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SINGULARITIES OF THE DUAL CURVE OF A CERTAIN

PLANE CURVE IN POSITIVE CHARACTERISTIC

KOSUKE KOMEDA

Abstract. It is well known that the Gauss map for a complex plane curve

is birational, whereas the Gauss map in positive characteristic is not always

birational. Let q be a power of a prime integer. We study a certain plane curve

of degree q2 + q + 1 for which the Gauss map is inseparable with inseparable
degree q. As a special case, we show a relation between the dual curve of the

Fermat curve of degree q2 + q + 1 and the Ballico-Hefez curve.

1. Introduction

Let p be a prime integer, and q a power of p. We work over an algebraically
closed field k of charcteristic p. We consider a plane curve C of degree q2 + q + 1
defined by a homogeneous polynomial of the form

(1) F =
∑
i,j,k

aijkxix
q
jx

q2

k ,

where aijk are coefficients in k, and [x0 : x1 : x2] is a homogeneous coordinate
system in P

2. If aijk are general, then the plane curve C is smooth. The condition
that the defining polynomial of C is of the form (1) is independent of the choice of
homogeneous coordinates of P2 (see Proposition 2.1).

Let C∨ be the dual curve of the plane curve C. The Gauss map

(2) Γ : C → C∨; [x0 : x1 : x2] �→
[
∂F

∂x0
:
∂F

∂x1
:
∂F

∂x2

]
is an inseparable morphism. For every i, the partial derivative of F with respect to
xi is

(3)
∂F

∂xi
=
∑
j,k

aijkx
q
jx

q2

k =

⎛⎝∑
j,k

αijkxjx
q
k

⎞⎠q

,

where αijk = a
1/q
ijk . Thus, if aijk are general, then the inseparable degree of the

Gauss map is q. The purpose of this paper is to study singularities of the dual
curve C∨ of a plane curve C defined by a polynomial of the form (1).

We define C to be the set of all the projective plane curves defined by homoge-
nious polynomials of the form (1). Note that C is identified with P

26.
Note that all tangent lines of the curve C ∈ C intersect C with multiplicity at

least q at the tangent point. In our case, a double tangent and a flex are defined
as following:
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Definition 1.1. Let m be an integer at least 2. We define an m-ple tangent to be
a tangent line of C which has distinct m tangent points with multiplicity q, and a
flex to be a point at which the tangent line intersects C with multiplicity q + 1. A
2-ple tangent is called a double tangent.

Theorem 1. Suppose that C is a general member of C . Then

(i) the degree of the dual curve C∨ is (q2 + q + 1)(q + 1),
(ii) the dual curve C∨ has only ordinary nodes as its singularities,
(iii) the number of ordinary nodes of C∨ i.e. double tangent lines of C, is

q(q2 + q + 1)(q3 + 3q2 + 3q − 1)

2
,

and
(iv) the number of flexes of C is

(q3 + 2q2 − q + 1)(q2 + q + 1).

We compare our theorem with the classical situation. Let C̃ be a general complex
plane curve of degree d. Then the degree of the dual curve C̃∨ is d(d−1). Moreover,

each flex of C̃ corresponds to a cusp of C̃∨, whereas each flex of C ∈ C correponds
to a smooth point of C∨. The singularities of C̃∨ consist of 1

2d(d− 2)(d− 3)(d+3)
ordinary nodes and 3d(d− 2) cusps.

As a special case, we consider the singularities of the dual curve of the Fermat
curve C0 ∈ C of degree q2 + q + 1. We will show that the dual curve C∨

0 is related
to the Ballico-Hefez curve.

Let γd : P2 → P
2 be a morphism defined by γd([x0 : x1 : x2]) = [xd

0 : xd
1 : xd

2],
and l0 be a line x0 + x1 + x2 = 0 in P

2.

Definition 1.2. The Ballico-Hefez curve is the image of the line l0 of the morphism
γq+1.

In [5], Hoang and Shimada define the Ballico-Hefez curve to be the image of the
morphism P

1 → P
2 defined by

[s : t] �→ [sq+1 : tq+1 : stq + sqt].

Note, however, that the image of this morphism is projectively isomorphic to the
image of the line l0 of the morphism γq+1.

Theorem 2. Let B be the Ballico-Hefez curve. Let γq2+q+1 : P
2 → P

2 be a
morphism defined by the above. If C0 ∈ C is the Fermat curve of the degree q2+q+1,
then

(i) the dual curve C∨
0 is γ−1

q2+q+1(B), and

(ii) the singularities of C∨
0 consist of (q2 + q + 1)2(q2 − q)/2 ordinary nodes, and

3(q2 + q + 1) singular points with the Milnor number q2(q + 1) .

The author is grateful to Professor Ichiro Shimada for helpful comments. Part
of this work was done during the author’s stay in Vietnam. He is also grateful to
Professor Pho Duc Tai in Vietnam National University of Science for many helpful
suggestions. Moreover, the author is grateful to the referee for pointing out the
author’s mistakes and helpful comments.
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2. Preliminaries

From now, let k be an algebraically closed field of characteristic p > 0.

Proposition 2.1. Let C be a plane curve. The defining polynomial of C being of
the form (1) is a property independent of the choice of homogeneous coordinates.

Proof. Under the coordinates change

xi =
2∑

l=0

tilyl (til ∈ k),

a homogeneous polynomial F of the form (1) is transformed into

F =
∑
i,j,k

aijk

(
2∑

l=0

tilyl

)(
2∑

m=0

tjmym

)q ( 2∑
n=0

tknyn

)q2

=
∑
i,j,k

∑
l

∑
m

∑
n

aijktilt
q
jmtq

2

knyly
q
myq

2

n

=
∑
l,m,n

blmnyly
q
myq

2

n ,

where blmn =
∑
l,m,n

aijktilt
q
jmtq

2

kn. �

Lemma 2.1. If aijk are general, then the plane curve C is smooth.

Proof. The Fermat curve of degree q2 + q + 1 is smooth. Being smooth is an open
condition. �

3. Proof of the first half of Theorem 1

We define the reduced Gauss map Γred : C → (P2)∨ of C ∈ C by

Γred([x0 : x1 : x2])

=

[(
∂F

∂x0
(x0, x1, x2)

)1/q

:

(
∂F

∂x1
(x0, x1, x2)

)1/q

:

(
∂F

∂x2
(x0, x1, x2)

)1/q
]
.

Claim 0. The reduced Gauss map C → C∨ is the morphism of separable degree 1.

Proof. We will prove that the degree of the dual curve of the Fermat curve of degree
q2 + q + 1 is d(d − 1)/q, (see Section 5), and hence the reduced Gauss map of the
Fermat curve is the morphism of separable degree 1. Thus the reduced Gauss map
C → C∨ is also the morphism of separable degree 1. �

We denote the degree of a curve C ∈ C by d = q2 + q + 1. If C ∈ C is general,
then the Gauss map Γ is an inseparable morphism of inseparable degree q by (3).
Thus the degree of C∨ is

d(d− 1)

q
=

(q2 + q + 1)(q2 + q)

q
= (q2 + q + 1)(q + 1).

In order to prove (ii) of Theorem 1, first we prove the following:

Claim 1. If C ∈ C is general, then the curve C has no m-ple tangent line for
m ≥ 3.
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Proof. We define a variety X1 by

X1 =

{
(Q0, Q1, Q2, l) ∈ P

2 × P
2 × P

2 × (P2)∨
∣∣∣∣ Q0 ∈ l, Q1 ∈ l, Q2 ∈ l
and Qi �= Qj for i �= j

}
.

Then the action of PGL3(k) on X1 is transitive. Let (P0, P1, P2, l0) be a point of
X1 and let [x0 : x1 : x2] be a homogeneous coordinate system such that

P0 = [0 : 0 : 1], P1 = [0 : 1 : 0], P2 = [0 : 1 : 1] and l0 = {x0 = 0}.
Let C be a plane curve in C . We define an algebraic subset D1 of C by

D1 =

{
Y ∈ C

∣∣∣∣ P0, P1 and P2 are smooth points of Y,
and TP0

Y = TP1
Y = TP2

Y = l0

}
.

Then C ∈ C is in D1 if and only if

a222 = 0, a122 = 0, a111 = 0, a211 = 0, a212 + a221 = 0, a112 + a121 = 0,

a022 �= 0, a011 �= 0 and a011 + a012 + a021 + a022 �= 0.

Therefore D1 is of codimension 6 in C . Since dimX1 = 5, we have

dimX1 + dimD1 < dimC .

Thus if the curve C is general in C , then C does not have any m-ple tangent line
for m ≥ 3. �

Second we prove the following:

Claim 2. If C ∈ C is general, then Γred is an immersion at every point of C.

Proof. Let P0 be the point [0 : 0 : 1], and let l0 be the line {x0 = 0}. By linear
change of coordinates, we can assume that P0 ∈ C and TP0C = l0. Let (x, y)
be affine coordinates such that [x0 : x1 : x2] = [x : y : 1]. Then up to multiple
constant, the polynomial F can be written as

F (x, y, 1) = f(x, y) = x+ a202x
q + a212y

q + a002x
q+1 + a102x

qy + a012xy
q

+ a112y
q+1 + (terms of degree ≥ q2).

Then we have a local parametrization x = φ(t), y = t of C at P0 such that the
power series φ(t) is written as

φ(t) = −a212t
q − a112t

q+1 + a012a212t
2q + · · · .

We consider the Gauss map given by (2). Let (η, ζ) be the affine coordinates of
(P2)∨ with the origin l0 ∈ (P2)∨ such that the point (η, ζ) corresponds to the line
x+ ηy + ζ = 0. Then the tangent line of C at Pt = [φ(t) : t : 1] is

∂f

∂x
(Pt)x+

∂f

∂y
(Pt)y − ∂f

∂x
(Pt)φ(t)− ∂f

∂y
(Pt)t = 0

Therefore the Gauss map locally around P0 is written as

Γ(Pt) =

(
fy(Pt)

fx(Pt)
,−fy(Pt)

fx(Pt)
t− φ(t)

)
=

(
−dφ

dt
(t), t

dφ

dt
(t)− φ(t)

)
.

Since

−dφ

dt
(t) = a112t

q + (terms of degree > q)
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and

t
dφ

dt
(t)− φ(t) = a212t

q + (terms of degree > q),

the reduced Gauss map Γred locally around P0 is

(4) t �→ (α112t+ (terms of degree > 1), α212t+ (terms of degree > 1)),

where αijk = a
1/q
ijk . The reduced Gauss map Γred is not smooth at the point P0 if

and only if α112 = α212 = 0. Since the codimension of the subset

{C ∈ C | α112 = α212 = 0}
is 2 in C , the reduced Gauss map Γred is locally immersion at every point of a
general member C of C . �

Suppose that C ∈ C is general. We prove that the singular points of the dual
curve C∨ are only ordinaly nodes. Let P0 and P1 be the points in the proof of
claim 1, and let l0 be the line {x0 = 0}. Suppose that P0 and P1 are smooth
points of C and TP0

C = TP1
C = l0. Let (x′, y′) be affine coordinates such that

[x0 : x1 : x2] = [x′ : 1 : y′]. Similar to the proof of the claim 2, up to multiple
constant, the polynomial F can be written as

F (x′, 1, y′) = g(x′, y′) = x′ + a101x
′q + a121y

′q + a001x
′q+1 + a201x

′qy′ + a021x
′y′q

+ a221y
′q+1 + (terms of degree ≥ q2).

Then we have a local parametrization x′ = ψ(t), y′ = t, of C at P0 such that the
power series ψ(t) is written as

ψ(t) = −a121t
q − a221t

q+1 + a021a121t
2q + · · · .

Let (η, ζ) be the affine coordinates of (P2)∨ with the origin l0 ∈ (P2)∨ such that
the point (η, ζ) corresponds to the line x′ + ηy′ + ζ = 0. The tangent line of C at
P ′
t = [ψ(t) : 1 : t] is

∂g

∂x′ (P
′
t )x

′ +
∂g

∂y′
(P ′

t )y
′ − ∂g

∂x′ (P
′
t )φ(t)−

∂g

∂y′
(P ′

t )t = 0.

Therefore the Gauss map Γ locally around P1 is written as

Γ(P ′
t ) =

(
gy′(P ′

t )

gx′(P ′
t )
,−gy′(P ′

t )

gx′(P ′
t )
t− ψ(t)

)
=

(
−dψ

dt
(t), t

dψ

dt
(t)− ψ(t)

)
.

Since

−dψ

dt
(t) = a221t

q + (terms of degree > q)

and

t
dψ

dt
(t)− ψ(t) = a121t

q + (terms of degree > q),

we describe the reduced Gauss map

(5) t �→ (α221t+ (terms of degree > 1), α121t+ (terms of degree > 1))

locally around P1. We define a variety X2 by

X2 = {(Q0, Q1, l) ∈ P
2 × P

2 × (P2)∨ | Q0 ∈ l, Q1 ∈ l and Q0 �= Q1}.
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Then the action of PGL3(k) on X2 is transitive and dimX2 = 4. Let (P0, P1, l0)
be the point of X2 such that P0 = [0 : 0 : 1], P1 = [0 : 1 : 0] and l0 = {x0 = 0}. We
define a subset D2 of C by

D2 = {Y ∈ C | P0 and P1 are smooth points of Y, and TP0
Y = TP1

Y = l0}
Then C ∈ D2 if and only if

a222 = 0, a122 = 0, a111 = 0, a211 = 0, a022 �= 0, a011 �= 0.

Thus the codimension of D2 is 4. For C ∈ D2, by (4) and (5), the singularities of
C∨ at the point l0 is not a ordinary node if and only if∣∣∣∣α112 α212

α211 α121

∣∣∣∣ = 0.

We define a subset D ′
2 of C by

D ′
2 =

{
Y ∈ C

∣∣∣∣ P0 and P1 are smooth points of Y,
TP0

Y = TP1
Y = l0, and Y ∨ does not have ordinary node at l0

}
.

Since the codimension of D ′
2 is 5,

dimD ′
2 + dimX2 < dimC .

Therefore, since aijk are general, the dual curve C∨ has only ordinary nodes as its
singularities.

4. Proof of the second half of Theorem 1

4.1. Number of the ordinary nodes of C∨. Let g and g∨ be the genera of a
general curve C ∈ C and its dual curve C∨, respectively. Let δ be the number of
the ordinary nodes of C∨. Then

g =
(d− 1)(d− 2)

2
=

{(q2 + q + 1)− 1}{(q2 + q + 1)− 2}
2

and

g∨ =
(d∨ − 1)(d∨ − 2)

2
− δ

=
{(q2 + q + 1)(q + 1)− 1}{(q2 + q + 1)(q + 1)− 2}

2
− δ,

where d and d∨ are the degree of C and C∨, respectively, because, by the previous
section, C∨ has only ordinary nodes. By claim 2 of section 3, the reduced Gauss
map Γred is birational onto its image. Thus g = g∨ and hence we have

δ =
{(q2 + q + 1)(q + 1)− 1}{(q2 + q + 1)(q + 1)− 2}

2

− {(q2 + q + 1)− 1}{(q2 + q + 1)− 2}
2

=
q(q2 + q + 1)(q3 + 3q2 + 3q − 1)

2
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4.2. Number of the flexes. We denote by multP (D1, D2) the intersection mul-
tiplicity of projective plane curves D1 and D2 at a point P ∈ D1 ∩D2.

Lemma 4.1. We suppose that C ∈ C is a general plane curve in C . If the multi-
plicity multu(TuC,C) is more than q at u ∈ C, then the multiplicity multu(TuC,C)
is q + 1 at u ∈ C and all other intersection points of TuC and C are not tangent
point.

Proof. We use the same notation as in Section 3. We define a variety X0 by

X0 = {(Q, l) ∈ P
2 × (P2)∨ | Q ∈ l}.

Then the action of PGL3(k) on X0 is transitive and dimX0 = 3. We recall that
[x0 : x1 : x2] are homogeneous coordinates, P0 = [0 : 0 : 1], P1 = [0 : 1 : 0] and

l0 = {x0 = 0}. We define two subsets D0 and D̃0 of C by

D0 =

{
Y ∈ C

∣∣∣∣ P0 is the smooth point of Y, TP0
Y = l0

and multP0
(TP0

Y, Y ) = q + 1

}
and

D̃0 =

{
Y ∈ C

∣∣∣∣ P0 is the smooth point of Y, TP0
Y = l0

and multP0
(TP0

Y, Y ) > q + 1

}
.

Then the curve C ∈ D0 if and only if

a222 = 0, a122 = 0, a212 = 0, a112 �= 0 and a022 �= 0,

and C ∈ D̃0 if and only if

a222 = 0, a122 = 0, a212 = 0, a112 = 0 and a022 �= 0.

Therefore the codimension of D0 is 3 and that of D̃0 is more than 3 in C . Thus we
have

dimX0 + dimD̃0 < dimC .

We proved the first half of the lemma. We define a subset D̃2 of C by

D̃2 =

{
Y ∈ C

∣∣∣∣ P0 and P1 are the smooth points of Y, TP0Y = l0,
TP1Y = l0 and multP0(TP0Y, Y ) = q + 1

}
.

Then the curve C ∈ D̃2 if and only if

a222 = 0, a122 = 0, a111 = 0, a211 = 0, a212 = 0, a112 �= 0, a022 �= 0, a011 �= 0.

Therefore codimension of D̃2 is 5, and we recall dimX2 = 4. Thus, since we have

dimX2 + dimD̃2 < dimC ,

the second half of the lemma is proved. �

Let g be the genus of a general curve C ∈ C . We use the notion and notation
about the correspondence of curves introduced in [3, Chap. 2, Section 5]. Let
T : C → C be correspondence defined by T (u) = TuC.C − qu, D ⊂ C ×C its curve

of correspondence, i.e. D = {(u, v) | u �= v, v ∈ TuC}. Then the degree of T is

deg T = (q2 + q + 1)− q = q2 + 1.

Let π2 : C ×C → C be the projection on second factor. In order to find the degree
of T−1, we have to caluculate the number of tangent lines to C, (counted with
the intersection multiplicities of D and π−1

2 (v)) other than TvC passing throght a
general point v ∈ C. We consider the projection πv : C → P

1 from the center v ∈ C
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onto a line. Let ΩC/P1 be the sheaf of the relative differential of C over P
1. By

Hurwitz-formula [4, Chap. IV, Corollary 2.4],

2g − 2 = −2(q2 + q) + degR,

where the divisorR is the ramification divisor of πv i.e. R =
∑

u∈C length(ΩC/P1)uu.
Hence

degR = q4 + 2q3 + 2q2 + q − 2.

Moreover, the length of (ΩC/P1)v is q − 2. Hence, we have

deg T−1 = (q4 + 2q3 + 2q2 + q − 2)− (q − 2)

= q4 + 2q3 + 2q2.

Lemma 4.2. Let π1, π2 : C×C → C be the projections on first and second factors,
respectively. The divisor D on C × C is algebraically equivalent to

(q4 + 2q3 + 2q2 + q)Eu + (q2 + q + 1)Fv − qΔ,

where Eu = π−1
1 (u), Fv = π−1

2 (v) and Δ ⊂ C × C is the diagonal.

Proof. For some u0, v0 ∈ C, we write

T (u0) + qu0 =
∑

bivi

and

T−1(v0) + qv0 =
∑

aiui.

Let L be the line bundle

L = D −
∑

aiEui
−
∑

biFvi + qΔ.

For any x ∈ C, the restriction of L to Ex is trivial because the divisor T (x) + qx is
linearly equivalent to T (u0) + qu0. By [4, Chap. III, Exercise 12.4], there is a line
bundle M on C such that L ∼= π∗

1(M). Since the restriction of L to Fv0
is trivial,

the line bundle L is also trivial. Thus D is linearly equivalent to∑
aiEui +

∑
biFvi − qΔ.

For any u, v ∈ C, the divisors Eui
(resp. Fvi) are algebraically equivalent to Eu

(resp. Fv). Note that the degrees of T (u0) + qu0 and T−1(v0) + qv0 are

deg(T (u0) + qu0) = q2 + q + 1

and

deg(T−1(v0) + qv0) = q4 + 2q3 + 2q2 + q,

and hence the result is proved. �

Lemma 4.3. If C ∈ C is a general plane curve in C , then D and Δ intersect
transversally at any point (u, v) ∈ D ∩Δ.

Proof. We use the same notations as in Section 3 and Lemma 4.1. We recall that
[x0 : x1 : x2] is homogeneous coordinates, P0 = [0 : 0 : 1], l0 = {x0 = 0} and

D0 =

{
Y ∈ C

∣∣∣∣ P0 is the smooth point of Y, TP0Y = l0
and multP0

(TP0
Y, Y ) = q + 1

}
.
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By change of coordinates, we assume that C ∈ D0. Let (x, y) be affine coordinates
such that [x0 : x1 : x2] = [x : y : 1]. Then up to multiple constant, the polynomial
F can be written as

F (x, y, 1) = x+ a202x
q + a002x

q+1 + a102x
qy + a012xy

q + a112y
q+1

+ a220x
q2 + a221y

q2 + (terms of degree > q2).

Then we have a local parametrization x = φ1(t), y = t of C at P0 such that the
power series φ1(t) is written as

φ1(t) = −a112t
q+1 + a012a112t

2q+1 + · · · − a221t
q2 + (terms of degree > q2).

Let (Pt1 , Pt2) be a point of D in a small neighborhood of (P0, P0) such that

Pt1 = [φ1(t1) : t1 : 1] and Pt2 = [φ1(t2) : t2 : 1].

The tangent line of C at Pt1 is

x =
dφ1

dt
(t1)y − t1

dφ1

dt
(t1) + φ1(t1),

and hence

x = (−a112t
q
1 + a012a112t

2q
1 + (terms of degree > 2q))y

+ (−a221t
q2

1 + (terms of degree > q2)).

Therefore t2 is the solution of the equation

(6)
dφ1

dt
(t1)y − t1

dφ1

dt
(t1) + φ1(t1)− φ1(y) = 0

for y that is not t1 and approaches to 0 when t1 tends to 0. We can express the
left hand side of (6) as

(−a112t
q
1 + a012a112t

2q
1 + (terms of degree > 2q in t1))y

+ (−a221t
q2

1 + (terms of degree > q2 in t1))

+ a112y
q+1 − a012a112y

2q+1 + · · ·+ a221y
q2 + (terms of degree > q2 in y)

= (y − t1)
qft1(y),

where the power series ft1(y) is written as

ft1(y) = a112y + a221t
q
1 + a221y

q + · · · .
Since C ∈ D0, a112 �= 0. Thus a solution of ft1(y) = 0 is

y = −a221
a112

tq1 + (terms of degree > q).

Therefore we have

t2 = −a221
a112

tq1 + (terms of degree > q).

If (Pt1 , Pt2) is a point in Δ, then t1 = t2. Therefore, if (Pt1 , Pt2) ∈ D ∩Δ, then

t1 = −a221
a112

tq1 + (terms of degree > q).

Thus D and Δ intersect transversally at (P0, P0) ∈ D ∩Δ.
�
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By Lemma 4.3, the number of the flexes is equal to the intersection number
(D · Δ) for a general member C of C . Since the self-intersection number of Δ is
2− 2g, the intersection number (D ·Δ) is

(D ·Δ) = ({(q4 + 2q3 + 2q2 + q)Eu + (q2 + q + 1)Fv − qΔ} ·Δ)

= q4 + 2q3 + 3q2 + 2q + 1− q(2− 2g)

= q5 + 3q4 + 2q3 + 2q2 + 1

= (q3 + 2q2 − q + 1)(q2 + q + 1).

5. Fermat curve

For any formal power series f ∈ k[[x, y]], we define the Milnor number μ(f) by

μ(f) = dimk k[[x, y]]/

(
∂f

∂x
,
∂f

∂y

)
.

Calculation method of the Milnor number for a formal power series in characteristic
zero is well known. (For example, see [6].) However, in positive characteristic, the
calculation method and result of the Milnor number differ from the characteristic-
zero case in general. In the case of the following lemma, however, the Milnor
number is the same as the characteristic-zero case.

Lemma 5.1. Let a and b be elements in k \ {0}, and let f ∈ k[[x, y]] be a formal
power series defined by

f(x, y) = axα + byβ +
∑

αβ<αs+βr

cr,sx
rys,

where α and β satisfy p � | α, p � | β and are relatively prime. Then the Milnor
number μ(f) of f is

μ(f) = (α− 1)(β − 1).

Proof. We use notations of [2]. The (β, α)-order of f is

ord(β,α)(f) = αβ.

The (β, α)-initial of f is

in(β,α)(f) = axα + byβ .

Thus the formal power series f is the semi-quasihomogeneous with respect to (β, α).
By the Appendix of [2],

μ(f) = (α− 1)(β − 1).

�

Proof of Theorem 2. The morphisms γq2+q+1 and γq+1 satisfy

γq2+q+1 ◦ γq+1 = γq+1 ◦ γq2+q+1 = γ(q2+q+1)(q+1).

By the definition of the Ballico-Hefez curve and the line l = γq2+q+1(C0), we have

B = γq+1(l) = γq+1(γq2+q+1(C0)) = γq2+q+1(γq+1(C0)) = γq2+q+1(C
∨
0 ),

and hence (i) is proved.
We define X ⊂ P

2 by

X = {x0 = 0} ∪ {x1 = 0} ∪ {x2 = 0}.
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The Ballico-Hefez curve B has q2−q
2 ordinary nodes on P

2 \ X (see [1, Theorem
2.2]), and no singular points on X. Let H and h be the defining polynomials of C∨

0

and B, respectively. Using Proposition 1.6 of [5], if p = 2, then

h = xq+1
0 + xq+1

1 + xq+1
2 + xq

0x2 + xq
1x2 + x0x

q
2 + x1x

q
2

+
ν−1∑
i=0

x2i

0 x2i

1 (x0 + x1 + x2)
q+1−2i+1

,
(7)

whereas if p is odd, then

h = xq+1
0 + xq+1

1 + xq+1
2 − xq

0x1 − xq
0x2 − x0x

q
1 − xq

1x2 − x0x
q
2 − x1x

q
2

+ (x2
0 + x2

1 + x2
2 − 2x0x1 − 2x1x2 − 2x2x0)

q+1
2 .

(8)

By (i), the polynomial H satisfies H(x0, x1, x2) = h(xq2+q+1
0 , xq2+q+1

1 , xq2+q+1
2 ),

and two polynomials H and h are symmetric under the permutation of coordinates
x0, x1 and x2. First we consider the singularities of C∨

0 on P
2 \X. The morphism

γq2+q+1 : P2 \X → P
2 \X is étale of degree (q2+ q+1)2. Thus, the ordinary nodes

of C∨
0 on P

2 \X are (q2 + q + 1)2(q2 − q)/2.
Next, we consider the singularities of C∨

0 on X. h(0, x1, x2) = 0 if and only if
x1 = x2 by (7) and (8). Moreover, the polynomial H and its partial derivatives

∂H/∂xi = xq2+q
i (∂h/∂xi) vanish at a point in {x0 = 0}. Thus all the points on

C∨
0 ∩ {x0 = 0} are singular points of C∨

0 . The morphism γq2+q+1|{x0=0} restricted

to {x0 = 0} is degree q2 + q + 1. Thus the number of the singular points of C∨
0 on

{x0 = 0} are q2 + q+1. Therefore, by the polynomial H is symmetric, the number
of the singular points of C∨

0 on X are 3(q2 + q + 1).
Finally, since all Milnor numbers at points in γ−1

q2+q+1([0 : 1 : 1]) are equal, we

should caluculate the Milnor number at the point [0 : 1 : 1] ∈ C∨
0 . If p = 2,

h(xq2+q+1
0 , x1 + 1, 1) = xq2+q+1

0 + xq+1
1 + x

q(q2+q+1)
0 + x

(q+1)(q2+q+1)
0

+

ν−1∑
i=0

(xq2+q+1
0 )2

i

(x1 + 1)2
i

(xq2+q+1
0 + x1)

q+1−2i ,

whereas if p is odd,

h(xq2+q+1
0 , x1 + 1, 1) = −2xq2+q+1

0 + xq+1
1 + x

(q2+q+1)(q+1)
0

− x
q(q2+q+1)
0 x1 − 2x

q(q2+q+1)
0 − xq2+q+1

0 xq
1

+ (x
2(q2+q+1)
0 + x2

1 − 2xq2+q+1
0 x1 − 4xq2+q+1

0 )
q+1
2 .

By Lemma 3.1, the Milnor number of h(xq2+q+1
0 , x1 + 1, 1) is

q(q2 + q) = q2(q + 1).

�
We confirm that the genus of the Fermat curve agree with the genus of its dual

curve. The genus g of the Fermat curve C0 of the degree d = q2 + q + 1 is

g =
(d− 1)(d− 2)

2
=

(q2 + q)(q2 + q − 1)

2
.

Let μP be the Milnor number and let rP be the number of the branches at a singular
point of the dual curve C∨

0 . If a point P ∈ C∨
0 is an ordinary node, then μP = 1
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and rP = 2, whereas if a point P is in C∨
0 ∩X, then μP = q2(q + 1) and rP = 1.

Thus the degree d∨ of C∨
0 is (q + 1)(q2 + q + 1), and the genus g∨ of C∨

0 is

g∨ =
(d∨ − 1)(d∨ − 2)

2
− 1

2

∑
P∈SingC∨

0

(μP + rP − 1)

=
{(q2 + q + 1)(q + 1)− 1}{(q2 + q + 1)(q + 1)− 2}

2

− 1

2
{(q2 + q + 1)2(q2 − q) + 3(q2 + q + 1)q2(q + 1)}

=
(q2 + q)(q2 + q − 1)

2
.
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