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Chapter 1

Introduction

In econometric analysis, trend estimation/smoothing methods based on penalized least squares are
popular. This thesis focuses on three such methods. They are (a) Whittaker—Henderson (WH)
method of graduation, which include Hodrick and Prescott (1997) filter as a special case, (b) ¢1
(polynomial) trend filtering developed by Kim et al. (1999), and (c) cubic smoothing spline, which
was developed by Schoenberg (1964), Reinsch (1967) and others. In this chapter, we briefly review

some researches which are closely related to our studies and then present the outline of the thesis.

1.1 Introductory survey

1.1.1 Bohlmann (1899): A pioneering study

Over 120 years ago, Bohlmann (1899) proposed the following trend estimation method:

n n—1
; — )2 )2
i @@, an) = Z(yz ) +A2(vm : (1.1)
=1 =1
where y1, Yo, ..., yn denote a time series, A is a positive parameter, and Va; = x;41 — x; for

i=1,2,...,n—1 3" (y; — 2;)* and 2?2_11 (Va;)? in (1.1) represent fidelity to the data and
smoothness, respectively, and A controls the trade-off between them.

Denote the solution of (1.1) by Z1, Zo, . . . , ,,. More precisely, Z1, T, . . . , T, are such that

flxr, e, .. xn) > f(Z1,22,. .., Tp)- (1.2)



Notably, Bohlmann (1899) obtained an explicit representation of Z1, X2, . . . , T,. He showed
@-:yi—i—)\(V@—V@-_l), 1=1,2,...,n, (1.3)
and

Vzy =0,

P Z?:_f Vys sinh{(n—t)a}
Vi Asinh(na) )

sinh{(n—2)a}Vy; sinh(a)+sinh 2« Z?;ZI Vy sinh{(n—t)a}

Vig = Asinh(a) sinh(no) ’

(1.4)

sinh(a) Y772 Vi sinh(ta)+sinh{(n—1)a} 3721 | Vi sinh{(n—t)a}
Asinh(a) sinh(na) ’

v/w\n—l =

Vz, =0,
where o > 0 is defined by

1
ha=1+—.
cosh o + 2
Here, we note that sinh and cosh represent the hyperbolic sine function and hyperbolic cos function,

respectively. They are given by

T _ o T T —x
sinh(x) = % and cosh(z) = ere”
Then, %1, Z2, . . . , T, are obtainable by substituting (1.4) into (1.3).
We remark that proofs of (1.3) and (1.4) are provided in the Appendix. See Sections 1.3.1—
1.3.2. A numerical example for obtaining Z1, Zs, . . ., Z, from (1.3) and (1.4) is also given in the

Appendix. See Section 1.3.3.



1.1.2 Whittaker—-Henderson method of graduation

Nearly a quarter of a century later, Whittaker (1923), without knowing Bohlmann (1899), proposed

a similar idea to (1.1). Whittaker (1923) proposed the following method:

n n—3
min T1, T2y, Ty) = R3(yi — ) + A ng2, 1.5
11,x2,...,zn€Rf( 1, L2 n) ; i (i i) ; ( i) (1.5)
where h; (i = 1,2,...,n)is a constant, V represents the forward difference operator, and V3z; =

V2xi+1 — V2x; denotes the third-order difference. The first term of (1.5) measures the closeness of
2

fit (fidelity), and the second term is a measure of smoothness. Let € = 72 fori =4,5,...,n— 3,

and 71, To, . . . , T, denote the solution of (1.5). Whittaker (1923) showed the following sixth-order

difference equation holds:
€T; = €Y; + Vﬁfi,g. (1.6)

The proof of (1.6) is shown in the Appendix. See Section 1.3.4. Whittaker’s student Aitken (1925)
obtained an exact solution of Whittaker’s equation above and almost the same time Henderson
(1924) proposed a simplified way to solve the difference equation.

More than fifty years later, Hodrick and Prescott (1981, 1997) used a method similar to (1.1)
and (1.5). That is the following minimization problem:

min _ frn 1) = 3 (5 - 2)? A (M%) (1.7)

x1,22,...,xn ER ‘ ‘
e i=1 =3

where A denotes the backward difference operator, and A%z; = Ax; — Ax; | = o, — 21 +x;_2
is called the second-order difference. The first part in (1.7) is used to measure the fitness of the es-
timation to the original data, and the second part measures the smoothness. A is a positive smooth-
ing parameter to control the balance of smoothness and fitness. Their paper had a great impact
on macroeconometric time series analysis and, in econometrics, (1.7) is referred to as “Hodrick-
Prescott (HP) filter.” In econometrics, a large volume of literature has been published in the last
decade focusing on HP filter. Examples include Phillip and Jin (2015), de Jong and Sakarya (2016),
Cornea-Madeira (2017), Hamilton (2018), Pillips and Shi (2019), Sakarya and de Jong (2020), Ya-



mada (2015, 2018ab, 2020ab), Yamada and Du (2019), Yamada and Jahra (2019). Danthine and

Girardin (1989) stated that (1.7) can be represented in matrix notation as follows:

min f(x) = (y —x) ' (y —«) + Az ' Dy Dz, (1.8)
xr
where y = [y1,y2,. .. ,yn]T, x = [r1,29,... ,xn]T, and Dy € R(™=2)x7 i a difference matrix

such that Dyx = [A2x3,...,A%r,]T. They showed the solution of (1.8), denoted by Z, can be

expressed by
. -1
Z = (I, +\D; D)y, (1.9)

where I,, € R™ "™ be an identity matrix. We provide Matlab/GNU Octave and R functions for
calculating Z in the Appendix. See Section 1.3.5.

As a generalization of (1.1), (1.5), and (1.7), consider the following minimization problem:

n n—p

min _ f(z, e, wn) = (g — )+ A (V)% (1.10)

T1,L2,...,LnER
1:L2y.-yTn i—1 i—1

where A > 0, 0 < p < n, and V? denotes the p-th forward difference operator such that VPz; =
VP~ Lz 1 — VP~ lz;. (1.10) is referred to as ‘Whittaker—Henderson method of graduation.’ See,

e.g., Weinert (2007). The problem of (1.10) can be written in matrix notation as follows:

min f(x) = (y — ) (y — ) +)\93TD;Dp:c, (1.11)
xzER
where D), is a (n — p) x n difference matrix such that Dyx = [VPz1, VPzo,. .. ,VPz,]" for an
n-dimension column vector € = [z1,Z2,... ,xn]T. The minimization of (1.11) is the solution of
the following equation:
(I, + AD, D)z = y. (1.12)



1.1.3 /; trend filtering

Kim et al. (2009) proposed a new method of trend estimation, “¢; trend filtering.” The filtering
method looks like HP filter. It is obtainable by replacing the squared {3 norm, Zyzg(AQxi)% in

(1.7) with the ¢1 norm, Y ,|A2x;|. More precisely, it is defined as

n

& =arg min Z:(yZ — ;) + )\Z\Azxil

T1,L2;---,Tn

i=1 i=3
= arg min ||y — z|j3+A|| Do), (1.13)
xeR"
where \ is a positive tuning parameter, y = [y1,¥2,...,Yn] > * = [r1,%2,...,2,]", and
Dy € R("=2)%7 ig a difference matrix such that Doz = [A2z3, ..., A%z, . In addition, || Dyz||;

denotes the ¢1; norm of Dyx.
As the objective function of (1.13) is a coercive and strictly convex function, it has a unique

global minimizer. Denote it by . Concerning A in (1.13), Kim et al. (2009) showed that

T—y as A — 0,
(1.14)
Dyx =0 if A > Apax,
where
Amax = 2||(D2D3 ) ' Day||oo. (1.15)
Here, for a vector n = [n1,...,74] ", [|0]loo= max{|n1|,...,|7a|}. We remark that  such that

Dyx = 0 represents a linear trend. This is because, in the case, & belongs to the space spanned by
t=11,...,1]" eR*and 7 =[1,...,n]" € R™.

¢, trend filtering is attractive because it enables us to estimate a continuous piecewise linear
trend. For the reason, it has been becoming popular in econometrics and finance. Examples include
Yamada and Jin (2013), Yamada and Yoon (2014, 2016ab), Winkelried (2016), Yamada (2017ab),
Klein (2018), and Mitra and Rohit (2018).



1.1.4 Smoothing spline

Cubic smoothing spline, which was developed by Schoenberg (1964), Reinsch (1967), and others, is
a typical scatterplot smoothing method. Green and Silverman (1994) is an appropriate reference for
it. As WH method of graduation and ¢; trend filtering, it is a smoothing method based on penalized
least-squares.

Consider the scatter plot of ordered pairs (x;,y;) fori = 1,...,n, where 1 < --- < .

~

Let f(x) represent the cubic smoothing spline whose knots are x1, . .., z,, fitted to the same plot.

~

More precisely, f(x) is a function such that

f(z) = arg ]Igé% ; {yi — f(x))}* + )\/a {f”(m)}2 dz, (1.16)

where a and b are such that ¢ < x; and z,, < b, VW denotes a function space contains all functions
whose second derivative is square integrable over the interval [a, b], and A is a positive smoothing/-
tuning parameter, which controls the trade-off between goodness of fit and smoothness.

Let f = [f(xl), e ,f(azn)]T Then, as shown in Green and Silverman (1994), f(x) is a

natural cubic spline whose knots are x1, . . ., x,, and it thus follows that
f=arg min ly - fIP+AfTCTR™CS (1.17)
e n
Tp1~) "
= (L.+)C"R'C) (1.18)
where y = [y1,...,¥yn] . I, denotes the n x n identity matrix, and C and R are explicitly presented

~

in Chapter 2. In addition, again as shown in Green and Silverman (1994), f(z) in (1.16) is uniquely
determined by f € R" and therefore estimating f(a?) is equivalent to estimating f

Cubic smoothing spline has attracted a large amount of research attention in the last 30
years such as Speed (1991) indicated that fitting cubic smoothing spline is the best linear unbiased
predictor (BLUP), many researchers have been working on the application and data analysis using
cubic smoothing splines, including an approach to regression estimation (Cleveland and Devlin,
1988); local linear forecasts using cubic smoothing spline (Hyndman et al., 2002); the analysis of
longitudinal data using cubic smoothing splines (Verbyla et al., 2012); solving a Cauchy problem

using cubic smoothing spline (Nafuka et al., 2021).



1.2 Outline of the thesis

This thesis is organized as follows.

Chapter 2 is based on a research paper on cubic smoothing spline. Fitting a cubic smoothing
spline is a typical smoothing method. In this study, we reveal a principle of duality in the penalized
least squares regressions relating to the method. This is the main contribution of this study. We also
provide a number of results derived from them, some of which are illustrated by a real data example.

Chapter 3 is based on a research paper on Whittaker—Henderson (WH) method of graduation.
In the study, we present a modified WH method of graduation. After giving a closed-form solution,
we show that it is of practical use because it provides not only a smoothed series identical to that of
the WH graduation, but also an extrapolation beyond the sample limit of current data. In addition,
we introduce two other penalized least squares problems and show that they provide the same results
as those of the modified WH graduation.

Chapter 4 is based on a research paper on £; polynomial trend filtering, which include ¢4
trend filtering as a special case. It is also a filtering method described as an #;-norm penalized least-
squares problem. It is promising because it enables the estimation of a piecewise polynomial trend
in a univariate economic time series without prespecifying the number and location of knots. This
paper shows some theoretical results on the filtering, one of which is that a small modification of
the filtering provides not only identical trend estimates as the filtering but also extrapolations of the

trend beyond both sample limits.



1.3 Appendix

1.3.1 Proof of (1.3)

Let D denote a first-order difference matrix such that

11 0 o 0]
0 -1 1 0 0
D, = e R(=Dxn, (1.19)
0 - 0 -1 1 0
0 - 0 0 -11

The minimization problem in (1.1) can be represented in matrix notation as follows:

min f(z) = ||y — |3+ Diz|3. (1.20)
xeR”

By differentiating f(x) in (1.20) with respect to &, we obtain

0
J@) _ 5y~ 2)+ 22D Dya (1.21)
ox
Let & = [Z1,%2,... ,fnf denote the solution of (1.1) as before. Then, the optimal condition for
(1.20) can be expressed by
—2(y — %)+ 2\D{ D,z =0, (1.22)
and accordingly we have
y— 2 = \D| D%, (1.23)



where

1 -1 0 0 0 0
1 2 -1 0 0 0
0 -1 2 -1 0 0
DD = | - . . .. 1| eRV (1.24)
0 0 -1 2 -1 0
0 0 0 -1 2 -1
0 0 0 0 -1 1|

From (1.23)—(1.24), we have

g1 — T = M@y — &) = —\(VE1 — Vo),

Yo — To = )\(—/.%'\1 4 279 — 553) = —)\(Vi‘\g — V@\l),

(1.25)
Yn—1 — fn—l = )\(_f/fn—Q + 2«%\71—1 - fn) = _A(V§n—1 - vgn—2)7
Yn — Tn = M@ — Tp—1) = —AN(VZ, — VI,_1).
which leads to (1.3).
1.3.2 Proof of (1.4)
The solution of WH(1) filter in (1.20) is given by
&= (I, +\D{D1) 'y, (1.26)
from which we have
(I, + \D{ D))z = y. (1.27)



Premultiplying (1.27) by D; yields
Dy = (I,_1 + \D; D) 'Dyy. (1.28)

Here, (I,—1 + AD; Dir) is a symmetric tridiagonal matrix as follows:

(1122 - 0 0 o0 0 |
~A 14+2x =X 0 0 0
0 “X 1420 =X 0 0
e R=Dx(n=1), (1.29)
0 0 =X 142% -\ 0
0 0 0 =X 1+42% -\
0 0 0 0 —A 142X

From Dow (2003, pp. E202-E203), the (i, j) element of (I,_1 + AD; D] )_1 is explicitly ex-

pressed as follows:

_ sinh(ia) sinh{(n — j)a}

’] Asinh(a) sinh(nao) t=J (1.30)
and
sinh(ja) sinh{(n —i)a} . .
ij = - . ) ) 1.31
Qi Asinh(a) sinh(na) b2 (1.31)
where

1
h =14+ —.
cosh(a) + o)

Lete; = [0,...,0,1,0,... ,O]T € R"~!. Then, given that Vz; denotes the i-th entry of

D1z, we have

Vi =el (D1Z), i=1,2,...,n—1. (1.32)

10



By combining (1.28) and (1.32), it follows that

V#; =e, D1z =e] (I,.; + \D\D]) 'Dyy =e] (I,_1 + \D:D] )" 'Dyy

P Py - P, Vi
+ | Q21 Py o Py Vo
€ . . . .
Qn-11 Qn-12 -+ Poip-1| |Vyn-1]
Vin
Vo
=1Qi1 Qi2 - - Qi1
| VYi1]
Vi
Vyit1
+ [p” Py o o P _ . (1.33)
_Vynfl_
Thus, given (1.30) and (1.31), we obtain
Vin
Ve sinh(a) sinh{(n —i)a} sinh{(i — 1)a} sinh{(n — i)a} Vi
v Asinh(a) sinh(na) Asinh(«) sinh(na) :
| VYi-1]
Vi
sinh (i) sinh{(n — i)a} sinh (i) sinh (o) Vit
Asinh(a) sinh(na) Asinh(a) sinh(na) :
_vyn—l_

_ sinh{(n — i)a}
Asinh(a) sinh(na)
sinh(ic)
Asinh(a) sinh(na)

{sinh(a)Vy; + sinh(2a)Vya + - - - + sinh{(i — 1)a}Vy;_1}

{sinh{(n — i)a}Vy; + sinh{(n — i — 1)a}Vy11 + - - - + sinh(«)Vy,_1}

11



_ sinh{(n —i)a} — . sinh(ia) = .
~ Asinh(a) sinh(na) {Z 51nh(toz)Vyt} * Asinh(a) sinh(na) {Z sinh{(n — t)oz}Vyt}

t=1 t=i
sinh{(n —i)a} Y2IZ] Vi sinh(ta) + sinh(ia) 320"~ Vi sinh{(n — t)a}
= - - L , (1.34)
Asinh(a) sinh(na)
which leads to (1.4).
1.3.3 A numerical example for obtaining 7, 7>, ..., 7, from (1.3) and (1.4)
As a numerical example, consider the case of such that y = [1,3,2,4,9, 5]T and A = 1.
1 3 b} 7

Then, given that cosh(a) = 1 + L sinh(a) = \2[ cosh(2a) = 2 cosh(3a) = 9,

sinh(2a) = 3\2/5, sinh(3a) = 44/5, sinh(4a) =

1
75, sinh(5a) = 552\/5, and sinh(6a) =

72 \@, we have

. sinh(«) Z;?:l Ve sinh{(6 — t)a}
Vﬂ:‘l =

sinh () sinh(6a)
Vi sinh(5a) + Vya sinh(4a) + Vys sinh(3a) + Vyg sinh(2a) + Vys sinh(a)
B sinh(6a)
_ 2sinh(5a) — sinh(4a) + 2sinh(3a) + 5sinh(2a) — 4 sinh ()
B sinh(ﬁa)
N 72¢5
29
= = 0.8056, 1.35
36 (1.35)

oa, _ Sinh(4a) S, Vs sinh(ta) 4 sinh(2a) 327_, Vi sinh{(6 — t)a}
2 pu—

sinh(a) sinh(6a)
_ 2sinh(4a) sinh(a) + sinh(2a){— sinh(4a) + 2 sinh(3a) + 5sinh(2a) — 4 sinh(a) }
N sinh(«) sinh(6c)
215 5 3 21 15
2><2\f><\2[+ ;f( \f+8\f+5 \[ —2V/5)
\Qf x 72v/5
5 0.4167 (1.36)
12 ‘
vz,  Snh(3a) S22, Vysinh(ta) 4 sinh(3a) 320_; Vi, sinh{(6 — t)a}
3 =

sinh(«) sinh(6c)

12



sinh(3a){2sinh(a) — sinh(2a) } + sinh(3a){2 sinh(3a) + 5 sinh(2a) — 4 sinh(a) }
sinh(«) sinh(6c)

WEx (V520 s 1B x (6vE + 28 25

2
‘fxm\/ﬁ

= 5 = L4ddd, (1.37)

sinh(2a) 322, Vi sinh(ta) + sinh(4a) Y27_, Vs sinh{(6 — t)a}

Vai = sinh(«) sinh(6c)

_ sinh(2a){2sinh(a) — sinh(2a) + 2sinh(3a)} + sinh(4a){2sinh(5a) — 4 sinh(a) }
B sinh(«) sinh(6c)

B8 (V-2 v+ VR (VB )

\gg X 72\/5

23

=15 = 1.9167, (1.38)
VEs = sinh(«) Z?:l Vy, sinh(ta) + sinh(5q) 2515 Vy; sinh{(6 — t)a}

sinh(c) sinh(6c)
sinh(a){2sinh(a) — sinh(2«) 4+ 2sinh(3cr) + 5sinh(4a)} — 4 sinh(5a) sinh(«)
sinh(«) sinh(6«)

\f x (V5 — \f+8\/5+ 105{) 4 x 55;‘?’ X ‘f’
\2[ X 72v/5
25
=3~ = —0.6944. (1.39)

From (1.35)—(1.39), we obtain:

D& = [V, — Vg, Vg — Vi, ..., Vg — Vas)
(1.40)

= [0.8056, —0.3889, 1.0278, 0.4722, —2.6111, 0.6944]T.

13



20

21

22

Then, by using z; — y; = A(VZ; — VZ;_1) fori = 1,2,...,n, we obtain

Z = [1+ 0.8056,3 — 0.3889,2 + 1.0278, 4 + 0.4722,9 — 2.6111,5 + 0.6944] |

= [1.8056,2.6111, 3.0278, 4.4722, 6.3889, 5.6944] " .

We may confirm that these results are correct by using (1.28) and (1.26) as follows:

y=[1 3 2 4 9 5]';
lambda=1;
n=length(y);

D1=diff (eye(n));

Dlxhat=inv (eye (n—-1)+lambdaxD1%D1’)*xD1lxy

Dlxhat =
0.8056
0.4167
1.4444
1.9167

-0.6944

xhat=1inv (eye (n) +lambda*D1’ «xD1) xy

1.8056
2.6111
3.0278
4.4722
6.3889

5.6944

Here, we give another approach to obtain  from (1.3) and (1.4). Let e; = [1,0, ...

R"™ and E € R™*" be a matrix as follows:

(1.41)

0" €

(1.42)



Then, it follows that

1 0 0 0 o | & 7
-1 1 0 0 ol | # Vi
e 0 -1 1 0 - 0|3 | | Vi | .
0 - 0 =1 1 0| |Zna Vin_o
(0 - 0 0 —1 1] | & | |VE,a

T 10 0 T
) 1 1 0 0 Vi,
%3 11 1 0 - 0| Vi
= ' ' . (1.44)
Tn_1 11 1 -+ 1 0| |VZyo
Tn 11 1 -+ 1 1| |VZ,
1.3.4 Proof of (1.6)
Lety = [y1,Y2,.--,Yn] » @ = [x1,%2,...,2,] , H and D3 be matrices such that
R 0 0 0 0
0 h2 0 0 0
0 0 A -~ 0 O
H=| | ermm, (1.45)
0 0 0 h2, 0
0 0 0 0 A2
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103 3 1 0 o0 0]
0 -1 3 -3 1 0 0
Ds=| @ o .. | gR3xn (1.46)
0 0 -1 3 -3 1 0
0 0 0 -1 3 =31

The problem in (1.5) can be represented in matrix notation by

min f(z) = (y - z) H(y — x) + \(Dsx) " (Dsx). (1.47)

By differentiating f(x) in (1.47) with respect to x, we obtain

8{)(;) = —2H(y — ) + 2\DJ Dsz. (1.48)
Letx = [Z1,Z2,...,Ty) T denote the solution of (1.47), then the optimality condition for (1.47) can
be expressed by
~H(y — )+ \D3 D3z = 0, (1.49)
from which we have
Hy = HZ + \DJ D3Z. (1.50)
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) ~ . ~ ~ T ) .
Given D3z = [V371, V3Ta,..., V3%, 3] , a set of equations can be derived:

Ry = hiz1 — AV32y,

h3ys = h3Zs + 3AV3T) — AV32s,

h2y3 = h3x3 — 3AV3Z + 33T, — V323,

h3ys = h3Z4 + AV3T1 — 3AV3Z, + 3AV3T3 — AV32y,
h2ys = hiTs + AV3Zy — 3AVT3 + 3AV3Z, — AV3T5,

h2ys = h2Ts + AV3T3 — 3AV3Z, + 3AV3T5 — AV3Ts,

h%_?)yn,g = h _3Tp_3+ AV3Z, ¢ — 3AV3Z,_5 + 3AV3Z,_4 — A\V32,_3.
\
From the equations above, for i = 4,5, ..., n — 3, it follows that
h2y; = h2Z; + AV3Z;_3 — 3AV3Z; o 4+ 3AV3T; 1 — AV3Z,. (1.51)

h?
Lete = 7’ fori: =4,5,...,n — 3, then (1.51) can be rewritten as

€Y; — €T; = v3.5;‘\i_3 — 3V33?i_2 + 3V39?Z-_1 — ngz (1.52)
Let ;11 = Fz;, for the right-hand side of (1.52),

V3/l‘\¢_3 — 3V3/:E\Z'_2 + 3V3/:E\Z'_1 — sti = Vg(fi_g —3%i_9 + 3T — ;)
= Vg(fi_g —3F7;_3+ 3F2/.Z'\Z'_3 — F?’@-_g)
= -V (F - 1)’T;3

= _V5%;_s. (1.53)
From (1.52) and (1.53), the following sixth-order difference equation can be derived

€7; = ey; + VOT;_3. (1.54)
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1.3.5 Matlab/R functions for calculating Z in (1.9)

We give Matlab/R functions for calculating Z in (1.9).

Matlab function:

function xhat=calcxhat (n,y, lambda)

o

n: sample size

o\

lambda: smoothing parameter
n = length(y);

I = eye(n);

D2 = diff(I,2);

xhat = inv (I+lambdaxD2’ «D2) xy;

end

R function:

calcuxhat —-> function (x) {
# x: nxl vector
n <- length (x);
I <- diag(n);
D2 <- diff(I,diff=2);

xhat <- solve((I+lambda%$x%t (D2)%$%%D2))%$*%y;

1.3.6 Matlab/R functions for calculating )., in (1.15)

We give Matlab/R functions for calculating Apax in (1.15).

Matlab function:

function lambdamax=11tf_lambdamax (y)
% y: n*xl vector
n=length(y);
D2=diff (eye(n),2);
lambdamax=norm( (D2+D2")\ (D2*y) , inf) ;
’

disp (sprintf (' lambda_max : %e’, lambdamax));

end

R function:

18



1

calculambdamax —> function (y) {
# y: nxl vector
n <- length(y);
D2 <- diff (eye(n),diff=2);
M <- solve (D2%*%t (D2)) %$*% (D2%x%YV) ;

lambdamax <- norm(M,p=inf);
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Chapter 2

Principle of Duality in Cubic Smoothing

Spline

This chapter is based on a published article: Du and Yamada (2020).

2.1 Introduction

Fitting a cubic smoothing spline, which was developed by Schoenberg (1964), Reinsch (1967) and

others, is a typical smoothing method. The cubic smoothing spline fitted to a scatter plot of ordered

pairs (z;,y;) fori = 1,...,nis a function such that
f(z) = arg Jgé% Z{yl — fla)}* + )\/ {f"(x)}" da, (2.1)
i=1 a
where 1, ..., x, are points satisfying a < 1 < --- < x, < b, W denotes a function space that

contains all functions whose second derivative is square integrable over [a, b], and A is a positive
smoothing/tuning parameter, which controls the trade-off between goodness of fit and smoothness.
Let f = [f(xl), e A(:cn)]T. Then, given f(x) is a natural cubic spline whose knots are

x1,...,Ty (see, e.g., Green and Silverman, 1994; Wood, 2017), it follows that

f=arg }11%1 ly — fI>+XfTCTRICf (2.2)
e n

~ (L+rc"RC) 23)
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where y = [y1,...,yn] ', I,, denotes the n x n identity matrix, and C and R are explicitly presented
later. Then, as shown in Green and Silverman (1994), f(:r) in (2.1) is uniquely determined by
f € R"in (2.3). Thus, estimating f(x) is equivalent to estimating f.

Let IT = [¢,, ] € R"*2, where ¢,, = [1,...,1]" € R*and & = [z1,...,2,] . Note that

since 1 < - -+ < Tp, Ly and x are linearly independent and thus II is of full column rank. Let
7=II(IT'I) ' y. (2.4)
Denote the difference between f and T (resp. y and f) by ¢ (resp. u):
c=f-7, ud=y-f (2.5)
Accordingly, we have
y=T+c+u. (2.6)

In this chapter, we present a comprehensive list of penalized least squares regressions relat-
ing to (2.6). One such example is the ridge regression (Hoerl and Kennard, 1970) that leads to c.
Then, we reveal a principle of duality in them. In addition, based on them, we provide a number of
theoretical results, e.g., LI c=0.

This chapter is organized as follows. Section 2.2 fixes some notations and gives key prelim-
inary results used to derive the main results in the chapter. Section 2.3 provides a comprehensive
list of penalized least squares regressions relating to (2.6), and reveals a principle of duality in them.
Section 2.4 shows some results that are obtainable from the regressions shown in Section 2.3. Sec-
tion 2.5 illustrates some results provided in Sections 2.3 and 2.4 by a real data example. Section 2.6
deals with the cases such that the other right-inverse matrices are used. Section 2.7 concludes the

chapter.
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2.2 Preliminaries

In this section, we give key preliminary results used to derive the main results of this chapter. Before

stating them, we fix some notations.

2.2.1 Notations

Let ﬁ (resp. 7;) denote the ith entry of f(resp. T)fori =1,...,n, 8 = x;41 — x;, which is
positive by definition, fori = 1,...,n — 1, A = diag(dy,...,0,_1) € RO=DX(=1 and for a
full-row-rank matrix M € R™", MT(MM ")~! € R™™, which is a right-inverse matrix of
M., be denoted by M,~!. For a full-column-rank matrix W € R™*?, let S(W) [resp. S+ (W)]
denote the column space of W' [resp. the orthogonal complement of S(W')] and Py [resp. Qw]
denote the orthogonal projection matrix to the space S(W) [resp. S*(W)]. Explicitly, they are
Py = WW W)"'WT and Qw = I, — Py. D € R(=)x(n=i+1) jg a Toeplitz matrix
whose first (resp. last) row is [—1,1,0,...,0] (resp. [0,...,0,—1,1]) and we define matrices

C € R(=2)xn gpnd R € R("=2)%(n=2) 44 follows:

oyt =t =aytisti0 0
0 ! - P T . o
C= |- e e RSl CETEITEI PSRRI b (2.7
o . L . 0
0 R
and
(61 + 62) 6 0 0

R= 0 e 0 : (2.8)
%5n—2
0 0 %571—2 %(671—2 + (5n—1)

Finally, we denote the eigenvalues of R by wq, ..., w,—3 in descending order.

26



2.2.2 Key preliminary results

Lemma 2.1. (i) C can be factorized as C = D(z)AilD(l). (ii) We have the following inequalities:
1 1.1 1 1 1
n—2 > Min ¢ =01 + =da, =(d2 +93), ..., =(dp—3 + Ip—2), =0n—2 + =p— .
w g_mln{31+626(2+ 3) 6( 3+ 2)6 2+3 1}>0

Proof of Lemma 2.1. (i) Let w = [wy,...,w,]' be an n-dimensional column vector. Then, by

definition of C, it follows that

_wa—wi w3 —w2 W2 w1 _
5T n wy + wo
Cw = = D(Q) = D(Q)A_
Wp—1—Wn—2 Wn —Wn—1 Wp —Wn—1
a2 + On—1 On—1 —Wp—1 + Wn

= D(Q)AilD(l)’w € RniZ,

which leads to C' = D(Q)A_ID(I). (ii) The first inequality follows by applying the Gershgorin

circle theorem and the second inequality holds from §; > O fori =1,...,n — 1. O

Remark 2.1. In the Appendix, we give some remarks on a special case such that & = [1,...,n]".
Lemma 2.2. (i) S(C") equals S*(T1) and (ii) S(C;') equals S*(IT).

Proof of Lemma 2.2. (i) Given that §; > 0 fori =1,...,n — 1, both IT and C'T are of full column
rank. In addition, [IT,C' "] is a square matrix. Thus, if (CT)"II = CTI = 0, then it follows that
S(C") = S(II). From Djyt, = 0, we have Ct,, = D(5)A~'D(3)t,, = 0. Likewise, from
A‘lD(l)w = A'Au,_ 1 = t,_1 and D3)tn—1 = 0, we obtain Cz = D(Q)A_lD(l)cc = 0.
Accordingly, we have CTI = 0, which completes the proof. (ii) Recall that C;' = CT(CCT)~L.
It is clear that C,! is a full-column-rank matrix such that [IT, C; '] is a square matrix. In addition,

(C;7H)TI = (CCT)~'CTI = 0. Thus, it follows that S(C; ') = S+(IT). O

Denote the spectral decomposition of R by VQV " and let RY/2 = VQ 12V T where

Q12 = diag (1/\/wt,...,1/\/wn—2). Then, R~/2 is a positive definite matrix such that
R'V2R~1/2 = R~!. Define

D =R"C. 2.9)
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Then, given that C'" is of full column rank and R~'/2 is nonsingular, D € R("~2*" is also of full

row rank. In addition, we have
D'D=C"R'C. (2.10)

(We provide Matlab/GNU Octave and R functions for calculating C, R, and D in the Appendix.)
Lemma 2.3. (i) S(D") equals S*(I1) and (ii) S(D; ') equals S*(T1).

Proof of Lemma 2.3. Both (i) and (ii)) may be proved similarly to Lemma 2.2(ii). For example,

given CTI = 0, we have (D) 'II = DII = R~'/2CTI = 0. O

Denote the eigenvalues of C' R™'C by gi,..., gy in ascending order and the spectral
decomposition of CTR™'C by UGU ", where U = [u4,...,u,] and G = diag(g1,...,gn)-
Let T = [uj,us] € R™2, ET = [us,...,u,] € R 2 and § = diag(gs,...,gn) €
R((n—2)x(n—2)

Lemma 24. (i) S(T) equals S(I), (ii) S(E ") equals S*(I1), and (iii) S(E; ') equals S*(IT).

Proof of Lemma 2.4. (i) Since CT R™'C' € R™ ™ is a nonnegative definite matrix whose rank is
n—2,wehave 0 = g1 = g2 < g3 < --- < ¢gp. In addition, given CII = 0, it follows that
CT"R™ICII = 0 - II, which completes the proof. (ii) and (iii) They may be proved similarly to
Lemma 2.2(ii). ]

Given g; = g2 = 0, we have
E'SE=C'R'C. (2.11)
Define
F=S'?E, (2.12)
where §1/2 = diag(\/93,---,+/9n) € R("=2)%("=2) Then, we have

F'F=C'R'C. (2.13)
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Lemma 2.5. (i) S(F'") equals S*(II) and (ii) S(F.™1) equals S*(IT).

Proof of Lemma 2.5. Both (i) and (ii)) may be proved similarly to Lemma 2.2(ii). For example,

given ETI = 0, we have (F ") "TI = FII = SY/2ETI = 0. O
Lemma 2.6. There exists an orthogonal matrix ¥ € R=2%(=2) gych that FT = DT Y.

Proof of Lemma 2.6. Recall that both DT e R"*("=2) and FT e R"*("=2) are of full column
rank and S(DT) = S(FT). Accordingly, these exists a nonsingular matrix ¥ € R("~2)x(n=2)
such that FT = DTY. Giventhat D' D = F'F, we have D' (I,,_2 — YY)D = 0. Then,
from D-'"D"(I, o —XYY")DD ' =1, o — YY" =0,wehave Y™ =YL, O

Let i) A = D, F, (i) (B,Q) = (C,R), (E,S™Y), (iii) P = C, D, E, F, and (iv) P =

II, T'. From the results above, we immediately obtain the following results:

Proposition 2.1. (i) CTR™'C = A" A= B"Q7'B, (ii) DP = D; TP = 0, (iii) both [P, D]

and [P, D; Y] are nonsingular; and (iv) Ppr = Pr-1 = Qp.

2.3 Several regressions relating to (2.6) and principle of duality in

them

In this section, we provide a comprehensive list of penalized least squares regressions relating to
(2.6), and reveal a principle of duality in them. The penalized regressions are, more precisely, those
to compute ¢, u, T, T + ¢, ¢ + u, and T + .

2.3.1 Penalized regressions to compute T + ¢

Concerning T + ¢, we have the following results:

Lemma 2.7. It follows that

=~ .~ . 2 2 AN
7re=arg in fly — FIPRAIAF= (L +AATA) g 2.14)

—1
=arg min [ly — fI*+AfBTQBS = (1.+287Q7'B) . (2.15)
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Proof of Lemma 2.7. From Proposition 2.1, wehave CTR™'C = AT A = BT Q7' . Then, (2.2)-

(2.3) can be represented as follows:

~ -1
f=arg min |ly - FIP+AIAF*= (L + AATA) g
Fern
—1
= arg min [ly — FIP+AFTBTQIBS = (In BT Q—lB) y.
e n
In addition, by definition of ¢, we have f = T 4+ ¢. Hence, we obtain (2.14) and (2.15). O
2.3.2 Penalized regressions to compute ¢

Concerning ¢, we have the following results:

Lemma 2.8. Consider the following penalized regressions:

y=arg_min [ly — A PEAY = (AT AT+ M 2) AT Ty, (2.16)
YER™™

R =arg min ly — B k|24 6T Q7 e = (BT B+ 00 )BTy (2.17)
KER™—
Then, we have
R. (2.18)

Proof of Lemma 2.8. Let K = [P, A;!]. From Proposition 2.1, it follows that AP = 0, A, TP =
0, and K is nonsingular. Accordingly, given that K ' K = diag(P'P, A7'T A1) and AK =
[AP, AA Y] = [0, I,,_5], it follows that

f=K (KTK + AKTATAK>_1 Ky

(PTP)~t 0 P
0 (ATTTAT AL, )7 | AT

=[P, A ]
=PP P Py + ATHATVTATY AL ) T AT Ty = 7+ ATY,

from which we have f — 7 = A~'5. Given f — 7 = ¢, we thus obtain & = A-'5. Similarly, we

can obtain ¢ = B, k. O
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Lemma 2.9. ¢ can be calculated by the following penalized regressions:

-~ = 2 2 T\t =
&= arg min |l(y - 7) - el +A|Ael’= (L +AATA) (v —7) 2.19)
—1
— arg min ||(y — 7) — ¢*+Ac'BTQ ' Be = (In BT Q—ls) (y—7). (220
ceR™

~

Proof of Lemma 2.9. Given (2.14), f = 7 + ¢, and AP = 0, we have
y=T, + M AFf =T, + MM AF +¢) =7+ (I, + \MT A,
which leads to (2.19). Similarly, we can obtain (2.20). L]

Remark 2.2. We add some more exposition about (2.16). Let K = [P, A"!] as before. In addition,
let @ = [37,4"]T € R™ be a vector such that f = K8 = P3 + A;'~. Then, it follows that
Af = A(PB+ A y) = ~. Given that f = PB+ A 'y and Af = ~, the minimization problem

in (2.14) can be represented as follows:

s [y = PB = AP HAI . 2.21)

It is noteworthy that 3 is not penalized in (2.21) and (A;!)TP = 0. Thus, the minimization
problem (2.21) can be decomposed into (2.16) and (2.40). Moreover, (2.21) gives the best linear

unbiased predictors of 3 and ~ of the following linear mixed model:
y=PB+ Ay +u, [u',v"]" ~ N (0,diag(c21,,021,-2)), (2.22)

where A\ = 02 /02

Remark 2.3. By using C, !, Verbyla et al. (1999) derived the following expressions in our nota-

tions:
f=7+C 'R, R=(C'TC;'+ IR D ICM Ty (2.23)

Here, we make the following remarks on (2.23). (i) First, K is the solution of the following penalized
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regression:

min_|ly — C. s>+ " R k.
KERP—2

(ii) Moreover, (2.23) is a special case of ¢ = B, '& in (2.18).

2.3.3 Penalized regressions to compute u

Concerning u, we have the following results:

Lemma 2.10. Consider the following penalized regressions:

f = arg ng@% ly — ATn2+A " ml2= (AAT + A1, 0) L Ay,

b = arg ,min ly — B o|*4Xx"o " Qu = (BBT + \71Q) ' By.

Then, it follows that

Proof of Lemma 2.10. Applying the matrix inversion lemma to (In + )\AT.A) _1, we have

-1
(In + )\ATA) =1, - AT(AAT + A", 5) A

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

Postmultiplying (2.28) by y yields y — f = AT#. Giveny — f = @, we thus have & = A’ 7).

Similarly, we can obtain % = B .

Lemma 2.11. w can be calculated by the following penalized regressions:

@ =arg min |[(y = 7) — |+ AT Tul?

= (L A4 )
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and

U = arg érel]ilgl I(y —7) —u|> 2\ uB1oB T

-1
= (L+ 2 'B71OBYT) (- ). (2.30)
Proof of Lemma 2.11. Given (2.34), g = T + @, and A~ TP = 0, we have

y= T, + 2 TATT AT g = (I, + N TATTAT I (F + a)

=74+ (I, + X TAT A a,
which leads to (2.29). Similarly, we can obtain (2.30). ]

Remark 2.4. In Reinsch (1967) and Green and Silverman (1994, p. 20), there are equations ex-

pressed in our notation as follows:
(R+ACCp=Cy, f=y—IC . 2.31)

Here, we make the following remarks on (2.31). (i) First, these lead to a penalized least squares

problem. Given that u = y — f, removing ¢ from the above equations leads to

G=y—f=AC (R+)CC") 'Cy
=c’(cc’ + 'R lcy=C"7, (2.32)
where
O=arg min [ly- C vl +2x v Ro. (2.33)
veR?—

(ii) Moreover, (2.32) is a special case of & = B ¥ in (2.27).

2.3.4 Penalized regression to compute T + u

Concerning T + u, we have the following results:
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Lemma 2.12. Let g = T + u. Then, it follows that

-1
g = arg min [ly — g A" IAT TglP= (L + A4Sy (2.34)
g n
-1
= arg min [ly — g|*+A g B QB g = (L+ATBIQBT) Ty @39)
g n

Proof of Lemma 2.12. Let J = [P, A"]. From Proposition 2.1, it follows that AP = 0,
AZ'TP = 0, and J is nonsingular. Accordingly, given that J'J = diag(P'P, AAT) and
ATT = [ATTTP AT AT] = [0, 1,5), it follows that

~1
(In + A*lA;lA;”) y
~1
—J (JTJ + leTAglA;”J) JTy
pTp)-t 0 P
=[P, AT] e y
0 (AAT + 2711, )71 | A

=P(P P PTy+ AT(AAT + XL, 0) Ay =7+ ATH,
Given & = A' 1), we obtain (2.34). Similarly, we can obtain (2.35). O

Remark 2.5. Similarly to Remark 2.3.2, we add some more exposition about (2.25). Let £ =
[B",n"]T € R"besuchthat g = J¢€ = PB + A'n. As stated, A;'"J = [0,1,,_5]. Then, it

follows that
AlTg = A 1Tge = 0. (2.36)

Given g = PB + A'nand A '"Tg = n, the minimization problem (2.34) can be represented as

follows:

pepitin Ly =P8 - AT P27 || (2.37)

Again, it is noteworthy that 3 is not penalized in (2.37). Moreover, it follows that (AT)TP =

AP = 0. Thus, the minimization problem (2.37) can be decomposed into (2.25) and (2.40).
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2.3.5 Ordinary regressions to compute ¢ + u and T

Concerning ¢ 4+ u and 7, we have the following results:

Lemma 2.13. (i) Let h = D' &, where

a=arg min |y—D al*= (DD") Dy. (2.38)
acRn—2
Then, it follows that
ct+u=nh (2.39)

(ii) It follows that T = P, where
B = arg min |ly — PB|*= (PTP)"'Py. (2.40)
BeR?

Proof of Lemma 2.13. Given Proposition 2.1, both results are easily obtainable. For example, the

former result can be proved as follows:

h=D'a=Ppy=Qpy=y—7==2c+1a.

Remark 2.6. From Proposition 2.1, we also have h(= ¢ + @) = D! p, where
p=arg min [ly-D; 'p|’= (D7 D) IO Ty (2.41)
pER—

2.3.6 Principle of duality in the penalized regressions

See the second columns of Tables 1-2. In the columns, the penalized regressions shown above
are arranged in pairs that mirror one another. We reveal a principle of duality in the penalized
regressions. As stated in Section 1, (D1) is obtainable by replacing A", X in (P1) by A=, A1,
respectively. Likewise, for example, (D6) in Table 2 is obtainable by replacing BT, Q, A~! in (P6)

by B, 1, 91, \, respectively. In Tables 1-2, we may observe five other pairs of regressions that are
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duals of each other. From the seven dual pairs shown in Tables 1-2, we observe that the following

principle exists:

Proposition 2.2 (Principle of duality). The regressions labeled with the letter D in Tables 1-2, e.g.,
(D1), are obtainable by replacing each occurrence of A", B" . DT, Q, Q1 X\ A\~! in the regres-

sions labeled with the letter P, e.g., (P1), by A7', B=1, D71, Q=1 Q, \~1, \, respectively.

2.4 Results that are obtainable from the regressions

In this section, we show how the regressions listed in the previous section are of use to obtain a
deeper understanding of the fitting a cubic smoothing spline. Before proceeding, recall f =T+cC
and so on.

First, given that (2.16) is a ridge regression, it immediately follows that limy ,,, 4 = O,

which leads to limy_;o, € = A; ! limy_,o, 7 = 0 and at the same time we have

lim f=7+ lim e=7, (2.42)
A—00 A—00
lmu=y—7— limec=y—7T, (2.43)
A—00 A—00
lim g=7+ lima=7+(y—7)=yv. (2.44)
A—00 A—00

Second, (2.25) is again a ridge regression, we have limy_,o 77 = 0, which yields lim)_,o u =

AT limy_,o ) = 0 and accordingly we obtain

lim f =y — lim 4 = 2.45
lim & = lma ~ 2 46
)\H%c:y—r—)\m%)u:y—r, (2.46)

lma =7+ Lm @ — =, 5

)\Hrbg——'r—i—)\m%]u——'r (2.47)

Third, from (2.19) and u = y — T — ¢, we have

&= (In + )\ATA) -7, (2.48)

= {In (I + )\ATA)’l} (y — 7). (2.49)
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Thus, f can be represented as
~ -1
F=r+ (L+aTA) (y-7). (2.50)

Here, we remark that, given that (In + )\ATA)_I is a smoother matrix, the second term on the
right-hand side of (2.50) represents a low-frequency part of 4y — 7. In addition, from (2.49), u
represents a high-frequency part of y — 7. Thus, ¢ is generally smoother than .

Fourth, given AP = 0, A-'"P =0,¢ = A-'5,and u = A", we have
'#=0, ¢=¢41u,h. (2.51)
Fifth, given AP = 0, A;1TP = 0, (2.28), and
(In + A*lA;lA;”) o I, — AN AT AT 4 AL o) AT (2.52)
if y € S(P), or in other words, if y = P1p, then we have
=y, f=y, g=vy, ¢=0, =0 h=0. (2.53)

Sixth, given ¢, € S(P), we have

Ppi, = iy, (2.54)
(I, + MNATA) ey, = 1y, (2.55)

(L, + AN PATT ATy, =0y, (2.56)
AN AT AT N o) AT T, =0, (2.57)
AT(AAT + X711, _5) Y Ae, = 0, (2.58)
Ppri, = 0. (2.59)

Note that (I, + /\.AT.A)_ILn = 1, for example, indicates that the sum of the entries in each row

of the hat matrix of f equals unity.
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Seventh, given (2.54)—(2.59), we have

1 —~ ~ o~
;LZc:g, ¢=7.1.9. (2.60)
1 +~ ~ o~
ELIC =0, ¢(=2¢&1u,h, (2.61)

where y = L3 .. %Llf: y, for example, shows that = > | fi=1.

2.5 Illustrations of some results

In this section, we illustrate some of the results in the previous sections by a real data example.
Panel A of Figure 2.1 shows a scatter plot of the log of seasonally adjusted Japanese real
gross domestic product (GDP) over the sample period 1994:Q1 to 2020:Q2 (and accordingly, n =

106). We obtained the data from the website of Japanese Cabinet office. The solid line in the panel

plots (z;,7;) fori = 1,...,n, where 7 = [71,...,7,]" in (2.4) and n = 106. Panel B of Figure
2.1 depicts a scatter plot of (z;,y; — 7;) for i = 1,...,n. The solid line in the panel plots (z;, ;)
fori = 1,...,n, where € = [¢1,...,C,] " is calculated by (2.18) with A\ = 103. The solid line in

Panel C denotes (x;, ﬁ), where f = []?1, e ,fn]T is calculated by (2.14) with A = 103. Panel D
illustrates a scatter plot of (x;,y; — 7;) fori = 1, ..., n. The solid line in the panel plots (z;, u;) for
i=1,...,n, where & = [t1,...,U,]" is calculated by (2.27) with A = 103. Figures 2.2, 2.3, and
2.4 correspond to the cases such that A = 10°,10'°, 10710, respectively.

Recall that concerning y, T, C, f, and 4, the following equations hold:

T+ec=f, c+u=y—7, limec=0, lim f=7,
A—00 A—00

~

limu=y—7, limc=y-—T, limf:y, mu = 0.
A—0

li
A—0

From Figures 2.1-2.4, we can observe that these theoretical results are well illustrated in these
figures. For example, from Panel D in Figure 2.4, we can observe that w almost equals O when

A =101,

38



2.6 The cases such that the other right-inverse matrices are used

In this section, we illustrate what happens if the other right-inverse matrices are used.
Let M € R™ " be of full row rank. Recall that in this chapter M,! denotes
MT (MM T)~!, which is a right-inverse matrix of a full-row-rank matrix M € R™*", Define a

set of matrices
'y ={Ec¢ R™™ . ME = I,}.

I"js denotes the set of right-inverse matrices of M and accordingly M, ! belongs to I'y;.
Lemma 2.14. N = M, ' ifand only if N € Tp; and S(N) = S(M ).

Proof of Lemma 2.14. Tt is clear that if N = M, !, then N € I'); and S(N) = S(M ). Con-
versely, suppose that N € T'y; and S(N) = S(M ). Then, MN = I, and there exists a
nonsingular matrix 3 € R™*™ such that N = M ' 3. By removing IV from these equations, we

have ¥ = (MM ")~!, whichleadsto N = M " (MM ")~! = M. O

From Lemma 2.14, if N # M, !, then N ¢ I'j; or S(N) # S(M"). Accordingly, we

have the following result:
Proposition 2.3. If N € T'y/\{M, '}, then S(N) # S(M ).

Based on the result, we illustrate what happens if the other right-inverse matrices are used.
We give an example. Let Z € I'p\{D;!}. Then, from Proposition 2.3 and Lemma 2.3, it follows
that S(Z) # S(D; ') = SH(II). Accordingly, letting L = [II, Z], it follows that Z " TI # 0 and
DL = [DII,DZ] = [0, I,,_»]. In addition, given that DII = 0, DZ = I,,_», and II is of full

column rank, L is nonsingular. Thus, from e.g., Yamada (2017), we have
f=L(L'L+)L"D'DL)'L"y = IIx + Z¢, (2.62)
where
7 = arg min |(y — Z&) — Hrx|>= (IT'I) "' (y — Z&) (2.63)
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and

e=arg_min, |Qny - QuZe|*+Ae|?

= (Z2"QuZ + M\, ) Z" Quy, (2.64)

which shows that we may obtain (penalized) regressions relating to the cubic smoothing spline
even if we use the other right-inverse matrices of D such that Z € I'p\{D, '}. Nevertheless, as

illustrated here, they are more complex than those shown in Tables 1-2.

2.7 Concluding remarks

In this chapter, we provided a comprehensive list of penalized least squares regressions relating
to the cubic smoothing spline, and then revealed a principle of duality in them. This is the main
contribution of this study. Such penalized regressions are tabulated in Tables 1-2 and the principle
of duality revealed is stated in Proposition 2.2. In addition, we also provided a number of results
derived from them, most of which are also tabulated in Tables 1-2 and some of which are illustrated

in Figures 2.1-2.4.
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2.8 Appendix

2.8.1 Some remarks on a special case such that x = [1,... n]'

() Ifx = [1,...,n]T, then C = DDy € R"=2>*" which is a Toeplitz matrix whose first
(resp. last) row is [1,—2,1,0,...,0] (resp. [0,...,0,1,—2,1]). (i) If & = [1,...,n], then
(I, + \CTR™'C)~ ! is bisymmetric (i.e., symmetric centrosymmetric), which may be proved as
in Yamada (2020a). (iii) If x = [1,...,n]T, then R in (2.8) is not only a symmetric tridiagonal
matrix but also a Toeplitz matrix. In the case, we have

2 1 km
= -4 = _ k=1,... -2 2.
WE 3+3COS (n_1>7 ) , ’ ( 65)

and thus w,,_o, which is the smallest eigenvalue of R, satisfies the following inequality [see, e.g.,

Pesaran (1973)]:

2 1 n—2 1
Wp—9 = 3 + gcos <n— 17‘(’) > 3 (2.66)

(iv)Ifx =[1,...,n]" and R = I,_5 in (2.2)~(2.3), then (2.2)—(2.3) reduce to

f=arg min ly - FIP+De) Doy £
{5+ )\(D(Q)D(l))T(D(Q)D(l))}_1 y. (2.67)
It is a type of the Whittaker—Henderson (WH) method of graduation, which was developed by
Bohlmann (1899), Whittaker (1923) and others. See Weinert (2007) for a historical review of the
WH method of graduation. (2.67) is also referred to as the Hodrick—Prescott (HP) (1997) filtering in
econometrics. For more details about the HP filtering, see, e.g., Schlicht (2005), Kim et al. (2009),
Paige and Trindade (2010), and Yamada (2015, 2018ab, 2020b).

2.8.2 User-defined functions

2.8.2.1 A Matlab/GNU Octave function to make C' in (2.7)

function C=makeCmat (x)
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2 n=length(x); Dl=diff (eye(n)); D2=diff (eye(n-1));

3 delta=diff (x); invDelta=diag(l./delta);
4 C=D2*invDeltax*D1;
5 end

2.8.2.2 A Matlab/GNU Octave function to make R in (2.8)

1 function R=makeRmat (x)

2 n=length(x); delta=diff (x);

3 RO=diag(delta(l:n-2)+delta(2:n-1))/3;
4 Rl=diag(delta(2:n-2),1)/6;

5 R=R1’+RO+R1;

6 end

2.8.2.3 A Matlab/GNU Octave function to make D in (2.9)

1 function D=makeDmat (x)

2 C=makeCmat (x); R=makeRmat (x); [P,L]l=eig(R);
3 invsgrtR=Pxdiag (sqgrt (diag (L)) ) *P’;

4 D=invsqrtRxC;

5 end

2.8.2.4 A R function to make C in (2.7)

1 makeCmat <- function(x) {

> # Note: x is an n x 1 matrix (not a vector).

3 n <- length (x)

4 D1 <- diff(diag(n)); D2 <- diff(diag(n-1))

5 delta <- diff(x); invDelta <- diag(l/delta[l:(n-1),11)
6 C <- D2%*%invDelta%x%Dl1l

7 return (C)

2.8.2.5 A R function to make R in (2.8)

1 makeRmat <- function (x) {

2> # Note: x is an n x 1 matrix (not a vector).
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1

2

n <- length(x); delta <- diff (x)

RO <- diag((delta[l: (n-2),1]+delta[2:(n-1),1]1)/3)
R1 <- diag(0,n-2)

Rl[row(Rl)==col (R1)-1] <- deltal[2:(n-2),1]1/6

R <- t (R1l)+RO+R1

return (R)

2.8.2.6 A R function to make D in (2.9)

makeDmat <- function(x) {
# Note: x is an n x 1 matrix (not a vector).
n <- length(x); C <- makeCmat (x); R <- makeRmat (x)
z <- eigen(R); P <- zSvectors
invsgrtR <- P%*%diag(sqrt (zSvalues)) %$+%t (P)
D <- invsqrtR%*%C

return (D)
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Figure 2.1: Panel A shows a scatter plot of the log of seasonally adjusted Japanese real gross do-
mestic product (GDP) over the sample period 1994:Q1 to 2020:Q2. The solid line in the panel plots
(z;,7;) fori = 1,...,n, where 7 = [7(,...,7,] " in (2.4) and n = 106. Panel B depicts a scatter
plot of (z;,y; —7;) fori = 1,...,n. The solid line in the panel plots (z;,¢;) fori = 1,...,n, where
€=1[c,...,Cy)" is calculated by (2.18) with A = 103. The solid line in Panel C denotes (z;, ﬁ),
where f = [fl, .. ,ﬁL]T is calculated by (2.14) with A = 103. Panel D illustrates a scatter plot
of (z;,y; — 7;) for i = 1,...,n. The solid line in the panel plots (z;, u;) fori = 1,...,n, where
W= [TUy,...,0U,]" is calculated by (2.27) with A = 1600.
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Chapter 3

A Modification of the
Whittaker—-Henderson Method of

Graduation

This chapter is based on a previously published article: Yamada and Du (2019).

3.1 Introduction

The squared ¢>-norm penalized least squares problem defined as

T T
(F1,..,@r) = argmin Y (ye —2)° + A Y (A%)%, 3.1
T1,...,eT7ER —1 1—3
where y1, ...,y are observed time series data, has been referred to as the Hodrick—Prescott (HP)

filter in econometrics since its use by Hodrick and Prescott (1997). Here, A > 0 and A denotes

the backward difference operator such that Az; = x; — x;—1. It is applied to decompose y; for

t=1,...,T into 7; (the trend) and ¢; = y; — Z¢.

Yamada (2017) recently introduced the following modification:

T T+h
~ ~ o~ ~ . 2 2 \2
(T1se s 7, B4 15 -+ Tgn) = arg min Z(yt —x)"+ A Z(A )%, (3.2)
Ty LT LT 415 8T+ ER T t—3
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and showed that

Ty = Ty, (t=1,...,7), 33)

Try; =27 +j(@r —Tr_1), (J=1,...,h).

Thus the above filter, (3.2), provides not only identical trend estimates to those of the HP filter,
but also extrapolations of the trend beyond the sample limit (taken as ¢ = T'), and is therefore of
practical use. In addition, Yamada (2017) showed that

lim &y =ap+aqt, (t=1,....,7,T+1,....,T+h), (3.4)

A—00

where (Qg, @1) = argmin, , cr ST (g — ap — agt)?.
The HP filter in (3.1) is a special case of the Whittaker—Henderson (WH) method of gradu-

ation:

T T
(z1,...,2r) = argmin Z(yt — )%+ A Z (APz)?, (3.5)
215,27 ER —1 t=p+1

which was developed by Whittaker (1923) and others. For historical survey, see Weinert (2007),
Phillips (2010) and Nocon and Scott (2012).

Corresponding to the modification from (3.1) to (3.2), (3.5) may be generalized as follows:

T T+h
(21, ey ET, /Z\T—&—la e ’/z\TJrh) = arg min Z(yt - Zt)z + A Z (Apzt)Q. (36)

2150020520415 20+h ER {7 t=p+1

In this chapter, after presenting the closed-form solution of the modified WH graduation, (3.6), we
prove generalizations of (3.3) and (3.4). In addition, we introduce two other penalized least squares

problems and show that they lead to the same results as those of the modified WH graduation, (3.6).

Notations I € RT*T is an identity matrix, 0, 7 € R™*T is a zero matrix, St = [Ir, 0] €

RT*(T+h) TIp € RT*P is a matrix such that its ¢-th row is [1,¢,...,t*"Y fort = 1,...,7n, and
D7 € R(=P)*T i5 a p-th order difference matrix such that Dpn = [APn,11, ..., APn,]T for an
n-dimensional column vector n = [y, ..., 7,] "
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3.2 A modification of the WH graduation

Letting y = [y1,...,y7]', 2 = [21,...,27] ., and Z = [Z1,..., 27|, The objective function
of (3.5) may be represented in matrix notation as ||y — z||>+\|Drz||?, and Z may be expressed

explicitly as

Z=(Ir + \D. D7) 'y. (3.7)

Letting v = | T and 2 = [z Zr, 2 Zran]’

g Blye ey BTy RT 415+ + 3y RT+h RBlyev sy BTy BT 415+ - s RT+h] >

the modified WH graduation is represented in matrix notation as z = argmin,cpr+s ||y —

S1v|*+A||D7ypv|[?. We obtain the following closed-form solution of the modified WH grad-

uation:!
2= (S} Sr + D}, ,Dryn) 'Sl y. (3.8)

We note that Dy, is a (p + 1)-diagonal Toeplitz matrix such that

ap - ap 0 - 0
0 . Lo
DT-‘rh = . ) ) ) )
. . . . 0
K 0 ao ap |
where aj, = (—1)P~* (ﬁ) for k =0,...,p, and thus may be expressed as
Dy Or_,pn
Dypip = )
E E,

where E; € R"*T and E; € R, For example, when T’ = 4, h = 2 and p = 2, thus, E; € R?*4

' A MATLAB/GUN OBtave function for calculating 2 in 3.8 is shown in the Appendix.
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and E, € R?*2;

1 -2 1 0 0 O

Dy | P02\ |0 0 2 10 0 (3.9)
E,  Ey 0 O 1 -2:1 0
_0 0 0 1 -2 1_

Define w = [2141,..., 2741 by the requirement that:
APZry =0, (j=1,...,h) (3.10)
Then, concerning z1,..., 27, 2141, -- -, 21+h, We have the results summarized in the following
theorem:
Theorem 3.1.
/\t:zh (tzlvﬂT)a
2144 = Zr4j such that APzp,; =0, (j=1,...,h).

Proof of Theorem 3.1. By definition of w, we have E1z + Esw = 01, which leads to

- z D] E|||Dr Or_,u| |2
Dy, Dryp =
w Ohr—p Ej| |E1 By w
D] E!| |Drz DDz

— T ! —|T . (3.11)

Onr—p By | |On1 Op,1

It follows from (3.7) and (3.11) that

z z AD]Drz y
(SFSr+ ADJ.,, Drip) ="+ =7 =8fy. (312

w 0 0 0
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Premultiplying (3.12) by (S}.S7 + AD/.,, Dr4) ", we finally obtain

Z=(8}Sr+ D] ,Dr.y) 'Sy = . (3.13)

O]

Example 3.1. As an illustration of above theorem, we give a simple numerical example. The case

where T' =5, p = 2 and h = 2. Suppose that we obtained

=2, AZ=-1, [A%3,A%Z, A% =(3,0,-1]".

=1[2,1,3,5,6,7,8]".

The next theorem is a generalization of a result of Yamada (2017):

Theorem 3.2.
Jlim % = Bo+ Bt + -+ Bpat?™t, (t=1,....,T,T+1,...,T+h), (3.14)
—00
where (Bo, 1, ..., Bp—1) = arg ming g 5, Zle(yt — Bo — Pit — -+ — Bp_1t?PH)2.

Proof of Theorem 3.2. Premultiplying (3.13) by Dr,, leads to

. Dr OT—p,h z Drz

E1 EQ w Oh 1
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Since limy_,oo z = Hp(I1}.II7) ' I1Ly and D7II7 = 0, we obtain

Drlimy oo 2
Dryp lim 2 = T = 0p 3.15)
A—00

0p,1
which indicates lim)_, ., Z is in the null space of Dpj. Since the null space of D7y, and the
column space of Il are equivalent, (3.15) implies that we obtain v € RP such that

lim 2= Ilp 7. (3.16)

A—00

Since Srlimy ,oo2 = SpIpipy = Ipy and Srlimy ez = limy,2z =
I (11} II7) ~'TL}y, it follows that IIy {v— (IL}.II7) 'II]y} = 0y . Since Iy is a full column
rank matrix, we then obtain v = (H; HT)_ll_I;y. Substituting this relation into (3.16), we finally
obtain

lim 2 = Iy, (I} I07) I y. (3.17)

A—00

O]
Finally, we give some related results. Since Dy p Il = O7_p, 14 p, it follows that
(8181 + ADfy, Dy )My, = S} Sy, ), = S7 7.
Premultiplying the above equation by (S, St + AD/, n wDrin) ™! yields
O, = (8787 + ADJy,Drip) tS7r. (3.18)

Example 3.2. We give a numberical example as an illustration of (3.18). Consider the case where
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T =4, h=1andp =2, it follows that

11 - .
11
1 2
T T —igr |12
1 3| =(S{S:s+ADsDs) S,
13
1 4
1 4
15 ) -

From (3.18), we observe that the row sums of (S;ST + )\D}—+hDT+h)_1S; always
equal unity. Let 7 = IIp(IIJII7) 'II]y. Premultiplying y = 7 + (y — 7) by (S;:Sr +

AD;—+hDT+h)_1S;, we obtain

2= (8781 +AD7y, Dri) 'S¢ 7 + (S¢St + AD7y, Dris) ™ Sy (y — 7)

= 7, (I} I7) Ty + (S1.S7 + ADf, ,Drip) "t ST (y — 7). (3.19)

(3.18) and (3.19) are generalizations of Eq. (2) and Eq. (3) respectively of Yamada (2018). We note
that II7, , (IT7TI7) ~'I1 ]y in (3.19) appears in (3.17), and from this we find that

Jim_ (8181 +ADfy,Dry) ' S;(y —7) = Opyna. (3.20)

3.3 Two other penalized least squares problems

In this section, we introduce two other penalized least squares problems and show that they give the
same solutions as (3.6). Let yr1; = Z74; for j = 1,..., h. Consider the following two penalized

least squares problems:

T+h T+h
(25@)7 cee 7/2\’5:1)7 %\;alla LR Eé“a_t,)_h) = arg min Z(yt - Zt)2 + A Z (Apzt)27
215021527415 2T+h ER {7 t=p+1
(3.21)
T+h T
b b b ~(b .
(/z\g)v"-a/z\é“%/z\é“-)l,-b"wzé"lh) = argmin Z(yt_zt)2+)‘ Z (Apzt)Qa
21532727 415--,2T+h ER 1 t=p+1
(3.22)

58



Letting 2(9) = [2412-), .. ,Q(Ti), ?(Tizrl, o ’z#}_h]T for i = a, b, we show that 2 for i = a, b are then

expressed explicitly as

~ 1Y
2@ = (Ipyp, + ADf.,, Dy )7 : (3.23)
w
~ 1Y
2" = (Irypn + AD],,ST_,Sr—pDryp) | (3.24)
w
where we recall that w = [Z7,1,...,274p] ' is defined by (3.10) and is obtainable as a part of the
solution of the modified WH graduation, (3.6).
Theorem 3.3. Fori = a,b,
2 =73, t=1,....7),
Q(Tii_j = Zr4j such that APZr,; =0, (j=1,...,h).
Proof of Theorem 3.3 (1 = a). From (3.11), we obtain
z z )\D; Drz Y
(Irspn +ADj,Driy) = + = . (3.25)
w w 0p1 w
Premultiplying (3.25) by (I, + AD;. o nDryn) ! it follows that
- | Y z
2 = (Iryp, + ADfyy Dryp) ™ =
w w
O
Proof of Theorem 3.3 (¢ = b). Since
z D] E!||Ir, Dy Or_pp| |2
D;th%——/pSTprT%-h | = T I7—p; 07— pn] B
w Oh,Tfp E2 Oh,Tfp E1 E2 w
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D] z D] Drz

= [Dr,07_p 1] = ;
Oth_p w Oh,l
it follows that
z z AD;DTz Y
(Irsn+AD7,, St ,ST—pDrin) = + = (3.26)
w w Op1 w
Premultiplying (3.26) by (Ir4n + ADj.,S7_,S1—pDryn) " yields
0 T ol —1|Y z
2" = (Ipin + AD7 St ,Sr—pDrin) =
w w
O

Example 3.3. As an illustration of above theorem, we give a numerical example. The case where

T =6, p=3andh = 3. Suppose that we obtained
=1, AZ=-2 A%Z=1, [A%%, A% A% =4, -11,7]".

by applying polynomial trend filtering of order 3 to a T-dimensional time series data. Zz for
t = 1,...,6 are explicitly [Z1, %2, 23, 24, 25, 26) | = [1,—1,—2,2,0,—1]". Then from the above
theorem, in the case, Qtl fori=a,bandt=1,...,6,6+ 1,6+ 2,6 + 3 are as follows:

) 20 ) ) () () () () =(2) ]T

Zt =[217,23",23" 124+ 25 % 1 26415 %6427 “6+3

=[1,-1,-2,2,0,—1,-1,0,2]".

Remark 3.4. An argument similar to that in Theorem 3.3 (i = a) is given by Mohr (2005, p. 20).

From Theorems 3.1, 3.2, and 3.3, we immediately obtain the following theorem.

Theorem 3.5. Fori = a,b,

lim 289 = By + But+ -+ Bpat?™, (t=1,...,T,T+1,...., T +h), (3.27)

A—00

60



where (Bo, B1, ..., Bp—1) = argming g 5 >y (ye — Bo — Pt — -+ — Bp1tP )2

Example 3.4. We give a numberical example for the case y = [1,2,—1,3,-2], T = 5, h = 2

and p = 3. According to (B, b1, .., Pp-1) = argming g 5 Zthl(yt —Bo— Bt —-- —

ﬂp_ltp_l)Z. suppose that we have a linear regression y = Ils3; for i = 1,2, 3, then we rewrite it

in matrix form as follows

1] [11 1]
2 1 2 4
y=1I:8;=|-1|=1{1 3 9
3 1 4 16
2] |1 5 25

we obtain B8 = [Bo, B1, 3] = [—0.4000, 1.64286, —0.35714] T.

From the above theorem,

lim 2’\?) = Bo + Blt + 32152.

A—00

wheret=1,...,5,5+ 1,54+ 2andi = a,b.

we obtain that

11 1
1 2 22
. ] B
B M
1 5 52
B2
1 6 62
1 7 72

Bo
b1
B2

= [0.88571,1.45714, 1.31429,0.45714, —1.11429, —3.40000, —6.40000] " .
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3.4 Concluding remarks

This chapter presents a modified Whittaker—Henderson (WH) Method of Graduation. After giving
a closed-form solution, we show that it is of practical use because it provides not only a smoothed
series identical to that of the WH graduation, but also an extrapolation beyond the sample limit of
current data. In addition, we introduce two other penalized least squares problems and show that

they provide the same results as those of the modified WH graduation.
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3.5 Appendix
3.5.1 MATLAB/GNU Octave function for calculating Zz in (3.8)

function zhat=mWHgraduation(y,lamda,p,h)

[)

% y: T-dimensional column vector

o\

lamda: positive constant

o\

zhat : (T+h)-dimensional column vector
T=length(y);

S=[eye(T),zeros (T, h)l;

D=diff (eye (T+h),p);

zhat=inv (S’ xS+lambdax*D’ xD) x (S’ xy) ;

end
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Chapter 4

Some Results on /; Polynomial Trend

Filtering

This chapter is based on a previously published article: Yamada and Du (2018).

4.1 Introduction

The ¢1-norm penalized least-squares problem, defined as:

T T
: 2 2
xlmlrglcT tz:;(yt x4)” + AZ;A x|, 4.1)
where y1, ...,y are observed time-series data, was developed by Kim et al. (2009), who called

it /1 trend filtering.! Here, A > 0 is a tuning parameter and A denotes the backward difference
operator such that Az = x; — x;_1. Accordingly, A%z, = A(Ax;) = x; — 2241 + 24_2. Recall
that ZtT:3|A2:Ut| in (4.1) is £1-norm of [A2x3, ..., A%z7] . Unlike Hodrick—Prescott (HP) (1997)

filtering, which is defined as the following squared /5-norm penalized least-squares problem:

T

T
min Y (g — ) + 9y (M%), 4.2)
=1

T1yeens T

1¢, trend filtering is supported in several standard software packages such as MATLAB, R, Python, and EViews.
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where ¢ > 0 is a smoothing/tuning parameter, the solution of ¢; trend filtering becomes a continu-
ous piecewise linear trend. The relationship between HP filtering and ¢; trend filtering corresponds
to that between ridge regression of Hoerl and Kennard (1970) and Lasso (least absolute shrinkage
and selection operator) regression of Tibshirani (1996)/BPDN (basis pursuit denoising) of Chen et
al. (1998). Econometric applications of ¢; trend filtering include Yamada and Jin (2013), Yamada
and Yoon (2014), Winkelried (2016), and Yamada (2017a).

It has been well-known that HP filtering is a form of the Whittaker—Henderson (WH) method

of graduation, which is defined as:
i Z (g — x0) + 0 Z (APz,)2. 4.3)
1
t=p+1

For historical surveys of WH filtering, see Weinert (2007), Phillips (2010), and Nocon and Scott
(2012). Likewise, as shown in Kim et al. (2009), Tibshirani and Taylor (2011), and Tibshirani

(2014), ¢4 trend filtering may be generalized as:

— A AP 44
le,mn Zyt xt) 24 Z\ x| 4.4)

t=p+1

We refer to it as /1 polynomial trend filtering.? This filtering method is promising because it enables

2(4.4) where p = 1 has been known as total variation denoising in signal processing, which may be regarded as a
form of the fused Lasso by Tibshirani et al. (2005). Harchaoui and Lévy-Leduc (2010) proposed using the filtering to
detect multiple change points. (4.4) may be regarded as a form of the generalized Lasso by Tibshirani and Taylor (2011).
In addition, we note that there exist some pioneering works on the filtering that uses the ¢;-norm penalty. Miller (1946,
Sec. 1.7) mentioned that ZtT:pH |APz;| could be an alternative measure of smoothness to ZtT:pH (APz,)?, Schuette
(1978) introduced a filtering, defined as:

m1n Z\yt—xtH-)\ Z |APz,],

t=p+1

and Koenker et al. (1994) presented ¢;-norm penalized quantile smoothing spline. Incidentally, Schuette (1978) and
Koenker et al. (1994) motivate us to consider a penalized quantile regression that is obtainable by replacing the quadratic
loss function in (4.4) by the check loss function:

mm ZPT (ye — ) + A Z |APz,],

L1yeeer®

t=p+1
where, letting 7 € (0, 1),
T|ul (u>0),
pr(u) =
(I =7)ul (u<0),

which is suggested by Kim et al. (2009, Sec. 7.3).
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us to estimate a piecewise (p — 1)-th order polynomial trend of a univariate economic time series
without prespecifying the number and location of knots. For more details, see Yamada (2017b).
LetZy,. ..,z denote the solution of (4.3) and define Z7 1, . . ., Ty p, Where h denotes the

length of extrapolation by:

APTpy =0, (j=1,...,h). (4.5)

Recently, Yamada and Du (2018) introduced the following three modifications of the WH method

of graduation:*

T T+h
@ min > (—m)?+v Y (AP (4.6)
L1y TT+h i— t=p+1
T+h T+h
(b) min Z(yt — xt)Q + Z (Apxt)Q, 4.7
L1y TT+h — t=p+1
T+h T
(¢) min Z(yt —x)? Z (APz)?, (4.8)
L1y TT+h — t=p+1
where y74; = T4 for j = 1,..., h. Denote the solution of (a), (b), and (c) by 55?) fori =a,b,c

andt =1,...,T 4+ h. Yamada and Du (2018) showed that, for: = a,b,candt =1,...,T + h, it

follows that:

20 = 3, (4.9)
Among the above results, 55?) = X is of practical use because it provides not only a smoothed
series identical to that of the WH graduation, but also an extrapolation beyond the sample limit of

current data. Also, fﬁb)

= 7 is of interest because it shows that Zp1,...,Z74, based on (4.5)
are useless to reduce the end-point problem of the WH graduation.* In addition, Yamada and Du
(2018) proved that, for¢ = a,b,candt =1,...,T + h:

lim Y = Bt + - + B,y 771, 4.10)

P—00

3See also Yamada (2017¢).
* An argument similar to this is given by Mohr (2005, p. 20).
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where (B, ..., Bp_1) = arg ming, 5, S (ye = Bot® — - — BpatP )

In this paper, we present three modifications of ¢; polynomial trend filtering and show that
they provide not only identical trend estimates as ¢; polynomial trend filtering, but also extrapo-
lations of the trend beyond both sample limits. In addition, we show some other results on the
modified filtering. We also provide a MATLAB function for calculating the solution of one of the
modified filtering methods.

The chapter is organized as follows. In Section 4.2, we present three modifications of ¢;
polynomial trend filtering. In Section 4.3, we state the main results of the paper. In Section 4.4,

we give some remarks on the results provided in Section 3. Section 4.5 provides some concluding

remarks.

Notations Let y = [y1,...,yr]" and I7 be the T x T identity matrix. For an n-
dimensional column vector, 17 = [11,..., 1) ", [mlli= 227, mil, [ml3= 327, %7, and [[n]]oc=
max(|m,...,|7n|). Dy is the (n — p) X n p-th order difference matrix such that D, n =

[APDy41, ..., APY,]T. We denote Dy by D. I, 7. p isa (g + T + h) x p Vandermonde matrix,

defined by ) )
1-9)° (A-g)t - (Q—gP!
10 1! . 1p—1
Mgirin = : : : ;
70 T! .. Tp—1
(T+n)° (T+h)' - (T+h)pP!

and we denote Iy 7¢, whichis aT" X p matrix, by II.
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4.2 Three modifications of /; polynomial trend filtering

Let 21, ..., 27 denote the solution of (4.4) and define 1, ...,2Z1—1 and ZT741, ..., T74p, Where

g and h denote the length of extrapolations:

Ap%p-i—l—i =0, (Z = 17"'79)7 4.11)
APZri; =0, (j=1,...,h). 4.12)
For example, 741, ..., T74h, defined by (4.12) for p = 1, 2, 3, are explicitly expressed as follows:
(p: 1) %T-ﬁ-j ZET, (j: 1,...,h), (413)
(p=2) Zryj =27+ j(AZr), (=1,...,h), (4.14)
~ ~ oA~ (7 +1 ~ .
(p=3) Zr4y ::UT+j(A;UT)—|—‘7(]2>(A2xT), (j=1,...,h). (4.15)

For a proof of (4.15), see the Appendix.

Consider the following three modifications of ¢; polynomial trend filtering:

T T+h
D, — )’ AP 41
@, min 3wt ta Do A%, @.16)
t=1 t=p+1—g
T+h T+h
. . ,
(e),, min Yo—m)®+x ) |APx, (4.17)
t=l-yg t=p+1—g
T+h T
. . ,
(B, min > (=)’ A Y A, (4.18)
t=1—g t=p+1

where y;_; = Z1—; fori = 1,...,g9 and yry; = 274, for j = 1,..., h. Note that (4.16) is
equivalent to ¢; polynomial trend filtering if ¢ = A = 0. We denote the solution of (d), (e), and (f)
byiy) fori =d,e,fandt=1—g,..., T+ h.

Among (4.16), (4.17), and (4.18), the objective function of (4.16) may be represented in

matrix notation as:>

1y — Szgr413+M Dy rngirinl, (4.19)

°For an n-dimensional column vector, n = [n1,...,7a] , [nlli= i Il [nl3= i, 77, and ||n]|e=
maX(|771|7---7|77n|)~
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wherey = [y1,...,yr]" and S = [0, I',0]isa T x (g+7T+h) matrix and @74, isa (g+T+h)-

dimensional column vector. D 4 is the (T'+h+g—p) x (T'+h+g) p-th order difference matrix

and we denote D7 by D. Let ':Egi)TJrh = [%gd)T, DT i;ld)T]T, where %éd) = [fv’@g, cee ?ﬁﬁ)l]T

zd) = [Zﬁgd), cees fgﬁl )]T, and %gld) = [Zﬁgﬁill, . 755§?4)th‘ The MATLAB function for calculating

iéd), @ and fééd), which depends on CVX developed by Grant and Boyd (2013), is as follows:

B

function [x_g,x,x_h]=m_11_pt_filtering(y,lambda,p,qg,h)

[)

% y: T-dimensional column vector

o

lambda: positive real number

o\

P, g, h: positive integer

o\

x_g: g-dimensional column vector

o\

x: T-dimensional column vector

o

x_h: h-dimensional column vector
T=length(y);
S=[sparse(T,qg),speye(T),sparse(T,h)];
D=diff (speye (g+T+h),p);
cvx_lbegin
variables z (g+T+h)
minimize (sum((y—-S*z) . 2)+lambda*norm(Dxz, 1))
cvx_end
x_g=z(l:g9); x=z(g+l:g+T); x_h=z(g+T+1l:g+T+h);

end

4.3 Main results

Theorem 4.1. Denote the solution of (d), (e), and (f) by %gi) fori = d,e,f. Fori = d,e,f, and

t=1—g,..., T+ h, it follows that:
70 =7, (4.20)

where T1, ..., T are the solution of (4.4) and T1_g, ..., T1—1 and Ty, ..., T4 are defined by
4.11) and (4.12).

Proof. Because the objective function of (4.4) is coercive and strictly convex with respect to
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Z1,...,%r, T1,..., T are the unique global minimizer of the function. It follows that:
T T

T T
D —w) X Y A=Y (= TP A D (AT, (421)

t=1 t=p+1 t=1 t=p+1

where the equality holds only if z; = T, fort = 1,...,T.% In addition, from (4.11) and (4.12),

yi—; = T1—;fori =1,...,g,and yry; = 7y for j = 1,..., h, we have the following inequali-
ties:
p+1-1 p+1-1
A (AP =0=0 ) |APE, (4.22)
t=p+1—g t=p+1l—g
T+h T+h
A DY APz > 0=X > |APE, (4.23)
t=T+1 t=T+1
1-1 1-1
S tw—w)’>0=> (y—%) (4.24)
t=1—g t=l—g
T+h +h
Z (ye — ) >0 = (ye — %) (4.25)
t=T+1 t=T+1
Combining (4.21)—(4.23) yields
T T+h T T+h
Z(yt — .’L’t)z + )\ Z \Ap:ct\z Z(yt — Et)z + )\ Z ‘Apft‘, (426)
t=1 t=p+1—g t=1 t=p+1—g

where the equality in (4.26) holds only if x; = z; fort = 1 — g,...,T + h, which proves that
55,5(1) =gy fort = 1—g,...,T + h. Likewise, combining (4.21)—(4.25) proves that %ﬁe) =Ty
fort = 1 —g,...,T + h and combining (4.21) and (4.24)—(4.25) proves that 7. = &, for t =
1—g,...., T+ h. O

Example 4.1. As an illustration of the above theorem, we give a numerical example. Consider the

case where T'=5, g = 1, and h = 2. Suppose that we obtained

T1=3, AZy=2, [A%3, A%y, A% =[0,—-1,0]"

%In the objective function of (4.4), Zthl (y: —x+)? is coercive because it is a quadratic function whose Hessian matrix
is positive definite. See, e.g., Beck (2014, Lemma 2.42).
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by applying {1 polynomial trend filtering of order 2 (i.e., {1 trend filtering) to a T-dimensional time-
series data.” Because 2 = ATy = AT3 # ATq = ATs = 1, the line plot of (t,%;) fort =1,...,5
becomes a continuous piecewise linear line such that (3,73) is a knot. T, fort = 1,...,5 are
explicitly [T1, %2, T3, T4, 555]T = [3,5,7,8,9]". Then, from the above theorem, in the case, 5§i) for

i=d,e,fandt=1-— .yD 4+ 2 are as follows:
@070 #0 #7070 70 70 F0 0T = (1,3,5,7,8,9,10,11)7
Theorem 4.2. If A > 2||(DD ") 'Dy||o, fori =d,e,fandt =1 —g,..., T + h, it follows that
D= Bot® o Byt 4.27)

where (Bo, ..., Bp—1) = argming 5 th:1(yt ~ Bot® — e — Byt Y2,

Proof. Because Dy 1 pisa(g+T+h—p)x (¢g+T+h) (p+ 1)-diagonal Toeplitz matrix, such

that:
ag -+ ap 0 - 0
0 - Lo
Dg+T+h = . . ) ) )
. . . . 0
0 - 0 ap - ap
where a, = (—1)P7%(Y) for k = 0,...,p, it may be expressed as
Gy Gy 0

Dyirvn=10 D 0|,
0 H, H,

where GG is a g X g upper triangular matrix, G'2 is a g X T matrix, H; is an h x T matrix, and H>

"In the case, [A?73, A%, A?F5] T is expected to become sparse, as in the numerical example, because 37 _ | A%z
is included as a penalty.
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is an h X h unit lower-triangular matrix. For example, whenp =3, g =h = 2,and T = 5:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

o 0:-1 3 -3 1 0:0 O
Doigio = (4.28)

o o0:0 -1 3 -3 1:0 O

o 0:0 O -1 3 -3:1 0

o 0:0 O O -1 3:-3 1
Let ig = [fl_g, ce ,%1_1]T, T = [551, ce ,3~3T}T, T, = [:’ETJrl, . ,§T+h]T, and i:g—i-T—i-h =
[@,,z",&]]", whichisa (g + T + h)-dimensional column vector. Then, by definition of Z, and

I}, it follows that:

Gixzy + Gax =0, 4.29)
H,x + Hyx;, =0, (4.30)
which leads to:
0
Dy irinTyrrin = |DZ| - (4.31)
0

From Kim et al. (2009), if A > 2[(DD7)"!Dyls, it follows that # = II3, where
B = (II'I) 'MI"y. Recalling that DIT = 0, we obtain Dyy7 4Tgirin = 0 if A >
2|(DD") ' Dy, which implies that #,,7., may be represented as I, 7.,7v. Because

& = I13, v must equal 3. Therefore, if A > 2||(DD ")~ Dy||s, then Ty Th = HngTJr;ﬁ. O

Theorem 4.3. Suppose that y = Ila, where o # 0 is a p-dimensional column vector. Then, for

1 =d,e,f, it follows that:

7 ) pon = Myprincy, (4.32)

73



where 7" [E(i) @ 1T

grT+h = T1lgr s Tl

Proof. If y = Ile, it follows that: = ITa. Accordingly, Dy 74X 4174+ = 0, which indicates
that ,, 71, may be represented as IT, 7, ,7. Because x = Il if y = Ile, v must equal o.

Therefore, we obtain 447y, = Iy rppaif y = Ia. O

Example 4.2. We give a numberical example for the case g = 1, T = 2, h = 2 and p = 3. Suppose
a=[-1,1,3]", theny = yo = [3,13] " is satisfied.

From the above theorem, we obtain

1-1)° a-1)t 1-1)> -1
(1)° 1! 12 -1 3
Tiy2e2= | (2)° 21 22 1|=113
(3)° 31 32 3 29
(3+1)° 4 42 51
Corollary 4.1. Let %EJQTJF,L = [ig?g, e 5¥Lh]Tfori =d,e,f

(i) Denote the (j + 1)-th column of I and that of I1, 1, respectively, by T; and by Tgyrp

forj=0,...,p—1 Ify =T, then 5§2T+h = Ty4T+h,j for any A > 0.

. . . _ T —117T ~(4) _
(ii) Let z be a T-dimensional column vector. If y = II(I1 II)"II' 2, then &\ 1 ., =

I, 7y (ITTID) I 2 for any A > 0.

4.4 Some remarks on the main results

First, we give a remark on Theorem 4.1. Because |G |= (—1)97, from (4.29), Z, may be expressed
withz as ¢, = —GflGQE. Likewise, because | Ha|= 1, from (4.30), &}, may be expressed with &
asxp = —H, LH\Z. Thus, the modified ¢; polynomial trend filtering, (4.16), may be characterized

as a filtering that calculates

-GG,

N

Ir (4.33)

~H,'H,
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from 4.8 (I is defined as an 7' x T identity matrix.)
In addition, from Kim et al. (2009), it follows that & — y as A\ — 0. Therefore, we obtain:
-GGy
~(d
xﬁﬂwﬁ Iy Yy, (A—=0). (4.34)

~H,'H,

Second, we provide a remark on Theorems 4.2 and 4.3. Yamada (2017b) recently showed

that:
z=TI8 + X, (4.35)

where X = DT(DDT)~! and ¢, which is a (T — p)-dimensional column vector, is the solution

of the following Lasso regression/BPDN:
min |y — X (34 $1- (4.36)

Because X 'II = 0, HB + X q’N) in (4.35) represents an orthogonal decomposition of &. Here, we
show that we may prove Theorems 4.2 and 4.3 by using (4.35) and (4.36). Premultiplying (4.35) by
D yields Dx = $ We accordingly obtain:

0

DyirinTgirin = || - (4.37)

(i) From Osborne et al. (2000, p. 324), if A > 2||X Ty||o0, then gg = 0. Therefore, we obtain

# = I8 and Dy 7 hZgi1+n = 0, which proves Theorem 4.2.

8 et us calculate nglHli for the case where p = 3, g = h = 2, and T = 5. From (4.28), it follows that

HF— [5T72 —3Zr—1 + 3§T:| _ FT + (AZ7) + (AQET)] .

Tr—1— 3Tr —2z7 — (AZ7)
Accordingly, we obtain:

CH'H\F - {1 o} [ET+ (AZr) + (A%T)} _ [ Fr 4+ (AZr) + (A%Er) } ’

3 1 —20T — (AiT) T + Q(AfT) + 3(A2§T)

which is consistent with (4.15).
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(ii) If y = Iev, where o # 0, then X "y = 0, which implies that A > 2|| X Ty||oc= 0. Again,
from Osborne et al. (2000), we obtain $ = 0 if y = Ila. Therefore, if y = Ilq, it follows

that # = TI8 = Ia and Dy 1 hZ g 14+ = 0, which proves Theorem 4.3.

Example 4.3. Third, we give an example of Corollary 4.1 (i). For the case wherey = [1,.. ., 5]T

and p = g = h = 2, it follows that 5&?5” =[-1,0,1,...,5,6,7] forany A > 0.

4.5 Concluding remarks

The ¢ polynomial trend filtering method is a promising piecewise polynomial curve-fitting method
because it does not require prespecifying the number and location of knots. We have shown some
theoretical results on this method. One of them is that a small modification of the filtering provides
identical trend estimates and also extrapolations of the trend beyond both sample limits. Another
is that Z741, ..., T4, based on (4.12) are useless to improve the trend estimates of ¢; polynomial
trend filtering. We also provided a MATLAB function for calculating the solution of one of the
modified filtering methods. The main results of the paper are summarized in Theorems 4.1, 4.2, and
4.3 and Corollary 4.1.

Finally, we remark that applying the modified ¢; polynomial trend filtering (4.16)—(4.18)
requires specification of the value of A. For this purpose, the methods proposed in Yamada and

Yoon (2016b) and Yamada (2018) are applicable.
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4.6 Appendix

4.6.1 Proof of (4.15)

Because A3Zpy; = A2Zpi; — A%Fri i, from A3Tpy; = 0 for j = 1,...,h, we obtain
A%Zp . = A%?Zpfork = 1,..., h. Then, because ZLZI(AQEETHC) = [(A%Zp) forl =1,...,h

and 22:1(A2§T+k) = Az — AZp, it follows that
A5T+l :A:TVT—FZ(AQEET), (l:1,...,h).

Furthermore, because Z{ZI(AETH) = j(Azp) + ( {:1 )(A%Zp) for j = 1,...,h and

Z{;l (AZ74;) = Tryj — Z7, we finally obtain:

JU+D A2y (G=1.....n)

Tryj =27 + j(AZ7r) +
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