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ABSTRACT 

Probability knowledge is needed for all citizens to reason on every day uncertain 

situations; besides, it is also required to train many professionals at the university level. 

Furthermore, an essential value for learning probability contributes to the formation of a 

specific type of reasoning: probabilistic reasoning, which helps learners formally structure their 

vague thinking about random phenomena. For such reasons, the probability was recognized by 

educational authorities and included in the curricula of many countries at different levels, from 

the primary stage to teacher education. However, several concerns have been discussed in the 

literature regarding the deficiency of probability education, which may negatively impact 

learners' acquisition of probability knowledge and the development of their probabilistic 

reasoning.  

Among other issues, the following ones have been raised: (a) the probability curriculum 

was criticized in terms of acquiring a too narrow view of probability; it strengthens the 

statistical side that is relevant to the objective mathematical rules rather than the epistemic side 

that interprets probability as a personal degree of belief. And (b) there is an inadequate 

preparation of Pre-Service Mathematics Teachers (PSMTs) to teach probability efficiently. 

Both issues were found in the Egyptian context where, on one hand, ideas of independence and 

conditional probability, probability distribution and expectation, and convergence and the law 

of large numbers were disregarded from the intended curriculum; and, on the other hand, the 

implemented curriculum emphasized merely theoretical and axiomatic approaches to 

probability. Moreover, for the PSMTs, only about 9% of all subjects, which they were studying 

throughout the whole duration of their preparation program, were assigned to statistics and 

probability. Besides, there was no particular discussion concerning probability instruction. 

These issues cause various learning difficulties, and they also create further challenges for 

teachers, notably because of the distinct characteristics of probability that are not often found 

in other mathematics areas. 

From this aspect, and acknowledging the influence of teachers’ knowledge on students’ 

learning and achievement, this study highlighted PSMTs’ knowledge for teaching probability; 

as argued by Dollard (2011), “One way to improve this situation is to ensure that new teachers 

graduating from teacher education programs have a good understanding of the fundamental 

concepts of probability” (p. 27). Moreover, this study embraced the perspective of probabilistic 

reasoning (PoPR) to approach such knowledge. This was decided in the light of reviewing the 

historical development of probability education research wherein the PoPR was assumed to 
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construct “a more unified development of the classical, frequentist, and subjective approaches 

to probability” (Jones et al., 2007, p. 949), and to clarify issues of subjective probability that 

did not receive much attention in the field of mathematics education. 

Based on the previous discussion, this study was intended to conceptualize PSMTs’ 

knowledge for teaching probability in Egypt from the PoPR through answering these questions:  

RQ1.  What is the current status of “statistics and probability” education in Egypt? 

RQ2.  What is the definition of mathematics teachers’ professional knowledge for 

teaching probability from the PoPR? 

RQ3.  What are the characteristics of PSMTs' knowledge for teaching probability in 

Egypt from the PoPR? 

To answer the first research question, issues of statistics and probability education in Egypt 

were outlined locally and, then, internationally. From a local perspective, several documents 

were reviewed. As a result, it was evident that the Egyptian government advocated the need to 

enhance PSMTs' professional competence to meet pupils’ needs, especially to teach contents 

of statistics and probability. This content constituted a less emphasized area of study during 

PSMTs’ preparation; furthermore, Egyptian pupils’ achievement in the content area of Data 

and chance stayed the lowest among other mathematics areas, as reported by TIMSS 2003 and 

2007. More specifically, probability denoted a core concept for which most of the textbooks' 

activities aimed, which is promoting pupils' probabilistic understanding.  

Additionally, both the intended and implemented Egyptian school curricula of probability 

were analyzed from an international viewpoint. The intended curriculum was compared with 

the New Zealand curriculum, where ideas of independence and conditional probability, 

probability distribution and expectation, and convergence and the law of large numbers 

appeared to be ignored within the Egyptian curriculum. Moreover, analyzing the implemented 

curriculum exhibited a lack of addressing experimental probability interpretation; also, the 

subjective probability approach was revealed to be neglected until grade 9. 

To answer the second research question, two essential steps were performed. While the 

first step outlined mathematics teachers' professional knowledge for teaching probability as 

defined in the literature (knowledge for practice), the second step manifested the psychological 

facet of teachers' knowledge; it was exemplified through their conceptions (knowledge in 

practice) and reasoning processes. 

For the first step, aspects of KoP, KoTP, KoSPK, and KoPL were explored. Moreover, 

the KoP was sharpened in this study since it determined the heart of mathematics teachers’ 

professional knowledge for teaching probability. It also indicated teachers' epistemological 
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reflection on the meaning of probability, which requires an understanding of its (a) objective 

facet that emphasizes the mathematical rules that govern random processes, and (b) subjective 

facet that sharpens the information available to the person assigning that probability. Despite 

this, these components disregarded the dynamic aspect of teachers’ knowledge; they neither 

considered teachers’ reasoning processes nor the cognitive biases that shape their pedagogical 

practices. Thus, to exhibit these aspects, the second step was recognized through introducing 

the study premises. These premises were: (a) conceptions represent knowledge in evolution, 

(b) reasoning indicates an individual cognitive process to interpret the acquired knowledge, 

and (c) there is a reciprocal relationship between conceptions and reasoning. 

In light of both steps, the study framework was represented. Accordingly, mathematics 

teachers’ professional knowledge for teaching probability was redefined from the PoPR to 

include these aspects: R(in)P, R(in)PL, R(in)TP, and R(in)SPK, which determine their 

reasoning in a situation that involves knowledge of probability, probability language, teaching 

probability, and students probability knowledge, respectively. 

Finally, answering the third research question incorporated characterizing PSMTs' R(in)P 

that is related to (a) simple unconditional and (b) conditional probabilistic situations. Both 

issues of (a) and (b) were handled through a field study, in which a sample of sixty-eight 

PSMTs, who studied the mathematics teachers' preparation program during the academic year 

2018-2019 at the Faculty of Education, Tanta University, Egypt, was engaged in this study. 

The data were collected using a questionnaire; it included six items that were developed 

in terms of acknowledging (a) the value of adopting a social problem, (b) the school curriculum 

viewpoint, (c) the pupils’ perspective, and (d) issues of previous research. As a result, PSMTs’ 

reasoning in a simple unconditional probabilistic situation was characterized within four major 

categories: mathematical [M], subjective [S], outcome [O], and intuitively [I] oriented thinkers. 

Besides, several cognitive biases emerged (e.g., equiprobable bias, insensitivity to the prior 

probability of outcomes, representativeness heuristic, overgeneralization heuristic, prediction 

bias, dependence conception, Allah’s will, prediction conception, and causal conception). 

Furthermore, and essentially, the three factors of variability, randomness, and contextual 

recognition emerged in all manners of reasoning. 

Additionally, PSMTs’ reasoning in a conditional probabilistic situation was also 

characterized within two broad categories of intrasubjective and intersubjective thinkers. The 

intrasubjective included those who shared the overgeneralization heuristic, confusion between 

joint and conditional probability, the combination of the confusion between conditioning and 

conditioned event and independence conception, and the illusion of validity. Besides, the 
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intersubjective thinkers incorporated those who practiced the availability heuristic; the 

reluctance to believe that the condition restricts not only the sample space but also the favorable 

outcome; the combination of the confusion between the conditioned event and another event, 

and the reluctance to believe that the condition restricts not only the sample space but also the 

favorable outcome; the combination of the confusion between conditioning and conditioned 

event, and the reluctance to believe that the condition restricts not only the sample space but 

also the favorable outcome; unawareness of basic probability axioms; the gambler fallacy; the 

causal conception; the fallacy of transposed conditional; and the confusion between the 

conditioned event and another event in the experiment. 

Based on such findings, some directions for future research were proposed. For example, 

similar studies might be conducted over different groups (e.g., PSMTs in other universities, in-

service teachers) to get a broad and profound understanding of the current state of mathematics 

teachers’ knowledge for teaching probability in Egypt. Besides, to validate this study's results, 

different investigations might be carried out using more specific questions. 

Furthermore, while the study findings exposed, on one hand, some misconceptions that 

mismatch with the probability theory, and on the other hand, concepts of variability, 

randomness, and contextual recognition as crucial factors to reason probabilistically, more 

areas for future research can be adopted. For example, how to improve PSMTs' conceptual 

knowledge of probability through a pedagogical treatment; also, how to change the traditional 

way of teaching probability and instead focus on concepts of variability, randomness, and 

contextual recognition. 

 

 

 

 

 

 

 

 

 

 

 



 1 

CHAPTER 1: INTRODUCTION AND PROBLEM STATEMENT 
This chapter outlines the study rationale and problem statement, objectives and questions, 

significance, delimitations, and ends with a description of its whole structure. 

 

1.1 The study rationale and problem statement   

Probability signifies a substantial part of our daily life. Starting from simple questions like, 

“Is it going to rain tomorrow?” to more complicated inquiries like, “Will the volcano erupt?” 

These are instances of some situations that may occur (Savard, 2014). Furthermore, probability 

knowledge and reasoning are needed in everyday settings, for all citizens in decision-making 

situations (e.g., medical diagnosis, voting, environmental consequences, research reports), and 

for professionals’ training (e.g., engineers, doctors) at the university level (Batanero, Chernoff, 

Engel, & Sánchez, 2016; Gal, 2005; Jones, 2005). 

In light of Borovcnik and Peard’s (1996) study, there are two principal purposes for 

learning probability. The first purpose implies forming a specific type of reasoning that is 

probabilistic reasoning, in which learners can formally structure their vague thinking regarding 

random phenomena. Since there is a growing number of events described in terms of risk, the 

underlying concepts of probability reasoning must be learned in school, and its understanding 

should also be clarified (Martignon, 2014; Pange & Talbot, 2003). That is consistent with the 

need to overcome our deterministic thinking and accept the existence of chance in nature 

(Batanero et al., 2016). Besides, deep thinking is also required to understand probability, which 

contributes to the development of students’ mathematical reasoning (Gürbüz, 2006). On the 

other hand, the second purpose admits the importance of probability applications (e.g., Poisson, 

Binomial, Normal distribution) to model various daily life phenomena. Accordingly, the value 

of probability knowledge and reasoning has been recognized by educational authorities in 

many countries, and probability has been included in the official curriculum at different levels, 

from primary to teacher education (Batanero, Burril, & Reading, 2011; Franklin et al., 2007; 

Jones, Langrall, & Mooney, 2007; the National Council of Teachers of Mathematics [NCTM], 

2000; Torres & Contreras, 2014). 

Despite the usefulness of probability in handling most of our daily practices and shaping 

individuals’ probabilistic reasoning, several issues were addressed in the literature regarding 

the deficiency of probability education, which may impact learners' acquisition of probability 

knowledge and developing their probabilistic reasoning. For example, the curriculum was 

criticized for performing a too narrow view of probability (Batanero, Godino, & Roa, 2004; 
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Carranza & Kuzniak, 2008; Ortiz, Cañizares, Batanero, & Serrano, 2002). That narrow view 

usually refers to strengthening the statistical side of probability relevant to the objective 

mathematical rules rather than the epistemic side that interprets probability as a personal degree 

of belief (Hacking, 1975). Similar limitedness was identified in the Egyptian context. While 

some essential ideas (i.e., independence and conditional probability, probability distribution 

and expectation, and convergence and law of large numbers) were disregarded in the intended 

curriculum, the implemented curriculum emphasized the classical and axiomatic approaches 

(Elbehary, 2019). Such a situation affects teaching and learning processes, starting with 

teachers who prioritize discussing textbook activities, especially in the context of developing 

countries (Elbehary, 2019), leading to students who tend to form conceptions based on 

deterministic reasoning, when probability teaching predominantly employs a theoretical 

approach (Konold, 1995). 

Another widely debated issue in the literature is the inadequate preparation of teachers to 

teach probability; particularly, the Pre-Service Mathematics Teachers (PSMTs), those 

university students who learn how to teach intentionally and systematically (Morris, Hiebert, 

& Spitzer, 2009). As reported, one pedagogical difficulty stems from mathematics teachers’ 

lack of specific preparation in probability (Ainley & Monteiro, 2008; Batanero et al., 2011; 

Franklin & Mewborn, 2006; Pecky & Gould, 2005). Even when teachers have broad statistical 

knowledge, it is not sufficient to effectively teach probability (Batanero et al., 2004). That 

inadequate preparation appeared evident in the Egyptian context, where only about 9% of all 

subjects during the whole duration of the four-years mathematics teachers’ preparation 

program was assigned to study statistics, including probability (Elbehary, 2019). Additionally, 

there was no particular discussion concerning the instruction of probability, which was also 

observed in other contexts (e.g., in Colombia by Torres, 2014). 

Such issues about the probability curriculum and teachers’ preparation cause various 

learning difficulties at different grades, from elementary up to university level (Batanero & 

Sanchez, 2005; Fischbein & Schnarch, 1997; Konold, Pollatsek, Well, Lohmeier, & Lipson, 

1993; Stohl, 2005; Tarr, Lee, & Rider, 2006). It also creates further challenges for teachers, 

especially in terms of the distinct characteristics of probability that are not usually encountered 

in other mathematics areas (e.g., multifaceted view, lack of reversibility) (Batanero et al., 2016; 

Jones, 2005; Sharma, 2016). 

Acknowledging the value of fostering teachers as professionals (Kunter et al., 2013; Ponte 

& Chapman, 2006), the current study highlights the notion of PSMTs’ knowledge for teaching 

probability, which signifies the core of professionalism (Baumert & Kunter, 2013; Kaiser et 
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al., 2017). In that regard, the impact of teachers’ knowledge on students’ learning has been 

extensively recognized (Danişman & Tanişli, 2017; Darling-Hammond, 2000; Darling-

Hammond & Sykes, 2003; Feiman-Nemser, 2001; Mosvold & Fauskanger, 2014; Ojimba, 

2013; Rivkin, Hanushek, & Kain, 2005; Schacter & Thum, 2004; Stigler & Hiebert, 1999). 

More specifically, about the deficiencies of probability education, Dollard (2011) has reported 

that “One way to improve this situation is to ensure that new teachers graduating from teacher 

education programs have a good understanding of the fundamental concepts of probability” (p. 

27). This emphasis on PSMTs’ knowledge may also contribute to the existing literature, 

wherein more research is needed to clarify essential components in the preparation of teachers 

for teaching probability (Batanero, Contreras, Fernandes, & Ojeda, 2010; Callingham & 

Watson, 2011; Ives, 2007; the 10th Congress of European Research in Mathematics Education 

[CERME10], 2017; Torres, Batanero, Díaz, & Contreras, 2016). Still, what perspective should 

be adapted to address PSMTs’ knowledge for teaching probability requires clarification. For 

this, the historical development of probability education research was reviewed as follows: 

Recently, Chernoff and Sriraman (2014, 2015) have classified the probability education 

research into four periods: (1) The Piagetian period, which was dominated by Piaget and 

Inhelder’s (1975) investigations of people’s probabilistic reasoning. (2) Post-Piagetian period, 

in which the probabilistic reasoning was investigated by Fischbein’s (1975) research that 

focused on primary and secondary intuitions; and Tversky and Kahneman’s (1974) 

psychological research regarding judgmental heuristics of adults when they reason under 

uncertainty. (3) Contemporary research period, which witnessed a significant shift toward 

investigating curriculum, instruction, and learning difficulties that were carried out by a group 

of researchers of mathematics education (e.g., Falk, 1986; Konold, 1989, 1991). (4) 

Assimilation period after 2000, in which the research continued to develop theories, models, 

and frameworks associated with intuition and learning difficulties in probability, in line with 

the previous period. At this stage, the probability education research has been shifted smoothly 

from importing research findings of other fields (e.g., psychology) to develop its specific 

interpretations of results stemming from learning and teaching difficulties under the umbrella 

of mathematics education. Nevertheless, recent investigations have gone back to their 

proverbial roots by incorporating Tversky and Kahneman’s ideas. 

Based on this historical development of probability education research, some directions 

for future investigations were defined. One such area that is embraced by this study is 

advocating for “a more unified development of the classical, frequentist, and subjective 

approaches to probability” (Jones et al., 2007, p. 949); alternatively stated, “involves modeling 
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several conceptions of probability” (Shaughnessy, 1992, p. 469), to address the remarkable 

distinction between both mathematical and philosophical facets of probability theory (Gillies, 

2000). From that aspect, to respond to such a challenge, the study utilized probabilistic 

reasoning, which has a psychological nature and focuses on how individuals reason under 

uncertainty, as a perspective to investigate PSMTs' knowledge for teaching probability. That 

is, describing PSMTs’ reasoning processes and clarifying their cognitive biases when they 

reason under uncertainty matches the renaissance period of psychology research in 

mathematics education. Curiously, issues of subjective probability that consider psychical 

origins of mathematical probability (Dewey, 1964, as cited in Gierdien, 2008; Hawkins & 

Kapadia,1984) have not undertaken much deliberation in mathematics education (Chernoff, 

2008; the International Conference on Teaching Statistics [ICOTS], 2014). As stated by Jones 

et al. (2007), “it is timely for researchers in mathematics education to examine subjective 

probability and the way that students conceptualize it” (p. 947). Ultimately, that may help to 

pave the way “for theories about mathematics education and cognitive psychology to recognize 

and incorporate achievements from the other domain of research” (Gillard, Van Dooren, 

Schaeken, & Verschaffel, 2009, p. 13), wherein the study results may serve as a foundation to 

develop pedagogical interventions and didactical activities. Accordingly, and more precisely, 

the current study has conceptualized PSMTs’ knowledge for teaching probability in Egypt from 

a cognitive psychological perspective that is probabilistic reasoning. 

 

1.2 The study objective and questions 
Based on what was discussed prior, this study’s main objective is to conceptualize PSMTs’ 

knowledge for teaching probability in Egypt from the perspective of probabilistic reasoning. 

Thus, to fulfil such an objective, the following research questions were constructed: 

RQ1. What is the current status of “statistics and probability” education in Egypt? 

RQ2. What is the definition of mathematics teachers’ professional knowledge for teaching 

probability from the perspective of probabilistic reasoning? 

RQ3. What are the characteristics of PSMTs' knowledge for teaching probability in Egypt 

from the perspective of probabilistic reasoning? 

 

1.3 Significance of the study   

Since this study is tackling the arena of teachers’ professional knowledge for teaching 

probability, focusing on a case of PSMTs in the Egyptian context, with the principal intention 
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of committing to competence models’ creation for prospective mathematics teachers, it may 

be significant in multiple areas, as follows: 

In a broad sense, probability indicates the least addressed content by statistics educators, 

which is reflected in the limited number of studies that are focused on probability education. 

Among ninety-five published papers in the Journal of Statistics Education during the period 

from 2017 until 2020, only two articles entitled Symbulate: Simulation in the Language of 

Probability (2019) and Development of an Informal Test for the Fit of a Probability 

Distribution Model for Teaching (2020) were relevant to probability. Similarly, four papers out 

of one hundred and five (Pre-Service Mathematics Teachers’ Use of Probability Models in 

Making Informal Inferences about a Chance Game (2017); Quintile Ranking of Schools in 

South Africa and Learners’ Achievement in Probability (2019); Game Invention as Means to 

Stimulate Probabilistic Thinking (2020); and Students’ Informal Hypothesis Testing in a 

Probability Context with Concrete Random Generators (2020)) were published in the Statistics 

Education Research Journal. Hence, the whole argumentation of the current study may help 

clarify such specific content; mainly, how PSMTs do reason in a probabilistic situation, which 

can ultimately give insights to structure their pedagogical preparation and promote their 

professional competence. 

Theoretically, regarding the study perspective of probabilistic reasoning described as a 

psychological perspective, it acknowledges that the existing conceptions determine the starting 

point of guiding students toward normatively correct procedures. As clarified by Van Dooren 

(2014), “understanding of reasoning mechanisms and the origins of prior conceptions may also 

lead to an engineering of these mechanisms and conceptions” (p. 125). Thus, embracing such 

a perspective to approach mathematics teachers' professional knowledge for teaching 

probability advocates three vital issues. 

The first issue denotes admitting teachers’ reasoning processes and conceptions as 

essential features to consider, which strengthens the process knowledge rather than content 

knowledge that cannot be neglected, particularly for statistics and probability education 

(Garfield & Ben-Zvi, 2008; Guidelines for Assessment and Instruction in Statistics Education 

[GAISE], 2016; Shaughnessy, 1992). That is reflected in this study through characterizing 

teachers’ knowledge by how they reason to transmit and manipulate such knowledge, wherein 

these manners of reasoning affect their pedagogical practices. Alternatively, instead of 

describing mathematics teachers’ knowledge for teaching probability as sufficient or even 

inadequate (e.g., Danişman & Tanişli, 2017), there is a need to explore what causes underpin 

those practices, relying on their conceptions shaped by reasoning processes. 
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Such an idea may contribute to the studies concerned with the creation of competence 

models for prospective mathematics teachers (Krainer & Llinares, 2010), and it provides 

directions for further investigations to evaluate the quality of teacher education. After all, it 

responds to recommendations regarding the need to define the essential components in PSMTs' 

preparation to overcome the lack of specialized pedagogical training in probability (e.g., 

Batanero et al., 2004; Batanero et al., 2010; Contreras, Batanero, Díaz, & Fernandes, 2011; 

Dollard, 2011; Estrella & Olfos, 2010; Greer & Mukhopadhyay, 2005; Franklin & Mewborn, 

2006; Ives, 2007; Stohl, 2005; Torres, 2014). 

While the first issue for why the probabilistic reasoning perspective may contribute to the 

literature implies matters of teachers’ knowledge and, further, competence models' creation 

that can be generalized to other domains of mathematics, both second and third issues are more 

specific to the case of probability. 

In detail, the second value underpins utilizing such perspective signifies developing a 

schema that involves theoretical, experimental, and subjective probability interpretations 

together (Jones et al., 2007; Shaughnessy, 1992), to respond to the unachieved challenge of 

connecting the three approaches (Chaput, Girard, & Henry, 2011). Since operating 

probabilistic reasoning advocates acknowledging several individuals’ conceptions (without 

classifying them in terms of conceptual understanding), it sharpens how their minds work under 

uncertainty. These ideas were not adequately covered in previous studies. Besides, this study 

attempts to clarify subjective probability issues as a general classifier, which indicates the third 

value of employing the perspective of probabilistic reasoning. This may contribute to the 

literature wherein many researchers have reported that subjective probability signifies a 

neglected and vague area in probability education research, and further, in the curriculum 

(Chernoff, 2008; Chernoff & Russell, 2014; ICOTS 9, 2014; Torres, 2014; Torres & Contreras, 

2014). Moreover, since subjective probability denotes an opportunity for researchers in 

mathematics education to relate probability with its psychological origins (Chernoff, 2014), 

characterizing it for PSMTs helps to respond to the need for further investigation that connects 

the mathematics education research on probability with its proverbial psychological roots 

(Chernoff & Sriraman, 2015; Gillard et al., 2009). 

Indeed, the three above reported issues describe a theoretical value that this study may 

contribute; they are related to the literature gap on probability education research. However, 

practically, because researchers in mathematics education are more interested in designing 

instructional activities to promote learners' understanding of probability, strengthening 

PSMTs’ reasoning under uncertainty can support adapting efficient pedagogical courses. 
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Primarily, the didactics of probability, including issues of the curriculum, are undervalued in 

PSMTs' preparation (e.g., Leviatan, 2010; Viali, 2010). In that sense, exploring PSMTs’ 

knowledge for teaching probability focusing on their reasoning processes helps to define their 

shared conceptions, which may have a mathematical root, or originate from psychological 

problems (Shaughnessy, 1977); thus, “mere exposure to the laws of probability may not be 

sufficient to overcome some misconceptions of probability” (Ibid. p. 295). From this 

viewpoint, clarifying the possible discrepancies between PSMTs’ conceptions and probability 

concepts gives teacher educators information about what conceptions PSMTs bring into the 

mathematics classroom. Accordingly, effective interventions, which consider both the 

mathematical obstacles and the psychological roots of such difficulties, can be performed. 

That, ultimately, may impact their pupils' understanding, since teachers’ knowledge is 

associated with higher quality instruction, which in turn has a positive effect on pupils' 

learning; that is widely admitted, as detailed in the Study Rationale section. 

Within this aspect that highlights the pedagogical preparation of PSMTs, it is valuable to 

note that the study regarded the importance of grounding probability instruction in different 

contexts with more attention to realistic social situations that individuals experience in their 

daily life. That may help, again, to eliminate learners' fallacious preconceptions (beliefs, 

heuristics, misconceptions, or biases) when they study formal probability theory. Additionally, 

it contributes to recent investigations that reveal the significance of contextualizing probability 

(e.g., Gusmão, Santana, Cazorla, & Cajaraville, 2010) and how it can be cultivated through 

authentic situations, instead of traditional formula-based approaches (Batanero & Díaz, 2012). 

In a narrow sense of how the current study may contribute to the national context 

represented by the Egyptian (and Arab) community, it responds to the need for enhancing 

Egyptian graduate students’ professional competence by characterizing their knowledge for 

teaching probability. That, sequentially, helps achieve a high quality of education and training 

systems (Sustainable Development Strategy: Egypt Vision 2030, 2016). More concretely, in 

teacher education, illuminating PSMTs' knowledge for teaching probability works as a catalyst 

for reforming the curriculum. Besides, it supports teacher educators, who undoubtedly have a 

significant role in preparing PSMTs, understand the expected learning difficulties which 

PSMTs may encounter during learning this content (as reported beforehand). Thus, the 

intended lectures and pedagogical activities can be modified to help them overcome these 

difficulties. Mapping such efficient training symbolizes one plausible approach to overcoming 

the fact that Egyptian pupils’ achievement in Data and chance remains the lowest among other 

mathematics areas, as revealed by the results of the Trends in International Mathematics and 
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Science Study (TIMSS) in 2003 and 2007 (Mullis, Martin, Gonzalez, & Chrostowski, 2004; 

Mullis et al., 2008). 

Closely related to that, defining PSMTs’ knowledge for teaching probability in terms of 

their reasoning processes may help overcome some deficiencies of the Egyptian school 

curriculum; specifically, the emphasis on the objective probability interpretations and 

neglecting the subjective side. In other words, if PSMTs only relied on what the curriculum 

provides, pupils tend to develop conceptions based on deterministic reasoning (Konold, 1995). 

From this aspect, PSMTs' manners of reasoning are significant to investigate; that helps them 

critically interpret curriculum activities and promote their pupils' probabilistic reasoning. Such 

argumentation is consistent with what Forbes (2014) remarked concerning the success of the 

statistics curriculum that depends on the quality of teacher education and development. 

Finally, the current study sustains the research of statistics education in the Arab context, 

wherein the majority of undergraduate statistics courses are provided in Egypt. As Hijazi and 

Alfaki (2020) noted, while sixty-four universities are offering seventy-three undergraduate 

programs in statistics across nineteen of the twenty-two Arab countries, around 60% of the 

universities that provide statistics programs are placed in Egypt, Iraq, and Sudan. Furthermore, 

it responds to Innabi’s (2014) recommendation regarding the need to activate the study of 

statistics in the Arab world, since very little research was conducted, and the value of statistics 

has not yet been fully recognized (Hijazi & Alfaki, 2020). Accordingly, characterizing PSMTs’ 

knowledge for teaching probability within the sphere of statistics education paves the way 

toward strengthening their pedagogical content knowledge that should be consistent with their 

needs and current state. Subsequently, it contributes to the movement of establishing the local 

accreditation and quality assurance system that oversees the quality of graduates in some Arab 

countries (e.g., United Arab Emirates, Saudi Arabia, Egypt) (Hijazi & Zoubeidi, 2017).  

 

1.4 The study delimitations  
The analytical part of this study was limited to the case of PSMTs in Egypt. The reason is 

that, according to the Egyptian context, accomplish a university degree is a pre-requisite to 

practice the teaching profession, particularly in light of the absence of systematic training 

concerned with in-service mathematics teachers’ practices (Mullis et al., 2004). Besides, in-

service teachers often do not have enough time to participate in similar studies, especially with 

the teaching burden and the curriculum load. Furthermore, placing the focus on PSMTs helps 
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clarify their original conceptions during the development stage before the influence of working 

practices (experience) that may shape their reasoning in a prevalent dogmatic manner. 

Another issue signifies the focal scope to characterize PSMTs’ knowledge for teaching 

probability in Egypt. That is, although the study framework exhibits four different aspects that 

define mathematics teachers’ professional knowledge for teaching probability from the 

perspective of probabilistic reasoning (see Figure 11), the investigation sharpened the aspect 

of R(in)P; it describes how PSMTs reason in a situation that involves knowledge of probability 

(i.e., simple and conditional probability). Such focus on R(in)P is originated from the value of 

investigating Knowledge of Probability (KoP), which corresponds to Subject Matter 

Knowledge (SMK) in the Mathematical Knowledge for Teaching (MKT) model; it outlines the 

heart of teachers' knowledge and reflect their deep understanding of the subject (Shulman, 

1986). The SMK also appears in the stage of transformation at which mathematics teachers 

represent the probability through various techniques to facilitate their pupils' understanding. 

Moreover, several recommendations about teachers’ knowledge for teaching probability 

stressed the importance of the SMK. That is detailed in Papaieronymou’s (2009) study, which 

analyzed recommendations of the four professional organizations of the American 

Mathematical Society, American Statistical Association, Mathematical Association of 

America, and the NCTM) to describe teachers’ knowledge for teaching probability. As a result, 

it revealed that 66% of these recommendations are relevant to teachers’ SMK compared to 

24% for the Pedagogical Content Knowledge (PCK). 

 

1.5 Structure of the study  

This section draws the structure of this study. At first, Chapter 2 describes the overall 

methodology (research logic) of how the research questions were answered to fulfil the study's 

principal objective. Next is Chapter 3 that outlines the status of “statistics and probability” 

education in Egypt; thus, it answered the first research question. After clarifying particular 

issues of Egyptian intended and implemented curriculum of probability, such ideas were 

complemented by (a) reviewing the current themes of research on probability education that 

manifests the theoretical gap at which the study has tackled, and (b) stating the study premises, 

to define mathematics teachers’ professional knowledge for teaching probability from the 

perspective of probabilistic reasoning1. That is the argumentation of Chapter 4; it presents the 

 
1 Henceforth, the expression of “perspective of probabilistic reasoning” will be replaced by the abbreviation 
“PoPR” excepts in tables and figures’ headlines, titles, and subtitles. 
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definition of mathematics teachers’ professional knowledge for teaching probability from the 

PoPR, which responded to the second research question. Accordingly, Chapter 5 details the 

procedures and results of the field study at which PSMTs' knowledge for teaching probability 

in Egypt was approached from the PoPR to answer the third research question. In the end, the 

research study was summarized; also, some recommendations and directions for future 

research were given within Chapter 6. That is displayed in the following figure: 

 

 
Figure 1. Structure of the current study 
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CHAPTER 2: METHODOLOGY 
This chapter describes the overall methodology of how the research questions were 

answered to fulfil the study's principal objective.  

 

2.1 Research logic and interrelationships among its questions  

The logic of this research can be defined in terms of abduction reasoning; it signifies 

“selecting or inventing a provisional hypothesis to explain a particular empirical case or data 

set better than any other candidate hypotheses, and pursuing this hypothesis through further 

investigation” (Kennedy & Thornberg, 2018, p. 52).  This study employed abduction reasoning 

because of the importance of the context and the influence of socio-cultural factors on learning 

probability. Levin-Rozalis (2010) reported that abduction reasoning helps connect the local 

with the universal at which more profound and context-related findings can be reached. 

Furthermore, while deduction works to evaluate a hypothesis and induction helps justify it, the 

abduction logic aims to generate new ideas (Peirce, 1960, as cited in Åsvoll, 2014). That 

matches the status of this study wherein, on one hand, the existing research on teachers’ 

knowledge for teaching probability has not yet established a hypothesis that explains how 

various probability interpretations can be mapped together, to be examined in the Egyptian 

context. On the other hand, “it seems doubtful whether a high number of inductive cases can 

verify hypotheses” (Åsvoll, 2014, p. 293); alternatively, it is a little tricky to determine how 

many different cases can be engaged in the study to reach a hypothesis that explains Egyptian 

PSMTs’ knowledge for teaching probability. Accordingly, the abduction reasoning logic was 

utilized; it defines a middle ground that helps overcome the classical distinction between 

induction and deduction (Delputte & Orbie, 2018). 

While the abduction reasoning processes were described by Delputte and Orbie (2018) as 

in Figure 2, these processes were adopted in the current study and exhibited through Figure 3. 

 

 
Figure 2. Utilizing abduction reasoning as a research method. Retrieved from Delputte and 

Orbie (2018, p. 296) 
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Figure 3. Research logic 

 
According to Figure 3, the three research questions’ results operated to fulfil the study 

objective of conceptualizing PSMTs’ knowledge for teaching probability in Egypt from the 

PoPR; that process signified an interplay between theory and empirics. 

Concretely, at first, the empirical evidence regarding weaknesses of the Egyptian school 

curriculum of probability worked with the theoretical argumentations about teachers’ 

knowledge for teaching probability to define (a) what aspects of knowledge mathematics 

teachers need to acquire to teach probability effectively and (b) what perspective may help to 

approach such knowledge in a way that fills the research gap. Accordingly, a framework was 

proposed to redefine mathematics teachers' professional knowledge for teaching probability 

from the PoPR; and a field investigation was prepared to explore one aspect of that framework 

in the Egyptian context. As a result, practically, the findings revealed some factors that, on one 

hand, maintained conceptualizing PSMTs’ knowledge for teaching probability in Egypt, and, 

on the other hand, provided some new insights on how the existing research on probability 

instruction can be modified to respond to the remaining needed issues in the literature. 
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2.2 Processes of answering the research questions  
2.2.1 Processes of answering the first research question 

The current status of “statistics and probability” education in Egypt was outlined from 

local and international perspectives. At first, locally, some documents were reviewed to decide 

which area of study has the priority to consider for research; thus, the probability was focused. 

Second, to reflect precisely on the probability content issues, both intended and implemented 

curricula were analyzed from an international viewpoint. Accordingly, several techniques were 

utilized to respond to these issues depending upon the available treated subject and the analysis’ 

purpose. That is summarized in Table 2. 

In detail, by reviewing Egyptian vision 2030, this study considered teacher education to 

respond to the insufficient skills for graduates that represent a national challenge. 

Afterward, the academic program of PSMTs’ preparation at the Faculty of Education2 that 

lasts for four-years was analyzed quantitatively in terms of the assigned hours to study each 

subject using Grossman's (1990) model. Grossman is the first researcher who systematized the 

seven categories of teachers’ knowledge proposed by Shulman (1987); accordingly, he 

presented four broad categories of SMK, General Pedagogical Knowledge, Knowledge of 

Context, and the PCK that occupies the central position of his model (see Fernandez, 2014). 

Although there are some other frameworks of teachers’ knowledge in the literature (e.g., 

Shulman, 1987; Carlsen, 1999), Grossman's framework stays simple, practical, and fits the 

general structure of preparation programs.  

Depending upon the results of analyzing the academic program of PSMTs and Egyptian 

pupils’ achievement in TIMSS 2003 and 2007 (see Chapter 3), Statistics and probability was 

highlighted. However, another technique was operated to determine which area should be 

precisely sharpened within this domain. This technique implied analyzing the implemented 

activities3 stated in units of Statistics and probability in primary and lower secondary school 

textbooks4 in light of Burrill and Biehler’s (2011) list of Fundamental Statistical Ideas5. That 

is because (a) these ideas are essential to implement either in the school curriculum or teacher 

education and relevant to clarify the discipline’s specific characteristics (Burrill & Biehler, 

2011). Moreover, (b) the assigned opportunities for students to learn school curriculum denotes 

 
2 This analysis considered only the academic program of PSMTs at the Faculty of Education, Tanta University. 
Although these studied subjects may vary slightly from a university to another, the structure of the program itself 
is almost alike across all governmental universities. 
3 This analysis covered the raised activities not only within the lessons but also exercises and revisions.  
4 There is only one official national series of textbooks that are used by all governmental schools.  
5 A brief description of these ideas is given in Appendix 2, before listing the textbooks’ analysis results. 
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one approach to stipulate teachers' knowledge (Stylianides & Ball, 2004); notable, there is 

research evidence that revealed teachers lack a fundamental understanding of school 

mathematics (e.g., Ball, 1990; Ma, 1999; Simon, 1993). As detailed in Chapter 3, this analysis 

revealed that probability signifies a core statistical idea in the curriculum wherein the majority 

of the implemented activities intend to promote pupils’ understanding of this concept 

(Elbehary, 2020); thus, probability has been precisely sharpened in this study.  

Additionally, to define issues in the Egyptian school curriculum of probability, two other 

techniques were performed, as follows:  

First, the intended curriculum was compared with New Zealand (NZ) curriculum through 

summative content analysis (see details in Chapter 3). Two reasons supported conducting such 

a comparison. One is NZ’s high SDG achievement, with a global ranking of 11 out of 162 

compared to 92 for Egypt (SDG, 2019). The other reason is more specific to the study of 

statistics and probability, wherein “when the discussion is placed into the field of statistics 

education research, it is worthwhile to mention that the New Zealand curriculum has developed 

to the stage where it now serves as a working model for other countries to adapt to fit their 

particular circumstances” (Elbehary, 2020, p. 4). Alternatively, the NZ curriculum considers a 

resource for pedagogical changes in other countries (Forbes, 2014).  

Second, the implemented curriculum was characterized through (a) operating the Onto-

Semiotic Approach (OSA) that serves as a practical, semiotic, and anthropological approach to 

analyze the subject through its symbols at an institutional level (Godino, Batanero, & Font, 

2007). It was first operationalized as in Table 1 and utilized to define probabilistic Situations, 

Propositions, Procedures, and Terms, which appeared within textbooks' discourses. Later, (b) 

these defined probabilistic entities were assigned to Batanero et al.’s (2016) list of probability 

interpretations (see Table 17 in Chapter 4). These procedures were simulated depending upon 

previous studies (e.g., Gusmão et al., 2010) that attempted to clarify what probability 

interpretations are usually emphasized in the classroom discussion. 

 
Table 1. The operational definition of the OSA entities. Based on Elbehary, 2019 
Situation Propositions Procedures Terms 

Probabilistic 
activities, tasks, and 
problems discussed 
within the discourse. 

Underlined properties, 
relationships, and 

theories that connect 
the probabilistic 

concepts. 

Applied algorithms 
and techniques 

used to perform a 
given situation. 

Embedded terms, 
expressions, notations, and 

concepts that appeared 
implicitly or explicitly 
through the discourse. 

e.g., The experiment 
of tossing a coin 

e.g., The relationship 
between events and 

sample space 

e.g., P (H) = n (H)/ 
n (S) 

e.g., Randomness, H, P (A), 
theoretical probability 
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To sum up, the following table compiles all the employed techniques to answer the first 

research question.  

  
Table 2. Brief on how the current status of "statistics and probability" education in Egypt 

is outlined 
The reviewed 

contents  
Method Main result 

• First, to determine issues of statistics and probability education in Egypt locally: 
Sustainable 

Development 
Strategy: 

Egypt vision 
2030 

   The main objectives raised in the titles 
and subtitles and the current local 

challenges that may hinder achieving 
these objectives were reviewed and 

summarized. 

– One essential goal of the 2030 
strategy in Egypt is to enhance 
graduate students’ professional 
competence to meet pupils’ 
needs. 

The academic 
program of 
preparing 

PSMTs at the 
faculties of 
education 

  A quantitative analysis of the subjects 
that PSMTs study during the entire 
preparation program based on the 

assigned number of hours allocated to 
each subject was conducted using 

Grossman's (1990) model of teachers’ 
knowledge. 

– Learning the subject matter took 
proper consideration, with about 
64% of the studied hours 
throughout the whole program. 
However, only 9.2% were 
assigned to learn statistics, 
including probability.  

TIMSS reports The shared documents by TIMSS 2003 
and 2007 were reviewed, focusing on 

issues of Egyptian pupils’ achievement 
and teachers’ requirements. 

– Egyptian pupils’ achievement in 
Data and chance remains the 
lowest among other mathematics 
areas. 

– Earning a university degree is 
sufficient to practice teaching in 
Egypt, and around 99% of in-
service teachers possess only this 
degree. 

The school 
content of 

statistics for 
the basic 
education 

sector (grade 
1 to 9) 

The declared activities within the 
statistics school content (including 

probability) were analyzed by exploring 
the correspondence between these 
activities’ objectives and the seven 

fundamental statistical ideas introduced 
by Burrill and Biehler (2011). 

– Probability indicates a core 
statistical idea within the 
Egyptian school curriculum 
where the majority of the 
implemented activities are 
intended to promote pupils’ 
understanding of probability. 

• Second, to determine issues of probability education in Egypt internationally:  
The intended 
curriculum of 

probability 

  The Egyptian curriculum was compared 
with the NZ curriculum through 

summative content analysis. It combined 
utilizing the OSA and the fundamental 
probabilistic ideas listed by Batanero et 

al.’s (2016) to reach a specific conclusion 
regarding the weaknesses of the intended 

curriculum of probability in Egypt. 

– The ideas of independence and 
conditional probability, 
probability distribution and 
expectation, and convergence 
and law of large numbers were 
discussed in NZ but were not 
considered in Egypt. 

The 
implemented 
curriculum of 

probability 

   Textbooks’ activities were analyzed 
through the OSA and later structured 

based on Batanero et al.’s (2016) 
classification of various interpretations of 

probability to determine the most 
emphasized probability interpretation in 

the Egyptian classroom discussion. 

– The implemented curriculum 
placed more emphasis on 
operating theoretical and 
axiomatic interpretations. Also, 
the subjective probability 
seemed to be neglected until 
grade 9. 
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2.2.2 Processes of answering the second research question 

To define mathematics teachers’ professional knowledge for teaching probability from the 

PoPR and exhibit it through the study framework, these two steps were, basically, conducted: 

§ The first step involved mainly literature review; it combined two minor steps of (a) 

outlining current themes of research on probability through analyzing the contributed 

papers of ICOTS 8 (2010), 9 (2014), and 10 (2018), and (b) reviewing previous studies 

on teachers’ knowledge for teaching probability (knowledge for practice) and 

crystallizing it in light of the MKT model. While outlining ICOTS’ papers intended, 

generally, to expose the research gap on probability, reviewing, precisely, previous 

studies on teachers’ knowledge aimed at determining the initial entities of the study 

framework. 

§ The second step placed the study premises; it attempted to fulfil the research gap, which 

was inferred from the first step. That symbolized exhibiting the dynamic psychological 

facet of probability as exemplified by teachers’ conceptions and reasoning processes. 

Thus, it explained interrelationships among knowledge (knowledge for practice), 

conceptions (knowledge in practice), and reasoning. 

In detail, regarding the first step, as indicated above, in the beginning, current themes of 

research on probability were drawn through analyzing the contributed papers of ICOTS 8, 9, 

and 10. Under the International Association for Statistical Education (IASE), considered one 

of the most influential communities that support statistics education at all levels around the 

world, ICOTS, IASE Satellite, and IASE Roundtables are usually held. Besides, the IASE also 

supports some other conferences (e.g., World Statistics Congresses of the ISI [WSC] and the 

International Congresses in Mathematical Education [ICME]). However, as stated on the IASE 

website (IASE, n.d.), ICOTS conferences held every four years since 1982 stay the most 

important events on the international statistics education calendar. That describes why papers 

of the latest three ICOTS were selected and analyzed through the following detailed 

procedures, which were developed by the researcher to manifest the research gap. 

I. All the contributed papers were first retrieved and reviewed from the official websites 

of  https://icots.info/8/, https://icots.info/9/, and https://icots.info/10/. As a result, 15 

(out of 127), 8 (out of 127), and 2 (out of 79) papers were found in ICOTS 8: Data 

and context in statistics education: towards an evidence-based society, ICOTS 

9: Sustainability in statistics education, and ICOTS 10: Looking back, looking 

forward, respectively. Thus, in total, 25 papers were selected to analyze (see Table 

3); all showed either the term probability or probabilistic in their titles. 
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Table 3. Summary of the contributed papers on probability education that were shared by 
ICOTS 8, 9, and 10  

ICOTS Total 
number 

of papers  

Number of 
papers on 
probability 

The selected papers related to probability education    

8 (2010) 127 15 Batanero et al.; Caldeira and Mouriño; Theis and 
Savard; Grenon, Larose, Bourque, and Bédard, 2010; 

Larose, Bourque, and Freiman; Papaieronymou; 
Gusmão, Santana, Cazorla, and Cajaraville; Savard; 

Gundlach, Kuntze, Engel, and Martignon; Viali; 
Chadjipadelis and Anastasiadou; Estrella and Olfos; 

Kapadia and Borovcnik; Borovcnik and Kapadia; and 
Leviatan. 

9 (2014) 127 8  Eckert; Primi, Morsanyi, and Chiesi; Edwards; Torres 
and Contreras; Torres; Díaz, Mier, Alonso, and 
Rodríguez-Muñiz; Kuzmak; and Moreno and 

Cardeñoso. 
10 (2018) 79 2 Levy and Stukalin; and Takagi. 
Number  333 

(100%) 
25 papers 
(7.51%) 

 

 
II. Two initial categories were set to characterize the 25 selected papers. That is, based on 

the historical development of research on probability, it was assumed that these 

papers could be assigned to two broad classes of (a) mathematics education 

perspective and (b) psychological perspective; wherein Shaughnessy (1992) 

differentiated between researchers in psychology and mathematics education as 

describers versus interveners. That matches Watson (2014), who described that 

purpose of the proposed interventions, within the view of mathematics education, is 

to enhance learners' understanding of probability. Similarly, Ejersbo and Leron 

(2014) reported that while researchers’ goal in cognitive psychology is constructing 

an understanding of how the mind works, in mathematics education, they are more 

concerned with what can be done through education. 

III. A preliminary review of a sample of 6 (out of the 25) randomly selected papers was 

conducted to decide whether the previously proposed categories (observers vs. 

interveners) could help to classify these papers. As a result, the researcher found that 

this classification gave full attention to research logic without considering context 

issues. More precisely, although several approaches were utilized to enhance 

learners’ understanding of probability, these approaches relied on various theoretical 

backgrounds and contexts. Therefore, to recognize the context in the analysis, 

multiple viewpoints on probability education were reviewed from the 

book Probabilistic Thinking: Presenting Plural Perspectives, edited by Chernoff 
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and Sriraman in 2014. As detailed in the book, probabilistic reasoning research can 

be classified under four perspectives of historical-philosophical, psychological, 

stochastics, and mathematics education. Accordingly, a developed matrix (see Table 

14 in Chapter 4) was proposed alternatively (instead of observers vs. interveners) to 

characterize the selected papers from ICOTS. 

In addition to characterizing ICOTS paper and as a part of the first step, previous studies 

on teachers’ knowledge were also analyzed using the MKT model. It signifies a well-defined 

practice-based framework utilized by many organizations to drive the improvement of teaching 

(Kleickmann et al., 2013). According to the MKT, teachers’ knowledge comprises SMK and 

PCK. Furthermore, the PCK involves Knowledge of Content and Students (KCS), Knowledge 

of Content and Teaching (KCT), and Knowledge of Content and Curriculum (KCC), as 

displayed in Figure 4. Thus, this framework worked significantly as a lens to categorize 

previous research on teachers’ knowledge for teaching probability of which the initial entities 

of the study framework could be determined (see details in Chapter 4).  

 

  
Figure 4. The MKT framework. Retrieved from Ball, Thames, and Phelps (2008) 

 
About the second step, three premises were set (see Section 4.3.3.). It outlines the 

researcher’s viewpoint on how the research gap can be fulfilled, and findings of the first step 

can be complemented; thus, ultimately, the framework that defines mathematics teachers’ 

professional knowledge for teaching probability from the PoPR was developed. These premises 

were reflected in the current study as follows:  
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I. “Conceptions represent knowledge in evolution” was the first premise; it manifested 

two issues: (a) It is not reasonable to pretend that a specific conception might exactly 

explain a certain level of understanding. Accordingly, it was argued that employing 

the PoPR would support admitting PSMTs’ various probabilistic conceptions 

without classifying them as levels of conceptual understanding. Besides (b) the 

socio-cultural influence on learners’ conceptions of probability. Hence, all PSMTs 

emerged conceptions relevant to their daily experiences were acknowledged. 

II. “Reasoning defines an individual cognitive process to interpret the acquired 

knowledge” was the second premise. (a) It recognized that probabilistic reasoning is 

the essential goal that underpins learning probability, wherein it should be the ground 

for all educational practices. (b) It admitted that to overcome the distinct characters 

of the probability, it should be addressed through an approach that looks at concepts 

from a non-mathematical perspective. Accordingly, (c) the PoPR was considered a 

possible perspective to deal with the duality of the probability concept; it defeated 

the conventional approach of teachers’ knowledge that pays more attention to the 

statistical side, and instead, it accepted the subjectivity (subjective reasoning) as a 

reasonable way to interpret a probabilistic situation. Furthermore, (d) applying the 

PoPR responded to several recommendations about grounding the probability 

instruction in experiences that help learners overcome their misconceptions and 

develop an understanding based on probabilistic reasoning. Besides, it fulfilled the 

need for research that exhibits the psychological perspective on probability and 

connects it with the mathematics education perspective. 

III. “The hypothetical relationship between conceptions and reasoning” was the third 

premise. It was interpreted as follows: Depending upon how we reason in an 

uncertain situation that contains probability knowledge (theoretical constructs), our 

conceptions can be clarified. Thus, (a) it acknowledged a possible existing gap 

between knowledge for practice (professional knowledge for teaching probability) 

and knowledge in practice (how a PSMT perceives probability). (b) It considered 

such a gap to have originated from PSMTs’ various ways of reasoning. Moreover, 

(c) it served to consolidate PSMTs’ reasoning and probability conceptions in one 

model. 

By integrating the previously described first and second steps, mathematics teachers’ 

professional knowledge for teaching probability was defined from the PoPR through these 

aspects: R(in)P, R(in)PL, R(in)TP, and R(in)SPK (see the details in chapter 4). 
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2.2.3 Processes of answering the third research question 

The third research question was intended to characterize PSMTs’ knowledge for teaching 

probability in Egypt from the PoPR. Accordingly, a field study was conducted in light of the 

study framework to respond to such a question. This section summarizes how this field study 

was conducted as defined by its participants, tools, data collection, and analysis processes. 

I.  Participants in the field study    

To answer the third research question, a purposive sample of PSMTs6 was selected based 

on two criteria: (a) Their availability (e.g., access, location, time) and willingness to participate 

(Lopez & Whitehead, 2013), and (b) prior knowledge of primary probability concepts (i.e., 

theoretical, experimental, and conditional), whether in school or during the preparation 

program. Employing such a criterion helped in exploring PSMTs’ biases and conceptions that 

persisted even under the formal education of probability theory. Accordingly, sixty-eight 

PSMTs, who study a four-year preparation program of mathematics teachers at the Faculty of 

Education, agreed to participate in this study, as clarified in Table 4. That faculty belongs to 

Tanta University that is the only governmental university in the Gharbia Governorate, which 

ranks the eighth governorate (among twenty-seven) in terms of the Egyptian population. 

 
Table 4. The study sample and population 

The study population PSMTs at the Faculty of Education, Tanta 
University, Egypt. 

Enrolled number of PSMTs during the 
academic year 2018–2019 

1st year 2nd year 3rd year 4th year Total 
107 99 92 102 400 

Participants 
Not 

available 32 23 13 68 

 
II. Tools: Contents of the study questionnaire 

Based on the study framework, a questionnaire was developed to characterize PSMTs’ 

R(in)P; that involved (a) determining three different probability contexts, and (b) adjusting one 

of these contexts and adding a calculation problem; that is detailed as follows:    

[A] Determining the probability contexts  

Primarily, it was acknowledged that both intuitive assessments and formal knowledge of 

probability are probably available during the process of probabilistic reasoning; yet, which one 

is applied is a function not only of individuals' knowledge but also of situation variables 

(Konold, 1989). Alternatively stated, “As the demands of probability problems become more 

 
6 Although the field study has focused primarily on PSMTs to respond to the third research question, a convenient 
sample of pupils was also engaged intentionally to determine one aspect of the study questionnaire (see Table 5).  
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sophisticated the reasoning brought to them by students may change” (Watson, 2005, p. 145). 

From this aspect, the variability of the questionnaire items, which addressed the characteristics 

of PSMTs' R(in)P, took much attention. Nevertheless, the intention was not to see how PSMTs' 

responses might vary over problem-type but rather to investigate the response-type that may 

persist throughout these problems. Therefore, to determine such various contexts, the following 

three issues were considered: 

- The first issue implied acknowledging the Egyptian curriculum perspective 

Since PSMTs in this study are being prepared to teach the primary and lower secondary 

pupils, the school content of probability was analyzed inductively to explore probability 

settings from a national viewpoint 7 . In other words, the researcher tried to categorize 

probability tasks that indicate a similar context together. As a result, seven different contexts 

at which the probability can be used were inferred (see Table 18), and accordingly, the activity 

of throwing a die was regarded in the study questionnaire.   

- The second issue signified acknowledging the Egyptian pupils’ viewpoint 

Based on the defined contexts of probability resulting from analyzing the school 

curriculum, a survey was prepared (see Appendix 6) and administered over pupils at various 

grades in the same province where PSMTs were practicing their practicum and most probably 

to be employed after graduation. This way, PSMTs’ interpretations could be connected with 

the viewpoint of their prospective pupils. That is recommended by Garfield and Ahlgren (1988) 

as teachers should “create situations requiring probabilistic reasoning that correspond to 

students’ views of the world” (p. 48). Moreover, probability instruction should be 

contextualized by drawing on pupils’ daily social practices (Grenon et al., 2010). Accordingly, 

as detailed in Table 5, in total, 359 pupils were asked to determine which probability setting is 

more applicable in our daily life, in which they should select three contexts and prioritize them. 

This is consistent with what was reported by the Park City Mathematics Institute ([PCMI], 

2017) regarding teaching probability; it incorporates finding probabilistic knowledge that 

values applying the concept of probability in real life. As a result of implementing such a 

survey, environmental concerns were the most commonly relevant context of probability to 

everyday situations from the pupils’ perspective. Thus, the task of weather predictability was 

also considered in the questionnaire.  

 

 
7 The total number of the reviewed tasks equals (106). That included all the discussed activities within lessons' 
content of both primary and lower-secondary grades, starting from grade 3 at which the probability is first 
introduced until grade 9 (Revisions and exercises were not addressed). 
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Table 5. The statistics of pupils who were engaged in the study to define the most applicable 
probability context 

Grade G8 4 G 5 G 6 G 7 G 8 Total  
Number of Classes 2 3 2 3 2 12 
Number of pupils  59 87 67 85 61 359 

 
- The third issue was adapting one social problem 

The difficulty of reasoning in a probabilistic situation is determined in terms of (a) sample 

space clarity, (b) apparent chance factors, and (c) cultural prescription toward viewing the 

phenomena statistically (Nisbett, Krantz, Jepson, & Kunda, 1983); accordingly, the activity of 

throwing a die, which reflected the curriculum perspective, is simple to estimate because 

randomizing devices are usually designed so that the sample space is evident and the 

repeatability of trials is notable (Nisbett et al., 1983). Besides, based on these criteria, Konold 

(1989) judged the task of weather predictability, which mirrored pupils’ viewpoint, as an 

intermediate level of difficulty. On the contrary, in the social domain, the sample space is often 

obscure, and repeatability is hard to imagine (Nisbett et al., 1983). From this view, to 

accommodate different levels of difficulties, the problem of giving birth was also considered. 

It is also relevant to note that utilizing the gender context was further validated by 

analyzing PSMTs' responses to a survey (see Appendix 7). That survey was similar to the one 

that was applied before to pupils. However, it was distributed among PSMTs who were 

engaged in this study, and accordingly, they were asked to decide the suitability of several 

contexts (based on the curriculum analysis) to address each probability concept of theoretical, 

experimental, and conditional9. As a result, from PSMTs’ viewpoint, the gender implied one 

probabilistic context that can be used to approach all these three concepts; particularly, the 

conditional probability (see Figure 13 in Chapter 5). 

Based on the three above discussed issues, tasks of (a) giving birth, (b) throwing a die, and 

(c) weather predictability were adapted in the questionnaire to characterize PSMTs R(in)P.  
 
[B] Adjusting one of the probability contexts and adding a calculation problem  

Additionally, for further clarification of the notion of subjective probability in this study, 

three more tasks were considered. On one side, one task was modified by restricting the 

problem of giving birth by specifying a condition. This modification was inspired by Díaz and 

Batanero’s (2008) description of the diachronic situation that signifies a series of sequential 

experiments carried out over time. On the other side, the other two tasks involved calculation 

 
8 The term G refers to the grade; for example, G 3 symbolizes grade 3. 
9 The participants were informed that some contexts could be adapted to approach more than one concept. 
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problems that required computing conditional probabilities from a two-way table. They were 

adapted from Díaz and Batanero (2009). Moreover, as reported by Watson and Kelly (2007), 

the usage of two-way tables with convenient frequencies (rather than probabilities, Gigerenzer 

& Hoffrage, 1995) has been advocated in recent years (e.g., Díaz & Batanero, 2009; Díaz & 

de la Fuente, 2007; Pfannkuch, Seber, & Wild, 2002; Reaburn, 2013) to designate learners' 

conceptual difficulties in conditional probability. 

Depending upon the above steps [A] and [B], the study questionnaire was constructed, and 

it was also divided into two parts (see Appendix 8). The first part included Items A and B that 

recognized the context of gender; one defined a simple probabilistic situation while the other 

signified a conditional one. Additionally, Items C, D, E1, and E2 were included in the second 

part. While C and D reflected two simple probabilistic situations, E1 and E2 were proposed to 

be two equivalent items that required conditional probability calculations. As the local 

educators recommended, instead of providing only one question that demands calculating the 

conditional probability from a two-way table, it is better to formulate two similar questions; 

and distribute them interchangeably among the participants (see details in p. 85). Accordingly, 

while Items A, C, and D worked together to define PSMTs' reasoning in simple unconditional 

probabilistic situations, B, E1, and E2 aimed at exploring how PSMTs do reason in conditional 

probabilistic situations. Ultimately, all items were intended to characterize PSMTs’ R(in)P that 

is the focus of the current investigation, as summarized in the following table: 

 
Table 6. Contents of the study questionnaire 

Parts Items Context Number 
of 

questions  

Intention 
Explore PSMTs’ 

R(in)P that is related to 

Relation to areas 
of needed 
research 

First 
part  

A Giving birth 
 

2 a simple unconditional 
probabilistic situation 

Develop a unified 
schema that 

involves different 
probability 
conceptions 

B 2 a conditional 
probabilistic situation 

Second 
part 

C Throwing a die 1 a simple unconditional 
probabilistic situation D Weather 

predictability 
1 

Clarify the notion 
of subjective 
probability 

E1 Calculation 
problems using 
two-way tables 

4 a conditional 
probabilistic situation E2 4 

 
III. Procedures of data collection and analysis10  

According to the Egyptian academic calendar, the research data were collected during the 

second semester of the school year 2018–2019. The process of collecting these data was 

 
10 All details (including several examples) were provided within Chapter 5 
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conducted as a part of the micro-teaching course that PSMTs study at the Faculty of Education, 

Tanta University. It took four sessions with each group of second, third, and fourth-year 

students (PSMTs), once a week. That is twelve classes, each class lasted one hour, conducted 

three times per week. Besides, twelve classes were carried out with pupils during the 

mathematics class to answer the probability context survey. Those twelve classes involved two, 

three, two, three, and two classes with grades 4, 5, 6, 7, and 8 pupils, respectively; each class 

took forty-five minutes (see Table 7). Furthermore, a brief on what was done is given next.  

 
Table 7. Duration of the data collection 

 PSMTs School pupils 

Place Faculty of Education, Tanta 
University 

The same province where PSMTs are 
practicing their practicum 

Course During the micro-teaching 
course During the mathematics class 

Participants 2nd year 3rd year 4th year G 4 G 5 G 6 G 7 G 8 
Number of 

sessions 4 4 4 2 3 2 3 2 

Duration 
 

1 hour for each session 45 minutes for each class 
4 weeks (3 sessions per week) 1 week 

 
[A] First stage: Initial arrangement and preparation 

This stage took two weeks that included (a) six sessions with PSMTs (two with each 

group), (b) an interview with two teachers, (c) twelve classes with pupils, and (d) an interview 

with three university lecturers, as follows: 

Regarding the first week, the researcher first discussed with PSMTs the purpose and 

content of the current investigation and confirmed their availability and willingness to 

cooperate. Besides, an interview with two teachers who got a master's degree, one in teaching 

geography while the other in teaching mathematics, was conducted. They both expressed their 

enthusiasm to help to collect the research data. Accordingly, the interview was concerned with 

the process of implementing the probability context survey. 

During the second week, a warmup session with PSMTs was conducted; it involved a 

specific discussion about probability interpretations. Furthermore, an interview with some 

PSMTs and three university lecturers was also done. The PSMTs were informed about the 

probability context that the school curriculum stressed and what pupils’ perspectives were. 

Then, the questionnaire was handed to them to discuss its items; that served to verify (a) 

PSMTs' understanding of the presented inquires and (b) the consistency between that 

understanding and the researcher's intention. Additionally, the questionnaire items were 

reviewed by three university lecturers; two are specialists in teaching mathematics and one in 
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science education. That included issues of language clarity, objectives, what problems may be 

difficult for PSMTs, and what alternatives can handle such a situation. Consequently, some of 

the questionnaire items were rephrased or simplified afterward (see details in Chapter 5). 
 
[B] Second stage: Implement the study questionnaire  

As described earlier, the questionnaire was divided into two parts, and it took two sessions 

(six classes, two with each group of PSMTs) to be implemented. During the implementation, 

still, some questions were raised by the participants as detailed in Chapter 5. Yet, it is reliable 

to declare that not all PSMTs responded to all items when they had a schedule in conflict; for 

a case, because of time constraints for third-year PSMTs, only three (out of 23) answered Item 

D (i.e., the task of weather predictability). Besides, regarding Items E1 and E2, since they were 

distributed interchangeably among the participants, as reported earlier, only thirty-four (out of 

68) PSMTs responded to each item. This is summarized in the following table. 
 

Table 8. Number of respondents to items of the study questionnaire 

Parts Items Context Number of respondents 
2nd year 3rd year 4th year Total 

First part A Giving birth 
 

32 23 13 68 
B 32 23 13 68 

Second part 

C Throwing a die 32 23 13 68 
D Weather predictability 32 3 13 48 
E1 Calculation problems 

using two-way tables 
16 12 6 34 

E2 16 11 7 34 
 

[C] Third stage: data coding and analysis processes  

The processes of data analysis are displayed in the following figure:   

 

 

 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. Processes of data analysis in light of the logic of abduction research 
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According to Figure 5, the data analysis processes involved two types of coding. First 

was inductive coding; it was performed through NVivo software and following Thomas’s 

(2006) steps to analyze PSMTs’ responses to the first part of the questionnaire (i.e., answers to 

Items A and B). While the second coding incorporated deductive analysis to interpret PSMTs’ 

responses to the second part of the questionnaire (i.e., answers to Items C, D, E1, and E2); that 

was done in terms of the developed categories from the first inductive process. Admittedly, 

drawing on both inductive and deductive data procedures meets the research logic of abduction 

(Alvesson & Kärreman, 2007; Graebner, Martin, & Roundy, 2012; Pierce, 1978); it helped to 

invent the most plausible hypothesis that could explain PSMTs’ R(in)P. As clarified by 

Delputte and Orbie, “the strength of abduction is that it uses both inductive and deductive 

reasoning tactics: ‘instead of trying to impose an abstract theoretical template (deduction) or 

“simply” inferring propositions from facts (induction)’, the researcher aims to reason ‘at an 

intermediate level (abduction)’ (Friedrichs and Kratochwil 2009, p. 709).” (2018, p. 249). That 

is further illustrated as follows: 

- Analyzing PSMTs’ responses to the first part of the questionnaire (Inductively) 

In the beginning, it is necessary to note that PSMTs’ responses to Items A and B included 

both numerical and textual explanations. Although their numerical answers were reported (see 

Chapter 5), the textual responses through which PSMTs stated reasons and, further, conditions 

that could change their probabilistic judgment were considered entirely to develop the intended 

categories. Such textual responses were inductively analyzed since there is a strong tradition in 

qualitative research concerning developing codes directly from data, rather than using prior 

understandings of the researcher (Linneberg & Korsgaard, 2019). Accordingly, although, at 

first, the researcher tried to focus more on PSMTs’ responses to see how it can be modeled, 

during the last stage and to generate categories that speculate how PSMTs do reason in a 

probabilistic situation, a theoretical reflection was needed. This is described by Thomas’s 

(2006) steps, which guided the inductive data analysis procedures for Items A and B. 

In that regard, it is valuable to note that although PSMTs’ responses to Item B were also 

analyzed in light of Thomas’s (2006) steps, the last step of Incorporating the emerged 

categories into a model that often requires a theoretical reflection was not operated. The reason 

is that even though learners’ conceptions of conditional probability were explained in the 

literature, there was no comprehensive categorization that describes how the individuals 

perceive the provided condition. That mirrors Gioia, Corley, and Hamilton’s (2013) view of 

the inductive approach, which is relevant when no theoretical concepts are immediately 

available to help grasp the studied phenomenon. 
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- Analyzing PSMTs’ responses to the second part of the questionnaire (Deductively) 

As reported earlier, the process of analyzing the second part of the study questionnaire was 

performed deductively in light of the emerged categories from analyzing Items A and B. In 

such a manner, these categories were operated as an analytical framework to structure PSMTs’ 

responses to Items C, D, E1, and E2 (Miles, Huberman, & Saldana 2013). Drawing on 

the deductive approach responded to the abduction research logic and helped to validate the 

emerged categories (i.e., types of PSMTs’ reasoning) across different probabilistic contexts 

(Rowley, 2002). That satisfies Paavola's (2004) explanation concerning the need to constantly 

compare the candidate hypotheses (i.e., the first developed categories that described PSMTs' 

reasoning) with the empirical cases (i.e., PSMTs' responses to the second part of the 

questionnaire) to explore the most plausible hypothesis that explains the phenomenon under 

study in abduction research. 

The whole discussion above reviewed (I) who participated in the field study, (II) the tool 

through which the data were collected, and (III) how data were collected and analyzed; to 

answer the third research question. Still, more details are explained in Chapter 5. It mainly 

focuses on interpreting PSMTs' responses to the study questionnaire; however, features about 

participants, the questionnaire development, and data analysis processes are declared at first.  
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CHAPTER 3: STATISTICS AND PROBABILITY EDUCATION IN THE 

EGYPTIAN CONTEXT 

This chapter provides an extensive overview of statistics and probability education in 

Egypt, not only from a local perspective but also from an international viewpoint. It starts by 

describing the local policy of sustainable development goals in Egypt and moves specifically 

to the status of both PSMTs preparation programs, pupils’ achievement, and school curriculum. 

Lastly, it analyzes the school content of probability for both primary and lower-secondary 

levels. That answers the first research question. 

 

3.1 Statistics and probability education in Egypt from a local perspective   
It is worthwhile to consider the following issues to get a comprehensive picture regarding 

statistics and probability education in Egypt: 

 
3.1.1 The implementation of Sustainable Development Goals (SDG) (Governmental level)  

In Egypt, one principal goal of the 2030 strategy is that a high quality of education and 

training system should be available to all, without discrimination, within an efficient, just, 

sustainable, and flexible institutional framework (Sustainable Development Strategy: Egypt 

Vision 2030, 2016). That matches the fourth pillar of the global agenda of the SDG, which is 

proposed by the United Nations concerning qualifying the educators and aspiring to ensure 

inclusive and equitable quality education and promote life-long learning opportunities for all 

(SDG 4, 2019). Accordingly, improving the education system’s quality to fit with global 

systems has been admitted as a principal target. In terms of the challenges that may hinder 

achieving the national goals and the proposed strategies to address these challenges (see Figure 

6), a significant area to consider is teacher education. 

Figure 6. National challenges and proposed strategies to achieve the quality of education, in 
light of the 2030 vision 

 Challenges  
• The absence of a professional license, which is the prerequisite for employment. 
• The deficiencies of the current assessment system for pre-service teachers. 
• The insufficient skills of graduate students to be qualified teachers. 

 

Goals 
• Establish a mechanism for the evaluation processes. 
• Enhance graduate students’ professional competence to meet pupils’ needs. 
 



 29 

 
From the above-presented figure, it is evident that the graduates’ insufficient skills signify 

one challenge that should be overcome by enhancing their professional competence, especially, 

since the university students directly get the teaching license after their graduation. Yet, what 

does the current mathematics teacher education program look like? Alternatively stated, how 

do national faculties of education prepare PSMTs to practice the profession of teaching (to be 

professionals)? The answer to this question is presented in the next section. 

 
3.1.2 The status of the mathematics teacher preparation program in faculties of education 

(University level) 

The faculties of education are the national institutions responsible for preparing university 

students to be mathematics teachers; thus, it is valuable to analyze what those policymakers 

recommend prospective teachers learn in teacher preparation programs to provide insights into 

what is required knowledge for teaching (Stylianides & Ball, 2004). From this viewpoint, as 

reported in Chapter 2 (see p. 13), courses that PSMTs study during the entire four-years of their 

preparation were reflected and categorized in light of Grossman's (1990) model of teachers’ 

knowledge. It helped to classify these courses drawing on the consistency between each 

course’s declared purpose and Grossman's defined aspects of teachers’ knowledge. For 

example, because the SMK in Grossman's model indicates learning the content itself, all 

Mathematics, Statistics, and Sciences disciplines were listed under this category. Similarly, 

courses related to community, district, or school environment (e.g., school and community) 

were assigned to the category of Knowledge of Context (see Appendix 1). 

As a result, aspects of SMK, General Pedagogical Knowledge, Knowledge of Context, and 

PCK were exemplified to represent the national view on main requirements to practice the 

profession of teaching mathematics. Although learning subjects took proper regard with about 

64% of the studied hours throughout the entire preparation program, only 9.2% were assigned 

to learn statistics and probability (see Table 9), which indicates how this content area is less 

emphasized (compared to mathematics) during the preparation of PSMTs. Besides, from the 

researcher's experience, such limited consideration not only involves statistics and probability 

as a discipline but rather as content that should be pedagogically manipulated during 

microteaching sessions or teaching practicum (i.e., PCK). As shown in Table 9, the courses 

aimed at promoting PSMTs' PCK occupied only about 13%. Most of the discussion during 

these courses focuses on numbers, algebra, or geometry. 
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Table 9. The distribution of knowledge base aspects in PSMTs’ preparation program by the 
assigned hours for each study subject. Based on Elbehary, 2019 

Grossman's (1990) aspects 
of teachers’ knowledge 

The defined aspects of knowledge in the Egyptian 
PSMTs’ preparation program Percentages 

SMK Advanced Mathematics (47.5%), Statistics (9.2%) and 
Physics (7.6%) 

64.37% 

General Pedagogical 
Knowledge 

General pedagogical subjects (e.g., Curriculum, 
Educational Psychology) 14.94% 

Knowledge of Context General cultural subjects (e.g., School and community, 
Human rights) 7.66% 

PCK Teaching methods and practicum training 13.03% 
Total Four aspects of knowledge  100% 

 
3.1.3 The status of pupils’ achievement and school content of statistics (School level) 

Indeed, there is an international agreement regarding how both the quality of teachers' 

preparation and their professional development affect pupils’ achievement. Although research 

findings on factors impacting that achievement are mixed, the evidence of teachers having a 

substantial influence is increasing (Fennema & Franke, 1992; Hiebert & Grouws, 2007; Nye, 

Konstantopoulos, & Hedges, 2004; Schwille & Dembélé, 2007). As acknowledged by the 

United Nations Educational, Scientific, and Cultural Organization (UNESCO, 2004), teachers 

significantly influence learning. The experience of countries that have achieved high learning 

outcomes clearly shows that investment in teachers is critical to any educational reform and 

education quality. Similarly, and more specifically about teacher preparation, the Organization 

for Economic Co-operation and Development (OECD, 2015) reported that future teacher 

quality is affected not only by the in-service teachers' knowledge and skills but also by the 

quality of new entrants to the profession. That matches what Feiman-Nemser (2001) argued; if 

we want schools to produce more valuable learning for pupils, we have to offer more powerful 

learning opportunities to teachers in their training. From this aspect and considering what was 

reported previously regarding the limited emphasis on learning statistics and probability during 

the preparation of PSMTs, it is relevant to reflect on Egyptian pupils’ achievement in the 

content area of Data and chance. 

In light of TIMSS 2003 and 2007 results (Mullis et al., 2004; Mullis et al., 2008), Egyptian 

pupils’ achievement in Data and chance remains the lowest among other mathematics areas 

(see Table 10). That may indicate that the lack of PSMTs preparation in statistics and 

probability (pedagogically) signifies one factor that affected pupils’ achievement; especially 

the university degree is regarded as sufficient to practice the teaching profession, which 

encourages most PSMTs to work at governmental or private schools directly after graduation. 
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That was reported by Mullis et al. (2004) in which the requirement of being a mathematics 

teacher in the Egyptian context is to have a university degree or another equivalent diploma, 

and around 99% of the in-service teachers possess only this degree (see Table 11). Besides, 

there is no regular training to promote the quality of in-service mathematics teachers. In such 

a situation, since (a) K-12 school practices, (b) teacher education programs, and (c) teaching 

experiences represent the potential sources of teachers’ knowledge (Friedrichsen et al., 2009), 

most Egyptian teachers develop their knowledge during the initial preparation. That explains 

why this study emphasizes PSMTs’ knowledge. Taking into concern that although there are 

two different preparation programs in the Faculty of Education (one for those who are going 

to work at primary school level and the other at secondary school level), the majority of 

graduates are, first, employed at primary schools; later, through time and experience, they can 

apply to be promoted to work at higher grades. 

 
Table 10. Average achievement in the mathematics content areas for 8th Grade Egyptian 

pupils according to the TIMSS 2003 and 2007 
 Number Algebra Measurement Geometry Data and chance 
2003 421 (3.0) 408 (3.9) 401 (3.3) 408 (3.6) 393 (3.2) 
2007 393 (3.1) 409 (3.3) - 406 (3.4) 384 (3.1) 

 
Table 11. Mathematics teachers’ requirements and educational levels in Egypt according to 

TIMSS 2003 
Requirements for being a Mathematics Teacher  

 Pre-practicum 
and supervised 

practicum 

Passing an 
examinatio

n  

University 
degree or 
equivalent  

Completion of 
a probationary 

teaching 
period  

Completion of 
an induction 

program 

Egypt No11 No  Yes  No  No 
The Highest Educational Level of Mathematics Teachers  

 Beyond Initial 
University 

Degree  

Finished 
University 

or 
Equivalent  

Finished 
Post-

Secondary 
Education but 
not University 

Finished 
Upper 

Secondary 
Schooling 

Did not 
Complete 

Upper 
Secondary 
Schooling  

Egypt 1 % 99 % 0% 0% 0% 
 

According to the Curriculum Center for Instructional Materials Development (CCIMD) 

accountable for developing pre-university curricula in Egypt, Numbers and operations; 

Algebra, relationships, and functions; Geometry; Measurement; and Statistics and probability 

incorporate the five content areas of mathematics curriculum, which are explicitly involved in 

 
11 A weekly course of a supervised practicum is conducted in the third and fourth years of the preparation program. 



 32 

each level. Moreover, pupils start to learn statistics from grade 1 until the end of lower-

secondary school (Elbehary, 2020). Hence, as reported in Chapter 2, to determine the specific 

area for research within the Statistics and probability domain, textbooks' activities (from grade 

1 to 9) were analyzed in the light of Burrill and Biehler’s (2011) list of Fundamental Statistical 

Ideas. 

The analysis process relied on assigning each activity to the corresponding statistical idea 

based on this activity’s objective. For example, Figure 7 shows an activity for third-grade 

pupils at which they were asked to represent given numbers by bar graphs. Hence, that activity 

was classified under the idea of Representation; it includes graphical or other representations 

that reveal stories in the data, including the notion of transnumeration (Burrill & Biehler, 2011). 

Considering that, during the analysis process, some activities consolidated more than one 

objective (e.g., both Data and Representation), in this case, the assigned code was given to both 

areas (e.g., one code for Data and the other for Representation). Following such processes, the 

number of activities committed to each statistical idea was determined (see Appendix 2), and 

probability was selected to be the subject of this study (see Table 12). 

 
 

  

Figure 7. An example from third-grade pupils’ textbook in Egypt 
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Table 12. The distribution of fundamental statistical ideas in Egyptian school textbooks for 
the basic education sector. Based on Elbehary, 2020 

The fundamental statistical 
ideas as determined by Burrill 

and Biehler (2011) 

Primary school level  Lower secondary 
school level 

Total 

G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8 G 9 
Data 4 4 3 8 6 23 1 16 0 65 

Variation 0 0 0 0 0 0 0 0 15 15 
Distribution 0 0 0 0 0 0 7 13 5 25 

Representation 5 3 5 5 11 30 0 13 4 76 
Association and modelling 

relations between two variables 
0 0 0 0 0 0 0 0 0 0 

Probability models for data- 
generating processes 

0 0 10 9 26 18 9 12 27 111 

Sampling and inference 0 0 0 0 0 0 10 4 8 22 
Total 9 7 18 22 43 71 27 58 59 314 

 
From the preceding, the points were summarized as follows:  

§ The need to investigate (and later enhance) PSMTs’ knowledge not only because it 

signifies a national goal but also because its influence on pupils’ learning and 

achievement has been reported and validated internationally. 

§ There is less emphasis on learning statistics (including probability) as a subject according 

to the academic program of preparing prospective Egyptian mathematics teachers. 

Besides, this limited regard of statistics involves its pedagogy, in which most of the 

discussion is focused on mathematics, particularly domains of Numbers and Algebra. 

Furthermore, Egyptian pupils’ achievement in Data and chance stayed the lowest among 

other content areas, as recorded in TIMSS 2003 and 2007. 

§ Among fundamental statistical ideas, probability denotes a core concept according to the 

Egyptian school textbooks in both primary and lower-secondary school levels. 

Such issues constituted a rationale for why this study highlighted PSMTs' knowledge for 

teaching probability. Additionally, the following section tries to precisely review the status of 

probability education reflected in the intended and implemented school curriculum. According 

to Stylianides and Ball (2004), both teacher education and school curricula designate directions 

to define teachers’ knowledge. However, the researcher emphasized issues of the school 

curriculum. For the probability, most teachers have little experience with many of its topics in 

K-12 schooling, and teacher preparation programs mainly presented probability from a purely 

theoretical perspective (Stohl, 2005). That also reflects the situation in the Egyptian context, 

which appeared during the introductory discussion with PSMTs who participated in this study 

at which they raised issues of disconnection between learning statistics as a discipline regularly 

done in the Faculty of Science using teacher education curriculum and teaching it as a school 
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content that they need to acquire. Furthermore, as Lortie (1975) stated in an agreement with 

Kleickmann et al. (2013), professional knowledge begins to develop even before the applicants 

enter teacher education. In other words, PCK is significantly shaped by teachers’ school 

experiences. In such a case, analyzing the school content of probability is beneficial to 

speculate teachers’ knowledge, especially in developing countries where many teachers 

prioritize discussing curriculum activities (Elbehary, 2019). 

 

3.2 Probability education in Egypt from an international perspective   
Based on what has been discussed, this section outlines issues in the intended and 

implemented school curricula of probability for the basic education sector, as follows:  
 
3.2.1 The intended curriculum of probability in Egypt in comparison with NZ curriculum 

Since probability defines a crucial concept in school and out of school settings (Franklin 

et al., 2007; Gal, 2005; Kazima, 2007; Nacarato & Grando, 2014; Paul & Hlanganipai, 2014; 

Watson, 2006), it has emerged as a mainstream strand within the school curriculum, worldwide 

(Burrill & Biehler, 2011; Jones et al., 2007). Thus, learning probability has been acknowledged 

by the CCIMD through embedding its content within the domain of statistics and probability 

in the Egyptian mathematics school curriculum. Although pupils have to learn statistics from 

grade 1, as noted previously, they are confronted with probability as a necessary concept to 

acquire from grade 3 continuously until grade 9 (Elbehary, 2020). 

This study is motivated by the 2030 agenda for sustainable development, which provides 

a shared schema for peace and prosperity for people now and in the future, and Egypt and NZ 

are committed to achieving SDG. The proposed probability curriculum in Egypt was compared 

with the NZ curriculum. As reported earlier in Chapter 2, this comparison involved a 

summative content analysis; it helped determine what probabilistic ideas were disregarded 

from the Egyptian curriculum (compared to NZ) in a way that helps to strengthen these ideas 

when discussing teachers’ knowledge.  

The process of the analysis involved these procedures: (1) Select the proposed sample to 

be analyzed; this sample represented the intended curriculum of probability that is shared by 

the official websites of CCIMD (2012) and the NZ curriculum online (2007). (2) Define the 

categories to be applied; this was performed through employing the OSA (see Chapter 2) that 

helped in inferring the primary entities of probability (i.e., Situations, Propositions, Procedures, 

and Terms) (Gusmão et al., 2010; Torres & Contreras, 2014), which were declared in both 

curricula. (3) These determined entities were assigned to the Fundamental Probabilistic Ideas 
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listed by Batanero et al.’s (2016) and included Randomness; Events and sample space; 

Combinatorial enumeration and counting; Independence and conditional probability; 

Probability distribution and expectation; Convergence and the law of large numbers; Sampling 

and sampling distribution; and Modeling and simulation. Lastly, (4) Issues of trustworthiness 

were explained by operating two rounds of coding in a time difference of two months (see all 

the procedures and results in Elbehary, 2020). Accordingly, several issues were revealed and 

summarized as follows:  

§ The name of the study domain at which probability was assigned is Statistics and 

probability in Egypt compared to Statistics in the NZ curriculum. The Egyptian situation 

reflects the tendency to organize learning statistics and probability within a hierarchical 

structure, rather than maintaining the complementarity between them (Steinbring, 1991). 

In such a conventional approach, the conceptual link between probability and statistics 

is not accessible until the discussion of statistical inference (Kazak & Confrey, 2006). 

§ The learning objectives of statistics in Egypt aligned with the NZ curriculum in declaring 

the study of statistical investigation, statistical literacy, and the probability that was given 

notable attention as appeared earlier during analyzing textbooks' activities (see Table 12). 

§ As exhibited in the following table,  
 

Table 13. The fundamental probabilistic ideas discussed in both Egypt and NZ intended 
curricula. Retrieved from Elbehary (2020, p. 10)12 

 
 

12 The dark-colored cells indicate the probabilistic ideas emphasized in both Egypt and NZ. However, normal and 
italic letters were used to highlight the ideas discussed in either the Egyptian or the NZ curriculum, respectively. 
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The Egyptian intended curriculum was compatible with the NZ curriculum in emphasizing 

the probabilistic ideas of Randomness, Events and sample space, and Modeling and simulation. 

Nonetheless, Independence and conditional probability, Probability distribution and 

expectation, and Convergence and law of large numbers were discussed within the NZ 

curriculum but not yet considered in Egypt. The absence of such ideas affects pupils’ 

understanding of probability (Elbehary, 2020), expressly in terms of emphasizing learning 

these ideas as listed in various literature. For instance, notions of independence and conditional 

probability are widely recommended to be included within the curriculum (Borovcnik & 

Kapadia, 2009; Chernoff, 2014; Franklin et al., 2007; Heitele, 1975; NCTM, 2000). 

 
3.2.2 The implemented curriculum of probability in Egypt  

Textbooks are described as a “significant factor in determining students' opportunity to 

learn and their achievement” (Robitaille & Travers, 1992, p. 706). As stated by Houang and 

Schmidt (2008), data from TIMSS suggest that textbooks are found in almost every classroom 

and are regularly utilized in instruction. They constitute a means for learning and signify the 

potentially implemented curriculum (Schmidt, McKnight, Valverde, Houang, & Wiley, 1997b; 

Tran, 2016). Nevertheless, for the case of probability instruction, some textbooks were 

criticized for presenting a too narrow view of probability (Batanero et al., 2004). That seems 

to be critical for teachers' knowledge since curricula provide teachers with the required tools 

and methods to perform their jobs (Shulman, 1987), wherein curriculum, here, indicates the 

implemented curriculum outlined by textbooks’ activities. 

To define issues of the Egyptian implemented curriculum of probability, the textbooks’ 

activities were reflected through utilizing the OSA and Batanero et al.’s (2016) list of various 

probability interpretations, as noted earlier in Chapter 2. For example, to classify the presented 

activity in Figure 8, (a) Situations of tossing a coin, throwing a die, and spin a spinner; (b) 

Procedures for calculating the probability of an event; and (c) Terms of possible, chance, and 

probability were assigned to the Classical Interpretation that defines probability through 

dividing the number of favorable outcomes by all possible outcomes (Batanero et al., 2016). 

Accordingly, the results were shown in Appendix 3, and the following concerns were raised:  

§ Although the implemented curriculum places more emphasis on operating theoretical 

and axiomatic probabilities, intuitive and experimental interpretations were also 

considered. One good point is approaching the intuitive probability during early grades, 

which makes the probability concept meaningful to young pupils (Batanero et al., 2016). 

On the other side, the analysis revealed a lack of experimental probability; moreover, the 
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subjective probability defined formally by the notions of conditional probability and 

Bayes theorem seems to be neglected until grade 9. 

§ Such bias toward the objective probability negatively impacts teachers’ knowledge and 

ultimately influences pupils’ probabilistic reasoning. That is, emphasizing the axiomatic 

approach is not appropriate to pupils at the elementary level; being too formal should be 

for those who follow pure mathematics studies at the post-secondary level (Batanero et 

al., 2016). Besides, the ignorance of the conditional probability that considers a 

prerequisite for understanding the subjective approach (Jones et al., 2007) hinders pupils 

from attaining the multi-structural and rational levels of conditional probabilistic 

reasoning (Mooney, Langrall, & Hertel, 2014). Furthermore, from an instructional 

viewpoint, when teaching probability predominantly utilizing a theoretical approach 

rather than a frequentist, students tend to develop conceptions based on deterministic 

reasoning (Konold, 1995). 

§ Another issue that indicates the relationship between the intended and implemented 

curriculum was observed. Concretely, the disconnection between theoretical and 

experimental probability interpretations in the implemented curriculum (there was a lack 

of textbooks' activities that aim to connect both concepts [Elbehary, 2020]) reflects the 

absence of the fundamental idea of Convergence and the law of large numbers in the 

intended curriculum.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 8. An example from fourth-grade pupils’ textbook in Egypt 
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Such reported results reflect the limitedness of statistics and probability education in 
Egypt; and, particularly, teacher training and school content of probability. Nonetheless, 
similar findings were shared by some researchers in other countries. For example, regarding 
teacher preparation programs, after analyzing eleven mathematics teachers' bachelor programs 
in Colombia, Torres (2014) reported that these programs spent only a few hours on probability 
education, and such specific pedagogical training either in statistics or probability was absent 
at many universities. In a consensus with Ainley and Monteiro (2008), Batanero et al. (2004) 
and Pecky and Gould (2005) reported that graduates from mathematics departments have some 
basic knowledge in probability and statistics but are not always prepared to teach these 
contents. Additionally, in Brazil, Fernandes, Ferreira, Kataoka, Souza, and Gonçalves (2008), 
as translated in Kataoka et al. (2008), considered the absence of subjects related to probability 
and statistics within major mathematics courses as a critical deficiency in teachers’ preparation. 

Furthermore, and concerning the probability curriculum, it has been argued that the school 
documents and textbooks do not offer enough support for teachers. They sometimes present a 
too narrow view of probability, applications are mostly limited to games of chance, and some 
definitions of concepts are inaccurate (Batanero et al., 2004; Ortiz et al., 2002). For a case, 
Carranza and Kuzniak (2008) noted that the official curriculum of probability in France 
supports the experimental interpretation to be the only necessary approach to solve problems. 
Again, in Brazil, it was remarked that some elementary schools’ textbooks address only the 
theoretical interpretation of probability (Lopes & Moran, 1999, as translated in Kataoka et al., 
2008). Similarly, the Colombian curriculum explicitly acknowledged both theoretical and 
experimental interpretations; however, the subjective approach took a marginal emphasis with 
some suggested contents of conditional probability and independence (Torres, 2014). Despite 
that, the Spanish context exposed a good status, wherein the analysis of the intended primary 
school curriculum of probability in Spain revealed that it was in line with the suggestions for 
improving probability literacy, which was listed by Gal (2005). As detailed by Torres and 
Contreras (2014), primary Spanish pupils usually experience intuitive, classical, experimental, 
and subjective interpretations of probability. 

To summarize (see Table 2 in Chapter 2), the whole argumentation raised within this 
chapter, on one side, provided an answer to the first research question (what is the current status 
of "statistics and probability" education in Egypt?); and, on the other side, established a 
rationale, from a local standpoint, for why this study had to be conducted. Concretely, because 
of the reported constraints that influenced the quality of probability education in the Egyptian 
context, more precisely, the status of teacher education and current school curriculum, this 
study has focused on PSMTs knowledge for teaching probability as one plausible way to 
overcome such constraints. 
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CHAPTER 4: LITERATURE REVIEW AND DEVELOPMENT OF THE 

STUDY FRAMEWORK 

This chapter presents a review of the historical development of research on probability 

complemented by discussing current themes of probability education research, which helped 

in interpreting the research gap addressed through this study. Additionally, the study premises 

were argued to define mathematics teachers’ professional knowledge for teaching probability 

from the PoPR. That responded to the second research question. 

 

4.1 Historical development of research on probability  

Jones and Thornton (2005) provided a historical overview of research on probability 

teaching and learning, with the clarification of the Piagetian, Post-Piagetian, 

and Contemporary research periods. Moreover, Chernoff and Russell (2014); and Chernoff 

and Sriraman (2015) proposed a fourth phase of the Assimilation period and explained some 

directions for future research. That is presented as follows:  

§ First phase: The Piagetian period (the 1950s and 1960s) 

During this period, the study of probability was dominated by Piaget and Inhelder's (1975) 

research that focused on the developmental growth of people’s probabilistic thinking. 

§ Second phase: The Post-Piagetian period (the 1970s and 1980s) 

This period was governed by Fischbein's (1975) seminal research on primary and 

secondary probabilistic intuitions as a progressive work of Piaget and Inhelder. Besides, 

Tversky and Kahneman's (1974) analysis of psychological heuristics and biases in thinking 

under uncertainty. As a result, the ideas of Tversky and Kahneman's investigations were 

transmitted into the field of mathematics education through prominent researchers such as 

Shaughnessy (1977, 1981), Falk (1981), and Konold (1989, 1991). Later on, when the Post-

Piagetian period came to a close, the field of mathematics education began to see an increasing 

amount of research on intuitions and learning difficulties, which is well synthesized in 

Shaughnessy’s (1992) extensive chapter on research in probability and statistics education. In 

that regard, Shaughnessy (ibid.) reported the difference between researchers in psychology and 

mathematics education, as observers or describers versus interveners, respectively. 

§ Third phase: Contemporary Research period (the 1990s and 2000s) 

During this period, there was a significant shift toward studying curriculum, instruction, 

and learning difficulties in mathematics education. It was carried out by a particular group of 

researchers, such as Falk (1981) and Konold (1991), who began to develop their theories, 
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frameworks, and models regarding students' responses to situations that involve uncertainty. 

Notably, the study of Konold et al. (1993); it contributed not only to the resettlement process 

but also shifted the focus from heuristics to the informal conceptions of probability (informal 

reasoning). Furthermore, these theories were well-structured through the exploration of various 

constructs in probability (e.g., randomness, sample space, and probabilistic reasoning) in 

numerous further studies (e.g., Batanero & Serrano, 1999; Falk & Konold, 1997; Fischbein, 

Nello, & Marino,1991; Fischbein & Schnarch, 1997; Jones et al., 1999; Lecoutre, 1992; Pratt, 

2000). 

§ Fourth phase: Assimilation period (after 2000 and current research) 

In line with the prior period, researchers maintained to develop theories and models 

associated with intuitions and learning difficulties. More than fifty years of research had passed 

since the initial days when researchers attempted to replicate and import research findings from 

different fields such as psychology. Mathematics education researchers continued forming 

their interpretations of results stemming from the intuitive nature and difficulties associated 

with teaching and learning probability. However, recent investigations regarding the 

probability instruction have proceeded back to the proverbial roots toward integrating such 

recent studies of psychological heuristics and biases. That was recommended by Chernoff 

(2012b), who noted that the mathematics education research literature has, until recently, 

ignored subsequent research results deriving from the field of cognitive psychology. 

§ Directions for future research  

Following the above-listed periods of research on probability, the state of future research 

is concentrating around two arenas, which are presented as follows: 

- First, some scholars have strengthened the potential new shift from heuristics and 

informal reasoning to fallacious reasoning (e.g., Chernoff, 2012b).  

While in the past, the focus was on normatively incorrect responses to probabilistic tasks 

(e.g., determine which sequence of coin flips less likely than another) (e.g., Thompson, 2008), 

recent investigations are moving away from utilizing the traditional notions of heuristic as a 

framework to analyze the incorrect responses toward logically fallacious reasoning (Chernoff 

& Sriraman, 2015). For example, Chernoff and Russell (2011a, 2012a) reported that some 

PSMTs utilize a particular logical fallacy, the fallacy of composition, in which the subjects 

assume something to be true about the whole based on facts associated with their parts. 

Accordingly, because the coins [the parts] are equiprobable, and the events [the whole] are 

comprised of coins; then, such events are equiprobable, which is not necessarily true. 
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Following this trend, there is a need for further studies that focus on fallacious reasoning 

as one area of future research; especially, since many of these fallacies still account for both 

correct and incorrect responses. As Konold et al. (1993) argued, interpreting why a particular 

answer was provided can reveal that a correct answer was given for the wrong reason. In such 

a case, this direction sheds light on individuals’ justification and reasoning processes rather 

than their typical normative answers. 

- Second, another direction of research tries to clarify two contested areas that exist in 

probability education research; (a) the different interpretations of probability and (b) 

the dispute over the term heuristic (Chernoff & Sriraman, 2015). 

The first controversial area is concerned with the discussion on probability, which has both 

mathematical and philosophical facets. Still, there is a remarkable distinction between the two. 

"While an almost complete agreement exists about the mathematics, there is a wide divergence 

of opinions about the philosophy” (Gillies, 2000, p. 1). As a result, the probability education 

research resumes advocating “a more unified development of the classical, frequentist, and 

subjective approaches to probability” (Jones et al., 2007, p. 949). Alternatively stated, it 

“involves modeling several conceptions of probability” (Shaughnessy, 1992, p. 469), which 

was also reported by Chaput et al. (2011) as the challenge to connect three approaches of 

probability is not yet achieved. Despite that, the debated nature regarding the concept of 

probability will forever remain at the very core of research about teaching and learning 

probabilistic reasoning. 

The second area of dispute considers the research on heuristics, which has two grounds; 

one is the work of Kahneman, Tversky, and colleagues (e.g., Kahneman, Slovic, & Tversky, 

1982), while the other is Gigerenzer and his colleagues (e.g., Neth, Meder, Kothiyal, & 

Gigerenzer, 2014). Although Kahneman and Tversky's studies on heuristics and biases remain 

seminal to investigate teaching and learning probabilistic reasoning, the developments of such 

studies are not reflected in mathematics education literature, despite some exceptions; mainly, 

Chernoff’s research (2012a) that regarded the “arrested development of the representativeness 

heuristic” (p. 951). On the other side, Gigerenzer’s research is trying to stop the continuation 

of this arrested development of heuristics in mathematics education (Chernoff & Sriraman, 

2015). Consequently, as Chernoff and Sriraman (2015) reported, both research trends shed 

light on a renaissance period of psychological research in mathematics education. In other 

words, the probability education research is seeking to pave the way “for theories about 

mathematics education and cognitive psychology to recognize and incorporate achievements 

from the other domain of research” (Gillard et al., 2009, p. 13). 
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Following the identification of such various directions of research on probability and 

considering what was raised regarding the deficiency of probability instruction in the Egyptian 

context (see Chapter 3), the current study attempted to embrace the PoPR to articulate PSMTs’ 

knowledge for teaching probability in Egypt. In such a discussion at which the focal point is 

how the individuals think in a probabilistic situation, this study tried to fulfil two essential 

issues: (a) connect the mathematics education perspective on probability with its psychological 

roots of learners’ reasoning under uncertainty, and (b) develop a unified schema that 

incorporates various probabilistic conceptions together with much focus on the subjective 

probability interpretation. Both issues are related and can be operated through the PoPR. It 

strengthens how PSMTs reason in a probabilistic situation (psychologically), representing their 

different conceptions of probability in a consolidated schema and, later, serves to design and 

engineer better instructional interventions (educationally) that may contribute to promote their 

professional knowledge. 

The above argumentation raises these questions: (a) What is the current research state on 

probability? (b) Why cannot it provide an answer to the previously addressed issues of needed 

research? Furthermore, (c) how has the current study utilized the PoPR as an alternative 

approach to fulfil these issues? The next sections were arranged to approach these questions. 

 

4.2 Themes of research studies on probability and research gap 

4.2.1 Current research on probability  

In light of the detailed procedures in Chapter 2, 25 papers were selected from ICOTS 8, 9, 

and 10 to outline current research themes on probability and expose the research gap. These 

papers were classified depending upon the presented matrix in Table 14. That is, the primary 

purpose of each paper was clarified based on what the author explicitly wrote (e.g., in the 

introduction or the conclusion), and, accordingly, it was assigned to category A, B, C, or D. 

For example13, Theis and Savard’s study (2010) was categorized under D because there was 

an intervention (i.e., mathematics education perspective or educational) and an emphasis on 

simulation processes (i.e., stochastics or mathematical). Following this technique, the 25 papers 

of ICOTS were distributed among A, B, C, D, and E that was emerged during the analysis to 

indicate irrelevant studies, as shown in Table 15. 

 

 

 
13 A list of all coded texts at which ICOTS’ papers were classified is provided in Appendix 4 
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Table 14. Assumed criteria to classify ICOTS’ papers that focused on probability 
                                                               

Logic                     
 
                      
 
                     
                    Context 

Psychological 
perspective 

Observational 
studies 

How learners 
think in a given 

context  

Mathematics education 
perspective 

Interventional studies 
What kind of pedagogical 
approaches can be used to 

promote learners 
understanding of probability  

Historical-philosophical (contextual) 
The usage of paradoxes (historical 

origins of probability), puzzles, and 
games of chance in the development of 

probability theory and its 
understanding (Sriraman & Lee, 2014) 

A B 

Stochastics (mathematical) 
The connection between probability 

and statistics that appears in discussing 
the frequentists approach, random 

process, simulations, sampling 
techniques, and probability models and 

distributions (Shaughnessy, 2014) 

C D 

 
Table 15. Classification of ICOTS’ papers on probability   

A 
(Psychological 

contextual) 

B 
(Educational 
contextual) 

C 
(Psychological 
mathematical) 

D 
(Educational 

mathematical) 

E  
 (Irrelevant 

studies)  
(Larose et al., 2010; 

Gusmão et al., 
2010;Torres & 

Contreras, 2014; 
Torres, 2014; 

Kuzmak, 2014; 
Moreno & 

Cardeñoso, 2014) 

(Batanero et 
al., 2010; 
Savard, 

2010; Eckert, 
2014; Levy 
& Stukalin, 

2018) 

(Papaieronymou
, 2010; Viali, 

2010; Leviatan, 
2010; Primi et 
al., 2014; Díaz 

et al., 2014) 

(Theis & 
Savard, 2010; 
Grenon et al., 

2010; 
Chadjipadelis & 
Anastasiadou, 

2010; Estrella & 
Olfos, 2010; 

Takagi, 2018) 

(Caldeira & 
Mouriño, 2010; 
Gundlach et al., 
2010; Kapadia 
& Borovcnik, 

2010; 
Borovcnik & 

Kapadia, 2010; 
Edwards, 2014) 

6 papers 4 papers 5 papers 5 papers 5 papers 
 

Before exploring category A papers that maintained similar characteristics (psychological 

contextual) like the current study, concerns in other categories were detailed, as follows: 

In the beginning, category E  incorporated irrelevant studies, which aimed at addressing 

other features that differ from cognitive aspects (i.e., knowledge, reasoning, or understanding). 

On one hand, Caldeira and Mouriño (2010) and Gundlach et al. (2010) studied students’ 

opinions and PSMTs’ motivation and self-efficacy that are related to the subject of probability 

and statistics, respectively. On the other hand, various literature reviews on probability 

research, electronic publications, and currently used mobile Apps were provided by Kapadia 

and Borovcnik (2010), Borovcnik and Kapadia (2010), and Edwards (2014), respectively. 

More focus on exhibiting the 
subjective side of probability 

More focus on exhibiting the 
objective side of probability 
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Moving to both B and D that designated interventional studies with much focus on the 

mathematical side of probability for class D papers. The common trait among all these papers 

emphasizes issues of enhancing teachers’ knowledge and students’ understanding of 

probability through several didactical activities. 

In detail, some researchers focused on in-service teachers' knowledge of probability. For 

example, Batanero et al. (2010) employed paradoxical games that revealed a positive change 

in some of the teachers’ initial misconceptions of probability. Furthermore, Eckert 

(2014) emphasized the social interaction between teachers and students in the classroom; and, 

accordingly, he highlighted the potentiality of the grounded theory approach to study teachers’ 

knowledge, wherein this interaction could be analyzed. Again, to promote teachers’ knowledge 

for teaching probability, particularly the objective side, Theis and Savard (2010) trained in-

service lower secondary school teachers to implement activities rooted in a gambling context 

and represented by computerized simulators. Hence, the results showed that teachers faced 

some difficulties when approaching probabilistic concepts via simulation software. 

Additionally, both Chadjipadelis and Anastasiadou (2010) and Takagi (2018) addressed 

pre-service teachers’ knowledge. While the former investigated the impact of a student-

centered environment on improving their understanding of probability distribution, the latter 

proposed a syllabus to promote the status of teaching statistics and probability, with much focus 

on the statistical charts such as bar and line graphs, pie charts, and histograms. 

On the other side, four papers centered around students’ understanding of probability. 

While Savard’s (2010) study endeavored to describe primary school students’ probabilistic 

thinking in fake gambling situations and showed that they operated deterministic reasoning to 

predict the outcome, Levy and Stukalin (2018) examined first-year undergraduate biology 

students’ understanding of conditional probability. Hence, the results showed that students who 

experienced the intuitive explanation of a problem performed better than those who applied 

mathematical procedures. Moreover, Grenon et al. (2010) and Estrella and Olfos (2010) were 

more concerned with the mathematical rules of probability theory. Thus, the former described 

the usefulness of the computerized simulators as a teaching tool to motivate students in building 

probability knowledge. Similarly, the latter reported the effectiveness of a proposed sequence 

of lessons in developing talented children’s understanding of probability, in which they were 

able to justify their procedures using formal arguments of probability theory. 

Finally, papers of A and C categories attempted to discuss current practices in teaching 

and learning probability, including curriculum issues. At first, regarding C, which 

characterized observational studies that strengthen the statistical side of probability, among its 
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five papers, four analyzed programs of statistics and probability (i.e., Papaieronymou, 2010; 

Viali, 2010; Leviatan, 2010; and Díaz et al., 2014). Nonetheless, there were some differences 

among them in terms of the regarded stage. While Papaieronymou (2010) studied the 

educational reform taking place in Cyprus and provided some implications for the teaching of 

statistics and probability at the secondary level, Viali (2010); Leviatan (2010); and Díaz et al. 

(2014) emphasized undergraduates' courses and concerns in tertiary education. These studies 

shed light on (a) the university curriculum’s limitedness in addressing issues of statistics and 

probability; further, its pedagogy (as reported in Chapter 3). Moreover, (b) the importance of 

clarifying principles and strategies rooted in probability axioms at which this curriculum can 

be restructured, and, at the same time, it stressed operating such axioms in realistic social 

situations. 

The fifth paper of Primi et al. (2014) shared a similar concern of observing for promoting 

objective probability knowledge. It endeavored to develop a scale that measures the basics of 

probabilistic reasoning ability. Although it referred to the probabilistic reasoning in its title, the 

proposed questionnaire has not intended to address students' cognitive biases but rather identify 

those who may struggle at the introductory courses to provide them with extra activities. Thus, 

the scale afforded typical mathematical tasks (e.g., a ball was drawn from a bag containing ten 

red, thirty white, twenty blue, and fifteen yellow balls. What is the probability that it is neither 

red nor blue?), to measure low levels of probabilistic reasoning ability. 

Now, it is time to explore the status of category A, which inspired this study. The following 

argumentation focuses on placing the study among category A papers at which similarities and 

differences are explained. Accordingly, by the end of this section, the current state of research 

on probability education is manifested. Still, why it cannot answer the previously addressed 

issues of needed research requires clarification; that will be handled in the next section of 

the Research gap and the study perspective. 

First, two studies among the assigned six papers to category A involved curriculum 

analysis. While Torres (2014) analyzed undergraduate programs of teaching probability in 

some Colombian universities, Torres and Contreras (2014) defined the probability concept in 

the Spanish primary school curriculum. Both studies were concerned with the epistemological 

meaning of probability and showed that the subjective probability is neglected. That differs 

from what was discussed earlier about curriculum analysis in category C studies, of which they 

aimed at exhibiting weaknesses of statistics and probability education generally (outlined by 

the number of hours). Similar to this in indicating the meaning of probability, Gusmão et al. 

(2010) employed the OSA to analyze the mathematical objects that in-service mathematics 
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teachers use during teaching Monica’s random walk activity. Hence, the results showed the 

value of contextualizing probability education to address probabilistic concepts and figuring 

out semiotic conflicts between teachers’ prior knowledge and formal probability theory. 

Second, while the prior three studies incorporated issues of current intended and 

implemented curriculum and revealed the significance of contextualizing probability 

instruction in displaying teachers’ conceptions, the articles of Larose et al. (2010) and Kuzmak 

(2014) maintained the focus on probability conceptions held by students. On one hand, Larose 

et al. (2010) reflected on middle and high school students’ conceptions of probability; on the 

other hand, Kuzmak (2014) reported college students’ immature understanding of random 

phenomena of which there was a discrepancy between their conceptions and the researchers’ 

developed schema that represented formal knowledge of randomness. 

Finally, and closely related to the current study context, Moreno and Cardeñoso 

(2014) investigated prospective mathematics teachers' probabilistic thinking. As a result, the 

study exposed four hierarchical levels labeled as deterministic, personalistic, uncertainty, and 

contingency. It also confirmed a certain distance between teachers’ mental models and the 

standard conceptual models in probability theory. 

 
4.2.2 Research gap and the study perspective  

In light of the above discussion, it is evident that there is (a) a balance between the 

interventional studies (B and D, 9 papers) that aimed primarily to implement several 

interventions to develop in-service or pre-service teachers’ understanding of the probability, 

which, ultimately, would impact their students, and the observational studies (A and C, 11 

papers) that investigated the current state of probability education. Moreover, there was (b) a 

similar poise between emphasizing the objective mathematical facet of probability (C and D, 

10 papers) and the subjective side (A and B, 10 papers). 

Despite that, to infer some critical points that may exhibit the research gap and expose the 

study's uniqueness, the next argumentation sharpens category A that embodies the scope of this 

study. Because A papers intersect both C (observational) and B (contextual), this 

argumentation, first, illustrates what is still required in the observational studies, then what are 

the needed issues from a contextual viewpoint.  

§ Regarding observational studies represented by A and C papers, more attention was 

given to curriculum analysis with six studies (out of eleven). Yet, merely one article was 

explicitly concerned with PSMTs, but it stayed different from this study, as follows: 
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As outlined before, studies of Papaieronymou (2010), Viali (2010), Leviatan (2010), Díaz 

et al. (2014), Torres (2014), and Torres and Contreras (2014) addressed issues of curriculum. 

Besides, both Larose et al. (2010) and Gusmão et al. (2010) defined the probability conceptions 

held by pupils and in-service teachers. Furthermore, Primi et al. (2014) emphasized correct 

normative responses to typical probability tasks to assess students’ basic low probabilistic 

reasoning levels (not PSMTs). That is, all these studies were not focused on PSMTs. On the 

other side, while Kuzmak (2014) studied college students’ understanding of random 

phenomena, without particular emphasis either on probability or PSMTs, Moreno and 

Cardeñoso (2014) proposed a hierarchical order of probabilistic thinking levels modeled by 

prospective teachers. In that sense, although Moreno and Cardeñoso's (2014) study seems to 

be the only research that shared with this study issues of PSMTs’ reasoning processes, it 

deviates from the current argumentation, as detailed in the next paragraph. 

According to Moreno and Cardeñoso (2014), PSMTs’ reasoning can be arranged into 

levels. That deviates from the current study premises, wherein defining learners’ conceptions 

based on conceptual understanding levels does not admit the value of individuals’ reasoning to 

make sense of phenomena (see Section 4.3.3.). Moreover, they have ordered PSMTs’ 

probabilistic thinking by analyzing to what extent their responses reflect randomness and 

subjectivity. For instance, while the lowest level of deterministic thinking was characterized 

by denying randomness and accept subjective criteria, the best recognition of randomness with 

the minimum dependence on subjectivity was recognized for the uncertainty level. That raises 

two extra critical features of (a) the identification of these levels intended to describe thinking 

processes separated from teachers’ knowledge; accordingly, there was neither discussion about 

biases (or conceptions) embedded in such levels nor reflecting on the three principal 

interpretations of probability (i.e., theoretical, experimental, and subjective). Besides, (b) how 

they define subjectivity in their research differs from the current study perspective; for them, 

subjectivity signifies one factor that negatively affects probabilistic reasoning and further 

causes a low level of thinking. However, within this study’s context, the term subjective 

reflects one plausible approach that individuals rely on to reason probabilistically; further, the 

study aimed to explore how PSMTs conceptualize it. 

It is worthy to remark that such lack of research on PSMTs’ knowledge for teaching 

probability, which appeared from analyzing the observational studies of ICOTS, has also been 

reported in various other studies (e.g., Ainley & Monteiro, 2008; Batanero et al., 2004; 

Batanero et al., 2010; Dollard, 2011; Estrella & Olfos, 2010; Franklin & Mewborn, 2006; Greer 

& Mukhopadhyay, 2005; Ives, 2007; Pecky & Gould, 2005; Stohl, 2005; Torres, 2014). These 
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studies recommended much more research to clarify the essential components in PSMTs’ 

preparation at which prevailing difficulties in learning and teaching probability can be 

overcome. From this aspect, the current study attempted to approach such an area; particularly, 

after what was raised concerning the limitedness of the Egyptian curriculum of probability to 

enhance pupils’ probabilistic reasoning (see Chapter 3). 

§ More critical, and by providing insights into the contextual studies (A and B), (a) there 

was neither a clear identification of subjective probability as a type of reasoning that 

students may manipulate to think of random phenomena nor regard to learners' cognitive 

biases in reasoning under uncertainty as a framework to explain such subjectivity. 

Moreover, (b) the conditional probability concept that signifies a prerequisite for 

understanding the subjective interpretation has not taken much deliberation. 

That is, among all the contextual studies of ICOTS that attempted to figure out issues of 

subjective probability, there were few instances of learners’ cognitive biases (e.g., gambler 

fallacy, the personalistic interpretation). Besides, only Levy and Stukalin’s (2018) research 

reflected on students’ understanding of conditional probability. Such limited recognition of 

subjective probability is interpreted as ignorance of both psychical roots and precursor of 

formal mathematical probability (Dewey, 1964, as cited in Gierdien, 2008; Hawkins & 

Kapadia,1984). Also, Wilson and Berne (1999) defined mathematical probability as a bounded 

process that neglects the subjective side, which was explained by Gierdien (2008) as a 

separation between subject matter from its method (i.e., being skillful in computing formal 

probabilities without understanding why and how probability formulas work). 

With a similar matter, it is relevant to acknowledge that among invited papers of ICOTS 

9, there was an essential topic entitled “Bayesian inference (probability) goes to school: 

meanings, tasks, and instructional challenges”; it sharpened the value of exhibiting the 

subjective facet of probability. As stated on the website, in our everyday life, it is seldom that 

one can implement objective probability at which it is impossible in many cases to ensure the 

equiprobability or repeat the experiment infinitely many times. Accordingly, there is a need to 

develop thinking in line with subjective probability and Bayesian theory; especially, in light of 

the limited attention given to this concept in both school and research (Chernoff & Russell, 

2014; ICOTS 9, 2014). That is also reported by Chernoff (2014) of when Bayesian probability 

goes to school, new areas of investigation will be opened for researchers in mathematics 

education; it signifies an opportunity for those researchers to reconnect with the psychological 

roots of their field. Furthermore, Jones et al. (2007) declared that “it is timely for researchers 

in mathematics education to examine subjective probability and the way that students 
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conceptualize it” (p. 947). Again, that coincides with what was reported earlier (see Chapter 3) 

regarding the Egyptian school curriculum that neglected subjective probability, except for 

some examples of the intuitive interpretation at the beginning of the primary level. 

The whole analysis exposes why current investigations on probability have not yet 

responded to some needed areas of research; specifically, what was raised first regarding (a) 

generating a unified schema of theoretical, experimental, and subjective interpretations of 

probability, and (b) incorporate findings of cognitive psychological research into mathematics 

education. The fulfillment of such concerns requires a perspective that admits several 

individuals' conceptions and sharpens how the mind functions to balance their cognitive 

structures when dealing with uncertain situations. From this aspect, and to address such issues, 

the current study embraced the PoPR to define mathematics teachers’ professional knowledge 

for teaching probability and conceptualize it for PSMTs in Egypt. 

In that regard, it is valuable to note that probabilistic reasoning, in this study, signified a 

psychological perspective. It did not merely explain how individuals think, but it further 

incorporated how our beliefs and social practices may influence probability knowledge and 

reasoning. Alternatively stated, the current study describes probabilistic reasoning as being a 

psychological perspective because it (a) acknowledges that the existing conceptions should be 

the starting point to guide students toward normatively correct procedures; (b) reflects the 

educational perspective, since “understanding of reasoning mechanisms and the origins of prior 

conceptions may also lead to an engineering of these mechanisms and conceptions” (Van 

Dooren, 2014, p. 125); (c) exhibits the fact that the worse performance in probabilistic tasks is 

explained not only in cognitive terms but also in the affective domain (e.g., superstitious 

thinking); and (d) admits the sociocultural influence on students’ reasoning (Ibid.). 

Such attention to reasoning processes leads to strengthening the process knowledge rather 

than content knowledge, which cannot be neglected, particularly for probability education. As 

explained by Shaughnessy (1977), while some misconceptions have a mathematical root (e.g., 

students’ inexperience with mathematical laws of probability), there is considerable evidence 

that these misconceptions are sometimes of a psychological sort; then “mere exposure to the 

laws of probability may not be sufficient to overcome some misconceptions of probability” (p. 

295). Moreover, in 1992, Shaughnessy claimed that challenges underpinning probability 

instruction are related to teaching problem-solving. 
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4.3 Utilization of the probabilistic reasoning perspective and development of the 

study framework   

As stated earlier in Chapter 2, the process of utilizing the PoPR has embedded two steps 

to define mathematics teachers’ professional knowledge for teaching probability. That is the 

argumentation of this section (in 4.3.2 and 4.3.3). However, before going into details, issues 

concerning the term professional knowledge are described first (in 4.3.1). 

 
4.3.1 The notion of professional knowledge to explain teachers’ success  

In light of the growing importance of international comparative studies on learning 

outcomes (e.g., TIMSS and the Programme for International Student Assessment (PISA) 

study), teachers' professional knowledge and its influence on the instructional quality and 

students' achievement has taken much attention. 

The determination of teachers' success and its effect on students’ achievement was 

progressed smoothly from the concept of bright person, passing to the knowledgeable person, 

and reaching the notion of professional competence (Kunter et al., 2013). The bright person 

hypothesis considers that “the best teachers are bright, well educated, people who are smart 

enough and thoughtful enough to figure out the nuances of teaching in the process of doing it” 

(Kennedy, Ahn, & Choi, 2008, p. 1248). On the other side, the knowledgeable teacher 

hypothesis reflects Shulman’s (1987) ideas about the specialized type of knowledge shared 

among a community of professionals when practicing the teaching profession. Operating this 

hypothesis in various proximal studies revealed that teacher knowledge is associated with 

higher quality instruction, which, in turn, has a positive effect on students learning and 

achievement.  

Later, the concept of professional competence admits that in addition to knowledge, 

teachers’ beliefs, motivation, and self-regulation represent several aspects involved in 

determining teachers’ success. That is, the term professional competence refers to the 

application of the concept to working life, particularly in highly complex and demanding 

professions, in which mastery of situations depending upon the interplay of knowledge, skills, 

attitudes, and motivation (Epstein & Hundert, 2002; Weinert, 2001). More specifically, in 

mathematics education, the Teacher Education and Development Study: Learning to Teach 

Mathematics (TEDS-M) and the Cognitive Activation in the Mathematics Classroom and 

Professional Competence of Teachers (COACTIV) study proposed two frameworks that define 

mathematics teachers’ professional competence. 
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Regarding the TEDS-M study, a conceptual model of mathematics teachers’ professional 

competence was developed based on extensive international discussion among all participating 

countries. This model incorporated two essential aspects of (a) professional knowledge 

(content knowledge, PCK, and general pedagogical knowledge) and (b) affective-motivational 

characteristics (beliefs, motivation, and self-regulation) (see the framework in Kaiser et al., 

2017). Similarly, the COACTIV framework aimed at interpreting central concepts of teachers’ 

professionalism; it outlined the interplay among teachers’ professional knowledge that is the 

core of professionalism, values and beliefs, motivational orientations, and self-regulation (see 

the framework in Baumert & Kunter, 2013). 

Although the current study matches both frameworks in defining teachers’ knowledge as 

the heart of their professional competence (Ball, Lubienski, & Mewborn, 2001; Shulman, 

1986) wherein its influence on students’ learning is widely acknowledged, it does not intend 

to assess such knowledge but rather explore, then, conceptualize it. That conceptualization 

focuses on probabilistic reasoning that denotes a kind of thinking associated with probability 

as a school content area. That may contribute to the competence models’ creation for the 

prospective teachers (Krainer & Llinares, 2010) in the domain of Data and chance, which has 

not received much interest because at the time of conducting the TEDS-M, the probability was 

unequally implemented in school and teacher education curricula of the participating countries 

(Li & Wisenbaker, 2008). Nonetheless, nowadays, there is a growing interest in probability in 

many countries due to its relevance for applications in everyday life and sciences (see Chapter 

1); besides, it is also incorporated in the NCTM standards from kindergarten to the secondary 

level (NCTM, 2000). Acknowledging that creation of such competence models in statistics, 

and specifically, probability requires much focus on thinking processes. As detailed in the 

GAISE report, college students should learn statistical thinking to cook creatively instead of 

merely following traditional recipes (GAISE, 2016). Furthermore, Garfield and Ben-Zvi 

(2008) pointed out that the main challenge in teaching and learning statistics is to ensure that 

students have not only obtained mechanics of statistical methods but also concepts underlying 

statistical reasoning. 

Since the purpose of the whole discussion is defining mathematics teachers’ professional 

knowledge for teaching probability, it is proper to move one step further beyond discussing the 

professional competence and proceeding, specifically, to teachers' knowledge. 

Indeed, the specificity of the probability as a content area was explained in several studies. 

For a case, Batanero et al. (2004) stated that broad statistical knowledge, even when essential, 

is not enough for teachers to teach probability. Also, Batanero et al. (2016) further reported 
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that although the probability is authorized in different stages from primary school to the teacher 

education curriculum, its inclusion into the curriculum does not automatically assure accurate 

teaching and learning. Especially for probability, because it has some specific characteristics, 

such as a multifaceted view and the lack of reversibility of random experiments, which are not 

usually encountered in other mathematics areas. 

On one hand, such specificity creates several challenges for students. As many studies 

detailed, learners at different grades vary from elementary up to the college level have 

difficulties in learning probability (Batanero & Sanchez, 2005, Jones et al., 1999; Memnun, 

Ozbilen, & Dinc, 2019; Sharma, 2016). On the other hand, for the university students and 

prospective mathematics teachers, many researchers reported their insufficient understanding 

of probability, wherein without specific training in probability, preservice and practicing 

teachers (and perhaps some teacher educators) may rely on their beliefs and share similar 

misconceptions with their students (Batanero et al., 2016; Fischbein & Schnarch, 1997; Konold 

et al., 1993; Pratt, 2005; Prodromou, 2012; Shaughnessy, 1977; Stohl, 2005). 

The above argument exposes the value of research on teachers’ knowledge. Notably, 

although research concerning teachers’ knowledge for teaching mathematics is abundant, 

studies related specifically to probability are rare (Callingham & Watson, 2011; Torres et al., 

2016). Moreover, many teachers still approach statistics and probability lessons like other 

mathematical topics; they focus only on procedures and results rather than thinking and 

reasoning processes (the 10th Congress of European Research in Mathematics Education 

[CERME10], 2017). More specifically, for the PSMTs, there is a lack of research on PSMTs’ 

knowledge for teaching probability, as revealed previously from analyzing ICOTS papers. 

Also, Dollard (2011) reported that “One way to improve this situation is to ensure that new 

teachers graduating from teacher education programs have a good understanding of the 

fundamental concepts of probability” (p. 27). Consequently, clarifying PSMTs’ knowledge is 

necessary; to develop effective probability instruction, teacher educators need to identify what 

conceptions PSMTs bring into the mathematics classroom (Shaughnessy, 1992). 

Additionally, it is worthy to remark that professional knowledge, in this study, reflects 

knowledge for practice that “depends on the assumption that the knowledge teachers need to 

teach well is produced primarily by university-based researchers and scholars in various 

disciplines” (Cochran-Smith, 1999, p. 255). Besides, it assumes that “it is possible to be explicit 

about a formal knowledge base rather than relying on the conventional wisdom of common 

practice, which some have referred to as natural, intuitive, or normative” (ibid., p. 255). Such 

formal knowledge is expressed in studies that use several quantitative or qualitative scientific 
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methods to “yield a commonly accepted degree of significance, validity, generalizability, and 

intersubjectivity” (Fenstermacher, 1994, p. 8). This conforms to what Stylianides and Ball 

(2004) reported about reviewing researchers' findings, which implies one possible approach to 

scrutinize mathematical knowledge for teaching. From this aspect and as stated at first (see 

Chapter 2), to determine the initial entities of the study framework that defines mathematics 

teachers’ professional knowledge for teaching probability, several previous studies were 

reviewed and categorized in light of the MKT model. This is further detailed in the next section. 

 
4.3.2 The initial entities of the study framework  

The process of operating the MKT to determine the initial entities of the framework has 

followed these procedures: (a) The MKT sub-constructs were first defined (see Figure 4). (b) 

The primary recommendations of ICOTS papers and other reviewed studies on teachers’ 

knowledge for teaching probability were highlighted. (c) Each recommendation was assigned 

to the relevant sub-constructs. Some examples are provided in Table 16. Following such 

procedures, aspects of mathematics teachers’ professional knowledge for teaching probability 

were explored and termed by KoP, KoTP, and KoSPK, which corresponds to SMK, KCT, 

and KCS in the MKT model, respectively. Moreover, a distinct component of KoPL that has 

not explicitly been displayed in the MKT was found, which is detailed in the next sub-sections. 

 
Table 16. Some examples of how the initial entities of the study framework were 

determined in light of the MKT model 
Definition Related discussion in the literature of probability 

(relevant quotes) 
Criteria for judging 

the relevancy  
SMK: A deep 
understanding 
of the content 
to be taught. 

- “Epistemological reflection on the meaning of 
concepts to be taught (e.g., reflection on the 
different meaning of probability)” (Batanero et 
al., 2004, p. 3). 

- “The Colombian curriculum explicitly 
considers classical and frequentist approaches 
to probability while the subjective approach is 
only implicit. For good classroom performance 
a mathematics teacher should know these 
approaches” (Torres, 2014, p. 2). 

- “Teacher should not only present different 
probabilistic concepts and their applications but 
be aware of the different meanings of 
probability and philosophical controversies 
around them (Batanero et al., 2004)” (Batanero 
et al., 2016, p. 23). 

  The given 
argumentations define 

what probability 
concepts mathematics 

teachers should 
understand, 
specifically, 

emphasized concepts 
in the school 
curriculum. 
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KCT: The 
knowledge that 

combines 
knowing about 
teaching and 

content. 

- “These two approaches should not be separated 
if we want students to develop a good 
understanding of probability, and apply it in 
practical situations (Chaput, Girard, & Henry, 
2011). School students are expected to explore 
and contrast the theoretical and 
empirical/experimental approaches to 
probability” (Prodromou, 2012, p. 855). 

- “Using computerized simulators as a teaching 
medium, is effective in motivating pupils and in 
building knowledge” (Grenon et al., 2010, p. 1). 

The discussed ideas 
are relevant to how 

the probability 
concepts can be 

manipulated in the 
classroom, including 
designing effective 

activities or strategies 
to promote students’ 

understanding of 
probability. 

KCS: The 
knowledge that 

combines 
knowing about 
students and 

content. 

- “Prediction of students' learning difficulties, 
errors, obstacles and strategies in problem 
solving” (Batanero et al., 2004, p. 3) 

- “Teachers’ knowledge about students is 
discussed under three sub-themes: students' 
prior knowledge, their misconceptions and 
difficulties, and student development” 
(Danişman & Tanişli, 2017, p. 24). 

The provided 
concerns express the 
essential issues that 

mathematics teachers 
need to know about 

students' 
understanding of 

probability. 
 

§ Knowledge of Probability [KoP] (The essence of professional knowledge) 

Since this study has embraced the PoPR that implicitly involves teachers' conceptions, it 

is necessary to admit what Batanero et al. (2004); Batanero et al. (2010); Godino, Batanero, 

Roa, and Wilhelmi (2008); and Torres (2014) reported regarding the epistemological reflection 

on the meaning of probability, which corresponds to the SMK in the MKT framework.  

According to Hacking (1975), the probability is conceived from two perspectives, 

statistical and epistemic, at which both can be legitimately claimed to be correct. Thus, it is 

defined as a Janus-faced concept (Brase, Martinie, & Castillo-Garsow, 2014; Chernoff & 

Russell, 2014). While the statistical facet is relevant to objective mathematical rules that govern 

random processes, the epistemic side views probability as a personal degree of belief that 

depends on the information available to the person assigning that probability. Hence, both 

approaches were reflected in the work of many authors; and recently, Batanero et al. (2016) 

summarized the various interpretations of probability in the literature as follows: 

 
Table 17. Various interpretations of probability as defined by Batanero et al. (2016) 

Probability 
interpretation  

Explanation 

Intuitive 
 

The intuitive interpretation of probability defines the probability as a formal 
encapsulation of intuitive views of chance that leads to the idea of assigning 
numbers to uncertain events. Besides, it appears in young children's 
argumentations when using qualitative expressions (e.g., probable, unlikely) to 
expose their degrees of belief in the occurrence of random events. 
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Theoretical, 
classical, or 
Laplacian 

The theoretical interpretation defines the probability as a fraction of the number 
of favorable cases of a particular event divided by the total number of all possible 
outcomes, under the premise that all these outcomes are equally likely to occur. 

Experimental, 
empirical, or 
frequentist 

interpretation 

The experimental interpretation explains the probability as the hypothetical 
number that the relative frequency tends to stabilize when a random experiment is 
repeated infinitely many times under identical conditions. It signifies the limit of 
relative frequencies of an event when the experiment is repeated a large number 
of times (Batanero, Henry, & Parzysz, 2005). 

Propensity 
The propensity is one interpretation of the probability concept; it denotes the 
tendency of a given type of a random system (or physical situation) to behave in 
a certain way or yield a particular outcome. 

Logical 

That logical interpretation incorporates classical probability. However, the 
possibilities may be assigned unequal weights. Thus, probability denotes a rational 
degree of confirmation of one hypothesis, H, given some evidence E, a conditional 
probability that depends entirely on H and E’s logical properties and relations 
between them.   

Subjective 

In this view, the probability symbolizes a personal degree of belief that depends 
on a person’s knowledge or experience. Thus, the probability of an event can be 
revised in light of the newly available data of which initial (prior) probability can 
be transformed into a posterior probability through utilizing such new data. 

Axiomatic 

Probability is a function defined from A in the interval of real numbers [0,1] that 
meets the following three axioms: (1) 0 ≤ P(a) ≤ 1, for every a ∈ A. (2) P(S) = 1. 
(3) For a finite sample space S and disjoint events A and B (i.e., A∩ B = ∅), 
P(A∪B) = P(A) + P(B); besides, for an infinite sample space S and a countable 
collection of pairwise disjoint sets Ai, i = 1, 2, ..., P (⋃ 𝐴𝑖!

"#$ ) = ∑ 𝑃(𝐴𝑖)!
"#$ .  

 
Although Batanero et al. (2016) have regarded the seven above-presented definitions of 

probability, the theoretical, experimental, and subjective probabilities imply the basic 

performed interpretations in the K-12 curriculum that mathematics teachers should understand 

and further incorporate in their teaching (Batanero et al., 2005; Brase et al., 2014; Borovcnik, 

2012; Dollard, 2011; Eichler & Vogel, 2014; Torres, 2014; Torres & Contreras, 2014; Kapadia 

& Borovcnik, 2010; Kazak & Confrey, 2006; Kvatinsky & Even, 2002, 2010; Sharma, 2016; 

Torres et al., 2016). Hence, and by the school curriculum, while theoretical and experimental 

represent the objective side of the probability, the subjective side can be accommodated 

through the intuitive interpretation and the concept of conditional probability. Nonetheless, 

such distinction is still under revision in the mathematics education literature (e.g., Chernoff, 

2008). Both approaches are further detailed as follows: 
 
- The objective side of probability  

There are two main interpretations in the objective school: theoretical and experimental. 

On one hand, theoretical probability indicates a fraction whose numerator is the number of 

favorable cases and whose denominator is the number of all equally likely cases (Batanero et 
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al., 2005; Konold, 1991; Laplace, 1995). Still, this interpretation is criticized in terms of 

equiprobability; it hinders applying the concept to several daily life situations (e.g., weather 

events, accident risks) at which this assumption may not be valid (Sharma, 2016). 

Consequently, the theoretical interpretation of probability is difficult to be performed outside 

games of chance (Torres & Contreras, 2014; Torres et al., 2016). Because of equiprobability, 

this interpretation is mostly connected with symmetrical random generators (e.g., fair die, 

equivalent spinning wheel) since there is no need to perform any experiments, and the 

probability can be calculated deductively (Sharma, 2016). Also, from a mathematical 

viewpoint, it cannot be applied for an infinite set of possible outcomes of a random process. 

Furthermore, as per the school curriculum, the theoretical probability remains the most 

commonly practiced interpretation in the classroom (Kvatinsky & Even, 2002). It can be easily 

applied to random devices (e.g., dices), in which the sample space outcomes are assumed to be 

equally likely. Besides, it enables teachers to avoid the uncertainty of real random phenomena 

(Dollard, 2011). As Stohl (2005) noted, many teachers prefer the theoretical interpretation of 

probability because of counting techniques that lead to a definitive answer. 

On the other hand, the experimental probability signifies a hypothetical number toward 

which the relative frequency tends during the stabilization process when random sequences are 

regarded (Sharma, 2016; Mises, 1957). Since it is required to gain data (frequencies) of the 

outcomes for estimating the corresponding experimental probability, the term posterior is 

assigned to this interpretation (Chernoff, 2008). It indicates that the probability is determined 

through experimentation to define the observed relative frequencies of an event throughout 

several identical trials (Borovcnik, Bentz, & Kapadia, 1991). 

Yet, the experimental interpretation has a practical drawback, of which we only obtain an 

estimation that varies from one series of repetitions to another. Besides, it is not appropriate 

when it is not possible to repeat an experiment under the same conditions. Thus, within the 

real-world phenomena, this is often neither possible nor practical; as argued by Sharma (2016), 

it is impossible to conduct repeated trials to estimate the probability that someone’s apartment 

will be stolen within a year. Moreover, no number can be fixed to ensure an optimal estimation 

for the probability. Similarly, Kvatinsky and Even (2002) stated that for a one-time daily 

situation, the subjective interpretation is more appropriate to utilize, for example, to determine 

the chance of having successful surgery for a specific patient or winning an election. Despite 

that, the experimental probability stays beneficial in explaining some contexts like a rain 

chance; since a 30 % chance of rain describes a model of past weather events, in which it has 

rained in three out of the ten previous days that have similar circumstances (Brase et al., 2014). 
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Regarding the school curriculum, because of the growing interest in using technology and 

simulation software in teaching probability to quickly generate random experiments and 

exhibit the effect of sample size, the experimental interpretation is receiving special treatment 

(Batanero et al., 2005; Batanero et al., 2016). As explained by Andrew (2009), through the 

experimentation, students can evaluate their prior judgments; further, eliminate some of their 

misconceptions and beliefs that may contradict with probability theory (e.g., it is most likely 

to appear, because it is my favorite color). This is explicitly declared in multiple curricula 

standards documents such as the NCTM (2000) and the Common Core State Standards for 

Mathematics (CCSSM, 2010). 

After all, it is necessary to understand that neither of the interpretations (i.e., theoretical or 

experimental) is suitable to address every situation; instead, the appropriate approach should 

be operated depending upon the context (Kvatinsky & Even, 2002; Torres & Contreras, 2014). 

Moreover, some pedagogical activities can be approached through both interpretations. For 

example, to determine the probability of rolling a six on a regular six-sided die, the theoretical 

probability interpretation can be utilized to represent the complexities of the physics and visible 

symmetry of the die. Hence, the probability of rolling number six equals 1/6 (Stohl, 2005), and 

also, if the same die has been rolled in a large number of identical independent trials, the 

experimental interpretation can be utilized to provide a judgment. Similarly, Konold (1989) 

clarified that the probability of getting a head in an experiment of flipping a coin equals 1/2 

based on the theoretical interpretation, which could match the experimental estimation when 

the relative frequency of heads (after a large number of trials) approaches 1/2. That resembles 

what Torres and Contreras (2014) argued about the quantity zero that embodies impossible 

events; it can be defined as there are (a) no favorable events, or (b) no observable outcomes, 

for both theoretical and experimental interpretations, respectively.  
 
- The subjective side of probability  

The epistemic side (subjective) treats probability as a language for describing the level of 

uncertainty that one feels (Liberman & Tversky, 1996). Moreover, the term subjective reflects 

an individual judgment, in which the probability does not have measurable characteristics. 

Thus, different people may assign different probabilities to the same event (e.g., election 

results) if they have different information or scope of view (Dollard, 2011; Kvatinsky & Even, 

2002). For example, a 1% chance that the earth will be destroyed within ten years depends 

primarily on the individual’s beliefs, where there are no past events (Brase et al., 2014). 

Consequently, Batanero et al. (2005) stated that it is impossible to treat the probability, within 
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the subjective view, as a physical magnitude and to measure it accordingly in an objective way. 

It is not an intrinsic characteristic of an object, but a degree of belief given by the individual to 

a proposition (Carranza & Kuzniak, 2008). That matches Borovcnik's (2012) argumentation 

regarding the subjective probability that is still closer to the concept of provability: “it is the 

personal expression of a degree of credibility of a statement, which forms the subjectivist 

counterpart of an event” (Ibid., p. 9). 

Formally and by the school curriculum, the subjective approach can be implemented 

through the intuitive explanation and the concept of conditional probability. Nevertheless, 

within the subjective view, all probabilities can be considered conditional probabilities in 

which even unconditional probabilities are conditioned by the sample space (Lindley, 1994). 

Despite that, there is a consensus among many researchers that the school curriculum (as well 

as mathematics education research, as detailed earlier) seems to ignore the subjective side of 

probability, which is widely practiced today in applications of statistics. 

 The intuitive probability reflects an encapsulation of intuitive views of chance that leads 

to the idea of assigning numbers to uncertain events; it utilizes qualitative expressions (e.g., 

probable, possible) to express the degree of confidence in the occurrence of an event (Batanero 

et al., 2005; Torres et al., 2016). Later, when students reach secondary school, they perceive 

subjective probability through the conditional probability concept and Bayes theorem.  

Additionally, the conditional probability describes an update of the predictor’s knowledge 

of a particular event when new additional information is available (Kvatinsky & Even, 2002; 

Torres & Contreras, 2014). Hence, Borovcnik (2012) reported that the concept of conditional 

probability keeps the inherent dual object-subject character of probability; in other words, it 

stands at the border between the objectivist conception, mainly the frequentist interpretation, 

and the subjectivist conception at which the probability defines a degree of confidence 

(Kapadia & Borovcnik, 2010). Because of that, the conditional probability is regarded by many 

researchers as a crucial concept to learn (Díaz & Batanero, 2008; Díaz & de la Fuente, 2007; 

Kapadia & Borovcnik, 2010). For example, Heitele (1975) has included it within the list of 

fundamental stochastic ideas. Jones et al. (2007) also described acquiring the conditional 

probabilities as a prerequisite for learning the subjective probability. 

Repeatedly, despite such value of the subjective probability, it stays an obscure area of 

research within mathematics education. As Chernoff (2014) declared, the state of the term 

subjective probability is subjective; it includes “the inconsistent use of multiple terms, such as 

“subjective,” “Bayesian,” “intuitive,” “personal,” “individual,” “epistemic,” “belief-type,” 

“epistemological” and others” (p. 3). Furthermore, although subjective probability has a dual 
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meaning of general classifier and specific theory, explaining it as a general classifier that 

incorporates various philosophical differences is often neglected in mathematics education 

literature. Instead, the research defines it as a specific theory wherein a complete consensus 

exists about mathematics (Chernoff, 2008, 2014; Gillies, 2000). This is consistent with 

Steinbring’s (1991) argument regarding subjective probability, which many researchers 

interpret as a personal degree of belief that depends on the amount of knowledge accessible to 

the individual, as it is not just a matter of opinion; yet, it should be checked through 

experimentation. Moreover, what Konold (1989) refers to by the idea of calibration; as he 

reported, although, within the personalist view, different individuals could validly allocate 

several values to the probability based on their beliefs about multiple factors, some mechanisms 

are required to handle these initial values and process the new information when formalizing 

such personalistic view (calibration). 

From that aspect, this study relied on PSMTs’ reasoning in a conditional probabilistic 

situation to characterize the subjective probability concept as a general classifier, that is 

grounded in Chernoff’s (2008) argument where subjective probability takes the status of a 

general classifier that corresponds with belief-type probabilities. Accordingly, Chernoff (2008) 

classified subjective probability into intrasubjective (personal belief-type) and intersubjective 

probability (interpersonal belief-type). Moreover, he interpreted Jones et al.’s (2007) statement 

of “it is timely for researchers in mathematics education to examine subjective probability and 

the way that students conceptualize it” (p. 947) to “it is timely for researchers in mathematics 

education to examine subjective probability and the way that students conceptualize 

[intrasubjective and intersubjective probability]” (Chernoff, 2008, p. 21). 

 More specifically, in the current investigation, PSMTs were asked to reason on two 

situations that involve the conditional probability concept, which is the key to the subjectivist 

theory of probability (Borovcnik, 2012): one is relevant to the context of giving birth, and the 

other contains a two-way table, as an attempt to explore notions of intrasubjective and 

intersubjective probability. The distinction between the two depends on Chernoff's (2008) 

discussion of whether the latter (intersubjective, interpersonal, a sense of objectivity is implied) 

is more objective than the former (intrasubjective, personal, less of an element of 

objectivity). As stated in Borovcnik’s (2012) report about the educational perspective on 

conditional probability, the conditional probability, on one hand, fulfils probability axioms for 

objectivists (i.e., intersubjective), and, on the other hand, it reflects that any probability is 

conditional to available information and is related to the idea of updating it in light of the new 

evidence (i.e., intrasubjective).  
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§ Knowledge of Teaching Probability [KoTP] 

There are many aspects relevant to teaching probability that were raised in the literature; 

the following discussion summarizes these aspects: 

- Warm up the probability lesson:  

The topic of probability should be approached through real-life examples, wherein 

students can utilize their intuitive understanding of uncertainty to capture the formal concept 

of probability (Kataoka et al., 2008). That matches the school curriculum at which the 

probability lesson is often introduced to students through the intuitive interpretation. 

- Access the probability activities (implemented curriculum concerns):  

Teachers’ capacity to access the implemented activities is highlighted in the literature as a 

basic repertoire for teaching probability (Cordani & Wechsler, 2006; Gusmão et al., 2010; 

Kataoka, Trevethan, & Silva, 2010; Kvatinsky & Even, 2002; Theis & Savard, 2010; Torres et 

al., 2016). In detail, to operate textbooks activities, teachers should define simple, compound, 

and conditional probability; understand concepts of variability, expectation, randomness, and 

independence; distinguish between mutually exclusive (exclusion concept), joint, and 

independent events (independence concept); and draw inferences about a population from 

random samples (Batanero & Sanchez, 2005). Moreover, teachers are also expected to 

differentiate a mathematical problem from the statistical one. For a case, assume a coin is fair, 

and we tossed the coin five times; how many heads will we get? It represents a mathematical 

problem. On the other hand, you pick up a coin; is this a fair coin? It outlines a statistical one, 

in which the mathematical probability model can be used as a tool to seek a solution (Franklin 

et al., 2007). In this regard, the connection between mathematics, statistics, and probability is 

essential. That is, many mathematical concepts (e.g., numbers, proportions, ratios, 

combinatorics) still exist when working with probability (Batanero et al., 2010). Furthermore, 

the notion of fairness, which allows us to reason through observing experimental results and 

comparing them with the theoretical calculations, defines a central idea to deal with probability 

(PCMI, 2017). 

Closely connected to such a discussion, although many teachers tend to draw on textbooks’ 

sequences in their instruction, especially in developing countries, some researchers 

recommended starting with experimentations. For example, Andrew (2009) believes that 

students better understand probability concepts if they perform experiments in advance; it 

encourages them to develop understandings grounded in actual concrete events, compared to 

merely getting results based on algorithms. 
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- Connect and differentiate among various probability interpretations:   

On one hand, Batanero et al. (2016) regarded the value of the differentiation between the 

theoretical model of probability and frequency data from reality to help students model real-

life phenomena. On the other hand, the connection between both theoretical and experimental 

probability is acknowledged to enhance students’ probabilistic reasoning (Chaput et al., 2011; 

Eichler & Vogel, 2014; Gusmão et al., 2010; Jones et al., 2007; Steinbring, 1991; Torres & 

Contreras, 2014). Such a connection leads the discussion toward the law of large numbers 

(Dollard, 2011; Kapadia & Borovcnik, 2010; Sharma, 2016), in which the absence of such a 

law leads students to see both interpretations as separate entities (Theis & Savard, 2010). 

The law of large numbers recognizes that the difference between the experimental and the 

theoretical probability limits to zero as more trials are performed (Stohl, 2005). Hence, it helps 

students compare their inferences from theoretical and empirical work, then judge and modify 

their initial hypotheses (Sharma, 2016). Nevertheless, teachers sometimes describe this law to 

their students as if a necessary convergence between both probabilities with a large number of 

trials should be observed. Although the concept of limit implies that it is not possible to have 

an experimental probability that is significantly divergent from a theoretical probability when 

a large number of experiments are conducted, teachers may slightly modify the words to get 

closer. Consequently, students may misunderstand such law and expect a convergence between 

theoretical and experimental probabilities, even with a small sample size (Stohl, 2005). 

In that sense, it is valuable to report what Nilsson (2013) argued regarding the movement 

between theoretical and experimental interpretations, which depends primarily on whether the 

underlying sample space is known by or hidden from students. According to Nilsson (2013), 

two methodological directions emphasize such connection; (a) the mapping direction that starts 

with the theoretical probability Þ experimenting Þ deduce the empirical probability, and (b) 

the inference direction that begins with experimenting Þ identify the empirical probability Þ 

deduce the theoretical probability. Hence, teachers’ knowledge to adapt appropriate tasks for 

each interpretation through accommodating a cycle of “data, theoretical model, simulation, 

data” is essential for providing the students with adequate understanding to interpret 

phenomena (Prodromou, 2012; Serradó, Mavrotheris, & Paparistodemou, 2017). 

- Utilize various representations of probability:  

Teachers’ familiarity with multiple representations that provide students with a substantial 

understanding of probability is crucial (Danişman & Tanişli, 2017; Even & Kvatinsky, 2010; 

Theis & Savard, 2010). For instance, teachers may employ tables; area models; Venn, pipe, or 
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tree diagrams to clarify some probability concepts. While the tree diagram is useful to calculate 

probabilities associated with series of events, the area model is convenient for computing 

conditional probability because the ratio between areas of rectangles can be visualized 

(Kvatinsky & Even, 2002). Furthermore, the simulation process has been extensively discussed 

in the literature, either through concrete materials (e.g., spinners) or via computerized 

simulators (e.g., Grenon et al., 2010; Kapadia & Borovcnik, 2010; Savard, 2010). It helps to 

overcome students’ deterministic reasoning by comparing the observed outcomes with prior 

predictions; besides, it reduces technical calculations and, instead, sharpening learners’ 

understanding of probability concepts (Kapadia & Borovcnik, 2010). 

 
§ Knowledge of Students’ Probability Knowledge [KoSPK] 

According to Danişman and Tanişli (2017), teachers’ knowledge about students includes 

recognizing their prior knowledge, misconceptions that were also stressed by Stohl (2005) at 

which teachers should perceive students’ conceptions of probability, difficulties, and various 

levels of cognitive development. For instance, students’ understanding of ratios, proportions, 

percentages, fractions, and rational number concepts related to probability is crucial to 

investigate. That requires strong curriculum knowledge (horizontal and vertical curriculum), 

wherein mathematics teachers connect what students learn in previous grades with essentials 

to understand current probability concepts. Similar concerns were advocated by Fischbein 

(1975), Steinbring (1991), and Pratt (2005) regarding the necessity for instruction to be built 

on students’ existing knowledge of probability. For such issues, Batanero et al. (2016) advised 

mathematics teachers to be aware of research results that explain students' probabilistic 

reasoning and misconceptions; and further the appropriate instructional approaches that can 

help develop that reasoning. 

 
§ Knowledge of Probability Language [KoPL] 

The consideration of language has been strengthened not only in case of probability but 

also for the whole statistics education, in which the approach to statistics content by the teacher 

who is conscious of statistical words, positively affects students’ understanding (Otani, 

Fukuda, Tagashira, & Iwasaki, 2018). More specifically, about probability, many researchers 

highlighted the probability language as a fundamental aspect of teachers’ knowledge (Batanero 

et al., 2016; Brijlall, 2014; Danişman & Tanişli, 2017; Dollard, 2011; Gal, 2005; Gusmão et 

al., 2010; PCMI, 2017; Torres & Contreras, 2014; Watson, 2005). As reported, the usage of 

probabilistic expressions and suitable vocabularies for students draws a necessary condition to 
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warm up the probability lesson (Skoumpourdi & Kalavassis, 2003). Particularly because the 

probability concept is related to many expressions that we use in everyday language (e.g., 

probable, likely, possible, risky, sure). Therefore, connecting students’ daily intuitions of 

chance manifested in their natural conversation with the academic language of probability 

signifies a further challenge for mathematics teachers (Batanero et al., 2016; PCMI, 2017).  

This may help to overcome what Green (1984) called linguistic weaknesses, which expose 

students’ difficulties in utilizing the probability language; for a case, as he clarified, some 

middle school students define a 50/50 chance as anything can happen, rather than two equally 

likely events. Accordingly, mathematics teachers should develop pedagogical pathways that 

promote students' formal knowledge of probability, relying on their informal natural language 

expressed in daily life situations. For instance, progressing from the natural expression of "it is 

most likely to rain tomorrow" to the formal one of "the probability of rain tomorrow equals 

90% or 0.9" (PCMI, 2017).  

Additionally, teachers’ awareness of differences between both languages is needed 

(Kazima, 2007; Nacarato & Grando, 2014; Paul & Hlanganipai, 2014; Watson, 2006). Sharma 

(2014) noted that sometimes, the usage of the probability words during formal instruction 

differs from how these words are practicing in everyday life. For example, while the language 

of fairness in daily life situations reflects rules of equity (unbiased), it indicates the same 

theoretical chance of an event occurring inside the formal probability education (Sharma, 2014; 

Watson, 2006). Therefore, the probability language represents one fundamental aspect that 

should be reinforced within the discussion of mathematics teachers’ professional knowledge 

for teaching probability. This exemplifies a particular matter related to probability, which 

differs from other areas of mathematics. Besides, it signifies one unique feature of the study 

framework, which has not been explicitly figured out in the MKT model. That may contribute 

to competence models’ creation, specifically, within the domain of probability. 

Based on the above discussion, mathematics teachers' professional knowledge for teaching 

probability consolidates KoP that outlines the heart of teachers' knowledge and indicates their 

deep understanding of the subject (Shulman, 1986). It crosses with knowledge of the language, 

knowledge of teaching, and knowledge of students, to construct KoPL, KoTP, and KoSPK, 

respectively. That is represented in Figure 9.  

According to Figure 9, the exhibited interplay among the four aspects of teachers’ 

knowledge can overcome two reservations regarding the MKT model representation. The first 

reservation denotes using the term PCK that did not appear as an appropriate name to identify 

the right side of the MKT framework. As Hurrell (2013) reported, “Perhaps Pedagogical 
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Knowledge (PK) may have been a better term to employ as there is a strong argument to be 

stated that PCK only occurs at the overlap between the SMK and PK” (p. 59). The second 

reservation, which is closely connected with the first one, implies that interactions among 

knowledge domains were not displayed. More precisely, the SMK and PCK, which are 

intimately associated with each other; as Marks (1990) described, such an obstacle faces any 

attempt to categorize teachers’ knowledge, wherein ambiguities between content knowledge 

and PCK always exist. Considering that, the KoP component in the proposed framework was 

defined to exemplify the core of teachers’ professional knowledge, instead of being a distinct 

aspect by itself. 

Additionally, such KoP, which resembles SMK in the MKT model, intersects knowledge 

of the language, teaching, and students, to define KoPL, KoTP, and KoSPK, respectively, as 

stated earlier. Perhaps this interpretation acknowledges Shulman's original idea about the PCK 

that should embody the intersection between content knowledge and pedagogy (e.g., Lowery, 

2002; Marks,1990; Niess, 2005). That is, PCK is a “special amalgam of content and pedagogy 

that is uniquely the province of teachers, their own special form of professional understanding” 

(Shulman, 1987, p. 8). Furthermore, it appears during the stage of transformation when teachers 

represent the subject in various forms that their students can understand, which meets what 

Dewey (1964) declared that separating content from method distorts teachers’ knowledge. This 

was also reported in some previous studies on probability. For instance, Brijlall (2014) 

explored PCK for teaching probability in the South African context; accordingly, a strong 

relationship between teachers’ content knowledge and their teaching practices was exposed. 

 

  
Figure 9. Initial entities of the study framework, building upon a literature review on 

probability education research 
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In that regard, it is reliable to remark that beyond ICOTS' papers, several other studies 

were conducted to investigate teachers’ knowledge for teaching probability; it adopted the 

MKT model to approach this area. For example, in the case of in-service teachers, Danişman 

and Tanişli (2017) explored secondary school teachers’ PCK of probability. As a result, the 

study revealed that their knowledge was insufficient; besides, teachers’ beliefs were identified 

as the most influential factors affecting their PCK. Similarly, Brijlall (2014) conducted a case 

study research to explore the PCK for South African middle school teachers. Accordingly, the 

study reported that the Specialized Content Knowledge (SCK) of probability includes 

knowledge of “1) definition of probability, 2) recall of the probability scale and attaching 

meaning to a number on this scale, 3) thorough understanding of fractions and their operations 

and 4) translating correct English vocabulary usage into mathematical notions relevant to 

probability tasks” (Brijlall, 2014, p. 725). Additionally, Chick and Baker (2005) detailed 

multiple issues about the content knowledge and PCK for two teachers who taught probability 

lessons to fifth-grade students. Hence, they highlighted that the probability concepts embedded 

in the curriculum and further appeared during the implementation, should be understood by the 

teachers themselves. 

Also, a similar trend of research concentrated around PSMTs’ knowledge for teaching 

probability. For instance, Birel (2017) examined PSMTs’ SMK defined by procedural and 

conceptual knowledge of basic probability concepts. Accordingly, the results proved that 

although PSMTs showed a high achievement in procedural knowledge, most of them had 

difficulties to solve questions that required conceptual knowledge. From this aspect, the study 

recommended much more research is needed to explore why PSMTs’ conceptual knowledge 

of probability was less developed compared to their procedural knowledge. While Birel’s 

(2017) study was conducted in the Turkish context, Contreras et al. (2011) assessed prospective 

Spanish primary school teachers’ common content knowledge and SCK of probability. 

Repeatedly, the results confirmed the inadequate knowledge of elementary probability and the 

need to strengthen preparation of prospective teachers to teach probability. 

One critical point of such previous studies is that they centered on assessing teachers’ 

practical knowledge and merely described it as insufficient or inadequate. More precisely, the 

majority of these investigations neither regarded teachers’ reasoning processes nor their 

cognitive biases that underpin such insufficient knowledge or practices. Perhaps that is because 

of the general tendency concerning teachers’ knowledge research to strengthen the content 

knowledge more than process knowledge. Apart from that is the study of Torres et al. (2016) 

that utilized the MKT framework; yet, it has also addressed PSMTs' biases. 
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In detail, Torres et al. (2016) developed a questionnaire to assess prospective primary 

school teachers’ content knowledge of probability. As a result, the study has not only described 

their knowledge as insufficient but also reported that a “high proportion of the participants 

demonstrated poor combinatorial reasoning, made errors in computing conditional probability 

and in interpreting frequentist probabilities, and evidenced use of common heuristics and 

biases” (Torres et al., 2016, p. 210). Despite that, again, the researchers strengthened evaluation 

issues, which was detailed in their conclusion as follows: “the study shows that both advanced 

and specialized content knowledge need to be strengthened among prospective primary school 

teachers. In particular, specialized content knowledge related to probability was very low 

among the participants” (Ibid., p. 211). 

After all, and as reported in several sections, besides ignoring PSMTs' reasoning processes 

and cognitive biases embedded in such reasoning, issues related to subjective probability, 

specifically, have not taken enough attention. That pulls us back to the direction of future 

research that calls for connecting mathematics education perspective on probability with its 

roots of psychological research. Because of such concerns, the study framework has not only 

relied on what was raised in the previous studies (i.e., the first employed step to develop the 

framework), but it also attempted to express a new angle that may exhibit the psychological 

facet of teachers’ knowledge for teaching probability, which is represented by their reasoning 

processes and conceptions. These ideas are further detailed in the next section; it endeavors to 

discuss the study premises (i.e., the second step to fix the framework). 

 
4.3.3 The study premises 

As stated before, to develop the study framework, these assumptions were acknowledged: 

§ Premise 1: Conceptions represent knowledge in evolution 

Conception is knowledge produced by the interaction between an individual and his/her 

milieu (Brousseau, 1998; Gras & Totohasina, 1995). It is formed based on individuals' personal 

experiences. Hence, the conception signifies a mental filter to interpret a situation, for making 

sense of it (Giordan & Pellaud, 2004). As Piaget (1974) noted, these conceptions are the 

answers to regulations developed by a person to balance his/her cognitive structures at the time 

of the adaptation. 

Although conceptions are valid in certain circumstances, they cannot be generalized across 

all contexts. For such reason, the term misconceptions may be unsuitable to describe 

individuals' conceptions because they still work for them under some conditions. These 

conceptions were defined by Giordan (1998) as operating or inefficiency, rather than being 
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correct or incorrect. Thus, Moreno and Cardeñoso (2014) preferred to use the term mental 

models instead of either conception or misconceptions to reflect on how individuals perceive 

the world to maintain their cognitive systems free of contradictions. They also explained that 

such models might incorporate irrelevant, inaccurate, or conflicting elements, but they must be 

functional. Similalry, Savard (2014) used the term alternative conception; it indicated the 

validity of a particular conception in some contexts and its inadequacy outside the domain of 

its validity. These alternative conceptions were not seen as a deviation of norms or rationality, 

nor as illogic, but rather knowledge in evolution (alternative understandings). Hence, to clarify 

the relationship among conceptions, conceptual understanding, and reasoning, it is not possible 

to pretend that a specific type of conceptions might exactly explain a certain level of 

understanding because classifying these conceptions as levels of conceptual understanding 

does not recognize the value of individuals' reasoning to make sense of phenomena (Savard, 

2014). From this aspect, utilizing the PoPR would support admitting learners’ various 

conceptions. That is crucial since individuals’ world is full of diverging personal probabilistic 

conceptions (Kapadia & Borovcnik, 2010). Besides, these conceptions also signify a necessary 

component for the process of knowledge construction (Smith, diSessa, & Roschelle, 1993). 

Perhaps that is one implicit reason under Shaughnessy's (1992) indication of thinking 

processes (instead of conceptual understanding) when he claimed that PSMTs lack the 

opportunity to develop their stochastic thinking during the university preparation. In agreement 

with Birel (2017), who reported that the offered courses for the PSMTs are recipe-like or rule-

bound, they only deal with calculations, work in the direction of memorizing the subject, and 

underestimating the logic behind it; also, the conceptual knowledge of probability was less 

developed compared to procedural knowledge.  

Although the elementary probability is often determined through limited techniques, 

several deep conceptual issues (e.g., variation, randomness, fairness) stay essential to 

investigate (Chick & Baker, 2005). In this view, the complexity of probability conceptual 

understanding remains a fundamental obstacle for developing teachers’ knowledge. Such 

complexity is originated from counterintuitive issues in probability; as reported by Borovcnik 

and Peard (1996), the counterintuitive results in probability are found even at very elementary 

levels, while they are encountered in other branches of mathematics when students work at a 

high degree of abstraction. These distinctive traits of probability explain why many 

conceptions and learning difficulties persist up to the university level (Batanero & Sanchez, 

2005; Fischbein et al., 1991; Fischbein & Schnarch, 1997; Kapadia & Borovcnik, 1991; 

Konold et al., 1993; Shaughnessy, 1992; Stohl, 2005; Torres & Contreras, 2014). 
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Additionally, about the probability conceptual knowledge, it is valuable to note that such 

relevance of probability to daily life experiences has provoked a trend of research that 

recognizes socio-cultural influence on learners’ conceptions of probability. For example, Amir 

and Williams (1999) concluded that students' cultural experiences impact their probability 

knowledge, in which some of them reveal superstitions of attributing random events to God. 

Similarly, Chassapis and Chatzivasileiou (2008) reported the influence of religious beliefs and 

social values on students' conceptions of chance and probability, which may confirm or 

contradict mathematics education. Such studies acknowledge that students come to classrooms 

with previously formed beliefs and knowledge of probability (Fischbein, 1987). This is 

consistent with what Konold (1991) argued regarding students’ construction of knowledge; the 

acquired knowledge is incorporated in their existing knowledge fabric. Notably, what students 

learn from the classroom experiences remains limited and is probably shaped by what they 

already know; accordingly, the acquired concepts are not freely formulated, but rather, they are 

subjected to restrictions of the existing concept-relations (Ibid.). 

 
§ Premise 2: Reasoning defines an individual cognitive process to interpret the 

acquired knowledge 

Generally speaking, and from the perspective of teachers’ knowledge, it is meaningful to 

note that across all teaching practices (e.g., figuring out what students know, manipulating 

representations, modifying textbooks), teachers’ reasoning is always involved (Ball, Lubienski, 

& Mewborn, 2001). Such argumentation stays significant for the probability instruction in 

which psychological interpretation feels at home (Van Dooren, 2014). Accordingly, and about 

teaching probability, Kapadia and Borovcnik (2010) regarded the time to replace Heitele’s 

(1975) ideas, which resemble probability textbooks’ chapters, with an approach that looks at 

concepts from a non-mathematical perspective, to overcome such distinct characters of the 

probability teaching, wherein it is not always sensible to seek a closed solution as expected in 

mathematics. This non-mathematical perspective is displayed within this study by probabilistic 

reasoning, which has a cognitive psychological nature and focuses on how the mind works. 

Indeed, various researchers have interpreted probabilistic reasoning to be the essential goal 

that underpins learning probability, in which it should be the ground for all educational 

practices. For example, Gürbüz (2006) and Batanero et al. (2016) described that probability 

provides an important reasoning mode on its own that contributes to the development of 

students' mathematical reasoning; it is not just a precursor of inferential statistics. Furthermore, 

probabilistic reasoning signifies one primary reason for why probability is involved in the 
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school curriculum. As Borovcnik and Peard (1996) stated, the study of probability sustains the 

creation of probabilistic reasoning that supports learners to formally structure their vague 

thinking about random phenomena. Additionally, because of the growing number of events 

described in terms of risk, relevant concepts to reason under uncertainty must be learned in 

school, and its understanding should also be investigated (Martignon, 2014; Pange & Talbot, 

2003). This meets the need to overcome individuals' deterministic thinking and accept the 

existence of chance in nature (Batanero et al., 2016). 

Another critical issue for why probabilistic reasoning is appreciated in this study is the 

duality of the probability concept of which it has statistical and subjective facets (Carranza & 

Kuzniak, 2008; Hacking, 1975). In that sense, the conventional approach to address teachers’ 

knowledge, which focuses on leveling their conceptual understanding through paying more 

attention to the statistical side, may remain unsuitable to employ; because the subjectivity itself 

is one plausible approach to interpret a probabilistic situation. That is well described by Brase 

et al. (2014) in which “having two different conceptions of probability can lead to two people 

having different answers to the same question yet both believing they are rational and correct” 

(p. 162). Moreover, strengthening the statistical facet, which reduces teaching probability to 

formula-based computational procedures with few instances of real applications, as a unique 

basis to judge a probabilistic phenomenon deepens the gap between both facets (Batanero & 

Díaz, 2010; Carranza & Kuzniak, 2008).  

The aforementioned argumentation exposes the significance of the PoPR to conceptualize 

PSMTs’ knowledge for teaching probability. It explores their conceptions and cognitive biases 

that should not be ignored; particularly, if they are not objectively acceptable, they must be 

eliminated, and alternative representations must be developed instead (Fischbein & Gazit, 

1984). In other words, because intuitions about probability could impede its learning, it is 

crucial to investigate learners’ reasoning and biases (Chiesi & Primi, 2009), which explains 

Sharma’s (2016) recommendation of grounding the instruction in experiences that help learners 

overcome their misconceptions and develop an understanding based on probabilistic reasoning. 

That is valuable to teacher education because the world of personal intuitions signifies a 

source of success or failure of teaching, then, conceptualizing PSMTs’ knowledge for teaching 

probability from the PoPR advocates clarifying whether they accept (or ignore) what they 

learned (Kapadia & Borovcnik, 2010). It also stimulates their awareness of probability 

conceptions, which helps them assess these misconceptions later in their students (Batanero et 

al., 2010). Ultimately, it impacts pupils’ reasoning wherein "the success of any probability 

curriculum for developing students' probabilistic reasoning depends greatly on teachers' 
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understanding of probability" (Stohl, 2005, p. 345). Moreover, as highlighted before, 

employing the PoPR meets the need for further research that exhibits the psychological 

perspective on probability and connects it with the mathematics education perspective. Such a 

connection indicates that the defined conceptions and biases can be operated, later, as a 

foundation to reform PSMTs’ pedagogical preparation. The following paragraphs summarize 

the properties of probabilistic reasoning. 

Probabilistic reasoning implies judgments and decision-making under uncertainty (Falk & 

Konold, 1992); it considers two concepts of variability and randomness (Chick & Baker, 2005). 

Variability locates at the heart of statistics, and it designates why it is so difficult to make 

decisions under uncertainty (Garfield & Ben-Zvi, 2005; Pfannkuch & Wild, 2004). Moreover, 

to construct a deep understanding of variability, learners have to acquire multiple ideas, which 

were outlined by Garfield and Ben-Zvi (2005). From these ideas, learners have to (a) recognize 

that variability is everywhere (i.e., the omnipresence of variability; Moore, 1997), (b) explain 

the different reasons and sources for such variability, and (c) use variability to predict random 

samples or outcomes, which is relatively linked to probability. In other words, “There is 

variability in outcomes of chance events. We can predict and describe the variability for 

random variables” (Garfield & Ben-Zvi, 2005, p. 95). Hence, about outcomes of a random 

experiment, variability indicates that the outcome is not determined; it varies depending upon 

favorable cases (theoretical probability), frequencies (experimental probability), or some 

evaluation criteria (subjective probability).  

Additionally, randomness includes uncertainty and independence; while the former 

reflects that the outcome cannot be predicted with certainty, the latter indicates no correlation 

between what happened before and the new outcome (Green, 1993; Sari & Hermanto, 2017; 

Savard, 2014). On the relationship between randomness and probability, Batanero (2015) has 

reflected on Hacking’s (1975) argument about the two complementary views of probability 

(i.e., epistemic and statistical) to describe multiple perspectives on random events; accordingly, 

she detailed three different perspectives. First, Randomness as Equiprobability, at which an 

event denotes random if it has the same probability to occur as any other event in the 

experiment. This conception of randomness is related to theoretical probability wherein all the 

possible outcomes are assumed to be equiprobable. Second, Randomness as Stability of 

Frequencies, at which an event considers random if “we could select it through a method 

providing a given a priori relative frequency in the long run to each member of this class” 

(Batanero, 2015, p. 6). This is connected with the experimental probability interpretation, 

wherein it is necessary to ensure that the successive trials are independent. Third, Subjective 
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View of Randomness, wherein randomness defines a subjective judgment at which what is 

random to one person might be non-random for another. 

Accordingly, probabilistic reasoning differs from deterministic reasoning that (a) leads to 

look at one definitive answer, and (b) seeks for a correlation using present and past information 

to explain a phenomenon, where the dependency or causality still exist (Savard, 2010, 2014; 

Shaughnessy, 1992). On the contrary, in a probabilistic situation, (a) there is more than one 

possible outcome, (b) the occurrence of an exact outcome is unpredictable, and (c) the sequence 

of obtained results lacks a pattern; it cannot be controlled or predicted, and the only thing to be 

done is to critically choose the event most likely to occur (Batanero, Green, & Serrano, 1998; 

Tsakiridou & Vavyla, 2015). This meets Borovcnik and Peard’s (1996) differentiation between 

the probabilistic and logical reasoning that designates a true or false proposition. Nevertheless, 

we have no complete certitude concerning a random event in the case of probability. 

 
§ Premise 3: The hypothetical relationship between conceptions and reasoning 

In light of the previously reported premises, the relationship between the individual's 

probabilistic reasoning and his/her conceptions was interpreted within the context of this study 

as follows: Depending on the way we reason in an uncertain situation that contains probability 

knowledge (theoretical constructs), our conceptions can be clarified. Some researchers 

implicitly declared such a connection; that is, probability conceptions are rooted in various 

epistemologies, those epistemologies themselves are underlined by the reasoning employed to 

think about probabilistic phenomena. For example, Konold (1989) noted that reasoning about 

uncertainty involves two types of cognition: formal knowledge of probability and intuitive 

assessments (heuristics). Later, these types were redefined by Savard (2014) as probabilistic 

versus deterministic reasoning, and she used them to classify the commonly described 

conceptions of probability in the literature, as displayed in Figure 10. 

Based on that, and under the umbrella of probabilistic reasoning, describing such 

conceptions and biases is essential for the current investigation. Hence, several studies in both 

fields of cognitive psychology and mathematics education were reviewed (e.g., Amir & 

Williams, 1999; Batanero & Sanchez, 2005; Díaz, Batanero, & Contreras, 2010; Díaz & de la 

Fuente, 2007; Díaz & Batanero, 2008, 2009; Dollard, 2011; Falk,1986; Garfield & Ben-Zvi, 

2005; Green, 1983; Kazak & Pratt, 2017; Konold, 1989; Lysoe, 2008; Nicolson, 2005; Savard, 

2014; Tversky & Kahneman, 1974; Watson & Moritz, 2003). Accordingly, characteristics of 

(a) the individual who holds such conceptions (misconceptions, heuristics, or biases) and (b) 

the principal probability interpretations that the individual might rely on to reason in a situation 
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were summarized as in Figure 10 (see the details in Appendix 5). It worked as a lens to interpret 

PSMTs’ responses at which their knowledge for teaching probability could be characterized. 

Figure 10. Essentials to characterize PSMTs’ knowledge for teaching probability 

 
Indeed, admitting such a relationship not only helped to define the framework, but it may 

also contribute to the literature through consolidating PSMTs’ reasoning and probability 

conceptions together in one model. Although several studies have shown that adults (including 

university students) hold various conceptions about probability and relevant biases in reasoning 

under uncertainty (e.g., Dollard, 2011; Kazak & Pratt, 2017; Konold, 1989), there is no further 

discussion that connects PSMTs’ reasoning with associated probabilistic conceptions in such 

a way to prototype both in a unified schema. From this aspect, and as stated first, this study 

acknowledged that learners’ conceptions are underlined by their way of reasoning toward a 

certain phenomenon to be an essential hypothesis. In other words, one way to identify PSMTs’ 

conceptions of probability is to explore how they reason under uncertainty.  
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4.3.4 Description of the study framework (skeleton of the study) and definition of its terms  

§ Description of the study framework 

In light of the whole preceding discussion that (a) determined the initial entities of the 

framework, and (b) acknowledged the study premises, the study framework is displayed in 

Figure 11. It defines mathematics teachers’ professional knowledge for teaching probability 

from the PoPR, which embodies interrelationships among professional knowledge, 

conceptions, and reasoning processes. 
                            

Figure 11. Mathematics teachers’ professional knowledge for teaching probability from 
the perspective of probabilistic reasoning 

 
According to the presented model, mathematics teachers' professional knowledge for 

teaching probability (knowledge for practice), which is acquired through either formal teacher 

education or professional development training, signifies the static black parallelogram. It 

consolidates knowledge of probability (KoP) that outlines the essence of this parallelogram, 

which crosses with knowledge of the language, teaching, and students to assemble knowledge 

of probability language (KoPL), knowledge of teaching probability (KoTP), and knowledge 

of students’ probability knowledge (KoSPK), respectively. Nonetheless, practically, during 

the actual teaching, each teacher transmits this knowledge through his lens; that is probability 
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conceptions, which are represented by the red parallelogram. This red parallelogram describes 

teachers’ practical knowledge (knowledge in practice); it could match the black parallelogram 

when teachers’ conceptions agree with scientific knowledge (theoretical static constructs). 

Still, there is a gap between how a teacher perceives (then implements) probability knowledge 

and professional knowledge for teaching probability if his/her conceptions do not fully fulfil 

the probability theory. 

The existence of such a gap reflects teachers’ various ways of reasoning under uncertainty. 

That means after each teacher utilizes his/her own reasoning in a situation that contains 

standardized probability knowledge (i.e., KoP, KoPL, KoTP, and KoSPK), he/she develops 

a particular distinct type of knowledge (i.e., knowledge in practice, knowledge in evolution, 

teachers’ conceptions of concepts embedded in an instructional activity). In this way, placing 

the focus on reasoning processes helps to characterize that gap. Alternatively, acknowledging 

the PoPR may respond to what was raised regarding the needed research that indicates founding 

probability instruction (the perspective of mathematics education) in its psychological roots. 

Concretely, it (a) manifests the influence of teachers’ reasoning under uncertainty in shaping 

their probability knowledge (conceptions), and (b) reflects the possibly existed distance 

between these conceptions and what the educational community recommends mathematics 

teachers comprehend for teaching probability efficiently. Accordingly, effective instructional 

interventions can be organized to minimize such a distance. 

It is also worthy to perceive that knowledge and conceptions are not a linear relationship 

that always begins with knowledge. Instead, the opposite direction still exists since such 

resultant conceptions are not isolated but integrate into a complex system (knowledge system). 

In other words, new knowledge does not destroy existing knowledge; instead, it will be 

connected to existing concepts to reorganize and keep the individual’s cognitive structure 

balanced (Savard, 2014; Vosniadou & Verschaffel, 2004). 

Finally, regarding the PSMTs (the focus of this study), managing such a discussion in 

teacher education denotes that PSMTs have to learn probability theory to teach their pupils 

effectively. In that sense, what they have to recognize and match the probability theory defines 

professional knowledge for teaching probability. However, that knowledge is not acquired 

directly; instead, PSMTs employ their reasoning to make sense. Accordingly, they develop 

various conceptions that may or may not match the probability theory. From this aspect, and 

through the lens of probabilistic reasoning, PSMTs’ knowledge for teaching probability 

includes these redefined aspects: R(in)P, R(in)PL, R(in)TP, and R(in)SPK, which symbolize 

their reasoning in a situation that involves knowledge of probability, probability language, 
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teaching probability, and students’ probability knowledge, respectively (see Figure 11). 

Despite that, and as previously justified in Chapter 1 (see the study delimitations), the current 

investigation has sharpened the aspect of R(in)P that corresponds to SMK in the MKT model.  

 
§ Definition of the key terms  

Based on the defined framework, to characterize PSMTs’ R(in)P that incorporates 

professional knowledge, reasoning, and conceptions, these definitions were set:  

- Professional knowledge for teaching probability 

It (a) indicates what mathematics teachers need to perceive to implement the probability 

lesson effectively, (b) is defined by four aspects of KoP, KoPL, KoTP, and KoSPL, and (c) is 

termed by the term knowledge for practice. 

- Knowledge of probability (KoP)  

It defines the three primary interpretations of theoretical, experimental, and subjective 

probability to approach a probabilistic situation, as determined by the educational community. 

- Reasoning under uncertainty  

It (a) defines PSMTs' ways of reasoning when they encounter an authentic probabilistic 

situation, and (b) to ensure such authenticity, various contexts that draw on the curriculum and 

pupils’ viewpoints and a reflection on a social phenomenon was admitted, as follows: 

While the school curriculum reflects one plausible way to stipulate teachers' knowledge 

(Stylianides & Ball, 2004), the reflection on a realistic probabilistic situation denotes an 

essential idea that supports this study; it helped to exhibit the psychological facet of PSMTs’ 

probabilistic reasoning. As explained earlier, emphasizing the objective side of probability and 

disregarding the subjective side (roots of mathematical probability, which is manifested in most 

individuals' conceptions) implies a critical point regarding probability education. This is 

discussed by many researchers, for example: 

Generally speaking, for statistics education, Gal (2005) advocated that real-world 

situations should be considered for teaching and assessing statistical knowledge. This is also 

emphasized in the GAISE college report in which integration of real data with a context is 

recommended in the introductory statistics courses for college students (GAISE, 2016). More 

precisely, in the case of probability, it provides a tool to link mathematics with the real world 

through modeling random situations (Borovcnik, 2008; Chaput et al., 2011). Nevertheless, 

Theis and Savard (2010) declared that teaching probability rarely builds upon authentic 

contexts and predominantly uses a theoretical approach. This is exemplified in textbooks and 

curriculum documents, which sometimes perform a too narrow conceptual view of probability; 
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besides, many applications are limited to games of chance and are not based on real data. Such 

fact is apparent, specifically, in the Egyptian context at which the statistical side of probability 

is stressed compared to the epistemic side. As detailed in Chapter 3, most of the probabilistic 

tasks in the Egyptian school curriculum were like tossing coins or rolling dice; they have well-

defined quantifiable sample spaces where only the classical and frequentists interpretations can 

be manipulated. 

Such conventional tasks do not provide an adequate basis for understanding subjective 

probabilities (Stohl, 2005); they also lead to believing that probability indicates empirical 

properties of a situation, rather than a measure of our knowledge of outcomes (Devlin, 2014). 

More particularly, in teacher education, Musch and Ehrenberg (2002) asserted that types of 

learning activities proposed for teachers during their preparation are generally stereotyped; it 

brings the concept of probability to the notion of calculating the relative frequencies. Besides, 

probability instruction is rarely based on exploiting authentic circumstances, leaving the field 

open for erroneous reasoning regarding daily life situations that affect school success and daily 

practices. Consequently, Larose et al. (2010) argued that only the perspective of real practices 

would make it possible to deal with the gap between erroneous conceptions about school 

education of probability and the individuals’ implicit unrealistic theories (e.g., controllability 

of chance). This is also consistent with what Grenon et al. (2010) reported regarding the 

consequences of teaching probability from a purely mathematical viewpoint (relative 

frequency), in which they have recommended contextualizing probability education by 

drawing on pupils’ daily social practices. For such reasons, this study implemented some real 

probabilistic situations to exhibit the subjective probability interpretation; it represents PSMTs' 

beliefs and previous experiences about some relevant probabilistic contexts. 

- Probability conceptions  

It (a) refers to what PSMTs understand about the three primary interpretations of 

theoretical, experimental, and subjective probability, (b) is characterized by the way how they 

reason in a probabilistic situation, and (c) is coined by the term knowledge in practice. 

In this study, mathematics teachers’ conceptions of probability were termed by knowledge 

in practice (practical knowledge); it designates PSMTs’ various perspectives on knowledge 

for and about teaching (Cochran-Smith, 1999), and is mostly related to classroom practices 

when teachers face dilemmas and strive to achieve educational purposes (Carter, 1990). As 

Fenstermacher (1994) reported, such practical knowledge describes what teachers know from 

their experience, and it differs from theoretical research-based knowledge. Nonetheless, since 

the current study focuses on PSMTs, knowledge in practice indicates what PSMTs perceive 
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upon their individual reasoning in a given situation; furthermore, these situations mirror what 

they will teach their pupils. In that view, describing PSMTs' conceptions as knowledge in 

practice that implies an association between their conceptions and pedagogical practices was 

reflected in some previous studies. For instance, Ives (2007) revealed a relationship between 

pre-service teachers' understanding of randomness and probability conceptions, both of which 

influence their pedagogical decisions (e.g., interpreting students' works and answers). 

Accordingly, and to summarize before proceeding to the next chapter, the answer to the 

third research question, aimed at characterizing PSMTs’ knowledge for teaching probability in 

Egypt from the PoPR, indicates exploring their R(in)P that denotes one essential aspect of such 

knowledge. Furthermore, R(in)P includes three interrelated features of (a) the way PSMTs 

reason in an authentic probabilistic situation (simple unconditional and conditional), (b) the 

theoretical constructs and probability theory they rely on to interpret such a situation, and (c) 

the conceptions and cognitive biases embedded in their reasoning. 
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CHAPTER 5: RESULTS AND DISCUSSION OF THE FIELD SURVEY 
This chapter outlines the characteristics of PSMTs' knowledge for teaching probability in 

Egypt from the PoPR; precisely, their R(in)P that denotes one essential aspect of such 

knowledge. However, some methodological details are presented first, and the ethical 

considerations are discussed in the end. That answered the third research question. 

 

5.1 Details of participants, tools, and processes of data collection and analysis 
Considering what was stated in Chapter 2 about the processes employed to answer the 

third research question, more details are first presented in this section before progressing to the 

results.  
    

§ Participants and what they learned during the preparation program  

As mentioned in Chapter 2, the answer to the third research question depends primarily on 

interpreting the responses of 68 PSMTs in the mathematics teachers’ preparation program at 

the Faculty of Education, Tanta University, during the academic year of 2018–2019. They all 

had prior knowledge regarding theoretical, experimental, and conditional probability. That is, 

according to the teacher education curriculum, in their second year, PSMTs have to study 

(a) basic concepts of probability, which include random experiments, sample space, mutually 

exclusive and exhaustive events, probability of an event, equally likely principle, probability 

function and axioms, conditional probability, independent events, and the Bayes theorem; 

(b) random variables, such as discrete and continuous random variables, density function, and 

mathematical expectation; and (c) probability distributions, such as normal, Bernoulli, 

binomial, Poisson, gamma, and exponential distributions. Furthermore, during the third and 

fourth years, PSMTs take advanced courses wherein statistics and probability are combined. 

For instance, the statistical mechanics course, which is often taught in the fourth year, starts 

with an extensive review of probability concepts, and then the probability function is discussed 

before moving to the Maxwell distribution and Kinetic theory of gases. 

 
§ Study questionnaire used to collect the data   

As stated in Chapter 2, in light of the study framework that defines mathematics teachers’ 

professional knowledge for teaching probability from the PoPR, a questionnaire was developed 

to approach the aspect of R(in)P. This involved [A] determining three different probability 

contexts in which PSMTs’ reasoning that may occur in a simple unconditional probabilistic 
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situation can be characterized, and [B] adjusting one of these contexts and adding a calculation 

problem to designate PSMTs’ emerged reasoning in a conditional probabilistic situation. 

In detail, [A] determining three different probability contexts involved acknowledging 

both the curriculum and pupils’ viewpoints, as well as adapting a probabilistic social problem. 

 Regarding the curriculum, although it considered seven different circumstances in which 

the probability could be utilized, it focused more on treating traditional activities (see Table 

18)14. Thus, the activity of throwing a die, a typical task category, was considered in the study 

questionnaire to explore PSMTs’ R(in)P. Nevertheless, because such traditional activities 

cannot provide an adequate foundation to explore PSMTs’ subjective reasoning, other 

probability contexts were also defined. This explains why the pupils’ viewpoints and the social 

problem were reflected.  

 
Table 18. Probability contexts within the Egyptian school curriculum 

Identified 
contexts 

Examples Number of activities Total 
Primary  Lower 

secondary  
Environmental 

issues 
Rain, sun, day and night, and 

weather forecast 
5 0 5 (4.7%) 

School 
experiences 

Grades, success, and results of a 
competition 

5 4 9 (8.5%) 

Gender Boys and girls, and giving birth 4 1 5 (4.7%) 
Life 

expectancy 
Life expectancy and insurance 

concerns 
1 2 3 (2.8%) 

Preferences Family visits, preferable food, 
language, sport, newspaper, and 

transportation 

4 5 9 (8.5%) 

Manufacturing Production and feasibility study 1 8 9 (8.5%) 
Conventional 

activities 
Draw a ball, toss a coin, throw a 

pin, roll a die, spin a spinner, draw 
a card of two-digit numbers, and 

throw a stick 

40 26 66 
(62.3%) 

Total  60 46 106 
 

To define Egyptian pupils’ viewpoints, as explained before in Chapter 2, they were asked 

to determine which probability setting is more applicable to daily life. This was done through 

a survey (see Appendix 6), which provided the probability contexts that were inferred from the 

curriculum, and asked pupils to select three contexts and prioritize them. For example, if a 

pupil arranged three situations as in Table 19, it means, for him, the probability was frequently 

 
14 Interestingly, the identified probability contexts in the Egyptian curriculum resemble the seven specific events 
(i.e., success in school exams, rainy weather, ace in throwing a die, win in football, head in tossing a coin, 
beginning of war, and road accident) that were utilized by Chassapis and Chatzivasileiou (2008) to explore 
children’s conceptions of probability.  
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used to explain weather conditions. Then, predicting the gender signified the second context to 

employ the probability, while operating games of chance indicates the third situation in which 

the probability was involved. In this way, frequencies of the pupils’ choices were calculated 

by assigning the values of 3, 2, and 1 to the first, second, and third choices, respectively; the 

results are displayed in Figure 12. These results reveal that environmental concerns are the 

most relevant context of probability to everyday situations from the pupils’ viewpoint. Thus, 

the task of weather predictability was also considered to explore PSMTs’ R(in)P. 

 
Table 19. Example of a pupil’s choices 

The situation An example Pupil’s 
choices 

1. To predict weather conditions It is most probable that it will rain 
tomorrow 

1 

2. To predict the result of a handball 
match for your school team 

……………. See appendix 6  

3. To predict the gender of a newborn 
baby 

The probability of giving birth to a 
girl equals 50% 

2 

4. To express the condition of a sick 
person 

……………. See appendix 6  

5. To express what we prefer ……………. See appendix 6  
6. To predict the quality of some products ……………. See appendix 6 

 

7. To predict the winner in chance games The probability of getting number 4 
when throwing a die equals 33%. 

3 

 

Figure 12. The priority of probability contexts from pupils' viewpoint 
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Moreover, to accommodate different levels of difficulties, the problem of giving birth was 

considered. It defines a probabilistic social problem wherein the sample space is often obscure, 

and repeatability is hard to imagine (Nisbett et al., 1983). Furthermore, when PSMTs were 

asked through a survey (see Appendix 7) to select which among the curriculum’s contexts is 

suitable to approach each theoretical, experimental, and conditional probability, the gender 

context was highlighted. Although PSMTs judged that all settings could be employed to 

address multiple probability concepts, the context of gender stayed as the one wherein (a) the 

conditional probability was strongly manifested and (b) different concepts could be approached 

through it, since balanced choices across the three probability concepts appeared (around 46%, 

32%, and 22% for theoretical, experimental, and conditional probability, respectively), as 

explicit in Figure 13. 
 

Figure 13. PSMTs’ determination of the probability context 
 

Accordingly, to characterize PSMTs’ reasoning that may occur in a simple unconditional 

probabilistic situation, the three tasks of giving birth (Item A), throwing a die (Item C), and 

weather predictability (Item D) were adapted. These items varied not only from a contextual 

viewpoint but also based on what PSMTs were required to do. Although PSMTs were asked to 

estimate the probability (determine a percentage) in both problems of giving birth and throwing 

a die, they had to interpret a given numerical estimation for the task of weather predictability. 
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Nonetheless, PSMTs were informed that numerical answers are of less concern than their 

reasoning that leads to these answers. 

Regarding [B], which involves adjusting one of the previously identified contexts and 

adding a calculation problem, the aim is to characterize PSMTs’ reasoning in a conditional 

probabilistic situation, and based on that reasoning, the notion of subjective probability, which 

considers a vague area in mathematics education, can be clarified. 

For doing so, Chernoff’s (2008, 2014) argument about Bayesian inference was considered 

and applied in this study. As stated before (see Chapter 4), the term “subjective probability” 

constitutes multiple terms (e.g., intuitive, personal, epistemic, and beliefs), all applied as 

descriptors for Bayesian probability (Chernoff, 2008; Chernoff & Russell, 2014). Moreover, 

based on Gillies’ (2000) viewpoint, Chernoff (2008) claimed that subjective probability has a 

dual meaning, that is, it can be manipulated as a general classifier or a specific theory. 

Nevertheless, in mathematics education, subjective probability is often discussed as a specific 

theory wherein “an almost complete consensus and agreement exists about the mathematics” 

(Gillies, 2000, p. 1). In contrast, the definition of subjective probability as a general 

classifier, wherein various philosophical differences may appear, is usually ignored. (“there is 

a wide divergence of opinions about the philosophy” (ibid.). In this respect, to further clarify 

the notion of subjective probability, three more items were considered with the previously 

reported tasks of giving birth, throwing a die, and weather predictability. 

As explained in Chapter 2, one item (Item B) relied on the context of gender but with a 

little modification that includes adding one condition to the problem of giving birth to explore 

how PSMTs may interpret such a condition. That is, fundamentally, how they do reflect on 

their prior judgments (probability estimation) to incorporate the newly provided information? 

The other two items (Items E1 and E2) approached the subjective probability from a narrow 

sense that is represented by calculating the conditional probability from a two-way table; it 

displays the frequency distribution in a population or sample that is classified according to two 

categorical variables (Contreras et al., 2011; Watson, 2011). From this discussion and as 

reported in Chapter 4, it can be understood that this study approached subjective probability as 

a general classifier by characterizing how PSMTs reason in two conditional probabilistic 

contexts. The first is a social descriptive context that pays more attention to their 

argumentations (Item B), while the other is a more mathematical context that focuses on their 

calculations (Items E1 and E2). 

In that regard, it is valuable to note that the variability of the study’s questionnaire items 

mirrors what Watson (2005) argued about probability in context. As she reported, on one hand, 
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the school curriculum mostly addresses probability as a part of pure mathematics in which the 

presented examples are based on finite sample spaces. Hence, such questions that involve dice, 

coins, or cards consider one approach to explore learners’ understanding (mathematics 

education perspective). On the other hand, another possible approach to interpret this 

understanding is inspired by the early research on probability by psychologists (e.g., Tversky 

& Kahneman, 1974); it focuses on descriptive social settings wherein the relevant questions 

are neither necessarily numerical nor require calculations (psychological perspective). 

Moreover, Watson (2005) advocated for exploring students’ understanding in both contexts 

during classroom practices and further in the research: one context includes explicitly defined 

sample spaces, while the other is relevant to the obscure sample spaces of social contexts. 

Finally, based on the details reported in steps [A] and [B], the study questionnaire was 

constructed (for its contents, see Appendix 8 and the summary in Table 6).  

 
§ Data collection and analysis procedures   

As summarized in Chapter 2, these procedures included [A] the first stage of initial 

arrangement and preparation, [B] the second stage of implementing the study questionnaire, 

and [C] the third stage of data coding and analysis. These stages are detailed as follows:  
 
- [A] The stage of the initial arrangement and preparation  

This stage took two weeks. During the first week, the researcher interviewed three PSMT 

groups who studied in the second, third, and fourth years of the preparation program. First, 

there was a general discussion regarding which statistics and probability courses they study at 

the Faculty of Science and how these courses differ from the school curriculum. Accordingly, 

almost all participants expressed the disconnection between their pedagogical preparation in 

the Faculty of Education and the academic one that defined what they learned in the Faculty of 

Science. They also criticized how the general pedagogies, which they learn at the Faculty of 

Education, cannot help them in classroom practices, as some experienced during the teaching 

practicum (see Elbehary, 2019, for details). Later, after PSMTs were asked their willingness to 

participate in this study, 68 of them agreed to cooperate (see Table 4). In addition, an interview 

with two teachers was conducted. The interview discussion focused on issues about the 

intention of the probability context survey, questions anticipated from pupils, the role of the 

teacher who is going to implement that survey, additional examples that may help pupils 

understand probability contexts (especially in the early grades of 4 and 5), and, finally, the 

average time for pupils to answer such a survey. As a result, we agreed to have 45 minutes for 

each class to get pupils’ answers and collect the whole data within one week (see Table 5). 
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During the second week, a warmup session was conducted with the study participants (68 

PSMTs). It involved a specific discussion about probability lessons that pupils learn in each 

grade. For example, the researcher raised questions about when pupils begin studying 

probability as the content: Do you think it is an appropriate time to begin learning such content? 

Why do they have to learn it? If you knew that Egyptian pupils’ achievement in Data and 

chance domain is the lowest, according to the international assessment, could you explain why 

specifically such content has a low achievement? Is the reason related to students, teachers, 

curriculum, or the content itself? What do you think about the interrelationships among 

mathematics, statistics, and probability? How can we define probability? Although most of the 

participants did not recognize precisely when pupils first started to learn probability, they stated 

that it is often addressed within the units of statistics at the end of the algebra course, which is 

true. Moreover, after they were told by the researcher that probability must be learned from 

grade 3, they did not have a clear view on why studying it in these early grades was necessary. 

Nevertheless, they identified various situations in which probability can be used in everyday 

discussions (e.g., “I’m not sure about going to school tomorrow,” “I have checked the forecast 

on my mobile app,” and “It’s going to be sunny today”). Thus, they highlighted how learning 

probability is valuable, because not only does it define a domain of study but also considers a 

practiced language in our daily conversations. 

Regarding the interrelationships among mathematics, statistics, and probability, PSMTs 

stated that pupils must understand ratios, rational numbers, and percentages when calculating 

probability. Nevertheless, they could not identify the association between statistics and 

probability or express why probability was addressed within the statistics domain. 

Furthermore, to explain why pupils showed low achievement in Data and chance, PSMTs 

identified two issues: (a) There is less emphasis on learning statistics and probability during 

the initial preparation of mathematics teachers, which causes a perception that statistics is 

merely a unit within the mathematics curriculum. (b) The statistics unit is positioned at the end 

of the entire school curriculum; thus, it is always ignored in light of the limited time for teachers 

to address all curriculum topics. Lastly, regarding the meaning of probability, almost all 

PSMTs defined it as the number of favorable outcomes divided by all the possible elements in 

the sample space. Then, the researcher raised some issues regarding experimental and 

conditional probabilities, which PSMTs had studied before. Later, they were invited to respond 

to the probability context survey to determine which circumstances could be applied to handle 

each probability concept (theoretical, experimental, and conditional). 
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In addition to the warmup session, the researcher interviewed a small sample of 10 PSMTs 

and 3 university lecturers. This was intended to validate the study’s questionnaire items; 

consequently, some of these items were rephrased or simplified. For a case about the context 

of gender, the question “are there any conditions to determine that probability?” (see 

Appendix 8) was not clear to PSMTs. During the interview, they raised several issues about 

traditional beliefs they encounter in daily situations (e.g., the woman’s belly shape); therefore, 

they asked whether that can be a possible condition to judge the probability. For this, the 

researcher confirmed that they must state every condition that they may think would affect 

their judgment, whether it is scientifically accepted or not. Besides, another student 

argued, “but in some cases, we do not know because it is a matter of Allah’s will.” Again, the 

researcher encouraged them to write what they think. Thus, to clarify the intention of that 

question, the following statement was added to Item A: in other words, explain the reasons 

because of which you have decided the proposed probabilistic ratio (try to reflect and state the 

criteria that helped you to judge, or any conditions that you may think may change your 

estimation). 

Additionally, in the interview with the lecturers, they recommended rearranging the 

questionnaire items to ensure that the first part includes questions about the gender context 

(i.e., problems of giving birth), and the second part covers other traditional probability contexts. 

Besides, regarding Item E1, which aimed to clarify PSMTs’ conceptual difficulties in 

calculating the conditional probability, it was recommended to simplify the given numbers to 

focus on the procedures more than the mathematical errors as well as to provide a similar 

question to minimize the sided discussion and cheating among participants. Accordingly, Item 

E2 was considered as being interchangeable with E1. However, these items were described by 

PSMTs as being difficult questions, as they declared that both required a revision on how to 

calculate the conditional probability; thus, they said that “unless we remember the formula, it 

is hard for us to solve these questions.” 
 
- [B] The stage of implementing the study questionnaire   

As noted in Chapter 2, the questionnaire took two sessions for implementation. Besides, 

during the implementation, some more questions were raised by the participants. For example, 

regarding Item B, PSMTs asked the following about the second question (do you think that 

your expectation in the first situation is the same as in the second one?): (a) What did the 

researcher mean by the first situation? (b) Is there a relationship between Items A and B? (c) 

Is she the same woman? Accordingly, the answer was yes; the researcher thus answered the 
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following: “When you tried to respond to Item A, you did not have any information concerning 

the pregnant woman. However, in Item B, you were informed that this woman gave birth to 

two boys before (i.e., it is not her first time to deliver a baby). Will you retain your initial 

judgment? Are you going to change it? What do you think of that, and why in both cases?” 

Moreover, regarding Items E1 and E2, fourth-year students asked the researcher to remind 

them of the formula to calculate the conditional probability; then, the following example was 

discussed: Suppose that you have a survey of smokers; it includes a sample of 100 girls and 

200 boys. There were 25 smokers among the girls compared with 150 among the boys. How 

can you represent such information through a two-way table? After PSMTs constructed the 

table correctly, these additional questions were posed: (a) What is the probability that a person 

is a smoker? (b) What is the population in that case? (c) What is the probability that a girl is a 

smoker? (d) What is the population in that case? Lastly, they were asked to apply this example 

for reflecting on and solving the given questions. Accordingly, all PSMTs’ responses to the 

questionnaire items were collected (see Table 8) and prepared for the coding process. 
 
- [C] The stage of data coding and analysis  

Following the logic of abduction research, the data analysis processes were visualized in 

Figure 5 (see Chapter 2). These processes involved both inductive and deductive analyses that 

are detailed in the following discussion. 

o Inductive coding procedures 

Inductive coding was performed using the NVivo software and following Thomas’s (2006) 

steps to analyze PSMTs’ responses to the first part of the questionnaire (i.e., their answers to 

Items A and B). These answers included both numerical and textual arguments. Figure 14 

exhibits a case of a PSMT’s responses to Item A questions (see Appendix 8); as shown, the 

PSMT determined the probability of giving birth to a girl as one-fifth because the sample space 

had the five elements of {one boy, one girl, twin boys, twin girls, and twin boy and girl}, and 

the favorable outcome was one event of a girl. Nonetheless, for the second question asking “are 

there any conditions to determine that probability,” the PSMT’s response was “the probability 

might differ if we knew that such a woman always gives birth to girls.” Furthermore, the 

following points detail the process of employing Thomas’s (2006) steps to analyze the 

Item A responses. 

• Determine a label for each node that is a short phrase to refer to it.  

Through the NVivo software, several nodes were developed based on PSMTs’ presented 

expressions and phrases. In the initial stage, all the given responses were highlighted to reflect 
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the two cases of (A) there are no specific conditions to determine the probability except the 

mathematical calculation that we operated, and (B) there are some conditions to be reflected 

for modifying the probability. The label for case A was “No, there are no conditions,” while 

that for B was “Yes, there are some circumstances.” 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. A case of PSMTs’ responses to Items A and B 

 
• Describe the scope of each node. 

Case A represented claims of PSMTs who agreed that there are no restrictions to determine 

the probability or did not mention any conditions; for them, it was just a matter of mathematical 

calculation. It also included those who merely calculated the probability theoretically without 

justifying why such algorithms were performed. On the other hand, if PSMTs acknowledged 

that some criteria (e.g., sample space, woman’s belly shape, and knowing the results of the 

ultrasound scan) limited their judgment, such criteria were coded under case B. In addition, the 

coded responses for case B were further separated into b1 and b2, which altered in terms of the 

nature of the given criteria. While b1 symbolized PSMTs who maintained the mathematical 

analysis (e.g., it depends on the number of sample space elements, because of the ratio between 

the sample space elements and favorable outcome), b2 expressed those who declared any non-

mathematical reason (e.g., it depends on medical checkup results or Allah’s willingness). 
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•  Illustrate some examples of texts associated with nodes 

For instance, the common response of PSMTs who were assigned to case A was that there 

are no conditions to decide the probability except the provided formula. On the other hand, for 

case b1, they answered that it depends on n(S): if S has two elements, then P(G) = 50%, or, if 

S has three elements, P(G) = 33.3%. Furthermore, for case b2, there were several raised 

conditions in which the probability may change, such as whether spontaneous abortion was 

considered as a possible outcome or not, or information regarding the issues of X and Y 

chromosomes (more examples are presented within the sections of data interpretation).  

• Create links among several nodes.  

During this stage, PSMTs’ responses were further revised; and accordingly, two issues 

were found: First, nodes A and b1 stayed related to each other since all PSMTs who belonged 

to both relied on the sample space and favorable outcomes to determine the probability. 

Although the PSMTs in A stated that there are no restrictions, they maintained the 

mathematical calculation by dividing the number of favorable outcomes [n(G)] by the number 

of sample space elements [n(S)]. Accordingly, A and b1 were combined and labeled as one 

category of mathematically oriented thinkers, which was identified using the letter M. 

The second issue was about b2 that characterized PSMTs who admitted several non-

mathematical criteria, according to which the probability may change. For b2, it was found that 

some PSMTs provided these criteria to illustrate what issues could change the probability, 

while others thought of similar circumstances not to expose the probability, but rather to 

interpret the favorable outcome. In detail, as reported earlier, the common response for case b2 

was that the probability of giving birth to a girl depends on information regarding the issues of 

X and Y chromosomes or results of the ultrasound scan. Still, such types of responses 

concentrated around the probability of an event (giving birth to a baby girl)—precisely, the 

circumstances for which the estimation may change. Nevertheless, among b2, some 

respondents stated that we could know that this woman is going to give birth to a girl by 

observing her belly’s appearance: if it is rounded, she is expecting to deliver a girl. Similarly, 

in strengthening the outcome, others declared that if this woman always gives birth to girls, she 

is more likely to deliver a girl because some women give birth only to girls. Thus, to admit 

both types of responses, b21 and b22 were developed. They reflected cases of PSMTs who 

utilized such non-mathematical conditions to find the probability and to anticipate the outcome, 

respectively. 
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• Incorporate the emerged categories into a model.   

Following the emergence of M, b21, and b22, the principal interpretations of theoretical, 

experimental, and subjective probability (see Figure 10) were applied as a framework in which 

these cases can be consolidated and theorized. For further illustration, the category 

of M represents individuals who determined the probability of giving birth to a girl by dividing 

n(G) by n(S); this exhibits their utilization of the theoretical interpretation. Besides, cases of 

b21 revealed those who raised several non-mathematical conditions to set the probability that, 

for them, reflected a certain degree of belief regarding the validity of these conditions to modify 

their judgment. These cases were noted by S and involved PSMTs who modeled the situation 

through the subjective probability lens. Finally, category O was introduced to indicate cases of 

b22 who reported non-mathematical conditions to predict the outcome. That term was decided 

while considering Konold’s (1989) description of the outcome approach; it describes a model 

of informal reasoning under uncertainty, which conflicts with experimental probability. Such 

reasoning is compatible with the responses of b22’s cases, in which individuals focused on the 

favorable outcome and judged their predictions based on whether that outcome would (or 

would not) occur in a particular trial. Hence, Figure 15 outlines the steps for inferring the 

categories of PSMTs’ reasoning in the context of giving birth (Item A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. The process of developing the categories of PSMTs’ reasoning in the context of 
giving birth based on their responses to Item A 



 90 

Similar procedures were followed to portray PSMTs’ responses to Item B that described a 

conditional probabilistic situation. Yet, as noted in Chapter 2, the last step of incorporating the 

emerged categories into a model was not implemented. This explains what was declared earlier 

about the lack of research on subjective probability as a general classifier wherein several 

philosophical differences may appear. Alternatively, this exposes the lack of research on how 

PSMTs manipulate a condition to estimate probability. The conducted steps are summarized 

in Figure 16, which shows two broad groups of PSMTs who (a) disregarded and (b) utilized 

the given condition in their analysis; while the former is represented by both the generalizer 

(case A) and conservative thinkers (case b1), the latter incorporates correlational (case b21) 

and rational thinkers (case b22); see the details in Section 5.3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. The process of developing the categories of PSMTs’ reasoning in the context of 
giving birth after conditioning it, based on their responses to Item B 

 

 



 91 

o Deductive coding procedures  

As noted in Chapter 2, in light of the categories developed from analyzing Items A and B, 

PSMTs’ responses to the second part of the study questionnaire (i.e., Items C, D, E1, and E2) 

were categorized. Concretely, for Items C and D, wherein PSMTs were asked to determine the 

probability of getting number 5 in an experiment of throwing a die and to interpret the meaning 

of a 60% chance of rain, respectively (see Appendix 8), the developed categories of M, S, and 

O worked as a lens to characterize PSMTs’ responses to both items. As a result, for the activity 

of throwing a die, similar manners of M and O reasoning emerged compared with M, S, and 

O for the task of weather predictability. Furthermore, new sub-categories of m** and o** also 

appeared. While type m** reasoning arose only during the activity of throwing a die, o** 

emerged in both contexts. Additionally, another principal category of I, which reflected cases 

of PSMTs who utilized the intuitive interpretation of the probability, appeared in the context 

of weather predictability. This is illustrated in Figure 17. 

Figure 17. The process of categorizing PSMTs’ responses to Item C and D 
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In that sense, it is relevant to clarify why m** and o** were judged as sub-categories of 

M and O, respectively, but I was admitted as a new major category. This is because PSMTs 

who were committed to m** and o** also modeled the given tasks through the theoretical and 

experimental probability, respectively; thus, they had the same features as M and O categories. 

On the other hand, I indicated PSMTs who relied on intuitive interpretation to explain a 60% 

chance of rain. Moreover, based on Batanero et al. (2016), the intuitive probability was 

considered as a principal approach to model probabilistic phenomena (see Table 17). 

Additionally, it was assumed that PSMTs’ responses to Items E1 and E2, which are 

equivalent and aimed to explore the conceptual difficulties in calculating the conditional 

probability from a two-way table, could be categorized under two groups of those who (a) 

dropped and (b) operated the condition when interpreting a conditional situation. While the 

first resembled case C that emerged from analyzing PSMTs’ responses to Item B (see Figure 

16), the second group corresponded to case b2. Such method of analysis made it possible to 

connect Item B with both E1 and E2 wherein PSMTs’ reasoning in a conditional probabilistic 

situation could be captured. Accordingly, instead of classifying PSMTs’ answers into correct 

and wrong, this way of categorization was preferred to analyze their responses to the 

conditional probability questions of both Items E1 and E2. 

From this aspect, and in light of some previous studies (e.g., Contreras et al., 2011), the 

detailed conceptions in Table 20 were hypothesized to analyze PSMTs’ responses to Q3 and 

Q4 in E1 and E2 (see Appendix 8): 

 
Table 20. Expected numerical answers for Items E1 and E215 

 Expectations Item E1 Item E2 
Q3 Q4 Q3 Q4 

Dropped 
the 

condition 

Conception1 
Independence  

P(A|E) = 
P(A) 

P(E|A)= 
P(E) 

P(S|M)= 
P(S) 

P(M|S)= P(M) 

385/800 500/800 200/460 300/460 
Conception 2 

Confusion between 
joint and 

conditional 
probability 

P(A|E) = 
P (A ∩ E) 

P (E|A) =  
P (E ∩ A) 

P(S|M) = 
P (S ∩ M) 

P(M|S) =  
P (M ∩ S) 

195/800 110/460 

Operated 
the 

condition 

Conception 3 
Transposed 
conditional 

P(A|E) = P (E|A) P(S|M) = P(M|S) 
195/385 195/500 110/200 110/300 

Concept 4 
Correct answer 

195/500 195/385 110/300 110/200 

 
15  The terms A, E, S, and M refer to School A, ElAhly football team, Secondary level, and Mathematics class, 
respectively (see Appendix 8). 
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Based on all the above-mentioned details in Section 5.1, the characteristics of PSMTs’ 

reasoning in (a) simple unconditional and (b) conditional probabilistic situations are detailed 

in Sections 5.2 and 5.3, respectively. Lastly, the issues of trustworthiness and ethical 

considerations are mentioned in Section 5.4. 

 

5.2 PSMTs reasoning in a simple unconditional probabilistic situation  

As stated earlier, to characterize PSMTs’ reasoning in a simple unconditional probabilistic 

situation, they were asked to respond to three items that reflect three different contexts in which 

probability can be utilized (i.e., giving birth, throwing a die, and weather predictability). 

Accordingly, PSMTs’ arguments on these items are presented and discussed within 

Sections 5.2.1 and 5.2.2; further, Section 5.2.3 summarizes the whole discussion. Before going 

into detail, Table 21 compiles the PSMTs’ numerical answers to these three items. 

 
Table 21. PSMTs’ numerical answers to the probability tasks16 

 

 
16 The symbols S, B, G, n, and P, refer to sample space, boy, girl, number, and probability, respectively.  
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5.2.1 PSMTs reasoning in the context of giving birth (inductive data analysis process) 

Because the resultant categories that describe PSMTs’ reasoning17 in the context of giving 

birth have guided the analysis of their reasoning in the other two contexts (i.e., throwing a die 

and weather predictability), a detailed description of that reasoning is first presented and 

discussed in this section. 

As shown in Appendix 8, two questions were raised in Item A that are related to the context 

of giving birth. First, what is the probability of giving birth to a girl? Second, explain the 

reasons because of which you have decided the proposed probabilistic ratio? 

In general, the expected values students assigned to estimate the probability of giving birth 

to a girl and expressed as their numerical answers were 50%, 33.3%, 20%, 60%, and it depends 

(as displayed in Table 21). Moreover, to characterize students’ reasoning in this situation, the 

analysis process concentrated on their stated criteria that revealed their reasons why such 

probabilities were judged. Accordingly, students’ manners of reasoning in the context of giving 

birth were grouped into three main categories: Mathematical [M], Subjective [S], and Outcome 

oriented [O]. Moreover, each category included sub-categories. Table 22 summarizes the 

distribution of these types of reasoning among the participants. 

 
Table 22. PSMTs’ manners of reasoning in the context of giving birth 

Major category Frequency Percentage 
Mathematically oriented [M = m and m*] 20 29.4 % 
Subjectively oriented [S = s, s*, and s**] 41 60.3 % 

Outcome oriented [O = o and o*] 7  10.3 % 
Sub-categories  Frequency Percentage 

 

m 15  22.1 % 
m* 5  7.4 % 
s 7  10.3 % 
s* 2  2.9 % 
s** 32  47 % 
o 3  4.4 % 
o* 4  5.9 %  
Total 68 responses  100% 

 
In detail, the following argumentation defines each type of reasoning. It starts with 

type M thinkers, that is, students whose common explanations were as regarded in Table 23. 

 
 
 

 
17 Henceforth, the term “PSMTs” will be replaced by the word “students” until the end of this chapter (except in 
table and figure titles and essential headlines) 
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– Characteristics of types m and m* reasoning [M thinkers]  

Types m and m* reasoning have a common feature in which both depend on 

the theoretical interpretation of probability since they model the given situation through the 

notion of sample space (S) and expected outcome (G). They grasp the idea of variability, 

wherein the result is not determined; the result varies depending on the possible favorable cases 

(i.e., elements of S; Canada, 2006; Garfield & Ben-Zvi, 2005). Besides, these types maintained 

the equiprobable bias (Lecoutre & Fischbein, 1998; Lysoe, 2008; Savard, 2014) that appeared 

when the students judged the probability of giving birth to a girl to be equal to giving birth to 

a boy; moreover, when they considered twins as a possible outcome, they supposed that the 

possibility of giving birth to twins is the same as that of giving birth to a boy or girl. 

Indeed, holding such a bias (i.e., equiprobability) prevented M thinkers from thinking of 

base rate frequency that symbolizes actual gender distribution. Consequently, they were 

insensitive to the prior probability of outcomes (Tversky & Kahneman, 1974) since there were 

no declared responses relevant to the population. The respondents ignored the fact that the 

possibility of giving birth to a girl is slightly less than giving birth to a boy, as the actual gender 

distribution in Egypt shows that the ratio of males to females equals 1.06 (Egypt Demographic 

Profile, 2019). Another plausible cause for such insensitivity is the form of the task itself. For 

example, no conditions were given to define the pregnant woman (is she an Egyptian woman?); 

further, there were no stated percentages of the gender distribution. Accordingly, the students 

were neither required nor expected to give a specific and correct ratio for the gender distribution 

throughout the country; it was preferably that they referred to the base rate frequency of the 

outcome as a necessary factor when judging such a probabilistic situation. That is, the notion 

of population, whether within a family or the whole country, was anticipated (by the researcher) 

to appear among the students’ responses when estimating a reasonable value. 

 
Table 23. Mathematically oriented thinkers’ typical responses in the context of giving birth 

 Mathematically oriented thinkers [M] 
Type m Type m* 

Students’ 
typical 

responses 

There are no specific 
conditions to judge the 

probability; it is a matter of 
mathematical calculation. 

Thus, because S contains two 
events of B and G; then, P = 

50%. 

  The probability depends on the number 
of events in S. For example, if S = {B, 
G}, then P(G) = 50%. Similarly, if S = 

{B, G, twins}, then P(G) = 33.3%. 
Hence, based on the stated hypotheses, 

particularly the number of elements in S, 
the expected probability will vary. 

N = 20 15 responses 5 responses 

 



 96 

Additionally, there is a slight difference between m and m* in terms of the essence of 

equiprobable bias. Type m thinkers tend to think that random events are equiprobable by their 

nature, even when they are not (Lecoutre, 1992). This appeared clearly in their argumentation 

regarding the conditions in which the probability was judged. The following was a common 

response: “there are no conditions for determining the assigned probability because all events 

have the same chance to occur.” This likely reflects the utilization of the representativeness 

heuristic; it indicates the judgment of the likelihood of an event according to how well such an 

event represents some aspects of the parent population, or how it resembles the process that 

generated it, which is the case in type m thinkers (Kazak & Pratt, 2017; Kustos & Zelkowski, 

2013). That is, m thinkers emphasized the random process, in which, for them, the situation of 

giving birth implies a random experiment that always yields equiprobable outcomes (regardless 

of any conditions). 

Type m* responses exposed a more abstract mindset that attempted to interpret the given 

social phenomenon of giving birth through the lens of theoretical probability, which may not 

entirely fulfil such a situation. Although m* thinkers admitted the limitations of S elements in 

restricting the chance of giving birth to a girl, they were reluctant to connect these 

mathematically stated limitations with the actual circumstances that may appear in reality. 

Their argumentations were typically algorithmic without any explanations on how (or, under 

what circumstances) such constraints on S elements (e.g., two or three outcomes) may 

occur. Accordingly, m* thinkers were judged to lack consideration of the realistic context 

because of the overgeneralization; they sought an ideal mathematical abstract model. This 

may explain why m* thinkers approached the giving birth problem like drawing a card or 

tossing a coin. In that sense, on one hand, the equiprobable bias originated from employing 

the representativeness heuristic that prevented m thinkers from confirming the required 

assumptions of theoretical probability (Laplace’s axioms). On the other hand, it was inherent 

in the overgeneralization heuristic for the case of m* thinkers.  

 
– Characteristics of types s, s*, and s** reasoning [S thinkers]  

The second group of students’ responses denotes subjectively oriented thinkers [S], who 

shared the common expressions that are detailed in Table 24. 

The common trait among types s, s*, and s** reasoning is that they are all rooted in 

the subjective meaning of probability, wherein the students relied on their personal information 

to estimate the chance of giving birth to a girl—more precisely, to express some factors that 
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may affect their judgment. Consequently, they reported several experienced circumstances 

based on which the birth of a baby girl can be predicted, as exhibited in Table 24. 

 
Table 24. Subjectively oriented thinkers’ typical responses in the context of giving birth  

 Subjectively oriented thinkers [S] 
Student

s’ 
typical 
respons

es 

  Probability of giving birth to a girl alters depending upon 
Type s Type s* Type s** 

our 
information 

about 
pregnancy 
ultrasound 

results (if we 
used the 

ultrasound 
scan to 

determine the 
baby’s gender, 
the probability 
would change 

to 100%). 

our 
information 

about the 
previous 
babies’ 

genders (if we 
had some 

information 
regarding the 

first and 
second babies’ 
genders, our 
estimation 

could change). 

Allah’s 
willingn

ess. 
 

 our information 
concerning the possible 
outcomes. For example, 
considering miscarriage 
or spontaneous abortion 
as a possible outcome, 

knowing (through a 
medical checkup) that 
the woman may give 
birth to twins changes 

the probability from 1/2 
to 1/3. 

understandi
ng the 

biological 
or genetic 
state of the 

woman, 
that is, 

scientific 
knowledge 

of the X 
and Y 

chromosom
es. 

N = 41 6 1 2 28 4 
7 responses 32 responses 

 
S thinkers understood the notion of variability, in which, for them, the expected outcome 

(i.e., a baby girl) differs depending upon several personal experienced contingencies, which 

are listed in Table 24. Although the students did not explicitly change their estimation (what 

they reported as an answer for the first question; see Table 21), their responses, when they were 

asked to reflect on and state the criteria that helped them to judge, were expressed in the 

common form of it depends. This is closely related to Bayesian reasoning that allows updating 

our estimation (or revising a prior probability) by processing new information for estimating a 

posterior probability (Batanero et al., 2016; Dollard, 2011; Sharma, 2016). Even though there 

were no new given data for Item A, S thinkers reviewed their own available information that 

may affect the expectation of getting a baby girl. 

Despite such commonality, type s thinkers differ from both s* and s** in terms of 

understanding the concept of randomness, which is a crucial element for reasoning 

probabilistically. In detail, students who argued that knowing the ultrasound scan results would 

change the expectation from 50% to 100% tended to remodel their estimation to certainty 

(100%), which contradicts the essence of randomness that demands uncertainty. Accordingly, 
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s thinkers were judged (by the researcher) to have the prediction bias because of which their 

prediction has the meaning of exact prediction (Savard, 2008). 

Similarly, in omitting the notion of randomness, which also requires independence 

without correlation (Falk & Konold, 1992; Green, 1993; Savard, 2014), a student in the same 

category associated the previous babies’ gender with the newborn’s gender (see Table 24). 

Regardless of whether his idea is scientifically correct or not, such a response reflects the 

utilization of past information as a tool to predict the new outcome, which lacks the notion 

of independence and, consequently, randomness. This was termed as the dependence 

conception, which indicates the tendency to interpret the dependent relationship between two 

events as a causal relationship. According to Kelly and Zwiers (1986), “Events are independent 

when the occurrence (or nonoccurrence) of one of the events carries no information about the 

occurrence (or nonoccurrence) of the other event” (p. 97). Hence, they explained a common 

misconception related to students’ understanding of independence that interprets a dependent 

relationship between events as a causal relationship. 

For s* and s** thinkers, although their responses indicate an understanding of randomness 

(i.e., the baby girl cannot be predicted with a certainty of 100%) and variability (i.e., multiple 

factors explain why the resultant baby’s gender varies), the nature of their stated reasons that 

may alter the outcome stayed quite different. As shown in Table 24, while the type s** criteria 

and stated conditions remained cognitive and practical, type s* thinkers were inspired by the 

religious conception of “Allah’s willingness.” Nonetheless, this conception did not restrict 

them from determining the probability; further, they relied on Allah’s will, not as a cause that 

affects the baby gender, rather to reveal some out-of-control circumstances in which the actual 

outcome may change. This was reflected in the responses of two students who reported that 

“the probability of giving birth to a girl equals 50%; still, we cannot certainly anticipate a 

baby girl because the actual baby’s gender may alter depending upon Allah’s will.” 

In this respect, it is worthwhile to remark that the animism attribution of the phenomena 

to God was judged by various researchers to be a personalist interpretation (Amir & Williams, 

1999; Garfield & Ben-Zvi, 2005; Kissane & Kemp, 2010; Sharma, 2014; Watson & Kelly, 

2004; Watson & Moritz, 2003). Amir and Williams (1999) reported that some secondary 

school students believe that the outcomes of certain events depend on a force that is beyond 

their control (e.g., God commands everything that happens in the world). Nevertheless, in the 

current study, this interpretation was defined as a specific type of probabilistic reasoning, since 

the students embraced the concept of Allah’s will not as a cause to explain why the variability 

of the outcomes occurred, but rather as a factor that may intervene in the situation. 



 99 

Such judgment concerning type s* is a level of probabilistic reasoning that acknowledges 

the influence of socio-cultural factors on students’ conceptions of probability (e.g., Amir & 

Williams, 1999; Larose et al., 2010; Sharma, 2016), which was reported before in Chapter 4. 

More precisely, Chassapis and Chatzivasileiou (2008) considered that mathematics knowledge 

is culturally situated, which implicitly or explicitly involves social and cultural values. As they 

explained, beyond the mathematical aspect of each construct, another aspect exists that is 

associated with the practice of that construct in daily life. Following this argument, for 

type s* thinkers, the mathematical construct is the probability, which is connected to the 

religious belief of Allah’s will; it is not only a religious belief but also a socially shared 

conception practiced by most Egyptian citizens. 

On one hand, the results of Chassapis and Chatzivasileiou’s (2008) study deny Amir and 

Williams’s (1999) findings, according to which the students did not select luck (fate or 

superstition) when they were asked to attribute the cause of an unexpected event to chance, 

probability, fate, or God’s will. Alternatively, in Chassapis and Chatzivasileiou’s (2008) 

research, most Jordanian students (Arabian speakers and Muslims) assigned the 

unpredictability to God’s will, compared with Greeks (Greek speakers and Christians) who 

attributed it to chance. On the other hand, Chassapis and Chatzivasileiou’s (2008) findings 

support the claimed interpretation regarding type s* reasoning; more precisely, they stated that 

“beliefs in God’s will and probabilistic thinking may be compatible in some cases leaving space 

to the formation of chance and probability conceptions” (Ibid., p. 204). This typically mirrors 

what was reported a little earlier regarding type s* thinkers who first tried to determine the 

probability of giving birth to a girl (mathematically by assigning some percentages; see Table 

21). Moreover, they added the phrase “Insha’Allah” (if God wished it) to reflect the limitedness 

of human beings in providing an exact prediction. Hence, type s* thinkers did not manipulate 

the concept of Allah’s will as a cause of the newborn’s gender, but rather as a factor that may 

alter such probability, as explained previously. They maintained their understanding of 

randomness (without dependence or certainty) and the variability based on which the outcome 

varies upon Allah’s will. Therefore, type s* reasoning was defined as a particular type of 

probabilistic reasoning rather than a belief. 

 
– Characteristics of types o and o* reasoning [O thinkers] 

The third type of students’ reasoning was coded under the term outcome-oriented thinkers 

[O], who utilized the expressions exhibited in Table 25. 
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Table 25. Outcome oriented thinkers’ typical responses in the context of giving birth  
 Outcome oriented thinkers [O]  

Students’ 
typical 

responses 

  We can predict that the woman will give birth to a girl by 
Type o Type o* 

Checking the outcome of the 
delivery process. Accordingly, if 
the woman already gave birth to a 
boy or twins, had a miscarriage, or 
passed away during the delivery 
process, the probability would 

change from 1/2 to 0. 

Observing 
the woman’s 

physical 
appearance 
(e.g., belly 

shape). 

Recognizing whether this 
woman gives birth to the 

same gender always, or not; 
if yes, and she usually gives 
birth to girls (for example), 

the probability will be 
higher than 50%. 

N = 7 3 responses 2 2 
4 responses  

 
Indeed, both the o and o* sub-categories incorporate students who emphasized the 

favorable outcome (i.e., a girl, as provided in the question) more than the probability. They 

interpreted the task as if it asked, when will a woman give birth to a girl? (How to know? Or, 

under what circumstances?). Consequently, their response took the specific form of stating that 

this woman would give birth to a girl if something specific happened; likewise, if this thing did 

not occur, another gender would be expected. This implicitly indicates a dependence on some 

causes (see Table 25) because of which a baby girl can be assigned. 

Such focus on the favorable outcome led the students toward evaluating their predictions 

as being right or wrong; besides, their responses took the form of yes-no decisions on whether 

that outcome will occur in a particular trial, which here denotes the baby’s gender in the next 

delivery process (Batanero & Sanchez, 2005; Konold, 1989; Savard, 2014). Two students 

reported that if the woman’s belly shape is round, she will give birth to a girl; similarly, if her 

belly shape is not round, she would not give birth to a girl, as displayed in Table 25. 

This reasoning indicates a partial understanding of the experimental probability, which 

was applied by checking the posterior results (e.g., outcomes of the delivery process, in type o) 

or reflecting on similar previous situations (e.g., recognizing whether this woman gives birth 

to the same gender always, in type o*). Nevertheless, the students used such information not 

to interpret the probability but rather to describe why (or why not) the next baby’s gender will 

be a girl. Accordingly, instead of defining the probability of giving birth to a girl based on the 

distribution of occurrences in a series of events (i.e., a large number of previous similar 

cases), O thinkers limited their ideas to the case of the next expected event (not the 

probability). This mismatches with the experimental interpretation of probability in which “the 

probability is meaningful only with respect to repeatable event and is defined as the relative 
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frequency of occurrence of an event in an infinite (or very large) number of trials” 

(Reichenbach, 1949; Mises, 1957, as cited in Konold, 1989, p. 62). Consequently, although O 

thinkers admitted the variability of the outcomes, such variability was not grounded on 

frequencies but instead on one single trial in which the baby’s gender could be interpreted. 

Hence, they adjusted their expectation to satisfy particular causes, and further, their yes-no 

decision to be within two broad groups: one group contained the favorable outcome of a girl, 

while the other included all other expected events (i.e., the complementary set). 

Additionally, although neither O thinker could apply the experimental probability 

interpretation successfully because of much focus on the favorable outcome (i.e., girl), their 

inadequate operation was exhibited in different objects. On one hand, type o thinkers, who tried 

to reflect on the posterior results of the delivery process, seemed not to understand the idea 

behind the prediction according to which the intention was quantifying the information 

regarding unknown phenomena. They stated, “if the woman already gave birth to a boy or 

twins, or she had a miscarriage or passed away during the delivery process, the probability 

would change from 50% to 0%.” Such argumentation denies the fact that after the delivery 

process, the situation of giving birth will not be probabilistic anymore. Hence, there is no 

meaning in estimating the probability of giving birth to a girl in that case. This understanding 

of the prediction was termed as prediction conception, which was distinguished from the 

previously reported prediction bias. 

On the other hand, although type o* respondents understood the idea of the prediction 

wherein the results are still unknown, they were less conscious about the distinction 

between causality and conditionality, in which distinguishing between both concepts signifies 

a crucial element of probabilistic reasoning (Batanero et al., 2016; Borovcnik, 2012). For the 

probability, the dependence characterizes a bi-directional relationship, and if an event B is the 

cause of another event A, then whenever B is present, A is present too (i.e., P (A|B) = 1); 

however, the two directions involved in conditional probabilities have a completely different 

connotation from a causal standpoint (Díaz et al., 2010). That is, although the conditional 

probability of having a baby girl based on having a positive result on an ultrasound test (or a 

round belly shape); P(positive ultrasound result| G) is causal, the backward direction from a 

positive ultrasound diagnosis to having a baby girl is merely indicative [P(G| positive 

ultrasound result)]. In other words, while the test is positive because the woman is pregnant 

with a girl, a baby girl is not caused by positive test results. Accordingly, type o* thinkers were 

judged to share the causal conception; they assumed a causal relationship wherein the 
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conditioning event B (e.g., rounded belly shape) is the cause and A (i.e., girl) is the result (Gras 

& Totohasina, 1995, as cited in Batanero & Sanchez, 2005; Savard, 2014). 

Based on the above description, Table 26 summarizes the characteristics of types of 

reasoning that were inferred upon considering students’ responses to the problem of giving 

birth. This guided the analysis of the other two contexts (i.e., throwing a die and weather 

predictability). 

 
Table 26. Characteristics of PSMTs’ reasoning in the context of giving birth 
Major category Shared biases and 

conceptions 
Theoretical constructs on 

which PSMTs relied  
Commonalities 

[M] Thinkers 
– Equiprobable bias 
– Insensitivity to the prior 

probability of outcomes 

– Theoretical probability 
– Laplace’s theory 
 

[S] Thinkers  – Subjective probability 
– Bayesian reasoning 

[O] Thinkers  – Experimental probability 
Sub-categories               Differences 

m – Representativeness heuristic 
m* – Overgeneralization heuristic 

s – Prediction bias 
– Dependence conception 

s* – Allah’s will 
s**  
o – Prediction conception 
o* – Causal conception 

 

5.2.2  PSMTs reasoning in the contexts of throwing a die and weather predictability 

(deductive data analysis process) 

As stated earlier, the emerged categories of M, S, and O reasoning were used as a basis to 

characterize students’ responses in both the contexts of throwing a die and weather 

predictability. This is detailed in this section, as follows:  

 
– The emergence of type m and m* reasoning [M thinkers] 

The category of M thinkers emerged again in both contexts, as explicit in Table 27. First, 

for the activity of throwing a die in which students were asked to explain their various strategies 

to determine the probability of getting number 5 in a random experiment of rolling a die one 

time (see Appendix 8), both types m and m* reasoning emerged. That is, M thinkers 

approached the given situation through theoretical probability that relies on the notion of 

sample space and the favorable outcome of 5. As shown in Table 27, mathematically speaking, 

while m thinkers modeled the experiment using S = {side 1, side 2, side 3, side 4, side 5, side 
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6}, and A18 = side 5; then, P(A) = n(A) / n(S) = 1/6, m* thinkers employed a more general 

formula of S = {1, 2, 3, 4, 5, 6} and A= {5}; then, P(A) = n(A) / n(S) = 1/6. 

Similarly, for the task of weather predictability, when students were asked to interpret the 

meaning of a 60% probability of rain, they modeled this situation as if the sample space 

contained two mutually exclusive events of rain and no rain. Consequently, a 60% chance of 

rain reflects 40% of no rain (the complementary event). That is, mathematically speaking, S = 

{rain, no rain}, A = {rain}, and P(A) = 60%; then, P (Ac) = 40%. Furthermore, one student in 

this category interpreted a 60% chance of rain as if there were various possible outcomes 

regarding tomorrow’s weather, such as rainy, windy, and sunny. Accordingly, if the probability 

of rain tomorrow equals 60%, this means that the sum of all other possible outcomes equals 

40%. Alternatively, S = {rainy, windy, sunny, etc.} and P (A= rain) = 60%; then, P (Ac = wind 

+ sunny + etc.) = 40%. 

 
Table 27. Mathematically oriented thinkers’ typical responses in the context of throwing a 

die and weather predictability 
 Mathematically oriented thinkers [M] 

The context of throwing a die  The context of weather 
predictability19 

Reasoning 
type 

Type m Type m* Type m** 
(newly 

emerged) 

Type m 

Students’ 
typical 

responses 

  Since the die 
has six sides and 

number 5 
exposes only 

one side among 
them, the 

probability 
equals 1/6. 

This experiment 
involves six 

numbers, and 
number 5 denotes 
only one number 

among them; then, 
the probability 

equals 1/6. 

The 
probability 
equals 1/6 
if the die is 

fair with 
six equally 
likely sides. 

It means that the 
probability of no rain 

equals 40%; or, if rainy, 
windy, sunny, etc., are the 
possible outcomes, then 

the probability of all these 
outcomes (except rain) 

equals 40%. 
N = 57 10  35 5 7 responses   

 50 responses 
 

Although M thinkers did not calculate the probability of rain by dividing the number of 

favorable outcomes by all possible outcomes as what they did in the tasks of giving birth and 

throwing a die, their interpretation of a 60% chance of rain indicated a reliance on the 

theoretical probability, since this 60% was decided based on various plausible events in S. 

 
18 Symbol A refers to the favorable outcome of obtaining 5 in the experiment of throwing a die, or rain occurrence 
for the task of weather predictability, while Ac denotes the complementary event. 
19 Because of time constraints for third-year students, only three (out of 23) of them responded to the task of 
weather predictability (see Table 8 in Chapter 2). 
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Again, and as stated before, one essential thing to consider here is the form of the weather 

predictability task; it differs from both giving birth and throwing a die. While the former 

required an explanation of a particular percentage, the latter two problems demanded the 

determination of a certain percentage to express the probability. 

In detail, regarding the shared conceptions and biases in the sub-categories of m and m*, 

for the task of throwing a die, 10 students were judged to be type m thinkers. These students 

considered the physical structure of the die itself, in which the numbers symbolize the die’s 

various facets; hence, the favorable outcome of 5 denotes one side among six sides (see Table 

27). Based on what was argued earlier in the giving birth context, the equiprobable 

bias prevented m thinkers from confirming the required assumptions to apply Laplace’s 

theory. Thus, they assumed that all die sides are equiprobable, even though there was no 

explicit information in the task that declares the die’s regularity. Nonetheless, one thing to 

consider here is that m thinkers may think of the equiprobability assumption as a premise for 

all chance games, in which there is no need to confirm it. Such an idea was explained by Stohl 

(2005); she clarified that because of our inability to judge the complexity of the physical 

circumstances when we experiment with throwing a die (e.g., air resistance and speed), we 

cannot predict whether a particular outcome will occur or not. Hence, one possible way to 

approach this phenomenon is to utilize the theoretical probability; it helps to embody such 

physical complexities and apparent symmetry of the die. Her usage of “apparent symmetry of 

the die” indicates that when we operate die experiments, the fairness of dice is usually assumed. 

Moreover, two students expressed an understanding of the equally likely hypothesis. While 

one of them declared that “the reason why the probability of getting number 5 equals 1/6 is 

that the die has only one side that holds number 5 and there is no possibility to get two sides 

together,” the other student stated that “the die has six equally likely sides.” Such reasoning 

involved a clear understanding of theoretical probability; this resembles what Savard (2010) 

identified in a study of students who were concerned about the fairness of a spinner for 

explaining variability. This case was recognized as unique among M thinkers who 

demonstrated adequate knowledge regarding theoretical probability. Accordingly, it was 

coded under the sub-category of m** thinkers, which had not emerged previously in the 

context of giving birth. 

Additionally, three other students paid sufficient attention to the task formulation; 

accordingly, they preferred utilizing the theoretical probability over the experimental. As they 

reported, based on the given information, we must rely on the theoretical interpretation 

because the experimental approach cannot be applied for one trial (i.e., the term once that 
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appeared in the task). In detail, two of them explained that only processing a one-time 

experiment of throwing a die is not enough to calculate the probability of getting number 5. 

While the other student stated that such a situation could be managed only if we already had 

the outcome, and we were asked to calculate its probability. Accordingly, such cases were also 

judged under M thinkers as they strengthened the theoretical probability interpretation to 

represent a phenomenon and did not give any alternatives for operating the experimental 

probability (e.g., by increasing the number of trials). Yet, they were classified under 

type m** thinkers since they decided to rely on theoretical probability, not because of the die 

itself (whether fair or not), but because of the situational circumstances in which the 

experimental interpretation could not be performed. This also indicates adequate understanding 

of the required assumptions to operate the experimental probability. 

On the other hand, 35 students exhibited type m* reasoning that overgeneralizes the 

theoretical probability to model probabilistic situations. Accordingly, m* thinkers focused on 

the numbers assigned to the die facets in which the favorable outcome of 5 implies one number 

among six different numbers. In other words, they sought to develop an abstract mathematical 

formula to model the situation without giving much attention to the meaning of the embedded 

numbers in that formula, which resembles the emergence of m* thinkers in the context of 

giving birth. Although the students admitted the sample space as one factor to determine the 

probability, their responses did not indicate a connection between such sample space elements 

and the die’s physical structure. Consequently, as the data analysis revealed, the theme of 

overgeneralization for m* thinkers appeared clearly in their ignorance of the term once. 

Besides, most of them did not narrow their answers to the probability of getting number 5; they 

also stated that “the probability of any number’s occurrence equals 1/6 since the experiment 

represents a random process with six possible outcomes; then, each number has only one 

chance to occur.” 

Such an overgeneralized mindset led m* thinkers to think of the outcomes of any random 

experiment of throwing a die as being equally likely, which is not necessarily true. This idea 

was discussed in Pratt’s (2005) study in which, from the experts’ viewpoint, the random 

process can be biased and then regarded as unfair. As Pratt (2005) exemplified, for young 

students, a spinner with fair six equal-sized sectors is random. However, if that spinner were 

numbered and the sixth sector was twice the size of the other sectors, students might think of 

the spinner as unfair and, accordingly, non-random. Therefore, he further commented that both 

spinners “generate irregular results, and so in these respects the experiment with the non-

uniform spinner might have been regarded as random too” (Ibid., p. 176). In this regard, Pratt 
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(2005) recommended that mathematics teachers should help their students distinguish between 

fairness and randomness. Yet, m* thinkers also seem to be unaware of such differences. 

Dealing with such small discrepancies between m and m* was not that clear for the task 

of weather predictability in which all students’ responses were assigned to type m reasoning, 

because they explicitly expressed attention to the context. Furthermore, the equiprobable 

bias did not emerge here; one likely reason for this is the formation of the task itself in which 

the probability of rain was already provided, as reported earlier. Nevertheless, the student who 

listed the outcomes of rainy, windy, sunny, etc., in one group to represent the sample space 

seemingly considered that all these events are equally likely to occur, which contradicts the 

given data regarding 60% of rain.  

 
– The emergence of types s, s*, and s** reasoning [S thinkers] 

Interestingly, the category of S thinkers that defined around 60% of students’ reasoning in 

the context of giving birth did not appear in the activity of throwing a die. Nevertheless, some 

responses to the task of weather predictability showed such subjective reasoning, as explained 

in Table 28. 

 
Table 28. Subjectively oriented thinkers’ typical responses in the context of weather 

predictability  
 Subjectively oriented thinkers [S] 

Context of 
throwing a die  

Context of weather predictability   

Reasoning 
type 

Type, s, s*, and 
s** 

Type s* Type s** 

Students’ 
typical 

responses 

Null   60% probability 
of rain indicates a 
40% probability 
of no rain; still, 
such probability 

is a matter of 
Allah’s will. 

60% probability of rain does 
not reflect an absolute value. 
The probability depends on 
many factors such as time of 
the year, season, inclination 
and intensity of clouds, and 

wind movement. 
N = 5 0  1 response 4 responses 

 
As detailed in Chapter 4, one critical idea, which this study embraced, is the fruitfulness 

of implementing an authentic probabilistic situation to expose the subjective side of students’ 

probabilistic reasoning. Such an idea appeared here, wherein no responses to the conventional 

activity of throwing a die were classified under the S category, except the two students’ 

responses who emphasized the die regularity and were judged as exceptional cases 

of M thinkers because they did not share the equiprobable bias. This means that before the 
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data analysis, it was expected that S reasoning might arise in forms such as observation of the 

die regularity (fairness), numbers attributed to its facets, person who is rolling the die, or the 

technique of rolling. Thus, different values could be assigned to the probability of rolling a 

number 5 based on students’ beliefs or prior information regarding these issues (Dollard, 2011); 

students might also update their predictions considering such information (Kvatinsky & Even, 

2002). However, only the two previously mentioned students did so, and, for them, the 

subjective interpretation that depends on the available amount of knowledge coincided with 

the objective probability. 

On the other hand (see Table 28), for the task of weather predictability, while one answer 

indicated type s* reasoning, four responses were assigned to s**; both resembled manners of 

reasoning that emerged before in the context of giving birth. In detail, one student persisted in 

manifesting the concept of Allah’s will to reflect the uncertainty of the rain falling. He 

commented, “first, a 60% chance of rain reflects a 40% chance of no rain; yet, we cannot 

expect rain to occur because the actual event may alter depending upon Allah’s will.” Such 

reasoning mirrors s* in the context of giving birth in which the concept of Allah’s will was 

utilized not as a cause to explain the variability but rather as a factor that may interfere with 

the situation. It also designates the existence of out-of-control circumstances wherein the actual 

outcome may vary. Again, because employing such a concept did not prevent s* thinkers from 

interpreting the given probability mathematically, their reasoning was regarded as a particular 

type of probabilistic reasoning rather than a belief. 

Additionally, within the main category of S thinkers, four students were assigned to s**. 

For them, a 60% chance of rain did not indicate a certain percentage; instead, it defined their 

various degrees of uncertainty regarding weather conditions (Liberman & Tversky, 1996). 

The s** thinkers reported: “a 60% chance of rain may designate several circumstances, such 

as the temperature, season (winter or summer), movements and intensity of clouds, or flow 

inclination; this percentage was judged in light of all these circumstances.” Accordingly, 

for s** thinkers, the given probability did not specify one issue of only clouds (as a case), but 

rather many factors that worked together to determine that probability. Hence, the prediction 

may vary upon what we know about all these criteria. Such reasoning resembles how some 

students judged the probability of giving birth to a girl that, for them, differs upon the available 

information about issues such as the woman’s ultrasound results or her genetic state (see Table 

24). 
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– The emergence of types o and o* reasoning [O thinkers] 

As expected, some responses to the tasks of throwing a die and weather predictability 

reflected the same manner of reasoning that appeared first in the context of giving birth and 

coded under the category of O thinkers. These responses are displayed in Table 29. 

 
Table 29. Outcome oriented thinkers’ typical responses in the context of throwing a die 

and weather predictability  
 Outcome oriented thinkers [O] 

Context of throwing a die  Context of weather 
predictability 

Reasoning 
type 

Type o Type o* Type o** 
(newly emerged) 

Type o* Type o** 
(newly 

emerged) 
 We can get number 5 if We can calculate 

the probability 
of getting a 5 if 

It may rain 
tomorrow 
because 

 A 60% 
chance of 

rain 
Students’ 

typical 
responses 

the die has 
been thrown 
on the floor; 

then, number 5 
may appear in 

the first, 
second, or 

after six trials. 

the die was 
controlled, 
an expert 

rolled it, or 
the number 

of trials 
was 

increased. 

the number of 
trails has been 

increased; then, 
such probability 
equals the ratio 

between 5’s 
frequencies and 
the conducted 

trials.  

it is winter, the 
sky is dense, 
the weather is 
cloudy, or it 

was 
announced on 
the weather 

forecast. 

has been 
calculated 
based on 

similar prior 
circumstanc

es. 

N = 42 3 4 11  20  4 
 18 responses  24 responses 

 
Similar to what was explained earlier, type O reasoning reveals a partial understanding 

of the experimental probability interpretation in which the students focused on the outcome 

itself rather than its probability. O thinkers recognized the probability of getting number 5 as 

if the question were how to get number 5? In what way can the individual get 5? Or how many 

trials should be performed to obtain number 5? Similarly, in the context of weather 

predictability, 20 students interpreted a 60% chance of rain based on several causes due to 

which rainfall occurs. Moreover, they sharpened the favorable outcome (i.e., rain occurrence) 

as if it had already occurred, and they were discussing its causes (under what circumstances 

did the rain occur?) 

In detail, for the activity of throwing a die, both sub-categories of o and o* emerged, 

compared with the emergence of merely o* for the task of weather predictability (see Table 

29). 



 109 

On one hand, o thinkers operated the experimental probability by reflecting on the 

expected posterior outcomes after experimenting with the die. Accordingly, two of them 

judged, with certainty, that the favorable event of 5 would appear in the first, second, or after 

six trials, as displayed in Table 29. Besides, one student stated that this given situation is not 

probabilistic because, in the random experiment, the outcome could not be known beforehand, 

but we knew it after the experimentation. Such an answer reveals the understanding of the 

experimental probability as a posterior expectation; yet, the student described that 

experimentation as a process to get the outcome of 5, and not to calculate its probability. 

On the other hand, o* thinkers explained several techniques, likely based on their prior 

experience of obtaining numbers when experimenting with a die. Concretely, two students 

reported that the die might be controlled by the person who manipulates that die, like what 

many experts often do in backgammon games. The way in which the die is dominated and 

directed was described by another student using the expression cheating. Another student’s 

response also indicates the idea of chance controllability: “if the die itself was designed to hold 

number 5 for all sides, we could get such a number from the first trial.” Thus, those students 

supposed that such strategies reflect several causes one may rely on to explain the number 5 

occurrence. A similar manner of reasoning was operated by 20 students to interpret a 60% 

chance of rain. They all based their predictions on a causal analysis of the situation. They 

declared that a 60% probability of rain reflects that the sky is overcast, it is cloudy without 

stars, there is 60% of water accumulation in the clouds, or there is humidity (12 responses); the 

season is winter (2 responses); the climate is cold or stormy with dust (3 responses); or the 

forecast announced that it will rain (3 responses). All these circumstances were utilized 

by o* thinkers to explain why there is a 60% chance of rain (i.e., possible causes for rainfall 

occurrence). This argumentation resembles what Konold (1989) reported regarding students 

who thought that humidity or cloudiness is a measure of the strength of factors that would 

produce rain. 

As described above, for the activity of throwing a die, although o thinkers thought about 

the required number of trials in which number 5 surfaces, o* thinkers focused on performing 

techniques to obtain number 5, which mirrors students who emphasized the circumstances in 

which rainfall may occur for the task of weather predictability. This leads the discussion toward 

identifying shared conceptions and biases, which students exhibited in both o and o*. For the 

activity of throwing a die, all students focused their approaches on the next expected event of 

the number 5 occurrence, which represents the explicitly given outcome in the activity. Further, 

o* thinkers especially tend to evaluate their predictions as valid or faulty. For example, if the 
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die were controlled, then number 5 could be obtained; if not, another outcome will 

result. Similarly, while interpreting the task of weather predictability, they reported multiple 

causes for which their predictions could be assessed. For instance, if it was the winter season, 

there was a 60% probability of rain; inversely, it might not rain if it was summer. 

Such reasoning defeats the theory of experimental probability that reflects the limit of 

relative frequencies of an event when an experiment is repeated a large number of times 

(Konold, 1989; Torres & Contreras, 2014). Moreover, because of o and o* thinkers’ focus on 

the favorable outcome more than its probability, which affects their utilization of the 

experimental approach, several conceptions appeared. Although these conceptions agreed with 

what was explained previously in the giving birth context for o* thinkers, it differed slightly 

for type o reasoning. This is detailed in the following paragraphs. 

First, o thinkers shared the prediction bias (not the prediction conception as in the case of 

the giving birth problem) wherein their expectation had the meaning of accurate prediction of 

whether number 5 will occur in a particular experiment or not. This appeared when they judged 

precisely that, for instance, number 5 may arise after two trials. As explained before, 

such prediction bias contradicts the essence of randomness that demands uncertainty in which 

the specific number of trials to obtain an outcome cannot be defined. This differs from what 

was discussed regarding the prediction conception that signifies a misunderstanding of the 

prediction purpose. As analysis of the giving birth problem revealed, some students did not 

fully understand the intention of the expectation as quantifying our information regarding 

unknown phenomena. Nevertheless, o thinkers (in the context of throwing a die) considered 

the experiment as an undiscovered situation; yet, they gave a precise prediction, which was 

determined by the number of performed trials to obtain a favorable outcome. 

Second, for the sub-category of o* that emerged in both contexts of throwing a die and 

weather predictability, o* thinkers also lacked an understanding of the concept 

of randomness that requires independence. Exactly as in the giving birth problem, o* thinkers 

shared the causal conception, wherein they confused causality with conditionality. This was 

reflected in their arguments on how to obtain number 5 (e.g., by controlling the die) as well as 

on when it is going to rain (e.g., in the winter season or when the sky is cloudy). Thus, die 

controllability was the cause to get number 5; similarly, fuzzy sky denoted a reason for rainfall; 

alternatively, the declared concerns designated several causes for the favorable outcome to 

arise. In other words, for o* thinkers, the conditioning event (e.g., techniques of rolling or 

humidity) remains the cause, while the favorable outcome (i.e., number 5 or rain) signifies the 

consequence. 
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Similar to the exceptional case of m** that newly appeared in the context of throwing a 

die (see Table 27), a distinct sub-category from O thinkers emerged in both the contexts of 

throwing a die and weather predictability. That is, o** thinkers resemble o and o* in 

manipulating the experimental probability but nevertheless have a clear understanding of such 

interpretation without shared biases or conceptions. 

For the task of throwing a die, o** thinkers focused on the probability that, for them, 

describes a posterior judgment since it is essential to obtain the data (frequencies) of outcomes 

to calculate the relevant probability (Chernoff, 2008). Hence, o** thinkers acknowledged the 

validity of the experimental probability interpretation to fulfil the situation of throwing a die, 

if and only if the experiment had been repeated many times. They also recognized the term 

once in the provided task, which led them to think of increasing the number of trials. Such 

reasoning reflects an awareness of the law of large numbers.  

For illustration, two students reported that “the probability of getting a 5 equals 1/6 

through experimenting with the die. However, we cannot depend on one experiment; instead, 

the number of experiments should be increased.” They continued, “as more trials are 

conducted, a more precise probability estimation can be determined, in which precise means 

the prior theoretical expectation of 1/6.” Although this reasoning indicates an understanding 

of the variability concept in which the experimental probability varies upon the frequency of 

the occurrence of 5 among all trials, both students reported that the probability equals (not 

approaches) 1/6. Two reasons may explain this: (a) the students may be attracted toward 

thinking of the theoretical interpretation according to which the ambiguity can be avoided 

(Stohl, 2005), or (b) they may be careless regarding the probability language. Then, instead of 

stating that the experimental probability will approach 1/6 after many identical trials, they 

simply wrote that it equals 1/6. 

Additionally, the other nine students among o** thinkers did not specify any particular 

percentage that defines the experimental probability, like the two previously mentioned cases. 

Instead, they explained that the probability depends on the ratio of 5’s frequencies in the total 

number of performed trials. For them, utilizing the experimental approach leads to uncertainty 

regarding the judgment in which multiple percentages may express the probability of the 

occurrence of 5, based on how many 5s will appear in a large number of identical experiments. 

Furthermore, they agreed that as the number of trials increased, the experimental probability 

approximated the theoretical expectation (i.e., the law of large numbers). 

In the task of weather predictability, four students utilized the experimental probability to 

describe a 60% chance of rainfall. They reported that a 60% probability of rain indicates that 
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in the past 100 days that had similar weather and environmental circumstances, rainfall 

occurred 60 times. Such an explanation speculates based on adequate knowledge regarding the 

appropriate context in which the experimental probability can be operated. This matches Brase 

et al.’s (2014) determination of a 30% chance of rain; it describes a model of past weather 

events in which it rained on 3 out of the 10 previous days that had similar circumstances. 

 
– The emergence of the new category of the intuitively oriented thinkers [I] 

While the preceding discussion reported how such types of reasoning that characterized 

students’ responses in the context of giving birth emerged in both contexts of throwing a die 

and weather predictability, this section outlines another type of reasoning that did not appear 

in the former but arose in the latter, principally, in the task of weather predictability. Note that 

the sub-categories of m** and o**, which were described earlier, have not been outlined here 

because they employed theoretical and experimental probability, respectively. Thus, they both 

were regarded as sub-categories of M and O thinkers, and not distinct categories to address in 

this section. 

For the activity of throwing a die, no separate categories emerged, wherein all students’ 

responses to that activity were distributed among M and O thinkers, as detailed previously. On 

the other hand, the distinct intuitively oriented thinkers [I] category was developed to portray 

some of the students’ responses to the weather predictability task. These responses are 

displayed in Table 30. 

 
Table 30. Intuitively oriented thinkers’ typical responses in the context of weather 

predictability 
 Intuitively oriented thinkers [I] 

Context of 
throwing a die  

Context of weather predictability   

Reasoning type Type I Type I 
Students’ typical 

responses 
Null It is most probable that it will rain 

tomorrow, as 60% > 50%. 
N = 12 0  12 responses 

 
The category of I thinkers incorporated 12 students who transformed the quantitative 

expression of a 60% chance of rain to the qualitative one: “It does mean that: It is most 

probable that it will rain tomorrow” (see Table 30). Moreover, while one student continued 

his answer by declaring, “Because 60% is higher than 50%, I reported that: It is most probable 

that it will rain,” all other students wrote, “Still, we are not sure whether it is going to rain or 

not.” Such qualitative expressions speculate a novice understanding of the probability that 
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reflects an encapsulation of intuitive views of chance and leads to the idea of committing 

numbers to uncertain events, which implies the intuitive probability interpretation (see Table 

17 in Chapter 4). 

Although some researchers classified the intuitive interpretation under the subjective facet 

since the usage of qualitative idioms expresses the degree of individuals’ confidence in the 

occurrence of an event (e.g., Torres & Contreras, 2014), I was not labeled as a sub-category 

of S thinkers. Instead, it was considered as a category by itself. The reason is that 

when I thinkers gave the expression of most probable, they judged it compared with 50%, 

whether the given percentage was higher or lower than 50%. Thus, for their case, the variability 

of outcomes (rain or no rain) did not speculate a subjective criterion, but rather a mathematical 

standard. Beyond that, I thinkers understood the idea of randomness; it appeared in nearly all 

replies in which the uncertainty adequately resembled when they reported, “Still, because of 

60% probability, we are not sure that it is going to rain.” 

In this sense, it is relevant to clarify that I thinkers’ responses were not also classified 

under the O thinkers’ category. In detail, Konold (1989) judged that students who translated a 

70% chance of rain into the definitive qualitative statement of it is going to rain are outcome-

oriented thinkers. He further explained that such responses were usually accomplished by 

utilizing the range of 0% to 100% as a decision continuum, where 0% means no, 100% means 

yes, and 50% indicates I do not know. Furthermore, the intermediate values were ultimately 

associated with one of these three anchors. Nonetheless, in the current investigation, I thinkers’ 

responses remained quite different in terms of the degree of certainty of rain occurrence. While 

all students (in this investigation and in Konold’s study) compared the given probability 

percentage with the three decision points of 0%, 50%, and 100%, I thinkers did not employ 

such precise phrases, which Konold’s study participants used. Instead, they adopted skeptical 

qualitative idioms (e.g., it is most probable that it will rain tomorrow) to indicate that 

uncertainty still exists, as described above. 

Finally, the following table summarizes the distribution of emerged types of reasoning in 

both the contexts of throwing a die and weather predictability among the participants. 
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Table 31. PSMTs’ manners of reasoning in the context of throwing a die and weather 
predictability 

Major 
 category 

For the activity of 
throwing a die 

For the task of weather 
predictability  

Frequency Percentage Frequency Percentage 
Mathematically oriented 

[M = m + m* + m**] 
50 73.5% 7 14.6% 

Subjectively oriented 
[S = s + s* + s**] 

0 0% 5 10.4% 

Outcome oriented 
[O = o + o* + o**] 

18 26.5% 24 50% 

Intuitively oriented [I] 0 0% 12 25% 
Sub-categories Frequency Percentage Frequency Percentage 

 m 10 14.7% 7 14.6% 
m* 35 51.5% 0 0% 
m** 5 7.3% 0 0% 

s 0 0% 0 0% 
s* 0 0% 1 2.1% 
s** 0 0% 4 8.3% 
o 3 4.4% 0 0% 
o* 4 5.9% 20 41.7% 
o** 11 16.2% 4 8.3% 

I 0 0% 12 25% 
Total 68 100% 48 100% 

 

5.2.3  Characteristics of PSMTs’ reasoning in a simple probabilistic situation 

Based on the discussions in the preceding sections, in general, students have exhibited four 

essential types of reasoning under uncertainty; M, S, O, and I. Moreover, the utilization of 

each type varied not only among students themselves but also depending upon the given 

context. This section focuses on characterizing students’ R(in)P, which is related to a simple 

probabilistic situation. First, Figure 18 displays the distribution of such manners of reasoning 

in the three contexts of giving birth, throwing a die, and weather predictability, as summarized 

before in Tables 22 and 31. 

First, as exhibited in Figure 18, type M reasoning represented the most applied manner of 

reasoning that strongly appeared in the three contexts of giving birth, throwing a die, and 

weather predictability, in the percentages of 29.4%, 73.5%, and 14.6%, respectively. Such 

reasoning relies on utilizing the theoretical probability of modeling an uncertain situation. 

Accordingly, this reasoning was manipulated by defining sets of sample space and favorable 

outcomes, as follows: (a) the set of boy and girl (sometimes boy, girl, and twins) and the 

favorable outcome of girl; (b) the set of 1, 2, 3, 4, 5, and 6 (sometimes die sides) and the 

favorable outcome of five; and (c) the set of all complementary events of rain and the favorable 
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outcome of rain, for the problems of giving birth, throwing a die, and weather predictability, 

respectively. 
 

 
Figure 18. The distribution of reasoning types among PSMTs in the context of giving birth, 

throwing a die, and weather predictability  
  
Indeed, the dominance of M reasoning on students’ thinking was not surprising. As 

reported by Stohl (2005), many teachers prefer approaching the probabilistic situation through 

theoretical probability. This thinking relies on mathematical techniques and leads to one single 

answer. For example, regarding the task of throwing a die, as she explained, the experimental 

probability can also be employed to determine the probability of getting the number 5. 

Nonetheless, it requires a repeated set of die rolls that most likely will yield different 

percentages. Thus, employing the theoretical interpretation helps respondents overcome such 

uncertainty. This typically mirrors students’ reasoning in the context of throwing a die wherein 
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73.5% of them preferred modeling the experiment through the theoretical approach while only 

26.5% utilized the experimental interpretation. 

Additionally, the M thinkers’ category involved the three sub-categories of m, m*, 

and m** that all employed theoretical probability. However, they differed in terms of shared 

conceptions and biases. These identified conceptions are discussed next in light of the concepts 

of randomness and variability. Both theoretical constructs define two essential factors to 

reason probabilistically, that is, the determinants of the process of probabilistic reasoning (see 

p. 70). This may lead to the unified schema that connects all emerged types of reasoning in 

which students’ R(in)P can be characterized.  

Regarding the variability, all M thinkers expressed an understanding of such an idea; for 

them, it indicated that the resultant outcome varies depending upon the possible events in the 

sample space. Nonetheless, they shared several conceptions related to their understanding 

of randomness. In detail, both m and m* thinkers shared the equiprobable bias, which made 

them insensitive to the prior probability of outcomes. Admitting that the meaning of 

randomness differs based on the individual’s understanding of probability (Batanero et al., 

1998), the emergence of that equiprobability reflects m and m* thinkers’ conception 

of randomness. This conception is exemplified in Lecoutre’s (1992) argument regarding the 

random nature of the experiment. It is considered by some learners as a sufficient indication 

for equiprobable outcomes; that is, two events are equiprobable because it is all about chance. 

Accordingly, if the favorable outcome is randomly generated, it has the same probability to 

occur as any other event in the sample space. This illuminates why these thinkers (a) ignored 

the actual gender distribution for the problem of giving birth, (b) did not confirm the die 

regularity in the activity of throwing a die, and (c) supposed that rainy, windy, and sunny are 

equally likely outcomes in the context of weather predictability. 

Furthermore, the data analysis revealed another significant factor, beyond the variability 

and randomness, that should be considered when thinking probabilistically: contextual 

recognition. Drawing on Pfannkuch’s (2011) study, contextual recognition here signifies 

the data context, which reflects the context of the real-world situation from which the problem 

arose. Following this argument, although m and m* thinkers shared the equiprobability that 

remained a common conception and reflected their understanding of randomness, they differed 

in terms of the contextual recognition. 

On one hand, m thinkers were able to connect mathematical models of probabilistic 

situations with the related realistic conditions. This appeared in their responses to three tasks, 

wherein they described sample spaces of the (a) boy and girl, (b) die sides, and (c) 
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environmental circumstances (e.g., rainy, windy, cloudy). They favored listing the authentic 

elements of the sample space over the general abstract formula. Consequently, 

the representativeness heuristic was judged to be the origin of equiprobability for m thinkers. 

Although they understood the realistic features of each situation, they overestimated the 

replicability of the experimental results (Lecoutre, Durand, & Cordier, 1990), in which any 

distribution must resemble the parent population. In this sense, such heuristic 

oriented m thinkers think of all the situational circumstances as equiprobable merely because 

of the random phenomenon, as is often reflected in the population. Thus, these thinkers were 

reluctant to confirm the required assumptions of utilizing theoretical probability. 

On the other hand, m* thinkers showed an abstract mindset that attempted to drop the 

realistic circumstances to be able to theoretically interpret the probabilistic situation through 

the lens of Laplace’s theory. This was termed as the overgeneralization heuristic, which 

defined the origin of equiprobability for m* thinkers and indicated individuals’ mental 

orientation toward providing an ideal mathematical abstract model that works for any situation. 

In this sense, both representativeness and the overgeneralization heuristic are relevant to 

contextual recognition. While the former reflects an understanding of realistic circumstances 

to be equal in occurrence, the latter declines such practical obstacles and instead seeks a general 

formula. 

It is worthy to report that both the equiprobable bias and the representativeness 

heuristic were discussed reciprocally in the literature (e.g., Dollard, 2011; Konold, 1989; 

Lecoutre et al., 1990; Pratt, 2000; Savard, 2010; Tversky & Kahneman, 1974). The 

equiprobability defines the tendency to believe that any random process produces a fair 

distribution with equal probabilities for each possible outcome (Savard, 2010). This bias was 

found in different contexts when determining the probability of simple, compound, and 

conditional events (Watson, 2005; Watson & Moritz, 2003). It was also reported for many 

learners in different grades. For example, Lecoutre (1992) described that college students 

exhibited the equiprobability bias when comparing the probability of rolling a five and a six on 

two dice with the probability of rolling two sixes. Furthermore, Pratt (2000) and Zawojewski 

and Shaughnessy (2000) presented similar findings for fifth- and twelfth-grade students. 

Additionally, this study defined the representativeness heuristic as one plausible cause for 

equiprobability, which is quite different from the previous studies’ arguments. In several 

previous studies, representativeness was addressed in a comparison context, such as judging 

which sequence of male and female births among MMMMMM and MFFMMF is less likely to 

occur (Kahneman & Tversky, 1973). Accordingly, in such a context, representativeness 



 118 

indicates the degree of similarity between the sample and population. Nonetheless, within the 

context of this study, it reflects the students’ overestimation of the replicability of experimental 

results, as reported beforehand. Since students strongly relied on the randomness property to 

yield equally likely outcomes, all the events generated by that random system and relevant 

samples were judged to have the same probability. 

While m and m* thinkers shared the above-reported biases that were mainly connected to 

their perception of randomness, m** thinkers exhibited an adequate understanding of 

the theoretical probability in terms of variability, randomness, and contextual recognition. 

Such reasoning appeared only in the task of throwing a die in which m** thinkers were able to 

differentiate between randomness and fairness (Pratt, 2005). Although they admitted the 

appropriateness of theoretical probability to model the experiment of throwing a die, they 

reported that the probability of obtaining number 5 equals 1/6 if and only if the die was 

fair. Similarly, acknowledging the required assumptions to manipulate the proper probability 

interpretation, some m** thinkers stated that the reason they relied on the theoretical 

probability was the conditions of the given activity, that is, the activity fixed one experiment 

of throwing a die in which the experimental approach could not be operated. Hence, the case 

of m** thinkers reveals an adequate recognition of the contextual circumstances. This helped 

clarify the meaning of contextual recognition as a factor required to reason probabilistically. It 

not only designates students’ ability to connect the mathematical model with real 

circumstances, but it also indicates their recognition of the required assumptions to select and 

handle the appropriate probability interpretation that may fulfil the situation. 

Second, O reasoning defined the second prevalent model of thinking after M reasoning; it 

also emerged in students’ responses to the three problems of giving birth, throwing a die, and 

weather predictability, in the percentages of 10.3%, 26.5%, and 50%, respectively (see Figure 

18).  

According to such type of reasoning, experimental probability implies the preferred 

approach to model an uncertain situation; yet, it was not fully understood by the students. They 

thought about experimentations not to define the probability but to anticipate the favorable 

outcome (except the case of o** thinkers). This was reflected when they decided to (a) check 

the posterior results of the delivery process to judge the expected event of a girl’s birth, (b) 

determine the number of trials or the possible techniques at which number 5 can be obtained, 

and (c) define several causes of why rainfall will occur, for the problems of giving birth, 

throwing a die, and weather predictability, respectively. Moreover, O thinkers (except o**) 

interpreted these tasks as if the question was under what circumstances (a) the woman is going 
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to deliver a baby girl, (b) the die rolling will produce number 5, and (c) rainfall will occur, 

respectively. Thus, their judgments were self-evaluated as being right or wrong on whether 

such favorable outcomes would occur in a particular trial or not. This means that, for them, the 

next expected event will or will not be (a) a baby girl, (b) number 5, and (c) rain occurrence, 

respectively. In this way, their given arguments reflected multiple causes because of which that 

outcome might occur if those causes were sustained. 

As revealed, O thinkers’ category included the three sub-categories of o, o*, and o**, 

which all operated the experimental probability. While both o and o* thinkers misunderstood 

the experimental probability, as described above, o** thinkers showed an adequate 

understanding of it since they recognized the experimental probability to be the relative 

frequency of occurrence of an event in a large number of trials (see Table 29). This appeared 

when o** thinkers (a) calculated the probability of getting a 5 by manipulating the die many 

times to get a precise estimation that approaches their prior theoretical expectation and (b) 

interpreted a 60% chance of rain in terms of previous similar environmental circumstances. In 

addition, the next discussion explains how the concepts of randomness, variability, and 

contextual recognition were perceived by o, o*, and o** thinkers. 

Regarding variability, although all O thinkers admitted it, the ways in which they 

perceived such variability were quite different. The variability for o and o* did not depend on 

the frequencies, but instead, on one single trial through which the favorable outcome can be 

interpreted. This explains why they adjusted their expectations to be within two sets: one 

contained the favorable outcome, while the other included all other outcomes (i.e., the 

complementary set). Their predictions were self-evaluated to be correct for the former and 

faulty for the latter. On the contrary, o** thinkers exposed sufficient knowledge of the concept 

of variability in which the estimation varies depending upon the frequencies in the total number 

of performed trials. 

Additionally, other conceptions relevant to o and o* thinkers’ understanding of 

randomness were also defined. For o thinkers, who thought of examining the next posterior 

result of the random process to operate the experimental probability, both the prediction 

conception and prediction bias emerged. The prediction conception signifies a 

misunderstanding of the expectation’s intention and does not recognize it to be a way to 

quantify our information regarding unknown phenomena. This emerged when some o thinkers 

supposed that after the experiment occurred, we would still have to predict the outcome, which 

is not correct since the phenomenon will not be probabilistic anymore. On the other hand, 

although the prediction bias shows an understanding of the expectation’s intention, this 
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expectation is often judged precisely. Thus, because randomness requires uncertainty and 

independence, all students who shared the prediction conception and prediction bias 

declined such randomness, precisely the uncertainty. 

Similarly, for o* thinkers, other conceptions that indicated various understandings of 

randomness appeared. Nonetheless, it was not related to the uncertainty, similar to o thinkers, 

but rather to the concept of independence as one factor associated with randomness. As detailed 

in the three contexts, o* thinkers confused causality with conditionality, wherein they judged 

the conditioning event that they self-reasoned (decided it by themselves) to be a cause for the 

favorable outcome that represents the result. This explains why they considered (a) the 

woman’s appearance, (b) die controllability, and (c) environmental circumstances to be the 

causes of having a baby girl, obtaining number 5, and rainfall occurrence for the tasks of giving 

birth, throwing a die, and weather predictability, respectively. Hence, o* thinkers exposed 

their causal conception, which denies the independence that remains an essential feature of 

probabilistic reasoning. As reported earlier (see Chapter 4), in a probabilistic situation, there is 

neither dependence nor causality; moreover, the present information cannot provide enough 

evidence to explain the resultant outcome. 

Again, o** thinkers exhibited an adequate understanding of variability, and they also 

displayed a tacit recognition of randomness. Such randomness appeared obviously in the 

activity of throwing a die for students who acknowledged the law of large numbers to obtain 

a better judgment that approximates the theoretical expectation of 1/6. For them, the favorable 

outcome of 5 could not be undoubtedly predicted; alternatively, when the number of trials 

increased, the prediction would be more accurate. Thus, randomness could generate a fair 

distribution in the long term if and only if the number of trials were increased. 

In addition to the previous analysis that detailed O thinkers’ conceptions of variability and 

randomness, this paragraph describes how they recognized the contextual concerns that were 

embedded in the three given tasks. On one hand, all O thinkers identified real-world conditions 

from which the problem arose. As revealed, in the context of giving birth, o and o* thinkers 

strengthened several circumstances they may encounter in daily situations such as miscarriage 

or women’s bodily appearance (see Table 25). Similarly, their recognition of the data context 

was exhibited when they declared issues such as the following for the tasks of throwing a die 

and weather predictability, respectively: (a) the backgammon game that signifies one 

dominated traditional game is often played by Egyptian males and involves using two dice, 

and (b) overcast, cloudy, humidity, or stormy weather is the cause because of which rainfall 

may occur. 
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On the other hand, o** thinkers showed another type of contextual recognition: the task 

context (Pfannkuch, 2011). While the data context defines students’ awareness of the real 

context from which the problem arose, and it was reflected in o and o* thinkers’ responses, the 

task context denotes one of the learning experience contexts (i.e., historical, social, and task 

contexts). It includes identifying the task sequence and its motivating story (Hershkowitz, 

Schwarz, & Dreyfus, 2001, as cited in Pfannkuch, 2011). Thus, recognition of the task 

context was mainly expressed in o** thinkers’ awareness of the term once; it motivated them 

to increase the number of trials to calculate the experimental probability of obtaining number 

5 (the motivating story). Moreover, o** thinkers acknowledged the constraints of manipulating 

the experimental probability which requires conducting a very large number of identical trials. 

Similarly, their reliance on the experimental probability to approach the weather predictability 

task and explain a 60% chance of rain designates a clear understanding of the appropriate 

circumstances when that experimental probability works. 

In general, the case of O thinkers (except o**) mirrored Konold’s (1989, 1995) 

identification of the outcome approach; it is the manner in which adults (undergraduate 

students) performed informal reasoning under uncertainty wherein they understood that their 

task was to decide what is going to occur. Consequently, their focus shifted to the favorable 

outcome itself, whether it is going to happen or not. Moreover, such type of thinking was 

described in some previous studies as deterministic reasoning that is usually employed in 

contexts where there is no uncertainty (Savard, 2010). As a pioneer, Konold (1989) stated that 

outcome-oriented thinkers’ predictions represent a deterministic model of the situation. This 

model is mostly generalized by students to all other situations (Musch & Ehrenberg, 2002), 

affecting their probabilistic reasoning. Also, Engel and Sedlmeier (2005) described that 

secondary school students held a mechanistic-deterministic view of the world, which is 

difficult to change even when increasing years of schooling. Perhaps the position of probability 

within the mathematics school curriculum denotes one cause for why students still exhibit such 

deterministic reasoning that persists even in university students. PCMI (2017) declared that 

because statistics and probability are included in other courses (e.g., algebra), students often 

find it difficult to differentiate between deterministic and probabilistic reasoning. Such 

argument resembles the Egyptian context wherein statistics and probability are usually 

admitted as the last unit within the algebra course. 

Additionally, other studies identified similar conceptions and biases that O thinkers shared 

(i.e., prediction bias, chance controllability, causal conception, and prediction conception). 

For example, the prediction bias was described in different studies and was also associated 
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with students’ deterministic reasoning. As clarified in Savard’s investigation (2010), some 

students utilized deterministic reasoning wherein they supposed that prediction means to 

determine the next outcome certainly. Besides, the conception of chance controllability—

which appeared in some responses that affirmed managing the technique of die rolling to get 

number 5—was reported by Estrella and Olfos (2010). In addition, Theis and Savard (2010) 

termed it as the illusion of control to reflect individuals’ belief that they control issues of 

chance games. Furthermore, Larose et al. (2010) stated that the reason for holding such a 

conception is that the probability instruction does not draw on students’ real social practices 

(e.g., gambling games), of which only these practices can help them to overcome several 

erroneous conceptions, such as the chance controllability; it is inherited in individuals' 

everyday life psychology. This resembles what Konold (1995) declared about teaching 

probability that is rarely built upon authentic contexts; thus, students often exhibited 

deterministic conceptions of probability. 

The causal conception often arises in reasoning under uncertainty wherein individuals 

have a strong natural tendency to search for specific causes (Wild & Pfannkuch, 1999). This 

agrees with what Konold (1989, 1991) affirmed concerning the outcome approach wherein 

individuals often base their predictions on a causal analysis of the situation. Although the 

outcome approach is inconsistent with the experimental probability interpretation, it is still 

reasonable in various everyday decisions (Konold, 1989) in which causality is practiced. As 

reported before, the tendency to think of causes to explain an event’s occurrence devalues the 

concept of randomness, as chance stems from what is not attributable to linear causality (Larose 

et al., 2010). 

Finally, the prediction conception, a term coined by the researcher, defines students’ 

misunderstanding of the prediction purpose. Although there was no such recognized 

conception among the reviewed studies, Devlin’s (2014) argumentation in the “Foreword” of 

the book Probabilistic Thinking: Presenting Plural Perspectives expressed a relevant idea. He 

argued that in a random situation like tossing a coin, if the coin was thrown and the outcome 

became already known by some students while it is still unknown to others, the distinction 

between the two groups is what they know about the outcome. In this sense, the probability 

quantifies our information about events, but not the events themselves. This idea was not fully 

grasped by some students in the current investigation. 

The third manner of reasoning that the students exhibited is S. It appeared in both the 

contexts of giving birth and weather predictability in the percentages of 60.3% and 10.4%, 

respectively; however, it did not emerge in the task of throwing a die (see Figure 18). As stated 
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before, the subjective interpretation of probability can lead different individuals to specify 

different probabilistic values for the same event. This may happen even within the context of 

throwing a die wherein the probability of getting number 5 changes based on the individual’s 

information about factors such as fairness of the die or the technique of throwing itself (Konold, 

1989). Similarly, when a coin is tossed, if any circumstance such as the way a person tosses, 

air movement, or peculiarity of the ground is altered, we might obtain other events (Rast, 2005). 

Nevertheless, the emergence of type S reasoning, specifically in the contexts of giving birth 

and weather predictability, matches the interpretation of many researchers regarding the value 

of authentic daily life situations in revealing the subjective side of probability and further 

probabilistic reasoning (e.g., Chassapis & Chatzivasileiou, 2008; Konold, 1995; Larose et al., 

2010; Musch & Ehrenberg, 2010; Savard, 2008).  

M and O reasoning reflect the objective side of probability, in which probability defines 

the property of an object, and they are often separated from a person’s judgments (Borovcnik, 

2012). However, S reasoning reveals the epistemic subjective side based on which the 

probability can be always revised and updated according to the individual’s knowledge and 

experiences. This explains why S thinkers relied on various information regarding (a) issues of 

the woman genetic state or sonar results and (b) the factors of season, time of the year, 

inclination and intensity of clouds, or wind movement to judge the probability of giving birth 

to a girl and interpret a 60% chance of rain, respectively. Moreover, all these circumstances 

specified several sources of information that may alter their judgment; they did not work as 

causes or reasons that justify why a particular event occurred like in the case of o* thinkers. In 

this sense, S thinkers speculate what Borovcnik (2012) stated regarding subjectivists who 

consider probability to be the degree of credibility that is judged based on various types of 

information; this information may stem from relative frequencies, experts’ knowledge, or can 

be formed by personal expectations and experiences, which is the current case of S thinkers. 

As revealed, the S thinkers’ category included three sub-categories of s that arose only in 

the context of giving birth; and s* and s** that emerged in both the contexts of giving birth and 

weather predictability. Besides, each sub-category outlined some of the students’ conceptions 

and biases; they were characterized in terms of the factors of variability, randomness, 

and contextual recognition, as follows. 

All S thinkers regarded the variability of outcomes; for them, it meant that the expected 

outcome alters depending upon the available information regarding the phenomenon under 

study. Thus, their responses were expressed in a common form of it depends (see Tables 24 

and 28). As reported earlier, in the context of giving birth, although they determined the 
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probability of giving birth to a girl mathematically (see Table 21), they also expressed that such 

given percentages (their numerical estimations) may change considering the available 

information about the pregnant woman. Moreover, for the task of weather predictability, they 

affirmed that a 60% chance of rain did not indicate an absolute value; instead, it designated 

several environmental circumstances that work together, based on which this percentage might 

alter. Nonetheless, the nature of the conditions in which the outcomes’ variability was assigned 

varied between s, s*, and s**.  

Both s and s** attributed the variability to several cognitive criteria, such as considering 

spontaneous abortion as a possible outcome or the issues of X and Y chromosomes to explain 

why the probability of giving birth to a girl may alter. Similarly, s** thinkers reasoned about 

multiple environmental circumstances (see Table 28) to describe a 60% probability of rain. On 

the other hand, s* thinkers emphasized the religious conception of Allah’s will as a possible 

factor that may alter the outcome. Furthermore, in this study, the conception of Allah’s 

will determined a specific type of probabilistic reasoning, which was judged in light of 

admitting the influence of socio-cultural factors on students’ conceptions of probability. This 

is in contrast with some other studies that considered the animism attribution of phenomena to 

God to be a personalist interpretation or superstitious reasoning, as reported before. 

While s* thinkers’ understanding of the concept of variability remained different from 

both s and s**, other differences relevant to the randomness were found between s and both s* 

and s**. s thinkers shared the prediction bias that emerged only in the giving birth context; 

consequently, some students thought that the available information could help them judge the 

probability certainly. For example, if the ultrasound scan showed a baby girl, then the 

probability of giving birth to a girl would change to 100% (see Table 24). This 

resembled o thinkers’ reasoning in the task of throwing a die, wherein they precisely 

determined the number of trials after which number 5 can be obtained. Thus, the prediction 

bias appeared in two different contexts, and it originated in various manners of reasoning; 

nonetheless, the form of that bias was a little different. The exact prediction was expressed as 

(a) 100% for s thinkers because they kept their focus on the probability and (b) a specific 

number of experiments to get a particular outcome for o thinkers who sharpened the favorable 

outcome. In addition to the prediction bias, some s thinkers maintained the dependence 

conception to interpret the dependent relationship between two events as a causal relationship. 

Thus, for s thinkers, the probability of giving birth to a girl was determined by previous babies’ 

gender, which also eliminates the randomness that demands independence. 
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On the contrary, both s* and s** thinkers acknowledged the randomness. This emerged in 

the context of giving birth when they declared that the probability of giving birth to a girl could 

not be predicted with a 100% certainty; similarly, they claimed that a 60% chance of rain was 

not an exact judgment, but it might alter depending upon the interplay among several 

conditions (see Table 28). Because s, s*, and s** thinkers relied on the subjective 

probability to explain both the contexts of giving birth and weather predictability, it is 

reasonable to share different conceptions about randomness. This was clarified by Batanero et 

al. (1998) that for subjectivists, randomness is also subjective. It is no longer an objective 

physical property, but rather a subjective judgment (Batanero, 2015), which means that what 

may be random to one person may not be random to another. This typically 

explained s and s** thinkers’ decisions regarding the probability of giving birth to a girl; it was 

judged as a non-random phenomenon after knowing the ultrasound scan results for s thinkers, 

but it stayed an uncertain phenomenon for s** thinkers. 

Also, contextual recognition, as revealed by the analysis, defined two issues of the (a) data 

context, which refers to students’ understanding of the real context from which the problem 

emerged and (b) task context, which reflects an understanding of the task’s motivating story 

using which the appropriate probability interpretation can be handled depending upon the 

situational circumstances of the random phenomena. In this regard, all S thinkers showed 

the data context wherein they all relied on several real conditions to explain both the situations 

of giving birth and weather predictability. Moreover, they showed a recognition of the task 

context in which these situations, for S thinkers, might be operated through the subjective 

probability interpretation. 

According to De Finetti (1974), because “the degree of belief in the occurrence of an event 

attributed by a person at a given time with a given set of information is the subjective 

probability” (Rast, 2005, p. 21), situations such as election, winning a lottery or a chance game, 

gender of a child at birth, and the state of the weather should be approached through subjective 

probability. The reason is that such situations cannot be repeated under the same conditions 

(Rast, 2005). Following this argument, S thinkers were judged to have a kind of understanding 

of the probability context. This meant that each probabilistic situation represents a particular 

case wherein past information cannot help one attain a reasonable judgment regarding that 

situation. This explains why S thinkers did not rely on the experimental probability to approach 

both the contexts of giving birth and weather predictability. 

Lastly, the fourth manner of students’ reasoning in a simple unconditional probabilistic 

situation is I. It was applied by 25% of students who responded to the task of weather 
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predictability (see Figure 18) wherein they interpreted a 60% chance of rain using the 

qualitative expression of “it is most probable that it will rain tomorrow” (see Table 30). 

Although I reasoning appeared only in the task of weather predictability, it was practiced 

by a quarter of the respondents. Besides, as clarified before, I thinkers were neither classified 

as a sub-category of S (e.g., Torres & Contreras, 2014) nor O (e.g., Konold, 1989). They 

judged a 60% probability of rain compared with 50%, whether it is higher or lower, which 

means that their criterion was not subjective but mathematical (still, without relying on 

theoretical interpretation). I thinkers also focused on defining the probability without reflecting 

on similar prior circumstances; in other words, they did not intend to utilize the experimental 

probability. Based on this, I thinkers’ conceptions of variability, randomness, and contextual 

recognition were interpreted as follows: 

About variability, I thinkers recognized that the probabilistic situation involved more than 

one possible outcome. However, their alternatives included only two options of the favorable 

outcome or any other event, which is similar to the case of o and o* thinkers. Furthermore, 

their understanding of randomness was expressed in a common qualitative expression of “Still, 

because of 60% probability, we are not sure that it is going to rain.” That is, 

for I thinkers, randomness reflected a quantification of their information about the situation; it 

was judged in light of a continuous decision line that rangs from 0% to 100%. 

Notwithstanding, I thinkers showed a novice recognition of the task context wherein the 

uncertain situation was explained qualitatively. 

According to Lysoe (2008), four categories determine the usage of uncertain words 

(hedges in the language). Category 1 involves expressions such as “He is likely to come,” 

which reflects the individual’s awareness about the existence of other outcomes rather than the 

mentioned one (i.e., the variability of outcomes). Category 2 includes expressions as “It is less 

likely that she is going to use those shoes,” which signifies the strengthening of Category 1 

since the event in Category 2 was described to have a smaller (or greater) chance of occurrence. 

Category 3 includes expressions such as “The probability of being shot by a policeman is 

greater than the risk of being murdered by a professional killer,” which contains a specific 

description of what alternatives may occur. Finally, Category 4 reflects high accuracy 

compared with the other categories because of the usage of numbers that quantify how probable 

some events are, such as “The police said that the probability of clearing up this case is 100%.” 

Although almost all M, O, and S thinkers belonged to Category 4 since they quantified the 

random phenomena (the three given tasks) using specific mathematical percentages, I thinkers 

remained in level 2 because their interpretation of the probability included qualitative idioms 
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(e.g., most probable). This illustrates why I thinkers were judged to have a novice recognition 

of the task context; they committed to the second level of Lysoe’s (2008) categorization, which 

describes how individuals may develop their intuitive knowledge of probability. 

Based on what was discussed about the four distinguished manners of students’ reasoning 

and their shared conceptions characterized in terms of variability, randomness, and contextual 

recognition, Table 32 displays the developed schema that exemplifies students’ R(in)P, which 

is related to simple unconditional probabilistic situations. It showed that from the PoPR, the 

theoretical constructs (concepts) students often rely on to model probabilistic phenomena 

include variability, randomness, and contextual recognition; however, students still share 

various conceptions of each construct depending upon their different manners of reasoning. 

 
Table 32. A model of PSMTs’ R(in) P that is related to a simple unconditional probabilistic 

situation 
Reasonin

g types 
Theoretical constructs that are required to reason probabilistically 

Variability Randomness Contextual recognition 
M reasoning: It models the uncertain situation through the theoretical probability  

m The outcomes vary 
depending upon several 
possible events in the 

sample space. 
[Variability by sample 

space elements]  

• Equiprobability 
• Insensitivity to the prior 

probabilities of the 
outcomes 

(the random nature of the 
experiment remains a 
sufficient indication of 

equiprobable outcomes) 
[Randomness as 
Equiprobability] 

•  Representativeness 
heuristic 

[Context defines the realistic 
circumstances that are equal 
in occurrence to explain the 

uncertain situation] 
m* • Overgeneralization 

heuristic 
(the practical obstacles must 
be declined, and instead, a 
general formula should be 

developed) 
[Context defines a barrier 

against interpretation of the 
uncertain situation] 

m** [Randomness does not 
always yield a fair 

distribution] 

Depending upon the 
circumstances of the uncertain 
phenomenon, the appropriate 

probability interpretation 
should be utilized. 

[Context defines the 
conditions of the task that 

may strengthen the 
utilization of a specific 

probability interpretation 
more than another] 

O reasoning: It models the uncertain situation through the experimental probability  
o The outcomes vary 

between two 
alternatives of either the 

• Prediction conception 
(misunderstanding of the 
expectation’s intention) 
• Prediction bias 

Several daily life situations 
resemble the given contexts, 

such as the backgammon game 
or the rainy weather in winter. 



 128 

favorable outcome or 
any other event.  

[Variability by either 
a specific outcome or 
its complementary] 

 
 
 

(the prediction has the 
meaning of the exact 

prediction) 
[Randomness can be 

judged certainly] 

[Context defines realistic 
circumstances that resemble 

the uncertain situation] 

o* • Causal conception (the 
conditioning event is 

the cause for the 
favorable outcome 

occurrence) 
[Randomness does not 

always require 
independence] 

o** The outcomes vary 
depending upon the 
possible resultant 

frequencies in a large 
number of performed 

trials. 
[Variability by the 

frequencies of many 
trials] 

Randomness generates a 
fair distribution in the long 

term if and only if the 
number of trials has been 

increased. 
[Randomness as stability 

of frequencies] 
 

Depending upon the 
circumstances of the uncertain 
phenomenon, the appropriate 

probability interpretation 
should be utilized. 

[Context defines the 
conditions of the task that 

may hinder the utilization of 
a specific probability 

interpretation] 
S reasoning: It models the uncertain situation through the subjective probability  

s The outcomes vary 
depending upon the 
multiple available 

information about the 
phenomena. 

[Variability by the 
available information] 
 

• Prediction bias 
• Dependence conception 

(if two events are 
dependent, then one is 
a cause for the other) 

[Randomness as self-
criterion based on the 

credibility of the 
available information] 

Several real situations may 
explain the probabilistic 

phenomenon.  
[Context defines realistic 
circumstances that are 

known at the moment by a 
specific person to explain the 

uncertain situation; thus, 
each situation is restricted 

by the information available 
to the person who is judging 

it]  
 
 
  
 

 
 

s*   The outcomes vary 
depending upon Allah’s 

will. 
[Variability by Allah’s 

will] 

Randomness still exists 
even after adapting the new 

information; that is, 
whatever we knew, the 
outcome could not be 
anticipated certainly. 

[Randomness as a self-
criterion based on the 

credibility of the 
available information] 

 
 

s** The outcomes vary 
depending upon the 
multiple available 

information about the 
phenomena. 

[Variability by the 
available information] 

I reasoning: It explains the uncertain situation using qualitative expressions   
 The outcomes vary 

between two 
alternatives of either the 

favorable outcome or 
any other event. 

[Variability by either 
a specific outcome or 

any other event] 

Randomness reflects any 
percentage that lies on the 
continuous decision line 

ranging from 0% to 100%. 
[Randomness as an 
expression of any 

percentage ranging from 
0 to 100] 

[Context defines the usage of 
qualitative expressions to 

explain the uncertain 
situation] 
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5.3 PSMTs reasoning in a conditional probabilistic situation  
5.3.1 PSMTs reasoning in the context of giving birth after adding a new condition 

As mentioned, the intention of analyzing students’ responses to Item B, which denoted a 

modification of the problem of giving birth by adding one condition, was characterizing their 

R(in)P that is related to a conditional probabilistic situation. This helped clarify the notion of 

subjective probability as a general classifier. In that sense, it is necessary to, again, highlight 

the epistemological difference between both Items A and B. Item A was designed to address 

students’ reasoning in a simple probabilistic situation (as stated earlier); accordingly, it was 

formulated in a static form without any given conditions. On the other hand, Item B signified 

a diachronic situation that contains a series of sequential experiments carried out over time 

(Díaz & de la Fuente, 2007; Díaz et al., 2010)—that is, P(G|BB). 

As detailed in Appendix 8, Item B exemplified this situation: If you knew that a woman 

had given birth to two boys before, and she will give birth to her third child, then (Q1) What is 

the probability of her giving birth to a girl in the new case (i.e., after incorporating the given 

condition)? and (Q2) Explain how you have determined such a probability. In other words, 

why do you think that your expectation in the first situation (i.e., firstborn) is the same or 

different than in the second one (i.e., third born)? 

Before progressing into detail, Table 33 summarizes students’ expectations regarding the 

probability of giving birth to a girl after knowing that the woman gave birth to two boys before. 

Their expectations varied between keeping the initial percentages (i.e., what they stated earlier 

in Item A) and adjusting it higher or lower. This represents their numerical answers given in 

response to the first question of Item B. 

 
Table 33. PSMTs’ expected probabilities of giving birth to a girl after knowing about 

the condition of giving birth to two boys before  
Typical responses 

   Probability of giving birth to a girl  
  is still as same as the first 

situation in Item A  
    differs from the first situation in Item A. Thus, 

the estimated value will change  
Student 
stated 

probabili
ty  

(numeric
al 

answers) 

1/2 or 
50% 

1/3 or  
33.3
% 

1/5 
or 

20% 

3/5 
or 

60% 

from 
50% to a 

lower 
value 

(33.3%; 
25%; 
20%) 

from 
33.3% 

to a 
lower 
value 
(25%; 
30%) 

from 
60 

% to a 
lower 
value 
(25%; 
40%) 

from 
50% to 

a 
higher 
value 
(60%; 
70%; 
80%) 

from 
33.3% 

to a 
higher 
value 
(50%; 
40%) 

from 
20 % 
to a 

higher 
value 
(50%; 
33.3) 

N = 68  25 6 7 2 13  4 1  3 3 4 

40 responses did not changed 
their initial expectations 

18 responses 
 have decreased their initial 

expectation 

10 responses 
have increased their initial 

expectation   
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Additionally, the students expressed several reasons to keep or change their initial 

estimations after knowing the given condition. Accordingly, their responses were categorized 

(inductive data analysis process) under the principal categories of Generalizer [G], 

CONservative [CON], CORrelational [COR], and Rational [R] thinkers; also, each category 

included sub-categories (except R). Table 34 summarizes the distribution of such manners of 

reasoning among the students. Moreover, in this study, while both G and CON defined 

intrasubjective probability, COR and R represented intersubjective probability (Chernoff, 

2008), as explained in Section 5.3.3.  

 
Table 34. PSMTs’ manners of reasoning in the context of giving birth after knowing that 

the woman gave birth to two boys before 
Major categories Frequency Percentage 

Generalizer [G = HOL + A] 40  58.8 % 
Conservative [CON = SO.C + SU.C] 8  11.8 % 

Correlational [COR = HOR + V] 16  23.5 % 
Rational [R] 4  5.9 % 

Minor categories Frequency Percentage 

 

HOL 33 48.5 % 
A 7 10.3 % 

SO.C 3 4.4 % 
SU.C 5 7.4 % 
HOR 3 4.4 % 

V 13 19.1 % 
R 4  5.9 % 

Total 68  100.0 
 

In detail, the next discussion explains each type of reasoning. It starts with students who 

disregarded the condition of giving birth to two boys before from the analysis; these included 

both G and CON thinkers, as follows:  

 
§  First: PSMTs who disregarded the given condition from the analysis 

Based on students’ responses, two broad categories of Generalizer and CONservative 

thinkers were inferred, whose ways of reasoning are simplified in Tables 35 and 36. 

G thinkers kept their initial estimation, in which they agreed that the probability of giving 

birth to a girl after knowing that the woman gave birth to two boys before remains the same as 

the probability of giving birth to a girl without any given circumstances. Consequently, their 

common response was “there is no difference between our expectations or the way we thought 

in both situations.” Although G thinkers judged P(G|BB) as equal to P(G), their stated reasons 

were quite different. While HOL thinkers highlighted the process itself (the random process), 

the outcomes of that process were strengthened by A thinkers. 
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Table 35. Generalizer thinkers’ typical responses in the context of giving birth 

 
Generalizer thinkers [G] 

Holistic [HOL] Atomistic [A] 
Students’ 

typical 
responses 

The probability will not change because  
we still have the 

same 
possibilities of S 
= {B, G; B, G, 
twins; or B, G, 
BB, BG, GG}, 
as all expected 

outcomes. 

determining a baby’s 
gender implies a random 

process, in which we 
cannot predict the 

outcome with certainty. 
Hence, the way of 

predicting is always the 
same, no matter first, 
second, or third born. 

the situation signifies a 
random process, which means 

that its events should be 
independent. Thus, there is no 

relationship between the 
previous babies’ gender and 
that of the newborn, and our 
estimation remains the same 

as Item A. 
N = 40  26 6 7 responses 

33 responses 
 

This manner of reasoning can be interpreted in light of the anchoring and adjustment bias 

that demands adjusting the initial value to yield the final answer (Tversky & Kahneman, 1974). 

From this aspect, G thinkers first generated a preliminary judgment called the anchor; then, in 

the second stage, they adjusted that judgment to incorporate the additional given information. 

Nevertheless, their adjustment was insufficient (Lieder, Griffiths, Huys, & Goodman, 2017). 

Concretely, G thinkers first developed their anchor from experiencing the first situation of Item 

A; that is, any random experiment yielded a fair distribution wherein P(G) = P(B) = P(twins) 

and its outcomes were independent (i.e., equiprobable bias). Later, in the second stage of 

handling the new situation of Item B, they perceived that situation through the previously 

generated anchor. Consequently, they acknowledged that for any random process, all outcomes 

are independent and equally likely to happen without thinking of how the new information 

about the previous babies’ gender may (or may not) alter the sample space or even the expected 

outcomes. This analysis is consistent with what Epley and Gilovich (2004) noted regarding 

anchoring and adjustment, which can occur without an externally provided anchor (i.e., Item 

B did not declare any percentages to hold from it), as some subjects seem to generate their own 

anchors and adjust from them (self-generated anchors). 

In this regard, it is evident that the principal reason for the anchoring and adjustment bias, 

which was shared by G thinkers, was the overgeneralization process. It reflected a mental 

heuristic in which individuals search for a general formula that always works. Such general 

formula of P(G|BB) = P(G) illuminated both HOL and A thinkers’ understanding of the 

independence concept, which appeared when indicating the random process (whole) and the 

outcomes of that process (parts), respectively. Thus, the reason why G thinkers held their 



 132 

initial estimation was a rational cognitive motive, which coincides with Lieder et al.’s (2017) 

interpretation of the anchoring bias that can be understood as “a signature of resource-rational 

information processing rather than a sign of human irrationality” (p. 29). 

On one hand, HOL thinkers agreed that their estimation should be the same as before 

because (as they stated) “the process of determining a baby’s gender in both situations of A 

and B reflects a random experiment with various possible outcomes that are expressed by the 

sample space elements; also, the favorable outcome cannot be predicted with certainty.” 

Consequently, they supposed that the provided condition (i.e., giving birth to two boys before) 

would not affect their estimation since the sample space of the experiment still has the same 

equally likely expected outcomes (e.g., {B, G, twins}). On the other hand, A thinkers stressed 

on the outcomes and judged them to be independent. As they reported, “because the process 

of predicting a baby’s gender embodied a random experiment, its results had to be 

independent; then, there was no relationship between the events of first, second, and third 

births.” In other words, the probability of giving birth to a girl did not depend on previous 

babies’ gender; or the gender of the thirdborn baby would not be affected by either the first or 

second born babies’ genders. This resembled responses stating that “if the woman delivered 

two boys before, this does not guarantee that she will give birth to a girl or even a boy later.” 

Based on the above analysis, both HOL and A thinkers shared the anchoring bias inherent 

in overgeneralizing the independence concept; it motived them to anchor and fix their initial 

estimation of giving birth to a girl and drop the given condition from the context. One possible 

reason for this is the type of conventional pedagogical probabilistic activities that are mostly 

practiced in both teacher education and school curricula. Because students were not used to 

modeling a real phenomenon, their inferences were inspired by the theoretical mathematical 

formula P (A|B) = P(A) that may not fully satisfy such a realistic context. As described by Díaz 

et al. (2010), “statistical data will rarely lead to exact equality for independent events, and 

perfect independence is not found in ‘real’ applications” (p. 151). Additionally, Kataoka et al. 

(2010) highlighted that most curriculum activities handle the concept of independence with the 

context of chronological events. Hence, another likely reason for G thinkers (or more 

obviously A) to exhibit drastic reliance on the independence notion is the formulation of Item 

B (chronological).  

As stated earlier, besides the category of G thinkers, another category emerged to define 

students who also disregarded the given condition, that is, the conservative thinkers [CON] 

who shared the responses displayed in Table 36. 
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Table 36. Conservative thinkers’ typical responses in the context of giving birth 
 Conservative thinkers [CON] 

Socially conservative [SO.C] Subjectively 
conservative [SU.C] 

Students’ 
typical 

responses  

  We have changed the expectation 
because some women give birth to the 
same gender always. Therefore, this 
woman may resemble such a case in 

which she gives birth to only boys. Then, 
the probability of giving birth to a girl will 

be lower than the initial estimation. 

Regardless of whether 
the expectation changes 
or not, the probability of 

giving birth to a girl 
remains a matter of 

Allah’s will. 

N = 8  3 responses 5 responses 
 

Again, the common feature between G and CON thinkers is that both excluded the given 

condition when analyzing the second situation. Although the anchoring bias, which was rooted 

in the overgeneralization heuristic, held the source of this exclusion for G thinkers, the same 

exclusion of the given condition had another root beyond the anchoring bias for 

the CON thinkers. 

For more clarification, socially conservative thinkers [SO.C] changed their numerical 

estimation when they were asked to interpret Item B, which means that they were aware of the 

difference between situations A and B. Nevertheless, they insisted on sharpening the socially 

shared belief that some women always give birth to the same gender. This reflects their inability 

to overcome such a belief, which prevented them from considering the given condition. 

Similarly, the subjectively conservative thinkers [SU.C] did not clarify clearly whether their 

expectations would change or not; instead, they maintained the concept of Allah’s will to 

explain the new situation in a similar manner of dropping the provided condition. 

This description indicates that the reason why CON thinkers could not manipulate the 

given condition in their arguments was not purely cognitive, but rather it was inherent in some 

held beliefs. This can be explained in terms of Tversky and Kahneman’s (1974) psychological 

analysis of the illusion of validity, defined as “the unwarranted confidence which is produced 

by a good fit between the predicted outcome and the input information” (p. 1126). Accordingly, 

because some CON thinkers strongly believe that some women can give birth to the same 

gender (SO.C) and others have faith in Allah’s will (SU.C), they both decided to intentionally 

exclude the given condition from their interpretation. Such exclusion helped them ensure a 

good fit and consistency between the expected outcome (i.e., a baby girl) and their self-input 

(i.e., what they believe in) to perform the situation in Item B. Hence, the illusion of 

validity signified the reason why CON thinkers (a) retrieved their initial beliefs regarding the 
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first situation in Item A to interpret the new one in B, or (b) exposed similar beliefs in judging 

Item B that was avoided before for Item A. This illustrates why the number of students who 

shared such beliefs increased from four (see Tables 24 and 25) to eight (see Table 36). In that 

sense, the category of CON thinkers not only defines students who fixed their reasons, but also 

exposes several original dogmas that were difficult to overcome. This means that although 

some respondents tried to ignore these beliefs in their answers to Item A, they were not able to 

manage that in Item B. 

The above-stated analysis implicitly clarifies why G thinkers did not have the illusion of 

validity since they generalized their way of thinking and anchored their estimation, without 

awareness of the factors that may limit such a generalization. On the contrary, CON thinkers 

were conscious of the differences between Items A and B. However, when they tried to state 

their reasons to explain why the probability in Item B varied from Item A, they, again, relied 

upon their beliefs. That is consistent with what Tversky and Kahneman (1974) explained 

regarding the illusion of validity: it “persists even when the judge is aware of the factors that 

limit the accuracy of his predictions” (p. 1126). 

In this regard, the commonality between G and CON thinkers is that both shared 

the anchoring bias. Nonetheless, the notion and source of such a bias was distinct. While it 

emerged that when G thinkers kept the initial estimation as a result of the overgeneralization 

heuristic so that the mathematical interpretation arose in their responses, for CON thinkers, it 

appeared because of the illusion of validity, which directed them to retrieve what they believed 

in and then anchor from it. In other words, although the anchoring bias originated in 

overgeneralization (cognitive source) and was displayed when the mathematical estimation 

was sustained for G thinkers, for CON thinkers, it was inherent in the illusion of validity (belief 

source) and appeared when maintaining the non-mathematical reasons. Hence, the numerical 

estimation and afforded arguments were both anchored because of the overgeneralization and 

illusion of validity for G and CON thinkers, respectively; then, the given condition was 

dropped, and P(G|BB) was, ultimately, judged as equal to P(G). Although CON thinkers’ 

responses (see Table 36) indicate a numerical change, their stated reasons for why such change 

occurred were the same as in Item A (i.e., the afforded arguments were anchored).  

 
§  Second: PSMTs who incorporated the given condition in the analysis  

Through continuing the analysis process, two other broad categories of correlational 

[COR] and rational thinkers [R] were inferred to portray students who emphasized the 

condition when interpreting the new situation of Item B. Table 37 clarifies their responses. 
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Although all students who belonged to these categories considered the condition (i.e., giving 

birth to two boys before) to revise the probabilistic estimation in Item B, there were some 

differences in how they perceived and utilized such a condition. This is detailed in the 

following discussion. 

 
Table 37. Correlational and rational thinkers’ typical responses in the context of giving birth 
 Correlational thinkers [COR] Rational thinkers [R] 

 Horizontal 
[HOR] 

 Vertical [V] 

Students’ 
typical 

responses 

The probability will change because  
in the new 
situation of 
Item B, S 
has the 
three 

outcomes of 
{B, B, G}; 
therefore, 

P(G) = 1/3. 

if a woman gave 
birth to two boys 

before, her 
probability of giving 
birth to another boy 
is higher than that of 
a girl. Or, if a woman 

gave birth to two 
boys, then it is more 
likely that her third 

child is going to be a 
girl.  

the new situation 
does not look 

very dissimilar to 
the first situation. 
However, if the 
number of boys 

continues to 
increase 

compared with 
girls, this could be 
an indicator of a 

genetic or 
biological issue. 

some of the previously 
considered conditions 
(in Item A), like when 
we supposed that the 
woman might have a 

miscarriage, do not exist 
anymore. Rather, in this 

situation, we already 
understood that the 

woman has high 
probability of giving 

birth to a child, whether 
a boy or a girl. 

N = 20  3 responses 13 responses 2 2 
4 responses 

 
The first emerged category is of correlational thinkers [COR], which include students 

who thought of the relationship among the various mentioned outcomes in the new situation 

(i.e., first, second, and third births of a boy, boy, and girl, respectively). Moreover, this category 

comprises horizontal [HOR] and vertical thinkers [V], whose reasoning has the following 

characteristics: 

HOR thinkers interpreted the new situation of Item B not as a diachronic one that 

incorporates a sequence of events, in which the first and second outcomes are known, and the 

third outcome is yet uncertain; rather, they consider it as a static one-stage situation. They 

assumed that Item B implied an experiment of three equally likely outcomes of two boys and 

one girl; further, the question was how to determine the probability of one possible event 

among the three outcomes. HOR thinkers tried to overcome the complexity in Item B by 

converting it into a one-stage experiment wherein it was easier to calculate the probability. 

Consequently, they modified the conditional probability context to a simple unconditional 

situation, which they used to judge. Accordingly, they modeled the new problem of Item B as 
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if S = {B, B, G}; then P(G)= 1/3. Such reasoning resembles what Lysoe (2008) reported during 

the study of prospective lower secondary school teachers’ understanding of simple and 

compound events, in which a common heuristic among them was identified and termed as 

the one-step heuristic. This occurred when the students found the answer by “simply 

transforming a two-step problem into a one-step problem or simple trial” (p. 2). 

Additionally, from a psychological viewpoint, the case of HOR thinkers can also be 

interpreted considering the availability heuristic, which indicates that the individual estimates 

the likelihood of an event based on the ease with which the relevant mental operations of 

retrieval, construction, or association can be performed (Tversky & Kahneman, 1974). In this 

regard, HOR thinkers were judged to share the availability heuristic, which appeared when 

they reduced the diachronic conditional probabilistic situation into a simple one. Furthermore, 

this simple situation is faster to calculate, or presumably more available based on their past 

experiences; both issues designate a couple of plausible causes for such a reduction process: 

the retrievability of instances or imaginability bias (Tversky & Kahneman, 1974). While the 

former may reflect the recent activities or tasks that HOR thinkers performed or most of the 

examples they encountered, the latter signifies a more cognitive construction, in which the 

mind attempts to reduce the load of the complicated computational rules of P(G|BB) and 

instead develop a simpler formula such as P(G). 

The other explored sub-category from COR is the vertical thinkers [V], which 

symbolizes students who associated the previous babies’ gender with the thirdborn’s gender. 

Thinking of such association oriented some V thinkers to decrease their initial estimation by 

clarifying that if the woman gave birth to two boys before, then the probability of giving birth 

to a boy, as a third child, will be higher than giving birth to a girl. Following the same reasoning, 

other students who were also classified under V thought that because the woman delivered two 

boys previously, she is more likely to give birth to a girl the third time; accordingly, they 

increased their first estimation, which they stated earlier in Item A. 

V thinkers interpreted the conditional probability of P (G|BB) as a causal relationship in 

which the conditioning event of BB (giving birth to two boys before), which already occurred, 

signifies the cause, and the conditioned event of G (having a girl as a third child) is the 

consequence. This resembles what was reported earlier regarding o* thinkers who could not 

differentiate between the two concepts of causality and conditionality. Notably, the causal 

conception has been discussed widely in different studies. Such conception considers a 

cognitive more than being induced by teaching; besides, it hides the reversible character of 

conditional probability, wherein this notion of reversibility is needed to understand the Bayes 
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theorem and statistical inference (Batanero & Sanchez, 2005; Díaz & de la Fuente, 2007; 

Savard, 2014; Tversky & Kahneman, 1982). Perhaps one reason why the causal 

conception was widespread among students who employed various manners of reasoning and 

was emerged in different probabilistic situations (unconditional and conditional) is that we 

often build our knowledge based on causes and effects. As individuals perceive the idea of 

causation intuitively, our conceptions about causation are sometimes biased, and at other times, 

there is a confusion between causality and conditionality (Falk, 1986). 

Besides the causal conception, some V thinkers shared the gambler fallacy that describes 

the belief that after a long run of the same result in a random process, the probability of the 

same event occurring in the subsequent trial is lower (Batanero & Sanchez, 2005; Lysoe, 2008; 

Savard, 2014). Although all V thinkers considered the previous two births being boys as 

a cause to speculate the probability of giving birth to a girl as a third child, some of them 

thought more theoretically in manner similar to interpreting conventional probabilistic 

activities (e.g., tossing a coin). This means that if the first outcome was B and the second also 

B, then G is more likely to be the next outcome. 

As displayed in Table 37, the last inferred category characterizes rational thinkers [R], 

which include students who also acknowledged that the new situation of Item B must be 

modified from Item A. Consequently, they decided to update their initial estimation regarding 

the probability of giving birth to a girl based on the provided information of delivering two 

boys before. Although R thinkers judged that the probability of giving birth to a girl in Item B 

remains different from their initial estimation before admitting any conditions, they declared 

that this does not imply a causal relation wherein giving birth to two boys before caused an 

increase or decrease in the probability (similar to V thinkers). Instead, for R thinkers, the given 

condition must be recognized within a group of other multiple factors (determinants), wherein 

all these factors act together to update the estimation. 

Concretely, some R thinkers considered the information about the previous babies’ gender 

as an indicator of a genetic state in which the continuous process of delivering baby boys could 

designate a genetic issue. Consequently, for such a case, the probability of giving birth to a girl 

will be lower than giving birth to a boy. Besides, other R thinkers grasped the given condition 

as a sign of the woman’s ability to deliver her baby. In that case, although the miscarriage was 

regarded as one possible outcome in interpreting Item A before knowing any information about 

the previous babies, such a miscarriage is less likely to occur in the second situation. As 

some R thinkers explained, acknowledging that a woman can deliver a baby, based on the new 

information, is going to reduce the number of elements in the sample space (after eliminating 
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the miscarriage outcome); then, the probability of giving birth to a girl must be updated 

(increased). In other words, the provided condition indicated that a woman had high chance of 

delivering a baby, whether a boy or girl. Such reasoning reflects Tarr and Jones’s (1997) 

argument regarding the ability to recognize the reduction of the sample space in conditional 

probability problems, which determines a typically high level of understanding of conditional 

probability. 

Before proceeding to the next part of the data analysis (conceptual difficulties when 

calculating conditional probability from a two-way table), it is valuable to regard the 

relationship between reasoning types in both Items A and B. This was one advantage of 

utilizing the same context (i.e., gender) to clarify students' manners of reasoning: one when the 

situation was simple (Item A) and another when it was conditional (Item B). Alternatively 

stated, this part attempts to explain how students’ reasoning in an unconditional probabilistic 

situation might be related to their reasoning in a conditional one. Accordingly, Table 38 

presents a cross-tabulation analysis for students’ reasoning in Items A and B, wherein twelve 

associations of reasoning emerged. 

 
Table 38. PSMTs’ reasoning in unconditional vs. conditional probabilistic situation 
 PSMTs’ reasoning in Item B 

(Conditional probabilistic situation) 
PSMTs’ 

reasoning in 
Item A 

(Unconditional 
probabilistic 

situation) 

 G CON COR R Total 
M 15 2 3 0 20 
S 22 5 11 3 41 
O 3 1 2 1 7 

Total 40 8 16 4 68 

 
According to Table 38, the most prevalent operated associations of reasoning were (S, G) 

and (M, G). It suggested that most of the current study participants who reasoned 

either subjectively or mathematically in Item A were more likely to employ type G reasoning 

when this item was conditioned in B. In that sense, and generally speaking, when students are 

confronted with probabilistic social phenomena, they are more inclined to employ either 

subjective or theoretical probability to model such a phenomenon; however, most of them think 

similarly if that phenomenon was conditioned. More precisely, they believe that the condition 

does not matter and the estimation remains the same, whatever with or without conditions. 

In detail, regarding the association of (S, G), about 32% of the participants, in the 

beginning, conditioned the probabilistic phenomenon of giving birth through issues like baby 

sonar results, ultrasound scan, or Allah’s will (see Table 24). Nonetheless, when they were 
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given a condition, they thought that such a condition had nothing to do with the probability. In 

other words, although they admitted the possibility of a probabilistic situation to be conditioned 

by several factors, they could not clarify how such conditions may influence the estimation. 

This is an interesting finding wherein students believed that several conditions might exist and 

restrict the probability. Nevertheless, when they were given a specific condition to scrutinize 

how it might affect that probability, they could not recognize it. Thus, and because they failed 

to discuss so, they, alternatively, argued that the estimation remained the same in both 

conditional and unconditional situations. On the other side, the case of (M, G) was more 

reasonable and expected; it reflected a mathematical way of modeling random phenomena, 

which was performed by about 22% of the participants. According to such a way, students 

emphasized merely sample space elements to estimate probability whatever that phenomenon 

was or was not conditioned. In other words, for those students, the probabilistic estimation 

stayed dependent on the sample space elements. Furthermore and based on the previously 

defined conceptions and cognitive biases in students’ reasoning, the next table allocates these 

conceptions to both associations of (S, G) and (M, G).  

 
Table 38. Characteristics of PSMTs’ (S, G) and (M, G) associations of reasoning   

Probabilist
ic 

reasoning  

Shared biases and 
conceptions 

(commonalities) 

Specific biases and conceptions 

(M, G) 
reasoning 
(15 cases) 

– The students 
shared the 
equiprobable bias. 

– They were 
insensitive to the 
prior probabilities 
of outcomes. 

– They interpreted 
the conditional 
probability in the 
same way as simple 
probability [i.e., 
P(A|B) = P (A)] 

– They practiced the 
anchoring and 
adjustment bias. 

– They did not 
understand the 
required assumptions 
for applying 
theoretical probability. 

– They tended to 
overgeneralize the 
notion of randomness. 

(m, HOL) = (9 cases) 

– They did not understand 
the required 
assumptions for 
applying theoretical 
probability. 

– They tended to 
overgeneralize the 
notion of independence. 

(m, A) = (2 cases) 
– They could not 

perceive the realistic 
context in such a way 
of connecting it with 
the mathematical 
explanation. 

– They tended to 
overgeneralize the 
notion of randomness.  

(m*, HOL) = (3 cases) 

– They could not perceive 
the realistic context in 
such a way of connecting 
it with the mathematical 
explanation. 

– They tended to 
overgeneralize the 
notion of independence. 

(m*, A) = (1 case) 
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(S, G) 
reasoning 
(22 cases) 

– The students 
interpreted the 
conditional 
probability in the 
same way as the 
simple probability. 

– They shared the 
anchoring and 
adjustment bias 

– They practiced the prediction bias. 
– They anchored the reason because of the illusion of 

validity. 
– They overgeneralized the notion of randomness. 

(s, HOL) = (2 Cases) 
– Their reasons were 

more cognitive. 
– They tended to 

overgeneralize the 
notion of randomness.  

(s**, HOL) = (16 cases) 

– Their reasons were more 
cognitive. 

– They tended to 
overgeneralize the 
notion of independence  

(s**, A) = (4 cases)  
– Their reasons were 

more cognitive. 
– They were unable to 

overcome some 
socially shared beliefs. 

(s**, SO.C) = (1case) 

– Their explanation was 
more cognitive. 

– They were unable to 
overcome the concept of 
Allah’s will. 

(s**, SU.C) = (1 case) 
 

5.3.2 PSMTs reasoning in a two-way contingency table 

Although students’ argumentations on how a given condition (new information) can be 

incorporated to alter the probability were characterized previously, their conceptual difficulties 

in calculating the conditional probability from a two-way table are analyzed in this section. 

Both results work together to capture students’ reasoning in a conditional probabilistic 

situation; hence, the notion of subjective probability as a general classifier can be clarified. 

As reported in Appendix 8, students were asked to respond to the two equivalent Items 

of E1 and E2. Accordingly, their answers to all questions were first analyzed (see Figure 19). 

Moreover, their solutions to Q3 and Q4 in both Items E1 and E2, which required conditional 

probability calculations, were categorized under the two major categories of those who (a) 

dropped and (b) operated the condition when computing the conditional probability (see Table 

20). Before going into detail, Tables 40 and 41 summarize the frequencies of students’ correct 

answers to all questions, considering that each question was answered by 34 students20; besides, 

Figure 19 displays the presented data in both tables. 

As shown in Figure 19, almost all students were able to calculate simple probabilities. 

However, for both joint and conditional probabilities, multiple wrong answers were given. 

Surprisingly, the highest percentage of students’ wrong answers emerged in calculating joint 

 
20 As reported earlier in Chapter 2, 34 students responded to each item of E1 and E2. While the former was 
answered by 16, 12, and 6 students in the second, third, and fourth years, respectively, 16, 11, and 7 students 
responded to the latter (see Table 8). Thus, the presented percentages in Tables 40 and 41 were calculated with 
respect to 34 students.  
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probabilities, while nearly half of the students (74 correct responses among 136) determined 

the conditional probabilities correctly. Perhaps one reason for students’ efficiency in 

computing the conditional probabilities is that the data were presented in the obvious form of 

frequencies, which are easier to calculate (Gigerenzer & Hoffrage, 1995) compared with using 

probabilities or percentages. 

 
Table 40. PSMTs’ calculations of simple, joint, and conditional probabilities in Item E1 

Item E1 questions Corresponding 
mathematical form 

Correct 
answer is  

Number of 
correct 
answers  

Q1 [The probability that a student 
prefers ElAhly] 

Simple probability [P 
(ElAhly)] 

[500/800] 33 
(97.1 %) 

Q2 [The probability that a student 
is in school B and prefers 

ElZamalek at the same time] 

Joint probability 
[P (School B ∩ 

ElZamalek)] 

[110/800] 6 
(17.6 %) 

 
Q3 [If you knew that the selected 

student prefers ElAhly, what is the 
probability that this student is in 

school A?] 

Conditional 
probability 

[P (School A| ElAhly)] 

[195/500] 22 
(64.7 %) 

 

Q4 [If you knew that the selected 
student belongs to school A, what is 

the probability that this student 
prefers ElAhly?] 

Conditional 
probability 

[P (ElAhly|School A)] 

[195/385] 20 
58.8 % 

 

 
Table 41. PSMTs’ calculations of simple, joint, and conditional probabilities in Item E2 

Item E2 questions Corresponding 
mathematical form 

Correct 
answer is  

Number of 
correct answers  

Q1 [The probability that a student 
has enrolled to teach the 

secondary level] 

Simple probability 
[P (Secondary 

level)] 

[200/460] 
 

(15, 9, 6) = 30 
88.2 % 

 
Q2 [The probability that a student 
has enrolled in the science class at 

the elementary level] 

Joint probability 
[P (Science class ∩ 
Elementary level)] 

[70/460] (5, 3, 2) = 10 
29.4 % 

 
Q3 [If you knew that the selected 

student has enrolled in the 
mathematics class, what is the 

probability that this student 
teaches the secondary level?] 

Conditional 
probability 

[P (Secondary 
level| Math class)] 

[110/300] (9, 5, 2) = 17 
50 % 

 

Q4 [If you knew that the selected 
student taught the secondary level, 

what is the probability that this 
student has enrolled in the 

mathematics class] 

Conditional 
probability 

[P (Math class| 
secondary level )] 

[110/200] (7, 4, 4) = 15 
44.1 % 
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Figure 19. Percentages of PSMTs’ correct answers to Items E1 and E2’s questions 
 

While the previous data outlined percentages of students’ correct answers to all of E1 and 

E2’s questions, the next discussion focuses on their conceptual difficulties when calculating 

the conditional probabilities. In other words, the following analysis explains students’ solutions 

to Q3 and Q4 for both Items E1 and E2. Table 42 summarizes students’ numerical answers to 

Q3 and Q4—both the correct and wrong answers. 

 
Table 42. PSMTs’ numerical answers to Q3 and Q4 of Items E1 and E2 

 Item E1 
 Q3 Q4 
 Correct 

answer 
Wrong answers Correct 

answer 
Wrong answers 

 195/50
0 

195/3
85 

385/500 195/800 195/38
5 

385/
500 

195/500 190/385 

N 22 
Correct 
answer 

8 
 

3 1 20 
Correct 
answer 

7 4 3 

12 wrong answers 14 wrong answers 
34 answers 34 answers  

 Item E2 
 Q3 Q4 
 110/30

0 
110/2

00 
200/3

00 
300/1

10 
110/4

60 
300/4

60 
110/20

0 
110/
300 

110/4
60 

200/3
00 

160/2
00 

90/
200 

N 17 
Correct 
answer 

9 2 2 2 2 15 
Correct 
answer 

8 7 2 1 1 

17 wrong answers 19 wrong answers  
34 answers  34 answers 
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§  First: PSMTs who disregarded the given condition from the analysis 

Generally, if a condition was not employed to calculate the conditional probability of 

P(A|B), then it will be judged to be the same as P(A), which would happen if and only if A and 

B were independent events, as discussed before in the context of giving birth. Furthermore, 

mathematically, P(A|B) = P(A∩B)/P(B) refers to the probability of event A’s occurrence given 

that an event B has already occurred. In such a situation, the numerator defines the number of 

favorable outcome occurrences in the reduced sample space, and the denominator is the total 

number of outcomes in that reduced sample space, which means that the sample space’s 

reduction defines a crucial idea to calculate the conditional probability (Batanero et al., 2015; 

Reaburn, 2013; Watson & Kelly, 2007). Accordingly, if students did not consider the condition 

when calculating the conditional probability, they would think that the sample space of the new 

experiment must remain as before without conditions. Because of this, as reported in Table 20, 

it was assumed that if the condition was disregarded from the analysis, two conceptions might 

appear, wherein the common feature between them is that students still think of the sample 

space as if the situation were not conditioned. 

For the first conception, the students might think that P(A|B) = P(A). In such a case, they 

would give the numerical answers of 385/800 and 500/800 to Q3 and Q4 in Item E1, 

respectively. Similarly, the fractions of 200/460 and 300/460 would be provided as answers to 

Q3 and Q4 in Item E2, respectively (see Table 20). Accordingly, and considering the reported 

results in Table 42, interestingly, no students shared this conception, which was often caused 

by overgeneralizing the independence concept, as interpreted earlier in the context of giving 

birth. In other words, there were no answers indicating that students judged the conditional 

probability of P(A|B) to be equal to P(A) in either E1 or E2. 

Additionally, the other expected conception was the confusion between joint and 

conditional probability. Accordingly, students might think that P(A|B) = P(A∩B); then, they 

would provide 195/800 as an answer to both Q3 and Q4 of Item E1 and 110/460 to both Q3 

and Q4 of Item E2 (see Table 20). This already happened, wherein 10 students (7.4 %) shared 

this conception, as detailed in Table 42. The confusion between joint and conditional 

probability has been discussed by multiple studies; nevertheless, the number of students who 

shared such confusion was more than the current study participants. For example, Díaz and de 

la Fuente (2007) reported that 31% of the (university) students confused conditional with joint 

probability. Moreover, 13.7% of participants (prospective primary school teachers) were 

confused between conditional and compound probability in Batanero et al.’s (2015) study 

compared with 17% of future teachers in Estrada and Díaz’s (2006) research. This is likely 
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because the current study’s participants were still studying courses of statistics and probability 

during the period of data collection; thus, they more easily read the two-way table and 

interpreted its cells, which may also explain why fourth-year students asked the researcher to 

remind them of the formula (see the ethical considerations section).  

 
§  Second: PSMTs who incorporated the given condition in the analysis  

As reported in Table 20, if the students incorrectly incorporated the conditions to calculate 

conditional probabilities, the fallacy of the transposed conditional would emerge. In such a 

case, they were expected to give the numerical answers of 195/385 and 195/500 to Q3 and Q4 

of E1, respectively. Moreover, the fractions of 110/200 and 110/300 would be the answers to 

Q3 and Q4 of E2, respectively. On the contrary, if they correctly implemented the given 

condition, the correct answer would result. Nonetheless, the focus here is not on students who 

successfully answered the questions but rather on those who had some conceptual difficulties. 

According to Table 42, 29 students (21.3%) shared the transposed conditional wherein 

they calculated P(B|A) instead of P(A|B). This fallacy was first addressed by Falk (1986) and 

described as the lack of distinction between the two directions of the conditional probability of 

P(A|B) and P(B|A). Moreover, Falk (1986) asserted that such confusion is widespread among 

students and professionals at all levels. Although the fallacy of the transposed conditional was 

prevalent among the current study’s participants, Batanero et al. (2015) reported that only 

around 6% (12 out of 197 cases) of their sample of prospective primary school teachers 

experienced it. Nevertheless, for university students, previous research conclusions have 

varied. For example, the transposed conditional was shared by 59% of the subjects in Díaz and 

de la Fuente’s (2007) investigation. As they explained, it stemmed from students’ confusion 

between conditioning and conditioned events and the role of both when computing the 

conditional probability. This mismatches with Reaburn’s (2013) findings in which only 13% 

of her study participants were unable to determine the difference between P(A|B) and P(B|A); 

she also stated that this high proportion of correct responses was not surprising because the 

participants were students entering introductory applied statistics units. 

 
§  Third: Other cases of PSMTs who provided unexpected numerical answers   

Considering the above analysis, 39 among 62 wrong responses were explained: 10 

indicated a confusion between joint and conditional probability compared with 29 that 

revealed the transposed conditional. Yet, 23 wrong answers (see Table 42) have not been 

clarified; these are the focus of this section. 
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Following the same analysis that focused on whether the sample space was reduced or not, 

we start with the students who answered 300/460 to Q3 of Item E2, wherein the denominator 

460 describes the entire population of the E2 experiment. As shown in Table 42, 12 students 

kept the sample spaces of 800 and 460 for E1 and E2, respectively: 10 of them confused the 

joint with the conditional probability as reported earlier, while 2 others provided the answer 

of 300/460 to Q3 of Item E2, in which the sample space was the same as without conditions 

(no reduction). 

To judge the answer of 300/460, the students’ followed steps to reach that answer were 

clarified. In detail, for Q3, students were asked to determine the probability that someone 

teaches the secondary level knowing that the person has enrolled in mathematics class [P 

(secondary level | mathematics class)]. Accordingly, they answered 300/460, which merely 

defines the probability of someone enrolling in mathematics class (see Appendix 8); in other 

words, they reduced P(A|B) to P(B), so that the conditioning event took much attention. In this 

regard, students first confused the conditioning event with the conditioned event and supposed 

that “the enrollment in the mathematics class” was the conditioned event that we needed to 

calculate its probability; then, they dropped the conditioning event of “teaching the secondary 

level.” Mathematically, two steps were employed: first, the students unconsciously modified 

P(A|B) to P(B|A), and second, they reduced P(B|A) to P(B). However, the first step did not 

indicate the confusion of the transposed conditional but rather a confusion between the 

conditioning and conditioned events, since the former is relevant to calculate the probability 

and the latter addresses ambiguity between the events. Furthermore, the second step 

involved overgeneralizing the independence conception, wherein the students assumed 

independence in the data (Estrada & Díaz, 2006).  

Still, 21 responses have to be judged, and the commonality among them is that the sample 

spaces of both E1 and E2 experiments were altered, which implicitly indicates that students 

tried to manipulate the condition in their analysis. However, that manipulation was not done 

appropriately because the students could not reach the correct answer. The next discussion 

attempts to categorize such responses by giving more attention to the numerator (favorable 

outcome) and denominator (sample space) of students’ answers. Perhaps there are other ways 

to classify such wrong answers, but the focus on numerators and denominators is favored 

because it matches the process of analyzing Item B. Concretely, all responses that exhibited a 

change in the sample space were first categorized, as they symbolized students who considered 

the condition in their analysis (as in Item B). Moreover, sharpening the numerator and 

denominator helped clarify how students understood the relationships among events embedded 
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in a conditional probabilistic situation. In that sense, both sections can work together to reach 

a clear conclusion. 

– First: 10 students defined the reduced sample space correctly, but they could not 

determine the favorable outcomes. Accordingly, responses of 385/500 and 190/385 

were given to Q3 and Q4 of E1, respectively; similarly, a response of 200/300 was 

given to Q3 of E2 and 160/200 and 90/200 were given to Q4 of E2.  

Both answers of 385/500 and 200/300 (5 responses) indicate that students computed the 

conditional probability of P(A|B) not through the formula P(A∩B)/ P(B) but using P(A)/P(B). 

In this case, students did not admit that the condition has to reduce the number of both the 

sample space and favorable outcome elements since the conditional probability P(A|B) denotes 

that the only events of interest are those in subset A that can be found in subset B (Reaburn, 

2013). Accordingly, they wrongly judged that (a) P(School A | ElAhly) = P(School A) / P 

(ElAhly) = (385/800) / (500/800) = 385/500 and P(Secondary level | Math class) = P(Secondary 

level) / P(Mathematics class) = (200/460) / (300/460) = 200/300 for Q3 in E1 and E2, 

respectively. In these answers, the numerator of 385 determined who preferred both ElAhly 

and ElZamalek for Q3 of E1, while 200 represented who belonged to both the mathematics and 

science classes for Q3 of E2 (see Appendix 8). This indicates that the students were reluctant 

to believe that the condition restricts not only the sample space but also the favorable outcome. 

Additionally, on one hand, 4 students gave answers of 190/385 and 90/200 to Q4 in both 

E1 and E2, respectively, which indicates that they were confused about the conditioned 

event. The students mistakenly calculated P(ElZamalek | School A) and P(Science class | 

Secondary level) instead of the required P(ElAhly | School A) and P(Mathematics class | 

Secondary level), respectively. Such type of response was considered a simple confusion more 

than a conceptual difficulty because it reflected that students perceive how the conditional 

probability works and correctly identified the proper cells in the two-way table to compute it. 

However, they mistakenly confused the conditioned event with another event in the 

experiment. On the other hand, the answer of 160/200, which was provided by 1 student, to Q4 

of E2 reveals a combination of two previously identified errors. That student (a) confused the 

required conditioned event of mathematics class with the event of the science class; 

accordingly, P(Mathematics class | Secondary level) was replaced by P(Science class | 

Secondary level). Then, the student (b) calculated P (Science class | Secondary level) through 

P (Science class) / P (Secondary level) that equals (160/460) / (200/460) = 160/200, which 

explains that students’ inability to think that the condition limits the favorable outcome (the 

numerator). 
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– Second: a conceptual error in which P(A|B) equals P(B)/P(A) was practiced by 9 

students. Accordingly, both answers of 385/500 and 200/300 were provided to Q4 of E1 

and E2, respectively (see Table 42). 

Although the sample space seemed to be reduced as in the previously addressed cases, this 

did not designate a correct identification of either the sample space or favorable outcomes. In 

detail, 7 students calculated P (ElAhly | School A) by dividing P(School A) by P(ElAhly) to 

answer Q4 of E1: (385/800) / (500/800) = 385/500. Moreover, the corresponding formula of 

Q4 in E2 [i.e., P (Mathematics class | Secondary level)] was computed by two students as P 

(Secondary level) / P (Mathematics class) = (200/460) / (300/460) = 200/300.  

This error, which resembled 6.6% of all responses and 14.5% among the wrong ones, 

designate two fallacies that students practiced when determining the conditional probability 

P(A|B); both fallacies also appeared in other cases (see the above analysis). In the beginning, 

the students confused the conditioned event of A with the conditioning event of B, which 

oriented them to change P(A|B) to P(B|A). Then, they were reluctant to believe that the 

condition has to restrict the favorable outcome to (A∩B) and not all B elements; thus, students 

wrongly judged P(B|A) as equal to P(B)/P(A) instead of P(A∩B)/ P(A). 

– Lastly: as presented in Table 42, two students gave a wrong response of 300/110 

instead of 110/300 to P (Secondary level| Mathematics class), which was the required 

probability for Q3 of E2; mathematically stated, both students calculated P(A|B) through 

P(B)/ P(A∩B) instead of the correct opposite formula.  

This error expresses students’ unawareness of two essential axioms in probability theory: 

(a) the probability of any event cannot be higher than 1 and (b) the joint probability of two 

events must be lower than each of a single event; both are closely connected. This is because 

if we are aware that the joint probability is lower than the probability of a single event [P(A∩B) 

< P(B)], we can recognize that the fraction of P(B) / P(A∩B) will be greater than 1 since the 

dominator of P(A∩B) is smaller than the numerator of P(B). A similar error in which students 

were unconscious of probability axioms and got some probabilities higher than 1 was reported 

by Batanero et al. (2015). 

Based on the previous analysis, Table 43 summarizes students’ conceptual difficulties 

when calculating the conditional probability from a two-way table. It shows that the fallacy of 

the transposed conditional was the most frequent error among the participants (21.3%), 

followed by the confusion between joint and conditional probability (7.4%). 
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Table 43. PSMTs’ conceptual difficulties in calculating the conditional probability 
Major 

categories Conceptual difficulty Frequency Percentage 

PSMTs who 
have 

disregarded the 
given condition 

from the 
analysis 

Confusion between joint and 
conditional probability 

P (A|B) = P 
(A∩B) 10 7.4% 

Combination of the confusion 
between conditioning and the 

conditioned event; and the 
independence conception 

P (A|B) = P 
(B) 

 
2  1.5% 

PSMTs who 
have 

incorporated the 
given condition 
in the analysis 

The fallacy of transposed 
conditional 

P (A|B) = P 
(B|A) 29  21.3% 

Reluctance to believe that the 
condition restricts not only the 

sample space but also the 
favorable outcome 

P (A|B) = 
P(A)/P(B) 5  3.7% 

Confusion between the 
conditioned event and another 

event in the experiment 
 4  2.9% 

  Combination of the confusion 
between the conditioned event 

and another event and the 
reluctance to believe that the 

condition restricts not only the 
sample space but also the 

favorable outcome 

 1  0.7% 

Combination of the confusion 
between conditioning and the 

conditioned event; and the 
reluctance to believe that the 

condition restricts not only the 
sample space but also the 

favorable outcome 

P (A|B) = 
P(B)/P(A) 9  6.6% 

Unawareness of basic 
probability axioms 

P (A|B) = 
P(B)/P(A∩B) 2  1.5% 

Total  6221 45.6% 
 

5.3.3 Characteristics of PSMTs’ reasoning in a conditional probabilistic situation 

This section endeavors to integrate the previous two sections’ results that explained how 

the students reasoned in conditional probabilistic situations in which the subjective 

probability can be characterized. In doing so, these results were consolidated while considering 

Chernoff’s (2008) distinction between intrasubjective (personal belief-type probability) and 

intersubjective probability (interpersonal belief-type probability), as well as Stanovich et al.’s 

(2008) model on normative reasoning and thinking errors (Chiesi & Primi, 2014). 

 
21 There were 62 wrong responses among 136 (students’ answers to both Q3 and Q4 in Items E1 and E2); 
accordingly, the provided percentages in Table 43 were computed with respect to 136 responses. 
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Acknowledging that intrasubjective probability is less objective than intersubjective 

probability (Chernoff, 2008; Hacking, 2001), the researcher interpreted that intrasubjective 

thinkers designate cases of students who disregarded the condition from the analysis. The 

reason is that, mathematically, the only way to get the normative (i.e., objective or correct) 

answer when reasoning in a conditional probabilistic situation is to incorporate the condition 

in the analysis, which restricts the outcomes of interest to those that exist in the reduced sample 

space. From this aspect, students who dropped the condition from the analysis were considered 

to possess less of an element of objectivity compared with those who thought to employ that 

condition (whatever mistakenly or correctly). 

According to the detailed analysis, students who neglected the condition when interpreting 

uncertain conditional situations shared several conceptions and cognitive biases. As listed in 

Table 43, these biases designate the anchoring and adjustment bias, which was rooted in either 

the overgeneralization heuristic or illusion of validity; confusion between joint and conditional 

probability; and a combination of the confusion between conditioning and the conditioned 

event and the independence conception. Such cases were classified under intrasubjective 

probability; in other words, students who experienced these conceptions and biases were 

judged to be intrasubjective thinkers. 

On the contrary, for intersubjective probability, a sense of objectivity was intended. This 

objectivity reflects fulfilling the probability axioms under the idea that the probability must be 

updated in light of newly available information (Borovcnik, 2012; Chernoff, 2008). 

Thus, intersubjective thinkers were students who decided to involve the condition to revise 

their prior probabilistic estimation. Although some of them performed this successfully (i.e., 

rational thinkers and students who solved the conditional probability questions correctly), 

others shared several conceptions and biases during the process of involvement. These are 

cases of students who exhibited the availability heuristic, which originated from either the 

retrievability of instances or the imaginability bias (one-step heuristic), the causal conception, 

and the gambler fallacy; besides, those who shared the (a) fallacy of transposed conditional, 

(b) reluctance to believe that the condition restricts not only the sample space but also the 

favorable outcome, (c) confusion between the conditioned event and another event, (d) 

combination of the confusion between the conditioned event and another event and the 

reluctance to believe that the condition restricts not only the sample space but also the favorable 

outcome, (e) combination of the confusion between conditioning and the conditioned event 

and the reluctance to believe that the condition restricts not only the sample space but also the 

favorable outcome, and (f) unawareness of basic probability axioms (see Table 43). 
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Additionally, to describe how both belief-type probabilities were operated to fulfil the 

normative answer, Stanovich et al.’s (2008) model of normative reasoning (see Figure 20) is 

valuable. According to this model, if individuals do not possess the necessary knowledge to 

produce a normatively correct response, the mindware gap signifies the cause of that error. On 

the other hand, if they own such knowledge, two issues are predicted to happen: they still 

provide an incorrect response or get a correct solution. While the former often results from 

an override failure that reflects that individuals hold the rule but do not base the answer on it, 

the latter occurs when they have the cognitive ability to utilize their mindware and solve the 

problem. 

 
 

 

 

 
 

 
 
 
 
 
 
 
 
 
    

Figure 20. Stanovich et al.’s (2008) model on normative reasoning and thinking errors. 
Retrieved from Chiesi and Primi (2014, p. 179) 

 

Based on Stanovich et al.’s (2008) model, the previously identified conceptions and biases, 

which were shared by both intrasubjective and intersubjective thinkers, were occurred because 

of either the mindware gap or override failure (contaminated mindware). 

As detailed before, the intrasubjective thinkers practiced the anchoring and adjustment 

bias in the context of giving birth. This bias describes that the individual’s final judgment is 

biased toward the initial probabilistic value (Lecoutre et al., 1990); furthermore, it was 

inherited in either overgeneralization heuristic (G thinkers) or the illusion of validity 

(CON thinkers). G thinkers kept their initial mathematical estimation and supposed that the 

process of determining the baby’s gender is always the same, whether with or without 

conditions, which was called by overgeneralization heuristic. On the contrary, CON thinkers 



 151 

admitted the difference between both situations (with and without conditions), but they 

maintained their non-mathematical reasons (i.e., the illusion of validity). 

In this regard, the overgeneralization heuristic, which was manipulated by G thinkers, 

represents a mindware gap wherein students did not have enough knowledge of how the 

interpretation of real situations may differ from the traditional activities of probability in terms 

of the ideal assumed notion of independence, particularly, for the conditional phenomena. This 

reflects why Mises (1928, as cited in Díaz & de la Fuente, 2007) criticized the formal 

mathematical definition of independence because it is not intuitive at all. On the other hand, 

the illusion of validity stemmed from a contaminated mindware; it provoked the override 

failure that made CON thinkers unable to overcome some of their beliefs (see Table 36). Thus, 

they retrieved the initial estimation despite their awareness of the differences between the 

unconditional and conditional situations. Although such beliefs were regarded previously as a 

specific type of probabilistic reasoning (the case of s* thinkers), they describe contaminated 

knowledge for CON thinkers because they hinder them from fulfilling the conditional 

probabilistic situation. This matches what Toplak, Liu, Macpherson, Toneatto, and Stanovich 

(2007) argued about the contaminated mindware that reflects superstitious thinking in the case 

of probabilistic reasoning. 

Similarly, when students were asked to reason in a two-way table to determine some 

conditional probabilities, 12 of them interpreted P(A|B) as equal to either P(A∩B) or P(B) (see 

Table 43). Both thought of the sample space of the experiment as same as that without 

conditions; accordingly, they were judged to be intrasubjective thinkers, as stated before. 

Moreover, students’ errors occurred because of the mindware gap. The reason is that such 

errors either designate a lack of knowledge regarding the conditional probability formula or a 

failure to read the two-way table. 

According to the detailed analysis, the overgeneralization heuristic, confusion between 

joint and conditional probability, combination of the confusion between conditioning and the 

conditioned event and independence conception, and illusion of validity defined 

intrasubjective probability, as conceptualized by the students. 

Although the first three conceptions indicated a mindware gap, the last one reflected a 

contaminated mindware. Both lack of knowledge (mindware gap) and inhibited beliefs 

(contaminated mindware) were described in some previous studies. For example, Begg and 

Edward (1999) revealed that very few in-service and pre-service primary school teachers 

understood the concept of independence. Additionally, Kataoka et al. (2010) stated that several 

misconceptions of independence and conditional probability persist even for the students who 
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had formally studied it. They also reported that most respondents (master students and PSMTs 

in Brazil, and high school students in Mexico) applied the original sample space size to 

compute the conditional probability. Similar results were obtained by different studies with 

multiple groups of participants (e.g., Díaz et al., 2010; Gusmão et al., 2010). Furthermore, 

the contaminated mindware that describes the illusion of validity, wherein some students 

insisted on several shared beliefs, were also demonstrated by some researchers. For example, 

Amir and Williams (1999) reported that the “common culture influences the informal ideas of 

chance and probability the individual acquires: the ‘ethnomathematics’' (D’Ambrosio, 1985) 

of probability” (p. 85). Also, Larose et al. (2010) discussed similar ideas under the term of 

social representations that defines the socially shared construct or the knowledge of common 

sense; it directs the predictability of behaviors among individuals of a social group. 

Intersubjective thinkers include students who attempted to revise their prior estimation and 

incorporate the condition in the analysis; they also shared some conceptions and biases. In the 

context of giving birth, the availability heuristic that resulted from either retrievability of 

instances or the imaginability bias (HOR thinkers), and the causal conception and the gambler 

fallacy (V thinkers) emerged. As summarized in Table 44, while the availability heuristic was 

assigned to the mindware gap, both the gambler fallacy and the causal conception were 

classified under the override failure; the former was originated from students’ lack of 

knowledge, and the latter indicated contaminated mindware. 

Although all students who performed such fallacies admitted that the probability in a 

conditional situation (Item B) differed from that in an unconditional situation (Item A), those 

who shared the availability heuristic (HOR thinkers) tried to reduce the load of the complex 

computational rules of P(G|BB) and instead solve the formula of P(G). This means that, 

practically, they thought of the conditional situation as similar to a simple one with the three 

outcomes of B, B, and G. As explained before, students operated the availability 

heuristic because of either retrievability of instances or imaginability bias, which means that 

they lacked the required knowledge about the conditional probability. Consequently, their 

minds tried to recover straightforward examples of a simple probability situation, which 

occupied their mindware because it was easy to operate. 

On the other side, V thinkers practiced both the gambler fallacy and the causal 

conception; accordingly, their initial estimation after knowing that the woman delivered two 

boys before was altered, and they were thus committed to the override failure (see Table 44). 

This reflected that students who shared such fallacies possessed contaminated knowledge of 

the conditional probability, which prevented them from operating the given condition 
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successfully to interpret the conditional situation. Their contaminated mindware reflects the 

dominance of conventional probabilistic activities in which students interpreted the real 

phenomena through the lens of such activities. Consequently, using the gambler fallacy, 

students supposed that after having two boys, the probability of having another boy is lower. 

In other words, students’ mindware was full of simple traditional probabilistic tasks that 

negatively affected their interpretation of real phenomena. Yet, holding the gambler fallacy not 

only reflected students’ contaminated knowledge regarding real situations, but it also further 

indicated their inability to overcome the belief about the law of small numbers (Stohl, 2005).  

Moreover, the emergence of the causal conception in which students judged the 

conditioning event of delivering two boys to be the cause and the conditioned event of 

delivering a girl to be the consequence symbolized contaminated knowledge about the concept 

of conditionality. Although the students intended to interpret the conditional phenomena, they 

mixed performing that conditionality with causality. This is reported by Batanero et al. (2016) 

who found that in several real-life situations, causal and probabilistic approaches are 

intermingled, and how to separate the random influence from the causal represents a challenge; 

in this regard, understanding the notion of conditionality helps to overcome such a challenge. 

Similarly, when students utilized the two-way table to compute conditional probabilities, 

six types of errors emerged (see Table 43) and were judged to represent the intersubjective 

belief type probability. This is because these students modified the sample space of the 

experiment, which indicated their struggles to involve the condition in the calculation. Still, to 

determine whether such errors originated from the mindware gap or override failure, the 

students’ employed formulas to calculate the conditional probability were sharpened. 

In detail, students who shared the fallacy of the transposed conditional and were confused 

between the conditioned event and another event understood how the conditional probability 

formula works and correctly applied its procedures. Nonetheless, the former could not 

differentiate that formula from its opposite, and the latter mistakenly (maybe just a simple 

mistake) computed the conditional probability of another event, not the required one in the 

question. Hence, both cases were regarded as override failure. Although students grasped the 

conditional probability, some of them maintained contaminated knowledge because of which 

they suppose that P(A|B) = P(B|A), while the others failed to determine which event was asked 

to estimate its probability. On the contrary, the other four errors were more critical, wherein 

students exposed a lack of knowledge of the conditional probability formula. As presented in 

Table 43, 14 students thought that the conditional probability of P(A|B) defines the ratio 

between P(A) and P(B). These students were reluctant to believe that the condition limits the 
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favorable outcome (not merely the sample space); consequently, they could not determine the 

correct numerator to calculate the conditional probability. Besides, two other students exhibited 

unawareness of the basic probability axioms. All these cases were assigned to the mindware 

gap. Although the students changed the values of sample spaces (denominators) 

(intersubjective thinkers), such a change did not indicate their knowledge about either the 

mechanism of how the conditional probability formula works or the probability axioms. 

Finally, students who (a) interpreted the given condition of delivering two boys before as 

a sign of the woman’s ability to have a new baby and consequently recognized the idea 

of sample space reduction in the giving birth context, and (b) correctly calculated conditional 

probabilities in the two-way table were exceptional cases. They did not share the previously 

described conceptions and errors; therefore, they were assessed (by the researcher) to possess 

the cognitive ability to reason in conditional probabilistic situations. Hence, the whole results 

are summarized in the following table: 

 
Table 44. A model of PSMTs’ R(in) P that is related to a conditional probabilistic situation 

Origin of 
belief 

Belief-type probabilities 
Intrasubjective probability 

(personal belief type) 
[Intrasubjective thinkers] 

Intersubjective probability 
(interpersonal belief type) 
[Intersubjective thinkers] 

Mindware 
gap 

– Overgeneralization 
heuristic (cognitive 
source) 

– Confusion between joint 
and conditional 
probability 

– Combination of the 
confusion between 
conditioning and the 
conditioned event and 
the independence 
conception 

– Availability heuristic 
– Reluctance to believe that the condition restricts 

not only the sample space but also the favorable 
outcome 

– Combination of the confusion between the 
conditioned event and another event; and 
reluctance to believe that the condition restricts 
not only the sample space but also the favorable 
outcome 

– Combination of the confusion between 
conditioning and the conditioned event; and 
reluctance to believe that the condition restricts 
not only the sample space but also the favorable 
outcome 

– Unawareness of basic probability axioms 
Override 
failure  

– Illusion of validity 
(belief source) 

 
 
 

– Gambler fallacy 
– Causal conception 
– Fallacy of transposed conditional 
– Confusion between the conditioned event and 

another event in the experiment 
Cognitive 

ability  
 – Recognition of the idea of sample space 

reduction 
– Calculation of the conditional probability from a 

two-way table correctly  
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5.4 Issues of trustworthiness and ethical considerations 

§  Issues of trustworthiness  

For validating qualitative research findings, issues of trustworthiness must be discussed; 

this would confirm how such findings can be trusted in terms of several criteria such as 

credibility, transferability, dependability, and confirmability (Korstjens & Moser, 2018). 

Accordingly, to validate the above-reported findings (categories of PSMTs’ reasoning) of the 

inductive and deductive data analysis processes, two criteria were considered: credibility and 

dependability. 

On one hand, credibility signifies the confidence in the truth of research findings; it 

“establishes whether the research findings represent plausible information drawn from the 

participants’ original data and is a correct interpretation of the participants’ original views” 

(Korstjens & Moser, 2018, p. 121). Moreover, triangulation defines one possible strategy to 

ensure such credibility (Ibid.). It is also considered a powerful technique that facilitates the 

validation of data through cross verification from two or more sources, in which weaknesses 

in the inferred data from one source can be strengthened by another source, thereby increasing 

the validity and reliability of the results (Honorene, 2016; Joint United Nations Programme on 

HIV/AIDS, 2010). Therefore, to verify this study results, two types of triangulation were 

utilized: data and theory triangulation (Turner & Turner, 2019). While the former was 

employed through involving multiple groups of participants of second-, third-, and fourth-year 

university students during their preparation program, as detailed earlier in Table 4, the latter 

was embedded in the process of analyzing the consistency between empirical results and 

existing theories (the step of “incorporate the emerged categories into a model”). 

In detail, the process of defining the categories of PSMTs’ reasoning has relied on three 

different contexts (i.e., giving birth, throwing a die, and weather predictability). This process 

involved utilizing two approaches in which such category can be characterized: (a) 

psychological studies that highlight individuals’ cognitive biases in reasoning under 

uncertainty (e.g., the work of Tversky and Kahneman, 1974) and (b) educational investigations 

that determine learners’ difficulties and misconceptions regarding probability (e.g., Konold, 

1989; Batanero et al. 2010; see Appendix 5). Furthermore, a detailed explanation of similarities 

and differences between the resulted types of reasoning in each context, including how both 

are related to the relevant theories, was provided (see the summary in Figure 17). This also 

represented a theoretical triangulation (Miles et al., 2013). 
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On the other hand, the dependability, which reflects the stability of findings over time 

(Korstjens & Moser, 2018), was confirmed by checking the intracoder reliability. Intracoder 

reliability expresses the coder’s consistency across time; that verifies the ability of coding 

protocols (the previously summarized in Figures 15, 16, and 17) to result in the consistent 

categorization of content (Lacy, Watson, Riffe, & Lovejoy, 2015).  From this aspect, Cohen’s 

Kappa coefficient was calculated to check the consistency between two rounds of coding 

processes, in which all PSMTs’ responses to Items A, B, C, and D were analyzed twice using 

the detailed procedures in Section 5.1 (Elo et al., 2014; Schreier, 2012). The first data analysis 

was conducted in October and November 2019, while the second time was conducted in April 

and May 2020. The results are presented in Tables 45–4822, which indicate the moderate (Items 

A and C) and strong (Items B and D) levels of agreement and consistency between the two 

rounds of coding (McHugh, 2012). 
 

Table 45. Cohen’s Kappa value for Item A’s analysis  

Symmetric Measures 

 Value 

Asymptotic 
Standard 

Errora 
Approximate 

Tb 
Approximate 
Significance 

Measure of Agreement Kappa .788 .069 8.393 .000 
N of Valid Cases 68    
a. Not assuming the null hypothesis. 
b. Using the asymptotic standard error assuming the null hypothesis. 

 
Table 46. Cohen’s Kappa value for Item B’s analysis  

Symmetric Measures 

 Value 
Asymptotic 

Standard Errora 
Approxim

ate Tb 
Approximate 
Significance 

Measure of 
Agreement 

Kappa .832 .059 10.368 .000 

N of Valid Cases 68    
a. Not assuming the null hypothesis. 
b. Using the asymptotic standard error assuming the null hypothesis. 

 
Table 47. Cohen’s Kappa value for Item C’s analysis  

Symmetric Measures 

 Value 

Asymptotic 
Standard 

Errora 
Approximate 

Tb 
Approximate 
Significance 

Measure of 
Agreement 

Kapp
a 

.768 .064 11.865 .000 

N of Valid Cases 68    
a. Not assuming the null hypothesis. 
b. Using the asymptotic standard error assuming the null hypothesis. 

 
22 The process of analyzing Items A, B, and C involved 68 responses compared with 48 for Item D. 
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Table 48. Cohen’s Kappa value for Item D’s analysis 

Symmetric Measures 

 Value 

Asymptotic 
Standard 

Errora 
Approximate 

Tb 
Approximate 
Significance 

Measure of 
Agreement 

Kappa .887 .054 11.317 .000 

N of Valid Cases 48    
a. Not assuming the null hypothesis. 
b. Using the asymptotic standard error assuming the null hypothesis. 
 

§ Ethical considerations  

It is also worthy to state the ethical considerations that may affect the validity and 

generalizability of the current study’s findings. These considerations include issues related to 

the (a) study participants, principally PSMTs, (b) process of collecting and analyzing the data, 

and (c) the questionnaire items. 

First, all participants agreed to be engaged in this study; as reported before, PSMTs were 

freely asked about their availability and willingness to cooperate. This satisfies the ethical 

considerations of educational research in Egypt in which participants have the right to accept 

or reject to cooperate; they also have the freedom to answer (or not) some questions 

(Elzewiney, 2014). Therefore, some of the PSMTs (third-year students) were fully appreciated 

when they told the researcher that they had a schedule in conflict with the time of implementing 

the study questionnaire, and they would not be able to respond to the task of weather 

predictability at that time (see Table 8). Furthermore, to protect the study participants from 

harm in any way (Elzewiney, 2014), they were (a) informed that their responses to the study 

questionnaire would not be related to their academic assessment and (b) their identities would 

be secured through anonymity.  

Additionally, most of the participating PSMTs were previously taught a micro-teaching 

course by the researcher. On one hand, this supported the process of analyzing the collected 

data in which it was easy for the researcher to interpret PSMTs’ responses by merely relying 

on what they wrote in the questionnaire. On the other hand, because of the cordial relationship 

between the researcher and PSMTs, they were probably a little careless in either writing their 

reasoning or further explaining their answers; they believed that the researcher would be able 

to interpret whatever they wrote. This may have affected the validity of the researcher’s 

interpretation since the analysis processes depended entirely on what PSMTs explained in the 

questionnaire. Moreover, this analysis was conducted by only the researcher because it was a 

little challenging to engage another researcher to interpret the collected data, especially in light 
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of linguistics sensitivity and contextual concerns. Nevertheless, as reported before, to reduce 

such possible bias, the analysis process was handled twice with a long time difference of about 

six months. 

Second, regarding procedures of data collection and analysis, as the data were obtained 

from both PSMTs and some pupils, it is reliable to report that data from the pupils were not 

collected by the researcher; instead, two in-service teachers did so. However, an interview was 

conducted with those teachers before and after the data collection (see Section 5.1). Also, all 

pupils’ responses to the probability context survey were analyzed by the researcher. In contrast, 

the procedures for collecting (and analyzing) the data obtained from PSMTs were entirely 

conducted by the researcher during the micro-teaching session, which was, according to the 

faculty’s regulations, the appropriate time to collect such data (Elzewiney, 2014). PSMTs who 

did not engage in this study were taught the micro-teaching course as usual. Yet, in this regard, 

several concerns have to be mentioned, as follows: 

– During the initial stage, when PSMTs asked the researcher about the validity of identifying 

issues such as women’s bodily appearance and Allah’s will as possible factors influencing 

the probability of giving birth (during the interview), they were told to mention whatever 

they think. They also were informed that these reasons and criteria would be more valuable 

than the mathematical given percentages. Such feedback from the researcher might be a 

source of some bias, wherein PSMTs thought more to identify any condition that may affect 

the probability of giving birth to a girl, whatever came to their mind. It may also be one 

probable reason why the subjective manner of reasoning dominated PSMTs’ responses to 

that problem. 

– In the stage of employing the study questionnaire, and again related to the problem of 

giving birth, some PSMTs suggested that the event of the birth of twins was a possible 

expected outcome. This may also be why many participants considered twins in their 

answers. Moreover, regarding questions that required conditional probability calculations 

from a two-way table, fourth-year PSMTs requested a similar example to remember the 

formula. Provision of such an example, and not their understanding of the concept, maybe 

why they did not exhibit conceptual difficulties in determining the conditional probability. 

– Regarding the analysis process, as detailed earlier, primary data were obtained from the 

study questionnaire and were analyzed twice by the researcher. Thus, during the second 

cycle of the analysis, some issues were modified to ensure consistency between both 

cycles’ results; accordingly, a clear conclusion can be reached. 
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For instance: about PSMTs’ responses to Item B, during the first round of data analysis, 

their responses were categorized in terms of their given numerical answers, whether they kept 

or changed their initial estimations. Nevertheless, after repeating such analysis, it was observed 

that there was a large difference between the number of assigned codes to each category (not 

like in the case of Items A, C, and D). The reason was that some respondents (conservative 

thinkers) had changed their numerical estimations, but they stated the same reasons that they 

gave before to Item A, which confused the researcher regarding in which category to include 

these types of responses. Furthermore, it was realized that such manner of categorization, 

which depends merely on PSMTs’ numerical estimations, could not provide an understanding 

of how they perceived the given condition based on which the subjective probability, as a 

general classifier, could be characterized. Accordingly, during the second round of analysis, 

PSMTs’ responses were restructured based on whether they emphasized or disregarded the 

given condition instead of addressing their numerical answers. This supported the 

interpretation of the conservative thinkers’ category, which included those who retrieved a 

particular explanation after admitting the differences between Items A and B (e.g., 

emphasizing God’s attribution to a phenomenon), regardless of whether they did or did not 

change their numerical estimations. 

Finally, concerning the questionnaire items, one crucial issue to mention here is that all 

the items (except E1 and E2) incorporated open questions. On one hand, this was beneficial to 

the essential purpose of the current exploratory study, which may be regarded as a guide on 

probability education research in the Egyptian context. Although some studies were conducted 

to investigate PSMTs’ statistical thinking (e.g., Osman, 2010), no previous investigations 

related to probability have been conducted in the past 10 years. Accordingly, national research 

demands some studies that examine the current situation; this study may afford such a detailed 

description, specifically for PSMTs. 

On the other hand, some of PSMTs’ conceptions and biases probably emerged because of 

the form of the questions themselves; these questions did not intend to determine the existence 

of specific pre-defined conceptions (like in some other studies), but rather to investigate the 

current state of PSMTs’ knowledge about teaching probability. More precisely, regarding 

Items A and B that were related to the context of giving birth, as reported before, the subjective 

manner of reasoning appeared obviously in PSMTs’ responses to A compared with those to 

Items C and D related to throwing a die and weather predictability, respectively. Moreover, 

during the analysis of PSMTs’ responses to Item B in which they were asked to determine the 

probability of giving birth to a girl knowing that the woman had delivered two boys before, it 
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was difficult to judge their ideas scientifically, that is, whether the babies’ genders are 

correlated or independent from each other. Accordingly, the data interpretation focused on how 

PSMTs understood the condition of “two boys before,” regardless of the scientific knowledge 

embedded in that situation. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 
This chapter summarizes the basic ideas of the current study for which PSMTs’ knowledge 

for teaching probability in Egypt was conceptualized from the PoPR. It is presented in three 

sections. First, the answer to each research question is outlined. The study implications and 

recommendations are described in the second section. Lastly, the limitations of this study and 

some directions for future research are discussed. 

 

Before we begin, it is important to first provide a brief overview of the basic ideas and 

questions that the current study addresses. 

As probability involves a substantial knowledge that is often manipulated in our daily 

lives, needed in everyday settings for all citizens in decision-making situations, and required 

for the training of specialists, educational authorities in many countries recognized and 

included it in the official  curricula from the primary level to teacher education. It helps to form 

a specific type of reasoning—probabilistic reasoning—from which we can formally structure 

our uncertain thinking about random phenomena, and, accordingly, overcome our deterministic 

thinking and accept the existence of chance in nature. Despite that, various issues exist 

regarding deficiencies of probability education. One such problem that is of concern to the 

current study is the potentially inadequate preparation of mathematics teachers to teach 

probability, notably, in the Egyptian context. From this aspect, and because of the influence of 

teachers’ knowledge on students’ learning, this study approached PSMTs' knowledge for 

teaching probability from the PoPR, which emphasizes their thinking processes and cognitive 

biases. More precisely, it responded to three questions: 

• RQ1. What is the current status of “statistics and probability” education in Egypt?  

• RQ2. What is the definition of mathematics teachers' professional knowledge for 

teaching probability from the PoPR? 

• RQ3. What are the characteristics of PSMTs' knowledge for teaching probability in 

Egypt from the PoPR?  

Accordingly, the next sections were organized.  

 

6.1. Answers to the research questions 
6.1.1 The answer to the first research question 

As reported, the first research question aimed at defining the current status of statistics 

and probability education in Egypt, which was mainly discussed in Chapter 3. It was presented 
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from (a) a local perspective that was expressed in the governmental policy, standards of the 

Faculty of Education, and the state of pupils’ achievement; and (b) an international viewpoint 

with much focus on the Egyptian school curriculum of probability compared to the NZ 

curriculum. 

From a local perspective, the government has advocated the need to enhance PSMTs’ 

professional competence to meet pupils’ needs, under the broad goal of improving the quality 

of education practice to fit the global systems. In that sense, PSMTs’ preparation has been 

given consideration. This is particularly the case with teaching the content of statistics and 

probability, because learning such content is less emphasized in PSMTs’ preparation not only 

as a discipline (9.2% of the studied hours during a four-year preparation program) but also as 

a content that should be deliberated pedagogically to promote their PCK. Furthermore, 

Egyptian pupils’ achievement in the content area of Data and chance remains the lowest among 

all mathematics areas, as TIMSS reports for 2003 and 2007 revealed. Thus, studying how 

PSMTs can be prepared to teach statistics and probability signifies one plausible way to 

consider pupils’ insufficiencies, especially in terms of (a) the international consensus regarding 

the influence of teachers’ knowledge on pupils’ achievement and (b) the current status of the 

Egyptian employment system in which merely completing a university degree is sufficient to 

practice the teaching profession. 

Within the domain of statistics and probability, probability denotes a core concept for 

which most of the textbooks' activities, in Egypt, are intended to promote pupils' probabilistic 

understanding. This was revealed by analyzing the declared activities within statistics units for 

both primary and lower secondary school textbooks. Moreover, that analysis relied on 

exploring the correspondence between the objectives of such activities and Burrill and Biehler's 

(2011) list of fundamental statistical ideas. 

Additionally, the intended and implemented Egyptian school curricula of probability was 

analyzed from an international viewpoint. On one hand, the intended curriculum was compared 

with the NZ curriculum, which serves as a working model for pedagogical reforms in other 

countries. The comparison involved a summative content analysis that aimed at quantifying 

the usage of probabilistic words in both the intended curricula documents, which were provided 

by the official websites of Egypt and NZ. Such a quantification was conducted through (a) 

operating the OSA, which helped in determining the declared probabilistic situations, 

propositions, procedures, and terms in both the curricula; and (b) assigning the resultant entities 

to the corresponding fundamental probabilistic ideas in Batanero et al.’s (2016) list. 

Accordingly, and after ensuring trustworthiness of this comparative analysis, several issues 
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were defined. One essential finding that reflects the deficiency of the intended curriculum of 

probability in Egypt is as follows: although it meets the NZ curriculum in strengthening the 

probabilistic concepts that are relevant to randomness, events and sample space, and modeling 

and simulation, ideas of independence and conditional probability, probability distribution and 

expectation, and convergence and law of large numbers have not yet been considered in Egypt. 

On the other hand, the implemented curriculum of probability, which was defined by the 

national school textbooks' activities, was analyzed through the OSA. Hence, the probabilistic 

situations, propositions, procedures, and terms within the textbooks’ discourses were defined 

and assigned to Batanero et al.’s (2016) classification of various probability interpretations. As 

a result, the analysis revealed another aspect of deficiency in the Egyptian curriculum of 

probability: the lack of addressing the experimental probability interpretation. Moreover, the 

subjective probability approach was neglected until grade 9. 

Generally speaking, these findings highlighted (a) the limitedness of PSMTs' preparation 

to teach statistics and probability and (b) deficiencies in the content of probability taught in the 

schools in Egypt. Accordingly, this study approached PSMTs' knowledge for teaching 

probability as one plausible way to overcome such constraints that affect the quality of 

probability education and, ultimately, pupils' probabilistic reasoning. For instance, when 

teaching probability predominantly utilizes a theoretic approach rather than a frequentist one, 

pupils tend to develop conceptions based on deterministic reasoning (Konold, 1995). With 

regard to that view, investigating the current state of PSMTs' knowledge implies one essential 

step toward designing fruitful pedagogical preparation: it should be grounded in their reasoning 

processes. 

 

6.1.2 The answer to the second research question 

The second research question aimed at defining mathematics teachers' professional 

knowledge for teaching probability from the PoPR; two essential steps were involved in 

answering this question. The first step outlined knowledge for practice, which indicated 

mathematics teachers' professional knowledge for teaching probability as defined in the 

literature. The second step manifested the psychological facet of teachers' knowledge; it was 

exemplified by their conceptions (knowledge in practice) and reasoning processes. These ideas 

were discussed in Chapter 4, where the study framework was represented. 

About the first step, an extensive literature review was conducted in light of the MKT 

model to define mathematics teachers’ professional knowledge for teaching probability; 

alternatively stated, the essential ideas that mathematics teachers need to understand to teach 
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probability effectively were outlined based on previous scientifically approved research in the 

field (knowledge for practice). Thus, the aspects of KoP, KoTP, KoSPK, and KoPL were 

explored; they expressed mathematics teachers' Knowledge of Probability, Knowledge of 

Teaching Probability, Knowledge of Students Probability Knowledge, and Knowledge of 

Probability Language, respectively. While the first three aspects corresponded to SMK, KCT, 

and KCS in the MKT model, respectively, the fourth aspect of KoPL defined a distinct 

component for the probability instruction, which has not been displayed explicitly in the MKT. 

The KoP reveals the heart of mathematics teachers’ professional knowledge for teaching 

probability. It indicates epistemological reflection on the meaning of probability, which 

requires an understanding of its (a) objective facet that emphasizes the mathematical rules that 

govern random processes, and (b) subjective facet that sharpens the information available to 

the person assigning that probability. While the former can be informed through the theoretical 

and experimental interpretations, conditional probability determines an essential concept to 

understand the latter. 

Within the objective view, theoretical probability indicates a fraction whose numerator is 

the number of favorable cases and denominator is the number of all equally likely cases; yet, 

because of the equiprobability, the theoretical interpretation is difficult to apply outside games 

of chance. Moreover, the experimental probability signifies a hypothetical number toward 

which the relative frequency tends during the stabilization process when random sequences are 

considered (Sharma, 2016). It also has the practical limitation of only obtaining an estimation, 

which alters from one series of repetitions to another, and it cannot be applied when it is not 

possible to replicate an experiment under the same conditions. Thus, neither interpretation is 

suitable to address every situation; instead, the appropriate approach should be applied 

depending upon the context. 

Within the subjective view, the concept of conditional probability specifies a prerequisite 

for understanding subjective probability (Jones et al., 2007). It describes an update of the 

predictor’s knowledge of a particular event when new information is available; thus, it keeps 

the dual object-subject character of probability (Kapadia & Borovcnik, 2010). Accordingly, 

this study relied on PSMTs’ reasoning in a conditional probabilistic situation to characterize 

the notion of subjective probability. This was grounded in Chernoff’s (2008) classification of 

subjective probability into intrasubjective probability (personal belief-type) and intersubjective 

probability (interpersonal belief-type), and in Borovcnik’s (2012) review of the educational 

perspective on conditional probability. As the latter declared, conditional probability (a) fulfils 
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probability axioms for the objectivists, and (b) reflects that any probability is conditional to 

available information and is related to the idea of updating it in light of new evidence. 

In addition to KoP, which was sharpened in the current study, several issues that are 

related to the three other components of KoTP, KoSPK, and KoPL were found. 

The KoTP included concerns on how to teach probability, which was defined in the following 

terms: (a) Warming up the probability lesson, it should focus on developing students’ intuitive 

understanding of uncertainty to capture the formal concept of probability. (b) Accessing the 

probability activities,  teachers should define simple, compound, and conditional probability; 

understand concepts of variability, expectation, randomness, and independence; distinguish 

between mutually exclusive, joint, and independent events; and draw inferences about a 

population from random samples—they should also separate a mathematical problem from the 

statistical one and recognize interrelationships among mathematics, statistics, and probability. 

(c) Teachers should be able to connect and differentiate among various probability 

interpretations wherein the law of large numbers plays an essential role in connecting 

theoretical and experimental probability. In this regard, teachers have to choose between two 

methodological directions to highlight such a connection: the mapping direction that starts with 

the theoretical interpretation or the inference direction that begins with doing an experiment 

(Nilsson, 2013). This choice depends on whether the sample space is known by or hidden from 

students. (d) Teachers should utilize various representations wherein employ tables; area 

models; Venn, pipe, or tree diagrams; and computerized simulators to facilitate students’ 

understanding of probability concepts. 

For the KoSPK, teachers should build their instruction on students’ existing knowledge of 

probability; thus, they have to perceive students’ prior knowledge (e.g., ratios, proportions, 

percentages, fractions, and rational number), misconceptions, difficulties, and levels of 

cognitive development that are related to probability. Lastly, KoPL considers the probability 

language as a fundamental aspect of teachers’ knowledge. Resultantly, how teachers use that 

language to connect students’ daily intuitions of chance, which are manifested in their natural 

conversation, with the academic language of probability is important. Besides, teachers' 

capacity to distinguish both the languages is crucial, because sometimes the usage of the terms 

related to probability during the formal instruction differs from how these words function in 

everyday situations (e.g., the concept of fairness). 

 The issues discussed above described the first step in defining the study framework. This 

step recognized mathematics teachers' professional knowledge for teaching probability in 

terms of KoP, which indicates their understanding of the probability concepts and also crosses 
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with knowledge of the language, knowledge of teaching, and knowledge of students to 

construct KoPL, KoTP, and KoSPK, respectively; furthermore, those four components are 

interrelated. 

Although some studies have been conducted to investigate teachers’ knowledge for 

teaching probability by utilizing the MKT framework (e.g., Birel, 2017; Brijlall, 2014; Chick 

& Baker, 2005; Contreras et al., 2011; Danişman & Tanişli, 2017), the focus was more on 

assessing those teachers' practical knowledge, which was often described as being insufficient 

or inadequate. Moreover, most of these studies neither regarded teachers’ reasoning processes 

nor the cognitive biases that may cause such insufficient practices (e.g., Torres et al., 2016). 

Thus, this study framework not only relied on what was raised in the previous research (i.e., 

the first employed step to conceptualize the study framework) but also attempted to define a 

new angle that may help exhibit the psychological facet of teachers’ knowledge for teaching 

probability, which is represented by their reasoning processes and conceptions. These ideas 

were outlined in the second step to characterize the study framework. 

In the second step, the study premises were defined as follows: (a) conceptions represent 

knowledge in evolution; (b) reasoning indicates an individual cognitive process to interpret the 

acquired knowledge; and (c) there is a reciprocal relationship between conceptions and 

reasoning. 

Conception is knowledge created through the interaction between individuals and their 

milieu (Brousseau, 1998); it can be valid in certain circumstances but cannot be generalized 

across all. Moreover, it is not reasonable to pretend that a specific type of conception might 

explain a certain level of understanding because classifying such conceptions into levels of 

conceptual understanding does not recognize the value of individuals' reasoning to make sense 

of phenomena (Savard, 2007). This is highly valuable for probability education since 

individuals’ worlds are full of diverging conceptions connected to probability (Kapadia & 

Borovcnik, 2010), and these conceptions signify a critical component for the process of 

knowledge construction (Smith et al., 1993). 

Additionally, the probabilistic reasoning was selected to be the study perspective in light 

of Kapadia and Borovcnik’s (2010) recommendation to replace Heitele’s (1975) ideas with an 

approach that looks at concepts from a non-mathematical perspective, that is, has a cognitive 

psychological nature and focuses on how the mind works. Also, the PoPR appreciates the dual 

character of probability, wherein subjectivity itself is one plausible approach to interpret a 

probabilistic situation. Moreover, probabilistic reasoning considers two main concepts of 
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variability and randomness; variability indicates that the outcome is not determined, and 

randomness signifies uncertainty and independence. 

Based on the definition of conceptions and reasoning, the relationship between them was 

identified as follows: depending upon how we do reason in an uncertain situation that contains 

probability knowledge (theoretical constructs), our conceptions can be clarified. 

In light of this, the study framework, which defines mathematics teachers’ professional 

knowledge for teaching probability from the PoPR, was represented (see Figure 11). It 

embodied interrelationships among professional knowledge, conceptions, and reasoning. 

According to the framework, mathematics teachers' professional knowledge for teaching 

probability (knowledge for practice) consolidates knowledge of probability (KoP) that crosses 

with knowledge of the language, teaching, and students to assemble knowledge of probability 

language (KoPL), knowledge of teaching probability (KoTP), and knowledge of students’ 

probability knowledge (KoSPK), respectively. Nonetheless, practically, during the actual 

teaching, each teacher transmits this knowledge through a lens that is probability conceptions, 

which indicate teacher’s practical knowledge (knowledge in practice). These conceptions may 

match the scientific knowledge (theoretical static constructs); however, in some cases, there is 

a gap between how a teacher perceives probability knowledge and professional knowledge for 

teaching probability if his/her conceptions do not fully fulfil probability theory. The existence 

of such a gap reflects teachers’ various ways of reasoning under uncertainty; placing the focus 

on reasoning processes (the study perspective) could help characterize this gap. 

Accordingly, through the lens of probabilistic reasoning, mathematics teachers’ 

professional knowledge for teaching probability includes these redefined aspects: R(in)P, 

R(in)PL, R(in)TP, and R(in)SPK, which determine their reasoning in situations that involve 

knowledge of probability, probability language, teaching probability, and students probability 

knowledge, respectively. 

 

6.1.3 The answer to the third research question  

The third research question endeavored to characterize PSMTs' knowledge for teaching 

probability in Egypt from the PoPR; it sharpened the aspect of PSMTs’ R(in)P that is related 

to (a) simple unconditional and (b) conditional probabilistic situations. While the former helped 

to incorporate different probability conceptions together in one schema, the notion of 

subjective probability was clarified based on the latter. Furthermore, both issues were handled 

through a field study in which a sample of sixty-eight PSMTs, who were enrolled in the four-

year mathematics teachers' preparation program during the academic year 2018–2019 at the 
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Faculty of Education, Tanta University, Egypt, was engaged in this study. Additionally, the 

data were collected using a questionnaire; it included six items that were developed in terms of 

(a) the value of adopting a social problem, (b) the school curriculum viewpoint, (c) the pupils’ 

perspective, and (d) issues of previous research. 

First, to define PSMTs’ reasoning in a simple unconditional probabilistic situation, they 

were asked to interpret three probabilistic tasks of giving birth, throwing a die, and weather 

predictability. These tasks were constructed in light of the above-stated criteria to cover 

different probability contexts. After the data were obtained, the analysis processes involved 

two types of coding: (a) inductive coding that was performed in light of Thomas’s (2006) steps 

through NVivo software to analyze PSMTs’ responses to the first problem of how to judge the 

probability of giving birth to a girl, and (b) deductive coding to analyze PSMTs’ answers to 

the other tasks of how to determine the probability of obtaining number 5 in an experiment of 

throwing a die and interpret a 60% probability of rain. Both processes were repeated once again 

after around six months, and accordingly, intracoder reliability was calculated through Cohen’s 

Kappa coefficient to verify the stability of findings over time and ensure the trustworthiness of 

the results. It gives reasonable values of .788, .768, and .887 for the three tasks, respectively. 

As a result, four manners of reasoning emerged that were designated by M, S, O, and I to 

describe PSMTs, whose thinking was mathematical, subjective, empirical, and intuitive, 

respectively.  

In the beginning, the analysis process for PSMTs’ responses to the problem of determining 

the probability of giving birth to a girl revealed three categories of thinkers: Mathematically 

(29.4%), Subjectively (60.3%), and Outcome-oriented (10.3%). These categories also included 

multiple subcategories of m, m*; s, s*, s**; and o and o*. Furthermore, similar manners of 

reasoning emerged among PSMTs’ interpretations of tasks of throwing a die and weather 

predictability, but not consistently. Concretely, for the activity of throwing a die, the major 

categories of M (73.5%) and O (26.5%) resulted, compared to M (14.6%), S (10.4%), 

O (50%), and the distinct category of I (25%) for the task of weather predictability. Besides, 

new sub-categories of m** and o** were inferred, with the former only emerging in PSMTs’ 

answers to the activity of throwing a die, while the latter appeared in both the contexts of 

throwing a die and weather predictability. Additionally, some PSMTs’ conceptions and 

cognitive biases were deduced and assigned to the three factors of variability, randomness, 

and contextual recognition, which describe the process of probabilistic reasoning. 

Type M reasoning represented the most used manner of thinking that appeared in the three 

contexts; it handled the theoretical probability to model the uncertain phenomena. 
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The variability for M thinkers indicated that the outcome varies depending upon the possible 

events in the sample space. Moreover, PSMTs exhibited the equiprobability bias in 

understanding randomness, which, for them, meant that the random character of the 

experiment stayed sufficient evidence of equiprobable outcomes (Lecoutre, 1992). 

Nevertheless, they altered in terms of contextual recognition. On one hand, m thinkers were 

able to connect the mathematical model of the given situations with realistic conditions; but, 

they overestimated the replicability of the experimental results. On the other hand, m* thinkers 

showed an abstract mindset that declined realistic circumstances to interpret the situation 

theoretically. While m thinkers exhibited equiprobability as a result of employing the 

representativeness heuristic, m* thinkers shared the equiprobability because 

of the overgeneralization heuristic. Hence, contextual recognition appeared in utilizing both 

the representativeness and overgeneralization heuristics; more precisely, the former defined 

the realistic circumstances as equal in occurrence, and the latter dropped the practical obstacles 

and sought a general formula instead. 

Also, as reported earlier, type m** reasoning appeared in the context of throwing a die; it 

exhibited an adequate understanding of the theoretical probability in terms of the three factors 

of variability, randomness, and contextual recognition. For this, m** thinkers could (a) 

differentiate between randomness and fairness, and (b) identify the required assumptions to 

handle the proper probability interpretation according to the circumstances of the phenomena. 

The second prevalent model of thinking was O; it was also observed in the three contexts. 

Although such type of reasoning was intended to employ the experimental probability to model 

an uncertain situation, it did not reflect an adequate recognition of that interpretation 

since O thinkers manipulated the experimentations not to define the probability but rather to 

describe the favorable outcome. Apart from that was o** thinkers who interpreted 

the experimental probability as the relative frequency of occurrence of an event in a large 

number of trials.  

All O thinkers admitted the variability of outcomes; however, how they perceived it was 

a little different. For o and o*, the variability did not depend on frequencies but on one single 

trial at which the favorable outcome could be expected. On the contrary, o** thinkers 

understood that the estimation alters depending upon the ratio between frequencies to the total 

number of trials. Moreover, several conceptions that are relevant to randomness were exposed. 

For o thinkers, both the prediction conception and prediction bias emerged; while the former 

signified a misunderstanding of the expectation’s intention, the latter judged that expectation 

precisely. o* thinkers also shared the causal conception wherein they confused causality and 
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conditionality; they considered the conditioning event to be a cause for the favorable outcome 

that represented the result. This denies the randomness that demands independence. On the 

contrary, o** thinkers displayed an adequate recognition of the randomness through 

admitting the law of large numbers at which although the favorable outcome cannot be 

certainly anticipated, the number of trials has to be increased to get an accurate prediction. 

Thus, randomness for o** thinkers exhibited a fair distribution in the long term of many 

trials. Regarding the contextual recognition, all O thinkers identified the data-context that 

includes the real conditions from which the problem arose (e.g., Backgammon 

games). However, the task-context that includes defining the sequence of the task and its 

motivating story (Hershkowitz et al., 2001) was recognized only by o** thinkers; this 

recognition helped them think of the limitations of utilizing the experimental probability.  

The third manner of reasoning that PSMTs performed was S; it defined probability as a 

degree of credibility in the occurrence of an event, and it was judged based on various types of 

information wherein the probability could be revised and updated. S reasoning appeared in 

both the contexts of giving birth and weather predictability, but not in throwing a die, which 

reflects the value of daily situations in exposing the subjective facet of the probability (e.g., 

Chassapis & Chatzivasileiou, 2008; Konold, 1995; Larose et al., 2010; Musch & Ehrenberg, 

2010; Savard, 2008).  

All S thinkers considered variability of outcomes through which the expected outcome 

altered upon the information regarding the phenomenon under study becoming available. 

Nevertheless, the nature of this information that explained the variability for s* stayed 

different from both s and s**. Although s and s** attributed the variability to multiple 

cognitive criteria, s* thinkers stressed the religious conception of Allah’s will that was judged 

in light of acknowledging the influence of socio-cultural factors on learners' conceptions to be 

a particular type of probabilistic reasoning; it was neither a personalist 

interpretation nor superstitious reasoning. Furthermore, regarding randomness, s thinkers 

shared the prediction bias that appeared previously for o thinkers, and some of them 

maintained the dependence conception, interpreting two dependent events as if one is the cause 

for the other. While s thinkers neglected the randomness that demands independence, both s* 

and s** recognized such randomness when they explicitly reported that expected outcomes 

could not be predicted precisely. Additionally, all S thinkers referred to a data context wherein 

they relied on several real conditions to explain the presented tasks. They also recognized 

the task context within which these tasks might be approached through the subjective 

probability. 
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Lastly, the fourth manner of reasoning that emerged only in PSMTs' responses to 

the weather predictability task was I; it used qualitative expressions to explain a probabilistic 

estimation. I thinkers recognized the variability that involved merely two options of the 

favorable outcome or any other event, as in the case of o and o* thinkers. Besides, I thinkers' 

understanding of randomness was expressed qualitatively in light of a continuous decision line 

that ranges from 0% to 100%, to quantify their probabilistic judgment. Based on Lysoe’s 

(2008) categories of uncertain words’ usage, I thinkers were judged to have novice recognition 

of task-context because they were in the second level wherein their interpretation of probability 

includes qualitative idioms. 

Similar to the previously determined procedures, PSMTs had to interpret two different 

conditional probabilistic contexts through which their conditional probabilistic reasoning could 

be characterized. In the first context, they were asked to determine the probability of giving 

birth to a girl after adding the condition that the woman had delivered two boys before. 

Accordingly, their responses were analyzed inductively (Linneberg & Korsgaard, 2019). 

Moreover, after around six months, the data analysis processes were repeated to verify Cohen’s 

Kappa coefficient, which gave a reasonable value of .832. Additionally, in the second context, 

PSMTs calculated conditional probabilities from a two-way table and their answers were 

analyzed deductively in light of what the previous studies reported about the expected errors 

in computing the conditional probability. 

The analysis of PSMTs’ responses to the problem of giving birth to a girl after adding the 

new condition revealed four manners of reasoning: Generalizer (58.8%), Conservative 

(11.8%), Correlational (23.5%), and Rational thinkers (5.9%). While G and CON defined 

intrasubjective probability (personal belief-type probability) through which PSMTs dropped 

the condition from their analysis, COR and R reflected intersubjective probability 

(interpersonal belief-type), involving the same condition in the interpretation. Furthermore, 

several conceptions and cognitive biases emerged. On one hand, G thinkers exhibited 

the anchoring bias that was invoked by overgeneralizing the independence 

concept, and CON thinkers shared the illusion of validity. On the other hand, COR thinkers 

practiced the availability heuristic, causal conception, and, in some cases, the gambler fallacy. 

On the contrary, R thinkers exhibited an adequate knowledge of the conditional probability 

whereby employing a condition might affect the sample space of the experiment was expressed. 

Additionally, PSMTs’ conceptual difficulties in calculating the conditional probability 

were also defined. Those who disregarded the given condition from the analysis shared a (a) 

confusion between joint and conditional probability [P(A|B) = P(A∩B)] (7.4%), or (b) a 
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combination of the confusion between conditioning and conditioned event, and independence 

conception [P(A|B) = P(B)] (1.5%). On the other side, PSMTs who incorporated the given 

condition in the analysis (except those who correctly solved the problems) exposed the 

following: (a) the fallacy of transposed conditional [P(A|B) = P(B|A)] (21.3%), (b) the 

reluctance to believe that the condition restricts not only the sample space but also the favorable 

outcome [P(A|B) = P(A)/P(B)] (3.7%), (c) confusion between the conditioned event and 

another event in the experiment (2.9%), (d) combination of the confusion between the 

conditioned event and another event and the reluctance to believe that the condition restricts 

not only the sample space but also the favorable outcome (0.7%), (e) combination of the 

confusion between conditioning and conditioned event, and the reluctance to believe that the 

condition restricts not only the sample space but also the favorable outcome [P(A|B) = 

P(B)/P(A)] (6.6%), and (f) unawareness of basic probability axioms [P (A|B) = P(B)/P(A∩B)] 

(1.5%). After all, tables 32 and 44 exhibited how PSMTs reasoning in simple and conditional 

probabilistic situations was conceptualized, respectively. 

 

6.2. The study implications and recommendations  
The results of the current study provide a wide range of implications not only in the field 

of teacher education but also for pre-university education in terms of both curriculum and 

teaching approaches, specifically in the Egyptian context. 

About the curriculum and as discussed in Chapter 3 regarding the weaknesses of the 

current school curriculum of probability for both primary and lower secondary levels, it is 

recommended to increase the activities that approach the epistemic subjective side of 

probability to be in balance with the existing objective ones. This way, pupils would perceive 

the dual character of the probability concept, which, on one hand, defines the mathematical 

rules that govern random phenomena, and on the other hand, reflects a degree of certainty in 

the occurrence of an event. While the first facet is more objective and intends to measure the 

magnitude of a certain phenomenon, the latter is subjective and depends on the information 

available to the person at the time of the investigation. Furthermore, understanding both the 

facets of probability would help pupils handle the variety of uncertain situations in their daily 

lives, as each interpretation has some limitations and weaknesses that may be overcome by the 

other one. 

Although the above paragraph highlights the need to modify the current school curriculum 

of probability, it also gives some suggestions for the initial preparation of mathematics 
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teachers. In this regard, the study recommends statistics educators who are responsible for 

teaching statistics and probability courses (the discipline itself) differentiate between the 

objective and subjective sides of probability during their instruction; they should also 

strengthen both the circumstances and limitations for utilizing each interpretation (SMK). 

Along with that, and pedagogically, mathematics educators have to support PSMTs in 

establishing a connection between their understanding of probability theory and how to teach 

it, in light of the school curriculum and pupils’ needs (PCK). Moreover, it is also recommended 

to discuss with PSMTs what activities can be designed to expose pupils’ subjective 

probabilistic reasoning; notably, such a manner of reasoning is prevalent in handling daily 

situations and affected by their social practices. 

As revealed above, it is somewhat difficult to discuss issues of pre-university education 

without referring to teacher education that was the essential focus of the current study. In this 

context, the following question emerges: what other recommendations can be transmitted to 

the educators who prepare PSMTs to teach probability effectively in light of the study findings 

and results? The investigation has sharpened characteristics of PSMTs’ R(in)P that defines how 

they reason in an uncertain situation (a situation that includes probability knowledge); 

consequently, several conceptions and cognitive biases were identified. Some of these 

conceptions (a) were a mismatch with the professional knowledge for teaching probability (the 

knowledge that the scientific community recommends mathematics teachers to understand to 

teach probability efficiently) and (b) would affect their teaching (implementation) and, 

consequently, future pupils’ probabilistic reasoning. Accordingly, to overcome such concerns, 

especially in light of the international agreement regarding the influence of teachers’ 

knowledge on pupils’ understanding and achievement, the study recommends the following: 

At first, and based on the study findings, it is recommended to shift the focus of the 

probability discussion from listing the three primary interpretations of probability (i.e., 

theoretical, experimental, and subjective) to describing the factors that underpin the process of 

probabilistic reasoning (i.e., variability, randomness, and contextual recognition). This 

designates one possible step of moving from growing the content knowledge to strengthening 

the process knowledge. Alternatively stated, it recommends a shift from “what probability 

knowledge do PSMTs have?” to “how do PSMTs perceive the probability knowledge?” This 

mirrors the question, “how do PSMTs reason probabilistically?” On one hand, it responds to 

several recommendations in the field, and on the other hand, it signifies a way to approach 

PSMTs’ different manners of reasoning, which is highly significant because it reflects a 

possible reason for why they share different conceptions of probability. This way, and as stated 
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earlier in the significance of the study (see Chapter 1), pedagogical courses can be built 

constructively to be in line with PSMTs’ reasoning processes. 

Shifting the focus to the process will alter the way of teaching itself. For example, to 

approach the subjective probability through learning conditional probability, independence, 

and Bayes theorem, it is advised not only to strengthen the formula and techniques that govern 

most teacher education courses but also to emphasize how such procedures work intuitively 

and in real circumstances. From this aspect, it is valuable to implement real examples, 

particularly in teaching conditional probability, to expose how acquiring new information helps 

to change our prior estimation (e.g., Díaz & Fuente, 2007). This is reported in Chapter 4; the 

probability is often introduced to learners using easy examples such as tossing coins or rolling 

dice that have quantifiable sample spaces. These examples do not provide an adequate basis 

for understanding subjective probabilities and lead to a belief that probabilities are empirical 

properties of the scenario rather than a measure of our knowledge of the outcomes. 

It is also helpful to cover a wide range of probabilistic problems that depend on different 

contexts, especially, the uncertain social problems that enable PSMTs to deal with high levels 

of ambiguity (i.e., probabilistic reasoning) (Lord, 1994). Besides, the activities that could be 

translated into multiple forms are important to introduce, since learners sometimes exhibit 

fallacious reasoning or even conceptual difficulty merely because of the task form. As 

Gigerenzer and Hoffrage (1995) reported, some students had much success with Bayesian 

problems when the information was presented in frequency formats. This would promote 

PSMTs’ procedural and conceptual knowledge of probability (e.g., Reaburn, 2013), which in 

turn affects pupils’ understanding of probability. 

More specifically, concerning issues of subjective probability, where probability does not 

have measurable characteristics but rather reflects the individuals’ beliefs, it is recommended 

to raise PSMTs' awareness of their personal experiences and beliefs and of how probability 

theory can be beneficial in calibrating these beliefs objectively to be in line with these theories. 

This way, PSMTs will be able to handle such concerns that may appear during actual 

interaction with their pupils, especially in light of the weakness of the school curriculum that 

seems to ignore the subjective side of probability. It is what we often call KCS, which describes 

the interplay between knowledge of the content and students. Therefore, such attention 

supports strengthening PSMTs’ KCS that is related to probability. 

Additionally, the usage of technology and computerized simulators is also recommended 

to be implemented in both school and teacher education (e.g., Batanero & Sanchez, 2005; 

Batanero et al., 2016). As discussed in Chapter 4, such simulators provide valuable 
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representations that could facilitate learning the probabilistic concepts and, at the same time, 

eliminate some possible misconceptions. In other words, these simulators can quickly generate 

random experiments and exhibit the effect of sample size (Batanero et al., 2005); consequently, 

individuals can evaluate their prior judgments and correct their preconceptions or beliefs that 

may not be consistent with the probability theory (e.g., Contreras et al., 2010). This means that 

one way to convince learners that their solutions to probability problems are wrong is to 

challenge these solutions with experiments (Díaz & Batanero, 2009). Furthermore, and related 

to what was discussed earlier regarding the need to change the teaching approaches of PSMTs, 

these technologies can support such change; it enables PSMTs to work with real data where 

the difference between empirical results and theoretical probabilistic models can be visualized 

(Batanero et al., 2016). Such an approach matches the effective constructive teaching that 

should be based on knowledge of pupils’ preconceptions, since they construct the meaning by 

connecting the new knowledge to what they already believe to be true (Garfield, 1995). 

Because of this, several researchers recommend mathematics teachers start by teaching their 

pupils experimental probability (e.g., Andrew, 2009). 

As a part of the didactical preparation, it is recommended that mathematics educators to 

pay more attention to probability language. Concretely, this study has manifested probability 

language as an essential aspect of mathematics teachers’ professional knowledge for teaching 

probability. It signifies one unique feature of the study framework, which has not explicitly 

been considered in other models of teachers’ knowledge (e.g., the MKT). Such an idea can 

indicate what should be considered during the preparation of PSMTs, especially for the 

probability domain that has not been provided with much evidence previously. As reported in 

the TEDS-M, which focused on the standard repertoire of mathematics education represented 

by the three domains of Numbers, Algebra, and Geometry, the area of Data and chance was 

unequally implemented, and its content reduced to basic concepts of probability and data 

handling (Döhrmann, Kaiser, & Blömeke, 2012; Li & Wisenbaker, 2008). In this view, PSMTs 

need to be made conscious of the possible confusion between the informal daily language of 

probability and the formal one, and stand to use such informal intuitive language to approach 

formal concepts.  
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6.3. The study limitations and directions for future research  

Depending upon the study delimitations (see Chapter 1) and the declared issues of 

trustworthiness (see Chapter 5), several concerns should be taken into consideration when 

interpreting the current study's results and findings. 

First, the theoretical analysis that conceptualized the study framework was limited to 

ICOTS’ papers in 2010, 2014, and 2018, and several other studies accessible through search 

engines (e.g., Google, Google Scholar). As a result, the conceptualization may disregard some 

other aspects that should be considered to address mathematics teachers’ professional 

knowledge for teaching probability; possibly, such aspects have been highlighted in other 

research papers that were not reviewed. The study premises are also closely related to this. 

They define the researcher's interpretation of possible interrelationships among professional 

knowledge (theoretical constructs), practical knowledge (conceptions), and reasoning 

processes as one plausible way to exhibit the psychological aspect of probability, which was 

described during the whole discussion by the expression “the perspective of probabilistic 

reasoning (PoPR)”. These premises were utilized to complement the literature review and 

finalize the conceptual framework (see Chapter 4). Although the construction of the framework 

was revised several times and then modified in light of the supervisor's and colleagues' 

comments and critiques, this may not be adequate to guarantee its validity. In other words, if 

other researchers follow the same procedures of both the literature review and study premises, 

they might get another conceptualization. This concern may also weaken the findings of the 

second research question. 

Second, and as reported in Chapter 1, the implementation of the study questionnaire was 

limited to a non-random sample of PSMTs who belong to Tanta University, the only 

governmental university in Gharbia governorate in Egypt. Consequently, the drawn 

conclusions may not be valid for all the characteristics of the whole population of PSMTs 

across universities. Furthermore, these conclusions and results may alter if the same survey 

were carried out with another sample of PSMTs in other countries. This is particularly true in 

the case of issues of subjective probability reasoning that is highly influenced by socio-cultural 

factors. 

Finally, another two interrelated constraints of the current study are (a) the proposed items 

of the questionnaire through which the data were collected and (b) the process of analyzing 

that data, both were detailed in  Chapter 5. In brief, the questionnaire items were formulated 
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loosely to match the nature of the current exploratory investigation, which could be the basis 

for similar future national studies. Nonetheless, perhaps such open questions, especially the 

problem of giving birth to a girl, affected PSMTs' responses and oriented them to reason 

superficially out of the educational context and probability theory. Also, the collected data were 

interpreted by the researcher only depending merely upon the study questionnaire, which 

means that there was neither opportunity to engage other researchers during the data 

interpretation process nor to conduct posterior interviews with the PSMTs. This may limit the 

validity of the analysis and, consequently, the obtained conclusions. However, as reported in 

Chapter 5, PSMTs’ responses to each item of the study questionnaire were analyzed twice 

through the described protocols, and the calculated Cohen Kappa coefficients were reasonable. 

Based on the recommendations and limitations of the study, the following directions for 

future research are proposed: 

• More systematic approaches can be adopted to clarify what aspects of mathematics 

teachers’ professional knowledge are relevant for teaching probability, either through a 

different theoretical analysis of the current research or by examining the implementation 

of lessons by the in-service teachers. 

• Similar studies might be conducted over different groups (e.g., PSMTs in other 

universities, in-service teachers) to get a broad and profound understanding of the current 

state of mathematics teachers’ knowledge for teaching probability in Egypt. 

• Other future investigations might be carried out using other specific questions that can 

validate the current study results; for example, one could use the Conditional Probability 

Reasoning test (CPR) proposed by Díaz and de la Fuente (2007) to assess PSMTs’ 

conceptions in conditional probability. Moreover, and specifically about the conditional 

probability, since, as stated earlier (see the study limitations), no afterward interviews 

were conducted with the PSMTs, it is important to consider this concern in future 

research. More concretely, although the current study supposed that the PSMTs were 

thinking of the condition when calculating the conditional probability from the two-way 

table as same as the problem of giving birth, this may not be true. PSMTs probably picked 

the numbers randomly from the tables without thinking of any relationship between both 

contexts. That issue was not fully clear in the current study since there were no interviews 

with the participants. In this sense, the study advocate for more research regarding 

PSMTs' interpretation of the two-way table, which paves the way toward a trend of 

research that focuses on how conditional probability can be taught in teacher education, 
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further to pupils, in a way that makes them realize the connection between different 

conditional probabilistic contexts (e.g., social phenomena and mathematical tasks).  

• A logical subsequent step for this study would be to design a teaching experiment that 

may help eliminate PSMTs conceptions and cognitive biases. Thus, another direction for 

future studies could be proposing a course of study or a teaching strategy and 

investigating its effectiveness to improve PSMTs’ knowledge for teaching probability. 

In this view, it is crucial to consider how to overcome PSMTs' shared conceptions and 

biases (e.g., equiprobable bias, causal conception, independence conception, 

overgeneralization heuristics, and the illusion of validity). In particular, the equiprobable 

bias. Acknowledging the importance of the equally likely principle, which considers an 

essential premise to apply the theoretical probability wherein most curriculum activities 

can be handled, much more research is needed to clarify when (when not) that premise 

is valid. In other words, since the equally likely principle is relevant to the theoretical 

probability, it is important to confirm students' understandability of that principle before 

modeling the probabilistic situation. They have to think about whether the equally likely 

principle valid to the situation they are going to model or not; accordingly, if yes, they 

may use theoretical probability and if not, they have to think of another probability 

interpretation. Additionally, and under the view of PSMTs’ pedagogical preparation, it 

is also possible to do further research on the characteristics of activities that may, on one 

hand, enhance PSMTs’ understanding of objective probability and, on the other hand, 

expose their subjective probabilistic reasoning. 

• More specifically, regarding the emergence of randomness, variability, and contextual 

recognition in PSMTs’ reasoning under uncertainty, more research is needed to argue 

whether we have to change the prevalent way of teaching and focus on these factors; 

furthermore, how to move toward such a challenging change. 

• Finally, the dilemma about the relationship between conditional and unconditional 

probabilistic reasoning remains a notable area of further studies. 
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APPENDICES  
Appendix 1: 

Classification of the subjects that PSMTs study during the whole duration of the preparation 

program based on Grossman's model23:  

 
General Pedagogical Subjects (GPK) 

Number of hours Subject name Code 
3 Introduction to Education Edu111 

2 Environmental Education Curr112 

2 Philosophical and scientific thinking Edu112 

2 Health Education Curr113 

3 The teacher and the teaching profession EDU 121 

2 Developmental Psychology MH 121 
2 Curriculum Curr412 
2 Educational Psychology 1 Psy211 

1 Social Psychology MH221 

1 Cognitive Psychology Psy221 
3 Education Technology Curr222 
2 School and classroom administration COMP 211 
2 Psychology of learning 2 Psy222 
2 Adult education and its applications Edu311 

3 Psychology with special needs MH321 
3 Individual Differences and Psychological Measurement Psy421 
2 Methods of teaching people with special needs Curr321 

2 Educational Thought and its applications Edu421 

39 Total number of hours 
 

 
23 The academic program for the Faculty of Education, Tanta university has been retrieved from 
http://tdb2.tanta.edu.eg/acad_catalog/under.aspx?AS_FACULTY_INFO_ID=3 
  

  

Teaching Methods and Practicum Training (PCK) 

Number of hours Subject name Code 

3 History of mathematics and philosophy MAT 122 

3 Microteaching curr211 

2 IT education specialization Curr312 

2 Microteaching2 Curr221 

3 Teaching Methods 1 Curr311 

2 Computer in specialization Curr313 
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General Cultural Subjects (K of Context) 
Number of hours Subject name Code 

2 Scientific Culture Curr111 

2 Arabic Ara111 

4 English Eng121 

2 Human rights 666 

1 International Education Comp221 

1 School and community EDU 221 

3 Mental health and psychological counseling MH411 

2 Education and the issues of the day Edu321 

1 Parenting supervision Comp321 

2 Education system in Egypt and contemporary trends Comp421 

20 Total number of hours 
 

Advanced Mathematics, Statistics, and Sciences (SMK) 

Number of hours Subject name Code 
5 physics 1 properties of the material electrical and magnetics PHS 111 
5 Basics of mathematics MAT 111 

4 High algebra MAT 112 

4 Calculus 1 MAT 113 

4 Statics 1 MAT 114 

5 Physics 2 heat and geometrical optics PHS121 
5 Engineering analytical level MAT 123 
4 Differentiation and integration 2 MAT 124 

5 Dynamics 1 MAT 125 

4 Linear algebra MAT211 
6 Differentiation and integration 3 - Mathematics applications MAT212 
4 Statics 2 MAT 214 
4 Introduction to Computer Programming MAT 215 
5 Physics 4 Physical Optics and AC PHS 221 

3 Analytical Engineering in vacuum MAT 221 

6 Applied Mathematics Fluid Dynamics 2 Applied Mathematics 
quantum mechanics 

MAT 423-
MAT 424 

4 Field Training 140 
4 Field Training 140 

3 Teaching Methods 2 Curr411 

4 Field Training 140 
4 Field Training 140 
34 Total number of hours 
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3 Differential Equations MAT 222 

3 Dynamics 2 MAT 223 

3 Introduction to Statistics and probabilities MAT 224 

3 Real analysis MAT 225 

5 Physics 3 Thermodynamics and Modern Physics PHS 211 

3 Theory Composition MAT 312 

3 General Topology MAT 421 

5 Applied Mathematics rigid body dynamics MAT 314 

5 Electrostatic and magnetic MAT 315 

4 Chaos Theory MAT 316 

4 Numerical Analysis MAT321 

4 Special Functions and Partial Differential Equations MAT322 

4 Statistical analysis MAT323 

6 Applied Mathematics (analytical dynamics) - Applied 
Mathematics (Mechanics multiple circles) 

MAT 324 -
MAT425 

3 Mechanics Astronomy and Space MAT326 

4 Functional Analysis MAT413 

6 Applied Mathematics General Theory of Relativity Applied 
Mathematics dynamics inhibitions 1 

MAT414-
MAT415 

5 Advanced statistical methods MAT416 

3 Mathematics vital MAT 411 

3 Rings and fields MAT412 

4 Sports programming and software packages MAT 422 

4 Complex Analysis MAT 421 

4 Differential Geometry MAT 425 

4 Statistical Mechanics MAT 426 

168 Total number of hours 
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Appendix 2: 

Results of analyzing school textbooks’ activities that are relevant to the domain of statistics 

for both primary and lower secondary levels; from grade 1 to 9 

 

This analysis was conducted in light of the fundamental statistical ideas that are declared 

by Burrill and Biehler (2011). Thus, these ideas are first summarized; then, accordingly, the 

results of the analysis process are reported, as follows: 

 
 The characteristics of the related activity 

Data It aims at presenting data as numbers with a context or reflects the 
processes of obtaining such data (types of data and ways of 
collecting it). 

Variation It intends to recognize or measure the variability to predict, explain, 
or control a phenomenon (measures of variability). 

Distribution It includes concepts of tendencies from empirical distributions, 
random variables from theoretical distributions, and summaries in 
the sampling distribution. 

Representation It combines the graphical or other data representations (e.g., tables, 
graphs). 

Association and 
modelling relations 

between two variables 

It displays the relationships among statistical variables for 
categorical and numerical data (e.g., regression models). 

Probability models 
for data generating 

processes 

It represents the hypothetical relationships generated from theory 
(theoretical probability); simulations, or large data set 
(experimental probability); and, quantifying the variability in data 
including long-term stability (i.e., probability theories). 

Sampling and 
inference 

It aims at clarifying the relation between samples and population, 
and how to conclude with some degree of certainty. 

 
A: Results of analyzing textbooks’ activities for grade 1, 2, 3, and 424 

 
 
 
 

Core statistical 
ideas 

School textbooks’ activities for grades 1, 2, 3 and 4  Codes  
1st Grade, 
2nd Term, 

Unit4: 
Statistics, 
Lesson 1: 

Statistics (6 
activities) 

2nd G, 2nd T, 
U5: 

Statistics, 
L1: 

Collecting 
and 

Representing 
Data (5 As) 

3rd G, 2nd T, 
U5: Statistics 

and 
Probability, 

L1: Represent 
Data (6 As), 

L2: 
Probability (9 

As), L3: 
Revision (3 As) 

4th G, 2nd T, U4: 
Statistics and 

Probability, L1: 
Collecting, 

Displaying and 
Representing 
Data (11 As). 

L2: The 
Probability (8 

As). L3: 
Revision (3 As) 

 

 
24 The terms U, T, L, and A refer to the Unit, Term (semester), Lesson, and Activity, respectively; too, the reported 
activities are arranged by the numbers 1,2, 3, ..., Etc. 
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Data 
(Organize data) 

1,3,5,6 
(tables) 

1,2,4,5 
(tables) 

L1: 1,2 
(tables). 

L3: 1 (identify 
appropriate 

way to collect 
data) 

L1: 1,2,3 
(noticing), 4 

(experimenting), 
5 (field study), 

6,9 (arrange 
data in table 

with sets). L3: 2 
(table) 

19 

Representation 
(Represent 

data) 

2,3,6 (small 
blocks) 

4,5 
(number 

line 
horizontally 

or 
vertically) 

1,2,3 (marks 
and bar 
graph) 

L1: 3,4,5,6 
(bar and line 

graph).  
L3: 2 (bar 

graph) 

L1: 7,11 (bar 
and line graph), 
8,10 (double bar 

graph). L3: 1 
(appropriate 

way) 

18 

Probability 
models for 

data 
generating 
processes 

(Understand the 
meaning of 
probability) 

  L2: 1,2 
(certain, 
possible, 

impossible 
event), 3 

(expectation to 
great/ less 
extent), 4 
(extent of 

expectation: 
great, 

moderate, 
weak, none), 5 

(the 
probability of 

certain, 
impossible, 
and possible 

event), 6,7,8,9 
(procedures of 

calculating 
probability). 

L3: 3 
(procedures for 
calculating the 
probability in 

relation to 
certain, 

possible, 
impossible 

event) 

L2:1 (certain, 
possible, 

impossible 
event), 2 

(meaning of 
probability). L2: 

3,4,5,6,7,8 
(calculate the 
probability of 

occurrence of a 
random event). 
L3: 3 (calculate 

probability). 

19 

Codes  9  7  18  22  56 
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B: Results of analyzing the textbooks’ activities for grade 5 and 6 
 School textbooks’ activities for grades 5 and 6 Codes 

Core statistical 
ideas 

5th G, 1st T, U4: 
Probability, L1: 

Experimental 
probability (7 As). 

L2: Theoretical 
probability (10 

As). L3: Exercises 
(9 Ac) 

5th G, 2nd T, 
U5: 

Statistics, 
L1: 

Collecting 
data (3 As), 

L2: 
Organizing 

and 
Displaying 

Data (3 As), 
L3: Reading 
Tables and 

Line Graphs 
(3 As), L4: 

Representing 
Data by 

Histogram 
and 

Frequency 
Polygon (1 

A), L5: 
Representing 
Data Using 
Pie Graphs 
(1 A), L6: 

Revision (4 
As) 

6th G, 1st T, U4: 
Statistics L1: 

Kinds of statistics 
data (5 As). L2: 

collecting 
descriptive 

statistic data (3 
As). L3: 

collecting 
statistics 

quantitative data 
(4 As). L4: 

Representing 
quantitative 

statistics data by 
the frequency 

curve (5 As). L5: 
Exercises (4 As) 

6th G, 2nd T 
U4: Statistics 

and 
Probability, 

L1: 
Representing 

statistical 
data using the 

circular 
sector (12 
As). L2: 
Random 

experiment (4 
As). L3: 

Probability (7 
As). L4: 

Revision (9 
As) 

 

Data 
(identify 

appropriate 
method to 

collect data) 

 L1: 1 
(observing, 
recording, 
tables), 2 
(survey, 
table), 3 

(measuring, 
table). L2: 
1,2,3 (form 
frequency 
tables and 
cumulative 
frequency 
tables with 

sets) 

L1:1, 2,3,4,5. 
L5:1 (descriptive 
vs quantitative 

data). L2:1, 2,3. 
L3: 1,2,3,4. L4:1, 
2,3,4,5. L5:2,3,4 
(understand the 
collected data 

from the 
frequency table) 

L1: 6 (tables). 
L4: 9 (survey) 

29 

Representation 
(Data 

representation) 

 L2: 1,3 
(represent 

simple 
frequency 
table/ with 
intervals 
using bar 

graph). L3: 1 
(pictograph), 

L2: 1, 2 (forming 
the frequency 
table). L3:1, 
2,3,4. L5:2 

(forming the 
frequency table 
with sets). L4: 1 
(represent data 
using frequency 

L1: 1 
(circular 
sector 

concept)2, 
3,4,5,7,8,9,10, 

11,12 
(circular 

sector). L2: 
2,3 (tree 

41 
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2,3 (triple 
bar graph). 

L4: 1 
(Histogram 

and 
frequency 
polygon). 
L5: 1 (pie 

graph). L6: 
1,2 

(histogram 
and 

frequency 
polygon), 
3,4 (pie 
graph). 

polygon), 
1,2,3,4,5. 

L5:2,3,4(represent 
data using 

frequency curve), 

structure). L4: 
1 (circular 

sector) 

Probability 
models for 

data 
generating 
processes 

(Understand 
meaning of 
probability 
through) 

L1: 1,2,3,4, L3: 9 
(experimental 

probability 
concept), 5,6,7, 

L3:8 (calculate the 
expected times of 
occurrence for an 
event). L2:1,2,3,4 
(sample space), 5 
(event), 6,7,8,9, 

10, L3: 1,3,4,5,6,7 
(determine the 

events and 
calculate 

theoretical 
probability). L3: 2 

(calculate 
complementary 

event) 

  L2: 1 
(random 

experiment 
concept), 

2,3,4 (sample 
space 

concept). L3: 
1,2,3 (sample 

space), 4 
(event), 5,6,7 
(probability 
of possible, 
impossible, 

certain event). 
L4: 2,3,4 
(sample 
space), 
5,6,7,8 

(probability). 

44 

Codes 26 17 36 35 114 
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C: Results of analyzing textbooks’ activities for grade 7 
Core 

statistical 
ideas 

School textbooks’ activities for grade 7 Codes   
7th G, 1st T, Unit 3: 

Statistics (Measures of 
Central Tendency), L1: 
Arithmetic Mean (3 As). 
L2: Median (2 As). L3: 

Mode (2 As) 

7th G, 2nd T, U2: Probability and 
Statistics, L1: Samples (7 As). L2: 

Probability (9 As). L3: Revision (3 As) 

 

Data  L3: 3 (design a survey to collect data) 1 
Distribution L1:1,3 (Identify the 

concept of arithmetic 
mean), 2 (calculate the 
value of mean). L2: 1,2 
(concept of median, its 

order and value). L3:1,2 
(concept of mode). 

 7 

Probability 
models for 

data 
generating 
processes 

 L2: 1,2,3,4,5 (concept of experimental 
probability and how to calculate it), 

6,7,8,9 (calculate the probability of an 
event as subset of the sample space). 

9 

Sampling 
and 

inference 

 L1: 1 (concept of sample and its relation 
to population, 2 (how to choose random 

sample systematically), 3 (concept of 
random sample), 4,5,6,7, L3: 1, 3 (use 

the calculator to generate random 
numbers). L3:2 (use Excel program to 

generate random numbers). 

10 

Codes   7 20 27 
 

D: Results of analyzing textbooks’ activities for grade 8 
Core 

statistical 
ideas 

School textbooks’ activities for grades 8 Codes  
8th G, 1st Term, U3: Statistics, L1: Collecting 
and organizing data (6 As), L2: Ascending 
and descending cumulative frequency table 
and their graphical representation (6 As). 
L3: Arithmetic mean, median, and mode (6 

As). L4: Revision (6 As) 

8th G, 2nd T. U3: 
Probability, L1: 

Probability (7 As). 
L2: Revision (6 As) 

 

Data 
 

L1: 1,2, L4: 1,2,4,5 (Collect, analyse, 
interpret), L1: 3,4,5,6, L2:1,2 (organize data 
using frequency table with sets). L2: 1,2, L3: 

4,5 (forming ascending/descending 
cumulative frequency table). 

 16 

Distribution L1: 2 (determine the mode). L3: 1,3, L4: 1,2 
(finding mean for frequency table with sets), 

L3: 2 (concept of mean). L3 4,5, L4:3,4 
(finding median for frequency table with 
sets).  L3: 6, L4: 5,6 (finding mode for 

frequency table with sets). 

 13 



 201 

Representati
on 

 

L2: 1,2,3,4,5,6, L3: 4,5, L4: 3,4 (represent 
ascending/descending cumulative frequency 
curve)). L3: 6, L4: 5,6 (represent data using 

histogram). 

 13 

Probability 
models for 

data 
generating 
processes 

 L1: 1,2,3,4,5,6,7 
(identify sample 
space, possible, 

impossible, certain 
event, calculate the 

probability of an 
event). L2: 1, 3,4,5,6 

(calculate the 
probability of an 

event). 

12 

Sampling 
and 

inference 

 L1: 4,6, L2: 2,3 
(drawing conclusion 
with some degree of 

certainty). 

4 

Codes  42 16 58 
 

E: Results of analyzing textbooks’ activities for grade 9 
Core 

statistical 
ideas 

School textbooks’ activities for grade 9 Codes  
9th G, 1st Term, U3: 

Statistics, L1: Collecting 
Data (6 As). L2: Dispersion 
(8 As). L3: Revision (10 As) 

9th G, 2nd T, U3: Probability, L1: 
Operation on events (14 As). L2: 

Complementary Event and 
Difference between two events (6 

As). L3: Revision (7 As) 

 

Variation L2: 2 (identify range as a 
simplest way to represent 
variation), L2:3,  L3: 1,2,7 
(standard deviation for raw 
data), L2:4,5, L3:3,8 (SD 

for frequency table), L2:6,8, 
L3:4,9 (SD for frequency 
table with sets), L2:7 (SD 
using calculator), L3: 10 

(SD using EXCEL 
program). 

 

 15 

Distributio
n 

L2:1,8, L3: 3,4,7 (calculate 
the arithmetic mean for raw 
data and frequency table). 

 5 

Representa
tion 

 

L2:8 (represent frequency 
table with sets using 
frequency polygon). 

L1: 5,8 (represent events using 
Venn diagram), 14 (find the 

intersection and union of two 
events from Venn diagram). 

4 

Association 
and 

modelling 
relations 
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between 
two 

variables 
Probability 
models for 

data 
generating 
processes 

 

 L1:1,2, L3:4,5,7 (calculate the 
probability of an event), L1: 3,6,9 
(identify sample space), L1: 4,7,10 
(identify an event), L1:5,8, L2:4,  

L3:1 (probability of occurring two 
events together), L1: 11, L3: 2 
(probability of the union of two 
events), L1: 12,13 (identify the 

relationship between the 
intersection and union of two 
events). L2: 1,2 (identify the 

relationship between an event and 
its complementary), L2:3, L3:6 

(relationship between probability of 
an event and probability of its 

complementary), 4 (calculate the 
probability of complementary 
event), 5 (identify difference 

between two events), 6 (calculate 
the probability of two events). L3: 

3 (exclusive events). 

27 

Sampling 
and 

inference 

L1: 1, L3: 5 (identify 
primary and secondary 

resources to collect data), 2 
(mass population and 

sample as methods to collect 
data), L1:3,6, L3: 6 (sample: 
biased and random: simple 

and layer), 4(compare 
sample with population), 

5(choose random numbers 
using calculator). 

 8 

Codes  29 30 59 
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Appendix 3: 
Results of analyzing the implemented curriculum of probability in Egypt: how was the 

implemented curriculum characterized? Retrieved from Elbehary, 2019. 

 
 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 204 

Appendix 4: 
List of the contributed papers on probability education in ICOTS8, 9, and 10 

 
I. In ICOTS8 (2010), 15 (out of 127) papers on probability were found, as follows: 

Title The quoted sections to define paper’s purpose The assigned 
category Section 1 Section 2 

Paradoxical games 
as a didactic tool to 

train teachers in 
probability (Batanero 

et al., 2010) 

“we suggest the interest 
of classical paradoxes in 
the history of probability 

to organise some 
didactic activities 

directed to train teachers 
in probability.” (p.2) 

“Batanero et al. (2004) 
proposed an activity based 

on the Bertrand’s box 
paradox that serves to 

compare the frequentist and 
Laplace’s conceptions of 

probability, and to reflect on 
the concepts of dependent 

experiments and conditional 
probability” (p.2) 

B (Effectiveness 
of paradoxical 

games on 
changing 
teachers’ 

conceptions of 
probability) 

Students’ opinion on 
the subjects of 
statistics and 
probability in 

secondary schools of 
Lisbon, Portugal 

(Caldeira & 
Mouriño, 2010) 

“This work aims at 
analysing students’ 
opinion about these 

subjects.” (p.1) 
 

“In this study, we 
analysed the opinion of 
students from secondary 
school about the subjects 

of Statistics and 
Probability.” (p.4) 

Not relevant 
(Non-cognitive 

aspect) 
 

Linking probability 
to real-world 

situations: how do 
teachers make use of 

the mathematical 
potential of 
simulation 

programs? (Theis & 
Savard, 2010) 

 

“we conducted a one-
year design experiment 
involving 4 high school 
teachers. We trained the 
participants in various 
concepts of probability 
and accompanied them 
to prepare classroom 
situations, which they 

used in their classrooms. 
In this paper, we analyze 

how the participating 
teachers used a 

simulation software we 
provided them.” (p.1) 

“In this paper, we present the 
preliminary results of this 

analysis. We will discuss the 
following issues: a) the 

teachers used the simulation 
programs mainly to show 
their pupils that gambling 

activities are not in favour of 
the gambler in the long term, 

b) the teachers had 
difficulties making the most 

of other probabilistic 
concepts that could 

potentially have been taught 
through the simulation 

software.” (p.2) 

D 
(The 

effectiveness of 
simulation 
software to 

explain 
probability 
concepts) 

The impact of using 
pupils’ daily social 
practices as well as 

computerized 
simulators as a 

teaching medium on 
motivation and 

knowledge 
construction 

regarding 
probabilities among 
high school pupils 

(Grenon et al., 2010) 

“Our research data show 
that learning while 
playing, by using 

computerized simulators 
as a teaching medium, is 
effective in motivating 
pupils and in building 

knowledge.” (p.1) 

“In this study we propose to 
investigate the recourse to 

active methods of teaching, 
using realistic contexts based 
on the knowledge that pupils 

have of gambling games. 
And to do this, we shall 

construct learning situations 
integrating computerized 

simulators that will sustain 
their motivation while 

learning probabilities.” (p.1) 

D 
(Effectiveness of 

computerized 
simulators as a 

teaching 
medium on 
probability 
knowledge 

construction) 
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The effect of 
contextualising 

probability education 
on differentiating the 

concepts of luck, 
chance, and 

probabilities among 
middle and high 
school pupils in 

Quebec (Larose et 
al., 2010) 

“Within the scope of this 
study, carried out among 

over 1,600 pupils in 
middle and high schools, 
we have collected their 
implicit definitions of 
gambling, luck, and 
probabilities.” (p.1) 

“What are the social 
representations that 

correspond to preconceptions 
regarding the definition of 

such concepts as luck, 
chance, and probability 

among pupils in middle and 
high school? This is what we 
have explored by asking two 

samples, distinct but 
complementary, of Quebec 
pupils (N= 1,882) to define 
what each concept meant.” 

(p.1) 

A 
(Investigate 

students’ social 
representations 

and 
preconceptions 
or probability) 

Implications of 
educational reform 

in Cyprus on the 
teaching of 

probability and 
statistics at the 

secondary school 
level 

(Papaieronymou, 
2010) 

“This paper examines 
the educational reform 

currently taking place in 
Cyprus and its 

implications on the 
teaching of statistics and 

probability at the 
secondary school level.” 

(p.1) 
 

“the implications of reform 
discussed in this paper 
should be considered as 

educators in Cyprus prepare 
for instruction on probability 

and statistics and as the 
various committees 

appointed by the Cyprus 
Ministry of Education and 
Culture prepare the revised 
curriculum materials.” (p.4) 

C 
(General 

description of 
the current status 
of statistics and 

probability 
education) 

 

A semiotic analysis 
of “Mônica’s random 

walk”: activity to 
teach basic concepts 

of probability 
(Gusmão et al., 2010) 

 

“We analyzed the 
activity “Mônica’s 

random walk1 ”, in the 
learning environment 

paper-and-pencil, which 
presents the basic 

concepts of probability” 
(p.1) 

“In this work we apply the 
technique of OSA to analyze 

how interact the two 
meanings (institutional and 

personal) of probability 
during the activity “Monica’s 

random walk”, and if this 
helps to teach probability, in 

an attempt to evaluate the 
outline of the teaching 

sequence aiming to adapt it 
in the future to the virtual 
environment of AVALE.” 

(p.2) 

A  
(Analyzing 
teachers’ 

implementation 
of Mônica’s 
random walk 

activity to teach 
the probability 

concepts) 

Simulating the risk 
without gambling: 

can student 
conceptions generate 

critical thinking 
about probability? 

(Savard, 2010) 
 

“lesson plans about 
probability were 

designed and 
implemented in a grade 
four classroom. In this 
teaching experiment, 

students were asked to 
simulate the spinning of 

the wheel using a 
spinner.” (p.1) 

“A teaching experiment was 
conducted in a grade four 

classroom in a Quebec City 
suburb. The aims of this 

teaching experiment were to 
study the probabilistic 

thinking of the students and 
to see how this thinking was 

developed within fake 
gambling situations.” (p.2) 

B 
 (Studying 
students’ 

probabilistic 
thinking in fake 

gambling 
situations) 

Motivation and self-
efficacy related to 

probability and 
statistics: task-

specific motivation 

“We concentrate on the 
data of 350 prospective 

teachers, who were 
asked about content 
domain-specific and 

“What interest and self-
efficacy dispositions do 

learners have related to the 
areas of mathematics 

(general), statistics, and 

Not relevant 
(Non-cognitive 

aspect) 
 



 206 

and proficiency 
(Gundlach et al., 

2010) 
 

taskspecific motivation 
and self-efficacy and 

about solutions to given 
tasks which were 

parallelised with the 
motivation 

questionnaire.” (p.1) 

when being confronted with 
particular tasks? • What 

interdependencies among 
these variables and with the 
proficiency of solving tasks 

can be observed?” (p.2) 

The teaching of 
statistics and 
probability in 
mathematics 

undergraduate 
courses (Viali, 2010) 

“This study analyzed the 
curriculums of 
Mathematics 

undergraduates 
programs in Brazil.” 

(p.1) 

“The main aim of the study 
was to verify the instruction 
hours of the probability and 
statistics courses and what 

they represent out of the total 
number of hours of the 

course.” 

C 
(Curriculum 
analysis of 

statistics and 
probability 

courses)  

Pre-service teachers’ 
understanding of 

probability 
distributions: a 

multilevel statistical 
analysis 

(Chadjipadelis & 
Anastasiadou, 2010) 

“this study posed a 
fundamental question: 
Does a project improve 

Greek pre-service 
teachers’ understanding 

of probability 
distributions?” (p.1) 

 

“In this paper the problem of 
pre-service teachers’ 

approaches in solving tasks 
in probability distributions is 

discussed. Two groups of 
students took part in the 
study. The control group 
participates in teacher-

centred teaching 
environment. The 

experimental group 
participates in student-

centred teaching 
environment. Experimental 

group students were allowed 
to become involved to 

creation of their own task 
along with academic 

demands. Those students got 
a more meaningful learning 

and achieved higher 
performance.” (p. 4) 

D 
(Effectiveness of 

students-
centered 

approach on pre-
service teachers’ 
understanding of 

probability 
distributions) 

 

Changing the 
understanding of 

probability in 
talented children 
(Estrella & Olfos, 

2010) 

“This paper refers to the 
effectiveness of an 

instructional sequence of 
lessons related to 

Probability, which were 
implemented to 11 to 13 

years old talented 
children.” (p.1) 

“This summary of responses 
highlights the high number 

of erroneous or partially 
correct responses for items 
four and six. Items four and 
six correspond to contexts 
about fair coins and dice” 

(p.3) 

D 
(Effectiveness of 

instructional 
sequence on 
probability 

understanding) 

Reviewing and 
promoting research 

in probability 
education 

electronically 
(Kapadia & 

Borovcnik, 2010) 
 

“This paper provides an 
incisive and reflective 

summary on which 
researchers can build, 

while the latter enables 
developments relevant 

for other areas of 
research too. Hyperlinks 

are included 
throughout.” (p.1) 

“The articles show that the 
community regains interest 
in probability education.” 

(p.5) 

Not relevant 
(Literature 
review on 

current research 
efforts about 
probability 
education) 
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The future of 
interactive, electronic 

research: an 
exemplar from 

probability education 
(Borovcnik & 

Kapadia, 2010) 

“This one goes on to 
discuss the influence of 
new technology in how 

research is presented and 
how this may change 

even the nature of 
research.” (p.1) 

“Finally, we discuss how 
electronic publishing affects 
the research and paves the 
way for future research, 
especially for younger 

researchers.” (p.5) 

Not relevant 
(Analyzing the 

influence of 
electronic 

publications) 

Principles and 
strategies in teaching 
probability (Leviatan, 

2010) 

“We propose to teach 
tertiary probability 
focusing on general 

probabilistic principles 
that lead to general 

probabilistic problem-
solving strategies.” (p.1) 

In section 1 we present some 
of the theoretical principles, 

in section 2 we describe 
some resulting strategies, and 
finally we offer directions for 

future research.” (p.1) 

C (Proposed 
principles to 

teach probability 
focusing on 
probability 

axioms) 

 
II. In ICOTS9 (2014), 8 (out of 127) papers on probability were found, as follows:  

Title The quoted sections to define paper’s purpose The assigned 
category Section 1 Section 2 

The potential of 
a grounded 

theory 
approach to 

study teaching 
probability 

(Eckert, 2014) 
 

“I propose a research 
methodology founded on the 

theoretical assumptions of 
symbolic interactionism 

combined with a grounded 
theory approach. The purpose 
of this paper is to outline such 
a research methodology that 

focuses on teaching as 
classroom interaction between 
teachers and students.” (p. 1) 

“The discussion aims to 
emphasize the possibilities 

by this way of studying 
teachers’ knowledge for 
teaching probability and 

refine the methodological 
construct.” (p.1) 

B 
(Effectiveness 
of grounded 

theory to study 
teachers’ 

knowledge 
with a 

classroom 
interaction) 

 

Measuring the 
basics of 

probabilistic 
reasoning: the 

IRT-based 
construction of 
the probabilistic 

reasoning 
questionnaire 
(Primi et al., 

2014) 
 

“The aim of the present study 
was to develop a scale to 

measure basic probabilistic 
reasoning skills, which are 

deemed necessary to 
successfully complete 

introductory statistics courses. 
Specifically, our aim was to 

accurately measure low levels 
of ability in order to identify 
students with difficulties.” 

(p.1) 

“(for examples: “A ball was 
drawn from a bag containing 

10 red, 30 white, 20 blue, 
and 15 yellow balls. What is 

the probability that it is 
neither red nor blue? a. 

30/75; b. 10/75; c. 45/75; 
and “60% of the population 
in a city are men and 40% 

are women. 50% of the men 
and 30% of the women 

smoke. We select a person 
from the city at random. 

What is the probability that 
this person is a smoker? a. 

42%, b. 50%, c. 85%)” (p.2) 

C  
(Measuring 

students’ 
probabilistic 

reasoning 
levels) 

A review of 
probability and 
statistics apps 

for mobile 
devices 

(Edwards, 
2014) 

 

“This paper reviews some the 
mobile apps currently 

available which enable a user 
to either learn Statistics or to 

carry out the sorts of 
summaries and analyses 

encountered in an 

“This paper has identified a 
host of faults and errors in 
the apps considered above. 
However users have no way 
of knowing about these until 
they have obtained the app” 

(p.4) 

Not relevant 
(literature 
review on 
currently 
available 

mobile apps) 
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undergraduate Statistics 
course.” (p.1) 

Meanings of 
probability in 

Spanish 
curriculum for 
primary school 

(Torres & 
Contreras, 

2014) 

“The aim of this paper is to 
analyze the probability 
content in the Spanish 

curricular guidelines for 
primary school” (p.1) 

“We identify the main 
probabilistic objects and the 

probability meanings 
suggested in these 
guidelines.” (p.1) 

A  
(Curriculum 

analysis with a 
consideration 
of subjective 
probability) 

Training 
prospective 
teachers for 
teaching of 

probability at 
secondary 
school in 
Colombia 

(Torres, 2014) 
 

“The aim of this paper is to 
analyze the training about 

probability and how to teach 
probability offered by some of 

the Colombian universities 
which have undergraduate 
programs for prospective 

secondary school teachers.” 
(p.1) 

“the Colombian curriculum 
explicitly considers classical 
and frequentist approaches 

to probability while the 
subjective approach is only 

implicit.” (p.2) 

A 
(Curriculum 

analysis with a 
consideration 
of subjective 
probability) 

Probability and 
statistics in 

access exams to 
Spanish 

universities 
(Díaz et al., 

2014) 
 

“We perform a crossed 
analysis between curricular 

guidelines and items 
appearing in the exams, in 

four Spanish regions, so as to 
detect prevalent units, 

similarities and differences. 
Thus, we check what 

competencies and curricular 
units appear in the official 

curriculum related to Statistics 
and Probability, and how they 

are assessed in the exams.” 
(p.1) 

“essential and original points 
in the official curriculum for 
Applied Mathematics such 

as the interpretation of issues 
related to social sciences 

from a mathematical point of 
view, critical assessment of 
the obtained results or the 
importance of inferential 

statistic to study commercial, 
economical and political 

situations are poorly 
represented in PAU.” (p.3) 
“in general, the questions 

about real life problems are 
underrated in PAU.” (p.4) 

C  
(Curriculum 

analysis with a 
consideration 

of the 
relationship 

between 
statistics and 
probability) 

What’s missing 
in teaching 

probability and 
statistics: 
building 
cognitive 

schema for 
understanding 

random 
phenomena 

(Kuzmak, 2014) 
 

“An analysis of verbal 
protocols of 24 college 

students, who interact with 
and describe random 

phenomena involving the 
mixture of colored marbles, is 

presented, using cognitive 
schema to represent the 

subjects’ expressed 
understanding.” (p.1) 

“In this paper, I apply the 
construct of schema to 

“random phenomena,” as a 
means to formally describe a 

mature understanding of 
random phenomena; to 
illustrate the relative 

complexity and abstractness 
of the schema; to support 

analyzing students’ 
understanding; to clarify 

teaching objectives 
regarding probability and 
statistics, and to identify 

directions for instructional 
improvement.” (p.2) 

A  
(Analyzing 

college 
students 

understanding 
of random 
phenomena 

using chance 
games) 

 
 

.  
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“Gambler’s fallacy, 
predicting mixedup sequence 

works” (p.4) 
Overview of 
prospective 

mathematics 
teachers’ 

probabilistic 
thinking 

(Moreno & 
Cardeñoso, 

2014) 
 

“This paper presents an 
overview of the models of 

probabilistic thinking 
constructed by 583 

prospective mathematics 
teachers in Mendoza, 

Argentina. The goal was to 
gain insight into the personal 

meanings that these future 
teachers attribute to random 

phenomena and to the 
estimation of their 
probability.” (p.1) 

“the purpose of the present 
work was to discover what 
beliefs and conceptions the 

pupils have regarding 
randomness and probability.” 

(p.1) 
 
“Four clusters emerged and, 

in accordance with their 
characteristics and in 

hierarchical order, were 
labelled: deterministic, 

personalistic, uncertainty, 
and contingency.” (p.3) 

A  
(Investigate the 
current state of 

PSMTs 
probabilistic 

thinking 

 
 
III. In ICOTS10 (2018), 2 (out of 79) papers on probability were found, as follows: 

Title The quoted sections to define paper’s purpose The assigned 
category 

Section 1 Section 2  
Comparing the 

efficiency of 
mathematical V. 

intuitive 
explanations in 

conditional 
probability (Levy & 

Stukalin, 2018) 

“The students were presented 
with the Monty Hall problem 

and then received one of 3 
explanations to the counter-

intuitive solution to the 
paradox: Group 1 served as a 

control group and did not 
receive any explanation. Group 

2 students were shown a 
mathematical solution using a 
tree diagram. Group 3 students 

were presented with the 
following intuitive solution: 

"Imagine that after selecting a 
door at random you are given 
the choice of either holding on 

to your initial choice or 
opening the two remaining 

doors. Obviously the second 
option is better".” (p. 1) 

“Results show that the 
group that was shown 
an intuitive solution to 

the Monty Hall 
problem performed 
better than the other 

groups in the test 
question.” (p.2) 

“These initial findings 
stress the importance 
of exposing statistics 
students to counter 

intuitive problems, and 
specifically to the 

underlying intuition 
behind the solutions of 
such problems.” (p.2) 

B 
(Effectiveness 

of providing the 
intuitive 

explanation of 
probability 

paradoxes on 
pre-service 
teachers’ 

performance in 
conditional 
probability)   

Teaching 
probability and 
statistics to pre-

service elementary 
school teachers 
(Takagi, 2018) 

 

“Here, I introduce a syllabus of 
the class about the statistical 
charts such as bar and line 

graphs, pie charts and 
histogram.” (p.1) 

“We obtain some 
conclusions through 
the class as follows: 
Many students don’t 

have some 
fundamental 

acknowledgments 
about statistical 
charts.” (p.2) 

 

D 
(Experiment a 

syllabus to 
teach statistical 
charts for pre-

service 
elementary 

school teachers)  
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Appendix 5: 

Definitions of primary probability interpretations and learners’ cognitive biases in reasoning 

under uncertainty 

 
I. The primary probability interpretations 

Probability 
interpretation 

Underlined conditions, circumstances, and limitations to 
considers 

Theoretical  
Probability is a 

fraction whose numerator is 
the number of favorable 

cases and whose 
denominator is the number 
of all possible cases in the 

set of sample space  

- The possible outcomes should be equally likely to occur. 
- It is only applicable in a finite set of possible outcomes (sample 

space) of a random process. 
- It enables one to calculate probabilities before any trials are 

performed. 
- It is difficult to be operated for complex daily situations (e.g., 

weather events, accident risks. Too, in some classroom situations 
(e.g., the case of rolling an unfair die). 

- It mirrors the idea of fairness; a decision is fair if it is made by an 
ideal chance device. 

Experimental  
Probability can be 

determined by dividing the 
number of times an event 
occurs by the total number 

of performed trials. 

- It cannot present the probability of an event when it is impossible 
to repeat the experiment a very large number of times. 

- No number can be fixed to ensure an optimal estimation for the 
probability. 

- It is required to experiment to obtain the relative frequencies 
concerning the outcomes and consequently estimate the 
probability .  

- As the number of trials increases, the experimental probability 
approaches the theoretical probability. 

Subjective probability   
Probability indicates a 
degree of belief or 

preferences of a person 
based on personal judgment 
and information about the 

situation. 

- The given judgment depends on several factors; for example, the 
knowledge of the subject, the conditions of the observation, the 
kind of event whose uncertainty is reflected on, and available data 
about the random phenomena. 

- It is closely connected with the Bayesian formula that allowed for 
revising a prior estimation of probability by processing new 
information, for estimating a new posterior probability. 

 
II. Learners’ cognitive biases in reasoning under uncertainty 

Conception, bias, or 
heuristic 

Characteristics of the individual's reasoning 
 

Availability  - Estimate the probability by the ease with which instances come to mind 
instead of the complete data. 

Dependence  - Think of past events influence future events, or as if the outcomes are 
associated with each other. Accordingly, randomness is neither admitted 
nor recognized. 

Personalist 
interpretation 

- Animism attribution of phenomena to God; the lucky or skilled person; 
conditions and rules of the game; or the mechanism of the object 
manipulation (e.g., the flipping technique).        

Prediction  - Judge the prediction exactly (the prediction has the meaning of exact 
prediction).  
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Representativeness  
 

- Estimate the likelihood of an event based on how well it represents some 
aspects of the apparent population (i.e., the degree of similarity between 
sample and population). Hence, the more representative an event is 
judged, the higher the probability it takes. 

- Believe that even small samples should reflect the population 
distribution or the process by which random outcomes are generated. 

Gambler fallacy 
(Negative recency 

effect)   

- Believe that after a long run of the same result in a random process, the 
probability of the same event occurring in the next trial is lower. 

- Try to balance the outcomes of a probability sequence without 
considering the independence among trials. 

Unpredictability - Think that outcomes cannot be predicted. Thus, the individual is not able 
to evaluate or predict the probability of such outcomes (its matter of 
randomness or chance).  

Anchoring bias  
 

- Estimate the probability based on some initial values (developed in light 
of given words in the problem, or partial computations) that were 
adjusted to yield the final answer.  

The conjunction 
fallacy 

- Think that the compound probability could be higher than the 
probability of each a single event (overestimate). 

Effect on a sample 
size 

- Estimate the probability without considering the sample size (law of 
small numbers). 

Base-rate fallacy - Fail to take base rates into account when judging probabilities. 
Accordingly, the individual tends to ignore the population base rate; 
particularly, in Bayes' problems, since both statistics of population and 
selective part of this population have to be considered together to solve 
a task correctly. 

The time axis fallacy 
(The chronological 
conception, or the 
Falk phenomena) 

- Interpret the conditional probability of P(A½B) as a temporal 
relationship, which is the conditioning event B should always precede 
the occurrence of event A.  

- Reluctant to believe that an event could condition another event that 
occurs before it.  

Causal 
conception 

- Interpret the conditional probability of P (A|B) as if the conditioning 
event B signifies a cause of A; then, A is the consequence (cause vs. 
effect). Yet, if A is perceived as a possible cause of B, then P(A/B) 
represents a diagnostic relationship.  

Transposed 
conditional 

- Confuse between (P(A|B) and P(B|A).  

Cardinal conception - Interpret the conditional probability of P(A|B) to be the ratio CARD 
(AÇB)/ Card (B). That is correct in the case of finite equiprobable 
sample spaces. However, in case of a continuous sample space or the 
probabilities for the simple events are not equal, this conception leads 
to an error. 

Equiprobability bias - Think of random events as being equiprobable by their very nature (even 
when they are not). Thus, the outcomes are judged to be equally likely 
when their probabilities are not equal. 

Outcome approach  - Interpret the goal of the question as a request to predict the outcome of 
a single trial. Consequently, instead of reflecting the distribution of 
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occurrences in a series of events (the big picture), the individual focuses 
on the result of a single trial. 

- Evaluate the predictions as being right or wrong after one trial. Thus, 
the individual's judgment takes the form yes-no on whether an outcome 
will occur on a particular trial, which signifies a deterministic model of 
the situation. 

- Base the predictions on causal analysis, rather than the distributional 
information. Hence, the assigned numbers that reflect the probability are 
used occasionally to measure the strength of the causal factors. 

- Evaluate the probabilities in terms of their closeness to the values of 0%, 
50%, and 100% (i.e., impossible, possible, certain). 

Sample space - Fail to recognize that all outcomes can occur. 
Visual effect (Visual 

appearance) 
- Think that the position of an object may change its probability to occur 

(e.g., the parts of a spinner make different probabilities depending upon 
their place).  

Illusory correlation - Maintain personal expectations and beliefs about the relationship 
between the variables, regardless of the empirical data or the evidence 
that indicates that such variables are independent. 
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Appendix 6: 

The probability contexts survey that was distributed to pupils 

 

Those are seven different settings at which the probability is manifested. Choose and 

prioritize three of them based on its importance and frequent usage in our daily life situations: 

 
The situation Example Arrange it 

To predict the weather 
circumstances  

It is most probable 
to rain tomorrow 

 

 

To predict the result of 
a handball match for 

your school team 

It is a weak 
possibility to win 

the handball 
competition 

 

 

To predict the gender 
of the newborn baby 

The probability of 
giving birth to a girl 

equals 50% 

 

 

To express the status 
of a patient person 

The probability of 
living to 90 years 
old equals 40% 

 

 

To express what we 
prefer 

Your friend 
probably prefer 

science compared 
to mathematics 

 

 

To predict the quality 
of some products 

The probability that 
the lamp produced 

by a factory is 
defective equals 

3%.  

 

To predict the winner 
for some chance 

games 

The probability of 
getting number 4 
when throwing a 
die equals 3%.  
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Appendix 7: 

The probability contexts survey that was distributed to PSMTs 

 

The following table summarizes seven various contexts at which the probability can be 
operated: they all express primary and lower-secondary textbooks' viewpoint. Based on your 
understanding of the principal concepts of theoretical, experimental, and conditional 
probability that you had studied before, could you determine the appropriateness of each 
situation to approach each probability interpretation? (i.e., Which setting could be suitable to 
teach each probability concept for your prospective pupils). Please note that some contexts can 
be adapted to approach more than one concept (i.e., you may select multiple interpretations for 
each setting). 
 

The situation 
 

An example The probability 
interpretation 

Theor
etical 

Experi
mental 

Conditi
onal  

To predict the 
weather 

circumstances  

It is probable to rain tomorrow 

 

   

To predict the 
result of a 

handball match 
for your school 

team 

it is a weak possibility to win the handball 
competition 

 

   

To predict the 
gender of the 
newborn baby 

The probability of giving birth to a girl equals 
50% 

 

   

To express the 
status of a 

patient person 

The probability of living to 90 equals 40% 

 

   

To express 
what we prefer 

Your friend probably prefer science compared 
to mathematics 

 

   

To predict the 
quality of some 

products 

The probability that the lamp produced by a 
factory is defective equals 3%. 
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Appendix 8: 
A questionnaire on reasoning in probability [R(in)P] 

 
- First part (sub-questionnaire 1) 

§ Item A: Knowing that there is a pregnant woman  
Q1. What is the probability of giving birth to a girl? 
Q2. Are there any conditions to determine that probability? “In other words, 

explain the reasons because of which you have decided the proposed 
probabilistic ratio (try to reflect and state the criteria that helped you to 
judge, or any conditions that you may think may change your 
estimation)” 

§ Item B: If you knew that a woman had gave birth to two boys before, and she will give birth 
to her third child 

Q1. What is the probability of giving birth to a girl in that new case (i.e., after 
incorporating the given condition)? 

Q2. Explain how have you determined such probability? In other words, why 
do you think that your expectation in the first situation (i.e., firstborn) is 
the same or different than in the second one (i.e., third born)? 
 
 
 

- Second part (sub-questionnaire 2) 
§ Item C: How can you explain to your prospective students the various strategies that could be 

employed to determine the probability of getting number 5 in a random experiment of rolling 
a die one time? 

§ Item D: Explain the meaning of this statement from your own perspective: the probability of 
raining tomorrow equals 60%. 
 

§ Item E1: These are the results of a questionnaire that was applied to a sample of 800 students 
in two schools of A and B to know which football team they prefer more, whether ElAhly or 
ElZamalek: 

 ElAhly ElZamalek Total 
School A students  195 190 385 
School B students 305 110 415 

Total 500 300 800 
Suppose we select a student randomly;  
Q1. What is the probability that a student prefers ElAhly? 
Q2. What is the probability that a student in school B and prefers ElZamalek at the same 

time? 
Q3. If you knew that the selected student prefers ElAhly, what is the probability that this 

student in the school A? 
Q4. If you knew that the selected student belongs to school A, what is the probability that this 

student prefers ElAhly? 
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§ Item E2: These are the data for the students teachers who are enrolled in both 
Mathematics and Science classes for elementary and secondary education: 

 Mathematics class Science class Total 
Elementary level 190 70 260 
Secondary level 110 90 200 

Total 300 160 460 
Suppose we select a student randomly;  
Q1. What is the probability that a student has enrolled to teach the Secondary level? 
Q2. What is the probability that a student has enrolled in the Science class for the elementary 

level? 
Q3. If you knew that the selected student has enrolled in the Mathematics class, what is the 

probability that this student teaches the secondary level? 
Q4. If you knew that the selected student taught the secondary level, what is the probability 

that this student has enrolled in the Mathematics class? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




