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Ridge Parameters Optimization
based on Minimizing Model Selection Criterion
in Multivariate Generalized Ridge Regression

Mineaki Ohishi

(Received Xxx 00, 0000)

Abstract. A multivariate generalized ridge (MGR) regression provides a shrink-
age estimator of the multivariate linear regression by multiple ridge parameters.

Since the ridge parameters which adjust the amount of shrinkage of the estimator
are unknown, their optimization is an important task to obtain a better estimator.
For the univariate case, a fast algorithm has been proposed for optimizing ridge pa-
rameters based on minimizing a model selection criterion (MSC) and the algorithm
can be applied to various MSCs. In this paper, we extend this algorithm to MGR
regression. We also describe the relationship between the MGR estimator which is
not sparse and a multivariate adaptive group Lasso estimator which is sparse, under
orthogonal explanatory variables.

1. Introduction

We consider n pairs of data {yi,xi} (i = 1, . . . , n), where yi is a p-dimensional
vector of response variables, xi is a k-dimensional vector of explanatory vari-
ables, and n satisfies n > max{p, k + 1}. A multivariate linear regression model
is a statistical model for multiple response variables (e.g., Srivastava [19], Chap.
9; Timm [22], Chap. 4). Let Y = (y1, . . . ,yn)

′ be an n × p matrix of response
variables, X = (x1, . . . ,xn)

′ be an n × k matrix of explanatory variables, and
E = (ε1, . . . , εn)

′ be an n × p matrix of error variables. Then, the multivariate
linear regression model is given by

Y = 1nµ
′ +XΞ+ E , (1)

where 1n is an n-dimensional vector of ones, µ is a p-dimensional vector of loca-
tion parameters, and Ξ = (ξ1, . . . , ξk)

′ is a k×p matrix of regression coefficients.
We assume that X is centralized and has full column rank, i.e., X ′1n = 0k

and rank(X) = k, and that ε1, . . . , εn are independently and identically dis-
tributed according to mean vector 0p and covariance matrix Σ, where 0k is a
k-dimensional vector of zeros. One of the most basic methods for estimating the
unknown parameters µ and Ξ in (1) is the least squares (LS) method. The LS
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2 Mineaki Ohishi

estimators of µ and Ξ are given by

µ̂ = ȳ =
1

n
Y ′1n, Ξ̂ = M−1X ′Y (M = X ′X). (2)

These estimators are equal to the maximum likelihood estimators (MLEs) of µ
and Ξ under normality, i.e., the assumption that

ε1, . . . , εn ∼ i.i.d. Np(0p,Σ).

The LS estimators can be obtained as simple forms as per (2) regardless of
having good theoretical properties, e.g., unbiasedness and asymptotic normality.
Unfortunately, it cannot be said that Ξ̂ is a good estimator, in the sense that
the variance of the estimator becomes large when multicollinearity occurs.

For the univariate case, i.e., when p = 1, a generalized ridge (GR) regres-
sion was proposed by Hoerl & Kennard [10] to avoid the problem posed by
multicollinearity. The GR regression can be expected to overcome this problem
by shrinking an estimator of regression coefficients. The GR estimator can be
obtained as closed form and the amount of shrinkage of the estimator is ad-
justed by k regularization parameters called ridge parameters. However, since
the ridge parameters are unknown, to obtain a better estimator, we have a new
problem to address, namely ridge parameters optimization. A model selection
criterion (MSC) minimization method is one approach to solve the problem of
ridge parameters optimization, which selects ridge parameters minimizing the
MSC as the optimal ridge parameters. Most MSCs consist of a residual sum
of squares (RSS) and generalized degrees of freedom (GDF). In other words,
they account for model fit and model complexity. Salient examples include the
Cp criterion (Mallows [12]), Akaike’s information criterion (AIC; Akaike [1]) un-
der normality, and the generalized cross-validation (GCV) criterion (Craven &
Wahba [5]). Usually, the optimal parameters selected by an MSC minimization
method cannot be obtained as closed forms and iterative calculation is often
required. This presents difficulties in terms of the validity and applicability of
such methods. Fortunately, Nagai et al. [14] showed that the optimal ridge pa-
rameters based on minimizing a generalized Cp (GCp) criterion (Atkinson [3])
which is a generalization of the Cp criterion can be obtained as closed forms and
Yanagihara [24] showed that the optimal ridge parameters based on minimizing
the GCV criterion can be obtained as closed forms. There are various MSCs
having a wide class like the GCp criterion; for example, there are the generalized
information criterion (GIC; Nishii [15]), which includes AIC, and the extended
GCV (EGCV) criterion (Ohishi et al. [16]), which includes the GCV criterion.
All these criteria can be regarded as bivariate functions of the RSS and GDF.
Ohishi et al. [16] defined an MSC having a wider class as the bivariate function
and proposed an algorithm to minimize it rapidly. Since the ridge parameters
can be easily optimized by using various MSCs, the GR regression is a useful
method to avoid problems arising from multicollinearity.

Ohishi et al. [16] also clarified a class of ridge parameters optimized by the
MSC minimization method. From the results, under orthogonal explanatory
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variables, the GR estimator which was previously non-sparse is now character-
ized by sparsity, i.e., includes 0, after the ridge parameters are optimized. On
the other hand, Lasso regression (Tibshirani [20]) and adaptive Lasso (AL) re-
gression (Zou [26]) which is an extension of the Lasso regression are well-known
methods for providing a sparse estimator. They also give shrinkage estimators
like the GR regression. Although the amount of shrinkage and extent of sparsity
of the AL estimator (including the Lasso estimator) are adjusted by a regulariza-
tion parameter called a tuning parameter, since this parameter is unknown, its
optimization is required. Moreover, the AL estimator cannot usually be obtained
without iterative calculation. However, Ohishi et al. [17] showed that the AL
estimator can be obtained as closed form under orthogonal explanatory variables
and the GR and AL estimators are equivalent after regularization parameters
are optimized by the MSC minimization method.

Yanagihara et al. [25] and Nagai et al. [14] naturally extended the GR
regression to a multivariate GR (MGR) regression. The MGR estimator is also
a shrinkage estimator by k ridge parameters like the GR estimator and we have
to consider the ridge parameters optimization. In the MSC minimization method
for the MGR regression, although the ridge parameters optimized by the GCp

criterion minimization method can be obtained as closed forms (Nagai et al. [14]),
whether this is the case for other criteria is unclear. Recently, Mori & Suzuki
[13] proposed the ZMCp criterion and the ZKLIC which are modified versions of
the modified Cp (MCp) criterion (Fujikoshi & Satoh [8]) and the bias-corrected
AIC (AICC; Hurvich & Tsai [11]) for MGR regression. However, these MSCs are
designed for selecting explanatory variables, not for optimizing ridge parameters.
In this paper, we extend the algorithm proposed by Ohishi et al. [16] to MGR
regression. Furthermore, we describe the relationship between MGR regression
and multivariate adaptive group Lasso (MAGL) regression under orthogonal
explanatory variables.

The remainder of the paper is organized as follows. In Section 2, we describe
the MGR estimator and MSCs for optimizing ridge parameters, and define an
MSC class. In Section 3, we extend the algorithm proposed by Ohishi et al.
[16] to optimize ridge parameters in MGR regression by the MSC minimization
method. In Section 4, the MSC class defined in Section 2 is extended, corre-
sponding to various distances. Moreover, we propose an algorithm for minimiz-
ing the extended MSC. In Section 5, we propose a new method for optimizing
ridge parameters by using MSCs. In Section 6, we describe the MAGL estimator
and equivalence between the MGR and MAGL estimators under the regulariza-
tion parameters optimized by the MSC minimization method. In Section 7, the
performance of the ridge parameters optimized by the MSC minimization meth-
ods is compared by simulation. Technical details are provided in the Appendix.
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2. Preliminaries

By a singular value decomposition, n× n and k × k orthogonal matrices P
and Q and a k × k diagonal matrix D = diag(d1, . . . , dk) express X as

X = P

(
D1/2

On−k,k

)
Q′ = P1D

1/2Q′, (3)

where On,k is an n × k matrix of zeros, P1 is an n × k matrix obtained from
the partition P = (P1,P2), which satisfies P ′

11n = 0k and P ′
1P1 = Ik, and

d1, . . . , dk are eigenvalues of M (= X ′X) satisfying d1 ≥ · · · ≥ dk > 0. Then,
the MGR estimators of µ and Ξ are given by

µ̂ = ȳ, Ξ̂θ = M−1
θ X ′Y (Mθ = M +QΘQ′), (4)

where θ = (θ1, . . . , θk)
′, Θ = diag(θ1, . . . , θk) and θj ∈ R+ = {θ ∈ R | θ ≥

0} (j = 1, . . . , k) is a regularization parameter called a ridge parameter. Since

Mθ = M when θ = 0k, Ξ̂θ coincides with Ξ̂ in (2) when θ = 0k and the MGR
estimators coincide with the GR estimators when p = 1. The MGR estimators
in (4) denote the minimizers of the following penalized RSS (PRSS):

tr {(Y − 1nµ
′ −XΞ)′(Y − 1nµ

′ −XΞ) +Ξ′QΘQ′Ξ} . (5)

Although the ridge parameters adjust the amount of shrinkage of the MGR
estimator of Ξ, since they are unknown, their optimization is an important task
to obtain a better estimator. To simplify calculation, following Yanagihara [24]
and Ohishi et al. [16], we transform the ridge parameters as

δj =
θj

dj + θj
∈ [0, 1] (j = 1, . . . , k).

Since this transformation is a one-to-one correspondence, the optimization of θj
is equal to that of δj . Hence, we optimize δj instead of θj and we also call δj
a ridge parameter in this paper. Let δ and ∆ be a k-dimensional vector and a
k × k diagonal matrix of the ridge parameters defined by δ = (δ1, . . . , δk)

′ and
∆ = diag(δ1, . . . , δk), respectively, and let Z be a k × p matrix defined by

Z = (z1, . . . , zk)
′ = P ′

1Y . (6)

Then, the MGR estimator of Ξ in (4) can be rewritten as

Ξ̂δ = Q(Ik −∆)D−1/2Z = Ξ̂−Q∆D−1/2Z. (7)

In this paper, we optimize the ridge parameter δ by using the MSC minimization
method.

The MGR estimator in (7) gives a predictive matrix of Y as

Ŷδ = 1nµ̂
′ +XΞ̂δ = HδY , Hδ = Jn + P1(Ik −∆)P ′

1,

where Jn = 1n1
′
n/n and Hδ is an n×n matrix called a hat matrix. Most MSCs

consist of the predictive matrix and the hat matrix. The predictive matrix is
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used to evaluate model fit. We define an estimator and an unbiased estimator
of the covariance matrix Σ as

Σ̂(δ) =
1

n
(Y − Ŷδ)

′(Y − Ŷδ), (8)

S =
1

b
Σ̂0

(
Σ̂0 = Σ̂(0k), b = 1− (k + 1)/n

)
.

Under normality, Σ̂(δ) is a penalized MLE of Σ and Σ̂0 is an MLE of Σ. Then,

model fit, i.e., the distance between Y and Ŷδ is defined by

tr
{
Σ̂(δ)S−1

}
.

On the other hand, the hat matrix is used to evaluate model complexity and it
is defined by the following GDF:

df(δ) = p tr(Hδ). (9)

TheGCp and EGCV criteria for optimizing ridge parameters consist of tr{Σ̂(δ)S−1}
and df(δ). Similar to Yanagihara [24], we have the following lemma about Σ̂(δ)
and df(δ).

Lemma 1. Let Bδ and W be p× p matrices defined by

Bδ = Z ′∆2Z, W = nΣ̂0.

Then, Σ̂(δ) and df(δ) can be partitioned into terms which do and do not include
δ as follows:

Σ̂(δ) =
1

n
(W +Bδ) = Σ̂0 +

1

n

k∑
j=1

zjz
′
jδ

2
j ,

df(δ) = p(1 + k)− p tr∆ = p

(1 + k)−
k∑

j=1

δj

 .

From Lemma 1, we have

tr
{
Σ̂(δ)S−1

}
= b tr (B∗

δ) + bp, B∗
δ = W−1/2BδW

−1/2.

Then, the GCp and EGCV criteria for optimizing ridge parameters are defined
by

GCp(δ) = nb tr(B∗
δ) + nbp+ α df(δ),

EGCV(δ) =
b tr(B∗

δ) + bp

{1− df(δ)/np}α
,

where α is a positive value adjusting the strength of the penalty for model com-
plexity. Existing criteria are expressed by changing the value of α, for example,
the GCp and EGCV criteria coincide with the Cp and GCV criteria, respectively,
when α = 2 and the GCp criterion coincides with theMCp criterion (Yanagihara
et al. [25]) when α = 2{1 + (p + 1)/(n − k − p − 2)}. From the above, MSCs



6 Mineaki Ohishi

for optimizing ridge parameters can be regarded as bivariate functions of tr(B∗
δ)

and df(δ). From Lemma 1, ranges of tr(B∗
δ) and df(δ) are given as the following

lemma.

Lemma 2. The tr(B∗
δ) and df(δ) are included in the following ranges:

tr(B∗
δ) ∈

[
0, tr

(
Z∗Z∗′)] , df(δ) ∈ [p, p(1 + k)],

where Z∗ = ZW−1/2.

Moreover, let f be a bivariate function defined by the following class.

Definition 1 (Class of the bivariate function f). For a positive value
r+, f satisfies the following conditions:

(A1) For any (r, u) ∈ [0, r+]× [p, np), f(r, u) is continuous.
(A2) For any (r, u) ∈ [0, r+]× [p, np), f(r, u) is first order partially differen-

tiable and its partial derivatives are positive.

We define an MSC for optimizing ridge parameters by using f in Definition
1 as

MSC(δ) = f (tr(B∗
δ), df(δ)) . (10)

For the GCp and EGCV criteria, f is given by

f(r, u) =

{
fGCp

(r, u) = nb(r + p) + αu (GCp criterion)

fEGCV(r, u) = b(r + p)/(1− u/np)α (EGCV criterion)
,

and r+ is given by

r+ = tr
(
Z∗Z∗′) .

Then, the optimal ridge parameters based on minimizing the MSC in (10) are
given by

δ̂ = (δ̂1, . . . , δ̂k)
′ = arg min

δ∈[0,1]k
MSC(δ).

3. Fast Optimization of Ridge Parameters

In this section, to obtain δ minimizing the MSC in (10), we extend the
algorithm for optimizing ridge parameters in the GR regression proposed by
Ohishi [16]. First, we define the following class of ridge parameters.

Definition 2 (Class of ridge parameters). For h ∈ R+, a class of ridge
parameters is defined by

δ̂(h) =
(
δ̂1(h), . . . , δ̂k(h)

)′
, δ̂j(h) = 1− soft

(
1, h/z′

jS
−1zj

)
,

where zj is the p-dimensional vector defined by (6). Furthermore, soft(x, a) is
a soft-thresholding operator (e.g., Donoho & Johnstone [7]), i.e., soft(x, a) =
sign(x)(|x| − a)+, and (x)+ = max{x, 0}.
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When S = Ip and p = 1, the class of ridge parameters in Definition 2
corresponds to that for the GR regression defined by Ohishi et al. [16]. Using
this class, the MGR estimator in (7) is given as a function of h:

Ξ̂δ̂(h) = QV (h)Q′Ξ̂,

where Q is the k × k orthogonal matrix defined by (3) and V (h) is a k × k
diagonal matrix which has the following diagonal elements:

vj(h) = 1− δ̂j(h) = soft
(
1, h/z′

jS
−1zj

)
(j = 1, . . . , k).

The V (h) rewrites the predictive matrix of Y as

Ŷδ̂(h) = {Jn + P1V (h)P ′
1}Y ,

where P1 is the n×k matrix defined by (3). Then, the ridge parameters optimized
by the MSC minimization method are given by the following theorem (the proof
is given in Appendix A.1).

Theorem 1. We define r+ as

r+ = tr
(
Z∗Z∗′) .

For f with the class in Definition 1, let ϕ(h) (h ∈ R+\{0}) be a function defined
by

ϕ(h) = MSC(δ̂(h)),

and suppose that ∃ν > 0 s.t. ϕ(ν) < limh→0 ϕ(h). Then, the ridge parameters

optimized by the MSC minimization method are given by δ̂(ĥ) and ĥ is given by

ĥ = arg min
h∈R+\{0}

ϕ(h).

From this theorem, the class of ridge parameters in Definition 2 is the class
of the “optimal” ridge parameters.

Let tj (j = 1, . . . , k) be the jth order statistic of z′
1S

−1z1, . . . , z
′
kS

−1zk and
Rj (j = 0, 1, . . . , k) be a range defined by

Rj =


(0, t1] (j = 0)

(tj , tj+1] (j = 1, . . . , k − 1)

(tk,∞] (j = k)

. (11)

Then, similar to Ohishi et al. [16], we have the following proposition.

Proposition 1. The ϕ(h) in Theorem 1 satisfies the following properties:

(P1) For all h ∈ R+\{0}, ϕ(h) is continuous.
(P2) For all h ≥ tk, ϕ(h) = f(r+, p).
(P3) The ϕ(h) can be expressed as the following piecewise function:

ϕ(h) = ϕa(h) (h ∈ Ra; a = 0, 1, . . . , k)

= f
(
(c1,a + c2,ah

2)/nb, p(1 + k − a− c2,ah)
)
,
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where c1,a and c2,a are nonnegative constants given by

c1,a =


0 (a = 0)
a∑

j=1

tj (a = 1, . . . , k)
, c2,a =


k∑

j=a+1

1

tj
(a = 0, 1, . . . , k − 1)

0 (a = k)

.

From the results, the MSC minimization problem for optimizing ridge pa-
rameters in the MGR regression can be solved by applying the fast algorithm for
the GR regression proposed by Ohishi et al. [16]. That is, we have the following
theorem.

Theorem 2. Suppose that the derivative of ϕa(h) in Proposition 1 is ex-
pressed as

d

dh
ϕa(h) = χa(h)ψa(h) (h ∈ Ra; a = 0, 1, . . . , k − 1),

and ψ(h) = ψa(h) (h ∈ Ra) is continuous for all h ∈ R+\{0}, where χa(h)
is a positive function and ψa(h) is a polynomial. Moreover, suppose that ∃ν >
0 s.t. ϕ(ν) < limh→0 ϕ(h) and let ha be a root of ψa(h) = 0 satisfying

∃ϵa > 0 s.t. ∀ϵ ∈ (0, ϵa), ψa(ha − ϵ) < 0. (12)

Then, minimizer candidates of ϕ(h) are given by

S =

{⋃
a∈A
{ha}

}⋃
T ,

A = {a ∈ {0, 1, . . . , k − 1} | ha ∈ Ra}, T =

{
{tk} (ψk−1(tk) < 0)

∅ (ψk−1(tk) ≥ 0)
.

Hence, the ridge parameters optimized by the MSC minimization method are

given by δ̂(ĥ) and ĥ is given by

ĥ = argmin
h∈S

ϕ(h).

Although the range of h is a set of positive values, Theorem 2 can reduce a
search range of h to S which is a set of discrete points. Furthermore, each element
of S is given as closed form and #(S) ≤ k + 1; hence we can quickly optimize
the ridge parameters. In the theorem, although ψa(h) is implicitly supposed as
a linear or quadratic function, the theorem can naturally be extended to higher
order polynomial functions. In particular, roots of ψa(h) = 0 can be obtained
as closed forms when ψa(h) is a cubic or a quartic function, by using Cardano’s
formula (e.g., David [6], Chap. 1) or Ferrari’s method (e.g., Tignol [21], Chap.
3). Hence, if the degree of ψa(h) is four or less, we can quickly optimize the
MSC.
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3.1. Examples. In this subsection, we provide specific examples of the MSC
minimization methods for optimizing ridge parameters in the MGR regression.
To emphasize that the optimal ridge parameters depend on α, we specify that
α is given.

3.1.1. The GCp criterion. Although the ridge parameters optimized by the
GCp criterion minimization method have already been given by Nagai et al. [14],
here we show how to derive them by applying Theorem 2. The GCp criterion
for optimizing ridge parameters is given by

GCp(δ | α) = fGCp
( tr(B∗

δ), df(δ) | α) .

When h ∈ Ra (a = 0, 1, . . . , k), ϕ and its derivative are given by

ϕ(h | α) = ϕa(h | α) = c2,ah
2 − αpc2,ah+ nbp+ c1,a + αp(1 + k − a),

d

dh
ϕa(h | α) = c2,a(2h− αp).

Hence, the ridge parameters optimized by the GCp criterion minimization method
are given as the following closed form:

δ̂ = δ̂(ĥα), ĥα =
αp

2
.

3.1.2. The EGCV criterion. The EGCV criterion for optimizing ridge param-
eters is given by

EGCV(δ | α) = fEGCV ( tr(B∗
δ), df(δ) | α) .

When h ∈ Ra (a = 0, 1, . . . , k), ϕ and its derivative are given by

ϕ(h | α) = ϕa(h | α) =
bp+ (c1,a + c2,ah

2)/n

{b+ (a+ c2,ah)/n}α
,

d

dh
ϕa(h | α) =

c2,a
n2{b+ (a+ c2,ah)/n}α+1

ψa(h | α),

ψa(h | α) = −(α− 2)c2,ah
2 + 2(a+ nb)h− α(nbp+ c1,a).

When α = 2, i.e., using the GCV criterion minimization method, we have

ψa(h | 2) = 2{(a+ nb)h− nbp− c1,a},

and a root of ψa(h | 2) = 0 is

ha =
nbp+ c1,a
a+ nb

.

Moreover, similar to Yanagihara [24], the following statement is true:

∃!a∗ ∈ {0, 1, . . . , k − 1} s.t. ha∗ ∈ Ra∗ .

Hence, the ridge parameters optimized by the GCV criterion minimization method

are given by the following closed forms: δ̂ = δ̂(ha∗).
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When α > 2, since ψa(h | α) is a concave quadratic function, a root of
ψa(h | α) = 0 satisfying the condition (12) is given by

hα,a =
(a+ nb)−

√
(a+ nb)2 − α(α− 2)c2,a(nbp+ c1,a)

(α− 2)c2,a
.

Therefore, candidates of ĥα are given by

Sα =

{ ⋃
a∈Aα

{hα,a}

}⋃
Tα,

where Aα and Tα are sets given by

Aα = {a ∈ {0, 1, . . . , k − 1} | hα,a ∈ Ra} ,

Tα =

{
{tk}

(
r+ > 2(1− n−1)tk/αb− p

)
∅

(
r+ ≤ 2(1− n−1)tk/αb− p

) .
Hence, the ridge parameters optimized by the EGCV criterion minimization
method are given by

δ̂ = δ̂(ĥα), ĥα = arg min
h∈Sα

ϕ(h | α).

In the EGCV criterion minimization method, the number of minimizer candi-
dates is only k + 1 at most.

3.2. Relationships between the Optimal Ridge Parameters. This sub-
section provides some theoretical properties concerning the relationships between
the optimal ridge parameters. The class of the optimal ridge parameters satisfies

∀h1, h2 ∈ R+, h1 < h2 ⇒ δ̂j(h1) ≤ δ̂j(h2) (j = 1, . . . , k),

with equality only when h1 ≥ tk. This fact yields some relationships concerning
the ridge parameters optimized by the GCp and EGCV criteria minimization
methods. Immediately, we have the following result which is similar to Nagai et
al. [14].

Proposition 2. For positive values α1 and α2, we define the ridge param-
eters optimized by the GCp criterion minimization method as

δ̂1,j = δ̂j(ĥα1), δ̂2,j = δ̂j(ĥα2) (j = 1, . . . , k),

where ĥα = αp/2. Then, we have

α1 < α2 ⇒ δ̂1,j ≤ δ̂2,j .

This proposition states that the stronger the penalty for model complexity,
the larger the amount of shrinkage of the estimator, when using the GCp criterion
minimization method. Next, we consider the ridge parameters optimized by the
GCp and the GCV criteria minimization methods. Similar to Yanagihara [24],
we have the following lemma.
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Lemma 3. The ha∗ obtained by the GCV criterion minimization method
satisfies ha∗ ≤ p.

This lemma leads to the following result which is similar to the case when
p = 1 (Yanagihara [24]).

Proposition 3. Let δ̂
GCp

α,j and δ̂GCV
j (j = 1, . . . , k) be the ridge parameters

optimized by the GCp and GCV criteria minimization methods, respectively.
Then, we have

α ≥ 2⇒ δ̂GCV
j ≤ δ̂GCp

α,j .

The value of α in the MSC is often 2 or more. This means that the ridge
parameters optimized by the GCp criterion minimization method shrink the
estimator more than the GCV criterion minimization method in most cases.
Finally, we consider the ridge parameters optimized by the EGCV criterion

minimization method. We express ϕ(h | α) = EGCV(δ̂(h) | α) as

ϕ(h | α) = σ̂2(h)η(h | α),

where

σ̂2(h) = bp+ b tr(B∗
δ),

η(h | α) = 1

{1− df(h)/np}α
, df(h) = df(δ̂(h)),

and let ĥα be the minimizer of ϕ(h | α). Then, η(h | α) has the following
property (the proof is given in Appendix A.2).

Lemma 4. Suppose that 0 < h1 < h2. Then, we have

η(h2 | α) ≤ η(h1 | α).

This lemma leads to the following proposition (the proof is given in Appen-
dix A.3).

Proposition 4. The EGCV criterion minimization method has the fol-
lowing properties:

(1) Suppose that α1 < α2. Then, we have

ĥα1
= tk ⇒ ĥα2

= tk.

(2) For positive values α1 and α2, we define the ridge parameters optimized
by the EGCV criterion minimization method as

δ̂1,j = δ̂j(ĥα1), δ̂2,j = δ̂j(ĥα2) (j = 1, . . . , k),

and suppose that ĥα2
̸= tk. Then, we have

α1 < α2 ⇒ δ̂1,j ≤ δ̂2,j ,

with equality only when ĥα1 ≥ z′
jS

−1zj.
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This proposition states that the stronger the penalty for model complexity,
the larger the amount of shrinkage of the estimator, when using the EGCV
criterion minimization method.

4. Extending the MSC Class

In the previous section, we showed that the algorithm for the GR regression
can be applied to minimize the MSC in (10), where the distance between Y and

Ŷδ is defined by tr{Σ̂(δ)S−1} and the MSC is defined by using tr(B∗
δ) obtained

from the distance. In this section, we focus on how to measure the distance.
Let g be a real-valued function defined by the following class.

Definition 3 (Class of the function g). For any p× p positive definite
matrix A, the g satisfies the following conditions:

(A1) The g(A) is positive.
(A2) The ∂g(A)/∂A is a positive definite.

Using the function g, we extend the MSC in (10) to

MSC(δ | g) = f (g(B∗
δ), df(δ)) , (13)

where f is the bivariate function given by Definition 1. For example, g includes
the following functions:

g(A) =



gLH(A) = tr(A) (LH-distance)

gLR(A) = log |Ip +A| (LR-distance)

gBNP(A) = tr
{
A(Ip +A)−1

}
(BNP-distance)

gML(A) = tr
{
(Ip +A)−1

}
+ log |Ip +A| − p (ML-distance)

gGLS(A) = tr(A2)/2 (GLS-distance)

.

The MSC in (13) is equal to that in (10) when g(A) = gLH(A) and the following
equation holds:

gLH(B
∗
δ) = tr

(
BδW

−1
)
.

Since we can regard Bδ as a between-group variation matrix and W as a
within-group variation matrix, gLH(B

∗
δ) is a Lawley-Hotelling trace criterion

(LH-statistic; e.g., Anderson [2], Chap. 8) which is a well-known statistic in
multivariate analysis. That is, the MSC in (10) measures the distance between

Y and Ŷδ based on the LH-statistic. Similarly, regarding the LR-distance and
the BNP-distance, the following equations hold:

gLR(B
∗
δ) = log

∣∣(W +Bδ)W
−1
∣∣ ,

gBNP(B
∗
δ) = tr

{
Bδ(W +Bδ)

−1
}
.

They are a Likelihood-Ratio criterion and a Bartlett-Nanda-Pillai trace crite-
rion, respectively, which are also well-known statistics (e.g., Anderson [2], Chap.
8). MSC based on the LR-distance includes the GIC and the AICC under nor-
mality. The above three distances based on the three statistics pertain to the
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mean structure of a model. In contrast, there are distances with respect to the
covariance structure of a model, e.g., the ML-distance and the GLS-distance.
Regarding these distances, the following equations hold:

gML(B
∗
δ) = log

∣∣∣Σ̂(δ)
∣∣∣+ tr

{
Σ̂(δ)−1Σ̂0

}
− log

∣∣∣Σ̂0

∣∣∣− p,
gGLS(B

∗
δ) =

1

2
tr

[{(
Σ̂0 − Σ̂(δ)

)
Σ̂−1

0

}2
]
.

They are distances between Σ̂(δ) and Σ̂0 called a maximum likelihood fitting
function and a generalized least square fitting function, respectively (e.g., Bollen
[4], Chap. 4). Using g(A), the GCp and EGCV criteria, and the GIC and the
AICC under normality are given by

GCp(δ) = nbgLH(B
∗
δ) + nbp+ α df(δ),

EGCV(δ) =
bgLH(B

∗
δ) + bp

{1− df(δ)/np}α
,

GIC(δ) = ngLR(B
∗
δ) + np log b+ α df(δ),

AICC(δ) = ngLR(B
∗
δ) + np log b+

np{n+ df(δ)}
n− p− 1− df(δ)

.

Using the GIC, it is also possible to adjust the strength of the penalty for model
complexity, and for example, the GIC coincides with the AIC when α = 2, the
HQC (Hannan & Quinn [9]) when α = 2 log log n, and the BIC (Schwarz [18])
when α = log n. For the GIC and AICC, the bivariate function f(r, u) is given
by

f(r, u) =

fGIC(r, u) = n(r + p log b) + αu (GIC)

fAICC
(r, u) = n(r + p log b) +

np(n+ u)

n− p− 1− u
(AICC)

.

The following subsections describe two algorithms to minimize the MSC in (13).

4.1. Minimizing MSC via Iterative Method. This subsection describes
an algorithm for solving the MSC minimization method via an iterative method
with an iterative function. That is, we derive the iterative function. Notice that

B∗
δ =

k∑
j=1

z∗
j z

∗
j
′δ2j , z∗

j = W−1/2zj .

Therefore, the following partial derivatives can be obtained:

∂

∂δj
B∗

δ = 2z∗
j z

∗
j
′δj ,

∂

∂δj
df(δ) = −p.

We express the (i, ℓ) element of a matrix A as aiℓ = (A)iℓ and define

ġiℓ(B) =
∂

∂aiℓ
g(A)

∣∣∣∣
A=B

, Ġ(B) =
∂

∂A
g(A)

∣∣∣∣
A=B

. (14)



14 Mineaki Ohishi

B∗
δ is a symmetric matrix, thus we have

∂

∂δj
g(B∗

δ) =

p∑
i=1

p∑
ℓ=i

∂

∂δj
(B∗

δ)iℓ · ġiℓ(B∗
δ) = 2z∗

j
′Ġ(B∗

δ)z
∗
j δj .

Hence, a partial derivative of the MSC is given by

∂

∂δj
MSC(δ | g) = 2z∗

j
′Ġ(B∗

δ)z
∗
j ḟr (g(B

∗
δ), df(δ)) δj

− pḟu (g(B∗
δ), df(δ)) ,

where

ḟr(x, y) =
∂

∂r
f(r, u)

∣∣∣∣
(r,u)=(x,y)

, ḟu(x, y) =
∂

∂u
f(r, u)

∣∣∣∣
(r,u)=(x,y)

.

By solving ∂MSC(δ | g)/∂δ = 0k, we can obtain the following iterative method:

δ(i+1) = ζ(δ(i)) =
(
ζ1(δ

(i)), . . . , ζk(δ
(i))
)′

(i = 0, 1, . . .),

ζj(δ) = 1− soft
(
1, τ(δ)/z∗

j
′Ġ(B∗

δ)z
∗
j

)
, (15)

where (i) is the iteration number, δ(0) is a given initial vector, and τ(δ) is given
by

τ(δ) =
pḟu (g(B

∗
δ), df(δ))

2ḟr (g(B∗
δ), df(δ))

> 0.

By repeating the update of δ(i) with the iterative function ζ, we can obtain the
optimal δ. This iterative method has the following property (the proof is given
in Appendix A.4).

Proposition 5. For a k-dimensional vector ϵ wherein all elements are
nonnegative, suppose that

τ(δ) ≤ τ(δ + ϵ), z∗
j
′Ġ(B∗

δ)z
∗
j ≥ z∗

j
′Ġ(B∗

δ+ϵ)z
∗
j . (16)

Then, the iterative method with iterative function (15) converges if ∀j ∈ {1, . . . , k},
δ
(1)
j ≥ δ(0)j or ∀j ∈ {1, . . . , k}, δ(1)j ≤ δ(0)j .

From this proposition, when assumption (16) holds, the iterative method
with iterative function (15) converges if the initial vector is 0k or 1k.

4.1.1. LR-distance. For the MSC based on the LR-distance, the following
equation holds:

∂

∂A
gLR(A) =

∂

∂A
log |Ip +A| = (Ip +A)−1.

Therefore, we have

W−1/2Ġ(B∗
δ)W

−1/2 = (W +Bδ)
−1 =

1

n
Σ̂(δ)−1.
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Hence, the iterative function for solving the MSC minimization method based
on the LR-distance is given by

ζj(δ) = 1− soft
(
1, nτ(δ)/z′

jΣ̂(δ)−1zj

)
. (17)

Furthermore, from Lemma 1, for ϵ in Proposition 5 and for any p-dimensional
vector a, the following equation holds:

a′Σ̂(δ)a ≤ a′Σ̂(δ + ϵ)a⇐⇒ a′Σ̂(δ)−1a ≥ a′Σ̂(δ + ϵ)−1a.

Let δ̂LR be a solution obtained by the iterative method with iterative func-
tion (17). Then,

δ̂LR = ζ(δ̂LR).

The ridge parameters optimized by the MSC minimization method based on the
LR-distance are given by

δ̂LRj = 1− soft
(
1, nτ(δ̂LR)/z′

jΣ̂(δ̂LR)−1zj

)
(j = 1, . . . , k).

On the other hand, the ridge parameters optimized by the MSC minimization
method based on the LH-distance are given by the following form:

δ̂LHj = 1− soft
(
1, ĥ/z′

jS
−1zj

)
(j = 1, . . . , k).

The δ̂LHj includes S−1 and S is an estimator of the covariance matrix for the

full model. Thus, δ̂LHj has a disadvantage because S−1 is unstable when k is

large. Whereas, δ̂LRj does not include S−1, but rather Σ̂(δ̂LR)−1 and Σ̂(δ̂LR)

is an estimator of the covariance matrix adjusted by δ̂LR. Thus, δ̂LRj has an

advantage because Σ̂(δ̂LR)−1 is stable even when k is large.

Example 1. We derive an iterative function for solving the GIC minimization
method. From f(r, u) = fGIC(r, u), we have

ḟr(r, u) = n, ḟu(r, u) = α,

and therefore, τ(δ) = αp/2n. Hence, the iterative function for the GIC mini-
mization method is given by

ζj(δ) = 1− soft
(
1, αp/2z′

jΣ̂(δ)−1zj

)
(j = 1, . . . , k). (18)

Moreover, since τ(δ) does not depend on δ, from Proposition 5, the iterative
method for solving the GIC minimization method converges under an appropri-
ate initial vector.
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Example 2. We derive an iterative function for solving the AICC minimization
method. From f(r, u) = fAICC

(r, u), we have

ḟr(r, u) = n, ḟu(r, u) =
np(2n− p− 1)

(n− p− 1− u)2
,

and therefore, we have

τ(δ) =
p2(2n− p− 1)

2{n− p− 1− df(δ)}2
.

Hence, the iterative function for the AICC minimization method is given by

ζj(δ) = 1− soft

(
1,

np2(2n− p− 1)

2{n− p− 1− df(δ)}2z′
jΣ̂(δ)−1zj

)
(j = 1, . . . , k).

Moreover, for ϵ in Proposition 5, the following equation holds:

df(δ) ≥ df(δ + ϵ).

Therefore

τ(δ) ≥ τ(δ + ϵ),

and thus, the iterative method for solving the AICC minimization method does
not satisfy Proposition 5.

4.1.2. BNP-distance. For the MSC based on the BNP-distance, the following
equation holds:

∂

∂A
gBNP(A) =

∂

∂A
tr
{
A(Ip +A)−1

}
= − ∂

∂A
tr
{
(Ip +A)−1

}
= (Ip +A)−2.

Therefore, we have

W−1/2Ġ(B∗
δ)W

−1/2 = (W +Bδ)
−1W (W +Bδ)

−1 =
1

n
Σ̂(δ)−1Σ̂0Σ̂(δ)−1.

Hence, the iterative function for solving the MSC minimization method based
on the BNP-distance is given by

ζj(δ) = 1− soft

(
1,

nτ(δ)

z′
jΣ̂(δ)−1Σ̂0Σ̂(δ)−1zj

)
.

Accordingly, using the BNP-distance, the optimal ridge parameters are stable
even when k is large.
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Example. As an example of MSC based on the BNP-distance, we consider the
following criterion:

BNPC(δ) = ngBNP(B
∗
δ) + α df(δ).

Then, since

ḟr(r, u) = n, ḟu(r, u) = α,

we have τ(δ) = αp/2n. Hence, the iterative function for solving the BNPC
minimization method is given by

ζj(δ) = 1− soft

(
1,

αp

2z′
jΣ̂(δ)−1Σ̂0Σ̂(δ)−1zj

)
. (19)

4.1.3. ML-distance. For the MSC based on the ML-distance, the following
equation holds:

∂

∂A
gML(A) =

∂

∂A

[
tr
{
(Ip +A)−1

}
+ log |Ip +A|

]
= −(Ip +A)−2 + (Ip +A)−1.

Therefore, we have

W−1/2Ġ(B∗
δ)W

−1/2 = (W +Bδ)
−1 − (W +Bδ)

−1W (W +Bδ)
−1

=
1

n
Σ̂(δ)−1 − 1

n
Σ̂(δ)−1Σ̂0Σ̂(δ)−1.

Hence, the iterative function for solving the MSC minimization method based
on the ML-distance is given by

ζj(δ) = 1− soft

(
1,

nτ(δ)

z′
j{Σ̂(δ)−1 − Σ̂(δ)−1Σ̂0Σ̂(δ)−1}zj

)
.

Accordingly, using the ML-distance, the optimal ridge parameters are stable
even when k is large.

4.1.4. GLS-distance. For the MSC based on the GLS-distance, the following
equation holds:

∂

∂A
gGLS(A) =

1

2
· ∂
∂A

tr
(
A2
)
= A.

Therefore, we have

W−1/2Ġ(B∗
δ)W

−1/2 = W−1BδW
−1 =

1

n
Σ̂−1

0 {Σ̂(δ)− Σ̂0}Σ̂−1
0 .

Hence, the iterative function for solving the MSC minimization method based
on the GLS-distance is given by

ζj(δ) = 1− soft

(
1,

nτ(δ)

z′
jΣ̂

−1
0 {Σ̂(δ)− Σ̂0}Σ̂−1

0 zj

)
.
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Since Σ̂0 is an estimator of the covariance matrix for the full model, the optimal
ridge parameters are unstable when k is large.

4.2. Minimizing MSC via Coordinate Descent. In the previous subsec-
tion, we described an algorithm to minimize the MSC via the iterative method
with an iterative function obtained by solving ∂MSC(δ | g)/∂δ = 0k. In this
subsection, we update δ1, . . . , δk individually, not simultaneously. That is, we
minimize the MSC via a coordinate descent algorithm.

4.2.1. LR-distance. We partition W +Bδ and df(δ) into

W +Bδ = Wj + zjz
′
jδ

2
j , Wj = W +

k∑
ℓ ̸=j

zℓz
′
ℓδ

2
ℓ ,

df(δ) = q1,j − pδj , q1,j = p

(1 + k)−
k∑

ℓ ̸=j

δℓ

 .

Then, the following equations hold:

Ip +B∗
δ = W−1/2(W +Bδ)W

−1/2

= W−1/2(Wj + zjz
′
jδ

2
j )W

−1/2, (20)∣∣Wj + zjz
′
jδ

2
j

∣∣ = |Wj |
(
1 + z′

jW
−1
j zjδ

2
j

)
.

Therefore, we have

gLR(B
∗
δ) = log |Ip +B∗

δ |
= log

(
1 + z′

jW
−1
j zjδ

2
j

)
+ log

∣∣WjW
−1
∣∣

= log(1 + q2,jδ
2
j ) + q3,j ,

where q2,j and q3,j are constants which do not depend on δj given by

q2,j = z′
jW

−1
j zj , q3,j = log

∣∣WjW
−1
∣∣ .

Hence, the following partial derivative is obtained:

∂

∂δj
gLR(B

∗
δ) =

2q2,jδj
1 + q2,jδ2j

.

Example 1. The partial derivative of the GIC is given by

ḟj(δj) =
∂

∂δj
GIC(δ) =

1

1 + q2,jδ2j
(−αpq2,jδ2j + 2nq2,jδj − αp).

An update equation of the coordinate descent algorithm for solving the GIC
minimization method is given by the following theorem (the proof is given in
Appendix A.5).
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Theorem 3. Let fj(δ) be a function for δ ∈ [0, 1] and suppose that the
derivative of fj(δ) is given by the following form:

ḟj(δ) =
1

ḟj,1(δ)
ḟj,2(δ) (ḟj,1(δ) > 0),

ḟj,2(δ) = −cj,2δ2 + 2cj,1δ − cj,0 (cj,0, cj,1, cj,2 > 0),

and we define δ̃j as

δ̃j =
1−

√
1− cj,2cj,0/c2j,1
cj,2/cj,1

.

Then, δ̂j = argminδ∈[0,1] fj(δ) is given by

(1) Case of 1− cj,2cj,0/c2j,1 ≥ 0:

δ̂j =

δ̃j
(
cj,2 > cj,1 or (cj,2 ≤ cj,1 and δ̃j < 1)

)
1

(
cj,2 ≤ cj,1 and δ̃j ≥ 1

) .

(2) Case of 1− cj,2cj,0/c2j,1 < 0:

δ̂j = 1.

Example 2. The partial derivative of the AICC is given by

ḟj(δj) =
∂

∂δj
AICC(δ)

=
1

(1 + q2,jδ2j )(n− p− 1− q1,j + pδj)2/n
ḟj,2(δj),

ḟj,2(δ) = 2p2q2,jδ
3 + pq2,j{4(n− p− 1− q1,j)− p(2n− p− 1)}δ2

+ 2q2,j(n− p− 1− q1,j)2δ − p2(2n− p− 1).

An update equation of the coordinate descent algorithm for solving the AICC

minimization method is given by the following theorem (the proof is given in
Appendix A.6).

Theorem 4. Let fj(δ) be a function for δ ∈ [0, 1] and suppose that the
derivative of fj(δ) is given by the following form:

ḟj(δ) =
1

ḟj,1(δ)
ḟj,2(δ) (ḟj,1(δ) > 0),

ḟj,2(δ) = cj,3δ
3 + cj,2δ

2 + cj,1δ − cj,0 (cj,0 > 0),

and let m (0 ≤ m ≤ 3) be the number of stationary points of ḟj,2(δ) which is

included in (0, 1) and δ̃j,1, . . . , δ̃j,m (m ≥ 1) be the stationary points satisfying

δ̃j,1 < · · · < δ̃j,m. Moreover, we define a set Sj as

Sj = {1} (m = 0); {δ̃j,1} (m = 1); {δ̃j,1, 1} (m = 2); {δ̃j,1, δ̃j,3} (m = 3).
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Then, δ̂j = argminδ∈[0,1] fj(δ) is given by

δ̂j = arg min
δ∈Sj

fj(δ).

4.2.2. BNP-distance. Equation (20) leads to

(Ip +B∗
δ)

−1
= W 1/2(Wj + zjz

′
jδ

2
j )

−1W 1/2,

and the following holds:

(Wj + zjz
′
jδ

2
j )

−1 = W−1
j −

W−1
j zjz

′
jW

−1
j δ2j

1 + z′
jW

−1
j zjδ2j

= W−1
j −

W−1
j zjz

′
jW

−1
j δ2j

1 + q2,jδ2j
.

Therefore, we have

gBNP(B
∗
δ) = p− tr

{
(Ip +B∗

δ)
−1
}

= p− tr

{(
W−1

j −
W−1

j zjz
′
jW

−1
j δ2j

1 + q2,jδ2j

)
W

}

=
q4,jδ

2
j

1 + q2,jδ2j
+ q5,j ,

where q4,j and q5,j are constants which do not depend on δj given by

q4,j = z′
jW

−1
j WW−1

j zj , q5,j = p− tr
(
W−1

j W
)
.

Hence, the following partial derivative is obtained:

∂

∂δj
gBNP(Bδ) =

2q4,jδj
(1 + q2,jδ2j )

2
.

Example. The partial derivative of the BNPC is given by

ḟj(δj) =
∂

∂δj
BNPC(δ)

=
1

(1 + q2,jδ2j )
2
(−αpq22,jδ4j − 2αpq2,jδ

2
j + 2nq4,jδj − αp).

An update equation of the coordinate descent algorithm for solving the BNPC
minimization method is given by the following theorem obtained which is similar
to Theorem 4.

Theorem 5. Let fj(δ) be a function for δ ∈ [0, 1] and suppose that the
derivative of fj(δ) is given by the following form:

ḟj(δ) =
1

ḟj,1(δ)
ḟj,2(δ) (ḟj,1(δ) > 0),

ḟj,2(δ) = cj,4δ
4 + cj,3δ

3 + cj,2δ
2 + cj,1δ − cj,0 (cj,0 > 0),
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and let m (0 ≤ m ≤ 4) be the number of stationary points of ḟj,2(δ) which is

included in (0, 1) and δ̃j,1, . . . , δ̃j,m (m ≥ 1) be the stationary points satisfying

δ̃j,1 < · · · < δ̃j,m. Moreover, we define a set Sj as

Sj =


{1} (m = 0); {δ̃j,1} (m = 1)

{δ̃j,1, 1} (m = 2); {δ̃j,1, δ̃j,3} (m = 3)

{δ̃j,1, δ̃j,3, 1} (m = 4)

.

Then, δ̂j = argminδ∈[0,1] fj(δ) is given by

δ̂j = arg min
δ∈Sj

fj(δ).

4.2.3. ML-distance. Notice that

gML(A) = gLR(A)− gBNP(A).

Hence, we have

gML(B
∗
δ) = log(1 + q2,jδ

2
j )−

q4,jδ
2
j

1 + q2,jδ2j
+ q3,j − q5,j ,

and the following partial derivative is obtained:

∂

∂δj
gML(B

∗
δ) =

2q2,jδ

1 + q2,jδ2
− 2q4,jδ

(1 + q2,jδ2)2
.

4.2.4. GLS-distance. We have

BδW
−1 = zjz

′
jW

−1δ2j +WjW
−1 − Ip,

and therefore

gGLS(B
∗
δ) =

1

2
tr
{
(BδW

−1)2
}
=

1

2
(q6,jδ

4
j + 2q7,jδ

2
j + q8,j),

where qℓ,j (ℓ = 6, 7, 8) are constants which do not depend on δj given by

q6,j = (z′
jW

−1zj)
2, q7,j = z′

jW
−1(Wj −W )W−1zj ,

q8,j = tr
{(

WjW
−1 − Ip

)2}
.

Hence, the following partial derivative is obtained:

∂

∂δj
gGLS(B

∗
δ) = 2q6,jδ

3
j + 2q7,jδj .

5. Plug-in Iteration

In the previous section, we described the minimization of MSC extended to
general distance. For MSC based on the LH-distance, the class of the optimal
ridge parameters is obtained and since the minimizer is given as closed form and
is unique, or minimizer candidates are given as closed forms and finite points,
MSC can be minimized quickly. In contrast, since the optimal ridge parameters
include the inverse of the estimator of the covariance matrix for the full model,
those parameters are unstable when k is large. On the other hand, for MSC
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based on general distance, in particular the LR-distance, the BNP-distance, and
the ML-distance, since the estimator of the covariance matrix which is included
in the optimal ridge parameters is an adjusted estimator, the optimal ridge
parameters are stable even when k is large. In contrast, such MSC cannot be
minimized quickly. As above, MSC based on the LH-distance and MSC based on
another distance have contrasting properties. We propose a new approach, called
the Plug-in Iteration Method (PIM) which is a hybrid method drawing on the
merits of the various MSCs. The PIM optimizes ridge parameters by repeating
the following procedure: first, the ridge parameters are optimized by the MSC
minimization method based on the LH-distance; next, the ridge parameters are
optimized again by using the ridge parameters optimized in the previous step.

The ridge parameters optimized by the MSC minimization method based
on the LH-distance include S, and this derives from the fact that the original
distance tr{Σ̂(δ)S−1} includes S. Although the MSC was hitherto defined by
using tr(B∗

δ) obtained from the original distance, we now redefine it using the
original distance. For any p× p positive definite matrix A, we define

r+(A) = tr
(
Σ̂0A

−1
)
+

1

n
tr
(
ZA−1Z ′) ,

and let f† be a bivariate function defined by the following class.

Definition 4 (Class of the bivariate function f†). The f† satisfies
the following conditions:

(A1’) For any (r, u) ∈ (0, r+(A)]× [p, np), f†(r, u) is continuous.
(A2’) For any (r, u) ∈ (0, r+(A)]× [p, np), f†(r, u) is positive.
(A3’) For any (r, u) ∈ (0, r+(A)] × [p, np), f†(r, u) is first order partially

differentiable and its partial derivatives are positive.

Using the bivariate function f†, we redefine the MSC based on the LH-
distance as

MSC†(δ | A) = f†
(
tr
{
Σ̂(δ)A−1

}
, df(δ)

)
. (21)

This MSC covers a wider class than the MSC in (10) and is equal to the MSC
in (10) when A = S. For the GCp and EGCV criteria, f† is given by

f†(r, u) =

{
nr + αu (GCp criterion)

r/(1− u/np)α (EGCV criterion)
.

Similar to Theorem 1, the optimal δ minimizing the MSC in (21) is given by the
following corollary.

Corollary 1. We define a function ϕ(h | A) (h ∈ R+\{0}) as

ϕ(h | A) = MSC†(δ̂(h | A) | A),
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and suppose that ∃ν > 0 s.t. ϕ(ν | A) < limh→0 ϕ(h | A), where δ̂(h | A) =

(δ̂1(h | A), . . . , δ̂k(h | A))′ is a class of ridge parameters given by

δ̂j(h | A) = 1− soft
(
1, h/z′

jA
−1zj

)
.

Then, we have the following:

(1) The optimal ridge parameters based on minimizing MSC†(δ | A) are

given by δ̂(ĥA | A) and ĥA is given by

ĥA = arg min
h∈R+\{0}

ϕ(h | A).

(2) The ϕ(h | A) has the following properties:
(P1) For all h ∈ R+\{0}, ϕ(h | A) is continuous.
(P2) For all h ≥ tk, ϕ(h | A) = f†(r+(A), p).
(P3) The ϕ(h | A) can be expressed as the following piecewise function:

ϕ(h | A) = ϕa(h | A) (h ∈ Ra; a = 0, 1, . . . , k)

= f†
(
tr(Σ̂0A

−1) + (c1,a + c2,ah
2)/n, p(1 + k − a− c2,ah)

)
,

where Ra, c1,a and c2,a are range and nonnegative constants similar
to (11) and Proposition 1, respectively. However, tj (j = 1, . . . , k) is
the jth order statistic of z′

jA
−1zj (j = 1, . . . , k).

Corollary 1 is an extension of Theorem 1 and Proposition 1 and they are

equivalent when A = S. Furthermore, ĥA can be obtained by applying Theorem
2.

Using Corollary 1, we describe the PIM algorithm. Let S(0) = S and we

define δ̂(0)(h) = (δ̂
(0)
1 (h), . . . , δ̂

(0)
k (h))′ as δ̂(0)(h) = δ̂(h | S(0)) and define the

optimal ridge parameters based on minimizing MSC†(δ | S(0)) as

δ̂(0) =
(
δ̂
(0)
1 , . . . , δ̂

(0)
k

)′
, δ̂

(0)
j = δ̂

(0)
j (ĥ(0)),

ĥ(0) = arg min
h∈R+\{0}

ϕ(0)(h), ϕ(0)(h) = MSC†(δ̂(0)(h) | S(0)).

Therefore δ̂
(0)
j is given by

δ̂
(0)
j = 1− soft

(
1, ĥ(0)/z′

j{S(0)}−1zj

)
. (22)

Furthermore, by substituting δ̂(0), we define S(1) as

S(1) = W 1/2Ġ(B∗
δ̂(0))

−1W 1/2,

where W is given in Lemma 1 and Ġ(·) is given by (14), and let δ̂(1)(h) be a
class of ridge parameters wherein the jth element (j = 1, . . . , k) is given by

δ̂
(1)
j (h) = 1− soft

(
1, h/z′

j{S(1)}−1zj

)
.
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Then, we optimize the ridge parameters again as

δ̂(1) =
(
δ̂
(1)
1 , . . . , δ̂

(1)
k

)′
, δ̂

(1)
j = δ̂

(1)
j (ĥ(1)),

ĥ(1) = arg min
h∈R+\{0}

ϕ(1)(h), ϕ(1)(h) = MSC†(δ̂(1)(h) | S(1)).

The ĥ(1) can be obtained quickly by applying Theorem2. Since the optimal ridge

parameter δ̂(0) includes S, it is unstable when k is large. However, since S(1)

is adjusted by substituting δ̂(0), δ̂(1) is stable even when k is large. The PIM
algorithm is summarized as follows.

PIM Algorithm

Step 1. Let the initial vector δ̂(0) be the ridge parameters optimized by the
MSC minimization method based on the LH-distance and i← 0.

Step 2. Define S(i+1) and ϕ(i+1)(h) as

S(i+1) = W 1/2Ġ(B∗
δ̂(i))

−1W 1/2,

ϕ(i+1)(h) = MSC†
(
δ̂(i+1)(h) | S(i+1)

)
,

where the class of ridge parameters is given by

δ̂(i+1)(h) =
(
δ̂
(i+1)
1 (h), . . . , δ̂

(i+1)
k (h)

)′
,

δ̂
(i+1)
j (h) = 1− soft

(
1, h/z′

j{S(i+1)}−1zj

)
.

Step 3. By using Theorem 2, update the ridge parameters as

δ̂(i+1) = δ̂(i+1)(ĥ(i+1)), ĥ(i+1) = arg min
h∈R+\{0}

ϕ(i+1)(h).

Step 4. If δ̂(i+1) converges, the algorithm is complete. If not, let i← i+ 1 and
return to Step 2.

Since the MSC minimized at each iteration is based on the LH-distance, the
minimization is fast. Furthermore, an estimator of the covariance matrix which

is included in δ̂(i) is stable by substituting the ridge parameters optimized in the
previous step. Thus, the PIM is a hybrid method which leverages the merits of
the various MSCs.

The PIM algorithm is similar to the iterative method. In particular, when
using the GCp criterion, for all i (= 0, 1, . . .), we have

ĥ(i) =
αp

2
.

Therefore, the PIM is the following iterative method:

δ̂
(i+1)
j = 1− soft

(
1, αp/2z∗

j
′Ġ(B∗

δ̂(i))z
∗
j

)
,

and this is equal to the iterative method wherein the initial vector is the ridge
parameters optimized by the GCp criterion minimization method, the iterative
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function is equation (15), and τ(δ) = αp/2. That is, when using the GCp

criterion, the PIM with the GIC is equal to the GIC minimization method and
the PIM with the BNPC is equal to the BNPC minimization method.

6. Relationship with Multivariate Adaptive Group Lasso
Regression

In this section, we describe a relationship between the MGR and MAGL
estimators after the regularization parameters are optimized by the MSC mini-
mization method based on the LH-distance. The MAGL estimator cannot usu-
ally be obtained as closed form. However, it can be obtained as closed form under
orthogonal explanatory variables. Although we use general X until the previous
section, this section deals with orthogonal explanatory variables. Furthermore,
instead of using the transformed ridge parameters δ1, . . . , δk, we approach this
via the original ridge parameters θ1, . . . , θk.

6.1. Estimators with Optimal Regularization Parameters under Or-
thogonality. The orthogonality of X means Q = Ik in (3). Therefore, the LS
and the MGR estimators of Ξ in (2) and (4), respectively, are rewritten as

Ξ̂ =
(
ξ̂1, . . . , ξ̂k

)′
= D−1/2Z, ξ̂j =

1√
dj

zj ,

Ξ̂R
θ =

(
ξ̂Rθ1,1, . . . , ξ̂

R
θk,k

)′
= D1/2(D +Θ)−1Z, ξ̂Rθj ,j =

√
dj

dj + θj
zj , (23)

where D = diag(d1, . . . , dk) and Z = (z1, . . . , zk)
′ are the k× k diagonal matrix

and the k × p matrix given by (3) and (6), respectively. The ridge parameters
are optimized using the following MSC based on the LH-distance:

MSCR(θ | A) = f†
(
tr{Σ̂R(θ)A

−1}, dfR(θ)
)
, (24)

where Σ̂R(θ) and dfR(θ) are given by transforming the parameter from δ to θ

in Σ̂(δ) and df(δ), which are given by (8) and (9), respectively, as

Σ̂R(θ) = Σ̂0 +
1

n

k∑
j=1

zjz
′
j

(
θj

dj + θj

)2

, dfR(θ) = p(1 + k)− p
k∑

j=1

θj
dj + θj

.

Thus, the MSC in (24) is the parameter-transformed version of the MSC in
(21). Furthermore, since the transformation is a one-to-one correspondence,
Corollary 1 gives the following class of ridge parameters optimized by minimizing
MSCR(θ | A):

θ̂(h | A) =
(
θ̂1(h | A), . . . , θ̂k(h | A)

)′
,

θ̂j(h | A) =


djh

z′
jA

−1zj − h
(h < z′

jA
−1zj)

∞ (h ≥ z′
jA

−1zj)

.
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Notice that for all x ∈ R+,

MSCR(θ̂(x | A) | A) = MSC†(δ̂(x | A) | A).

Then, from Corollary 1, the optimal ridge parameters based on minimizing the
MSC in (24) are given by

θ̂j = θ̂j(ĥA | A) (j = 1, . . . , k),

ĥA = arg min
h∈R+\{0}

ϕ(h | A), ϕ(h | A) = MSC†(δ̂(h | A) | A),
(25)

and using these optimal ridge parameters, the optimal MGR estimator based on
minimizing the MSC in (24) is given by

ξ̂R
θ̂j ,j

=
1√
dj

soft
(
1, ĥA/z

′
jA

−1zj

)
zj . (26)

Since ξ̂R
θ̂j ,j

= 0p when ĥA ≥ z′
jA

−1zj , we found that the non-sparse MGR

estimator is sparse after the ridge parameters are optimized.
Next, we describe the MAGL estimator of Ξ. Ohishi et al. [17] derived the

AL estimator as closed form under orthogonality of X. As a natural extension
of this result, the MAGL estimator can be obtained as closed form. Let Lλ be
a k × k diagonal matrix of which the jth diagonal element is given by

ℓλ,j =
1

dj
soft

(
1, λwj/

√
dj∥zj∥

)
(j = 1, . . . , k),

where λ ∈ R+ is a regularization parameter called a tuning parameter, wj is a
weight, and ∥ · ∥ is L2 norm of a vector. Then, the MAGL estimator of Ξ is
given by

Ξ̂L
λ =

(
ξ̂Lλ,1, . . . , ξ̂

L
λ,k

)′
= LλX

′Y = LλD
1/2Z,

ξ̂Lλ,j =
√
djℓλ,jzj =

1√
dj

soft
(
1, λwj/

√
dj∥zj∥

)
zj .

(27)

Since Lλ = D−1 when λ = 0, the MAGL estimator coincides with the LS
estimator when λ = 0, and the MAGL estimator coincides with the AL estimator
given in Ohishi et al. [17] when p = 1. The MAGL estimator is sparse in the sense

that ξ̂Lλ,j = 0p when λwj ≥
√
dj∥zj∥. The Ξ̂L

λ in (27) denotes the minimizer of
the following PRSS:

tr {(Y − 1nµ
′ −XΞ)′(Y − 1nµ

′ −XΞ)}+ 2λ

k∑
j=1

wj∥ξj∥. (28)

The MGR estimator in (23) depends on k regularization parameters. Whereas,
the MAGL estimator in (27) depends on only one regularization parameter.
Furthermore, although the MGR estimator is not sparse, the MAGL estimator
is characterized by sparsity. Hence, it can be stated that the MGR and MAGL
estimators have different properties.
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The MAGL estimator in (27) gives a predictive matrix of Y for the MAGL
regression as follows:

Ŷ L
λ = 1nµ̂

′ +XΞ̂L
λ = HL

λY , HL
λ = Jn +XLλX

′.

Using Ŷ L
λ and HL

λ , we define an estimator of Σ and a GDF as

Σ̂L(λ) =
(Y − Ŷ L

λ )′(Y − Ŷ L
λ )

n
=

Y ′(In − Jn −XLλX
′)2Y

n
,

dfL(λ) = p tr(HL
λ ).

Similar to Ohishi et al. [17], we have the following lemma concerning Σ̂L(λ) and
dfL(λ).

Lemma 5. The Σ̂L(λ) and dfL(λ) are expressed as

Σ̂L(λ) = Σ̂0 +
1

n
Z ′(Ik −DLλ)

2Z

= Σ̂0 +
1

n

k∑
j=1

{
1− soft

(
1, λwj/

√
dj∥zj∥

)}2

zjz
′
j ,

dfL(λ) = p+ p

k∑
j=1

soft
(
1, λwj/

√
dj∥zj∥

)
.

Then, the MSC for optimizing the tuning parameter in the MAGL regression
is given by

MSCL(λ | A) = f†
(
tr(Σ̂L(λ)A

−1), dfL(λ)
)
, (29)

and the tuning parameter optimized by the MSC minimization method is given
by

λ̂A = arg min
λ∈R+

MSCL(λ | A).

Regarding the weight wj , in general, an inverse of a norm of an estimator of ξj
is used. When using the weight wj = 1/∥ξ̂j∥ based on the LS estimator, the
optimal MAGL estimator based on minimizing the MSC in (29) is given by

ξ̂L
λ̂A,j

=
1√
dj

soft
(
1, λ̂A/∥zj∥2

)
zj . (30)

6.2. Equivalence between MGR and MAGL estimators. This subsec-
tion investigates a relationship between the MGR and MAGL estimators under
the regularization parameters optimized by the MSC minimization method. Al-
though the optimal MGR estimator in (26) and the optimal MAGL estimator
in (30) have similar forms, the optimal MGR estimator does not include ∥zj∥2,
but rather zjA

−1zj normalized by A. We focus on the difference.

Let T be an n×pmatrix defined by T = Y A−1/2, U and Γ be k×pmatrices
defined by U = (u1, . . . ,uk)

′ = ZA−1/2 = P ′
1T and Γ = (γ1, . . . ,γk)

′ =
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ΞA−1/2, respectively, and υ be a p-dimensional vector defined by υ = A−1/2µ.
Then, we normalize the PRSS for the MGR regression as

tr
{
(Y − 1nµ

′ −XΞ)′(Y − 1nµ
′ −XΞ)A−1 +Ξ′QΘQ′ΞA−1

}
= tr {(T − 1nυ

′ −XΓ)′(T − 1nυ
′ −XΓ) + Γ′QΘQ′Γ} .

This normalized PRSS provides the MGR estimator of γj as

γ̂R
θj ,j =

√
dj

dj + θj
uj .

Therefore, the MGR normalized estimator of ξj is given by

ξ̂R†
θj ,j

= A1/2γ̂R
θj ,j =

√
dj

dj + θj
zj ,

and this is equal to the MGR estimator in (23). That is, the MGR estimator
in (23) is a normalized estimator in spite of the fact that it is obtained from
non-normalized PRSS in (5). Thus, the optimal MGR normalized estimator is
given by (26). On the other hand, based on Xin et al. [23], we normalize the
PRSS for the MAGL regression as

tr
{
(Y − 1nµ

′ −XΞ)′(Y − 1nµ
′ −XΞ)A−1

}
+ 2λ

k∑
j=1

wj∥A−1/2ξj∥

= tr {(T − 1nυ
′ −XΓ)′(T − 1nυ

′ −XΓ)}+ 2λ

k∑
j=1

wj∥γj∥.

When using the general weight wj = 1/∥γ̂j∥ (γ̂j is the LS estimator of γj), this
normalized PRSS provides the MAGL estimator of γj as

γ̂L
λ,j =

1√
dj

soft
(
1, λ/∥uj∥2

)
uj .

Therefore, the MAGL normalized estimator of ξj is given by

ξ̂L†λ,j = A1/2γ̂L
λ,j =

1√
dj

soft
(
1, λ/z′

jA
−1zj

)
zj ,

and this is different from the MAGL estimator in (27) obtained as the minimizer

of the PRSS in (28) with the weight wj = 1/∥ξ̂j∥. Hence, the difference between
the two optimal estimators (26) and (30) is whether the estimator is normalized

or not. If ĥA = λ̂A, the two optimal normalized estimators are equivalent. The
equivalence is given by the following theorem (the proof is given in Appendix
A.7).

Theorem 6. Suppose that wj = 1/∥γ̂j∥ and let θ̂j (j = 1, . . . , k) and λ̂ be
the regularization parameters optimized by the MSC minimization method based
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on the LH-distance defined by

θ̂j = θ̂j(ĥA | A), ĥA = arg min
h∈R+

MSCR(θ̂(h | A) | A),

λ̂ = λ̂A = arg min
λ∈R+

MSCL(λ | A).

Then, the following equation holds:

ξ̂R†
θ̂j ,j

= ξ̂L†
λ̂,j

(j = 1, . . . , k).

7. Numerical Studies

In this section, we explore the performance of the MSC minimization meth-
ods for optimizing ridge parameters by evaluating prediction accuracies of pre-
dictive matrices via simulation. This simulation is executed using R (ver. 3.6.0)
on a computer with a Windows 10 Pro operating system, Intel (R) Core i7-7700
processor, and 16 GB of RAM. Let Rk = diag(1, . . . , k) and let Ωk(ρ) be a k×k
matrix of which the (i, j) element is given by ρ|i−j|. Then, the simulation data
are generated from the following model:

Y ∼ Nn×p(XΞ,Σ⊗ In),

X = (In − Jn)X0Ψ(0.99)1/2, Σ = R1/2
p Ωp(ρy)R

1/2
p ,

where Ξ and X0 are k × p and n × k matrices wherein all the elements are
identically and independently distributed according to U(−1, 1) and Ψ(ρ) is

a correlation matrix of X defined by Ψ(ρ) = R
1/2
k Ωk(ρ)R

1/2
k . Furthermore,

ρ = 0.99 and thus this simulation is a highly correlated setting. Finally, Ξ and
X0 are fixed throughout the simulation iterations.

Let Ŷδ̂ be the predictive matrix of Y obtained from the optimal MGR

estimator based on minimizing the MSC and Ŷ be the predictive matrix of Y
obtained from the LS estimator, i.e., Ŷ = Ŷ0k

. Then, we evaluate the prediction

accuracy of Ŷδ̂ by the following relative mean square error (RMSE):

RMSE[Ŷδ̂] =
MSE[Ŷδ̂]

p(k + 1)
× 100(%),

MSE[Ŷδ̂] = E
[
tr
{
(XΞ− Ŷδ̂)

′(XΞ− Ŷδ̂)Σ
−1
}]

.

In this setting, MSE[Ŷ ] = p(k + 1). This means that the prediction accuracies
are evaluated in terms of the amount of improvement of the prediction accuracy
of Ŷ . Specifically, RMSE < 100 means the prediction accuracy of Ŷδ̂ is superior

to that of Ŷ and RMSE > 100 means the prediction accuracy of Ŷδ̂ is inferior

to that of Ŷ . The smaller the RMSE value, the better the prediction accuracy.
The expectation of the MSE is evaluated by Monte Carlo simulation with 10,000
iterations. Furthermore, it can be considered that the MSE value strongly relates
to the amount of shrinkage of the MGR estimator, in particular, more shrinkage

is required when there are highly correlated variables in X. When δ̂j = 1,
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the amount of shrinkage of the MGR estimator is maximized and this means
that the jth eigenvalue (and corresponding eigenvector) is removed from the
model. From this, we measure the amount of shrinkage of the MGR estimator
by calculating the following relative number of removed eigenvalues (RNRE):

RNRE(δ̂) =
#({j ∈ {1, . . . , k} | δ̂j = 1})

k
× 100 (%).

The RNRE expresses the ratio of the number of removed eigenvalues. If the
RNRE value is small (large), then the amount of shrinkage is also small (large).

In this simulation, we estimate the mean structure of model. Thus, we
use the LH-, LR-, and BNP-distances as the distance in the MSC. RMSE com-
parison 1 explores the prediction accuracies of predictive matrices where ridge
parameters are optimized by the following methods:

• GCp: GCp criterion minimization method.
• EGCV: EGCV criterion minimization method.
• GIC: GIC minimization method via the iterative method with the initial

vector 0k.
• BNPC: BNPC minimization method via the iterative method with the initial
vector 0k.

• PIM1: PIM with EGCV criterion and GIC.
• PIM2: PIM with EGCV criterion and BNPC.

For all MSCs, we use α = 2, 2 log log n, log n, and they are labeled as 1, 2, and
3, respectively. Furthermore, the quartic equation in the BNPC minimization
method is solved by the R function “polyroot”.

Table 1 summarizes the RMSE and RNRE values for ρy = 0.2, 0.5, 0.9 and
k = 0.1n, 0.3n, 0.5n when p = 5 and n = 50. From this table, it can be discerned
that the prediction accuracy of Ŷδ̂ is greater than that of Ŷ in most cases. We
also found that the RNRE values increase as α increases, i.e., as the amount of
shrinkage increases. Moreover, the RMSE values tend to increase with increasing
ρy or k, and this may be caused by decreasing shrinkage. However, we could not
find relationships between prediction accuracies and the amount of shrinkage.
Table 2 summarizes the results when p = 5 and n = 200. Overall, trends are
similar to those in Table 1. However, when n = 200 the amount of shrinkage
substantially decreases. Table 3 summarizes the results when p = 5 and n = 500.
In this case, the optimal ridge parameters often do not lead to improvements in
prediction accuracies. This is because the amount of shrinkage is too large for
the BNPC and too small for the methods. Tables 4 – 6 show the results when
p = 10, and we can see that trends are similar compared to the case where p = 5.

In RMSE comparison 1, the iteration method was used to optimize the
ridge parameters using the GIC and BNPC minimization methods. However,
these optimal ridge parameters can also be calculated by using the coordinate
descent algorithm or the PIM with the GCp criterion. RMSE comparison 2
confirms whether the three algorithms minimize the MSC or not by comparing
the results obtained from these algorithms. Although the initial vector used
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Table 1 RMSE comparison 1 when p = 5 and n = 50

ρy 0.2 0.5 0.9
k 5 15 25 5 15 25 5 15 25

GCp

1
RMSE 49.40 47.52 48.94 51.43 50.44 52.18 65.17 66.74 71.24
RNRE 36.22 31.99 28.52 34.80 29.95 26.40 24.02 19.03 14.69

2
RMSE 45.30 44.06 45.24 47.60 47.54 49.20 63.96 66.23 71.53
RNRE 50.10 45.39 41.63 48.26 42.82 38.77 34.74 28.39 22.35

3
RMSE 43.19 43.69 44.27 45.65 48.03 49.31 66.18 69.91 76.91
RNRE 64.97 60.97 58.01 63.32 57.91 54.72 47.83 40.62 33.31

EGCV

1
RMSE 49.59 48.21 50.37 51.60 51.01 53.33 65.21 66.88 71.40
RNRE 35.72 30.11 25.18 34.27 28.31 23.49 23.80 18.35 13.68

2
RMSE 45.29 44.00 44.99 47.57 47.47 48.97 63.95 66.28 72.02
RNRE 50.34 45.71 43.00 48.50 43.29 40.47 35.08 29.25 24.39

3
RMSE 43.12 44.08 45.02 45.60 48.70 51.01 66.52 71.98 86.35
RNRE 66.00 64.46 66.79 64.36 61.71 64.07 49.11 44.60 43.72

GIC

1
RMSE 50.02 50.80 57.71 52.08 53.59 60.48 65.78 69.00 76.44
RNRE 37.11 27.27 16.50 35.57 25.32 14.83 24.39 14.91 6.82

2
RMSE 45.21 44.74 47.42 47.60 48.28 51.31 64.38 66.66 72.30
RNRE 53.65 46.23 38.21 51.77 43.42 34.76 37.31 27.15 15.71

3
RMSE 42.88 44.54 45.42 45.51 49.67 51.73 67.94 72.38 83.41
RNRE 70.30 68.78 70.97 69.00 66.07 68.09 53.81 46.64 42.07

BNPC

1
RMSE 48.17 45.60 50.84 50.42 49.82 61.45 65.45 68.53 145.94
RNRE 46.53 54.76 85.12 44.61 51.70 84.47 31.15 29.32 57.38

2
RMSE 43.73 48.99 59.09 46.39 57.16 75.94 66.25 102.30 ∗ ∗ ∗
RNRE 66.23 79.62 91.35 64.70 78.68 91.40 49.52 62.36 91.06

3
RMSE 42.80 66.04 89.59 45.60 79.82 118.06 76.70 ∗ ∗ ∗ ∗ ∗ ∗
RNRE 78.76 88.69 92.94 78.34 88.57 93.34 69.75 85.94 94.79

PIM1

1
RMSE 48.84 47.34 48.91 50.94 50.30 52.11 65.06 66.78 71.46
RNRE 39.93 34.80 30.91 38.20 32.79 29.01 26.84 21.69 17.51

2
RMSE 44.59 43.59 44.28 47.01 47.43 48.84 64.38 67.36 75.72
RNRE 56.00 52.84 52.60 54.31 50.29 50.00 39.97 35.09 32.80

3
RMSE 42.80 45.39 46.58 45.43 51.05 53.90 68.89 77.46 103.47
RNRE 71.71 72.21 76.51 70.49 69.92 74.35 55.97 52.99 56.55

PIM2

1
RMSE 48.02 46.50 47.93 50.22 49.78 51.97 65.02 67.28 78.35
RNRE 45.41 42.84 44.79 43.57 40.82 42.86 31.25 27.98 30.58

2
RMSE 43.90 44.34 46.32 46.49 49.30 52.71 65.52 72.54 103.73
RNRE 63.43 63.54 67.10 61.89 61.48 65.29 47.13 46.20 52.24

3
RMSE 42.64 49.52 50.09 45.46 57.84 59.65 73.92 113.98 ∗ ∗ ∗
RNRE 77.31 80.65 84.19 76.70 79.66 82.99 65.95 67.35 73.37

Note: Emboldened entries represent the minimum of the RMSE values in each
column; ∗ ∗ ∗ denotes values greater than 150.

in the iterative method is 0k, the PIM with the GCp criterion is the iterative
method by changing the initial vector from 0k to the ridge parameters optimized
by the GCp criterion minimization method. Hence, by comparing the results
obtained from the two methods, we can confirm whether the iterative method
depends on the initial vector or not.

Table 7 compares the three algorithms for solving the GIC minimization
method in terms of the RMSE, i.e., from the iterative method (GIC IM), the
coordinate descent algorithm (GIC CD), and the PIM with the GCp criterion
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Table 2 RMSE comparison 1 when p = 5 and n = 200

ρy 0.2 0.5 0.9
k 20 60 100 20 60 100 20 60 100

GCp

1
RMSE 68.57 75.92 81.39 73.54 80.32 84.51 89.94 92.30 94.24
RNRE 19.37 13.63 9.84 15.86 10.71 7.94 5.17 3.77 2.56

2
RMSE 73.88 82.70 89.17 80.85 88.41 92.48 97.35 98.59 99.68
RNRE 37.35 26.81 20.12 31.19 21.43 16.44 12.30 7.62 5.63

3
RMSE 89.84 101.56 110.81 100.53 110.59 114.55 117.17 116.58 115.30
RNRE 55.56 41.74 32.45 48.38 34.31 27.06 21.37 12.67 9.73

EGCV

1
RMSE 68.56 75.88 81.27 73.52 80.25 84.39 89.93 92.27 94.20
RNRE 19.16 13.23 9.34 15.73 10.45 7.62 5.16 3.74 2.52

2
RMSE 74.32 84.71 95.15 81.45 90.81 98.34 97.81 99.70 101.84
RNRE 38.18 29.04 24.51 31.99 23.36 20.07 12.62 8.08 6.43

3
RMSE 92.62 115.19 ∗ ∗ ∗ 104.26 129.24 ∗ ∗ ∗ 120.70 128.37 148.20
RNRE 57.77 48.88 48.61 50.87 42.05 42.90 22.52 15.02 14.72

GIC

1
RMSE 68.76 76.45 83.20 73.60 80.41 85.79 89.66 91.89 94.34
RNRE 18.08 9.19 3.57 14.79 7.07 2.79 4.57 2.29 0.75

2
RMSE 74.21 80.60 83.03 81.29 85.67 85.72 96.60 94.62 94.11
RNRE 38.07 24.25 12.93 31.78 18.89 9.73 11.91 5.69 2.35

3
RMSE 94.07 110.50 136.68 106.84 123.88 141.34 120.95 114.66 103.06
RNRE 59.24 47.18 42.03 52.74 40.57 35.23 22.57 12.38 6.67

BNPC

1
RMSE 68.88 76.24 82.13 73.89 80.43 85.06 89.88 91.92 94.25
RNRE 20.41 12.45 5.71 16.51 9.24 4.03 5.01 2.61 0.87

2
RMSE 78.89 119.39 ∗ ∗ ∗ 87.55 147.83 ∗ ∗ ∗ 99.54 99.52 ∗ ∗ ∗
RNRE 45.23 51.28 94.39 38.44 49.56 95.01 14.02 8.05 5.59

3
RMSE 110.61 ∗ ∗ ∗ ∗ ∗ ∗ 130.66 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
RNRE 68.76 83.54 97.03 65.39 85.89 97.02 30.66 94.16 97.15

PIM1

1
RMSE 68.67 76.04 81.62 73.68 80.49 84.80 90.06 92.44 94.41
RNRE 19.83 13.84 10.06 16.28 10.99 8.23 5.39 3.93 2.72

2
RMSE 75.29 86.59 101.64 82.87 93.71 106.56 98.83 101.75 105.66
RNRE 39.87 30.98 27.91 33.62 25.36 23.46 13.40 8.83 7.37

3
RMSE 95.74 121.86 ∗ ∗ ∗ 109.29 141.32 ∗ ∗ ∗ 126.93 147.81 ∗ ∗ ∗
RNRE 60.36 52.26 53.79 54.14 47.10 50.12 24.11 18.30 25.30

PIM2

1
RMSE 68.80 76.32 82.79 73.88 80.89 86.11 90.21 92.67 94.78
RNRE 20.62 14.67 11.50 16.91 11.76 9.49 5.64 4.17 3.01

2
RMSE 76.58 90.23 122.20 84.85 100.37 140.97 100.18 106.38 ∗ ∗ ∗
RNRE 41.95 34.07 35.28 35.68 29.12 32.68 14.36 10.24 15.98

3
RMSE 100.12 133.69 ∗ ∗ ∗ 116.54 ∗ ∗ ∗ ∗ ∗ ∗ 139.98 ∗ ∗ ∗ ∗ ∗ ∗
RNRE 63.44 56.30 59.23 58.54 53.67 58.34 26.59 34.39 67.16

Note: Emboldened entries represent the minimum of the RMSE values in each
column; ∗ ∗ ∗ denotes values greater than 150.

(PIM GCp). Settings are as per RMSE comparison 1, where α is only α = 2.
From these results, it can be discerned that there is equivalent performance
among the three algorithms. Although there is a bit of error, it can be considered
that the error is made when convergence judgment. Thus, the three algorithms
all converge and achieve minimization of the GIC. Furthermore, we found that
the iterative method does not depend on the initial vector.

Table 8 shows a runtime comparison of the three algorithms for the GIC
minimization method in terms of time (s) per repeat, where the reported values
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Table 3 RMSE comparison 1 when p = 5 and n = 500

ρy 0.2 0.5 0.9
k 50 150 250 50 150 250 50 150 250

GCp

1
RMSE 87.42 94.49 94.98 89.93 95.84 96.11 97.21 99.19 98.84
RNRE 6.75 2.27 2.14 5.23 1.58 1.56 1.11 0.11 0.40

2
RMSE 98.40 104.50 103.78 100.49 105.05 104.03 103.37 103.50 102.07
RNRE 15.90 6.95 5.71 12.45 5.07 4.13 3.62 0.60 1.07

3
RMSE 130.30 131.79 129.36 130.42 130.22 127.53 120.89 116.88 112.61
RNRE 26.47 14.69 11.48 21.95 11.59 8.63 7.77 1.97 2.09

EGCV

1
RMSE 87.40 94.47 94.95 89.92 95.83 96.08 97.20 99.19 98.84
RNRE 6.72 2.26 2.11 5.21 1.57 1.55 1.11 0.11 0.40

2
RMSE 99.18 106.79 108.56 101.17 106.90 107.68 103.57 103.84 102.57
RNRE 16.33 7.79 7.05 12.76 5.66 4.97 3.70 0.63 1.14

3
RMSE 137.37 ∗ ∗ ∗ ∗ ∗ ∗ 136.36 149.81 ∗ ∗ ∗ 122.82 121.41 121.10
RNRE 27.93 19.22 23.61 23.31 15.38 18.15 8.11 2.38 2.66

GIC

1
RMSE 87.10 93.58 94.63 89.59 94.93 95.70 96.92 98.70 98.62
RNRE 5.94 1.17 0.60 4.59 0.78 0.44 0.92 0.04 0.10

2
RMSE 97.08 98.71 95.24 99.03 99.46 96.23 102.06 100.40 98.76
RNRE 15.27 4.64 2.32 11.84 3.19 1.62 3.24 0.25 0.37

3
RMSE 134.11 129.57 115.52 132.87 126.22 111.41 119.31 108.82 101.60
RNRE 27.37 14.24 8.70 22.65 10.65 5.69 7.62 1.20 1.00

BNPC

1
RMSE 87.22 93.62 94.55 89.70 94.98 95.65 96.96 98.71 98.62
RNRE 6.28 1.30 0.67 4.82 0.86 0.48 0.95 0.04 0.11

2
RMSE 100.13 103.66 ∗ ∗ ∗ 101.56 102.85 97.88 102.71 100.70 98.84
RNRE 17.00 6.77 4.32 13.10 4.41 2.34 3.51 0.29 0.41

3
RMSE ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 124.39 114.88 ∗ ∗ ∗
RNRE 32.58 98.69 100∗ 27.14 99.36 100∗ 8.64 1.85 1.43

PIM1

1
RMSE 87.44 94.54 95.05 89.97 95.89 96.19 97.23 99.21 98.86
RNRE 6.83 2.31 2.19 5.29 1.61 1.60 1.13 0.12 0.41

2
RMSE 99.66 107.65 111.08 101.67 107.89 110.47 103.83 104.11 103.06
RNRE 16.66 8.14 7.67 13.06 5.96 5.49 3.82 0.68 1.21

3
RMSE 140.71 ∗ ∗ ∗ ∗ ∗ ∗ 139.49 ∗ ∗ ∗ ∗ ∗ ∗ 124.29 124.55 132.50
RNRE 28.64 20.44 28.29 24.08 16.84 24.37 8.46 2.66 3.24

PIM2

1
RMSE 87.49 94.61 95.20 90.01 95.97 96.34 97.26 99.23 98.89
RNRE 6.94 2.38 2.28 5.38 1.66 1.67 1.16 0.12 0.43

2
RMSE 100.23 108.98 119.90 102.25 109.44 121.35 104.11 104.46 103.86
RNRE 17.03 8.64 9.25 13.37 6.39 7.14 3.97 0.73 1.31

3
RMSE 145.66 ∗ ∗ ∗ ∗ ∗ ∗ 143.99 ∗ ∗ ∗ ∗ ∗ ∗ 126.11 131.62 ∗ ∗ ∗
RNRE 29.54 23.09 35.64 25.03 20.81 38.87 8.88 3.19 59.05

Note: Emboldened entries represent the minimum of the RMSE values in each
column; ∗ ∗ ∗ denotes values greater than 150; ∗ denotes an exact value.

are 10,000 times the actual runtime values. The PIM is the fastest algorithm
in most cases. Sometimes the iterative method is faster than the PIM. In such
cases, the RNRE value is very small, that is, the optimal ridge parameters are
close to 0. The difference between the iterative method and the PIM is the
initial vector, and the initial vector of the iterative method is 0k. Hence, it
can be considered that the iterative method is faster than the PIM when the
optimal ridge parameters are close to 0. On the other hand, the coordinate
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Table 4 RMSE comparison 1 when p = 10 and n = 50

ρy 0.2 0.5 0.9
k 5 15 25 5 15 25 5 15 25

GCp

1
RMSE 47.25 43.85 48.37 49.21 46.54 51.65 61.62 62.52 68.72
RNRE 24.78 19.56 12.83 23.24 18.20 11.48 14.52 10.18 5.72

2
RMSE 42.71 38.81 42.17 44.95 41.82 46.06 59.32 60.16 65.84
RNRE 42.72 35.07 24.76 40.42 32.90 22.35 27.17 19.76 11.70

3
RMSE 40.61 37.16 38.43 43.07 40.62 43.24 60.65 61.73 66.31
RNRE 63.05 55.28 43.57 60.99 52.36 39.81 43.92 34.58 22.26

EGCV

1
RMSE 47.36 44.27 49.05 49.30 46.90 52.21 61.65 62.63 68.87
RNRE 24.49 18.68 11.86 22.94 17.40 10.71 14.44 9.94 5.53

2
RMSE 42.60 38.34 40.39 44.85 41.40 44.55 59.30 60.09 65.50
RNRE 43.50 37.75 31.19 41.25 35.54 28.33 27.92 21.71 14.89

3
RMSE 40.55 37.68 38.50 43.03 41.41 44.97 61.08 63.98 73.76
RNRE 64.88 62.77 63.23 62.91 59.69 59.41 46.10 41.77 37.62

GIC

1
RMSE 46.61 46.01 58.58 48.71 48.85 61.80 61.73 65.21 76.91
RNRE 32.68 21.04 6.86 30.68 19.21 5.69 19.44 9.33 1.96

2
RMSE 41.50 37.85 40.88 44.02 41.08 45.91 59.74 61.02 69.04
RNRE 58.42 50.97 40.64 56.12 47.47 34.49 39.19 27.44 10.41

3
RMSE 40.14 40.11 40.84 42.93 44.33 49.30 65.66 68.82 81.02
RNRE 77.07 78.59 82.57 76.24 75.06 78.72 60.97 57.74 51.56

BNPC

1
RMSE 42.71 41.12 51.02 45.39 45.33 68.20 61.06 68.18 ∗ ∗ ∗
RNRE 64.79 79.62 91.59 62.73 75.73 91.38 44.03 54.31 78.60

2
RMSE 39.83 52.83 72.67 42.90 62.50 97.41 68.37 91.06 ∗ ∗ ∗
RNRE 79.04 89.89 93.29 78.69 87.98 93.56 67.08 73.92 92.37

3
RMSE 41.21 61.96 111.45 43.32 79.90 138.42 82.95 ∗ ∗ ∗ ∗ ∗ ∗
RNRE 80.03 93.12 95.21 79.99 92.84 95.38 78.97 83.33 94.81

PIM1

1
RMSE 45.28 41.15 43.12 47.42 44.00 46.92 60.75 61.49 66.64
RNRE 36.96 32.41 27.88 34.84 30.58 25.62 23.15 18.80 14.55

2
RMSE 41.01 37.02 37.71 43.57 40.32 43.17 59.85 62.00 70.16
RNRE 61.72 59.62 61.03 59.60 56.79 57.30 43.06 39.97 37.79

3
RMSE 40.20 41.42 42.05 42.99 46.22 52.06 67.20 73.52 102.37
RNRE 77.91 81.02 85.84 77.25 77.75 83.09 63.07 64.21 65.64

PIM2

1
RMSE 42.94 39.22 41.39 45.49 42.37 47.38 60.56 64.27 80.77
RNRE 61.28 61.61 64.39 59.20 59.00 61.61 43.11 44.50 46.22

2
RMSE 39.90 41.28 42.22 42.97 46.11 52.02 66.13 73.27 111.18
RNRE 78.32 81.28 83.70 77.78 78.42 81.46 64.66 65.39 67.05

3
RMSE 40.45 53.45 48.40 43.14 63.21 63.07 81.84 95.55 ∗ ∗ ∗
RNRE 79.99 90.19 91.41 79.97 88.32 90.86 78.23 75.29 80.91

Note: Emboldened entries represent the minimum of the RMSE values in each
column; ∗ ∗ ∗ denotes values greater than 150.

descent algorithm is overwhelmingly slowest of all. Hence, the best option for
solving the GIC minimization method is to use the PIM with the GCp criterion.

Table 9 compares the three algorithms for solving the BNPC minimization
method, in terms of RMSE as similar to Table 7. It can be discerned that
the three algorithms converge and achieve minimization of the BNPC, and the
iterative method does not depend on the initial vector.

Table 10 shows a runtime comparison of the three algorithms for the BNPC
minimization method in terms of time (s) as per Table 8. Similar to what
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Table 5 RMSE comparison 1 when p = 10 and n = 200

ρy 0.2 0.5 0.9
k 20 60 100 20 60 100 20 60 100

GCp

1
RMSE 57.38 67.35 72.47 62.60 72.10 76.68 83.29 88.44 90.86
RNRE 16.40 10.25 7.31 13.21 8.01 5.61 3.39 2.11 1.34

2
RMSE 61.78 73.26 78.22 68.67 78.80 82.61 90.30 93.85 95.20
RNRE 40.86 27.18 20.49 33.81 21.51 16.27 11.54 6.27 4.25

3
RMSE 76.54 92.15 98.54 87.31 100.35 103.24 111.52 111.78 110.88
RNRE 63.02 45.94 36.23 55.35 38.00 29.93 23.44 13.10 8.85

EGCV

1
RMSE 57.39 67.37 72.49 62.61 72.10 76.68 83.29 88.44 90.86
RNRE 16.24 10.00 6.98 13.11 7.86 5.43 3.38 2.10 1.33

2
RMSE 62.35 76.04 85.74 69.43 81.88 89.90 90.91 95.27 97.88
RNRE 42.32 31.11 27.98 35.16 24.74 22.49 12.08 6.98 5.29

3
RMSE 79.09 107.06 149.90 90.91 119.41 ∗ ∗ ∗ 115.99 126.01 ∗ ∗ ∗
RNRE 65.46 54.49 55.01 58.39 47.89 48.46 25.20 17.08 17.74

GIC

1
RMSE 57.70 68.76 77.17 62.88 73.26 80.71 83.29 88.83 92.49
RNRE 16.01 6.06 1.54 12.75 4.55 1.09 3.03 0.98 0.18

2
RMSE 63.40 73.48 74.93 70.68 78.53 78.36 90.51 90.67 90.93
RNRE 45.18 27.99 15.35 37.62 21.40 10.36 12.30 4.58 1.37

3
RMSE 83.94 110.14 144.62 97.64 122.96 ∗ ∗ ∗ 121.44 118.06 105.65
RNRE 69.91 56.63 54.61 64.36 51.24 47.69 27.74 15.57 7.72

BNPC

1
RMSE 57.66 68.03 87.36 63.06 72.70 78.78 83.50 88.68 92.23
RNRE 21.14 12.84 13.01 16.82 8.71 3.12 3.88 1.36 0.26

2
RMSE 71.91 ∗ ∗ ∗ ∗ ∗ ∗ 82.22 ∗ ∗ ∗ ∗ ∗ ∗ 96.74 ∗ ∗ ∗ ∗ ∗ ∗
RNRE 59.59 71.87 92.54 52.43 69.76 93.04 17.72 15.24 77.56

3
RMSE 105.05 ∗ ∗ ∗ ∗ ∗ ∗ 126.17 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
RNRE 82.08 87.21 95.67 80.44 87.80 96.30 50.65 91.06 99.96

PIM1

1
RMSE 57.43 67.50 72.73 62.73 72.31 77.03 83.47 88.61 91.07
RNRE 18.23 11.71 8.94 14.77 9.26 7.03 3.91 2.48 1.72

2
RMSE 64.42 80.28 96.26 72.19 87.80 103.49 93.06 99.03 107.22
RNRE 47.27 36.70 35.58 39.83 30.17 30.40 14.29 8.93 8.09

3
RMSE 85.21 120.90 ∗ ∗ ∗ 99.44 136.43 ∗ ∗ ∗ 128.16 ∗ ∗ ∗ ∗ ∗ ∗
RNRE 70.72 60.15 63.32 65.58 56.05 59.38 29.66 23.98 33.96

PIM2

1
RMSE 57.59 68.00 74.63 62.99 72.97 79.46 83.71 88.93 91.81
RNRE 20.71 14.32 13.19 16.93 11.42 10.84 4.60 3.02 2.49

2
RMSE 67.66 88.23 118.06 76.73 100.31 140.80 96.47 110.29 ∗ ∗ ∗
RNRE 53.40 44.46 45.76 46.19 39.71 42.74 17.45 13.81 23.59

3
RMSE 95.20 ∗ ∗ ∗ ∗ ∗ ∗ 112.90 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
RNRE 77.46 68.98 71.41 74.39 65.19 70.63 38.43 49.73 67.58

Note: Emboldened entries represent the minimum of the RMSE values in each
column; ∗ ∗ ∗ denotes values greater than 150.

was noted above regarding the GIC minimization method, to solve the BNPC
minimization method, using the PIM with the GCp criterion is the best option.
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Table 6 RMSE comparison 1 when p = 10 and n = 500

ρy 0.2 0.5 0.9
k 50 150 250 50 150 250 50 150 250

GCp

1
RMSE 81.19 88.94 90.00 85.14 91.51 92.14 95.37 97.82 97.67
RNRE 4.32 1.56 1.66 2.93 0.89 1.12 0.38 0.03 0.20

2
RMSE 93.28 98.48 97.82 96.38 100.05 99.03 100.55 101.06 100.33
RNRE 15.09 7.32 6.46 10.64 4.69 4.47 2.03 0.27 0.77

3
RMSE 131.47 128.21 124.25 132.40 127.22 122.64 119.74 113.93 111.01
RNRE 28.73 17.16 13.68 22.07 12.58 10.26 4.66 1.06 1.63

EGCV

1
RMSE 81.19 88.93 89.99 85.14 91.51 92.14 95.36 97.82 97.67
RNRE 4.31 1.55 1.64 2.93 0.89 1.11 0.38 0.03 0.20

2
RMSE 94.53 101.57 103.97 97.40 102.38 103.49 100.75 101.35 100.85
RNRE 15.80 8.72 8.72 11.11 5.54 5.89 2.07 0.29 0.83

3
RMSE 142.15 ∗ ∗ ∗ ∗ ∗ ∗ 141.78 ∗ ∗ ∗ ∗ ∗ ∗ 122.24 118.84 122.10
RNRE 31.45 23.46 30.84 24.22 17.55 22.35 4.93 1.35 2.43

GIC

1
RMSE 81.06 88.96 91.45 84.98 91.45 93.26 95.24 97.75 97.99
RNRE 3.66 0.59 0.22 2.44 0.32 0.14 0.28 0.01 0.02

2
RMSE 92.92 93.59 90.43 95.60 95.22 92.38 99.36 98.62 97.64
RNRE 15.10 4.93 2.18 10.48 2.82 1.33 1.83 0.10 0.19

3
RMSE 145.39 144.66 131.69 143.38 137.46 119.42 118.85 106.79 100.25
RNRE 32.53 20.22 14.90 24.88 14.36 9.51 4.75 0.68 0.77

BNPC

1
RMSE 81.18 88.85 91.17 85.07 91.39 93.08 95.26 97.75 97.98
RNRE 4.18 0.76 0.29 2.75 0.39 0.18 0.31 0.01 0.02

2
RMSE 99.64 ∗ ∗ ∗ ∗ ∗ ∗ 100.71 106.53 ∗ ∗ ∗ 100.06 98.92 97.71
RNRE 18.76 16.06 99.59 13.00 6.64 69.70 2.09 0.14 0.23

3
RMSE ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 127.85 ∗ ∗ ∗ ∗ ∗ ∗
RNRE 50.52 96.67 99.90 40.25 96.76 100.00 5.99 37.40 90.00

PIM1

1
RMSE 81.27 89.05 90.15 85.21 91.62 92.29 95.39 97.84 97.70
RNRE 4.55 1.70 1.85 3.09 0.98 1.25 0.41 0.04 0.22

2
RMSE 96.06 104.80 111.93 98.81 105.66 111.48 101.12 101.89 101.90
RNRE 16.79 10.01 10.84 11.94 6.62 7.83 2.24 0.35 0.95

3
RMSE ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 125.33 127.66 ∗ ∗ ∗
RNRE 34.26 28.55 38.11 26.62 22.41 34.55 5.45 1.94 5.85

PIM2

1
RMSE 81.36 89.21 90.51 85.30 91.78 92.62 95.41 97.86 97.73
RNRE 4.82 1.90 2.18 3.27 1.09 1.46 0.44 0.04 0.25

2
RMSE 98.10 111.58 137.23 100.68 113.05 147.94 101.54 102.68 104.57
RNRE 18.01 12.06 15.23 12.95 8.61 12.78 2.43 0.45 1.18

3
RMSE ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 129.75 ∗ ∗ ∗ ∗ ∗ ∗
RNRE 38.48 38.87 46.20 30.39 36.78 48.39 6.17 7.24 65.25

Note: Emboldened entries represent the minimum of the RMSE values in each
column; ∗ ∗ ∗ denotes values greater than 150.

Hashimoto, and Dr. Ryoya Oda of Hiroshima University and Dr. Mariko Ya-
mamura of Radiation Effects Research Foundation for their helpful comments
and encouragement. Moreover, I thank the associate editor and the reviewer for
their valuable comments.



Ridge Parameters Optimization based on MSC Minimization 37

Table 7 RMSE comparison 2 (GIC; α = 2)

p = 5 p = 10
n ρy k GIC IM GIC CD PIM GCp GIC IM GIC CD PIM GCp

50 0.2 5 50.02 50.02 50.01 46.61 46.60 46.61
15 50.80 50.79 50.78 46.01 45.99 45.97
25 57.71 57.69 57.66 58.58 58.54 58.47

0.5 5 52.08 52.08 52.07 48.71 48.70 48.70
15 53.59 53.58 53.57 48.85 48.83 48.81
25 60.48 60.46 60.43 61.80 61.77 61.71

0.9 5 65.78 65.78 65.77 61.73 61.73 61.73
15 69.00 68.99 68.99 65.21 65.20 65.18
25 76.44 76.44 76.43 76.91 76.90 76.89

200 0.2 20 68.76 68.76 68.76 57.70 57.70 57.70
60 76.45 76.45 76.45 68.76 68.76 68.76

100 83.20 83.19 83.19 77.17 77.16 77.16
0.5 20 73.60 73.60 73.60 62.88 62.88 62.88

60 80.41 80.41 80.41 73.26 73.26 73.25
100 85.79 85.79 85.79 80.71 80.71 80.70

0.9 20 89.66 89.66 89.67 83.29 83.29 83.29
60 91.89 91.89 91.89 88.83 88.83 88.83

100 94.34 94.34 94.34 92.49 92.49 92.49
500 0.2 50 87.10 87.10 87.10 81.06 81.06 81.06

150 93.58 93.58 93.58 88.96 88.96 88.96
250 94.63 94.63 94.63 91.45 91.45 91.45

0.5 50 89.59 89.59 89.59 84.98 84.98 84.98
150 94.93 94.93 94.93 91.45 91.45 91.45
250 95.70 95.70 95.70 93.26 93.26 93.26

0.9 50 96.92 96.92 96.92 95.24 95.24 95.24
150 98.70 98.70 98.70 97.75 97.75 97.75
250 98.62 98.62 98.62 97.99 97.99 97.99

Appendix

A.1. Proof of Theorem 1. Let r(δ) = tr(B∗
δ) and u(δ) = df(δ). From

Lemma 2, the domain of f is included in [0, r+]× [p, np). We define τ(δ) as

τ(δ) =
nbpḟu(r(δ), u(δ))

2ḟr(r(δ), u(δ))
.

It is straightforward that τ(δ) > 0 from f satisfies Definition 1. Then, we have

∂

∂δj
MSC(δ) =

∂

∂δj
r(δ) · ∂

∂r
f(r, u)

∣∣∣∣
(r,u)=(r(δ),u(δ))

+
∂

∂δj
u(δ) · ∂

∂u
f(r, u)

∣∣∣∣
(r,u)=(r(δ),u(δ))

=
2

nb
z′
jS

−1zjδj ḟr(r(δ), u(δ))− pḟu(r(δ), u(δ))

=
2

nb
z′
jS

−1zj ḟr(r(δ), u(δ))

(
δj −

τ(δ)

z′
jS

−1zj

)
,



38 Mineaki Ohishi

Table 8 Runtime comparison (GIC; ×1/10,000 (s))

p = 5 p = 10
n ρy k GIC IM GIC CD PIM GCp GIC IM GIC CD PIM GCp

50 0.2 5 3.04 10.81 2.30 4.57 12.46 3.48
15 5.15 43.41 3.76 8.78 52.13 6.10
25 8.06 95.43 5.87 13.65 122.30 10.74

0.5 5 3.40 10.97 2.09 4.65 12.41 3.53
15 6.04 46.88 3.66 8.86 52.57 6.45
25 8.48 104.61 5.87 13.57 124.52 11.11

0.9 5 3.52 12.28 2.23 5.70 12.36 4.05
15 6.04 46.51 3.80 8.97 52.90 6.70
25 8.74 104.99 6.15 13.61 121.29 11.77

200 0.2 20 4.00 52.16 2.76 4.99 57.31 3.62
60 7.51 205.03 5.26 9.66 228.49 6.95

100 15.20 443.87 12.82 20.92 489.25 18.33
0.5 20 3.96 52.96 2.75 4.92 58.35 3.43

60 7.64 207.20 5.77 10.24 227.12 7.16
100 15.74 450.99 13.95 22.31 504.68 20.00

0.9 20 3.74 49.59 2.53 4.69 54.66 3.40
60 6.12 174.76 4.48 9.25 197.91 7.01

100 9.30 303.43 9.91 16.13 379.86 13.15
500 0.2 50 4.70 128.49 3.16 5.86 137.78 4.05

150 13.66 456.75 10.85 23.53 528.58 20.47
250 41.80 851.61 38.38 81.79 1051.05 54.42

0.5 50 4.50 126.82 3.24 5.87 134.42 3.99
150 13.52 440.54 11.35 22.19 521.07 18.68
250 34.72 798.15 37.24 67.56 986.76 47.96

0.9 50 3.91 109.08 2.66 5.13 112.50 3.37
150 10.16 348.91 10.19 15.00 360.90 14.80
250 21.28 559.92 26.01 32.38 607.38 37.82

Note: Emboldened entries represent the fastest time in each row.

∂

∂δj
MSC(δ)

∣∣∣∣
δ=0k

< 0.

Let δ⋆ = (δ⋆1 , . . . , δ
⋆
k)

′ be the minimizer of MSC(δ). Then, δ⋆j ̸= 0 (j = 1, . . . , k),
and the necessary condition of δ⋆j is given by

δ⋆j =


τ(δ⋆)

z′
jS

−1zj
(τ(δ⋆) < z′

jS
−1zj)

1 (τ(δ⋆) ≥ z′
jS

−1zj)

(j = 1, . . . , k).

Let G be a set defined by

G =
{
δ ∈ [0, 1]k | δ = δ̂(h), ∀h ∈ R+\{0}

}
,

where δ̂(h) is a k-dimensional vector of which the jth element is given by

δ̂j(h) =


h

z′
jS

−1zj
(h < z′

jS
−1zj)

1 (h ≥ z′
jS

−1zj)

(j = 1, . . . , k).
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Table 9 RMSE comparison 2 (BNPC; α = 2)

p = 5 p = 10
n ρy k BNPC IM BNPC CD PIM GCp BNPC IM BNPC CD PIM GCp

50 0.2 5 48.17 48.15 48.16 42.71 42.67 42.71
15 45.60 45.58 45.60 41.12 47.36 41.12
25 50.84 60.14 50.83 51.02 602.41 51.02

0.5 5 50.42 50.41 50.42 45.39 45.36 45.39
15 49.82 49.83 49.82 45.33 55.91 45.33
25 61.45 87.35 61.45 68.20 1127.10 68.20

0.9 5 65.45 65.45 65.45 61.06 61.12 61.06
15 68.53 68.56 68.52 68.18 138.36 68.18
25 145.94 510.55 146.63 193.23 9745.56 193.62

200 0.2 20 68.88 68.88 68.88 57.66 57.67 57.66
60 76.24 76.24 76.24 68.03 68.04 68.03

100 82.13 82.13 82.12 87.36 89.21 87.41
0.5 20 73.89 73.89 73.89 63.06 63.06 63.06

60 80.43 80.44 80.44 72.70 72.70 72.69
100 85.06 85.06 85.05 78.78 78.77 78.74

0.9 20 89.88 89.88 89.88 83.50 83.51 83.50
60 91.92 91.92 91.92 88.68 88.68 88.68

100 94.25 94.24 94.24 92.23 92.23 92.22
500 0.2 50 87.22 87.22 87.22 81.18 81.18 81.18

150 93.62 93.62 93.62 88.85 88.85 88.85
250 94.55 94.55 94.55 91.17 91.17 91.17

0.5 50 89.70 89.70 89.70 85.07 85.08 85.08
150 94.98 94.98 94.98 91.39 91.39 91.39
250 95.65 95.65 95.65 93.08 93.08 93.08

0.9 50 96.96 96.96 96.96 95.26 95.26 95.27
150 98.71 98.71 98.71 97.75 97.75 97.75
250 98.62 98.62 98.62 97.98 97.98 97.98

Then, from δ⋆ is the minimizer of MSC(δ), the following equation holds:

MSC(δ⋆) = min
δ∈[0,1]k\{0k}

MSC(δ) ≤ min
δ∈G

MSC(δ) = min
h∈R+\{0}

MSC(δ̂(h)).

However, because δ⋆ ∈ G the following equation holds:

MSC(δ⋆) ≥ min
δ∈G

MSC(δ) = min
h∈R+\{0}

MSC(δ̂(h)).

These results lead to

MSC(δ⋆) = min
h∈R+\{0}

MSC(δ̂(h)),

and hence, we have

δ⋆ = δ̂(ĥ), ĥ = arg min
h∈R+\{0}

MSC(δ̂(h)).

Consequently, Theorem 1 is proved.
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Table 10 Runtime comparison (BNPC; ×1/10,000 (s))

p = 5 p = 10
n ρy k BNPC IM BNPC CD PIM GCp BNPC IM BNPC CD PIM GCp

50 0.2 5 4.39 68.80 3.43 5.92 76.06 4.95
15 9.73 337.69 8.10 11.66 281.44 10.57
25 11.36 621.02 9.32 12.21 472.33 9.96

0.5 5 4.34 71.33 3.45 6.07 73.57 5.23
15 10.17 364.55 8.64 12.77 283.79 11.63
25 12.20 650.78 10.31 13.28 482.18 10.76

0.9 5 5.29 72.58 4.26 7.73 70.38 6.87
15 12.20 418.82 9.86 16.47 320.11 14.59
25 18.36 886.39 15.46 23.12 604.47 20.86

200 0.2 20 5.27 376.38 4.04 7.73 390.91 6.68
60 17.64 2295.43 16.25 26.98 2116.54 24.41

100 27.54 3635.11 26.46 53.83 4494.30 48.62
0.5 20 5.47 388.16 4.37 8.05 414.10 7.12

60 20.60 2500.19 19.32 28.91 2341.24 26.35
100 28.81 3581.45 26.60 41.19 3368.07 39.14

0.9 20 6.28 418.43 4.93 11.00 492.37 9.63
60 15.07 1676.25 12.75 25.66 2106.34 25.16

100 19.40 2759.43 17.84 45.79 3869.82 39.98
500 0.2 50 6.28 958.66 5.03 10.85 1175.67 9.16

150 35.73 4509.76 29.75 68.50 6669.25 64.67
250 59.00 6650.66 53.98 142.62 8408.83 127.37

0.5 50 6.19 928.01 4.70 11.59 1274.18 10.46
150 40.44 4488.88 34.88 53.09 4748.88 48.16
250 52.95 5933.89 47.70 176.77 12455.95 148.31

0.9 50 4.80 774.13 3.45 6.37 788.19 4.89
150 14.96 2655.99 11.09 57.38 5380.94 55.70
250 34.27 4518.84 39.54 118.36 8531.93 97.23

Note: Emboldened entries represent the fastest time in each row.

A.2. Proof of Lemma 4. To prove Lemma 4, it is sufficient to prove df(h1) ≥
df(h2). From Lemma 1, df(h) is expressed as

df(h) = p+ p

k∑
j=1

soft(1, h/z′
jS

−1zj).

Therefore, we have

df(h1)− df(h2) = p

k∑
j=1

{
soft(1, h1/z

′
jS

−1zj)− soft(1, h2/z
′
jS

−1zj)
}
,

and regarding the RHS of the above equation, the following equation holds:

soft(1, h1/z
′
jS

−1zj)− soft(1, h2/z
′
jS

−1zj)
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=


0 (z′

jS
−1zj ≤ h1)

1− h1
z′
jS

−1zj
> 0 (h1 < z′

jS
−1zj ≤ h2)

h2 − h1
z′
jS

−1zj
> 0 (h2 < z′

jS
−1zj)

.

Hence, df(h1) ≥ df(h2) holds with quality only when tk ≤ h1. Consequently,
Lemma 4 is proved.

A.3. Proof of Proposition 4. First, we prove (1) by reduction to absurdity.

Let ĥα1
= tk and suppose that ĥα2

̸= tk. Then, the definition ĥα gives

ϕ(ĥα2
| α1) ≥ ϕ(tk | α1), ϕ(tk | α2) ≥ ϕ(ĥα2

| α2),

and we have ĥα2
̸= tk ⇒ ĥα2

< tk from (P2) in Proposition 1. Furthermore,
ϕ(h | α) = η(h | α−α0)ϕ(h | α0) holds from the definition of ϕ(h | α). Therefore,
from Lemma 4, we have

ϕ(tk | α2) = η(tk | α2 − α1)ϕ(tk | α1)

< η(ĥα2 | α2 − α1)ϕ(ĥα2 | α1) = ϕ(ĥα2 | α2).

However, this contradicts ϕ(tk | α2) ≥ ϕ(ĥα2 | α2). Hence, (1) is proved.

Next, regarding (2), it is sufficient to prove ĥα1
< ĥα2

. We approach this

via reduction to absurdity again. Let α1 < α2 and suppose that ĥα2 ≤ ĥα1 .

Now, we have ĥα2
< tk from ĥα2

̸= tk. Therefore,

ϕ(ĥα1
| α2) = η(ĥα1

| α2 − α1)ϕ(ĥα1
| α1)

< η(ĥα2
| α2 − α1)ϕ(ĥα2

| α1) = ϕ(ĥα2
| α2).

However, this contradicts the definition of ĥα2
. Hence, (2) is proved.

Consequently, Proposition 4 is proved.

A.4. Proof of Proposition 5. First, we consider when ∀j ∈ {1, . . . , k}, δ(1)j ≥
δ
(0)
j . Suppose that δ

(i)
j ≥ δ

(i−1)
j for all j ∈ {1, . . . , k}. Then, δ(i)j is updated as

δ
(i+1)
j = ζj(δ

(i)) = 1− soft
(
1, τ(δ(i))/z∗

j
′Ġ(B∗

δ(i))z
∗
j

)
,

and we have

τ(δ(i)) ≥ τ(δ(i−1)), z∗
j
′Ġ(B∗

δ(i))z
∗
j ≤ z∗

j
′Ġ(B∗

δ(i−1))z
∗
j .

This gives δ
(i+1)
j ≥ δ(i)j for all j ∈ {1, . . . , k}, and hence the sequence {δ(i)j } is a

monotonically increasing sequence. Moreover, the sequence is bounded. Hence,
the iterative method converges.

Next, we consider when ∀j ∈ {1, . . . , k}, δ(1)j ≤ δ
(0)
j . Suppose that δ

(i)
j ≤

δ
(i−1)
j for all j ∈ {1, . . . , k}. Then, we have

τ(δ(i)) ≤ τ(δ(i−1)), z∗
j
′Ġ(B∗

δ(i))z
∗
j ≥ z∗

j
′Ġ(B∗

δ(i−1))z
∗
j .
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This gives δ
(i+1)
j ≤ δ(i)j for all j ∈ {1, . . . , k}, and hence the sequence {δ(i)j } is a

monotonically decreasing sequence. Moreover, the sequence is bounded. Hence,
the iterative method converges.

Consequently, Proposition 5 is proved.

A.5. Proof of Theorem 3. Now, we have

ḟj(0) = −
cj,0

ḟj,1(0)
< 0, ḟj(δ) = 0⇐⇒ δ =

1±
√
1− cj,2cj,0/c2j,1
cj,2/cj,1

.

Therefore, δ̂j ̸= 0 and the smaller of the two real distinct roots or the double

root of the quadratic equation ḟj,2(δ) = 0 is the local minimizer. Notice that
δ ∈ [0, 1]. Then, to obtain the minimizer of fj(δ), it is sufficient to confirm
whether the local minimizer is included in [0, 1] or not.

When 1 − cj,2cj,0/c2j,1 ≥ 0, there is one local minimizer, and let this be δ̃j ,
i.e.,

δ̃j =
1−

√
1− cj,2cj,0/c2j,1
cj,2/cj,1

.

This is positive and the following equation holds when cj,2 > cj,1:

δ̃j < 1−
√
1− cj,2cj,0/c2j,1 < 1.

Hence, we can obtain (1) in Theorem 3.
When 1−cj,2cj,0/c2j,1 < 0, there are no stationary points, and therefore fj(δ)

is a monotonically decreasing function. Hence, we can obtain (2) in Theorem 3.
Consequently, Theorem 3 is proved.

A.6. Proof of Theorem 4. Now, we have

ḟj(0) = −
cj,0

ḟj,1(0)
< 0, ḟj(δ) = 0⇐⇒ ḟj,2(δ) = 0.

Thus δ̂j ̸= 0. Moreover, from δ ∈ [0, 1], minimizer candidates are local minimiz-

ers of ḟj,2(δ) included in (0, 1) and the right end point of the range. Hence, we
can obtain the set of minimizer candidates Sj by calculating stationary points

of the cubic function ḟj,2(δ) and by confirming whether each stationary point is
included in (0, 1) or not. Consequently, Theorem 4 is proved.

A.7. Proof of Theorem 6. To prove the equivalence between the two esti-

mators, it is sufficient to prove ĥA = λ̂A. The two terms which constitute the



Ridge Parameters Optimization based on MSC Minimization 43

MSC for optimizing ridge parameters are

tr
{
Σ̂R(θ̂(h | A))A−1

}
= b tr

(
Σ̂0A

−1
)

+
1

n

k∑
j=1

{
1− soft

(
1, h/z′

jA
−1zj

)}2
z′
jA

−1zj ,

dfR(θ̂(h | A)) = p+ p

k∑
j=1

soft
(
1, h/z′

jA
−1zj

)
.

On the other hand, when wj = 1/∥γ̂j∥, from Lemma 5, the two terms which
constitute the MSC for optimizing the tuning parameter are given by

tr
{
Σ̂L(λ)A

−1
}
= b tr

(
Σ̂0A

−1
)

+
1

n

k∑
j=1

{
1− soft

(
1, λ/z′

jA
−1zj

)}2
z′
jA

−1zj ,

dfL(λ) = p+ p

k∑
j=1

soft
(
1, λ/z′

jA
−1zj

)
.

Hence, for all x ∈ R+, the following equation holds:

MSCR(θ̂(x | A) | A) = MSCL(x | A).

Thus ĥA = λ̂A and consequently, Theorem 6 is proved.
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