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ABSTRACT 

 

Ballistic transport was studied in a multiple-band system consisting of an antidot 

lattice of AB-stacked trilayer graphene. The low temperature magnetoresistance 

showed commensurability peaks arising from matching of the antidot lattice period 

and radius of cyclotron orbits for each mono- and bilayer-like band in AB stacked 

trilayer graphene. The commensurability peak of the monolayer-like band appeared 

at a lower magnetic field than that of the bilayer-like band, which reflects the fact 

that the Fermi surface of the bilayer-like band is larger than that of monolayer-like 

band. Rotation of the antidot lattice relative to the crystallographic axes of graphene 

resulted in anisotropic magnetoresistance, which reflects the trigonally warped 

Fermi surface of the bilayer-like band. Numerical simulations of magnetoresistance 

that assumed ballistic transport in the mono- and bilayer-like bands approximately 

reproduced the observed magnetoresistance features. It was found that the 

monolayer-like band significantly contributes to the conductivity even though its 

carrier density is an order smaller than that of the bilayer-like band. These results 

indicate that ballistic transport experiments could be used for studying the 

anisotropic band structure of multiple-band systems. 
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1. Introduction 

 

Since the discovery of graphene [1] a number of efforts have been made to clarify its 

electronic properties [2-4]. Electrons in monolayer graphene were found to have the 

character of massless Dirac Fermions [1]. Theory predicts that the band structure 

evolves with the number of layers; i.e., graphene has a different band structure 

depending on the number of layers [5-19]. In particular, AB-stacked graphene is 

expected to show an even-odd layer number effect; multilayer graphene with an even 

number of layers, 2𝑁, has 𝑁 bilayer-like bands; multilayer graphene with an odd 

number of layers, 2𝑁 + 1, has 𝑁 bilayer-like bands and one monolayer-like band. 

[5,10-16]. To date, the band structures of graphene with various numbers of layers 

have been measured in experiments. High energy band structure was observed 

measured via optical spectroscopic measurements in the early stage of graphene 

research [20-26]. Low energy band structure, which is important for transport 

measurements, has been measured by the use of Shubnikov-de Haas (S-dH) 

oscillations in high quality graphene samples [1,16,27-39] 

 

Because graphene’s crystallographic structure is a honeycomb lattice of carbons, the 

band structure is more or less anisotropic (trigonally warped). The degree of the 

trigonal warping of the Fermi surface differs depending on the number of layers. For 

monolayer graphene, the trigonal warping results from higher order terms in the 𝑘 ∙

𝑝 methods [40], and the effect is small in the low energy regime where transport 

phenomena are concerned [40] (upper left panel of Fig. 1(a)). On the other hand, 

bilayer graphene is expected to have significant anisotropy or a trigonally warped 

Fermi surface (upper right panel of Fig. 1(a)). Recently, such anisotropy in the band 

structure was observed by making ballistic transport measurements on graphene 

antidot samples [41]. Low-field magnetoresistance traces of the bilayer graphene 

showed commensurability magnetoresistance indicating anisotropy depending on 

the relative angle between crystallographic axes and the antidot lattice, while, in 

monolayer graphene, no such effects were observed. These results indicate that  

Fermi surface is significantly warped in bilayer graphene, but approximately 

isotropic in monolayer graphene [41].  

 

In this work, we investigated Fermi surface anisotropy in trilayer graphene that has 

multiple bands by performing a ballistic transport experiment. The lower panels in 

Fig 1(a) show the dispersion relations and shapes of the Fermi surface in AB-stacked 
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trilayer graphene. There are two bands, mono- and bilayer-like. The monolayer-like 

band, whose dispersion relation is linear, has approximately a circular Fermi surface, 

while the bilayer-like band, which is massive, has a larger Fermi surface area that 

is trigonally warped. The Fermi surface of the bilayer band is evidently more warped 

than that of the bilayer graphene in Fig. 1(b). We will show that ballistic transport 

measurements can be used to detect the monolayer-like band and the bilayer-like 

band that is anisotropic in plane. 

 

Here, we briefly describe the commensurability magnetoresistance in antidot lattices. 

In the semi-classical picture, electrons at the Fermi level move along the 

circumference of the Fermi surface in a magnetic field. Therefore, the shape of the 

Fermi surface is closely related to that of cyclotron orbits, the electron trajectories in 

a magnetic field. Figure 1(b) shows schematic drawings of a Fermi surface and a 

cyclotron orbit at the K-point for mono- and bilayer graphene (whose 

crystallographic axes are as such that the 𝑥-axis is the zig-zag direction). Anisotropic 

Fermi surfaces generally result in anisotropic cyclotron orbits. Therefore, detection 

of an anisotropic cyclotron orbit is direct proof of an anisotropic Fermi surface. Such 

proof could be acquired in a ballistic transport experiment using an antidot lattice 

[41-42], which, as shown schematically in Fig. 1(c), is a regular array of nano-holes 

[42-44,46-51]. If the mean free path of the conductor is sufficiently long, the 

magnetoresistance shows peaks (commensurability peaks) arising from matching of 

the cyclotron diameter with the distance between antidots [42-44,46-50] (cases 1-3 

in Fig. 1(c)). The largest peak appears when the cyclotron diameter 2𝑅𝑐 = 2ℏ𝑘𝑓/𝑒𝐵 

matches the distance between the centers of the nearest antidots, i.e., 2𝑅𝑐 = 𝑎 (case 

1). Here, 𝑅𝑐 is the cyclotron radius, 𝑎 is the distance between the centers, 𝑘𝑓 is the 

Fermi wave number, ℏ is the Planck constant, 𝑒 is the unit charge and 𝐵 is the 

magnetic field.  

 

The principle of detecting anisotropic cyclotron orbits with an antidot lattice sample 

is rather straight forward. The electron trajectories in the antidot lattice are 

significantly affected by the shape of the cyclotron orbits, and they determine the 

magneto conductivity components [41], i.e., magnetoresistance traces. Therefore, 

observing anisotropic magnetoresistance by changing the orientation of the antidot 

lattice with respect to the crystallographic axes, reveals the anisotropy of the Fermi 

surface as shown in previous work [41]. In the case of monolayer graphene, the 

rotation did not change the magnetoconductivity components significantly because 
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of the rotational symmetry. On the other hand, in the case of bilayer graphene, 

rotation changed them significantly [41]. Magnetoresistance without the peaks of 

commensurability showed clearly different behaviors depending on the angle 

between the crystallographic axes and the antidot lattices, while the magnetic fields 

of the commensurability peak remained approximately unchanged [41]. 

 

 

2. Sample structure and characterization 

 

We fabricated graphene antidot lattice samples of AB-stacked trilayer graphene, 

whose optical micrograph is shown in Fig. 2(a). Graphene flakes were prepared by 

exfoliating high-quality Kish graphite with adhesive tape [1]. The number of layers 

was roughly determined from the color signal intensity of digitized optical images of 

graphene flakes [52-54]. The number of layers and stacking were further verified by 

examining the Landau level structure (the Shubnikov-de Haas oscillations) observed 

in a magnetotransport experiment. The graphene was encapsulated with hexagonal 

boron nitride (h-BN) on a p++ −doped Si substrate covered with 300 nm of thermally 

oxidized SiO2. The Si substrate remained conducting even at the lowest temperature 

and served as a back gate.  

 

The most important point in this study is the angle of rotation of the antidot lattice 

with respect to the crystallographic axes of graphene. As was done in our previous 

work [41], a graphene flake having a clear straight edge was chosen, and the edge 

was used as a reference of the orientation for forming the antidot lattice (Fig. 2(b)). 

The straight edges were cleaved lines (CL). They were possibly disordered and were 

neither clear zigzag edges nor armchair edges on the microscopic scale [55]. 

Nevertheless, one can expect that such an edge would be a good reference of the 

crystallographic axes because a moiré superlattice of h-BN graphene 

heterostructures can actually be formed by using CL as references of the crystal axes 

[56-59]. We formed two antidot lattices on the same graphene flake; the one had a 

primitive vector parallel to the edge (𝜃 =0∘), and the other had one rotated by θ =

30∘ (Fig. 2(a)). The lattice constant (distance between the centers of the nearest 

antidots) was 700 nm, and the diameter of each antidot was about 200 nm. 

 

The antidot lattices were formed by using electron beam lithography. A film of 

organic e-beam resist, patterned into triangular antidot lattices, was used as a mask 
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for the reactive ion etching using a mixture of low-pressure CF4 and O2 gas. Electrical 

contacts with the graphene sample were formed by use of the edge-contact technique 

[60]. Resistivity was measured with the four probe method using the standard lock-

in technique. Magnetic fields were applied perpendicular to the sample by using a 

superconducting solenoid.  

 

Figure 2(c) shows resistivity (𝜌) measured as a function of gate voltage (𝑉g) at liquid 

helium temperature (𝑇  = 4.2 K) and zero magnetic field (𝐵 = 0 T). The antidot 

lattice samples had an electrical mobility, 𝜇 =  1/|𝑛𝑡𝑜𝑡|𝑒𝜌 of about 2 × 104 cm2/Vs 

at a high total carrier density  𝑛𝑡𝑜𝑡  (Fig. 2(d)). The mobility of pristine graphene 

should be larger than this value because the present sample was influenced by 

scattering of electrons by the antidots. 

 

 

3. Results 

 

First, we verified that our sample was AB-stacked trilayer graphene by observing its 

Landau level structure. Figures 3 (a) and (b) show maps of longitudinal resistivity 

(𝜌𝑥𝑥) and its derivative with respect to the magnetic field (𝑑𝑅𝑥𝑥/𝑑𝐵), plotted as a 

function of 𝑛𝑡𝑜𝑡  and magnetic field (𝐵 ). Shubnikov-de Haas (S-dH) oscillations 

arising from Landau levels can be seen as stripes. The structure of the Landau levels 

approximately resembled those in past experiments performed on the AB-stacked 

trilayer graphene [28-31,39]. By analyzing the filling factors at the highest magnetic 

field, the specific capacitance of our sample was estimated to be about 𝐶𝑔 =

 116 aF/μm2. The conspicuous stripes that have a radial structure are principally 

due to the Landau levels of the bilayer-like bands. The Landau levels of the 

monolayer-like band appeared as beatings appearing at lower magnetic fields 

(indicated by the arrows in Fig. 3(a)). A characteristic feature of the AB-stacked 

trilayer graphene is the two different zero-mode Landau levels. The zero-mode 

Landau level of monolayer-like band with four-fold degeneracy can be seen (marked 

by m in Fig. 3(b)) at 𝑛𝑡𝑜𝑡 ∼ 0.5 × 1012cm−2, while the one for the bilayer-like band 

with eight-fold degeneracy can be seen (marked by b in Fig 3 (b)) at 𝑛𝑡𝑜𝑡 ∼ −0.5 ×

1012cm−2. 

 

The carrier density for each band (𝑛𝑏𝑎𝑛𝑑), i.e., mono- or bilayer-like band, which was 

calculated from the S-dH oscillation, was also consistent with the dispersion relation 
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of AB-stacked trilayer graphene. Figure 3(c) shows a map of the power spectra of a 

fast Fourier transform (FFT) of the magnetoresistance trace with respect to 1/𝐵. 

The frequency of the FFT is scaled so that the peaks of the FFT directly relate to 

𝑛𝑏𝑎𝑛𝑑 for each band resulting in S-dH oscillations. The measured carrier density for 

each band could be approximately reproduced by a band calculation based on the 

tight binding model utilizing the SWMcC parameters of graphite, although the 

carrier density for the monolayer was slightly larger than in the experiment. These 

features proved that the sample was AB-stacked trilayer graphene.  

 

Peaks due to commensurability magnetoresistance are visible at for 𝐵 <  1 T in 

Fig. 3(b) (indicated by arrows). These peaks are absent from the measurements of 

the samples without the antidot lattice [28-30, 39]. The commensurability peaks can 

be more clearly seen in the magnetoresistance traces. Figures 4(a) and (b) show the 

results for the antidot lattice with 𝜃 = 0∘  and 30∘ , respectively. As shown from 

bottom to top, the gate voltage was varied from -50 to 50 V in 10 V steps. 

Commensurability peaks (shown by arrows) arising from the antidot lattice are 

clearly visible in the traces. In addition, at magnetic fields higher than 𝐵 > 0.5 T, 

small oscillations with fast and slow periods appeared. These can be identified to be 

S-dH oscillations for the bilayer-like and monolayer-like bands, by comparing them 

with those of the AB-stacked trilayer graphene sample without the antidot lattice. 

  

The main commensurability peak appears at a magnetic field where the cyclotron 

diameter matches the distance between the center of the nearest antidots, i.e., 2𝑅𝑐 =

𝑎 . Using a simple formula, 𝑘𝑓 ≈ √𝜋𝑛𝑏𝑎𝑛𝑑 , the magnetic field due to the main 

commensurability peak can is given by 𝐵𝑝 =  2ℏ√𝜋𝑛𝑏𝑎𝑛𝑑/ 𝑒𝑎, and this yields  𝐵𝑝 ≈ 

0.51 T for 𝑉𝑔 = −50 V for the bilayer-like band, which agrees fairly well with the 

largest commensurability peaks (b1) for 𝑉𝑔 = −50 V in Figs. 4(a) and (b). Higher 

order peaks possibly arising from the next nearest antidots (labeled b2, case 2 in Fig. 

1 (c)) are also visible in the magnetoresistance trace. 

 

The monolayer-like band, on the other hand, has a carrier density of about 0.3 ×

1012cm−2  for 𝑉𝑔 = −50 V, and the commensurability peak is expected to appear 

around 𝐵 =  0.16 T. The magnetic field is close to that of the peak appearing after 

a sharp increase from zero magnetic field (m1). These peaks have not been observed 

in experiments on mono- and bilayer graphene antidot samples [41,49-50], i.e., they 

are characteristic of AB-stacked trilayer graphene. In monolayer graphene, the low-
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field magnetoresistance showed monotonic behavior, and slightly negative 

magnetoresistance was observed [41,49-50]. In bilayer graphene, magnetoresistance 

without peaks due to commensurability magnetoresistance showed monotonic 

behavior; it increased or decreased depending on the orientation of the antidot lattice 

with respect to the crystallographic axes [41]. 

 

The values of 𝐵𝑝 were further analyzed. Figure 5 (a) summarizes the measured 𝐵𝑝 

for the main commensurability peaks. Figure 5 (b) shows the estimated 𝑛𝑏𝑎𝑛𝑑 for 

mono- and bilayer-like bands (Fig. 5(b)). The measured values of 𝐵𝑝  can 

approximately be explained by the estimations made from the carrier density.  

 

Next, let us focus on the in-plane anisotropy. The magnetoresistance traces for 𝜃 =

30∘, shown in Fig. 4 (b), have similar peak structures arising from commensurability, 

but also have two features different from the case of 𝜃 = 0∘. One is that the peaks 

for the main commensurability (indicated by down arrows) are considerably smaller 

than the case of 𝜃 = 0∘. The other is that higher order commensurability peaks b2 

are less visible in the data with 𝜃 = 30∘. These features are qualitatively similar to 

those of bilayer graphene so they should originate from the Fermi surface anisotropy 

of the bilayer-like band [41]. 

 

To investigate the anisotropic behavior of the commensurability magnetoresistance, 

we performed numerical simulations based on a semi-classical model. The 

conductivity components of each band (mono- or bilayer-like band) were calculated 

by [61], 

 

𝜎𝑖𝑗 =  𝐴 ∫ < 𝑣𝑖(0)𝑣𝑗(𝑡) > exp(−𝑡/𝜏) 𝑑𝑡
∞

0
,               (3) 

 

where 𝑣𝑖 and 𝑣𝑗 are group velocities in the 𝑖 and j directions, 𝜏 is the relaxation 

time, and 𝐴 is a constant. < ⋯ > indicates the average over possible initial states. 

We numerically calculated all the conductivity components, i.e., 𝜎𝑥𝑥 ,  𝜎𝑥𝑦 ,  𝜎𝑦𝑥 , 

and 𝜎𝑦𝑦, for each band and added them together with a suitable weight to obtain the 

conductivity components of the whole system. Then, the resistivity components were 

calculated by tensor inversion. To evaluate eq. (3), we used a model Fermi surface 

whose analytic formula is given in polar coordinates (𝑘𝑓 , 𝜃) by  

 

 𝑘𝑓 =  𝑘0(1 + 𝛼 cos(3𝜃) + 𝛽 cos(6𝜃)).                      (4) 
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Here, 𝛼 and 𝛽 are parameters describing trigonal warping of a Fermi surface, and 

the 𝑥-axis is the direction of the zigzag edge. These parameters were estimated by 

fitting eq. (4) to numerically calculated energy contour of the dispersion relations. 

For  𝑛 ≈  3 ×  1012 cm−2 , they were estimated to be 𝛼 = 0.15 ∼ 0.2 and 𝛽 ≈ 0.06 

for the bilayer-like band, and 𝛼 ≈ 0 and 𝛽 ≈ 0 for the monolayer band.  

 

Figures 6 (a) and 6 (b) show the numerically calculated resistivities for α = 1.5. Here, 

𝑅𝑐2𝐿  is the cyclotron radius of the bilayer-like band, and therefore, 𝑎/𝑅𝑐2𝐿  is 

proportional to the magnetic field. The ratio of the carrier density of the monolayer-like 

band (𝑛1𝐿) and that of the bilayer-like band (𝑛2𝐿) was taken to be 𝑛1𝐿/𝑛2𝐿 = 0.1, which 

approximates the experimental values. The mean free path 𝑙𝑓 was chosen to be 1.5𝑎, 

and the weights of the conductivity component (𝜎1𝐿/𝜎2𝐿 ) is served as adjustable 

parameters. The experimentally measured magnetoresistances were qualitatively 

reproduced when 𝜎1𝐿/𝜎2𝐿  = 0.5 ∼ 1.  The maximum resistance peak around 𝑎/

𝑅𝑐2𝐿  ≈  2 (b1) is the main peak of the commensurability for the bilayer-like band. 

A peak appearing around 𝑎/𝑅𝑐 ≈ 1.2 (b2) are for commensurability associated with 

the next nearest neighbor antidot. The peak appearing at 𝑎/𝑅𝑐  ≈  0.5 (m1) is the 

main commensurability peak for the monolayer-like band. The simulation also 

qualitatively reproduced the anisotropy with respect to 𝜃 ; magnetoresistance 

(without the peaks for the commensurability) for 𝜃 = 0∘ is larger than that for 𝜃 =

30∘, as in the experiment, which would show that 𝜃 = 0∘ is the zigzag direction in 

our sample. This anisotropic behavior should arise from the anisotropic Fermi 

surface of the bilayer-like band, which is similar to the case of the bilayer graphene 

[41]. In addition, anisotropy can be seen in other points. The commensurability peak 

(b2) is rather weak for 𝜃 = 30∘, but clearly visible for 𝜃 = 0∘, as in the experiment 

(Figs. 4 (a) and 4 (b)). Moreover, the magnetic field of the main commensurability 

peak for 𝜃 = 0 is slightly larger than that for 𝜃 = 30∘.  

 

Next we turn our attention to the steep increase in resistance from zero magnetic 

field to peak m1 (at 𝑎/𝑅𝑐2𝐿 ≈  0.5), which qualitatively reproduced the positive 

magnetoresistance in the experiment. Note that such positive and peaked 

magnetoresistance was not observed in the experiment (and numerical simulations) 

in antidot lattice samples of mono- and bilayer graphene [41, 49-50]. Therefore, it 

should also originate from the multiband transport properties. It is known that if 

multiple bands contribute to electronic conduction, unbalanced longitudinal and 
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Hall conductivities result in a positive magnetoresistance at low magnetic fields, 

whereas no semi-classical magnetoresistance appears for electron systems with a 

single isotropic band. 

 

Although the carrier density of the monolayer band is about an order smaller than 

that of the bilayer-like band, the monolayer band was found to contribute to the total 

conductivity significantly because the simulation indicated (𝜎1𝐿/𝜎2𝐿) is of order 1. 

This would be because the monolayer band is a massless band and has a large Fermi 

velocity (𝑣𝑓) . 𝜎1𝐿  and 𝜎2𝐿  can be roughly estimated using the relation, 𝜎 ∼

𝐶𝑒2𝑁(0)𝑣𝑓𝑙𝑓 , where 𝑁(0) is the density of states at the Fermi level, and C  is a 

constant of order 1. 𝑁(0) and 𝑣𝑓 could be calculated from the dispersion relation by 

averaging 𝑁(𝐸) = 𝑑𝑛/𝑑𝐸  and |𝑣⃗|  = |(1/ℏ)(𝜵𝒌𝐸)|  over angles. For 𝑛𝑡𝑜𝑡 ≈ 3.0 ×

1012 cm−2, (𝜎1𝐿/𝜎2𝐿) was estimated to be 0.35 − 0.45, which is the same order of 

magnitude as the estimation from the magnetoresistance curves. This explains why 

the monolayer-like band still significantly contributes to the total conductivity even 

though the carrier density of the monolayer-like band is about an order smaller than 

that of the bilayer-like band. 

 

Discussion 

Although ballistic transport has been studied in various systems, most of the studies 

used systems consisting only of a single band with a simple electronic structure. The 

choice of a simple structure was because ballistic transport experiments require 

samples with sufficiently long mean free paths, and therefore, suitable materials are 

naturally limited to high-quality two-dimensional semiconductors grown by 

molecular beam epitaxy, etc. As far as the authors know, ballistic transport has only 

been studied in a multiband system by conducting a magnetofocusing experiment on 

AB-stacked trilayer graphene [62]. Here, magnetofocusing is similar to  

commensurability magnetoresistance in antidot lattices in that they both originate 

from matching of the cyclotron diameter with geometrical structures. However, 

antidot lattice experiments have the advantage in being able to observe the 

anisotropic band structure because an electron’s collision with the antidot is strongly 

dependent on the symmetry of the cyclotron orbit that of the antidot lattice [41]. 

 

The effect of trigonal warping of the band structure of graphene has been discussed 

from various points of view. Trigonal warping has a significant effect on the 

dephasing rate of the weak localization [63-64]. It also affects the Landau level 



10 

 

structures in multilayer graphene. The crossings of the Landau levels were found to 

be significantly different from the case without trigonal warping [27]. Furthermore, 

trigonal warping was found to significantly influence the low-energy band structure, 

in particular in the presence of a perpendicular electric field. Here, mini-Dirac cones 

formed at the bottoms of the bilayer-like band of multilayer graphene when it was 

placed in a perpendicular electric field [65]. Mini-Dirac cones have been observed in 

experiments on intrinsic resistance peaks (ridges) that appear in the dependence of 

the bottom gate voltage dependence on resistance [16,34,37-38]. However in-plane 

anisotropy of the band structure can only be successfully detected with ballistic 

transport by using antidot lattices. 

 

Next we discuss the mobility and the mean free path of our sample. The mobility of 

graphene without antidot lattice structure could not be measured in the present sample 

because the size of the graphene flake is limited. However, we estimated it to be larger 

than 1 × 105 cm2/Vs from the typical mobility of other a few layer graphene samples 

with the same structure (h-BN encapsulation), which were fabricated in our group using 

graphite and h-BN crystals in the same batches. Mean free path 𝑙𝑓 can be estimated by 

using 𝑙𝑓 ≈ 𝑒𝜇/(ℏ𝑘𝑓) ≈ 𝑒𝜇/(ℏ√𝜋𝑛) for the single band system. Here, 𝑘𝑓 is the Fermi 

wave vector, and 𝑛 is a carrier density. Strictly speaking, this formula cannot be used 

for AB-stacked trilayer graphene which has two bands, i.e., a monolayer-like and a 

bilayer-like band. However, carrier density of the bilayer-like band is much larger than 

that of the monolayer-like one, we can roughly estimate the mean free path to be 

about 2 μm for 𝑛 ≈ 3 × 1012cm−2, which corresponds to two or three times the lattice 

constant of the antidot lattice. If the conductivities due to monolayer and bilayer bands 

are approximately equal, as has been shown in this work, the mean free path of the 

electrons in bilayer-like band is about 1 μm. On the other hand, the mobility of the 

antidot lattice sample itself was about 2 × 104 cm2/Vs , and mean free path was 

calculated to be 0.3-0.6 μm. The value of the mean free path calculated for antidot lattice 

samples was approximately the distance between antidots so that reduction of the 

mobility and mean free path was due to scattering of electrons with antidot but not the 

impurity, as expected.  

 

The mean free path of graphene is larger than the length of a trajectory for case 1 in Fig. 

1 (c) so that we believe that our experiment was done in a ballistic regime. On the other 

hand, cases 2 and 3 require longer unscattered orbits. Small commensurability peak for 

case 2 (b2) was discernible in Fig. 4(a) and (b). However, the peak corresponding to case 
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3 was hardly seen. Therefore, the system might be in a quasi-ballistic regime for higher 

order commensurability peaks. 

 

In the early study of the commensurability magnetoresistance of the antidot lattice [43], 

formation of such circulating orbit was used to explain the commensurability peaks. Soon 

after the discovery of commensurability magnetorestance [43], it was pointed out that 

formation of one-dimensional runaway orbits (or skipping orbits) arising from the 

forward scatterings was proposed as the origin of the magnetoresistance [47]. To date, it 

has been turned out that even runaway orbit is not necessary but occurrence of a 

collimation similar to the magneto-focusing experiment is important to show the 

commensurability magnetoresistance [41,70,71]. Unscattered half cyclotron orbit, not 

full one, is required to observe commensurability magnetoresistance to observe the 

phenomenon experimentally. 

 

So far various methods have been used to study the electronic band structure of 

materials. Optical methods, eg, photoelectron spectroscopy and infrared spectroscopy, 

are suitable for studying the band structure in a relatively wide range of energies. 

As for the low-energy band structure where transport phenomena appear, the 

Shubnikov-de Haas effect, angular dependent magnetoresistance oscillations [66-69] 

and intrinsic resistance peaks, etc. can be used. Ballistic electron transport 

experiments might be another way to probe the low-energy band structure in two-

dimensional materials. 

 

Conclusion 

 

We observed multiband ballistic transport in an antidot lattice of AB-stacked trilayer 

graphene. It was found that the low-field magnetoresistance had a characteristic 

structure that qualitatively differed from the magnetoresistance of mono- and 

bilayer graphene antidot-lattice samples. Besides clear commensurability peaks 

arising from the bilayer-like band, we observed peaks possibly due to 

commensurability for the monolayer-like band at a low magnetic field. 

Magnetoresistance without the peaks due to the commensurability showed a clear 

dependence on the orientation of the antidot lattice, which would indicate the 

anisotropic features of the bilayer-like band. Moreover, although the carrier density 

of the monolayer-like band was an order smaller than that of the bilayer-like band, 

a monolayer-like band significantly contributed to the conductivity. The 
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experimental magnetoresistance was approximately reproduced by the numerical 

simulations based on semi-classical transport. These findings suggest that ballistic 

experiments might be a new method of studying the electronic band structure of two-

dimensional materials. 
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Appendix  A   Model Fermi surface and numerical simulation of 

magnetoresistance 

 

To evaluate equation (3), one needs to calculate the velocity, and this requires 

information about the dispersion relation of the electron system. We considered two 

cases, a linear, and a parabolic dispersion relation. If the energy 𝐸 is given by 𝐸 =

ℏ 𝑣⃗ ⋅ 𝑘⃗⃗, where  𝑣⃗ is the velocity, the angular dependence of |𝑣⃗| is 

 

|𝑣⃗ | ∝  1/(1 + 𝛼 cos(3𝜃) + 𝛽 cos(6𝜃)).                  (5) 

 

In the case of a parabolic dispersion, the energy is given by a simple formula, 𝐸 =

ℏ𝑘(𝜃)2/2𝑚(𝜃) , where 𝑚(𝜃)  is the band mass which is dependent on the 

crystallographic orientations. Accordingly, the angular dependence of 𝑚(𝜃)  is 

proportional to 

 

𝑚(𝜃) ∝  1/(1 + 𝛼 cos(3𝜃) + 𝛽 cos(6𝜃))
2
.                (6) 

 

For this case also, the group velocity satisfies eq. (5). The electron orbitals in k-space 

can be calculated by solving the semi-classical equation,  

 

ℏ
𝑑𝑘⃗⃗

𝑑𝑡
=  −𝑒𝑣⃗ × 𝐵⃗⃗ 

,                          (7) 

 

where 𝐵⃗⃗ is magnetic field. The orbit in the real space can be obtained by integrating 

the group velocity. The cyclotron orbit is interrupted by the collision with the antidot. 

In the simulation, we assumed specular scattering. In an actual graphene antidot 

lattice to be used in experiments, the circumference of the antidots should be 

substantially disordered on the atomic scale so that the scattering will be diffusive. 

However, the nature of the scattering does not change the important features of the 

calculated commensurability magnetoresistance [41,70-71]. 
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Figure captions 

 

Fig. 1 Cyclotron orbit and antidot lattice. 

 (a) Numerically calculated energy contour of the dispersion relation for mono-, bi- and 

AB-stacked trilayer graphene (for a total carrier density 𝑛𝑡𝑜𝑡 ≈ 3.0 × 1012 cm−2 ). The 

dispersion relation for AB-stacked trilayer graphene is shown at the bottom left. The 

dashed line indicates 𝐸 =  67meV for which the energy contour for the trilayer graphene 

was calculated. The calculations are based on the effective mass approximation. 

Slonczewski-Weiss-McClure (SWMcC) parameters of graphite (𝛾0 =  3.16 eV, 𝛾1 = 0.39 

eV, 𝛾2 = −0.02 eV, 𝛾3 = 0.3 eV, 𝛾4 = 0.044eV, 𝛾5 = 0.038 eV, and 𝛥𝑝 = 0.037 eV) were 

used. (b) Schematic drawings of the Fermi surface and cyclotron orbit. Electrons in a 

circular Fermi surface (1L) move along a circular orbit in magnetic fields while trigonally 

warped Fermi surface (2L) results in a trigonally warped cyclotron orbital. (c) Schematic 

illustration of origin of the commensurability magnetoresistance. Cyclotron orbits in 

triangular antidot lattice are shown for different commensurability conditions (indicated 

by 1-3). A magnetoresistance peak appears at magnetic fields under which the cyclotron 

diameter matches the distance between the centers of the antidot. 

 

Fig. 2  Fabrication and characterization of trilayer graphene antidot sample. 

(a) Optical micrograph of a graphene antidot sample before connecting electrical leads 

(left). Numbers indicate probe numbers. Graphene was h-BN encapsulated. CL indicates 

the direction of the cleaved line of the graphene flake. Antidot lattices with two different 

orientations were formed on the graphene flake.  One had a primitive vector parallel to 

the cleaved line; the other was that rotated by 30∘. (b) Optical micrograph of an h-BN 

encapsulated graphene flake before patterning into a Hall bar. G is graphene, hBN is h-

BN. (c)  𝑉𝑔-dependence of resistivity 𝜌 of the graphene device. (d) 𝑉𝑔  dependence of 

electrical mobility 𝜇(= 1/𝑛𝑡𝑜𝑡𝑒𝜌), where 𝑛𝑡𝑜𝑡 is the total carrier density. 

 

Fig. 3 Landau fan diagrams for antidot lattice samples of AB-stacked trilayer graphene. 

(a) Map of 𝜌𝑥𝑥 in antidot sample with 𝜃 = 0 as a function of  𝑛𝑡𝑜𝑡 and magnetic field 

(𝐵). Arrows indicate the S-dH effect arising from the monolayer-like band. 𝑇 = 4.2 K. 

The Landau level structure for the sample with 𝜃 = 30∘ was approximately the same 

(not shown). (b) Map of 𝑑𝜌𝑥𝑥/𝑑𝐵. Arrows inidicate commensurability peaks arising from 

antidot. The labels m and b indicate zero-mode Landau levels of the mono- and bilayer-

like bands. (c) Map of Fourier spectra for the 1/𝐵 dependence of magnetoresistance. 

Here, the frequency of the FFT was converted into the carrier density (𝑛𝑜𝑠𝑐 ) of the 
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electronic band that causes the S-dH oscillation component. Theoretical values, 

numerically calculated with the tight-binding model using SWMcC parameters of 

graphite, are indicated by dashed lines. Mono- and bilayer-like bands are labeled m and 

b.  

 

Fig. 4 

Traces of normalized longitudinal magnetoresistance ( 𝜌𝑥𝑥(𝐵)/𝜌(0 )) of the antidot 

samples plotted for different gate voltages. From bottom to top, 𝑉𝑔 was varied from −50 

to 50 V in 10 V steps. Data were offset by 0.075. Panel (a) is for 𝜃 = 0, where probes 2 

and 3 were used as voltage probes, and probes 1 and 6 were used as current probes. Panel 

(b) is for 𝜃 = 30∘, where probes 4 and 5 were used as voltage probes. Magnetoresistance 

is normalized by the resistance at zero magnetic field.  𝑇 = 4.2 K. Downward arrows 

indicate main commensurability peaks (labeled b1) corresponding to case 1 in Fig. 1(c) 

for the bilayer-like band. Peaks (only shown for the bottom data with b2) indicate the 

peak arising from case 2 in Fig. 1(c). Peaks (only shown for the bottom data with m1) 

indicate the main commensurability peak of the monolayer-like band. 

 

Fig. 5  Analysis of 𝐵𝑝 

 (a)  𝑉𝑔  dependence of 𝐵𝑝  for different peaks. Solid triangles and solid squares are, 

respectively, 𝐵𝑝  for the main commensurability peak for bilayer- and monolayer-like 

bands in the magnetoresistance trace. Open triangles and open squares are  𝐵𝑝 

calculated from carrier densities determined from the S-dH effect. The lines are guides 

for the eye. (b) Carrier densities 𝑛𝑏𝑎𝑛𝑑 in mono- and bilayer-like bands, determined from 

the S-dH effect as a function of total carrier density 𝑛𝑡𝑜𝑡  (solid triangles and solid 

squares, respectively). Lines are carrier densities calculated from the band calculation 

shown in Fig 1(a). Labels m and b denote the mono- and the bilayer-like band. 

 

Fig. 6  Simulation of resistivity for trilayer graphene antidot lattice 

Numerically calculated traces of magnetoresistivity for different values of 𝜎1𝐿/𝜎2𝐿 . 

Panels (a) and (b) are for 𝜃 = 0∘ and 30∘. 𝛼 = 0.15 and β = 0.06 for the bilayer-like 

band. 𝛼 = 0 and 𝛽 = 0 for the monolayer-like band. Mean free path 𝑙𝑓  is was taken to 

be 𝑙𝑓/𝑎 =1.5 for both bands. 𝑑/𝑎 = 0.2. b1 and m1 show main commensurability peaks 

of the bilayer-like and monolayer-like band. b2 show the commensurability peak for the 

next-nearest neighbor antidots. 
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