for 0 < r ≤ r0 with some r0 > 0.

(i) Assume that (F1) holds. If u satisfies lim supr→0 r2/(p−1)u(r) > 0, then

u(r) = Ar−2/(p−1)(1 + o(1)) as r → 0,

where A is the constant defined by (1.2).

(ii) Assume that (F2) holds. If u satisfies lim supr→0(u(r) + 2 log r) > −∞, then

u(r) = −2 log r + log 2(N − 2) + o(1) as r → 0.

Combining Proposition 3.1 and Lemmas 2.2 and 2.4, we obtain Theorem 1.2. In the

remaining of this section we will prove Proposition 3.1. For a solution u of (1.1), define E(u)

by

E(u)(r) =
1
2
u′(r)2 + F (u(r)), (3.1)

where

F (t) =
∫ t

0
f(s)ds for t ≥ 0. (3.2)

Observe that

d

dr
E(u)(r) =

(
u′′(r) + f(u(r))

)
u′(r) = −N − 1

r
u′(r)2 ≤ 0.

This implies that E(u)(r) is nonincreasing in r > 0.
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When (F1) holds, by L’Hospital’s rule we have

lim
u→∞

F (u)
up+1

= lim
u→∞

up + g(u)
(p + 1)up

=
1

p + 1
. (3.3)

By a similar way, in the case (F2), we have

lim
u→∞

F (u)
eu

= 1. (3.4)

Lemma 3.1. Assume that either (F1) or (F2) holds. Let u be a solution of (1.1) for 0 < r ≤
r0 with some r0 > 0. If lim supr→0 u(r) = ∞ then limr→0 u(r) = ∞.

Proof. Assume to the contrary that lim infr→0 u(r) = c < ∞. Then there exist sequences

{rk} and {ρk} with rk → 0, ρk → 0 such that

u′(rk) = 0 and u(rk) → ∞ as k → ∞

and

u′(ρk) = 0 and u(ρk) → c as k → ∞.

Define E(u) by (3.1). From (3.3) and (3.4), we have

E(u)(rk) = F (u(rk)) → ∞ as k → ∞

in the both cases (F1) and (F2). Since E(u)(r) is nonincreasing in r > 0, we obtain E(u)(r) →
∞ as r → 0. On the other hand, we see that

E(u)(ρk) = F (u(ρk)) → F (c) < ∞ as k → ∞.

This is a contradiction. Thus we obtain limr→0 u(r) = ∞.

In the proof of Proposition 3.1, we consider the following ordinary differential equation

w′′ − aw′ + H(w) + G(t, w) = 0 for t ≥ t0, (3.5)

where a > 0 is a constant, t0 ∈ R, H ∈ C(α, β) and G ∈ C([t0,∞) × (α, β)) with some

−∞ ≤ α < β ≤ ∞. We assume that there exists γ ∈ (α, β) such that

(w − γ)H(w) > 0 for all w ∈ (α, β) \ {γ}. (3.6)

The condition (3.6) implies that H(γ) = 0.

Lemma 3.2. Let w ∈ C2[t0,∞) be a solution of (3.5) satisfying α < w(t) < β for all t ≥ t0.

Assume that w satisfies

α < lim sup
t→∞

w(t) < β (3.7)
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and

G(t, w(t)) → 0 as t → ∞. (3.8)

If α = −∞, assume in addition that

G(t, w(t))
ew(t)

→ 0 as t → ∞. (3.9)

Then limt→∞ w(t) = γ.

Remark 3.1. Assume that α > −∞. In this case, if w satisfies (3.7) and (3.8), then w

satisfies (3.9) also. In fact, from (3.7) we have lim inf t→∞ w(t) ≥ α. From (3.8) we obtain

|G(t, w(t))|
ew(t)

≤ |G(t, w(t))|
eα

→ 0 as t → ∞.

Proof of Lemma 3.2. We divide the proof into the following two cases:

(i) w′(t) is nonoscillatory at t = ∞, that is, w′(t) ≥ 0 or w′(t) ≤ 0 for t sufficiently large.

(ii) w′(t) is oscillatory at t = ∞, that is, the sign of w′(t) changes infinity many times as

t → ∞.

First we consider the case where w′(t) ≥ 0 or w′(t) ≤ 0 for t sufficiently large. Since (3.7)

holds, there exists a constant c ∈ (α, β) such that w(t) → c as t → ∞. We will show that

c = γ. Assume to the contrary that c �= γ. First we show that

lim inf
t→∞ |w′(t)| = 0. (3.10)

In fact, if lim inft→∞ |w′(t)| > 0, then there exist c∗ > 0 and t∗ ≥ t0 such that |w′(t)| ≥ c∗
for all t ≥ t∗. This implies that |w(t)| → ∞ as t → ∞. This is a contradiction. Thus (3.10)

holds. Next we show that

lim sup
t→∞

|w′(t)| = 0. (3.11)

Assume to the contrary that lim supt→∞ |w′(t)| > 0. Then, from (3.10), there exists a se-

quence tn → ∞ of local minimum point of w′(t) such that

w′′(tn) = 0 and w′(tn) → 0 as n → ∞.

Put t = tn in (3.5), and let n → ∞. Since G(tn, w(tn)) → 0 as n → ∞ from (3.8), we have

H(w(tn)) → 0 as n → ∞. On the other hand, since w(t) → c �= γ as t → ∞, from (3.6) we

have H(w(tn)) → H(c) �= 0 as n → ∞. This is a contradiction. Thus we obtain (3.11).

Combining (3.10) and (3.11), we obtain limt→∞ w′(t) = 0. Let t → ∞ in (3.5). Then,

from (3.6) and (3.8), we have

−aw′(t) + G(t, w(t)) → 0 and H(w(t)) → H(c) �= 0 as t → ∞.
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This implies that w′′(t) → H(c) �= 0 as t → ∞. Then we have |w′(t)| → ∞ as t → ∞. This

is a contradiction. Thus we obtain w(t) → γ as t → ∞.

Next we consider the case where the sign of w′(t) changes infinity many times as t → ∞.

Put c∗ and c∗, respectively, by

lim inf
t→∞ w(t) = c∗ and lim sup

t→∞
w(t) = c∗. (3.12)

Since w satisfies α < w(t) < β for all t ≥ t0 and (3.7), we have α ≤ c∗ ≤ c∗ < β. We will

show that c∗ = c∗ = γ. From (3.12), there exist {ti} and {τi} with ti < τi such that, for

i = 1, 2, . . .,

lim
i→∞

w(ti) = c∗, w′(t) < 0 for ti < t < τi, and w′(ti) = w′(τi) = 0.

Multiplying (3.5) by w′(t), and integrating it on [ti, τi], we obtain∫ τi

ti

w′′w′ − a(w′)2dt +
∫ τi

ti

(H(w) + G(t, w))w′(t)dt = 0

for i = 1, 2, . . .. From w′(ti) = w′(τi) = 0, we have

−a

∫ τi

ti

(w′)2dt +
∫ τi

ti

(H(w) + G(t, w))w′(t)dt = 0.

We will show that ∫ τi

ti

G(t, w)w′(t)dt → 0 as i → ∞. (3.13)

Recall that (3.9) holds even if α > −∞ by Remark 3.1. We see that∣∣∣∣
∫ τi

ti

G(t, w)w′(t)dt

∣∣∣∣ ≤
∫ τi

ti

∣∣∣∣G(t, w)
ew(t)

ew(t)w′(t)
∣∣∣∣ dt ≤ sup

t≥ti

|G(t, w(t))|
ew(t)

∫ τi

ti

ew(t)(−w′(t))dt

= sup
t≥ti

|G(t, w(t))|
ew(t)

(ew(ti) − ew(τi)).

From (3.9) it follows that

sup
t≥ti

|G(t, w(t))|
ew(t)

→ 0 as i → ∞.

Since α < w(t) < β for t ≥ t0 and (3.12) holds, we have

lim sup
i→∞

(ew(ti) − ew(τi)) ≤ ec∗ − eα < ∞.

Thus we obtain (3.13).

Since w′(t) < 0 on (ti, τi), there exists an inverse function t = ηi(w) on [w(τi), w(ti)].

Putting w′(t) = w′(ηi(w)) = qi(w), we obtain∫ w(ti)

w(τi)
H(w)dw −

∫ τi

ti

G(t, w))w′(t)dt = a

∫ w(ti)

w(τi)
qi(w)dw ≤ 0. (3.14)
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Put c̃∗ = lim infi→∞ w(τi). Then there exists a subsequence, which we denote by {w(τi)}
again, such that w(τi) → c̃∗ as i → ∞. Letting i → ∞ in (3.14), from (3.13) we obtain∫ c∗

c̃∗
H(w)dw = lim

i→∞
a

∫ w(ti)

w(τi)
qi(w)dw ≤ 0.

From (3.6), we have c̃∗ < γ. Since c∗ ≤ c̃∗, we obtain∫ c∗

c∗
H(w)dw ≤ lim

i→∞
a

∫ w(ti)

w(τi)
qi(w)dw ≤ 0. (3.15)

From (3.12), there exist {si} and {σi} with si < σi such that, for i = 1, 2, . . .,

lim
i→∞

w(si) = c∗, w′(t) > 0 for si < t < σi, and w′(si) = w′(σi) = 0.

Multiplying (3.5) by w′(t), and integrating it on [si, σi], we obtain∫ σi

si

w′′w′ − a(w′)2dt +
∫ σi

si

(H(w) + G(t, w))w′(t)dt = 0

for i = 1, 2, . . .. From w′(si) = w′(σi) = 0, we have

−a

∫ σi

si

(w′)2dt +
∫ σi

si

(H(w) + G(t, w))w′(t)dt = 0.

By the similar argument as above, we obtain∫ σi

si

G(t, w)w′(t)dt → 0 as i → ∞. (3.16)

Since w′(t) > 0 on (si, σi), there exists an inverse function t = η̃i(w) on [w(si), w(σi)]. Putting

w′(t) = w′(η̃i(w)) = q̃i(w), we obtain∫ w(σi)

w(si)
H(w)dw +

∫ σi

si

G(t, w)w′(t)dt = a

∫ w(σi)

w(si)
q̃i(w)dw ≥ 0. (3.17)

Put c̃∗ = lim supi→∞ w(σi). Then there exists a subsequence, which we denote by {w(σi)}
again, such that w(σi) → c̃∗ as i → ∞. Letting i → ∞ in (3.17), from (3.16) we obtain∫ c̃∗

c∗
H(w)dw = lim

i→∞
a

∫ w(σi)

w(ti)
q̃i(w)dw ≥ 0.

From (3.6), we have c̃∗ > γ. Since c∗ ≥ c̃∗, we obtain∫ c∗

c∗
H(w)dw ≥ 0 (3.18)

Combining (3.15) and (3.18), we obtain∫ c∗

c∗
H(w)dw = 0 (3.19)
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and

lim
i→∞

∫ w(ti)

w(τi)
qi(w)dw = 0. (3.20)

From (3.6) and (3.19), we have c∗ ≤ γ ≤ c∗. We will show that c∗ = γ = c∗. Assume to

the contrary that c∗ > γ. Put

L =
∫ c∗

(c∗+γ)/2
H(w)dw > 0.

We will show that

lim sup
i→∞

qi(w) ≤ −
√

2L for all w ∈ [γ, (c∗ + γ)/2]. (3.21)

Take any w0 ∈ [γ, (c∗ + γ)/2]. Since c̃∗ < γ, for sufficiently large i, there exists t̂i satisfying

ti < t̂i < τi and w(t̂i) = w0. Multiplying (3.5) by w′(t), and integrating on [ti, t̂i], we obtain

∫ t̂i

ti

w′′w′ − a(w′)2dt +
∫ t̂i

ti

(H(w) + G(t, w))w′dt = 0.

From w′(ti) = 0, we obtain

w′(t̂i)2

2
− a

∫ t̂i

ti

(w′)2dt +
∫ t̂i

ti

(H(w) + G(t, w))w′dt = 0.

Then it follows that

− qi(w0)2

2
− a

∫ w(ti)

w(t̂i)
qi(w)dw +

∫ w(ti)

w(t̂i)
H(w)dw −

∫ t̂i

ti

G(t, w)w′(t)dt = 0. (3.22)

By the similar argument as above, we obtain

∫ t̂i

ti

G(t, w)w′(t)dt → 0 as i → ∞.

From (3.20) and qi(w) < 0, we have

0 ≥
∫ w(ti)

w(t̂i)
qi(w)dw ≥

∫ w(ti)

w(τi)
qi(w)dw → 0 as i → ∞.

Then, letting i → ∞ in (3.22), we have

lim
i→∞

qi(w0)2

2
=

∫ c∗

w0

H(w)dw ≥
∫ c∗

(c∗+γ)/2
H(w)dw = L.

Since qi(w0) < 0, we obtain (3.21).
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For sufficiently large i, there exist τ̃i and t̃i satisfying ti < t̃i < τ̃i < τi and w(t̃i) =

(c∗ + γ)/2 and w(τ̃i) = γ. Then, from (3.21), it follows that

lim sup
i→∞

∫ w(ti)

w(τi)
qi(w)dw ≤ lim sup

i→∞

∫ w(t̃i)

w(τ̃i)
qi(w)dw

= lim sup
i→∞

∫ (c∗+γ)/2

γ
qi(w)dw ≤ −c∗ − γ

2

√
2L < 0.

This contradicts (3.20). Thus we obtain c∗ = γ. By (3.19), we obtain c∗ = γ.

We are now in a position to prove Proposition 3.1.

Proof of Proposition 3.1. (i) By Lemma 3.1, we have limr→0 u(r) = ∞. By Lemma 2.1, we

see that r2/(p−1)u(r) is bounded above. Define w by (2.10). Then w(t) is bounded above.

Since u(r) = eθtw(t) with θ = 2/(p − 1), we obtain

eθtw(t) → ∞ as t → ∞. (3.23)

Put a = N − 2 − 2θ, H(w) = −Ap−1w + wp and G(t, w) = e−pθtg(eθtw). Then, from (2.12),

w satisfies (3.5). Furthermore, H satisfies (3.6) with α = 0, β = ∞ and γ = A. By the

assumption, we have

lim sup
t→∞

w(t) > 0.

From (3.23) and (1.3), we obtain

G(t, w(t)) = e−pθtg(eθtw(t)) =
g(eθtw(t))
(eθtw(t))p

w(t)p → 0 as t → ∞.

Applying Lemma 3.2, we obtain w(t) → A as t → ∞. Thus we obtain (i).

(ii) By Lemma 3.1, we have limr→0 u(r) = ∞. By Lemma 2.3, we see that u(r)+2 log r is

bounded above. Define w by (2.19). Then w(t) is bounded above. Since u(r) = w(t)+2t+κ,

we obtain

w(t) + 2t + κ → ∞ as t → ∞. (3.24)

Put a = N −2, H(w) = 2(N −2)(ew −1) and G(t, w) = e−2tg(w+2t+κ). Then, from (2.21),

w satisfies (3.5). Furthermore, H satisfies (3.6) with α = −∞, β = ∞, and γ = 0. By the

assumption, we have

lim sup
t→∞

w(t) > −∞.

From (3.24) and (1.4), we obtain

G(t, w(t))
ew(t)

=
g(w(t) + 2t + κ)

ew(t)+2t+κ
eκ → 0 as t → ∞.

Applying Lemma 3.2, we obtain w(t) → 0 as t → ∞. Thus we obtain (ii).
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4 Uniqueness of the singular solution

In this section we show the following proposition.

Proposition 4.1. Assume that either (F1) or (F2) holds. Then there exists at most one

singular solution of (1.1).

We recall the following lemma by [22, Lemma 4.2].

Lemma 4.1. Suppose that a(t) and b(t) are continuous functions satisfying limt→∞ a(t) =

a > 0 and limt→∞ b(t) = b > 0. Let z(t) be a solution of z′′ − a(t)z′ + b(t)z = 0. If z(t) is

bounded as t → ∞, then z(t) ≡ 0.

Proof of Proposition 4.1. Let u1(s) and u2(s) be singular solutions of (1.1) for 0 < r ≤ r0.

First we consider the case (F1). Define wi(t) = r2/(p−1)ui(r) with t = − log r for i = 1, 2.

Then, for i = 1, 2, w = wi(t) satisfies (2.12) with t0 = − log r0. Combining Lemma 2.2 and

Proposition 3.1 (i), we obtain

lim
t→∞w1(t) = lim

t→∞w2(t) = A. (4.1)

Define z(t) = w1(t)−w2(t), and put G(t, w) = e−pθtg(eθtw). Then z satisfies limt→∞ z(t) = 0

and

z′′ − az′ + b(t)z = 0 for t ≥ t0, (4.2)

where a = N − 2 − 2θ and

b(t) = −Ap−1 +
w1(t)p − w2(t)p

w1(t) − w2(t)
+

G(t, w1(t)) − G(t, w2(t))
w1(t) − w2(t)

.

From (4.1) we have

lim
t→∞

w1(t)p − w2(t)p

w1(t) − w2(t)
= pAp−1.

By the mean value theorem, we have

G(t, w1(t)) − G(t, w2(t)) = e−(p−1)θtg′(eθtη(t))(w1(t) − w2(t))

for some η(t), which is between w1(t) and w2(t). From (4.1), we have η(t) → A as t → ∞.

By (1.3), we obtain

lim
t→∞

G(t, w1(t)) − G(t, w2(t))
w1(t) − w2(t)

= lim
t→∞

g′(eθtη(t))
(eθtη(t))p−1

η(t)p−1 = 0.

We therefore obtain limt→∞ b(t) = (p−1)Ap−1 > 0. By Lemma 4.1 we obtain z(t) ≡ 0. Thus

(1.1) has at most one singular solution.

19



Next we consider the case (F2). Define wi(t) = ui(r) + 2 log r + κ with t = − log r for

i = 1, 2. Then, for i = 1, 2, w = wi(t) satisfies (2.21) with t0 = − log r0. Combining Lemma

2.4 and Proposition 3.1 (ii), we obtain

lim
t→∞w1(t) = lim

t→∞w2(t) = 0. (4.3)

Define z(t) = w1(t)−w2(t), and put G(t, w) = e−2tg(w+2t+κ). Then z satisfies limt→∞ z(t) =

0 and (4.2) with a = N − 2 > 0 and

b(t) = 2(N − 2)
ew1(t) − ew2(t)

w1(t) − w2(t)
+

G(t, w1(t)) − G(t, w2(t))
w1(t) − w2(t)

.

From (4.3) we have

lim
t→∞

ew1(t) − ew2(t)

w1(t) − w2(t)
= 1.

By the mean value theorem, we have

G(t, w1(t)) − G(t, w2(t)) = e−2tg′(η(t) + 2t + κ)(w1(t) − w2(t))

for some η(t), which is between w1(t) and w2(t). From (4.3), we have η(t) → 0 as t → ∞.

By (1.4), we obtain

lim
t→∞

G(t, w1(t)) − G(t, w2(t))
w1(t) − w2(t)

= lim
t→∞

g′(η(t) + 2t + κ)
eη(t)+2t+κ

eη(t)+κ = 0.

We therefore obtain limt→∞ b(t) = 2(N − 2) > 0. By Lemma 4.1 we obtain z(t) ≡ 0, and

hence (1.1) has at most one singular solution.

5 Proofs of main results

5.1 Proof of Theorem 1.1

Following the idea by Lin [21], we show the following lemma.

Lemma 5.1. Let f ∈ C1[0,∞), and define F by (3.2). Assume that there exist constants

q > (N + 2)/(N − 2) and û0 ≥ 0 such that

0 < (q + 1)F (u) < uf(u) for u ≥ û0. (5.1)

(i) Let α > û0. Assume that u(r, α) ≥ û0 for 0 ≤ r ≤ r0 with some r0 > 0. Then

0 < −ru′(r, α) <
2N

q + 1
u(r, α) for 0 < r ≤ r0. (5.2)
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(ii) Put

γ =
1
2

(
1 − 2N

(q + 1)(N − 2)

)
.

Take any β ≥ û0, and define rβ by

rβ =
(

2Nβ

fM(β/γ)

)1/2

,

where fM (r) = max{f(s) : 0 ≤ s ≤ r}. If α > β/γ then u(r, α) satisfies

u(r, α) > β for 0 ≤ r ≤ rβ. (5.3)

To prove Lemma 5.1, we first recall a Pohozaev identity which was obtained by Ni and

Serrin [31].

Lemma 5.2. Let u(r) be a solution of (1.1) in (r1, r2) ⊂ (0,∞) and let μ be an arbitrary

constant. Then, for each r ∈ (r1, r2), we have

d

dr

{
rN

(
1
2
u′(r)2 + F (u(r)) +

μ

r
u(r)u′(r)

)}

= rN−1

{
NF (u(r)) − μu(r)f(u(r)) +

(
μ + 1 − N

2

)
u′(r)2

}
.

(5.4)

Proof of Lemma 5.1. (i) Letting μ = N/(q + 1) in (5.4), we obtain

d

dr

{
rN

(
1
2
u′(r)2 + F (u(r)) +

N

q + 1
u(r)u′(r)

r

)}

= rN−1

{
NF (u(r)) − N

q + 1
u(r)f(u(r)) +

(
N

q + 1
− N − 2

2

)
u′(r)2

}
.

(5.5)

Put u = u(r, α) in (5.5). From (5.1) and q > (N + 2)/(N − 2), we see that the right-hand

side of (5.5) is negative for 0 ≤ r ≤ r0. Integrating (5.5) on [0, r] with 0 < r ≤ r0, we obtain

1
2
u′(r, α)2 + F (u(r, α)) +

N

q + 1
u(r, α)u′(r, α)

r
< 0.

Note that u(r, α) ≥ û0 for 0 < r ≤ r0 and f(u) > 0 for u ≥ û0 from (5.1). Then we obtain

u′(r, α) < 0 for 0 < r ≤ r0. From (5.1) we have F (u(r, α)) > 0. Thus we obtain (5.2).

(ii) Assume to the contrary that there exists r∗ ∈ (0, rβ ] such that

u(r, α) > β for 0 ≤ r < r∗ and u(r∗, α) = β. (5.6)

Note that β ≥ û0. Then, it follows from (5.2) that u′(r, α) ≤ 0 for 0 ≤ r ≤ r∗. Put B = β/γ.

Since α > B > β, there exists R ∈ (0, r∗) such that

u(R,α) = B and u(r, α) ≤ B for R ≤ r ≤ r∗. (5.7)
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Let v be a solution of the initial value problem⎧⎨
⎩

−(rN−1v′)′ = rN−1fM(B), R < r < r∗,

v(R) = u(R,α) and v′(R) = u′(R,α).
(5.8)

We will show that

v(r) ≤ u(r, α) for R ≤ r ≤ r∗. (5.9)

In fact, put w(r) = v(r) − u(r, α). Then w satisfies

− (rN−1w′)′ = rN−1(fM (B) − f(u(r, α))) for R ≤ r ≤ r∗ (5.10)

and w(R) = w′(R) = 0. From (5.7), we have fM(B) − f(u(r, α)) ≥ 0 for R ≤ r ≤ r∗.
Integrating (5.10) on [R, r] with r ≤ r∗, we obtain −rN−1w′(r) ≥ 0. Then w′(r) ≤ 0 for

R ≤ r ≤ r∗. Since w(R) = 0, we have w(r) ≤ 0 for R ≤ r ≤ r∗, which implies that (5.9)

holds.

Integrating the equation in (5.8), we have

−rN−1v′(r) = −RN−1v′(R) +
∫ r

R
sN−1fM (B)ds < −RN−1v′(R) +

fM (B)
N

rN .

This implies that

−v′(r) < −RN−1v′(R)
rN−1

+
fM (B)

N
r.

Integrating the above on [R, r∗], we obtain

−v(r∗) + v(R) < −RN−1v′(R)
N − 2

(R2−N − r2−N
∗ ) +

fM(B)
2N

(r2
∗ − R2).

Since v′(R) ≤ 0, fM(B) ≥ 0 and r∗ ≤ rβ, we obtain

−v(r∗) + v(R) < −Rv′(R)
N − 2

+
fM (B)

2N
r2
β = −Rv′(R)

N − 2
+ β.

From v(R) = u(R,α), v′(R) = u′(R,α) and (5.2), we obtain

v(r∗) > u(R,α) +
Ru′(R,α)

N − 2
− β ≥

(
1 − 2N

(N − 2)(q + 1)

)
u(R,α) − β.

Recall that u(R,α) = B and γB = β. Then we obtain v(r∗) > 2γB − β = β. Since (5.9)

holds, we obtain u(r∗, α) > β, which contradicts (5.6). Thus (5.3) holds.

The next results follow immediately from Lemmas 2.1 and 2.3.

Lemma 5.3. (i) Assume that (F1) holds. Let u0 be a constant in (2.1), and let α > u0.

Assume that u(r, α) ≥ u0 for 0 ≤ r ≤ r0. Then

u(r, α) ≤ C0r
−2/(p−1) and 0 ≤ −u′(r, α) ≤ C1r

−2/(p−1)−1 for 0 < r ≤ r0,
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where C0 and C1 are positive constants independent of α.

(ii) Assume that (F2) holds. Let u0 be a constant in (2.16), and let α > u0. Assume that

u(r, α) ≥ u0 for 0 ≤ r ≤ r0. Then

u(r) ≤ −2 log r + C1 and 0 ≤ −u′(r) ≤ C2

r
for 0 ≤ r ≤ r0,

where constants C1 ∈ R and C2 > 0 are independent of α.

Proof of Theorem 1.1. In the case of (F1), take q such that (N + 2)/(N − 2) < q < p. Then,

from (3.3) we obtain

lim
u→∞

(q + 1)F (u)
uf(u)

=
q + 1
p + 1

< 1.

In the case of (F2), take q > (N + 2)/(N − 2). Then, from (3.4) we obtain

lim
u→∞

(q + 1)F (u)
uf(u)

= 0.

Thus, in the both cases, there exists û0 > 0 such that (5.1) holds. We may assume that

û0 ≥ u0 in (5.1), where u0 is the constant in (2.1).

Let {αk} be a sequence such that αk → ∞ as k → ∞. Then u(r, αk) and u′(r, αk) are

uniformly bounded in k ∈ N on any compact subset of (0, r0] by Lemma 5.3 (i) and (ii) in

the cases (F1) and (F2), respectively. Since f ∈ C1[0,∞) in (1.1), u′′(r, αk) and u′′′(r, αk)

are also uniformly bounded in k ∈ N on any compact subset of (0, r0]. By the Arzelá-Ascoli

theorem with the diagonal argument, there exist u∗ ∈ C2(0, r0] and a subsequence, which we

denote again by {u(·, αk)}, such that

u(r, αk) → u∗(r) in C2
loc(0, r0] as k → ∞. (5.11)

It is clear that u∗ solves (1.1) for 0 < r ≤ r0. Take any β > û0. Lemma 5.1 (ii) implies that

u(rβ , αk) > β if αk > β/γ. Letting k → ∞, we obtain u∗(rβ) ≥ β. Since fM(β/γ) ≥ f(β/γ)

and f(u)/u → ∞ as u → ∞, we have

0 < rβ ≤
(

2Nγ
β/γ

f(β/γ)

)1/2

→ 0 as β → ∞.

This implies that u∗(r) → ∞ as r → 0, and hence u∗ is a singular solution. Combining

Proposition 3.1 and Lemmas 2.2 and 2.4, we obtain (1.6) and (1.7). By Proposition 4.1,

the singular solution of (1.1) is unique. Thus, for any sequence αk → ∞, there exists a

subsequence such that (5.11) holds with a unique function u∗. This implies that uα → u∗ in

C2
loc(0, r0] as α → ∞.
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5.2 Proof of Corollaries 1.1 and 1.2

Let u∗ be the singular solution of (1.1) obtained in Theorem 1.1. We denote by r∗0 the first

zero of v∗(r) if it exists.

Proof of Corollary 1.1. (i) Since f(u) > 0 for u ≥ 0, u∗(r) has the first zero r∗0. Put

λ∗ = (r∗0)
2 and v∗(r) = u∗(r∗0r). (5.12)

Then v∗(r) with r = |x| solves (1.10) with λ = λ∗. It is clear that v∗(r) → ∞ as r → 0. Thus

(1.10) has a singular solution (λ∗, v∗).
Assume that (1.10) has another singular solution (λ̂, v̂). Put û(r) = v̂(r/

√
λ̂). Then û(r)

also satisfies (1.1) and û(
√

λ̂) = 0. Since the singular solution of (1.1) is unique by Theorem

1.1, we obtain u∗(r) ≡ û(r), and hence r∗0 =
√

λ̂. Then we obtain λ∗ = (r∗0)2 = λ̂ and

v∗(r) ≡ v̂(r). As a consequence, (λ∗, v∗) is the unique singular solution of (1.10).

(ii) We extend the domain of f on (−∞,∞) such that f(u) > 0 for all u ∈ (−∞,∞). As

a typical example, we define f(u) = f(0) for all u ≤ 0. Since f(u) > 0 for all u ≥ 0, u(r, α)

has the first zero, which we denote by r0(α). Let δ > 0. We extend the domain of u∗(r) and

u(r, α) to (0, r∗0 + δ) and (0, r0(α) + δ), respectively. Since f(u) > 0 for al u ∈ (−∞,∞),

u∗(r) and u(r, α) are decreasing in r > 0. Then u∗(r) < 0 for (r∗0 , r
∗
0 + δ) and u(r, α) < 0 for

(r0(α), r0(α) + δ).

We see that

v(r, α) = u(r0(α)r, α) and λ(α) = r0(α)2.

From (1.5) we obtain r0(α) → r∗0 as α → ∞. Then, it follows from (5.12) that λ(α) → λ∗ as

α → ∞. Observe that

|v(r, α) − v∗(r)| = |u(r0(α)r, α) − u∗(r∗0r)|
≤ |u(r0(α)r, α) − u∗(r0(α)r)| + |u∗(r0(α)r) − u∗(r∗0r)|.

By Theorem 1.1, we obtain v(·, α) → v∗ in C2
loc(0, 1] as α → ∞. Thus (1.11) holds.

Proof of Corollary 1.2. Since the singular solution of (1.1) is unique by Theorem 1.1, it is

clear that (1.12) has a singular solution if and only if u∗(r) > 0 for all r ∈ (0,∞).

First assume that u∗(r) has a zero r∗0 > 0. Then (1.12) has no singular solution, and

(1.10) has the the unique singular solution (λ∗, v∗) defined by (5.12). Thus (i) holds.

Next assume that u∗(r) > 0 for all r ∈ (0,∞). Then (1.12) has a singular solution. Assume

that (1.10) has a singular solution (λ̂, v̂). Put û(r) = v̂(r/
√

λ̂). Then, by the argument in the

proof of Corollary 1.1, û(r) ≡ u∗(r) and u∗(
√

λ̂) = 0. This is a contradiction. Thus (1.10)

has no singular solution. Thus (ii) holds.
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