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In this paper we extend the existing opportunity-based age replacement policies by
taking account of dependency between the failure time and the arrival time of a replace-

ment opportunity for one unit system. Based on the bivariate probability distribution

function of the failure time and the arrival time of the opportunity, we focus on two
opportunity-based age replacement problems and characterize the cost-optimal age re-

placement policies which minimize the relevant expected costs, with the hazard gradient,

which is a vector-valued bivariate hazard rate. Through numerical examples with the
Farlie-Gumbel-Morgenstern bivariate copula and the Gaussian bivariate copula having

the general marginal distributions, we investigate the dependence of correlation between
the failure time and the opportunistic replacement time on the age replacement policies.

Keywords: opportunity-based age replacement; correlation; bivariate distribution; cop-

ula; hazard gradient; initial hazard rate function; expected cost per unit time.

1. Introduction

Age replacement12 is the simplest but most realistic replacement policy to real

applications, because the pre-scheduled preventive replacement of unfailed units

or components is often feasible and beneficial from the viewpoint of maintenance

management cost. Nakagawa11 calls the replacement policies which are triggered

at random timing the random replacement policies. Traditionally, such replacement

models have been referred to as opportunity-based replacement models in the sense

that an opportunity to trigger the preventive replacement arrives at random times.

Pullen and Thomas14 consider an opportunistic replacement policy for a two-unit

system. Zheng and Fard20,21 and Zheng22 also apply opportunity-based replacement

policy to the other maintenance models. Dekker and Smeitink3,5 and Dekker and

Dijkstra 4 give the mathematical bases for optimization of both age-type and block-

type of opportunity-based replacement policies. Iskandar and Sando 7 and Dohi et

al.6 consider somewhat different opportunity-based age replacement policies from

Dekker and Dijkstra4 in continuous and discrete time setting, respectively. Recently,

Okamura and Dohi13 apply an idea of opportunity-based age replacement model4

to determine the optimal timing when to rejuvenate operating software systems

1
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with degradation, called the software aging.

On the other hand, Nakagawa11 summarizes many model variations which con-

tain both of opportunity-based replacement and pre-scheduled replacement policies

such as age replacement, block replacement, periodic replacement. More specifi-

cally, Nakagawa and Zhao10, Zhao and Nakagawa17 and Zhao et al.18 introduce

the concept of replacement first and replacement last, and compare these two re-

placement schemes in different model setting. Zhao et al.19 also analyze the similar

opportunity-based replacement policies in a different context. In all the references

listed above, it is assumed that the failure time is statistically independent of the

arrival time of replacement opportunity. However, it should be noted that this is a

rather strong assumption in reality. For instance, consider a fully automated man-

ufacturing system, where one of two preventive replacement options is possible;

annual replacement and opportunity-based replacement of a unit in the system.

Under the assumption that the opportunity-based age replacement cost is much

cheaper than the preventive age replacement cost, if the system operator allows to

trigger the opportunity-based age replacement at an unknown timing, he or she

may carefully monitor the unit age, and expect an earlier arrival of the opportynity

than the pre-scheduled replacemen time. Also, when the failure is caused by hu-

man errors, which may occur in the arrangement of replacement, the failure time

must be strongly correlated with the arrival of replacement opportunity. To our

best knowledge, no work on the failure-correlated opportunity-based replacement

model has been reported yet in the literature. In order to describe the correlation

between the failure time and the arrival time of replacement opportunity, we in-

troduce the bivariate copula with arbitrary marginal distributions, and consider

the failure-correlated opportunity-based age replacement policies. In this paper, we

just focus on two opportunity-based replacement models in Zhao and Nakagawa17;

opportunity-based age replacement first and opportunity-based age replacement

last policies, and investigate the dependence of correlation on the replacement de-

cision.

The paper is organized as follows. In Sections 2 and 3, we consider the

opportunity-based age replacement first and the opportunity-based age replacement

last, where the resulting opportunity-based age replacement models are extensions

of the existing models10,17 by taking account of dependency between the failure time

and the arrival time of a replacement opportunity for one unit system. Based on an

arbitrary bivariate probability distribution function of the failure time and the ar-

rival time of the opportunity, we characterize the cost-optimal age replacement first

policy which minimizes the relevant expected cost, with the hazard gradient9, which

is a vector-valued bivariate hazard rate8 . It is confirmed that the analytical result

for the opportunity-based age replacement last is not applicable under the plau-

sible condition. Through numerical examples with the Farlie-Gumbel-Morgenstern

(FGM) bivariate copula and the Gaussian bivariate copula, we investigate the de-

pendence of correlation between the failure time and the opportunistic replacement

time on the two opportunity-based age replacement policies.
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2. Opportunity-based Age Replacement First

2.1. Formulation

Let X be an absolutely continuous non-negative random variable to denote the

failure time of one unit, where Pr{X ≤ x} = F (x), f(x) = dF (x)/dx and

µ =
∫∞
0
xdF (x) are the cumulative distribution function (c.d.f.), probability den-

sity function (p.d.f.) and mean time-to-failure (MTTF), respectively. Suppose that

there are three possible options on replacement. If the unit fails at time X, then the

failed unit is replaced by a new one with the failure replacement cost cF (> 0). We

also suppose that the non-failed unit is replaced at a pre-scheduled preventive re-

placement time t0 (> 0) with preventive replacement cost cT (> 0) or a random op-

portunistic replacement time Y with opportunity-based replacement cost cR (> 0),

where Y is also an absolutely continuous non-negative random variable having c.d.f.

Pr{Y ≤ y} = G(y), p.d.f. g(y) = dG(y)/dy and mean time-to-opportunistic replace-

ment (MTTOR), r =
∫∞
0
ydG(y). Hence the replacement is made at the failure time

(failure replacement) or one of two preventive replacement times, whichever occurs

first, i.e., at time min{X,min(t0, Y )} = min{X,Y, t0}. Hereafter we call this age

replacement policy the opportunity-based age replacement first11. To motivate the

opportunistic replacement arrived at random timing Y , it is assumed without any

loss of generality that cF > cT > cR > 0.

Suppose that the random variable X statistically depends on Y . Define the joint

distribution:

Pr{X ≤ x, Y ≤ y} = P (x, y) =

∫ x

0

∫ y

0

pX,Y (s, t)dsdt, (1)

where pX,Y (x, y) = ∂2P (x, y)/∂x∂y is the bivariate p.d.f of (X,Y ),

limy→∞ P (x, y) = F (x) and limx→∞ P (x, y) = G(y) are the marginal c.d.f.’s. It

is well-known that the bivariate survivor function is given by

Pr{X > x, Y > y} = S(x, y) = 1− F (x)−G(y) + P (x, y). (2)

If the bivariate c.d.f in Eq. (1) is absolutely continuous, the long-run average cost

in the steady state for our opportunity-based age replacement first is given by

C1(t0) = lim
t→∞

E
[
total cost on [0, t)

]
t

=
cF Pr{X ≤ t0, X ≤ Y }+ cR Pr{Y ≤ t0, Y ≤ X}

E[min{X,Y, t0}]

+
cT [1− Pr{X ≤ t0, X ≤ Y } − Pr{Y ≤ t0, Y ≤ X}]

E[min{X,Y, t0}]

=
cT + (cF − cT )

∫ t0
0

∫∞
x
pX,Y (x, y)dydx∫ t0

0
S(t, t)dt

−
(cT − cR)

∫ t0
0

∫∞
y
pX,Y (x, y)dxdy∫ t0

0
S(t, t)dt

. (3)
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Define the numerator and denominator of Eq. (3) by A1(t0) and B1(t0), respec-

tively, where A1(0) = cT ,

A1(∞) = cT + (cF − cT )

∫ ∞

0

∫ ∞

x

pX,Y (x, y)dydx

−(cT − cR)

∫ ∞

0

∫ ∞

y

pX,Y (x, y)dxdy, (4)

B1(0) = 0 and B1(∞) =
∫∞
0
S(t, t)dt. Differentiating C1(t0) with respect to t0 and

dividing it by B2
1(t0) yield dC1(t0)/dt0 = q1(t0)/B

2
1(t0), where

q1(t0) =
{
(cF − cT )λX(t0)− (cT − cR)λY (t0)

}
B1(t0)−A1(t0). (5)

In the independent case10,17, it is common to characterize the optimality equation

with the hazard rate functions, f(t0)/F (t0) and g(t0)/G(t0), where in general ψ(·) =
1−ψ(·). In the bivariate case, the bivariate hazard rate in the sense of Basu1 is well-

known, but does not work to characterize our optimality equation in the dependent

case. In Eq. (5), the functions

λX(t) =

∫ ∞

t

pX,Y (t, y)dy/S(t, t), λY (t) =

∫ ∞

t

pX,Y (x, t)dx/S(t, t) (6)

are called the initial hazard rate functions15 for the bivariate random variable

(X,Y ). Johnson and Kotz8 and Marshall9 define the hazard gradient which denotes

a vector multivariate hazard rate. Shaked and Shanthikumar16 and later Scarsini

and Shaked15 define the initial hazard rate functions for the hazard gradient, and

show that they play a significant role to characterize the multivariate lifetime.

We are in the position to characterize the optimal opportunity-based age re-

placement first with the initial hazard rate functions:

Theorem 1. (1) Suppose that (cF − cT )λ′X(t0) > (cT − cR)λ′Y (t0), where λ′X(t) =

dλX(t)/dt and λ′Y (t) = dλY (t)/dt. If q1(∞) > 0, then there exists a unique optimal

age replacement time t∗0 (0 < t∗0 <∞) minimizing C1(t0), where

C1(t
∗
0) = (cF − cT )λX(t∗0)− (cT − cR)λY (t

∗
0). (7)

Otherwise, i.e., q1(∞) ≤ 0, the function C1(t0) decreases in t0 and the optimal age

replacement time is given by t∗0 → ∞ with C1(∞) = A1(∞)/B1(∞).

(2) Suppose that (cF − cT )λ′X(t0) ≤ (cT − cR)λ′Y (t0). Then the optimal age replace-

ment time is given by t∗0 → ∞.

Proof. Taking the first derivative of q1(t0) with respect to t0 implies

dq1(t0)

dt0
=

{
(cF − cT )λ

′
X(t0) + (cR − cT )λ

′
Y (t0)

}
B1(t0). (8)

Under the assumption of cF > cT and cR > cT , if (cF − cT )λ
′
X(t0) > (cT −

cR)λ
′
Y (t0), then dq1(t0)/dt0 > 0, otherwise dq1(t0)/dt0 ≤ 0. From q1(0) = −cT < 0,

if q1(∞) > 0, then there exists a unique optimal age replacement time t∗0 (0 <
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t∗0 <∞) satisfying q1(t0) = 0, otherwise, the function q1(t0) is always negative and

C1(t0) is a decreasing function of t0. Hence the proof is completed.

Corollary 1. In the simplest case where X and Y are statistically independent,

say, P (x, y) = F (x)G(y), the long-run average cost is given by

C1(t0) =
cT + (cF − cT )

∫ t0
0
G(t)dF (t)− (cT − cR){1− F (t0)G(t0)}∫ t0

0
G(t)F (t)dt

. (9)

The result is trivial and can be seen in Nakagawa11, because

λX(t0) = f(t0)/F (t0), (10)

λY (t0) = g(t0)/G(t0). (11)

Next we show that the opportunity-based age replacement first11 is equivalent

to a simple two-unit system’s replacement (see e.g. Chopra and Ram2 ). Consider

a two-unit series system which consists of Unit 1 and Unit 2 with the bivariate

failure time (X,Y ), respectively. Let ci (i = 1, 2) denote the replacement cost for

Unit i if it fails. In this case, another operative Unit 3 − i is also replaced at the

failure time for an opposite Unit i from the view point of preventive maintenance.

The preventive replacement of two operative units is made at time t0 with cost cT
even though they do not fail. Then, setting cF = c1 and cR = c2, we have

C1(t0) =
cT + (c1 − cT )

∫ t0
0

∫∞
x
pX,Y (x, y)dxdy∫ t0

0
S(t, t)dt

−
(cT − c2)

∫ t0
0

∫∞
y
pX,Y (x, y)dxdy∫ t0

0
S(t, t)dt

, (12)

q1(t0) =
{
(c1 − cT )λX(t0) + (c2 − cT )λY (t0)

}
B1(t0)−A1(t0). (13)

Hence, if ci > cT (i = 1, 2) with λ′X(t) > 0 and λ′Y (t) > 0, then dq1(t0)/dt0 > 0, so

that our extended opportunity-based age replacement first reduces to a simple age

replacement for a correlated two-unit system under a milder assumption.

3. Opportunity-based Age Replacement Last

Noting the cost assumption on cF > cT > cR in the opportunity-based age replace-

ment first, it may not be always better to trigger the preventive replacement at

time t0, provided that both of failure and arrival of opportunistic replacement do

not occur when cR is relatively smaller than cT . Zhao and Nakagawa17 consider a

somewhat different opportunity-based age replacement policy which is called the

opportunity-based age replacement last. In this type of opportunity-based age re-

placement, the preventive replacement is made at time t0 or Y whichever occurs

last. Under the same cost assumption as Section 2, we extend the result in Zhao

and Nakagawa17 by taking account of the dependency of (X,Y ) under cT ̸= cR.
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The expected cost per unit time in the steady state for our opportunity-based

age replacement last is given by

C2(t0) =
cR Pr{Y ≥ t0, Y ≤ X}+ cT Pr{Y ≤ t0, t0 ≤ X}

E[min{X,max(Y, t0)}]

+
cF [1− Pr{Y ≥ t0, Y ≤ X} − Pr{Y ≤ t0, t0 ≤ X}]

E[min{X,max(Y, t0)}]

=
cF − (cF − cT )

∫ t0
0

∫∞
t0
pX,Y (x, y)dxydy∫ t0

0
F (t)dt+

∫∞
t0
S(t, t)dt

−
(cT − cR)

∫∞
t0

∫∞
y
pX,Y (x, y)dxdy∫ t0

0
F (t)dt+

∫∞
t0
S(t, t)dt

. (14)

If X is independent of Y , then we have

C2(t0) =
cF − (cF − cT )F (t0)G(t0)− (cF − cR)

∫∞
t0
F (y)dG(y)∫ t0

0
F (t)dt+

∫∞
t0
F (t)G(t)dt

, (15)

which can be reduced to Eq. (15) in Zhao and Nakagawa17 when cT = cR. Un-

fortunately, it seems impossible to show analytically the uniqueness of the optimal

opportunity-based age replacement last policy even in the independent case, in

spite that the cost assumption cT > cR is essential. But it is quite easy to show the

existense of a unique and finite solution numerically.

4. Numerical Examples

4.1. Preliminary

In the numerical examples, we consider the bivariate copula to represent the correla-

tion between failure time and opportunity. The copula is a multivariate probability

distribution when its marginal distributions follow uniform distributions, which can

describe the dependence between variables without parametric forms of marginal

distributions. For the bivariate distribution, the copula is defined by a function

C(u, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, which maps to the real interval [0, 1]. Concretely,

the joint distribution can be represented in the form:

Pr{X ≤ x, Y ≤ y} = C(FX(x), FY (y)), (16)

where FX(x) = Pr{X ≤ x} and FY (y) = {Y ≤ y} are the c.d.f.’s of the marginal

distributions. On the other hand, the survival copula, C(u, v), is the copula to rep-

resent the dependence of variables in the joint survival function. From the argument

of joint distribution, the relationship between the original copula and the survival

copula is given by

C(u, v) = u+ v − 1 + C(1− u, 1− v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1. (17)

By using the survival copula, the joint survival function can be written as

Pr{X > x, Y > y} = C(FX(x), FY (y)). (18)
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4.2. Farlie-Gumbel-Morgenstern copula

In the first example, we consider the Farlie-Gumbel-Morgenstern (FGM) bivariate

copula to represent the dependence between the failure time and the arrival time

of an opportunity. The FGM bivariate copula is given by

C(u, v) = uv(1 + α(1− u)(1− v)), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, (19)

where −1 ≤ α ≤ 1 is a parameter for the strength of correlation. The survival

copula of the FGM copula is the same as the original copula. Spearman’s rank cor-

relation coefficient becomes ρS = α/3, i.e, Spearman’s rank correlation coefficient

is always in the range −1/3 ≤ ρS ≤ 1/3. Also, the lower and upper tail dependence

coefficients become 0. It is well known that the FGM copula cannot represent the

strength correlation compared to other copulas.

According to the FGM bivariate copula, we suppose the joint survival function

of failure time and opportunity arrival time (X,Y ) as follows.

S(x, y) = F (x)G(y){1 + αF (x)G(y)}. (20)

In our numerical examples, we assume that the marginal c.d.f. of X is given by the

Weibull distribution with mean µ = 10 and shape parameter 2. Also the marginal

c.d.f. of Y is assumed to be the exponential distribution with mean r = 1, 5, 10.

The cost parameters are set as cR = 1, cT = 2, 5 and cF = 10.

Tables 1 and 2 present the optimal opportunity-based age replacement time t∗0
and the minimum expected cost under the opportunity-based age replacement first

and last policies with cT = 2 and cT = 5. In the tables, the column ρS indicates

the corresponding Spearman’s rank correlation coefficients of X and Y .

In both tables, it can be seen that, when the correlation is positive, the mini-

mum expected cost becomes smaller in the both opportunity-based age replacement

policies. This is a plausible observation because the replacement opportunity with

positive correlation tends to occur in accordance with the unit aging. The negative

correlation implies the opposite case. In this case, when the unit does not fail for

long time period, the replacement opportunity may arrive earlier. Since the unit

should be replaced at the opportunity arrival under the replacement first policy,

the cost gets worse than the ordinary age replacement. Also, under the replacement

last policy, since the arrival of opportunity is delayed as the failure time becomes

smaller, the replacement time should be shorter. This is because the policy gets

close to the opportunistic replacement policy without the scheduled replacement.

However, since the difference between the failure time and the arrival time of op-

portunity is large in the case of negative correlation, the opportunistic replacement

policy does not work well. In other words, when the correlation is negative, there are

the cases where the age replacement first and last do not work even if the cost of op-

portunistic replacement is smaller than the preventive age replacement cost. In fact,

when the ordinary age replacement is applied, the optimal replacement time t∗0 and

the minimum expected cost C(t∗0) are t
∗
0 = 5.7621 and C(t∗0) = 0.7241 for cT = 2,

and t∗0 = 12.3083 and C(t∗0) = 0.9667 for cT = 5. In Table 1, there is no case where
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the opportunity-based age replacement is superior to the ordinary age replacement

if the correlation is negative. On the other hand, the optimal opportunity-based

age replacement time under the replacement first is not monotone in terms of the

correlation coefficient. In Table 2, the optimal opportunity-based age replacement

time decreases in the case where the correlation coefficient becomes larger.

The superiority of the opportunity-based age replacement first (last) in the

sense of minimization of the long-run average cost depends on model parameters;

MTTOR and the correlation. It should be noted that the opportunity-based age re-

placement last has to skip the first option of preventive replacement; pre-scheduled

preventive replacement or opportunistic preventive replacement, so the probability

that the failure occurs after this skip is positive. In our examples, it is found that the

case where the opportunity-based age replacement last works better corresponds to

the case where the opportunity-based age replacement first policy is equivalent to

the failure replacement. Hence, when the correlation is positive, if the opportunity-

based age replacement first policy becomes the failure replacement, say, t∗0 → ∞,

then it may be feasible to trigger the opportunity-based age replacement last pol-

icy, otherwise, the opportunity-based age replacement first is reasonable. On the

other hand, as cT increases, i.e., as the preventive replacement cost is relatively

higher than the opportunity-based replacement cost cR, the opportunistic preven-

tive replacement is preferred. In our example, the difference between the minimum

costs under replacement first and the replacement last becomes small in the case

of cT = 5.

4.3. Gaussian copula

Next we consider the Gaussian bivariate copula to represent the dependence be-

tween failure time and opportunity. The Gaussian bivariate copula is given in the

following form:

C(u, v) = Φ2(Φ
−1(u),Φ−1(v); ρ), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, (21)

where Φ2(·, ·; ρ) is the joint c.d.f. of standard bivariate normal distribution with the

(Pearson) correlation parameter ρ, and Φ(·) is the c.d.f. of the standard (univariate)

normal distribution. Spearman’s rank correlation coefficient of the Gaussian copula

is given by ρS = 6
π arcsin(ρ/2), and thus the possible range is−1 ≤ ρS ≤ 1. Thus the

Gaussian copula can represent the strong dependence between random variables.

On the other hand, the lower and upper dependence coefficients are always 0.

From the Gaussian bivariate copula, the joint survival function of failure time

and arrival time of an opportunity (X,Y ) becomes

S(x, y) = F (x) +G(y)− 1 + Φ2(Φ
−1(F (x)),Φ−1(G(y)); ρ). (22)

Similar to the case of FGM bivariate copula, we assume that the marginal c.d.f. of

X is given by the Weibull distribution with mean µ = 10 and shape parameter 2 and

that the marginal c.d.f. of Y is the exponential distribution with mean r = 1, 5, 10.

The cost parameters are also set as cR = 1, cT = 2, 5 and cF = 10.
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Table 1. Optimal opportunity-based age replacement time
with FGM copula (cR = 1, cT = 2, cF = 10).

Replacement First Replacement Last
MTTOR ρS t∗0 C1(t∗0) t∗0 C2(t∗0)

1 0.3 ∞ 1.0585 5.7116 0.7234

1 0.2 ∞ 1.0896 5.7189 0.7235
1 0.1 ∞ 1.1209 5.7262 0.7236
1 0.0 ∞ 1.1525 5.7333 0.7237
1 -0.1 ∞ 1.1843 5.7404 0.7238

1 -0.2 ∞ 1.2163 5.7473 0.7239
1 -0.3 ∞ 1.2485 5.7542 0.7240

5 0.3 8.6585 0.5623 0.0000 0.5982

5 0.2 8.3043 0.6062 0.0000 0.6406

5 0.1 7.7852 0.6507 0.0000 0.6853
5 0.0 7.1189 0.6946 0.0000 0.7323
5 -0.1 6.4212 0.7367 5.6951 0.7535

5 -0.2 5.8117 0.7762 6.2739 0.7648
5 -0.3 5.3229 0.8126 6.7322 0.7736

10 0.3 7.5509 0.6151 0.0000 0.7264

10 0.2 7.1923 0.6447 0.0000 0.7532

10 0.1 6.7891 0.6735 0.0000 0.7816
10 0.0 6.3764 0.7013 5.2860 0.8078

10 -0.1 5.9880 0.7277 6.3593 0.8189

10 -0.2 5.6423 0.7526 7.1613 0.8259
10 -0.3 5.3429 0.7760 7.7661 0.8300

Table 2. Optimal opportunity-based age replacement time
with FGM copula (cR = 1, cT = 5, cF = 10).

Replacement First Replacement Last
MTTOR ρS t∗0 C1(t∗0) t∗0 C2(t∗0)

1 0.3 ∞ 1.0585 12.3079 0.9667

1 0.2 ∞ 1.0896 12.3080 0.9667
1 0.1 ∞ 1.1209 12.3080 0.9667
1 0.0 ∞ 1.1525 12.3081 0.9667

1 -0.1 ∞ 1.1843 12.3081 0.9667

1 -0.2 ∞ 1.2163 12.3082 0.9667
1 -0.3 ∞ 1.2485 12.3083 0.9667

5 0.3 18.3139 0.5979 0.0000 0.5982

5 0.2 18.7061 0.6405 0.0000 0.6406

5 0.1 19.1100 0.6852 0.0000 0.6853
5 0.0 19.5092 0.7323 0.0000 0.7323

5 -0.1 19.8493 0.7819 0.0000 0.7819

5 -0.2 19.8509 0.8342 0.0000 0.8342
5 -0.3 15.3205 0.8895 0.0000 0.8896

10 0.3 14.8783 0.7202 0.0000 0.7264

10 0.2 15.0660 0.7482 0.0000 0.7532

10 0.1 15.2438 0.7777 0.0000 0.7816
10 0.0 15.3918 0.8089 0.0000 0.8117

10 -0.1 15.4578 0.8418 0.0000 0.8438

10 -0.2 15.2812 0.8768 0.0000 0.8781
10 -0.3 14.3305 0.9137 0.0000 0.9147
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Table 3. Optimal opportunity-based age replacement time
with Gaussian copula (cR = 1, cT = 2, cF = 10).

Replacement First Replacement Last
MTTOR ρS t∗0 C1(t∗0) t∗0 C2(t∗0)

1 0.3 ∞ 1.0467 5.7040 0.7232

1 0.2 ∞ 1.0755 5.7121 0.7234
1 0.1 ∞ 1.1110 5.7221 0.7235
1 0.0 ∞ 1.1525 5.7333 0.7237
1 -0.1 ∞ 1.1990 5.7445 0.7239

1 -0.2 ∞ 1.2499 5.7545 0.7240
1 -0.3 ∞ 1.3045 5.7624 0.7241

5 0.3 8.9935 0.5623 0.0000 0.5890

5 0.2 8.3279 0.6088 0.0000 0.6384

5 0.1 7.7058 0.6528 0.0000 0.6860
5 0.0 7.1189 0.6946 0.0000 0.7323
5 -0.1 6.5645 0.7342 5.5912 0.7515

5 -0.2 6.0437 0.7714 6.0890 0.7603
5 -0.3 5.5603 0.8060 6.4745 0.7658

10 0.3 7.2354 0.6149 0.0000 0.7227

10 0.2 6.9575 0.6458 0.0000 0.7527

10 0.1 6.6704 0.6745 0.0000 0.7823
10 0.0 6.3764 0.7013 5.2860 0.8078

10 -0.1 6.0794 0.7261 6.1940 0.8180

10 -0.2 5.7845 0.7490 6.9010 0.8245
10 -0.3 5.4980 0.7696 7.4664 0.8282

Table 4. Optimal opportunity-based age replacement time
with Gaussian copula (cR = 1, cT = 5, cF = 10).

Replacement First Replacement Last
MTTOR ρS t∗0 C1(t∗0) t∗0 C2(t∗0)

1 0.3 ∞ 1.0467 12.3076 0.9667

1 0.2 ∞ 1.0755 12.3077 0.9667
1 0.1 ∞ 1.1110 12.3079 0.9667
1 0.0 ∞ 1.1525 12.3081 0.9667

1 -0.1 ∞ 1.1990 12.3082 0.9667

1 -0.2 ∞ 1.2499 12.3083 0.9667
1 -0.3 ∞ 1.3045 12.3083 0.9667

5 0.3 20.9367 0.5888 0.0000 0.5890

5 0.2 20.5813 0.6382 0.0000 0.6384

5 0.1 20.1118 0.6859 0.0000 0.6860
5 0.0 19.5092 0.7323 0.0000 0.7323

5 -0.1 18.7582 0.7776 0.0000 0.7777

5 -0.2 17.8467 0.8223 0.0000 0.8223
5 -0.3 16.7665 0.8664 0.0000 0.8665

10 0.3 15.7362 0.7170 0.0000 0.7227

10 0.2 15.7377 0.7483 0.0000 0.7527

10 0.1 15.6258 0.7788 0.0000 0.7823
10 0.0 15.3918 0.8089 0.0000 0.8117

10 -0.1 15.0275 0.8388 0.0000 0.8412

10 -0.2 14.5265 0.8686 0.0000 0.8708
10 -0.3 13.8849 0.8985 0.0000 0.9006
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Tables 3 and 4 show the optimal opportunity-based age replacement time t∗0
and the minimum expected cost under the opportunity-based age replacement first

and last policies with cT = 2 and cT = 5, when the Gaussian bivariate copula is

applied. Compared to the results with FGM bivariate copula, almost all the values

are similar to those in Tables 1 and 2. Thus the tendency of optimal policies is

almost similar to the case of FGM copula. In other words, the optimal policy is

strongly dominated by the correlation between the failure time and the opportunity

arrival time, but does not depend on the dependency mechanism between them.

5. Concluding Remarks

In this paper we have extended the existing opportunity-based age replacement

policies by taking account of dependency between the failure time and the arrival

time of a replacement opportunity for one unit system. We have characterized two

cost-optimal age replacement policies which minimize the relevant expected costs,

with the hazard gradient, which is a vector-valued bivariate hazard rate. In numer-

ical examples with the FGM copula and the Gaussian copula, we have investigated

the dependence of correlation between the failure time distribution and the arrival

time of replacement opportunity on the optimal replacement policies. As a result,

the correlation strongly affects the optimal opportunity-based age replacement poli-

cies. In particular, when the correlation is negative, the optimal policy should be

carefully determined compared to the case where the correlation is positive.

Although we have given only two representative examples on the FGM bivari-

ate copula and the Gaussian bivariate copula in this paper, the other bivariate

distributions can be also considered in the similar framework. Especially, when the

bivariate distribution is discontinuous such as the Marshall-Olkin family, the rele-

vant expected cost has to be modified atX = Y . In addition, in our cost assumption

on cT > cR, there exists the case where another opportunity-based age replacement

policy by Dekker and Dijkstra4 can become optimal. Such comprehensive researches

should be reported in the future.
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