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2.3.3 Penalized regressions to compute û . . . . . . . . . . . . . . . . . . . . . 32

2.3.4 Penalized regression to compute τ̂ + û . . . . . . . . . . . . . . . . . . . 33
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Chapter 1

Introduction

In econometric analysis, trend estimation/smoothing methods based on penalized least squares are

popular. This thesis focuses on three such methods. They are (a) Whittaker–Henderson (WH)

method of graduation, which include Hodrick and Prescott (1997) filter as a special case, (b) ℓ1

(polynomial) trend filtering developed by Kim et al. (1999), and (c) cubic smoothing spline, which

was developed by Schoenberg (1964), Reinsch (1967) and others. In this chapter, we briefly review

some researches which are closely related to our studies and then present the outline of the thesis.

1.1 Introductory survey

1.1.1 Bohlmann (1899): A pioneering study

Over 120 years ago, Bohlmann (1899) proposed the following trend estimation method:

min
x1,x2,...,xn∈R

f(x1, x2, . . . , xn) =

n∑
i=1

(yi − xi)
2 + λ

n−1∑
i=1

(∇xi)2, (1.1)

where y1, y2, . . . , yn denote a time series, λ is a positive parameter, and ∇xi = xi+1 − xi for

i = 1, 2, . . . , n − 1.
∑n

i=1(yi − xi)
2 and

∑n−1
i=1 (∇xi)2 in (1.1) represent fidelity to the data and

smoothness, respectively, and λ controls the trade-off between them.

Denote the solution of (1.1) by x̂1, x̂2, . . . , x̂n. More precisely, x̂1, x̂2, . . . , x̂n are such that

f(x1, x2, . . . , xn) ≥ f(x̂1, x̂2, . . . , x̂n). (1.2)
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Notably, Bohlmann (1899) obtained an explicit representation of x̂1, x̂2, . . . , x̂n. He showed

x̂i = yi + λ(∇x̂i −∇x̂i−1), i = 1, 2, . . . , n, (1.3)

and 

∇x̂0 = 0,

∇x̂1 =
∑n−1

t=1 ∇yt sinh{(n−t)α}
λ sinh(nα) ,

∇x̂2 =
sinh{(n−2)α}∇y1 sinh(α)+sinh 2α

∑n−1
t=2 ∇yt sinh{(n−t)α}

λ sinh(α) sinh(nα) ,

...

∇x̂n−1 =
sinh(α)

∑n−2
t=1 ∇yt sinh(tα)+sinh{(n−1)α}

∑n−1
t=n−1 ∇yt sinh{(n−t)α}

λ sinh(α) sinh(nα) ,

∇x̂n = 0,

(1.4)

where α > 0 is defined by

coshα = 1 +
1

2λ
.

Here, we note that sinh and cosh represent the hyperbolic sine function and hyperbolic cos function,

respectively. They are given by

sinh(x) =
ex − e−x

2
and cosh(x) =

ex + e−x

2
.

Then, x̂1, x̂2, . . . , x̂n are obtainable by substituting (1.4) into (1.3).

We remark that proofs of (1.3) and (1.4) are provided in the Appendix. See Sections 1.3.1–

1.3.2. A numerical example for obtaining x̂1, x̂2, . . . , x̂n from (1.3) and (1.4) is also given in the

Appendix. See Section 1.3.3.
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1.1.2 Whittaker–Henderson method of graduation

Nearly a quarter of a century later, Whittaker (1923), without knowing Bohlmann (1899), proposed

a similar idea to (1.1). Whittaker (1923) proposed the following method:

min
x1,x2,...,xn∈R

f(x1, x2, . . . , xn) =
n∑
i=1

h2i (yi − xi)
2 + λ

n−3∑
i=1

(∇3xi)
2
, (1.5)

where hi (i = 1, 2, . . . , n) is a constant, ∇ represents the forward difference operator, and ∇3xi =

∇2xi+1−∇2xi denotes the third-order difference. The first term of (1.5) measures the closeness of

fit (fidelity), and the second term is a measure of smoothness. Let ϵ =
h2i
λ

for i = 4, 5, . . . , n − 3,

and x̂1, x̂2, . . . , x̂n denote the solution of (1.5). Whittaker (1923) showed the following sixth-order

difference equation holds:

ϵx̂i = ϵyi +∇6x̂i−3. (1.6)

The proof of (1.6) is shown in the Appendix. See Section 1.3.4. Whittaker’s student Aitken (1925)

obtained an exact solution of Whittaker’s equation above and almost the same time Henderson

(1924) proposed a simplified way to solve the difference equation.

More than fifty years later, Hodrick and Prescott (1981, 1997) used a method similar to (1.1)

and (1.5). That is the following minimization problem:

min
x1,x2,...,xn∈R

f(x1, x2, . . . , xn) =

n∑
i=1

(yi − xi)
2 + λ

n∑
i=3

(∆2xi)
2
, (1.7)

where ∆ denotes the backward difference operator, and ∆2xi = ∆xi−∆xi−1 = xi−2xi−1+xi−2

is called the second-order difference. The first part in (1.7) is used to measure the fitness of the es-

timation to the original data, and the second part measures the smoothness. λ is a positive smooth-

ing parameter to control the balance of smoothness and fitness. Their paper had a great impact

on macroeconometric time series analysis and, in econometrics, (1.7) is referred to as “Hodrick-

Prescott (HP) filter.” In econometrics, a large volume of literature has been published in the last

decade focusing on HP filter. Examples include Phillip and Jin (2015), de Jong and Sakarya (2016),

Cornea-Madeira (2017), Hamilton (2018), Pillips and Shi (2019), Sakarya and de Jong (2020), Ya-
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mada (2015, 2018ab, 2020ab), Yamada and Du (2019), Yamada and Jahra (2019). Danthine and

Girardin (1989) stated that (1.7) can be represented in matrix notation as follows:

min
x∈R

f(x) = (y − x)⊤(y − x) + λx⊤D⊤
2 D2x, (1.8)

where y = [y1, y2, . . . , yn]
⊤, x = [x1, x2, . . . , xn]

⊤, and D2 ∈ R(n−2)×n is a difference matrix

such that D2x = [∆2x3, . . . ,∆
2xn]

⊤. They showed the solution of (1.8), denoted by x̂, can be

expressed by

x̂ = (In + λD⊤
2 D2)

−1
y, (1.9)

where In ∈ Rn×n be an identity matrix. We provide Matlab/GNU Octave and R functions for

calculating x̂ in the Appendix. See Section 1.3.5.

As a generalization of (1.1), (1.5), and (1.7), consider the following minimization problem:

min
x1,x2,...,xn∈R

f(x1, x2, . . . , xn) =
n∑
i=1

(yi − xi)
2 + λ

n−p∑
i=1

(∇pxi)
2, (1.10)

where λ > 0, 0 < p < n, and ∇p denotes the p-th forward difference operator such that ∇pxi =

∇p−1xi+1 − ∇p−1xi. (1.10) is referred to as ‘Whittaker–Henderson method of graduation.’ See,

e.g., Weinert (2007). The problem of (1.10) can be written in matrix notation as follows:

min
x∈R

f(x) = (y − x)⊤(y − x) + λx⊤D⊤
p Dpx, (1.11)

where Dp is a (n − p) × n difference matrix such that Dpx = [∇px1,∇px2, . . . ,∇pxn]
⊤ for an

n-dimension column vector x = [x1, x2, . . . , xn]
⊤. The minimization of (1.11) is the solution of

the following equation:

(In + λD⊤
p Dp)x̂ = y. (1.12)
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1.1.3 ℓ1 trend filtering

Kim et al. (2009) proposed a new method of trend estimation, “ℓ1 trend filtering.” The filtering

method looks like HP filter. It is obtainable by replacing the squared ℓ2 norm,
∑n

i=3(∆
2xi)

2, in

(1.7) with the ℓ1 norm,
∑n

i=3|∆2xi|. More precisely, it is defined as

x̃ = arg min
x1,x2,...,xn

n∑
i=1

(yi − xi)
2 + λ

n∑
i=3

|∆2xi|

= arg min
x∈Rn

∥y − x∥22+λ∥D2x∥1, (1.13)

where λ is a positive tuning parameter, y = [y1, y2, . . . , yn]
⊤, x = [x1, x2, . . . , xn]

⊤, and

D2 ∈ R(n−2)×n is a difference matrix such thatD2x = [∆2x3, . . . ,∆
2xn]

⊤. In addition, ∥D2x∥1

denotes the ℓ1 norm ofD2x.

As the objective function of (1.13) is a coercive and strictly convex function, it has a unique

global minimizer. Denote it by x̃. Concerning λ in (1.13), Kim et al. (2009) showed that


x̃→ y as λ→ 0,

D2x̃ = 0 if λ ≥ λmax,

(1.14)

where

λmax = 2∥(D2D
⊤
2 )

−1D2y∥∞. (1.15)

Here, for a vector η = [η1, . . . , ηn]
⊤, ∥η∥∞= max{|η1|, . . . , |ηn|}. We remark that x̃ such that

D2x̃ = 0 represents a linear trend. This is because, in the case, x̃ belongs to the space spanned by

ι = [1, . . . , 1]⊤ ∈ Rn and τ = [1, . . . , n]⊤ ∈ Rn.

ℓ1 trend filtering is attractive because it enables us to estimate a continuous piecewise linear

trend. For the reason, it has been becoming popular in econometrics and finance. Examples include

Yamada and Jin (2013), Yamada and Yoon (2014, 2016ab), Winkelried (2016), Yamada (2017ab),

Klein (2018), and Mitra and Rohit (2018).
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1.1.4 Smoothing spline

Cubic smoothing spline, which was developed by Schoenberg (1964), Reinsch (1967), and others, is

a typical scatterplot smoothing method. Green and Silverman (1994) is an appropriate reference for

it. As WH method of graduation and ℓ1 trend filtering, it is a smoothing method based on penalized

least-squares.

Consider the scatter plot of ordered pairs (xi, yi) for i = 1, . . . , n, where x1 < · · · < xn.

Let f̂(x) represent the cubic smoothing spline whose knots are x1, . . . , xn fitted to the same plot.

More precisely, f̂(x) is a function such that

f̂(x) = arg min
f∈W

n∑
i=1

{yi − f(xi)}2 + λ

∫ b

a

{
f ′′(x)

}2
dx, (1.16)

where a and b are such that a < x1 and xn < b, W denotes a function space contains all functions

whose second derivative is square integrable over the interval [a, b], and λ is a positive smoothing/-

tuning parameter, which controls the trade-off between goodness of fit and smoothness.

Let f̂ = [f̂(x1), . . . , f̂(xn)]
⊤. Then, as shown in Green and Silverman (1994), f̂(x) is a

natural cubic spline whose knots are x1, . . . , xn and it thus follows that

f̂ = arg min
f∈Rn

∥y − f∥2+λf⊤C⊤R−1Cf (1.17)

=
(
In + λC⊤R−1C

)−1
y, (1.18)

where y = [y1, . . . , yn]
⊤, In denotes the n×n identity matrix, andC andR are explicitly presented

in Chapter 2. In addition, again as shown in Green and Silverman (1994), f̂(x) in (1.16) is uniquely

determined by f̂ ∈ Rn and therefore estimating f̂(x) is equivalent to estimating f̂ .

Cubic smoothing spline has attracted a large amount of research attention in the last 30

years such as Speed (1991) indicated that fitting cubic smoothing spline is the best linear unbiased

predictor (BLUP), many researchers have been working on the application and data analysis using

cubic smoothing splines, including an approach to regression estimation (Cleveland and Devlin,

1988); local linear forecasts using cubic smoothing spline (Hyndman et al., 2002); the analysis of

longitudinal data using cubic smoothing splines (Verbyla et al., 2012); solving a Cauchy problem

using cubic smoothing spline (Nafuka et al., 2021).
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1.2 Outline of the thesis

This thesis is organized as follows.

Chapter 2 is based on a research paper on cubic smoothing spline. Fitting a cubic smoothing

spline is a typical smoothing method. In this study, we reveal a principle of duality in the penalized

least squares regressions relating to the method. This is the main contribution of this study. We also

provide a number of results derived from them, some of which are illustrated by a real data example.

Chapter 3 is based on a research paper on Whittaker–Henderson (WH) method of graduation.

In the study, we present a modified WH method of graduation. After giving a closed-form solution,

we show that it is of practical use because it provides not only a smoothed series identical to that of

the WH graduation, but also an extrapolation beyond the sample limit of current data. In addition,

we introduce two other penalized least squares problems and show that they provide the same results

as those of the modified WH graduation.

Chapter 4 is based on a research paper on ℓ1 polynomial trend filtering, which include ℓ1

trend filtering as a special case. It is also a filtering method described as an ℓ1-norm penalized least-

squares problem. It is promising because it enables the estimation of a piecewise polynomial trend

in a univariate economic time series without prespecifying the number and location of knots. This

paper shows some theoretical results on the filtering, one of which is that a small modification of

the filtering provides not only identical trend estimates as the filtering but also extrapolations of the

trend beyond both sample limits.

7



1.3 Appendix

1.3.1 Proof of (1.3)

LetD1 denote a first-order difference matrix such that

D1 =



−1 1 0 0 · · · 0

0 −1 1 0 · · · 0

...
. . .

. . .
. . .

. . .
...

0 · · · 0 −1 1 0

0 · · · 0 0 −1 1


∈ R(n−1)×n. (1.19)

The minimization problem in (1.1) can be represented in matrix notation as follows:

min
x∈Rn

f(x) = ∥y − x∥22+λ∥D1x∥22. (1.20)

By differentiating f(x) in (1.20) with respect to x, we obtain

∂f(x)

∂x
= −2(y − x) + 2λD⊤

1 D1x. (1.21)

Let x̂ = [x̂1, x̂2, . . . , x̂n]
⊤ denote the solution of (1.1) as before. Then, the optimal condition for

(1.20) can be expressed by

−2(y − x̂) + 2λD⊤
1 D1x̂ = 0, (1.22)

and accordingly we have

y − x̂ = λD⊤
1 D1x̂, (1.23)

8



where

D⊤
1 D1 =



1 −1 0 0 0 · · · 0

−1 2 −1 0 0 · · · 0

0 −1 2 −1 0 · · · 0

...
. . .

. . .
. . .

. . .
. . .

...

0 · · · 0 −1 2 −1 0

0 · · · 0 0 −1 2 −1

0 · · · 0 0 0 −1 1



∈ Rn×n. (1.24)

From (1.23)–(1.24), we have



y1 − x̂1 = λ(x̂1 − x̂2) = −λ(∇x̂1 −∇x̂0),

y2 − x̂2 = λ(−x̂1 + 2x̂2 − x̂3) = −λ(∇x̂2 −∇x̂1),
...

yn−1 − x̂n−1 = λ(−x̂n−2 + 2x̂n−1 − x̂n) = −λ(∇x̂n−1 −∇x̂n−2),

yn − x̂n = λ(x̂n − x̂n−1) = −λ(∇x̂n −∇x̂n−1).

(1.25)

which leads to (1.3).

1.3.2 Proof of (1.4)

The solution of WH(1) filter in (1.20) is given by

x̂ = (In + λD⊤
1 D1)

−1
y, (1.26)

from which we have

(In + λD⊤
1 D1)x̂ = y. (1.27)

9



Premultiplying (1.27) byD1 yields

D1x̂ = (In−1 + λD1D
⊤
1 )

−1
D1y. (1.28)

Here, (In−1 + λD1D
⊤
1 ) is a symmetric tridiagonal matrix as follows:



1 + 2λ −λ 0 0 0 · · · 0

−λ 1 + 2λ −λ 0 0 · · · 0

0 −λ 1 + 2λ −λ 0 · · · 0

...
. . .

. . .
. . .

. . .
. . .

...

0 · · · 0 −λ 1 + 2λ −λ 0

0 · · · 0 0 −λ 1 + 2λ −λ

0 · · · 0 0 0 −λ 1 + 2λ



∈ R(n−1)×(n−1). (1.29)

From Dow (2003, pp. E202–E203), the (i, j) element of (In−1 + λD1D
⊤
1 )

−1 is explicitly ex-

pressed as follows:

Pi,j =
sinh(iα) sinh{(n− j)α}
λ sinh(α) sinh(nα)

, i ≤ j, (1.30)

and

Qi,j =
sinh(jα) sinh{(n− i)α}
λ sinh(α) sinh(nα)

, i > j, (1.31)

where

cosh(α) = 1 +
1

2λ
.

Let ei = [0, . . . , 0, 1, 0, . . . , 0]⊤ ∈ Rn−1. Then, given that ∇xi denotes the i-th entry of

D1x̂, we have

∇x̂i = e⊤i (D1x̂), i = 1, 2, . . . , n− 1. (1.32)
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By combining (1.28) and (1.32), it follows that

∇x̂i = e⊤i D1x̂ = e⊤i (In−1 + λD1D
⊤
1 )

−1
D1y = e⊤i (In−1 + λD1D

⊤
1 )

−1
D1y

= e⊤i



P1,1 P1,2 · · · P1,n−1

Q2,1 P2,2 · · · P2,n−1

...
...

. . .
...

Qn−1,1 Qn−1,2 · · · Pn−1,n−1





∇y1

∇y2
...

∇yn−1



=

[
Qi,1 Qi,2 · · · · · · Qi,i−1

]


∇y1

∇y2
...

∇yi−1



+

[
Pi,i Pi,i+1 · · · · · · Pi,n−1

]


∇yi

∇yi+1

...

∇yn−1


. (1.33)

Thus, given (1.30) and (1.31), we obtain

∇x̂i =
[
sinh(α) sinh{(n− i)α}
λ sinh(α) sinh(nα)

· · · sinh{(i− 1)α} sinh{(n− i)α}
λ sinh(α) sinh(nα)

]


∇y1

∇y2
...

∇yi−1



+

[
sinh(iα) sinh{(n− i)α}
λ sinh(α) sinh(nα)

· · · sinh(iα) sinh(α)

λ sinh(α) sinh(nα)

]


∇yi

∇yi+1

...

∇yn−1


=

sinh{(n− i)α}
λ sinh(α) sinh(nα)

{sinh(α)∇y1 + sinh(2α)∇y2 + · · ·+ sinh{(i− 1)α}∇yi−1}

+
sinh(iα)

λ sinh(α) sinh(nα)
{sinh{(n− i)α}∇yi + sinh{(n− i− 1)α}∇yi+1 + · · ·+ sinh(α)∇yn−1}
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=
sinh{(n− i)α}

λ sinh(α) sinh(nα)

{
i−1∑
t=1

sinh(tα)∇yt

}
+

sinh(iα)

λ sinh(α) sinh(nα)

{
n−1∑
t=i

sinh{(n− t)α}∇yt

}

=
sinh{(n− i)α}

∑i−1
t=1∇yt sinh(tα) + sinh(iα)

∑n−1
t=i ∇yt sinh{(n− t)α}

λ sinh(α) sinh(nα)
, (1.34)

which leads to (1.4).

1.3.3 A numerical example for obtaining x̂1, x̂2, . . . , x̂n from (1.3) and (1.4)

As a numerical example, consider the case of such that y = [1, 3, 2, 4, 9, 5]⊤ and λ = 1.

Then, given that cosh(α) = 1 +
1

2λ
=

3

2
, sinh(α) =

√
5

2
, cosh(2α) =

7

2
, cosh(3α) = 9,

sinh(2α) =
3
√
5

2
, sinh(3α) = 4

√
5, sinh(4α) =

21
√
5

2
, sinh(5α) =

55
√
5

2
, and sinh(6α) =

72
√
5, we have

∇x̂1 =
sinh(α)

∑5
t=1∇yt sinh{(6− t)α}

sinh(α) sinh(6α)

=
∇y1 sinh(5α) +∇y2 sinh(4α) +∇y3 sinh(3α) +∇y4 sinh(2α) +∇y5 sinh(α)

sinh(6α)

=
2 sinh(5α)− sinh(4α) + 2 sinh(3α) + 5 sinh(2α)− 4 sinh(α)

sinh(6α)

=

55
√
5

4
− 21

√
5

2
+ 8

√
5

2
+ 15

√
5

2
− 4

√
5

2
72
√
5

=
29

36
= 0.8056, (1.35)

∇x̂2 =
sinh(4α)

∑1
t=1∇yt sinh(tα) + sinh(2α)

∑5
t=2∇yt sinh{(6− t)α}

sinh(α) sinh(6α)

=
2 sinh(4α) sinh(α) + sinh(2α){− sinh(4α) + 2 sinh(3α) + 5 sinh(2α)− 4 sinh(α)}

sinh(α) sinh(6α)

=
2× 21

√
5

2
×

√
5

2
+

3
√
5

2
(−21

√
5

2
+ 8

√
5 + 5× 15

√
5

2
− 2

√
5)

√
5

2
× 72

√
5

=
5

12
= 0.4167, (1.36)

∇x̂3 =
sinh(3α)

∑2
t=1∇yt sinh(tα) + sinh(3α)

∑5
t=3∇yt sinh{(6− t)α}

sinh(α) sinh(6α)
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=
sinh(3α){2 sinh(α)− sinh(2α)}+ sinh(3α){2 sinh(3α) + 5 sinh(2α)− 4 sinh(α)}

sinh(α) sinh(6α)

=
4
√
5× (

√
5− 3

√
5

2
) + 4

√
5× (8

√
5 +

15
√
5

2
− 2

√
5)

√
5

2
× 72

√
5

=
13

9
= 1.4444, (1.37)

∇x̂4 =
sinh(2α)

∑3
t=1∇yt sinh(tα) + sinh(4α)

∑5
t=4∇yt sinh{(6− t)α}

sinh(α) sinh(6α)

=
sinh(2α){2 sinh(α)− sinh(2α) + 2 sinh(3α)}+ sinh(4α){2 sinh(5α)− 4 sinh(α)}

sinh(α) sinh(6α)

=

3
√
5

2
× (

√
5− 3

√
5

2
+ 8

√
5) +

21
√
5

2
× (

15
√
5

2
− 2

√
5)

√
5

2
× 72

√
5

=
23

12
= 1.9167, (1.38)

∇x̂5 =
sinh(α)

∑4
t=1∇yt sinh(tα) + sinh(5α)

∑5
t=5∇yt sinh{(6− t)α}

sinh(α) sinh(6α)

=
sinh(α){2 sinh(α)− sinh(2α) + 2 sinh(3α) + 5 sinh(4α)} − 4 sinh(5α) sinh(α)

sinh(α) sinh(6α)

=

√
5

2
× (

√
5− 3

√
5

2
+ 8

√
5 +

105
√
5

2
)− 4× 55

√
5

2
×

√
5

2√
5

2
× 72

√
5

= −25

36
= −0.6944. (1.39)

From (1.35)–(1.39), we obtain:

D1x̂ = [∇x1 −∇x0,∇x2 −∇x1, . . . ,∇x6 −∇x5]⊤

= [0.8056,−0.3889, 1.0278, 0.4722,−2.6111, 0.6944]⊤.

(1.40)
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Then, by using x̂i − yi = λ(∇x̂i −∇x̂i−1) for i = 1, 2, . . . , n, we obtain

x̂ = [1 + 0.8056, 3− 0.3889, 2 + 1.0278, 4 + 0.4722, 9− 2.6111, 5 + 0.6944]⊤

= [1.8056, 2.6111, 3.0278, 4.4722, 6.3889, 5.6944]⊤.

(1.41)

We may confirm that these results are correct by using (1.28) and (1.26) as follows:

1 y=[1 3 2 4 9 5]’;

2 lambda=1;

3 n=length(y);

4 D1=diff(eye(n));

5 D1xhat=inv(eye(n-1)+lambda*D1*D1’)*D1*y

6

7 D1xhat =

8 0.8056

9 0.4167

10 1.4444

11 1.9167

12 -0.6944

13

14 xhat=inv(eye(n)+lambda*D1’*D1)*y

15

16 xhat =

17 1.8056

18 2.6111

19 3.0278

20 4.4722

21 6.3889

22 5.6944

Here, we give another approach to obtain x̂ from (1.3) and (1.4). Let e1 = [1, 0, . . . , 0]⊤ ∈

Rn and E ∈ Rn×n be a matrix as follows:

E =

e⊤1
D1

 . (1.42)
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Then, it follows that

Ex̂ =



1 0 0 0 · · · 0

−1 1 0 0 · · · 0

0 −1 1 0 · · · 0

...
. . .

. . .
. . .

. . .
...

0 · · · 0 −1 1 0

0 · · · 0 0 −1 1





x̂1

x̂2

x̂3
...

x̂n−1

x̂n


=



x̂1

∇x̂1

∇x̂2
...

∇x̂n−2

∇x̂n−1


. (1.43)

As E−1 is a lower triangular matrix of ones, x̂ can be obtained by



x̂1

x̂2

x̂3
...

x̂n−1

x̂n


=



1 0 · · · · · · · · · 0

1 1 0 · · · · · · 0

1 1 1 0 · · · 0

...
...

...
. . .

. . .
...

1 1 1 · · · 1 0

1 1 1 · · · 1 1





x̂1

∇x̂1

∇x̂2
...

∇x̂n−2

∇x̂n−1


. (1.44)

1.3.4 Proof of (1.6)

Let y = [y1, y2, . . . , yn]
⊤, x = [x1, x2, . . . , xn]

⊤,H andD3 be matrices such that

H =



h21 0 0 · · · 0 0

0 h22 0 · · · 0 0

0 0 h23 · · · 0 0

...
...

. . .
. . .

...
...

0 0 · · · 0 h2n−1 0

0 0 · · · 0 0 h2n


∈ Rn×n, (1.45)
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D3 =



−1 3 −3 1 0 0 · · · 0

0 −1 3 −3 1 0 · · · 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 −1 3 −3 1 0

0 · · · 0 0 −1 3 −3 1


∈ R(n−3)×n. (1.46)

The problem in (1.5) can be represented in matrix notation by

min
x∈Rn

f(x) = (y − x)⊤H(y − x) + λ(D3x)
⊤(D3x). (1.47)

By differentiating f(x) in (1.47) with respect to x, we obtain

∂f(x)

∂x
= −2H(y − x) + 2λD⊤

3 D3x. (1.48)

Let x̂ = [x̂1, x̂2, . . . , x̂n]
⊤ denote the solution of (1.47), then the optimality condition for (1.47) can

be expressed by

−H(y − x̂) + λD⊤
3 D3x̂ = 0, (1.49)

from which we have

Hy =Hx̂+ λD⊤
3 D3x̂. (1.50)
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GivenD3x̂ = [∇3x̂1,∇3x̂2, . . . ,∇3x̂n−3]
⊤, a set of equations can be derived:



h21y1 = h21x̂1 − λ∇3x̂1,

h22y2 = h22x̂2 + 3λ∇3x̂1 − λ∇3x̂2,

h23y3 = h23x̂3 − 3λ∇3x̂1 + 3λ∇3x̂2 − λ∇3x̂3,

h24y4 = h24x̂4 + λ∇3x̂1 − 3λ∇3x̂2 + 3λ∇3x̂3 − λ∇3x̂4,

h25y5 = h25x̂5 + λ∇3x̂2 − 3λ∇3x̂3 + 3λ∇3x̂4 − λ∇3x̂5,

h26y6 = h26x̂6 + λ∇3x̂3 − 3λ∇3x̂4 + 3λ∇3x̂5 − λ∇3x̂6,

...

h2n−3yn−3 = h2n−3x̂n−3 + λ∇3x̂n−6 − 3λ∇3x̂n−5 + 3λ∇3x̂n−4 − λ∇3x̂n−3.

From the equations above, for i = 4, 5, . . . , n− 3, it follows that

h2i yi = h2i x̂i + λ∇3x̂i−3 − 3λ∇3x̂i−2 + 3λ∇3x̂i−1 − λ∇3x̂i. (1.51)

Let ϵ =
h2i
λ

for i = 4, 5, . . . , n− 3, then (1.51) can be rewritten as

ϵyi − ϵx̂i = ∇3x̂i−3 − 3∇3x̂i−2 + 3∇3x̂i−1 −∇3x̂i. (1.52)

Let x̂i+1 = Fx̂i, for the right-hand side of (1.52),

∇3x̂i−3 − 3∇3x̂i−2 + 3∇3x̂i−1 −∇3x̂i = ∇3(x̂i−3 − 3x̂i−2 + 3x̂i−1 − x̂i)

= ∇3(x̂i−3 − 3Fx̂i−3 + 3F 2x̂i−3 − F 3x̂i−3)

= −∇3(F − 1)3x̂i−3

= −∇6x̂i−3. (1.53)

From (1.52) and (1.53), the following sixth-order difference equation can be derived

ϵx̂i = ϵyi +∇6x̂i−3. (1.54)
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1.3.5 Matlab/R functions for calculating x̂ in (1.9)

We give Matlab/R functions for calculating x̂ in (1.9).

Matlab function:

1 function xhat=calcxhat(n,y,lambda)

2 % n: sample size

3 % lambda: smoothing parameter

4 n = length(y);

5 I = eye(n);

6 D2 = diff(I,2);

7 xhat = inv(I+lambda*D2’*D2)*y;

8 end

R function:

1 calcuxhat -> function(x){

2 # x: n*1 vector

3 n <- length(x);

4 I <- diag(n);

5 D2 <- diff(I,diff=2);

6 xhat <- solve((I+lambda%*%t(D2)%*%D2))%*%y;

7 }

1.3.6 Matlab/R functions for calculating λmax in (1.15)

We give Matlab/R functions for calculating λmax in (1.15).

Matlab function:

1 function lambdamax=l1tf_lambdamax(y)

2 % y: n*1 vector

3 n=length(y);

4 D2=diff(eye(n),2);

5 lambdamax=norm((D2*D2’)\(D2*y),inf);

6 disp(sprintf(’lambda_max : %e’, lambdamax));

7 end

R function:
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1 calculambdamax -> function(y){

2 # y: n*1 vector

3 n <- length(y);

4 D2 <- diff(eye(n),diff=2);

5 M <- solve(D2%*%t(D2))%*%(D2%*%y);

6 lambdamax <- norm(M,p=inf);

7 }
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Chapter 2

Principle of Duality in Cubic Smoothing

Spline

This chapter is based on a published article: Du and Yamada (2020).

2.1 Introduction

Fitting a cubic smoothing spline, which was developed by Schoenberg (1964), Reinsch (1967) and

others, is a typical smoothing method. The cubic smoothing spline fitted to a scatter plot of ordered

pairs (xi, yi) for i = 1, . . . , n is a function such that

f̂(x) = arg min
f∈W

n∑
i=1

{yi − f(xi)}2 + λ

∫ b

a

{
f ′′(x)

}2
dx, (2.1)

where x1, . . . , xn are points satisfying a < x1 < · · · < xn < b, W denotes a function space that

contains all functions whose second derivative is square integrable over [a, b], and λ is a positive

smoothing/tuning parameter, which controls the trade-off between goodness of fit and smoothness.

Let f̂ = [f̂(x1), . . . , f̂(xn)]
⊤. Then, given f̂(x) is a natural cubic spline whose knots are

x1, . . . , xn (see, e.g., Green and Silverman, 1994; Wood, 2017), it follows that

f̂ = arg min
f∈Rn

∥y − f∥2+λf⊤C⊤R−1Cf (2.2)

=
(
In + λC⊤R−1C

)−1
y, (2.3)
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where y = [y1, . . . , yn]
⊤, In denotes the n×n identity matrix, andC andR are explicitly presented

later. Then, as shown in Green and Silverman (1994), f̂(x) in (2.1) is uniquely determined by

f̂ ∈ Rn in (2.3). Thus, estimating f̂(x) is equivalent to estimating f̂ .

Let Π = [ιn,x] ∈ Rn×2, where ιn = [1, . . . , 1]⊤ ∈ Rn and x = [x1, . . . , xn]
⊤. Note that

since x1 < · · · < xn, ιn and x are linearly independent and thus Π is of full column rank. Let

τ̂ = Π(Π⊤Π)−1Π⊤y. (2.4)

Denote the difference between f̂ and τ̂ (resp. y and f̂ ) by ĉ (resp. û):

ĉ = f̂ − τ̂ , û = y − f̂ . (2.5)

Accordingly, we have

y = τ̂ + ĉ+ û. (2.6)

In this chapter, we present a comprehensive list of penalized least squares regressions relat-

ing to (2.6). One such example is the ridge regression (Hoerl and Kennard, 1970) that leads to ĉ.

Then, we reveal a principle of duality in them. In addition, based on them, we provide a number of

theoretical results, e.g., ι⊤n ĉ = 0.

This chapter is organized as follows. Section 2.2 fixes some notations and gives key prelim-

inary results used to derive the main results in the chapter. Section 2.3 provides a comprehensive

list of penalized least squares regressions relating to (2.6), and reveals a principle of duality in them.

Section 2.4 shows some results that are obtainable from the regressions shown in Section 2.3. Sec-

tion 2.5 illustrates some results provided in Sections 2.3 and 2.4 by a real data example. Section 2.6

deals with the cases such that the other right-inverse matrices are used. Section 2.7 concludes the

chapter.
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2.2 Preliminaries

In this section, we give key preliminary results used to derive the main results of this chapter. Before

stating them, we fix some notations.

2.2.1 Notations

Let f̂i (resp. τ̂i) denote the ith entry of f̂ (resp. τ̂ ) for i = 1, . . . , n, δi = xi+1 − xi, which is

positive by definition, for i = 1, . . . , n − 1, ∆ = diag(δ1, . . . , δn−1) ∈ R(n−1)×(n−1), and for a

full-row-rank matrix M ∈ Rm×n, M⊤(MM⊤)−1 ∈ Rn×m, which is a right-inverse matrix of

M , be denoted by M−1
r . For a full-column-rank matrix W ∈ Rn×p, let S(W ) [resp. S⊥(W )]

denote the column space of W [resp. the orthogonal complement of S(W )] and PW [resp. QW ]

denote the orthogonal projection matrix to the space S(W ) [resp. S⊥(W )]. Explicitly, they are

PW = W (W⊤W )−1W⊤ and QW = In − PW . D(i) ∈ R(n−i)×(n−i+1) is a Toeplitz matrix

whose first (resp. last) row is [−1, 1, 0, . . . , 0] (resp. [0, . . . , 0,−1, 1]) and we define matrices

C ∈ R(n−2)×n andR ∈ R(n−2)×(n−2) as follows:

C =



δ−1
1 −δ−1

1 − δ−1
2 δ−1

2 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 · · · 0 δ−1
n−2 −δ−1

n−2 − δ−1
n−1 δ−1

n−1


(2.7)

and

R =



1
3(δ1 + δ2)

1
6δ2 0 · · · 0

1
6δ2

1
3(δ2 + δ3)

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

6δn−2

0 · · · 0 1
6δn−2

1
3(δn−2 + δn−1)


. (2.8)

Finally, we denote the eigenvalues ofR by ω1, . . . , ωn−2 in descending order.
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2.2.2 Key preliminary results

Lemma 2.1. (i)C can be factorized asC =D(2)∆
−1D(1). (ii) We have the following inequalities:

ωn−2 ≥ min

{
1

3
δ1 +

1

6
δ2,

1

6
(δ2 + δ3), . . . ,

1

6
(δn−3 + δn−2),

1

6
δn−2 +

1

3
δn−1

}
> 0.

Proof of Lemma 2.1. (i) Let w = [w1, . . . , wn]
⊤ be an n-dimensional column vector. Then, by

definition of C, it follows that

Cw =


−w2−w1

δ1
+ w3−w2

δ2
...

−wn−1−wn−2

δn−2
+ wn−wn−1

δn−1

 =D(2)


w2−w1
δ1
...

wn−wn−1

δn−1

 =D(2)∆
−1


−w1 + w2

...

−wn−1 + wn


=D(2)∆

−1D(1)w ∈ Rn−2,

which leads to C = D(2)∆
−1D(1). (ii) The first inequality follows by applying the Gershgorin

circle theorem and the second inequality holds from δi > 0 for i = 1, . . . , n− 1.

Remark 2.1. In the Appendix, we give some remarks on a special case such that x = [1, . . . , n]⊤.

Lemma 2.2. (i) S(C⊤) equals S⊥(Π) and (ii) S(C−1
r ) equals S⊥(Π).

Proof of Lemma 2.2. (i) Given that δi > 0 for i = 1, . . . , n− 1, both Π and C⊤ are of full column

rank. In addition, [Π,C⊤] is a square matrix. Thus, if (C⊤)⊤Π = CΠ = 0, then it follows that

S(C⊤) = S⊥(Π). From D(1)ιn = 0, we have Cιn = D(2)∆
−1D(1)ιn = 0. Likewise, from

∆−1D(1)x = ∆−1∆ιn−1 = ιn−1 and D(2)ιn−1 = 0, we obtain Cx = D(2)∆
−1D(1)x = 0.

Accordingly, we haveCΠ = 0, which completes the proof. (ii) Recall that C−1
r = C⊤(CC⊤)−1.

It is clear that C−1
r is a full-column-rank matrix such that [Π,C−1

r ] is a square matrix. In addition,

(C−1
r )⊤Π = (CC⊤)−1CΠ = 0. Thus, it follows that S(C−1

r ) = S⊥(Π).

Denote the spectral decomposition of R by V ΩV ⊤ and let R−1/2 = V Ω−1/2V ⊤, where

Ω−1/2 = diag
(
1/

√
ω1, . . . , 1/

√
ωn−2

)
. Then, R−1/2 is a positive definite matrix such that

R−1/2R−1/2 = R−1. Define

D = R−1/2C. (2.9)
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Then, given thatC⊤ is of full column rank andR−1/2 is nonsingular,D ∈ R(n−2)×n is also of full

row rank. In addition, we have

D⊤D = C⊤R−1C. (2.10)

(We provide Matlab/GNU Octave and R functions for calculating C,R, andD in the Appendix.)

Lemma 2.3. (i) S(D⊤) equals S⊥(Π) and (ii) S(D−1
r ) equals S⊥(Π).

Proof of Lemma 2.3. Both (i) and (ii) may be proved similarly to Lemma 2.2(ii). For example,

given CΠ = 0, we have (D⊤)⊤Π =DΠ = R−1/2CΠ = 0.

Denote the eigenvalues of C⊤R−1C by g1, . . . , gn in ascending order and the spectral

decomposition of C⊤R−1C by UGU⊤, where U = [u1, . . . ,un] and G = diag(g1, . . . , gn).

Let T = [u1,u2] ∈ Rn×2, E⊤ = [u3, . . . ,un] ∈ Rn×(n−2), and S = diag(g3, . . . , gn) ∈

R(n−2)×(n−2).

Lemma 2.4. (i) S(T ) equals S(Π), (ii) S(E⊤) equals S⊥(Π), and (iii) S(E−1
r ) equals S⊥(Π).

Proof of Lemma 2.4. (i) Since C⊤R−1C ∈ Rn×n is a nonnegative definite matrix whose rank is

n − 2, we have 0 = g1 = g2 < g3 < · · · < gn. In addition, given CΠ = 0, it follows that

C⊤R−1CΠ = 0 · Π, which completes the proof. (ii) and (iii) They may be proved similarly to

Lemma 2.2(ii).

Given g1 = g2 = 0, we have

E⊤SE = C⊤R−1C. (2.11)

Define

F = S1/2E, (2.12)

where S1/2 = diag(
√
g3, . . . ,

√
gn) ∈ R(n−2)×(n−2). Then, we have

F⊤F = C⊤R−1C. (2.13)
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Lemma 2.5. (i) S(F⊤) equals S⊥(Π) and (ii) S(F−1
r ) equals S⊥(Π).

Proof of Lemma 2.5. Both (i) and (ii) may be proved similarly to Lemma 2.2(ii). For example,

given EΠ = 0, we have (F⊤)⊤Π = FΠ = S1/2EΠ = 0.

Lemma 2.6. There exists an orthogonal matrix Υ ∈ R(n−2)×(n−2) such that F⊤ =D⊤Υ.

Proof of Lemma 2.6. Recall that both D⊤ ∈ Rn×(n−2) and F⊤ ∈ Rn×(n−2) are of full column

rank and S(D⊤) = S(F⊤). Accordingly, these exists a nonsingular matrix Υ ∈ R(n−2)×(n−2)

such that F⊤ = D⊤Υ. Given that D⊤D = F⊤F , we have D⊤(In−2 − ΥΥ⊤)D = 0. Then,

fromD−1⊤
r D⊤(In−2 −ΥΥ⊤)DD−1

r = In−2 −ΥΥ⊤ = 0, we have Υ⊤ = Υ−1.

Let (i) A = D,F , (ii) (B,Q) = (C,R), (E,S−1), (iii) D = C,D,E,F , and (iv) P =

Π,T . From the results above, we immediately obtain the following results:

Proposition 2.1. (i) C⊤R−1C = A⊤A = B⊤Q−1B, (ii) DP = D−1⊤
r P = 0, (iii) both [P,D⊤]

and [P,D−1
r ] are nonsingular, and (iv) PD⊤ = PD−1

r
= QP .

2.3 Several regressions relating to (2.6) and principle of duality in

them

In this section, we provide a comprehensive list of penalized least squares regressions relating to

(2.6), and reveal a principle of duality in them. The penalized regressions are, more precisely, those

to compute ĉ, û, τ̂ , τ̂ + ĉ, ĉ+ û, and τ̂ + û.

2.3.1 Penalized regressions to compute τ̂ + ĉ

Concerning τ̂ + ĉ, we have the following results:

Lemma 2.7. It follows that

τ̂ + ĉ = arg min
f∈Rn

∥y − f∥2+λ∥Af∥2=
(
In + λA⊤A

)−1
y (2.14)

= arg min
f∈Rn

∥y − f∥2+λf⊤B⊤Q−1Bf =
(
In + λB⊤Q−1B

)−1
y. (2.15)
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Proof of Lemma 2.7. From Proposition 2.1, we haveC⊤R−1C = A⊤A = B⊤Q−1B. Then, (2.2)–

(2.3) can be represented as follows:

f̂ = arg min
f∈Rn

∥y − f∥2+λ∥Af∥2=
(
In + λA⊤A

)−1
y

= arg min
f∈Rn

∥y − f∥2+λf⊤B⊤Q−1Bf =
(
In + λB⊤Q−1B

)−1
y.

In addition, by definition of ĉ, we have f̂ = τ̂ + ĉ. Hence, we obtain (2.14) and (2.15).

2.3.2 Penalized regressions to compute ĉ

Concerning ĉ, we have the following results:

Lemma 2.8. Consider the following penalized regressions:

γ̂ = arg min
γ∈Rn−2

∥y −A−1
r γ∥2+λ∥γ∥2= (A−1⊤

r A−1
r + λIn−2)

−1A−1⊤
r y, (2.16)

κ̂ = arg min
κ∈Rn−2

∥y − B−1
r κ∥2+λκ⊤Q−1κ = (B−1⊤

r B−1
r + λQ−1)−1B−1⊤

r y. (2.17)

Then, we have

ĉ = A−1
r γ̂ = B−1

r κ̂. (2.18)

Proof of Lemma 2.8. LetK = [P,A−1
r ]. From Proposition 2.1, it follows that AP = 0, A−1⊤

r P =

0, and K is nonsingular. Accordingly, given that K⊤K = diag(P⊤P,A−1⊤
r A−1

r ) and AK =

[AP,AA−1
r ] = [0, In−2], it follows that

f̂ =K
(
K⊤K + λK⊤A⊤AK

)−1
K⊤y

= [P,A−1
r ]

(P⊤P)−1 0

0 (A−1⊤
r A−1

r + λIn−2)
−1


 P⊤

A−1⊤
r

y
= P(P⊤P)−1P⊤y +A−1

r (A−1⊤
r A−1

r + λIn−2)
−1A−1⊤

r y = τ̂ +A−1
r γ̂,

from which we have f̂ − τ̂ = A−1
r γ̂. Given f̂ − τ̂ = ĉ, we thus obtain ĉ = A−1

r γ̂. Similarly, we

can obtain ĉ = B−1
r κ̂.
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Lemma 2.9. ĉ can be calculated by the following penalized regressions:

ĉ = arg min
c∈Rn

∥(y − τ̂ )− c∥2+λ∥Ac∥2=
(
In + λA⊤A

)−1
(y − τ̂ ) (2.19)

= arg min
c∈Rn

∥(y − τ̂ )− c∥2+λc⊤B⊤Q−1Bc =
(
In + λB⊤Q−1B

)−1
(y − τ̂ ). (2.20)

Proof of Lemma 2.9. Given (2.14), f̂ = τ̂ + ĉ, and AP = 0, we have

y = (In + λA⊤A)f̂ = (In + λA⊤A)(τ̂ + ĉ) = τ̂ + (In + λA⊤A)ĉ,

which leads to (2.19). Similarly, we can obtain (2.20).

Remark 2.2. We add some more exposition about (2.16). LetK = [P,A−1
r ] as before. In addition,

let θ = [β⊤,γ⊤]⊤ ∈ Rn be a vector such that f = Kθ = Pβ + A−1
r γ. Then, it follows that

Af = A(Pβ+A−1
r γ) = γ. Given that f = Pβ+A−1

r γ and Af = γ, the minimization problem

in (2.14) can be represented as follows:

min
β∈R2,γ∈Rn−2

∥y − Pβ −A−1
r γ∥2+λ∥γ∥2. (2.21)

It is noteworthy that β is not penalized in (2.21) and (A−1
r )⊤P = 0. Thus, the minimization

problem (2.21) can be decomposed into (2.16) and (2.40). Moreover, (2.21) gives the best linear

unbiased predictors of β and γ of the following linear mixed model:

y = Pβ +A−1
r γ + u, [u⊤,γ⊤]⊤ ∼ N

(
0, diag(σ2uIn, σ

2
vIn−2)

)
, (2.22)

where λ = σ2u/σ
2
v .

Remark 2.3. By using C−1
r , Verbyla et al. (1999) derived the following expressions in our nota-

tions:

f̂ = τ̂ +C−1
r κ̂, κ̂ = (C−1⊤

r C−1
r + λR−1)−1C−1⊤

r y. (2.23)

Here, we make the following remarks on (2.23). (i) First, κ̂ is the solution of the following penalized
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regression:

min
κ∈Rn−2

∥y −C−1
r κ∥2+λκ⊤R−1κ. (2.24)

(ii) Moreover, (2.23) is a special case of ĉ = B−1
r κ̂ in (2.18).

2.3.3 Penalized regressions to compute û

Concerning û, we have the following results:

Lemma 2.10. Consider the following penalized regressions:

η̂ = arg min
η∈Rn−2

∥y −A⊤η∥2+λ−1∥η∥2= (AA⊤ + λ−1In−2)
−1Ay, (2.25)

υ̂ = arg min
υ∈Rn−2

∥y − B⊤υ∥2+λ−1υ⊤Qυ = (BB⊤ + λ−1Q)−1By. (2.26)

Then, it follows that

û = A⊤η̂ = B⊤υ̂. (2.27)

Proof of Lemma 2.10. Applying the matrix inversion lemma to
(
In + λA⊤A

)−1, we have

(
In + λA⊤A

)−1
= In −A⊤(AA⊤ + λ−1In−2)

−1A. (2.28)

Postmultiplying (2.28) by y yields y − f̂ = A⊤η̂. Given y − f̂ = û, we thus have û = A⊤η̂.

Similarly, we can obtain û = B⊤υ̂.

Lemma 2.11. û can be calculated by the following penalized regressions:

û = arg min
u∈Rn

∥(y − τ̂ )− u∥2+λ−1∥A−1⊤
r u∥2

=
(
In + λ−1A−1

r A−1⊤
r

)−1
(y − τ̂ ) (2.29)
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and

û = arg min
u∈Rn

∥(y − τ̂ )− u∥2+λ−1u⊤B−1
r QB−1⊤

r u

=
(
In + λ−1B−1

r QB−1⊤
r

)−1
(y − τ̂ ). (2.30)

Proof of Lemma 2.11. Given (2.34), ĝ = τ̂ + û, and A−1⊤
r P = 0, we have

y = (In + λ−1A−1
r A−1⊤

r )ĝ = (In + λ−1A−1
r A−1⊤

r )(τ̂ + û)

= τ̂ + (In + λ−1A−1
r A−1⊤

r )û,

which leads to (2.29). Similarly, we can obtain (2.30).

Remark 2.4. In Reinsch (1967) and Green and Silverman (1994, p. 20), there are equations ex-

pressed in our notation as follows:

(R+ λCC⊤)ϕ = Cy, f̂ = y − λC⊤ϕ. (2.31)

Here, we make the following remarks on (2.31). (i) First, these lead to a penalized least squares

problem. Given that û = y − f̂ , removing ϕ from the above equations leads to

û = y − f̂ = λC⊤(R+ λCC⊤)−1Cy

= C⊤(CC⊤ + λ−1R)−1Cy = C⊤υ̂, (2.32)

where

υ̂ = arg min
υ∈Rn−2

∥y −C⊤υ∥2+λ−1υ⊤Rυ. (2.33)

(ii) Moreover, (2.32) is a special case of û = B⊤υ̂ in (2.27).

2.3.4 Penalized regression to compute τ̂ + û

Concerning τ̂ + û, we have the following results:
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Lemma 2.12. Let ĝ = τ̂ + û. Then, it follows that

ĝ = arg min
g∈Rn

∥y − g∥2+λ−1∥A−1⊤
r g∥2=

(
In + λ−1A−1

r A−1⊤
r

)−1
y (2.34)

= arg min
g∈Rn

∥y − g∥2+λ−1g⊤B−1
r QB−1⊤

r g =
(
In + λ−1B−1

r QB−1⊤
r

)−1
y. (2.35)

Proof of Lemma 2.12. Let J = [P,A⊤]. From Proposition 2.1, it follows that AP = 0,

A−1⊤
r P = 0, and J is nonsingular. Accordingly, given that J⊤J = diag(P⊤P,AA⊤) and

A−1⊤
r J = [A−1⊤

r P,A−1⊤
r A⊤] = [0, In−2], it follows that

(
In + λ−1A−1

r A−1⊤
r

)−1
y

= J
(
J⊤J + λ−1J⊤A−1

r A−1⊤
r J

)−1
J⊤y

= [P,A⊤]

(P⊤P)−1 0

0 (AA⊤ + λ−1In−2)
−1


P⊤

A

y
= P(P⊤P)−1P⊤y +A⊤(AA⊤ + λ−1In−2)

−1Ay = τ̂ +A⊤η̂.

Given û = A⊤η̂, we obtain (2.34). Similarly, we can obtain (2.35).

Remark 2.5. Similarly to Remark 2.3.2, we add some more exposition about (2.25). Let ξ =

[β⊤,η⊤]⊤ ∈ Rn be such that g = Jξ = Pβ + A⊤η. As stated, A−1⊤
r J = [0, In−2]. Then, it

follows that

A−1⊤
r g = A−1⊤

r Jξ = η. (2.36)

Given g = Pβ + A⊤η and A−1⊤
r g = η, the minimization problem (2.34) can be represented as

follows:

min
β∈R2,η∈Rn−2

∥y − Pβ −A⊤η∥2+λ−1∥η∥2. (2.37)

Again, it is noteworthy that β is not penalized in (2.37). Moreover, it follows that (A⊤)⊤P =

AP = 0. Thus, the minimization problem (2.37) can be decomposed into (2.25) and (2.40).

34



2.3.5 Ordinary regressions to compute ĉ+ û and τ̂

Concerning ĉ+ û and τ̂ , we have the following results:

Lemma 2.13. (i) Let ĥ = D⊤α̂, where

α̂ = arg min
α∈Rn−2

∥y −D⊤α∥2= (DD⊤)−1Dy. (2.38)

Then, it follows that

ĉ+ û = ĥ. (2.39)

(ii) It follows that τ̂ = Pβ̂, where

β̂ = arg min
β∈R2

∥y − Pβ∥2= (P⊤P)−1P⊤y. (2.40)

Proof of Lemma 2.13. Given Proposition 2.1, both results are easily obtainable. For example, the

former result can be proved as follows:

ĥ = D⊤α̂ = PD⊤y = QPy = y − τ̂ = ĉ+ û.

Remark 2.6. From Proposition 2.1, we also have ĥ(= ĉ+ û) = D−1
r ρ̂, where

ρ̂ = arg min
ρ∈Rn−2

∥y −D−1
r ρ∥2= (D−1⊤

r D−1
r )−1D−1⊤

r y. (2.41)

2.3.6 Principle of duality in the penalized regressions

See the second columns of Tables 1–2. In the columns, the penalized regressions shown above

are arranged in pairs that mirror one another. We reveal a principle of duality in the penalized

regressions. As stated in Section 1, (D1) is obtainable by replacing A⊤, λ in (P1) by A−1
r , λ−1,

respectively. Likewise, for example, (D6) in Table 2 is obtainable by replacing B⊤,Q, λ−1 in (P6)

by B−1
r ,Q−1, λ, respectively. In Tables 1–2, we may observe five other pairs of regressions that are
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duals of each other. From the seven dual pairs shown in Tables 1–2, we observe that the following

principle exists:

Proposition 2.2 (Principle of duality). The regressions labeled with the letter D in Tables 1–2, e.g.,

(D1), are obtainable by replacing each occurrence of A⊤,B⊤,D⊤,Q,Q−1, λ, λ−1 in the regres-

sions labeled with the letter P, e.g., (P1), by A−1
r ,B−1

r ,D−1
r ,Q−1,Q, λ−1, λ, respectively.

2.4 Results that are obtainable from the regressions

In this section, we show how the regressions listed in the previous section are of use to obtain a

deeper understanding of the fitting a cubic smoothing spline. Before proceeding, recall f̂ = τ̂ + ĉ

and so on.

First, given that (2.16) is a ridge regression, it immediately follows that limλ→∞ γ̂ = 0,

which leads to limλ→∞ ĉ = A−1
r limλ→∞ γ̂ = 0 and at the same time we have

lim
λ→∞

f̂ = τ̂ + lim
λ→∞

ĉ = τ̂ , (2.42)

lim
λ→∞

û = y − τ̂ − lim
λ→∞

ĉ = y − τ̂ , (2.43)

lim
λ→∞

ĝ = τ̂ + lim
λ→∞

û = τ̂ + (y − τ̂ ) = y. (2.44)

Second, (2.25) is again a ridge regression, we have limλ→0 η̂ = 0, which yields limλ→0 û =

A⊤ limλ→0 η̂ = 0 and accordingly we obtain

lim
λ→0

f̂ = y − lim
λ→0

û = y, (2.45)

lim
λ→0

ĉ = y − τ̂ − lim
λ→0

û = y − τ̂ , (2.46)

lim
λ→0

ĝ = τ̂ + lim
λ→0

û = τ̂ . (2.47)

Third, from (2.19) and û = y − τ̂ − ĉ, we have

ĉ =
(
In + λA⊤A

)−1
(y − τ̂ ), (2.48)

û =
{
In − (In + λA⊤A)−1

}
(y − τ̂ ). (2.49)
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Thus, f̂ can be represented as

f̂ = τ̂ +
(
In + λA⊤A

)−1
(y − τ̂ ). (2.50)

Here, we remark that, given that
(
In + λA⊤A

)−1 is a smoother matrix, the second term on the

right-hand side of (2.50) represents a low-frequency part of y − τ̂ . In addition, from (2.49), û

represents a high-frequency part of y − τ̂ . Thus, ĉ is generally smoother than û.

Fourth, given AP = 0, A−1⊤
r P = 0, ĉ = A−1

r γ̂, and û = A⊤η̂, we have

ζ̂⊤τ̂ = 0, ζ̂ = ĉ, û, ĥ. (2.51)

Fifth, given AP = 0, A−1⊤
r P = 0, (2.28), and

(
In + λ−1A−1

r A−1⊤
r

)−1
= In −A−1

r (A−1⊤
r A−1

r + λIn−2)
−1A−1⊤

r , (2.52)

if y ∈ S(P), or in other words, if y = Pψ, then we have

τ̂ = y, f̂ = y, ĝ = y, ĉ = 0, û = 0, ĥ = 0. (2.53)

Sixth, given ιn ∈ S(P), we have

PPιn = ιn, (2.54)

(In + λA⊤A)−1ιn = ιn, (2.55)

(In + λ−1A−1
r A−1⊤

r )−1ιn = ιn, (2.56)

A−1
r (A−1⊤

r A−1
r + λIn−2)

−1A−1⊤
r ιn = 0, (2.57)

A⊤(AA⊤ + λ−1In−2)
−1Aιn = 0, (2.58)

PD⊤ιn = 0. (2.59)

Note that (In + λA⊤A)−1ιn = ιn, for example, indicates that the sum of the entries in each row

of the hat matrix of f̂ equals unity.
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Seventh, given (2.54)–(2.59), we have

1

n
ι⊤n ζ̂ = ȳ, ζ̂ = τ̂ , f̂ , ĝ, (2.60)

1

n
ι⊤n ζ̂ = 0, ζ̂ = ĉ, û, ĥ, (2.61)

where ȳ = 1
n

∑n
i=1 yi.

1
nι

⊤
n f̂ = ȳ, for example, shows that 1

n

∑n
i=1 f̂i = ȳ.

2.5 Illustrations of some results

In this section, we illustrate some of the results in the previous sections by a real data example.

Panel A of Figure 2.1 shows a scatter plot of the log of seasonally adjusted Japanese real

gross domestic product (GDP) over the sample period 1994:Q1 to 2020:Q2 (and accordingly, n =

106). We obtained the data from the website of Japanese Cabinet office. The solid line in the panel

plots (xi, τ̂i) for i = 1, . . . , n, where τ̂ = [τ̂1, . . . , τ̂n]
⊤ in (2.4) and n = 106. Panel B of Figure

2.1 depicts a scatter plot of (xi, yi − τ̂i) for i = 1, . . . , n. The solid line in the panel plots (xi, ĉi)

for i = 1, . . . , n, where ĉ = [ĉ1, . . . , ĉn]
⊤ is calculated by (2.18) with λ = 103. The solid line in

Panel C denotes (xi, f̂i), where f̂ = [f̂1, . . . , f̂n]
⊤ is calculated by (2.14) with λ = 103. Panel D

illustrates a scatter plot of (xi, yi− τ̂i) for i = 1, . . . , n. The solid line in the panel plots (xi, ûi) for

i = 1, . . . , n, where û = [û1, . . . , ûn]
⊤ is calculated by (2.27) with λ = 103. Figures 2.2, 2.3, and

2.4 correspond to the cases such that λ = 105, 1010, 10−10, respectively.

Recall that concerning y, τ̂ , ĉ, f̂ , and û, the following equations hold:

τ̂ + ĉ = f̂ , ĉ+ û = y − τ̂ , lim
λ→∞

ĉ = 0, lim
λ→∞

f̂ = τ̂ ,

lim
λ→∞

û = y − τ̂ , lim
λ→0

ĉ = y − τ̂ , lim
λ→0

f̂ = y, lim
λ→0

û = 0.

From Figures 2.1–2.4, we can observe that these theoretical results are well illustrated in these

figures. For example, from Panel D in Figure 2.4, we can observe that û almost equals 0 when

λ = 10−10.
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2.6 The cases such that the other right-inverse matrices are used

In this section, we illustrate what happens if the other right-inverse matrices are used.

Let M ∈ Rm×n be of full row rank. Recall that in this chapter M−1
r denotes

M⊤(MM⊤)−1, which is a right-inverse matrix of a full-row-rank matrix M ∈ Rm×n. Define a

set of matrices

ΓM = {Ξ ∈ Rn×m : MΞ = Im}.

ΓM denotes the set of right-inverse matrices ofM and accordinglyM−1
r belongs to ΓM .

Lemma 2.14. N =M−1
r if and only ifN ∈ ΓM and S(N) = S(M⊤).

Proof of Lemma 2.14. It is clear that if N = M−1
r , then N ∈ ΓM and S(N) = S(M⊤). Con-

versely, suppose that N ∈ ΓM and S(N) = S(M⊤). Then, MN = Im and there exists a

nonsingular matrix Σ ∈ Rm×m such that N =M⊤Σ. By removing N from these equations, we

have Σ = (MM⊤)−1, which leads toN =M⊤(MM⊤)−1 =M−1
r .

From Lemma 2.14, if N ̸= M−1
r , then N /∈ ΓM or S(N) ̸= S(M⊤). Accordingly, we

have the following result:

Proposition 2.3. IfN ∈ ΓM\{M−1
r }, then S(N) ̸= S(M⊤).

Based on the result, we illustrate what happens if the other right-inverse matrices are used.

We give an example. Let Z ∈ ΓD\{D−1
r }. Then, from Proposition 2.3 and Lemma 2.3, it follows

that S(Z) ̸= S(D−1
r ) = S⊥(Π). Accordingly, letting L = [Π,Z], it follows that Z⊤Π ̸= 0 and

DL = [DΠ,DZ] = [0, In−2]. In addition, given that DΠ = 0, DZ = In−2, and Π is of full

column rank, L is nonsingular. Thus, from e.g., Yamada (2017), we have

f̂ = L(L⊤L+ λL⊤D⊤DL)−1L⊤y = Ππ̂ +Zε̂, (2.62)

where

π̂ = arg min
π∈R2

∥(y −Zε̂)−Ππ∥2= (Π⊤Π)−1Π⊤(y −Zε̂) (2.63)
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and

ε̂ = arg min
ε∈Rn−2

∥QΠy −QΠZε∥2+λ∥ε∥2

= (Z⊤QΠZ + λIn−2)
−1Z⊤QΠy, (2.64)

which shows that we may obtain (penalized) regressions relating to the cubic smoothing spline

even if we use the other right-inverse matrices of D such that Z ∈ ΓD\{D−1
r }. Nevertheless, as

illustrated here, they are more complex than those shown in Tables 1–2.

2.7 Concluding remarks

In this chapter, we provided a comprehensive list of penalized least squares regressions relating

to the cubic smoothing spline, and then revealed a principle of duality in them. This is the main

contribution of this study. Such penalized regressions are tabulated in Tables 1–2 and the principle

of duality revealed is stated in Proposition 2.2. In addition, we also provided a number of results

derived from them, most of which are also tabulated in Tables 1–2 and some of which are illustrated

in Figures 2.1–2.4.
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2.8 Appendix

2.8.1 Some remarks on a special case such that x = [1, . . . , n]⊤

(i) If x = [1, . . . , n]⊤, then C = D(2)D(1) ∈ R(n−2)×n, which is a Toeplitz matrix whose first

(resp. last) row is [1,−2, 1, 0, . . . , 0] (resp. [0, . . . , 0, 1,−2, 1]). (ii) If x = [1, . . . , n]⊤, then

(In + λC⊤R−1C)−1 is bisymmetric (i.e., symmetric centrosymmetric), which may be proved as

in Yamada (2020a). (iii) If x = [1, . . . , n]⊤, then R in (2.8) is not only a symmetric tridiagonal

matrix but also a Toeplitz matrix. In the case, we have

ωk =
2

3
+

1

3
cos

(
kπ

n− 1

)
, k = 1, . . . , n− 2, (2.65)

and thus ωn−2, which is the smallest eigenvalue of R, satisfies the following inequality [see, e.g.,

Pesaran (1973)]:

ωn−2 =
2

3
+

1

3
cos

(
n− 2

n− 1
π

)
>

1

3
. (2.66)

(iv) If x = [1, . . . , n]⊤ andR = In−2 in (2.2)–(2.3), then (2.2)–(2.3) reduce to

f̂ = arg min
f∈Rn

∥y − f∥2+∥D(2)D(1)f∥2

=
{
In + λ(D(2)D(1))

⊤(D(2)D(1))
}−1

y. (2.67)

It is a type of the Whittaker–Henderson (WH) method of graduation, which was developed by

Bohlmann (1899), Whittaker (1923) and others. See Weinert (2007) for a historical review of the

WH method of graduation. (2.67) is also referred to as the Hodrick–Prescott (HP) (1997) filtering in

econometrics. For more details about the HP filtering, see, e.g., Schlicht (2005), Kim et al. (2009),

Paige and Trindade (2010), and Yamada (2015, 2018ab, 2020b).

2.8.2 User-defined functions

2.8.2.1 A Matlab/GNU Octave function to make C in (2.7)

1 function C=makeCmat(x)
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2 n=length(x); D1=diff(eye(n)); D2=diff(eye(n-1));

3 delta=diff(x); invDelta=diag(1./delta);

4 C=D2*invDelta*D1;

5 end

2.8.2.2 A Matlab/GNU Octave function to makeR in (2.8)

1 function R=makeRmat(x)

2 n=length(x); delta=diff(x);

3 R0=diag(delta(1:n-2)+delta(2:n-1))/3;

4 R1=diag(delta(2:n-2),1)/6;

5 R=R1’+R0+R1;

6 end

2.8.2.3 A Matlab/GNU Octave function to makeD in (2.9)

1 function D=makeDmat(x)

2 C=makeCmat(x); R=makeRmat(x); [P,L]=eig(R);

3 invsqrtR=P*diag(sqrt(diag(L)))*P’;

4 D=invsqrtR*C;

5 end

2.8.2.4 A R function to make C in (2.7)

1 makeCmat <- function(x) {

2 # Note: x is an n x 1 matrix (not a vector).

3 n <- length(x)

4 D1 <- diff(diag(n)); D2 <- diff(diag(n-1))

5 delta <- diff(x); invDelta <- diag(1/delta[1:(n-1),1])

6 C <- D2%*%invDelta%*%D1

7 return(C)

8 }

2.8.2.5 A R function to makeR in (2.8)

1 makeRmat <- function(x) {

2 # Note: x is an n x 1 matrix (not a vector).
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3 n <- length(x); delta <- diff(x)

4 R0 <- diag((delta[1:(n-2),1]+delta[2:(n-1),1])/3)

5 R1 <- diag(0,n-2)

6 R1[row(R1)==col(R1)-1] <- delta[2:(n-2),1]/6

7 R <- t(R1)+R0+R1

8 return(R)

9 }

2.8.2.6 A R function to makeD in (2.9)

1 makeDmat <- function(x) {

2 # Note: x is an n x 1 matrix (not a vector).

3 n <- length(x); C <- makeCmat(x); R <- makeRmat(x)

4 z <- eigen(R); P <- z$vectors

5 invsqrtR <- P%*%diag(sqrt(z$values))%*%t(P)

6 D <- invsqrtR%*%C

7 return(D)

8 }
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Figure 2.1: Panel A shows a scatter plot of the log of seasonally adjusted Japanese real gross do-
mestic product (GDP) over the sample period 1994:Q1 to 2020:Q2. The solid line in the panel plots
(xi, τ̂i) for i = 1, . . . , n, where τ̂ = [τ̂1, . . . , τ̂n]

⊤ in (2.4) and n = 106. Panel B depicts a scatter
plot of (xi, yi− τ̂i) for i = 1, . . . , n. The solid line in the panel plots (xi, ĉi) for i = 1, . . . , n, where
ĉ = [ĉ1, . . . , ĉn]

⊤ is calculated by (2.18) with λ = 103. The solid line in Panel C denotes (xi, f̂i),
where f̂ = [f̂1, . . . , f̂n]

⊤ is calculated by (2.14) with λ = 103. Panel D illustrates a scatter plot
of (xi, yi − τ̂i) for i = 1, . . . , n. The solid line in the panel plots (xi, ûi) for i = 1, . . . , n, where
û = [û1, . . . , ûn]

⊤ is calculated by (2.27) with λ = 1600.
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Figure 2.2: This figure corresponds to the case where λ = 105. For the other explanations, see
Figure 2.1.
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Figure 2.3: This figure corresponds to the case where λ = 1010. For the other explanations, see
Figure 2.1.
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Figure 2.4: This figure corresponds to the case where λ = 10−10. For the other explanations, see
Figure 2.1.
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Chapter 3

A Modification of the

Whittaker–Henderson Method of

Graduation

This chapter is based on a previously published article: Yamada and Du (2019).

3.1 Introduction

The squared ℓ2-norm penalized least squares problem defined as

(x̃1, . . . , x̃T ) = argmin
x1,...,xT∈R

T∑
t=1

(yt − xt)
2 + λ

T∑
t=3

(∆2xt)
2, (3.1)

where y1, . . . , yT are observed time series data, has been referred to as the Hodrick–Prescott (HP)

filter in econometrics since its use by Hodrick and Prescott (1997). Here, λ > 0 and ∆ denotes

the backward difference operator such that ∆xt = xt − xt−1. It is applied to decompose yt for

t = 1, . . . , T into x̃t (the trend) and c̃t = yt − x̃t.

Yamada (2017) recently introduced the following modification:

(x̂1, . . . , x̂T , x̂T+1, . . . , x̂T+h) = argmin
x1,...,xT ,xT+1,...,xT+h∈R

T∑
t=1

(yt − xt)
2 + λ

T+h∑
t=3

(∆2xt)
2, (3.2)
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and showed that 
x̂t = x̃t, (t = 1, . . . , T ),

x̂T+j = x̃T + j(x̃T − x̃T−1), (j = 1, . . . , h).

(3.3)

Thus the above filter, (3.2), provides not only identical trend estimates to those of the HP filter,

but also extrapolations of the trend beyond the sample limit (taken as t = T ), and is therefore of

practical use. In addition, Yamada (2017) showed that

lim
λ→∞

x̂t = α̂0 + α̂1t, (t = 1, . . . , T, T + 1, . . . , T + h), (3.4)

where (α̂0, α̂1) = argminα0,α1∈R
∑T

t=1(yt − α0 − α1t)
2.

The HP filter in (3.1) is a special case of the Whittaker–Henderson (WH) method of gradu-

ation:

(z̃1, . . . , z̃T ) = argmin
z1,...,zT∈R

T∑
t=1

(yt − zt)
2 + λ

T∑
t=p+1

(∆pzt)
2, (3.5)

which was developed by Whittaker (1923) and others. For historical survey, see Weinert (2007),

Phillips (2010) and Nocon and Scott (2012).

Corresponding to the modification from (3.1) to (3.2), (3.5) may be generalized as follows:

(ẑ1, . . . , ẑT , ẑT+1, . . . , ẑT+h) = argmin
z1,...,zT ,zT+1,...,zT+h∈R

T∑
t=1

(yt − zt)
2 + λ

T+h∑
t=p+1

(∆pzt)
2. (3.6)

In this chapter, after presenting the closed-form solution of the modified WH graduation, (3.6), we

prove generalizations of (3.3) and (3.4). In addition, we introduce two other penalized least squares

problems and show that they lead to the same results as those of the modified WH graduation, (3.6).

Notations IT ∈ RT×T is an identity matrix, 0m,T ∈ Rm×T is a zero matrix, ST = [IT ,0T,h] ∈

RT×(T+h), ΠT ∈ RT×p is a matrix such that its t-th row is [1, t, . . . , tp−1] for t = 1, . . . , n, and

DT ∈ R(n−p)×T is a p-th order difference matrix such that DTη = [∆pηp+1, . . . ,∆
pηn]

⊤ for an

n-dimensional column vector η = [η1, . . . , ηn]
⊤.
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3.2 A modification of the WH graduation

Letting y = [y1, . . . , yT ]
⊤, z = [z1, . . . , zT ]

⊤, and z̃ = [z̃1, . . . , z̃T ]
⊤, The objective function

of (3.5) may be represented in matrix notation as ∥y − z∥2+λ∥DTz∥2, and z̃ may be expressed

explicitly as

z̃ = (IT + λD⊤
TDT )

−1y. (3.7)

Letting v = [z1, . . . , zT , zT+1, . . . , zT+h]
⊤ and ẑ = [ẑ1, . . . , ẑT , ẑT+1, . . . , ẑT+h]

⊤,

the modified WH graduation is represented in matrix notation as ẑ = argminv∈RT+h ∥y −

STv∥2+λ∥DT+hv∥2. We obtain the following closed-form solution of the modified WH grad-

uation:1

ẑ = (S⊤
T ST + λD⊤

T+hDT+h)
−1S⊤

T y. (3.8)

We note thatDT+h is a (p+ 1)-diagonal Toeplitz matrix such that

DT+h =



a0 · · · ap 0 · · · 0

0
. . .

. . .
. . .

...

...
. . .

. . .
. . . 0

0 · · · 0 a0 · · · ap


,

where ak = (−1)p−k
(
p
k

)
for k = 0, . . . , p, and thus may be expressed as

DT+h =

DT 0T−p,h

E1 E2

 ,
whereE1 ∈ Rh×T andE2 ∈ Rh×h. For example, when T = 4, h = 2 and p = 2, thus,E1 ∈ R2×4

1A MATLAB/GUN OBtave function for calculating ẑ in 3.8 is shown in the Appendix.
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and E2 ∈ R2×2:

D4+2 =

 D4 02,2

E1 E2

 =



1 −2 1 0 0 0

0 1 −2 1 0 0

0 0 1 −2 1 0

0 0 0 1 −2 1


. (3.9)

Define w̃ = [z̃T+1, . . . , z̃T+h]
⊤ by the requirement that:

∆pz̃T+j = 0, (j = 1, . . . , h). (3.10)

Then, concerning ẑ1, . . . , ẑT , ẑT+1, . . . , ẑT+h, we have the results summarized in the following

theorem:

Theorem 3.1. 
ẑt = z̃t, (t = 1, . . . , T ),

ẑT+j = z̃T+j such that ∆pz̃T+j = 0, (j = 1, . . . , h).

Proof of Theorem 3.1. By definition of w̃, we have E1z̃ +E2w̃ = 0h,1, which leads to

D⊤
T+hDT+h

 z̃
w̃

 =

 D⊤
T E⊤

1

0h,T−p E⊤
2


DT 0T−p,h

E1 E2


 z̃
w̃


=

 D⊤
T E⊤

1

0h,T−p E⊤
2


DT z̃

0h,1

 =

D⊤
TDT z̃

0h,1

 . (3.11)

It follows from (3.7) and (3.11) that

(S⊤
T ST + λD⊤

T+hDT+h)

 z̃
w̃

 =

z̃
0

+

λD⊤
TDT z̃

0

 =

y
0

 = S⊤
T y. (3.12)
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Premultiplying (3.12) by (S⊤
T ST + λD⊤

T+hDT+h)
−1, we finally obtain

ẑ = (S⊤
T ST + λD⊤

T+hDT+h)
−1S⊤

T y =

 z̃
w̃

 . (3.13)

Example 3.1. As an illustration of above theorem, we give a simple numerical example. The case

where T = 5, p = 2 and h = 2. Suppose that we obtained

z̃1 = 2, ∆z̃2 = −1, [∆2z̃3,∆
2z̃4,∆

2z̃5]
⊤ = [3, 0,−1]⊤.

z̃t for t = 1, . . . , 5 are explicitly [z̃1, z̃2, z̃3, z̃4, z̃5]⊤ = [2, 1, 3, 5, 6]⊤. Then from the above theorem,

in the case, ẑt for t = 1, . . . , 5, 5 + 1, 5 + 2 are as follows:

ẑ = [z̃1, z̃2, z̃3, z̃4, z̃5, z̃5+1, z̃5+2]
⊤

= [2, 1, 3, 5, 6, 7, 8]⊤.

The next theorem is a generalization of a result of Yamada (2017):

Theorem 3.2.

lim
λ→∞

ẑt = β̂0 + β̂1t+ · · ·+ β̂p−1t
p−1, (t = 1, . . . , T, T + 1, . . . , T + h), (3.14)

where (β̂0, β̂1, . . . , β̂p−1) = argminβ0,β1,...,βp−1

∑T
t=1(yt − β0 − β1t− · · · − βp−1t

p−1)2.

Proof of Theorem 3.2. Premultiplying (3.13) byDT+h leads to

DT+hẑ =

DT 0T−p,h

E1 E2


 z̃
w̃

 =

DT z̃

0h,1

 .
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Since limλ→∞ z̃ = ΠT (Π
⊤
TΠT )

−1Π⊤
T y andDTΠT = 0, we obtain

DT+h lim
λ→∞

ẑ =

DT limλ→∞ z̃

0h,1

 = 0T+h,1, (3.15)

which indicates limλ→∞ ẑ is in the null space of DT+h. Since the null space of DT+h and the

column space of ΠT+h are equivalent, (3.15) implies that we obtain γ ∈ Rp such that

lim
λ→∞

ẑ = ΠT+hγ. (3.16)

Since ST limλ→∞ ẑ = STΠT+hγ = ΠTγ and ST limλ→∞ ẑ = limλ→∞ z̃ =

ΠT (Π
⊤
TΠT )

−1Π⊤
T y, it follows that ΠT {γ−(Π⊤

TΠT )
−1Π⊤

T y} = 0h,1. Since ΠT is a full column

rank matrix, we then obtain γ = (Π⊤
TΠT )

−1Π⊤
T y. Substituting this relation into (3.16), we finally

obtain

lim
λ→∞

ẑ = ΠT+h(Π
⊤
TΠT )

−1Π⊤
T y. (3.17)

Finally, we give some related results. SinceDT+hΠT+h = 0T−p+h,p, it follows that

(S⊤
T ST + λD⊤

T+hDT+h)ΠT+h = S⊤
T STΠT+h = S⊤

TΠT .

Premultiplying the above equation by (S⊤
T ST + λD⊤

T+hDT+h)
−1 yields

ΠT+h = (S⊤
T ST + λD⊤

T+hDT+h)
−1S⊤

TΠT . (3.18)

Example 3.2. We give a numberical example as an illustration of (3.18). Consider the case where
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T = 4, h = 1 and p = 2, it follows that



1 1

1 2

1 3

1 4

1 5


= (S⊤

4 S4 + λD⊤
5 D5)

−1
S⊤
4



1 1

1 2

1 3

1 4


.

From (3.18), we observe that the row sums of (S⊤
T ST + λD⊤

T+hDT+h)
−1S⊤

T always

equal unity. Let τ̃ = ΠT (Π
⊤
TΠT )

−1Π⊤
T y. Premultiplying y = τ̃ + (y − τ̃ ) by (S⊤

T ST +

λD⊤
T+hDT+h)

−1S⊤
T , we obtain

ẑ = (S⊤
T ST + λD⊤

T+hDT+h)
−1S⊤

T τ̃ + (S⊤
T ST + λD⊤

T+hDT+h)
−1S⊤

T (y − τ̃ )

= ΠT+h(Π
⊤
TΠT )

−1Π⊤
T y + (S⊤

T ST + λD⊤
T+hDT+h)

−1S⊤
T (y − τ̃ ). (3.19)

(3.18) and (3.19) are generalizations of Eq. (2) and Eq. (3) respectively of Yamada (2018). We note

that ΠT+h(Π
⊤
TΠT )

−1Π⊤
T y in (3.19) appears in (3.17), and from this we find that

lim
λ→∞

(S⊤
T ST + λD⊤

T+hDT+h)
−1S⊤

T (y − τ̃ ) = 0T+h,1. (3.20)

3.3 Two other penalized least squares problems

In this section, we introduce two other penalized least squares problems and show that they give the

same solutions as (3.6). Let yT+j = z̃T+j for j = 1, . . . , h. Consider the following two penalized

least squares problems:

(ẑ
(a)
1 , . . . , ẑ

(a)
T , ẑ

(a)
T+1, . . . , ẑ

(a)
T+h) = argmin

z1,...,zT ,zT+1,...,zT+h∈R

T+h∑
t=1

(yt − zt)
2 + λ

T+h∑
t=p+1

(∆pzt)
2,

(3.21)

(ẑ
(b)
1 , . . . , ẑ

(b)
T , ẑ

(b)
T+1, . . . , ẑ

(b)
T+h) = argmin

z1,...,zT ,zT+1,...,zT+h∈R

T+h∑
t=1

(yt − zt)
2 + λ

T∑
t=p+1

(∆pzt)
2,

(3.22)
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Letting ẑ(i) = [ẑ
(i)
1 , . . . , ẑ

(i)
T , ẑ

(i)
T+1, . . . , ẑ

(i)
T+h]

⊤ for i = a, b, we show that ẑ(i) for i = a, b are then

expressed explicitly as

ẑ(a) = (IT+h + λD⊤
T+hDT+h)

−1

y
w̃

 , (3.23)

ẑ(b) = (IT+h + λD⊤
T+hS

⊤
T−pST−pDT+h)

−1

y
w̃

 , (3.24)

where we recall that w̃ = [z̃T+1, . . . , z̃T+h]
⊤ is defined by (3.10) and is obtainable as a part of the

solution of the modified WH graduation, (3.6).

Theorem 3.3. For i = a, b,


ẑ
(i)
t = z̃t, (t = 1, . . . , T ),

ẑ
(i)
T+j = z̃T+j such that ∆pz̃T+j = 0, (j = 1, . . . , h).

Proof of Theorem 3.3 (i = a). From (3.11), we obtain

(IT+h + λD⊤
T+hDT+h)

 z̃
w̃

 =

 z̃
w̃

+

λD⊤
TDT z̃

0h,1

 =

y
w̃

 . (3.25)

Premultiplying (3.25) by (IT+h + λD⊤
T+hDT+h)

−1, it follows that

ẑ(a) = (IT+h + λD⊤
T+hDT+h)

−1

y
w̃

 =

 z̃
w̃

 .

Proof of Theorem 3.3 (i = b). Since

D⊤
T+hS

⊤
T−pST−pDT+h

 z̃
w̃

 =

 D⊤
T E⊤

1

0h,T−p E⊤
2


 IT−p
0h,T−p

 [IT−p,0T−p,h]

DT 0T−p,h

E1 E2


 z̃
w̃
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=

 D⊤
T

0h,T−p

 [DT ,0T−p,h]

 z̃
w̃

 =

D⊤
TDT z̃

0h,1

 ,
it follows that

(IT+h + λD⊤
T+hS

⊤
T−pST−pDT+h)

 z̃
w̃

 =

 z̃
w̃

+

λD⊤
TDT z̃

0h,1

 =

y
w̃

 . (3.26)

Premultiplying (3.26) by (IT+h + λD⊤
T+hS

⊤
T−pST−pDT+h)

−1 yields

ẑ(b) = (IT+h + λD⊤
T+hS

⊤
T−pST−pDT+h)

−1

y
w̃

 =

 z̃
w̃

 .

Example 3.3. As an illustration of above theorem, we give a numerical example. The case where

T = 6, p = 3 and h = 3. Suppose that we obtained

z̃1 = 1, ∆z̃2 = −2, ∆2z̃3 = 1, [∆3z̃4,∆
3z̃5,∆

3z̃6]
⊤ = [4,−11, 7]⊤.

by applying polynomial trend filtering of order 3 to a T -dimensional time series data. z̃1 for

t = 1, . . . , 6 are explicitly [z̃1, z̃2, z̃3, z̃4, z̃5, z̃6]
⊤ = [1,−1,−2, 2, 0,−1]⊤. Then from the above

theorem, in the case, ẑ(i)t for i = a, b and t = 1, . . . , 6, 6 + 1, 6 + 2, 6 + 3 are as follows:

ẑ
(i)
t = [z̃

(i)
1 , z̃

(i)
2 , z̃

(i)
3 , z̃

(i)
4 , z̃

(i)
5 , z̃

(i)
6 , z̃

(i)
6+1, z̃

(i)
6+2, z̃

(i)
6+3]

⊤

= [1,−1,−2, 2, 0,−1,−1, 0, 2]⊤.

Remark 3.4. An argument similar to that in Theorem 3.3 (i = a) is given by Mohr (2005, p. 20).

From Theorems 3.1, 3.2, and 3.3, we immediately obtain the following theorem.

Theorem 3.5. For i = a, b,

lim
λ→∞

ẑ
(i)
t = β̂0 + β̂1t+ · · ·+ β̂p−1t

p−1, (t = 1, . . . , T, T + 1, . . . , T + h), (3.27)
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where (β̂0, β̂1, . . . , β̂p−1) = argminβ0,β1,...,βp−1

∑T
t=1(yt − β0 − β1t− · · · − βp−1t

p−1)2.

Example 3.4. We give a numberical example for the case y = [1, 2,−1, 3,−2], T = 5, h = 2

and p = 3. According to (β̂0, β̂1, . . . , β̂p−1) = argminβ0,β1,...,βp−1

∑T
t=1(yt − β0 − β1t − · · · −

βp−1t
p−1)2. suppose that we have a linear regression y = Π5βi for i = 1, 2, 3, then we rewrite it

in matrix form as follows

y = Π5βi =



1

2

−1

3

−2


=



1 1 1

1 2 4

1 3 9

1 4 16

1 5 25




β0

β1

β2

 .

we obtain β̂ = [β0, β1, β2]
⊤ = [−0.4000, 1.64286,−0.35714]⊤.

From the above theorem,

lim
λ→∞

ẑ
(i)
t = β̂0 + β̂1t+ β̂2t

2.

where t = 1, . . . , 5, 5 + 1, 5 + 2 and i = a, b.

we obtain that

lim
λ→∞

ẑ
(i)
t = Π7βi =



1 1 1

1 2 22

...
...

...

1 5 52

1 6 62

1 7 72




β0

β1

β2



= [0.88571, 1.45714, 1.31429, 0.45714,−1.11429,−3.40000,−6.40000]⊤.
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3.4 Concluding remarks

This chapter presents a modified Whittaker–Henderson (WH) Method of Graduation. After giving

a closed-form solution, we show that it is of practical use because it provides not only a smoothed

series identical to that of the WH graduation, but also an extrapolation beyond the sample limit of

current data. In addition, we introduce two other penalized least squares problems and show that

they provide the same results as those of the modified WH graduation.
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3.5 Appendix

3.5.1 MATLAB/GNU Octave function for calculating ẑ in (3.8)

1 function zhat=mWHgraduation(y,lamda,p,h)

2 % y: T-dimensional column vector

3 % lamda: positive constant

4 % zhat : (T+h)-dimensional column vector

5 T=length(y);

6 S=[eye(T),zeros(T, h)];

7 D=diff(eye(T+h),p);

8 zhat=inv(S’*S+lambda*D’*D)*(S’*y);

9 end
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Chapter 4

Some Results on ℓ1 Polynomial Trend

Filtering

This chapter is based on a previously published article: Yamada and Du (2018).

4.1 Introduction

The ℓ1-norm penalized least-squares problem, defined as:

min
x1,...,xT

T∑
t=1

(yt − xt)
2 + λ

T∑
t=3

|∆2xt|, (4.1)

where y1, . . . , yT are observed time-series data, was developed by Kim et al. (2009), who called

it ℓ1 trend filtering.1 Here, λ > 0 is a tuning parameter and ∆ denotes the backward difference

operator such that ∆xt = xt − xt−1. Accordingly, ∆2xt = ∆(∆xt) = xt − 2xt−1 + xt−2. Recall

that
∑T

t=3|∆2xt| in (4.1) is ℓ1-norm of [∆2x3, . . . ,∆
2xT ]

⊤. Unlike Hodrick–Prescott (HP) (1997)

filtering, which is defined as the following squared ℓ2-norm penalized least-squares problem:

min
x1,...,xT

T∑
t=1

(yt − xt)
2 + ψ

T∑
t=3

(∆2xt)
2, (4.2)

1ℓ1 trend filtering is supported in several standard software packages such as MATLAB, R, Python, and EViews.
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where ψ > 0 is a smoothing/tuning parameter, the solution of ℓ1 trend filtering becomes a continu-

ous piecewise linear trend. The relationship between HP filtering and ℓ1 trend filtering corresponds

to that between ridge regression of Hoerl and Kennard (1970) and Lasso (least absolute shrinkage

and selection operator) regression of Tibshirani (1996)/BPDN (basis pursuit denoising) of Chen et

al. (1998). Econometric applications of ℓ1 trend filtering include Yamada and Jin (2013), Yamada

and Yoon (2014), Winkelried (2016), and Yamada (2017a).

It has been well-known that HP filtering is a form of the Whittaker–Henderson (WH) method

of graduation, which is defined as:

min
x1,...,xT

T∑
t=1

(yt − xt)
2 + ψ

T∑
t=p+1

(∆pxt)
2. (4.3)

For historical surveys of WH filtering, see Weinert (2007), Phillips (2010), and Nocon and Scott

(2012). Likewise, as shown in Kim et al. (2009), Tibshirani and Taylor (2011), and Tibshirani

(2014), ℓ1 trend filtering may be generalized as:

min
x1,...,xT

T∑
t=1

(yt − xt)
2 + λ

T∑
t=p+1

|∆pxt|. (4.4)

We refer to it as ℓ1 polynomial trend filtering.2 This filtering method is promising because it enables

2(4.4) where p = 1 has been known as total variation denoising in signal processing, which may be regarded as a
form of the fused Lasso by Tibshirani et al. (2005). Harchaoui and Lévy-Leduc (2010) proposed using the filtering to
detect multiple change points. (4.4) may be regarded as a form of the generalized Lasso by Tibshirani and Taylor (2011).
In addition, we note that there exist some pioneering works on the filtering that uses the ℓ1-norm penalty. Miller (1946,
Sec. 1.7) mentioned that

∑T
t=p+1|∆

pxt| could be an alternative measure of smoothness to
∑T

t=p+1(∆
pxt)

2, Schuette
(1978) introduced a filtering, defined as:

min
x1,...,xT

T∑
t=1

|yt − xt|+λ

T∑
t=p+1

|∆pxt|,

and Koenker et al. (1994) presented ℓ1-norm penalized quantile smoothing spline. Incidentally, Schuette (1978) and
Koenker et al. (1994) motivate us to consider a penalized quantile regression that is obtainable by replacing the quadratic
loss function in (4.4) by the check loss function:

min
x1,...,xT

T∑
t=1

ρτ (yt − xt) + λ

T∑
t=p+1

|∆pxt|,

where, letting τ ∈ (0, 1),

ρτ (u) =

{
τ |u| (u ≥ 0),

(1− τ)|u| (u < 0),

which is suggested by Kim et al. (2009, Sec. 7.3).
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us to estimate a piecewise (p − 1)-th order polynomial trend of a univariate economic time series

without prespecifying the number and location of knots. For more details, see Yamada (2017b).

Let x̂1, . . . , x̂T denote the solution of (4.3) and define x̂T+1, . . . , x̂T+h, where h denotes the

length of extrapolation by:

∆px̂T+j = 0, (j = 1, . . . , h). (4.5)

Recently, Yamada and Du (2018) introduced the following three modifications of the WH method

of graduation:3

(a) min
x1,...,xT+h

T∑
t=1

(yt − xt)
2 + ψ

T+h∑
t=p+1

(∆pxt)
2, (4.6)

(b) min
x1,...,xT+h

T+h∑
t=1

(yt − xt)
2 + ψ

T+h∑
t=p+1

(∆pxt)
2, (4.7)

(c) min
x1,...,xT+h

T+h∑
t=1

(yt − xt)
2 + ψ

T∑
t=p+1

(∆pxt)
2, (4.8)

where yT+j = x̂T+j for j = 1, . . . , h. Denote the solution of (a), (b), and (c) by x̂(i)t for i = a, b, c

and t = 1, . . . , T + h. Yamada and Du (2018) showed that, for i = a, b, c and t = 1, . . . , T + h, it

follows that:

x̂
(i)
t = x̂t. (4.9)

Among the above results, x̂(a)t = x̂t is of practical use because it provides not only a smoothed

series identical to that of the WH graduation, but also an extrapolation beyond the sample limit of

current data. Also, x̂(b)t = x̂t is of interest because it shows that x̂T+1, . . . , x̂T+h based on (4.5)

are useless to reduce the end-point problem of the WH graduation.4 In addition, Yamada and Du

(2018) proved that, for i = a, b, c and t = 1, . . . , T + h:

lim
ψ→∞

x̂
(i)
t = β̂0t

0 + · · ·+ β̂p−1t
p−1, (4.10)

3See also Yamada (2017c).
4An argument similar to this is given by Mohr (2005, p. 20).
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where (β̂0, . . . , β̂p−1) = argminβ0,...,βp−1

∑T
t=1(yt − β0t

0 − · · · − βp−1t
p−1)2.

In this paper, we present three modifications of ℓ1 polynomial trend filtering and show that

they provide not only identical trend estimates as ℓ1 polynomial trend filtering, but also extrapo-

lations of the trend beyond both sample limits. In addition, we show some other results on the

modified filtering. We also provide a MATLAB function for calculating the solution of one of the

modified filtering methods.

The chapter is organized as follows. In Section 4.2, we present three modifications of ℓ1

polynomial trend filtering. In Section 4.3, we state the main results of the paper. In Section 4.4,

we give some remarks on the results provided in Section 3. Section 4.5 provides some concluding

remarks.

Notations Let y = [y1, . . . , yT ]
⊤ and IT be the T × T identity matrix. For an n-

dimensional column vector, η = [η1, . . . , ηn]
⊤, ∥η∥1=

∑n
i=1|ηi|, ∥η∥22=

∑n
i=1 η

2
i , and ∥η∥∞=

max(|η1|, . . . , |ηn|). Dn is the (n − p) × n p-th order difference matrix such that Dnη =

[∆pηp+1, . . . ,∆
pηn]

⊤. We denoteDT byD. Πg+T+h is a (g + T + h)× p Vandermonde matrix,

defined by

Πg+T+h =



(1− g)0 (1− g)1 · · · (1− g)p−1

...
...

...

10 11 · · · 1p−1

...
...

...

T 0 T 1 · · · T p−1

...
...

...

(T + h)0 (T + h)1 · · · (T + h)p−1



,

and we denote Π0+T+0, which is a T × p matrix, by Π.
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4.2 Three modifications of ℓ1 polynomial trend filtering

Let x̃1, . . . , x̃T denote the solution of (4.4) and define x̃1−g, . . . , x̃1−1 and x̃T+1, . . . , x̃T+h, where

g and h denote the length of extrapolations:

∆px̃p+1−i = 0, (i = 1, . . . , g), (4.11)

∆px̃T+j = 0, (j = 1, . . . , h). (4.12)

For example, x̃T+1, . . . , x̃T+h, defined by (4.12) for p = 1, 2, 3, are explicitly expressed as follows:

(p = 1) x̃T+j = x̃T , (j = 1, . . . , h), (4.13)

(p = 2) x̃T+j = x̃T + j(∆x̃T ), (j = 1, . . . , h), (4.14)

(p = 3) x̃T+j = x̃T + j(∆x̃T ) +
j(j + 1)

2
(∆2x̃T ), (j = 1, . . . , h). (4.15)

For a proof of (4.15), see the Appendix.

Consider the following three modifications of ℓ1 polynomial trend filtering:

(d) min
x1−g ,...,xT+h

T∑
t=1

(yt − xt)
2 + λ

T+h∑
t=p+1−g

|∆pxt|, (4.16)

(e) min
x1−g ,...,xT+h

T+h∑
t=1−g

(yt − xt)
2 + λ

T+h∑
t=p+1−g

|∆pxt|, (4.17)

(f) min
x1−g ,...,xT+h

T+h∑
t=1−g

(yt − xt)
2 + λ

T∑
t=p+1

|∆pxt|, (4.18)

where y1−i = x̃1−i for i = 1, . . . , g and yT+j = x̃T+j for j = 1, . . . , h. Note that (4.16) is

equivalent to ℓ1 polynomial trend filtering if g = h = 0. We denote the solution of (d), (e), and (f)

by x̃(i)t for i = d, e, f and t = 1− g, . . . , T + h.

Among (4.16), (4.17), and (4.18), the objective function of (4.16) may be represented in

matrix notation as:5

∥y − Sxg+T+h∥22+λ∥Dg+T+hxg+T+h∥1, (4.19)

5For an n-dimensional column vector, η = [η1, . . . , ηn]
⊤, ∥η∥1=

∑n
i=1|ηi|, ∥η∥22=

∑n
i=1 η

2
i , and ∥η∥∞=

max(|η1|, . . . , |ηn|).
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where y = [y1, . . . , yT ]
⊤ andS = [0, IT ,0] is a T×(g+T+h) matrix and xg+T+h is a (g+T+h)-

dimensional column vector. DT+h+g is the (T+h+g−p)×(T+h+g) p-th order difference matrix

and we denoteDT byD. Let x̃(d)
g+T+h = [x̃

(d)⊤
g , x̃(d)⊤, x̃

(d)⊤
h ]⊤, where x̃(d)

g = [x̃
(d)
1−g, . . . , x̃

(d)
1−1]

⊤,

x̃(d) = [x̃
(d)
1 , . . . , x̃

(d)
T ]⊤, and x̃(d)

h = [x̃
(d)
T+1, . . . , x̃

(d)
T+h]

⊤. The MATLAB function for calculating

x̃
(d)
g , x̃(d), and x̃(d)

h , which depends on CVX developed by Grant and Boyd (2013), is as follows:

1 function [x_g,x,x_h]=m_l1_pt_filtering(y,lambda,p,g,h)

2 % y: T-dimensional column vector

3 % lambda: positive real number

4 % p, g, h: positive integer

5 % x_g: g-dimensional column vector

6 % x: T-dimensional column vector

7 % x_h: h-dimensional column vector

8 T=length(y);

9 S=[sparse(T,g),speye(T),sparse(T,h)];

10 D=diff(speye(g+T+h),p);

11 cvx_begin

12 variables z(g+T+h)

13 minimize(sum((y-S*z).ˆ2)+lambda*norm(D*z,1))

14 cvx_end

15 x_g=z(1:g); x=z(g+1:g+T); x_h=z(g+T+1:g+T+h);

16 end

4.3 Main results

Theorem 4.1. Denote the solution of (d), (e), and (f) by x̃(i)t for i = d, e, f . For i = d, e, f, and

t = 1− g, . . . , T + h, it follows that:

x̃
(i)
t = x̃t, (4.20)

where x̃1, . . . , x̃T are the solution of (4.4) and x̃1−g, . . . , x̃1−1 and x̃T+1, . . . , x̃T+h are defined by

(4.11) and (4.12).

Proof. Because the objective function of (4.4) is coercive and strictly convex with respect to
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x1, . . . , xT , x̃1, . . . , x̃T are the unique global minimizer of the function. It follows that:

T∑
t=1

(yt − xt)
2 + λ

T∑
t=p+1

|∆pxt|≥
T∑
t=1

(yt − x̃t)
2 + λ

T∑
t=p+1

|∆px̃t|, (4.21)

where the equality holds only if xt = x̃t for t = 1, . . . , T .6 In addition, from (4.11) and (4.12),

y1−i = x̃1−i for i = 1, . . . , g, and yT+j = x̃T+j for j = 1, . . . , h, we have the following inequali-

ties:

λ

p+1−1∑
t=p+1−g

|∆pxt| ≥ 0 = λ

p+1−1∑
t=p+1−g

|∆px̃t|, (4.22)

λ
T+h∑
t=T+1

|∆pxt| ≥ 0 = λ
T+h∑
t=T+1

|∆px̃t|, (4.23)

1−1∑
t=1−g

(yt − xt)
2 ≥ 0 =

1−1∑
t=1−g

(yt − x̃t)
2, (4.24)

T+h∑
t=T+1

(yt − xt)
2 ≥ 0 =

T+h∑
t=T+1

(yt − x̃t)
2. (4.25)

Combining (4.21)–(4.23) yields

T∑
t=1

(yt − xt)
2 + λ

T+h∑
t=p+1−g

|∆pxt|≥
T∑
t=1

(yt − x̃t)
2 + λ

T+h∑
t=p+1−g

|∆px̃t|, (4.26)

where the equality in (4.26) holds only if xt = x̃t for t = 1 − g, . . . , T + h, which proves that

x̃
(d)
t = x̃t for t = 1 − g, . . . , T + h. Likewise, combining (4.21)–(4.25) proves that x̃(e)t = x̃t

for t = 1 − g, . . . , T + h and combining (4.21) and (4.24)–(4.25) proves that x̃(f)t = x̃t for t =

1− g, . . . , T + h.

Example 4.1. As an illustration of the above theorem, we give a numerical example. Consider the

case where T = 5, g = 1, and h = 2. Suppose that we obtained

x̃1 = 3, ∆x̃2 = 2, [∆2x̃3,∆
2x̃4,∆

2x̃5]
⊤ = [0,−1, 0]⊤

6In the objective function of (4.4),
∑T

t=1(yt−xt)
2 is coercive because it is a quadratic function whose Hessian matrix

is positive definite. See, e.g., Beck (2014, Lemma 2.42).
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by applying ℓ1 polynomial trend filtering of order 2 (i.e., ℓ1 trend filtering) to a T -dimensional time-

series data.7 Because 2 = ∆x̃2 = ∆x̃3 ̸= ∆x̃4 = ∆x̃5 = 1, the line plot of (t, x̃t) for t = 1, . . . , 5

becomes a continuous piecewise linear line such that (3, x̃3) is a knot. x̃t for t = 1, . . . , 5 are

explicitly [x̃1, x̃2, x̃3, x̃4, x̃5]
⊤ = [3, 5, 7, 8, 9]⊤. Then, from the above theorem, in the case, x̃(i)t for

i = d, e, f and t = 1− 1, . . . , 5 + 2 are as follows:

[x̃
(i)
1−1, x̃

(i)
1 , x̃

(i)
2 , x̃

(i)
3 , x̃

(i)
4 , x̃

(i)
5 , x̃

(i)
5+1, x̃

(i)
5+2]

⊤ = [1, 3, 5, 7, 8, 9, 10, 11]⊤.

Theorem 4.2. If λ ≥ 2∥(DD⊤)−1Dy∥∞, for i = d, e, f and t = 1− g, . . . , T + h, it follows that

x̃
(i)
t = β̂0t

0 + · · ·+ β̂p−1t
p−1, (4.27)

where (β̂0, . . . , β̂p−1) = argminβ0,...,βp−1

∑T
t=1(yt − β0t

0 − · · · − βp−1t
p−1)2.

Proof. BecauseDg+T+h is a (g+T +h−p)× (g+T +h) (p+1)-diagonal Toeplitz matrix, such

that:

Dg+T+h =



a0 · · · ap 0 · · · 0

0
. . .

. . .
. . .

...

...
. . .

. . .
. . . 0

0 · · · 0 a0 · · · ap


,

where ak = (−1)p−k
(
p
k

)
for k = 0, . . . , p, it may be expressed as

Dg+T+h =


G1 G2 0

0 D 0

0 H1 H2

 ,

whereG1 is a g× g upper triangular matrix,G2 is a g× T matrix,H1 is an h× T matrix, andH2

7In the case, [∆2x̃3,∆
2x̃4,∆

2x̃5]
⊤ is expected to become sparse, as in the numerical example, because

∑5
t=3|∆

2xt|
is included as a penalty.
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is an h× h unit lower-triangular matrix. For example, when p = 3, g = h = 2, and T = 5:

D2+5+2 =



−1 3 −3 1 0 0 0 0 0

0 −1 3 −3 1 0 0 0 0

0 0 −1 3 −3 1 0 0 0

0 0 0 −1 3 −3 1 0 0

0 0 0 0 −1 3 −3 1 0

0 0 0 0 0 −1 3 −3 1


. (4.28)

Let x̃g = [x̃1−g, . . . , x̃1−1]
⊤, x̃ = [x̃1, . . . , x̃T ]

⊤, x̃h = [x̃T+1, . . . , x̃T+h]
⊤, and x̃g+T+h =

[x̃⊤
g , x̃

⊤, x̃⊤
h ]

⊤, which is a (g + T + h)-dimensional column vector. Then, by definition of x̃g and

x̃h, it follows that:

G1x̃g +G2x̃ = 0, (4.29)

H1x̃+H2x̃h = 0, (4.30)

which leads to:

Dg+T+hx̃g+T+h =


0

Dx̃

0

 . (4.31)

From Kim et al. (2009), if λ ≥ 2∥(DD⊤)−1Dy∥∞, it follows that x̃ = Πβ̂, where

β̂ = (Π⊤Π)−1Π⊤y. Recalling that DΠ = 0, we obtain Dg+T+hx̃g+T+h = 0 if λ ≥

2∥(DD⊤)−1Dy∥∞, which implies that x̃g+T+h may be represented as Πg+T+hγ. Because

x̃ = Πβ̂, γ must equal β̂. Therefore, if λ ≥ 2∥(DD⊤)−1Dy∥∞, then x̃g+T+h = Πg+T+hβ̂.

Theorem 4.3. Suppose that y = Πα, where α ̸= 0 is a p-dimensional column vector. Then, for

i = d, e, f, it follows that:

x̃
(i)
g+T+h = Πg+T+hα, (4.32)
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where x̃(i)
g+T+h = [x̃

(i)
1−g, . . . , x̃

(i)
T+h]

⊤.

Proof. If y = Πα, it follows that: x̃ = Πα. Accordingly, Dg+T+hx̃g+T+h = 0, which indicates

that x̃g+T+h may be represented as Πg+T+hγ. Because x̃ = Πα if y = Πα, γ must equal α.

Therefore, we obtain x̃g+T+h = Πg+T+hα if y = Πα.

Example 4.2. We give a numberical example for the case g = 1, T = 2, h = 2 and p = 3. Suppose

α = [−1, 1, 3]⊤, then y = Π2α = [3, 13]⊤ is satisfied.

From the above theorem, we obtain

x̃1+2+2 =



(1− 1)0 (1− 1)1 (1− 1)2

(1)0 11 12

(2)0 21 22

(3)0 31 32

(3 + 1)0 41 42




−1

1

3

 =



−1

3

13

29
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Corollary 4.1. Let x̃(i)
g+T+h = [x̃

(i)
1−g, . . . , x̃

(i)
T+h]

⊤ for i = d, e, f.

(i) Denote the (j + 1)-th column of Π and that of Πg+T+h, respectively, by τj and by τg+T+h,j

for j = 0, . . . , p− 1. If y = τj , then x̃(i)
g+T+h = τg+T+h,j for any λ > 0.

(ii) Let z be a T -dimensional column vector. If y = Π(Π⊤Π)−1Π⊤z, then x̃(i)
g+T+h =

Πg+T+h(Π
⊤Π)−1Π⊤z for any λ > 0.

4.4 Some remarks on the main results

First, we give a remark on Theorem 4.1. Because |G1|= (−1)g·p, from (4.29), x̃g may be expressed

with x̃ as x̃g = −G−1
1 G2x̃. Likewise, because |H2|= 1, from (4.30), x̃h may be expressed with x̃

as x̃h = −H−1
2 H1x̃. Thus, the modified ℓ1 polynomial trend filtering, (4.16), may be characterized

as a filtering that calculates


−G−1

1 G2

IT

−H−1
2 H1

 x̃ (4.33)
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from y.8 (IT is defined as an T × T identity matrix.)

In addition, from Kim et al. (2009), it follows that x̃→ y as λ→ 0. Therefore, we obtain:

x̃
(d)
g+T+h →


−G−1

1 G2

IT

−H−1
2 H1

y, (λ→ 0). (4.34)

Second, we provide a remark on Theorems 4.2 and 4.3. Yamada (2017b) recently showed

that:

x̃ = Πβ̂ +Xϕ̃, (4.35)

where X = D⊤(DD⊤)−1 and ϕ̃, which is a (T − p)-dimensional column vector, is the solution

of the following Lasso regression/BPDN:

min
ϕ

∥y −Xϕ∥22+λ∥ϕ∥1. (4.36)

Because X⊤Π = 0, Πβ̂ +Xϕ̃ in (4.35) represents an orthogonal decomposition of x̃. Here, we

show that we may prove Theorems 4.2 and 4.3 by using (4.35) and (4.36). Premultiplying (4.35) by

D yieldsDx̃ = ϕ̃. We accordingly obtain:

Dg+T+hx̃g+T+h =


0

ϕ̃

0

 . (4.37)

(i) From Osborne et al. (2000, p. 324), if λ ≥ 2∥X⊤y∥∞, then ϕ̃ = 0. Therefore, we obtain

x̃ = Πβ̂ andDg+T+hx̃g+T+h = 0, which proves Theorem 4.2.

8Let us calculate −H−1
2 H1x̃ for the case where p = 3, g = h = 2, and T = 5. From (4.28), it follows that

−H1x̃ =

[
x̃T−2 − 3x̃T−1 + 3x̃T

x̃T−1 − 3x̃T

]
=

[
x̃T + (∆x̃T ) + (∆2x̃T )

−2x̃T − (∆x̃T )

]
.

Accordingly, we obtain:

−H−1
2 H1x̃ =

[
1 0
3 1

] [
x̃T + (∆x̃T ) + (∆2x̃T )

−2x̃T − (∆x̃T )

]
=

[
x̃T + (∆x̃T ) + (∆2x̃T )

x̃T + 2(∆x̃T ) + 3(∆2x̃T )

]
,

which is consistent with (4.15).
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(ii) If y = Πα, where α ̸= 0, then X⊤y = 0, which implies that λ > 2∥X⊤y∥∞= 0. Again,

from Osborne et al. (2000), we obtain ϕ̃ = 0 if y = Πα. Therefore, if y = Πα, it follows

that x̃ = Πβ̂ = Πα andDg+T+hx̃g+T+h = 0, which proves Theorem 4.3.

Example 4.3. Third, we give an example of Corollary 4.1 (i). For the case where y = [1, . . . , 5]⊤

and p = g = h = 2, it follows that x̃(d)
2+5+2 = [−1, 0, 1, . . . , 5, 6, 7]⊤ for any λ > 0.

4.5 Concluding remarks

The ℓ1 polynomial trend filtering method is a promising piecewise polynomial curve-fitting method

because it does not require prespecifying the number and location of knots. We have shown some

theoretical results on this method. One of them is that a small modification of the filtering provides

identical trend estimates and also extrapolations of the trend beyond both sample limits. Another

is that x̃T+1, . . . , x̃T+h based on (4.12) are useless to improve the trend estimates of ℓ1 polynomial

trend filtering. We also provided a MATLAB function for calculating the solution of one of the

modified filtering methods. The main results of the paper are summarized in Theorems 4.1, 4.2, and

4.3 and Corollary 4.1.

Finally, we remark that applying the modified ℓ1 polynomial trend filtering (4.16)–(4.18)

requires specification of the value of λ. For this purpose, the methods proposed in Yamada and

Yoon (2016b) and Yamada (2018) are applicable.
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4.6 Appendix

4.6.1 Proof of (4.15)

Because ∆3x̃T+j = ∆2x̃T+j − ∆2x̃T+j−1, from ∆3x̃T+j = 0 for j = 1, . . . , h, we obtain

∆2x̃T+k = ∆2x̃T for k = 1, . . . , h. Then, because
∑l

k=1(∆
2x̃T+k) = l(∆2x̃T ) for l = 1, . . . , h

and
∑l

k=1(∆
2x̃T+k) = ∆x̃T+l −∆x̃T , it follows that

∆x̃T+l = ∆x̃T + l(∆2x̃T ), (l = 1, . . . , h).

Furthermore, because
∑j

l=1(∆x̃T+l) = j(∆x̃T ) + (
∑j

l=1 l)(∆
2x̃T ) for j = 1, . . . , h and∑j

l=1(∆x̃T+l) = x̃T+j − x̃T , we finally obtain:

x̃T+j = x̃T + j(∆x̃T ) +
j(j + 1)

2
(∆2x̃T ), (j = 1, . . . , h).
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