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Abstract 

Purpose: We aim to develop a method to predict the gamma passing rate (GPR) of a three-dimensional (3D) dose 

distribution measured by the Delta4 detector system using the dose uncertainty potential (DUP) accumulation model. 

Methods: Sixty head-and-neck intensity-modulated radiation therapy (IMRT) treatment plans were created in the 

XiO treatment planning system. All plans were created using nine step-and-shoot beams of the ONCOR linear 

accelerator. Verification plans were created and measured by the Delta4 system. The planar DUP (pDUP) 

manifesting on a field edge was generated from the segmental aperture shape with a Gaussian folding on the 

beam’s-eye view. The DUP at each voxel ( ) was calculated by projecting the pDUP on the Delta4 phantom with its 

attenuation considered. The learning model (LM), an average GPR as a function of the DUP, was approximated by 

an exponential function  to compensate for the low statistics of the learning data due to a finite 

number of the detectors. The coefficient  was optimized to ensure that the difference between the measured and 

predicted GPRs ( ) was minimized. The standard deviation (SD) of the  was evaluated for the optimized 

LM.

Results: It was confirmed that the coefficient  was larger for tighter tolerance. This result corresponds to the 

expectation that the attenuation of the  will be large for tighter tolerance. The  and  were 

observed to be proportional for all tolerances investigated. The SD of  was 2.3, 4.1, and 6.7% for tolerances of 

3%/3 mm, 3%/2 mm, 2%/2 mm, respectively. 

Conclusion: The DUP-based predicting method of the GPR was extended to 3D by introducing DUP attenuation 

and an optimized analytical LM to compensate for the low statistics of the learning data due to a finite number of 

detector elements. The precision of the predicted GPR is expected to be improved by improving the LM and by 

involving other metrics. 
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1. Introduction 

Intensity-modulated radiation therapy (IMRT) has become immensely popular in modern radiation therapy as it 

realizes a high dose conformality on the target volume. Since IMRT utilizes a complex intensity-modulation (IM) 

using a multileaf collimator (MLC) system, the patient-specific quality assurance (QA) has been emphasized as the 

pre-treatment verification. In practice, the patient-specific QA is typically performed using a pin-point ionization 

chamber for absolute dose verification and a two-dimensional (2D) or three-dimensional (3D) detector array to 

verify the shape of the dose distribution. Preparation for the patient-specific QA requires time and cost for the 

generation of the verification plan, measurements of the absolute dose and the dose distribution, and subsequent 

analysis with a certain occupation of the treatment machine. Thus, improving the efficiency of IMRT preparation is 

an essential concern to be addressed to meet the increasing demand for IMRT. Moreover, it is not feasible to use the 

IMRT for progressive diseases as the preparation of the IMRT takes longer than 3D conformal radiation therapy. 

Therefore, reducing the effort for IMRT preparation attracts attention in these contexts. In practice, the number of 

institutions performing the measurement-based patient-specific QA is dropping.1 For example, the verification 

measurement for specific treatment sites such as the prostate or breast, in which a successful result is highly 

expected, has been reduced or stopped in some institutions. However, there is a need to develop a verification 

method that can substitute the currently used gamma analysis2 without losing the safety level in the IMRT delivery. 

Recently, a variety of attempts have been made to estimate the IM complexity and to investigate their

relationship between the IM and gamma passing rate (GPR), which may potentially help to omit the patient-specific 

QA and to improve the efficiency of the clinical QA practice. A complexity metric (CM) that may be related to the 

GPR has been proposed by several authors,3–10 resulting in limited predictability of the GPR. Deep learning (DL)-

based prediction showed a good performance for the planar dose distribution measured using the film.11 Recently, 

machine learning (ML) technique was used to attempt the GPR prediction using the CMs as input data.12

In our previous study, we developed a novel method to predict the GPR using a dose uncertainty potential 

(DUP) accumulation technique.13 The concept of the DUP was first introduced by Kim et al.14 Jin et al. further 

developed the concept15, 16 and demonstrated its application to clinical data.17 The essential result of our previous 

study13 was that a good performance of the DUP-based prediction of the GPR was demonstrated for a planar dose 

distribution with a pixel size of 1  1 mm2. This method is based on a hypothesis that the  value depends on the 

DUP at each dose voxel. In this study, we aim to extend the application of our DUP-based method to 3D dose 

distribution analyzed using the gamma analysis with a finite number of detector elements. We introduced two 

techniques to apply our DUP-based method to the 3D data in this study. One is the DUP attenuation while 

estimating the 3D DUP distribution. Another is an optimized analytical learning model to compensate for the low 

statistics of the learning data due to a limited number of detectors in the device. 
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2. Materials and Methods 

2.A. Clinical equipment, treatment plans, and patient-specific verification data 

Figure 1 shows a schematic of the workflow. Sixty head-and-neck IMRT treatment plans were created in the 

XiO treatment planning system (TPS) (Elekta AB, Stockholm, Sweden). All plans were created using nine step-and-

shoot beams of the ONCOR linear accelerator (Siemens Medical Systems, Concord, CA). The optimization was 

performed with the maximum iteration of 60 and the convergence criterion of 0.001%. The dose computation was 

performed with the grid spacing of 3 mm. Total number of segments in each plan is shown in Fig. 2(a) and the 

monitor unit (MU) of each segment is shown in Fig. 2(b). The minimum segmental MU among 60 plans was 2. The 

treatment plan and dose distribution were exported from the TPS in the digital imaging and communications in

medicine (DICOM) format. 

We used the Delta4 system that comprises of 1069 p-type Si semiconductors with an active area of 0.0078 cm2.

The phantom has a cylindrical shape with a 22-cm diameter and 40-cm length. The detector elements are arranged 

on two oblique planes at 50  and 320  on the axial view. The detectors are arranged in 20  20 cm2 area on each 

plane. The detector spacing was 0.5 cm within the inner area of 6  6 cm2 while 1 cm for the area outside of 6 6

cm2. 

Verification plans were created and measured by Delta4 (ScandiDos, Inc., Ashland, VA, USA).18 The 

measured dose distribution ( ) was compared with the calculated dose distribution ( ) using the gamma analysis. 

The  distribution was calculated from  and  on the detector elements on the oblique planes. The GPR was 

then calculated from the  distribution and was exported to our in-house software (GPR analyzer). 

The DICOM RT Plan was also used for generating the 3D DUP distribution using another in-house software 

(DUP generator) described in Sect. 2.B. The 3D DUP distribution was exported to the GPR analyzer which predicts 

the GPR. The GPR analyzer used the GPR from the Delta4 system and the 3D DUP distribution from the DUP 

generator to calculate the predicted GPR. 

2.B. Generation of the three-dimensional distribution of dose uncertainty potential 

A planar DUP (pDUP) distribution of each beam was generated using the same method developed in our 

previous study13 using the segmental MLC shape and monitor unit extracted from the DICOM RT Plan. The width 

of the Gaussian folding was 3.9 mm as per the analysis of our previous study13 but with the lateral profile of the 3 

3-cm2 MLC field at 11-cm depth with a source-to-surface distance (SSD) of 89 cm, which is the same as the center 

of the Delta4 device. 

The attenuation of the DUP in the Delta4 phantom needs to be accounted for when the pDUP distribution is 

projected on the Delta4 phantom. The attenuation of the DUP was estimated using a dose distribution of a 3  3-cm2

MLC field with the SSD = 89 cm. The dose distribution of the MLC field [Fig. 3(a)] was obtained, and the A
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differential of the dose distribution =  was calculated [Fig. 3(b)]. The depth profile of the DUP 

 is defined by 

. (1) 

Normalized depth profiles of  and  were created using 

 and (2) 

. (3) 

Figure 3(c) shows  (solid line) and  (dashed line). Gray filled area shows the depth range in which the 

Delta4 detectors are located (  = 1–21 cm). The attenuation of  and  at the center of the Delta4 device (

= 11 cm; dotted line in Fig. 3(c)) were 0.474 and 0.519, respectively. The attenuation of  is larger than  by 9.5%

(~ (0.519 – 0.474) / 0.474  100). 

Figure 4 shows the flow of the generation of the 3D DUP distribution. The pDUP was projected on the Delta4 

phantom by taking the divergence into account [Fig. 4(a)]. In this projection, the Gaussian folding width was 

assumed to be proportional to the source-to-voxel distance. The depth profile of the DUP was considered using Eq. 

(1). The projection was performed for all segments in all beams [Fig. 4(b)]. This calculation was performed with 1 

1  1-mm3 voxels. The DUP was quadratically accumulated using 

, (4) 

where , , and  are the identifiers of the beam, segment, and voxel, respectively,  is the depth of the ’th 

voxel for the ’th beam,  is the DUP for each set of . The DUP values on the detector elements 

(oblique lines in Fig. 4(c)) were extracted and were used to predict the 3D GPR. 

2.C. Prediction of gamma passing rate 

Figure 5 shows a diagram of the GPR prediction. The learning data comprises of a set of the  distribution [Fig. 

5(a)] and DUP [ ] distribution [Fig. 5(b)]. The  distribution was translated to the measured GPR [ ] for the 

tolerance of 3%/3 mm, 3%/2 mm, and 2%/2 mm, which were obtained from the Delta4 software. The DUP 

histogram [ , Fig. 5(c)] was obtained from the DUP distribution [Fig. 5(b)] (Step #1). 

Our method is based on the hypothesis that the  histogram depends on the DUP value. In our previous study, 

we demonstrated that this hypothesis is applicable for a planar dose distribution with 1  1-mm2 pixel size.13 One of 

the developments in this study is to apply our method to the gamma analysis using a fewer number of data points. 

Our previous study predicted the GPR using a full numerical data array of the  and  distributions with 1  1-mm2

pixels. The learning model (LM), an average GPR for a given DUP [ ], was calculated from a large number 

of pixel data of  and  values. On the other hand, this study predicts the GPR from the finite number of detector 

elements in Delta4. The LM was assumed to be an exponential function to avoid a statistical fluctuation due to the

finite number of detectors [Fig. 5(d)]. 

The predicted GPR [ ] was calculated using the DUP histogram [Fig. 5(c)] and the LM [Fig. 5(d)]. The 

LM is defined as A
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, (5) 

where  is a parameter to optimize. The  is calculated by 

, (6) 

where  is the identifier of the learning data and  is the suffix for . A squared sum of the difference between 

and  for all data except for the evaluated data ( ’th data) is calculated by 

, (7) 

where 

(8) 

(Step #3). In practice,  depends on the parameter , as illustrated in Fig. 5(e). Thus, the parameter  was optimized 

to give the minimum value of . The optimized value of  [ ] was then used to determine the optimized LM [Fig. 

5(f)] (Step #4). The optimized LM was applied to the evaluated data ( ’th data).

The evaluated data comprised the same data set as the learning data: the  distribution [Fig. 5(g)] and 

distribution [Fig. 5(h)]. The  distribution was translated to the  histogram [Fig. 5(i)]. The  of the ’th data 

was calculated using the same equation as Eq. (6), but with  (Step #5). The  was then compared with the 

 from the Delta4 software [Fig. 5(j)]. The leave-one-out cross-validation was realized by excluding the 

evaluated data from the optimization of the LM. This procedure was performed for all sixty data with the 3%/3-mm, 

3%/2-mm, and 2%/2-mm tolerances. The  was evaluated in comparison with the . Standard deviation 

(SD) of the  was calculated as a function of . 
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3. Results 

Figure 6(a) shows an example of  as a function of  [Eq. (7)] for each tolerance. Red, blue, and green lines 

are data of the 3%/3-mm, 3%/2-mm, and 2%/2-mm tolerances. The filled circles show the minimum point for each 

tolerance. The  value to give the minimum value of  was the optimized . Figure 6(b) shows the exponential 

functions corresponding to the optimized  for each tolerance. The larger value of  corresponds to the larger 

attenuation of the exponential function. Larger attenuation was observed for tighter tolerance. 

The correlation between  and  is shown in Fig. 7(a). Red, blue, and green symbols show data for 

the 3%/3-mm, 3%/2-mm, and 2%/2-mm tolerances, respectively. This correlation is translated to the relationship 

between the  and  shown in Fig. 7(b). The SD of the  for each  domain with 5% pitch is 

shown in Fig. 7(c). The corresponding area of this SD is shown with a filled gray area in Fig. 7(b). Note that the SD 

for  <85% was not calculated as the data had low statistics. Mean SD for the 3%/3-mm, 3%/2-mm, and 2%/2-

mm tolerances were 2.3%, 4.1%, and 6.7%. The systematic error of the  for the 3%/3-mm, 3%/2-mm, and 

2%/2-mm tolerances were 0.05%, 0.1%, and 0.3%. 
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4. Discussion 

The DUP-based prediction of the 3D GPR was realized by introducing two techniques. One is the behavior of 

the DUP in the Delta4 phantom. The width of the penumbra, which was involved as the Gaussian folding width 

previously, was also assumed to be proportional to the source-to-voxel distance. This width affects the depth profile 

of the DUP because the amplitude obtained in Eq. (1) depends on the width at each depth. Technically, the 

difference between  and  is due to the larger widths at larger depths. The depth profile of  should be 

correctly involved for estimating the 3D DUP distribution since the attenuation of  is larger than . It should also 

be noted that the IM beam has several apertures with different shape and size, which may produce a different depth 

profile of each aperture. For simplicity, we assumed that the depth profile of the DUP is the same as the one for 3 

3-cm2 MLC field for all apertures. 

The DUP was used in our model as the only metric for predicting the . Technically, the DUP, an 

accumulated dose gradient at each voxel, is expected to have a direct impact on the resulting dose accuracy. In 

practice, the decrease of the  occurs due to a discrepancy between  and . The performance of the 

DUP-based prediction of GPR is supported by the ab initio approach originally introduced by Kim et al.14 and 

developed by Jin et al.15–17 Though the current study showed a limited performance, our previous and current results 

demonstrated an efficacy of using DUP for predicting GPR. While we consider the DUP is a good candidate for the 

effective metric for GPR prediction, there are other candidates for the good metric for predicting GPR. For example, 

the dose discrepancy is observed for small MLC fields which are often used in IMRT. Though this study included 

the location and intensity of the DUP, the field size was not taken into account. The field size affects both the 

penumbra width and the depth profile of the DUP. Therefore, precision in predicting the GPR is expected to be 

improved by taking into account the aperture size in each segment. 

A simple exponential function with a single parameter [Eq. (5)] was chosen as the LM in this study. It helps to 

restrict  within the realistic range of 0–100%. The  for  = 0 is fixed at 100% and decreases for larger .

The fact that  is larger for tighter tolerance is consistent with the expectation that the attenuation of  is larger 

for tighter tolerance [Fig. 6(b)]. The approximation using the exponential function also helps to compensate for the 

low statistics of the sampling due to the finite number of detectors. It is expected that the prediction performance 

may be improved by adjusting the shape of the LM. 

GPR prediction has been investigated by several authors in previous studies. These are roughly classified into 

two approaches. One is a complexity metric showing an average characteristic of the complexity of the IM beam. 

Total monitor unit,5 the modulation complexity score developed by McNiven et al.,3 total leaf travel4 were 

investigated in comparison with the GPR. The other approach is a direct estimation of the GPR. Our DUP-based 

method,13 the DL-based method,11 and the ML-based method12 are classified into this direct estimation. This 

approach utilizes some parameters which have characteristics of the IM beam and good proportionality to the GPR. 

Our previous and current studies can be used to understand the performance of the DUP for predicting the GPR. 

One example is a comparison with the ML-based method. In this study, we obtained SD = 2.3% and 6.7% for 

the 3%/3 mm and 2%/2 mm tolerances, which are close to the ML-based methods which analyzed data of a helical 
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diode array with a 1-cm pitch and achieved SD = 2.1–2.4% and 5.4–5.8% for the 3%/3 mm and 2%/2 mm tolerances 

by involving 28 complexity metrics as input parameters.12 We consider that the DUP is an effective metric for 

predicting GPR since the DUP-based method achieved current results only with the DUP. The performance of our 

method is expected to be improved by involving other parameters such as the field size. 

Another example is a comparison with the DL-based method as an ultimate approach which automatically 

involves multiple characteristics. Tomori et al.11 analyzed data of composite dose distributions measured using a 

gafchromic film and obtained a root mean square error of 1.11%, 1.50%, and 2.24% for the 3%/3 mm, 3%/2 mm, 

and 2%/2 mm tolerances, which were smaller than our results (2.3, 4.1, and 6.7%) by factor of 2, 3, and 3, 

respectively. Since our data were obtained from the Delta4 system with a 5-mm pitch detector array, direct 

comparisons of these results do not provide an exact goal to achieve. Applying multiple predicting methods (e.g. the 

DUP-based, ML-based, and DL-based methods) to the same data set of the GPR may provide useful insight to 

understand how dominant the DUP is within the metrics for GPR prediction. 

The SD of  was evaluated in this study as well as our previous study. While the performances of the GPR 

predictions in previous studies were evaluated using Pearson’s correlation coefficient , a careful consideration is 

needed to employ the  for inter-comparison of the performance of the GPR predictions. The range of  may 

differ among different combinations of the TPS, linear accelerator, and QA device. The quality of the beam model 

directly affects the range of the resulting  and subsequent  value. Thus, we employed the SD of  in our 

current and previous studies. 

The use of SD for evaluating  is also useful for considering the clinical application of the GPR prediction. 

The decision to use a predicting method may be based on the accuracy and precision of . In our previous study, 

we introduced an example consideration for estimating a threshold for  corresponding to  90% for a 

given confidence level.13 This technique may be useful for considering a clinical use of  with good accuracy 

and precision. Since we obtained a limited performance in this study, the consideration for the clinical use was left 

for our future study. 

Sixty head-and-neck IMRT cases were used to develop the 3D GPR prediction method in this study. The 

evaluation of the necessary number of the learning data is left for our future study since other improvements such as

using correct aperture size instead of the fixed 3 3 cm2 and involving the effect of the field size may have larger 

impact in our development of the GPR prediction. It is necessary to test this method for other treatment sites such as 

in the brain, thorax, abdomen, and pelvis. Since the complexity of the treatment plan differs among treatment sites, it 

is expected that the quality of the LM will depend on the treatment site. It should also be noted that the DUP 

distribution differs among different IM techniques (e.g., step and shoot vs. sliding window, flattening filter vs. 

flattening filter free, IMRT vs. VMAT). Specifically, the VMAT delivery involves continuous and dynamic motion 

of the gantry and MLC. It is necessary to examine the application of our technique to VMAT since we generate the 

composite DUP by accumulating segmental DUPs as static gantry angle and the MLC shape at each segment. Thus, 

the LM needs to be generated and examined for each IM technique. The DUP distribution also differs among 

different TPSs and the accompanying algorithm. Therefore, further investigations are needed to obtain a general 

understanding of the DUP and its application to the GPR prediction. A
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5. Conclusion 

We developed and demonstrated a DUP-based method to predict the GPR of the 3D dose distribution measured 

by a commercial 3D detector array system. The pDUP was extended to 3D by including the depth profile of the 

DUP. An approximated LM was employed to compensate for the finite statistics of the learning data. It is expected 

that this method can provide the predicted GPR prior to the verification measurements of the IMRT delivery. 
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Figure Legends 

Fig. 1. The workflow of this study. 

Fig. 2. (a) Total number of segments in each plan and (b) the monitor unit of each segment. 

Fig. 3. (a) Dose distribution [ ] and (b)  of a 3  3-cm2 MLC field. (c) Normalized depth profile 

of the dose along the central axis [ ] and the DUP [ ]. Gray area shows the range in which the Delta4 

detectors are located (  = 1–21 cm). 

Fig. 4. Generation of the 3D distribution of the DUP. 

Fig. 5. Diagram of the prediction of the gamma passing rate. 

Fig. 6. (a) An example of  as a function of  [Eq. (7)]. Filled circles show the minimum point for each tolerance. 

(b) Exponential functions corresponding to the . The red, blue, and green lines represent data for the 3%/3-mm, 

3%/2-mm, and 2%/2-mm tolerances, respectively. 

Fig. 7. (a) Correlation between the  and . Red, blue, and green plots are data of the 3%/3-mm, 3%/2-mm, 

and 2%/2-mm tolerances, respectively. (b) Difference between  and  as a function of . A filled 

gray area shows the range of a standard deviation (SD) for each domain of pGPR. (c) SD of the  as a function 

of .  
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