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BACKGROUND Atrial fibrillation (AF) has a genetic basis, and envi-
ronmental factors can modify its actual pathogenesis.

OBJECTIVE The purpose of this study was to construct a combined
risk assessment method including both genetic and clinical factors
in the Japanese population.

METHODS We screened a cohort of 540 AF patients and 520 non-AF
controls for single nucleotide polymorphisms (SNPs) previously asso-
ciatedwith AF by genome-wide association studies. Themost strongly
associated SNPs after propensity score analysis were then used to
calculate a weighted genetic risk score (WGRS). We also enrolled
1018 non-AF Japanese subjects as a validation cohort and monitored
AF emergence over several years. Finally, we constructed a logistic
model for AF prediction combining WGRS and clinical risk factors.

RESULTS We identified 5 SNPs (in PRRX1, ZFHX3, PITX2,HAND2, and
NEURL1) associated with AF after Bonferroni correction. There was a
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4.92-fold difference in AF risk between the highest and lowest WGRS
calculated using these 5 SNPs (P 5 2.32 ! 10210). Receiver oper-
ating characteristic analysis of WGRS yielded an area under the curve
(AUC) of 0.73 for the screening cohort and 0.72 for the validation
cohort. The predictive logistic model constructed using a combina-
tion of WGRS and AF clinical risk factors (age, body mass index,
sex, and hypertension) demonstrated better discrimination of AF
thanWGRS alone (AUC5 0.84; sensitivity 75.4%; specificity 80.2%).

CONCLUSION This novel predictive model of combined
AF-associated SNPs and known clinical risk factors can accurately
stratify AF risk in the Japanese population.

KEYWORDS Atrial fibrillation; Clinical risk factors; Genetic risk
score; Risk stratification; Single nucleotide polymorphisms
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Introduction
Atrial fibrillation (AF) is the most common arrhythmia and a
major contributor to stroke and cardiovascular mortality.1

The incidence of cerebral infarction from nonvalvular AF
is approximately 5% per year, approximately 2–7 times
higher than in the matched population without AF.2,3 Early
AF detection and therapeutic intervention are imperative
because stroke prevention in high-risk AF patients is now
possible with anticoagulant therapy.
Several studies have demonstrated a genetic basis for AF
and modulation of AF pathogenesis by environmental fac-
tors.4,5 Genome-wide association studies (GWASs) have
identified several common single nucleotide polymorphisms
(SNPs) that influence AF risk.6,7 The most recent largest AF
meta-analysis revealed 97 AF-associated loci in a mainly
European population.8

Even in the Asian population including Japanese,
26-AF associated SNPs were demonstrated in previous
GWASs.9–11 In addition to genetic factors, multiple
clinical factors have been implicated in AF risk, such
as hypertension, diabetes, aging, male sex, obesity,
smoking, ischemic heart disease, valvular heart disease,
and congestive heart failure.12–14

Stratification of AF risk is required for early AF detection
and intervention to reduce the mortality caused by cerebral
https://doi.org/10.1016/j.hrthm.2020.01.006

mailto:nakanoy@hiroshima-u.ac.jp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.hrthm.2020.01.006&domain=pdf
https://doi.org/10.1016/j.hrthm.2020.01.006


700 Heart Rhythm, Vol 17, No 5PA, May 2020
infarction or heart failure and the associated medical costs.
We hypothesized that combining genetic and clinical risk
factors can stratify AF risk more accurately than either alone.
In this study, we constructed a novel risk model that includes
both genetic and clinical risk factors to predict AF in the Jap-
anese population.
Methods
Study participants
We retrospectively enrolled 565 Japanese patients with AF
treated at Hiroshima University Hospital between November
2009 and April 2012. We excluded those with severe
valvular disease (n 5 1), congenital heart disease (n 5 2),
ischemic heart disease (n 5 10), hypertrophic cardiomyopa-
thy (n 5 11), and dilated cardiomyopathy (n 5 1). The re-
maining 540 Japanese AF patients were included as
screening subjects. We also enrolled 520 Japanese non-AF
controls from Hiroshima University as screening non-AF
controls. This group excluded candidates with cardiac dis-
ease, hyperthyroidism, severe liver dysfunction, or kidney
dysfunction. We also enrolled 1018 Japanese outpatients
deemed non-AF by electrocardiography or Holter monitoring
at Hiroshima University Hospital between May 2012 and
August 2016 as a replication cohort. This group was prospec-
tively monitored for AF emergence. In brief, electrocardiog-
raphy and physical examination were conducted at each
outpatient appointment. Participants were diagnosed with
AF if arrhythmia was recorded by 12-lead electrocardiogram,
Holter monitor, or portable electrocardiogram by either our
hospital staff or external clinicians. Other relevant clinical pa-
rameters (age, sex, body mass index [BMI], hypertension,
and diabetes) were obtained from medical records. Accord-
ing to the results of the previous Japanese large-scale cohort
study, we used these parameters as conventional clinical risk
factors.14

Hypertension was defined as a systolic blood pressure
�140 mmHg, diastolic blood pressure�90 mmHg, or usage
of antihypertensive medication. Diabetes was defined as gly-
cated hemoglobin (HbA1c) �48 mmol/mol (6.5% DCCT
[Diabetes Control and Complications Trial]) or usage of anti-
diabetic medications. BMI was defined as body weight in ki-
lograms divided by the square of height measured in meters.
The study was approved by the Institutional Ethics Commit-
tee of the Graduate School of Biomedical Science at Hirosh-
ima University and conducted in accordance with the tenets
of the Declaration of Helsinki. All participants provided writ-
ten informed consent.
Genotyping
Genomic DNA was extracted from peripheral blood leuko-
cytes using a QIAamp DNA Blood Mini Kit (QIAGEN,
Hilden, Germany) according to the standard protocol. The
following 26 SNPs reported in a previous GWAS6–10,15 were
genotyped using the TaqMan or Invader assay: KCNN3
(rs6666258), PRRX1 (rs3903239), IL6R (rs1126561), CAV1
(rs3807989), C9orf3 (rs1082141), HCN4 (rs7164883),
ZFHX3 (rs2106261), PTIX2 (rs6817105), SYNE2
(rs1152591), SYNPO2L (rs10824026), MYOZ1 (rs3740293),
HSPB7 (rs10927875), WINTA8A (rs2040862), NEBL
(rs229661), SLC1A4–CEP68 (rs2540953), PPFIA4
(rs17461925), SH3PXD2A (rs2047036), KCND3
(rs12044963), HAND2 (rs7698692), CAND2 (rs7626624),
GJA1–HSF2 (rs13219206), NEURL1 (rs60572254), CUX2
(rs4766566),HBEGF (rs13385),KCNJ5 (rs75190942), and ti-
tin (rs12614435).

Calculating weight genetic risk score
The weighted genetic risk score (WGRS) was calculated
from the AF-associated SNPs identified in this study using
logistical regression analysis. The risk estimate for the minor
allele of each SNP was obtained from the odds ratio. The nat-
ural log-transformed risk estimate for the minor allele was
multiplied by the number of minor alleles (0, 1, 2) for each
SNP, and these products were summed to yield the individual
WGRS for each subject.

Statistical analysis
Normally distributed continuous variables are reported as
mean 6 SD. Group means were compared by the Welch t-
test or 1-way analysis of variance with Tukey-Kramer post
hoc tests for pair-wise comparisons. Propensity score
methods were used for adjustment of confounding factors
in the screening cohort. Logistical regression analysis was
used to identify predictive factors for AF. To test the additive
genetic effect for the minor allele, common alleles were
coded as 0 (reference), 1 (heterozygous for the minor allele),
or 2 (homozygous for the minor allele). Deviation from
Hardy–Weinberg equilibrium was tested in the AF and
non-AF controls using the c2 test. P ,.05 was considered
significant. The Bonferroni-corrected P value threshold for
SNP discovery was P ,.0019 (0.05/26). The odds ratio
and 95% confidence interval (CI) were calculated for the
reference allele or the genotype. To test the genetic relation-
ships between cases and controls, we used the c2 test and the
Cochran–Armitage trend test. The log-rank test was applied
to compare the cumulative incidence of AF between groups.
All statistical analyses were conducted using R3.3.1 and the
JMP statistical package version 13 (SAS Institute, Cary, NC).
Results
Baseline patient characteristics and genotype
distribution in the screening cohort
Baseline characteristics of the AF and the non-AF controls in
the screening cohort are presented in Table 1. Compared to
the non-AF group, the AF patients were older (59.1 6 10.1
years vs 49.96 14.7 years; P5 5.01! 10230), more likely
to be male (72.5% vs 48.0%; P5 2.27! 10216), more likely
to have higher BMI (24.3 6 3.4 vs 22.4 6 3.4; P 5 7.96 !
10220), more likely to have hypertension (56.4% vs 18.2%;
P 5 3.07 ! 10235), and more likely to have diabetes
(16.7% vs 6.7%; P5 2.73 ! 1027). We performed propen-
sity score matching to accommodate these differences in



Table 1 Baseline characteristics of AF patients and non-AF control subjects before and after propensity score matching in the screening
cohort

Variable

Original sample Matched sample

AF Non-AF control

SD P value

AF Non-AF control

SD P value(N 5 540) (N 5 520) (N 5 287) (N＝287)

Age (y) 59.1 6 10.1 49.9 6 14.7 0.97 5.01 ! 10–30 56.8 6 10.8 57.0 6 12.9 0.02 .84
Male 392 (72.5) 252 (48.0) 0.38 2.27 ! 10–16 187 (65.2) 185 (64.6) 0.01 .86
BMI 24.3 6 3.4 22.4 6 3.4 0.69 7.96 ! 10–20 23.5 6 3.1 23.6 6 3.5 0.04 .54
Hypertension 304 (56.4) 87 (18.2) 1.12 3.07 ! 10–35 102 (35.5) 94 (32.8) 0.06 .48
Diabetes 90 (16.7) 35 (6.7) 0.29 2.73 ! 10–7 30 (10.5) 26 (9.1) 0.03 .57

Values are given as mean 6 standard deviation or n (%) unless otherwise indicated.
AF 5 atrial fibrillation; BMI 5 body mass index; SD 5 standardized difference, where SD (of means) ,0.25 indicates good balance between groups.
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baseline characteristics (Table 1). The standardized differ-
ence of the matched samples demonstrated that AF patients
and controls were well balanced after matching.
Association of GWAS reported SNPs and AF in the
screening cohort
After propensity score matching, 5 SNPs were associated
with AF (Table 2): rs3903239 (PRRX1), rs2106261
(ZFHX3), rs6817105 (PITX2), rs7698692 (HAND2), and
rs6057225 (NEURL1).

We confirmed that the same 5 SNPs were significantly
associated with AF by another propensity method (stratifica-
tion and covariate adjustment on the propensity score) and lo-
gistic regression analysis in the replication cohort
(Supplemental Tables 1 and 2).
WGRS for predicting AF in the screening cohort
We compared the WGRS calculated using all 26 SNPs (26-
WGRS) with the WGRS using only the significant 5 SNPs
(5-WGRS). The AUC of the receiver operating characteristic
(ROC) analysis using 26-WGRS in the screening cohort was
lower than that of 5-WGRS (0.70 vs 0.73; P5 1.09! 10–3)
(Supplemental Figure 1). Therefore, we decided to adopt the
WGRS using the significant 5 SNPs in this study.

The mean WGRS value was higher in AF patients than
non-AF controls (3.62 6 1.31 vs 2.84 6 1.34; P 5 6.89
! 10212) (Figure 1). Individual WGRSs were stratified
into quartile groups (groups 1–4) for comparison of AF and
various clinical factors. The ratio of AF to non-AF controls
increased with WGRS quartile, and there was a 4.92-fold dif-
ference in odds ratio between the highest and lowest WGRS
(Figure 2). The mean age of AF onset (years) also decreased
progressively with higher WGRS quartile (group 1: 63.2 6
9.9 years; group 2: 61.5 6 11.2 years; group 3: 61.0 6
10.8 years; group 4: 57.8 6 10.2 years) (Supplemental
Figure 2), and the difference was statistically significant be-
tween groups 1 and 4.

ROC analysis ofWGRS for AF prediction in the screening
cohort yielded AUC of 0.73 (P 5 1.85 ! 10213; sensitivity
65.4%; specificity 69.6%) (Supplemental Figure 3). The
AUC of each SNP in the screening cohort was as follows;
rs3903239 (PRRX1), 0.57; rs2106261 (ZFHX3), 0.61;
rs6817105 (PITX2), 0.70; rs7698692 (HAND2), 0.55; and
rs6057225 (NEURL1), 0.61). Thus, WGRS predicted AF
occurrence more accurately than any single SNP.

Baseline patient characteristics and WGRS in the
replication cohort
Baseline characteristics and mean WGRS of the replication
cohort are listed in Table 3. During the follow-up period of
4.7 years, AF was diagnosed in 273 subjects (26.8%). On
average, compared to non-AF patients, those with AF were
older (age 52.7 6 11.3 years vs 44.6 6 14.2 years;
P 5 3.46 ! 10224), were more likely to be male (75.1%
vs 55.3%; P 5 4.52 ! 10213), were heavier (BMI: 24.1 6
3.4 vs 22.46 3.2; P5 6.13! 10217), and had greater inci-
dences of hypertension (44.3% vs 20.6%; P5 2.78! 10212)
and diabetes (12.8% vs 5.2%; P5 2.08! 1027), consistent
with the AF group in the screening cohort. Mean WGRS was
also significantly higher in the AF group than the non-AF
group in the replication cohort (3.79 6 1.18 vs 2.89 6
1.20; P 5 3.58 ! 10213).

Cumulative incidence of AF according to WGRS in
the replication cohort
The utility of WGRS for AF prediction was validated by ROC
analysis. AUC was 0.72, consistent with the screening cohort,
and a cutoff WGRS of 4.01 yielded 65.4% sensitivity and
69.6% specificity. The cumulative incidences of AF for the 2
groups divided by this WGRS cutoff are shown in Figure 3.
The high-risk group (WGRS �4.01) was significantly more
likely to develop AF than the low-risk group (WGRS
,4.01) (40.9% vs 16.1%; log-rank P 5 2.57! 10218).

Multivariate analysis of AF-associated clinical
factors in the replication cohort
Multivariate regression analysis including significant factors
from univariate analysis was performed (Table 4). For contin-
uous variables (age and BMI), an optimal cutoff value was
calculated by ROC curve analysis in the replication cohort
and used. We found significant independent associations of
AF with age .50 years (hazard ratio [HR] 3.42; 95% CI
2.35–4.96; P 5 9.95 ! 10211), male sex (HR 2.38; 95% CI
1.68–3.42; P 5 1.86 ! 1024), BMI .25kg/m2 (HR 2.53;



Table 2 Association of the 26 SNPs with AF after propensity score matching in the screening cohort

SNP rs ID Allele 1/2

AF (N 5 287)
Control
(N 5 287)

OR 95% CI P value HW test11 12 22 11 12 22

KCNN3 rs6666258 C vs G 0 11 276 0 16 271 1.378 0.709–2.821 .49 0.64
PRRX1 rs3903239 A vs G 29 139 119 59 143 85 1.687 1.236–2.242 4.24 ! 10–5 0.29
IL6R rs1126561 A vs G 75 139 73 74 149 64 1.118 0.846–1.412 .42 0.78
CAV1 rs3807989 A vs G 26 134 127 25 125 137 1.089 0.768–1.282 .97 0.84
C9orf3 rs10821415 A vs C 19 121 147 15 98 176 1.255 1.042–1.873 .02 0.34
HCN4 rs7164883 A vs G 221 73 4 227 57 3 1.086 0.587–1.746 .76 0.93
ZFHX3 rs2106261 C vs T 99 143 46 146 109 32 1.928 1.291–2.574 3.87 ! 10–6 0.76
PITX2 rs6817105 C vs T 130 121 36 53 162 73 2.792 1.962–3.534 4.84 ! 10–13 0.37
SYNE2 rs1152591 A vs G 38 144 106 29 145 113 1.235 0.868–1.632 .12 0.36
SYNPO2L rs10824026 A vs G 93 153 41 112 122 53 1.028 0.687–1.432 .63 0.24
MYOZ1 rs3740293 A vs C 168 110 10 176 103 8 1.011 0.818–1.392 .87 0.23
HSPB7 rs10927875 C vs T 285 2 0 286 1 0 1.892 0.285–2.742 .63 0.97
WINT8A rs2040862 C vs T 287 0 0 287 1 0 — — 1 0.97
NEBL rs2296610 G vs T 223 63 1 227 59 2 1.053 0.823–1.476 .76 0.12
SLC1A4-CEP68 rs2540953 G vs A 146 124 18 135 121 27 1.132 0.925–1.512 .29 0.98
PPFIA4 rs17461925 A vs G 213 72 2 201 79 7 1.113 0.843–1.571 .27 0.91
SH3PXD2A rs2047036 C vs T 21 134 133 16 129 143 1.289 0.854–1.692 .19 0.26
KCND3 rs12044963 G vs T 75 139 73 81 136 70 1.015 0.734–1.212 .89 0.08
HAND2 rs7698692 A vs G 109 120 58 54 157 76 1.592 1.172–1.981 2.64 ! 10-4 0.72
CAND2 rs7626624 C vs A 0 284 3 0 285 2 1.001 0.946–1.143 .92 2.68x10-43

GJA1–HSF2 rs13219206 C vs T 161 95 21 167 102 8 1.142 0.741–1.284 .89 0.31
NEURL1 rs6057225 C vs T 207 72 8 242 42 3 1.965 1.182–2.726 3.76 ! 10-5 0.18
CUX2 rs4766566 C vs T 34 120 133 24 135 128 1.121 0.768–1.370 .63 0.42
HBEGF rs13385 G vs A 133 123 31 134 121 32 1.075 0.765–1.391 .18 0.09
KCN5 rs75190942 C vs A 255 31 1 259 28 0 1.112 0.715–1.929 .32 0.31
Titin rs12614435 A vs G 79 145 63 82 140 65 1.018 0.898–1.275 .87 0.27

AF 5 atrial fibrillation; CI 5 confidence interval; HW test 5 Hardy-Weinberg equilibrium test; OR 5 odds ratio; SNP 5 single nucleotide polymorphism.
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95%CI 1.77–3.58;P5 2.56! 1027), hypertension (HR1.63;
95%CI 1.14–2.31;P5 6.52! 1023), andWGRS.4.01 (HR
3.27; 95% CI 2.37–4.52; P5 6.72! 10213).
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Figure 1 Mean weighted genetic risk score (WGRS) for patients with
atrial fibrillation (AF) and non-AF controls within the screening cohort.
Mean WGRS was significantly higher in patients with AF than in non-AF
controls (3.62 6 1.31 vs 2.84 6 1.34; P 5 6.89 ! 10212).
The weighted clinical risk score (CRS) was calculated by
combining the clinical risk factors using these HRs. Individ-
ual CRSs were divided into quartile groups (groups 1–4). The
ratio of AF to non-AF controls increased with CRS quartile,
and there was an 8.51-fold difference in odds ratio between
the highest and lowest CRS (Supplemental Figure 4).
Risk prediction models for AF in the replication
cohort
The AUC of CRS was slightly higher than that of WGRS
(0.79 [70.9% sensitivity, 74.3% specificity] vs 0.72 [65.4%
sensitivity, 69.6% specificity]; P5 1.03! 1024). Thus, clin-
ical factors also strongly influence AF risk. Therefore, we
constructed a predictive logistical model combining WGRS
and the CRS. This model showed significantly better discrim-
ination of AF (AUC 0.84; sensitivity 75.4%; specificity
80.2%) than either WGRS or CRS alone (Figure 4).
Discussion
Almost half of AF patients are asymptomatic, and these pa-
tients die of associated cardiovascular events at a rate 3 times
higher than symptomatic AF patients.16 Thus, early AF
detection is critical for reducing mortality. Various new tech-
nologies, such as wearable electrocardiographic patches,
Apple watch/smartphones, and irregular beats-detecting
blood pressure machines are being applied with increasing



0

10

20

30

40

50

60

70

80
8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0

group 1 group 2 group 3 group 4

AF Non-AFControl Odds ratio

O
d

d
s ratio

90
9.0

%

AF  P value

Group1 (WGRS < 2.23) 43 (30.7) 97 (69.2)

Non-AF Control Odds retio (95% CI)

1.00 (reference)

Group2 (2.23≤ WGRS ＜3.37) 64 (46.3) 74 (53.6) 2.03 (1.24-3.39) 4.76x10
-3

Group3 (3.37≤ WGRS ＜4.17） 73 (52.1) 67 (47.8) 2.46 (1.46-3.97) 6.10x10
-4

Group4 (4.17≤ WGRS) 107 (68.5) 49 (31.4) 4.92 (3.08-8.70) 2.32x10-10

D
is

tr
ib

u
ti

o
n

 o
f 

A
F

 i
n

 E
ac

h
 W

G
R

S
 G

ro
u

p

Figure 2 Relationship between risk of atrial fibrillation (AF) and weighted genetic risk score (WGRS) in the screening cohort. Subjects of the screening cohort
were stratified according to WGRS into quartile groups (groups 1–4). The ratio of AF to non-AF controls increased progressively with higher quartile, and there
was a 4.92-fold increase in AF risk from the lowest to highest WGRS. CI 5 confidence interval.
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frequency in general practice. Nonetheless, early AF detec-
tion still is challenging, especially in asymptomatic patients,
so identifying patients at high risk for AF development based
on genetic and other clinical factors is equally important for
reducing cardiovascular and stroke-related morbidity and
mortality.

Both environmental and genetic factors contribute to AF
risk.17 Previous large-scale association, GWAS, and meta-
analyses have identified numerous SNPs associated with
AF occurrence.11,16,18,19) In 2017, a GWAS by Low et al10

identified 6 novel SNPs specifically associated with AF in
a Japanese cohort (KCND3, PPFIA4, SLC1A4-CEP68,
HAND2, NEBL, and SH3PXD2A). In the present study, we
genotyped all 26 SNPs reported in previous GWASs.
Because patient characteristics differed significantly between
Table 3 Clinical characteristics of study subjects in the replication coh

Variable
All subjects
(N 5 1018)

AF group
(N 5 273)

Age (y) 46.9 6 13.5 52.7 6 11
Male 617 (60.6) 205 (75.1
BMI 22.7 6 3.3 24.1 6 3.
Hypertension 275 (27.0) 121 (44.3
Diabetes 74 (7.3) 35 (12.8)
WGRS 3.21 6 1.17 3.79 6 1.

Values are given as mean 6 standard deviation or n (%) unless otherwise indi
AF 5 atrial fibrillation; BMI 5 body mass index; WGRS 5 weighted genetic ris
AF patients and non-AF controls in the screening cohort, we
performed propensity score methods for adjustment of con-
founding factors. We found that 5 SNPs were associated
with AF after Bonferroni correction: PRRX1 (rs3903239),
ZFHX3 (rs2106261), PTIX2 (rs6817105), HAND2
(rs7698692), and NEURL1 (rs60572254), and the odds ratios
were equal to or higher than reported in a previous
GWAS.20,21

Muse et al22 calculated the WGRSs of 12 AF-associated
loci (rs13376333 [KCNN3], rs3903239 [PRRX1],
rs10033464 [PITX2], rs17570669 [PITX2], rs2200733
[PITX2], rs3853445 [PITX2], rs3807989 [CAV1],
rs10821415 [C9orf3], rs10824026 [SYNPO2L], rs1152591
[SYNE2], rs7164883 [HCN4], and rs2106261 [ZFHX3])
and found a 3-fold difference between the highest and lowest
ort

Non-AF group
(N 5 745) P value

.3 44.6 6 14.2 3.46 ! 10–24

) 412 (55.3) 4.52 ! 10–13

4 22.4 6 3.2 6.13 ! 10–17

) 154 (20.6) 2.78 ! 10–12

39 (5.2) 2.08 ! 10–7

18 2.89 6 1.20 3.58 ! 10–13

cated.
k score.
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quintiles after adjusting for other clinical risk factors (age,
sex, BMI, hypertension, and diabetes). In this study, we
calculated the WGRS of the 5 identified AF-associated
SNPs using logistical regression analysis and found a 4.9-
fold difference in AF risk between the highest and lowest
WGRS. We also found that WGRS was able to predict AF
occurrence more accurately than any single SNP. In addition,
we prospectively validated the accuracy of WGRS for AF
prediction in a replication cohort by ROC analysis and found
results consistent with the screening cohort.

Logistic multivariate analysis revealed that WGRS was
independently associated with AF occurrence. According to
the Danish Twin Registry study, genetic factors account for
62% of the variation in AF risk and environmental factors
for 38%.23 Said et al24 reported that combining GRS and life-
style risk factors (smoking, BMI, and physical activity)
yielded greater AF prediction accuracy among the UK Bio-
bank cohort. Poor lifestyle was associated with HR up to
Table 4 Multivariate analysis of occurrence of AF in the
replication cohort

Variable HR (95% CI) P value

Age .50 y 3.42 (2.35–4.96) 9.95 ! 10–11

Male 2.38 (1.67–3.42) 1.86 ! 10–6

BMI .25 kg/m2 2.53 (1.77–3.58) 2.56 ! 10–7

Hypertension 1.63 (1.14–2.31) 6.52 ! 10–3

Diabetes 1.49 (0.84–2.65) .16
WGRS .4.01 3.27 (2.37–4.52) 6.72 ! 10–13

AF 5 atrial fibrillation; BMI 5 body mass index; CI 5 confidence inter-
val; HR 5 hazard ratio; WGRS 5 weighted genetic risk score.
5.41 for AF in the high genetic risk group.24 Weng et al25

demonstrated contributions from both genetic and clinical
factors in determining long-term AF risk in a European
percipient sample from the community-based Framingham
Heart Study, with estimated incidence ranging from about
20% among individuals in the lowest tertiles of polygenic
and clinical risk to about 50% in the highest tertiles.

We constructed a predictive logistic model combining
WGRS and weighted AF clinical risk factors (age, BMI,
sex, and hypertension) in Japanese cohorts and found better
discrimination of AF by ROC analysis (AUC 0.84) compared
to ROC analysis of WGRS alone, in accordance with the re-
ported importance of environmental factors in AF onset. The
genetic score on its own was inferior to clinical risk model,
but the additive model is significantly better than clinical
model. In our study, however, the incidence of AFwas higher
than in previous studies because the participants were elderly
high-risk outpatients at the department of cardiovascular
medicine. We used the traditional nongenetic AF risk factors
(age, sex, obesity, hypertension, and diabetes) previously re-
ported in the Japanese large-scale cohort study. However, we
could not obtain enough data about history of drinking and
smoking, presence of dyslipidemia, and medication from
themedical records, which may have influenced overall accu-
racy.14 Thus, additional studies are required to assess the pre-
dictive accuracy of this model in the general Japanese adult
population.
Study limitations
First, the propensity score matching necessary to reduce the
selection bias in the screening cohort markedly reduced the



Se
ns

iti
vi

ty

1- Specificity

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.20 0.40 0.60 0.80 1.00

WGRS + Clinical risk factors 

Clinical risk factors 

WGRS

AUC 0.84
( 95%CI 0.80-0.86 )

AUC 0.79
( 95%CI 0.75-0.82 )

AUC 0.72
( 95%CI 0.67-0.74)

P= 1.34 10

P= 1.27 

Figure 4 Receiving operating characteristic analysis of the weighted ge-
netic risk score (WGRS) prediction model and the combined prediction
model including WGRS and weighted clinical risk factors in the replication
cohort. Receiver operating characteristic analysis of WGRS yielded an area
under the curve (AUC) of 0.72, sensitivity 65.4%, and specificity 69.6%.
Respective values for weighted clinical risk score (CRS) (age .50 years,
body mass index .25 kg/m2, sex, and hypertension) were 0.79, 70.9%,
and 74.3%. A combined predictive logistical model was constructed by
combining WGRS and CRS. This model yielded better discrimination of
AF (AUC 0.84; sensitivity 75.4%; specificity 80.2%) than either WGRS or
CRS alone. CI 5 confidence interval.
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sample size. Therefore, this new combined risk model for AF
must be further validated using a larger prospective cohort re-
cruited from multiple centers. Second, this study did not
consider differences in medication history among subjects,
which may have influenced overall accuracy. Third, AF in
this study was confirmed by 12-lead electrocardiography or
portable electrocardiograph, so whether this model is suffi-
cient for detecting asymptomatic AF is still uncertain. Fourth,
the present study was performed in a Japanese population, so
additional studies are needed to determine model applica-
bility to other racial and ethnic groups.

Despite these limitations, this is the first AF prediction
model constructed using both the WGRS of 5 strongly AF-
associated SNPs and clinical risk factors with validation in
the Japanese population. Our results suggest that this com-
bined model may be useful for early AF detection and inter-
vention.
Conclusion
The combination risk model using AF-associated SNPs
(rs3903239, rs2106261, rs6817105, rs7698692, and
rs6057225) and clinical risk factors (age, hypertension,
BMI, and sex) can stratify AF risk in the Japanese population
more accurately than either WGRS or clinical factors alone.
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