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2. Abstract 

Epithelial-mesenchymal transition (EMT) contributes to the development of severe lung 

diseases, such as pulmonary fibrosis. Recently, it has been reported that EMT involves 

complex metabolic reprogramming triggered by several factors including transforming 

growth factor (TGF-β1) and that monocarboxylate transporter (MCT1) plays an essential 

role in these metabolic changes. The aim of the present study was to clarify the functional 

expression of MCT1 during TGF-β1-induced EMT in alveolar epithelial A549 cells. The 

transport function of MCT1 in A549 cells was examined using [3H]γ-hydroxybutyrate 

(GHB) and [3H]lactic acid (LA) as substrates and α-cyano-4-hydroxycinnamate (CHC), 

lactic acid, phloretin, and AR-C155858 (AR) as inhibitors of MCT1. EMT was induced by 

treating the cells with TGF-β1. mRNA and protein expression levels were analyzed using 

real-time PCR and western blotting, respectively. Time-, temperature-, and pH-dependent 

GHB and LA uptake were observed in A549 cells. CHC, lactic acid, phloretin, and AR 

significantly inhibited the uptake of GHB in a concentration-dependent manner, suggesting 

that MCT1 is primarily responsible for transport of monocarboxylates such as GHB and LA 

in A549 cells. TGF-β1 treatment significantly enhanced GHB and LA uptake as well as the 

mRNA and protein expression levels of MCT1 in A549 cells. These changes were 

neutralized by co-treatment with SB431542, an inhibitor for the TGF-β1 signaling pathway. 

CHC and AR had no effect on TGF-β1-induced EMT-related gene expression changes. 

Here, we have clearly characterized functional expression of MCT1 in A549 cells and have 

shown that MCT1 may be upregulated via the TGF-β1 signaling pathway. 

 



3. Keywords  

alveolar epithelial cells; epithelial-mesenchymal transition; γ-hydroxybutyrate; 

monocarboxylate transporter 1; transforming growth factor-β1 

 

4. Abbreviations 

CK19, cytokeratin 19; EMT, epithelial-mesenchymal transition; GHB, γ-hydroxybutyrate; 

SB, SB431542; α-SMA, α-smooth muscle actin; TGF-β1, transforming growth factor-β1; 
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5. Introduction  

Pulmonary fibrosis is a chronic respiratory disease in which the lung tissues become 

scarred, thickened, and stiff, resulting in reduced oxygen supply to the blood. Therefore, 

patients develop perpetual shortness of breath. In most cases, the definite cause and 

underlying mechanism of the disease remain unclear. However, it is now recognized that 

epithelial-mesenchymal transition (EMT) plays an essential role in the development of 

pulmonary fibrosis and that transforming growth factor (TGF)-β1 can induce EMT by 

activating important signaling pathways (Kalluri and Neilson 2003; Willis and Borok 2007; 

Kalluri and Weinberg 2009). In alveolar epithelial A549 cells, TGF-β1 induces EMT-like 

phenotypical changes via the TGF-β signaling pathway that involves SMAD2 activation 

(Takano et al. 2015; Kawami et al. 2016). Although there is no effective approach for the 

prevention of pulmonary fibrosis, several types of inhibitors against TGF-β1 are considered 

candidates for EMT suppressor agents (Connolly et al. 2012). 

Recently, it has been reported that the EMT is associated with complex metabolic 

reprogramming (Kang et al. 2019). In tumor cells, metabolic adaptations lead to an increase 

in glucose uptake and lactate secretion, thereby contributing to an acidic microenvironment, 

which is followed by the induction of EMT (Liu et al. 2016; Morandi et al. 2017). Lactate 

is transported across the plasma membrane by four proton-linked monocarboxylate 

transporters, MCT1–MCT4, belonging to the solute carrier SLC16A family (Fishbein et al. 

2002; Halestrap and Meredith 2004; Halestrap and Wilson 2012). Among them, MCT1 is 

by far the best characterized isoform, and it is involved in the bidirectional transport of 

monocarboxylates such as lactate, indicating that MCT1 could play an essential role in 



metabolic reprograming via regulation of the lactate shuttle. However, information 

concerning MCT1 activity in alveolar epithelial cells is limited, and the contribution of 

MCT1 to EMT has not been well-investigated.  

MCT1 also plays a central role in tumor cell energy homeostasis. Therefore, the clinical 

development of MCT1 inhibitors for cancer therapy is on-going, and at least one MCT1 

inhibitor, AZD3965, is currently under clinical trial (Guan et al. 2018, 2019). Thus, MCT1 

is recognized as a novel target for cancer treatment. If the association of MCT1 with EMT 

is proven, MCT1 inhibition may be used to prevent EMT-related diseases, such as 

pulmonary fibrosis. 

So far, A549 cells have been considered a suitable model for EMT studies (Kawami et 

al. 2016, 2018a), and it has been clarified that TGF-β1 induces EMT via upregulation of its 

signaling pathway. A previous report has also demonstrated the expression of MCT1 in 

A549 cells (Eilertsen et al. 2014). Considering these findings, A549 cells should be a good 

model for investigating the effect of TGF-β1 on the functional expression of MCT1. 

Therefore, the aims of the present study were to characterize MCT1 function and to 

examine the changes in expression and function of MCT1 during TGF-β1-induced EMT 

using A549 cells.  



6. Materials and methods 

Materials 

Fetal bovine serum (FBS) and Dulbecco's modified Eagle's medium (DMEM) were 

purchased from MP Biomedicals (Solon, OH, USA). Trypsin-ethylenediaminetetraacetic 

acid (EDTA) and penicillin-streptomycin were purchased from Thermo Fisher Scientific 

Inc. (Waltham, MA, USA). TGF-β1 was purchased from BioLegend, Inc (San Diego, CA, 

USA). SB431542 was purchased from Wako Pure Chemicals Ind. (Osaka, Japan). [3H] γ -

hydroxybutyric acid (GHB) and [3H]lactic acid (LA) were purchased from American 

radiolabeled chemicals, Inc. (St. Louis, MO, USA). All the other chemicals used for the 

experiments were of the highest purity that was commercially available. 

Cell culture 

A549 cells obtained from RIKEN BioResource Research Center (Tokyo, Japan) were 

cultured in DMEM containing 100 IU/mL penicillin, 100 µg/mL streptomycin, and 10% 

FBS in 5% CO2 at 37 °C and were sub-cultured every seven days (after cell treatment with 

1 mM EDTA and 0.25% trypsin) as described previously (Kawami et al. 2016). The 

medium was replaced every two or three days. 

Uptake studies 

A549 cells grown on a 24-well plate for six days were used for uptake studies. After 

removing the culture medium, the cells were washed twice with HEPES-buffered saline 

(HBS; 5 mM HEPES, 145 mM NaCl, 3 mM KCl, 1 mM CaCl2, 0.5 mM MgCl2, and 5 mM 

glucose, pH 7.4) and preincubated with HBS at 37 °C for 10 min. Then, the cells were 

incubated with HBS or MES-buffered saline (MBS; 5 mM MES, 145 mM NaCl, 3 mM 



KCl, 1 mM CaCl2, 0.5 mM MgCl2, and 5 mM glucose, pH 6) containing 100 nM GHB at 

37 °C or 4 °C for 0.25–5 min. For inhibition studies, the cells were incubated with [3H] 

GHB or [3H]LA at 37 °C for 1 min in the absence or presence of various concentrations of 

CHC (0.5, 1, 2 mM), phloretin (10, 20, 100 µM), non-labeled LA (1, 5, 10 mM), and AR-

C155858 (AR) (1, 3, 10, 30, 60, 100, 1000 nM) in HBS or MBS. After the incubation, the 

uptake buffer was aspirated, and the cells were rinsed with ice-cold phosphate-buffered 

saline (PBS; 137 mM NaCl, 3 mM KCl, 8 mM Na2HPO4, 1.5 mM KH2PO4, 0.1 mM 

CaCl2, and 0.5 mM MgCl2, pH 7.4). The cells were scraped and solubilized with NaOH for 

30 min at approximately 22°C, and then centrifuged at 9838×g for 5 min. The supernatant 

was then used for either radioactivity counting or protein assay. For the measurement of 

[3H]GHB or [3H]LA uptake, 3 mL of Ultima GOLD (PerkinElmer, MA, USA) was added, 

and the radioactivity was measured by liquid scintillation counting on a LSC5100 (Hitachi 

Aloka Medical Ltd., Tokyo, Japan). Protein concentration was measured by the Bradford 

method using bovine serum albumin as a standard.  

Calculation of the Ki value of CHC to MCT1 using a Dixon plot was achieved by linear 

regression analysis of reciprocal saturable uptake (1/v) for different GHB or LA 

concentrations (25 or 50 nM) as a function of CHC inhibition concentrations. 

Real-time PCR 

Total RNA was extracted from the cells and reverse transcribed into cDNA using ReverTra 

Ace (Toyobo, Osaka, Japan). Real-time PCR was performed on a Bio-Rad CFX96 (Bio 

Rad, Hercules, CA, USA) using KAPA SYBR® FAST qPCR Kit, as described previously 

(Kawami et al. 2018a). The PCR conditions were as follows: initial denaturation for 1 cycle 



of 30 s at 95 °C, followed by specified number of cycles of 5 s at 95 °C (denaturation), 20 s 

at 60 °C (annealing), and 15 s at 72 °C (extension). The primer sequences for MCT1 were 

as follows: 5′-TGGCTGTCATGTATGGTGGA -3′ (sense) and 5′-

AAGTTGAAGGCAAGCCCAAG-3′ (antisense). The primers for cytokeratin 19 (CK19), 

alpha smooth muscle actin (α-SMA), and glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH), were as reported previously [5]. The mRNA expression level of MCT1 was 

normalized to that of GAPDH, a housekeeping gene. 

Western blotting 

MCT1 protein in A549 cells was analyzed using the crude membrane fraction of the treated 

cells as described previously (Kawami et al. 2018b). The expression of MCT1 was 

examined using rabbit polyclonal anti-MCT1 antibodies (PA5-12335; 1:250 dilution) and 

HRP-linked donkey anti-rabbit IgG secondary antibodies (NA934; 1:5000 dilution). In 

these studies, GAPDH was used as a loading control. GAPDH was detected with rabbit 

polyclonal anti-GAPDH antibodies (G9545; 1:5000 dilution) using a luminescent image 

analyzer, LAS 4000 plus (GE Healthcare Japan Corporation, Tokyo, Japan).  

Statistical analysis 

Data were expressed as means ± S.E.M. Statistical analysis was performed by student's t-

test or one-way ANOVA followed by Tukey's test for multiple comparisons. The level of 

significance was set at * p < 0.05 or **p < 0.01.  



7. Results  

Characterization of MCT1 function in A549 cells 

Firstly, we attempted to determine general characteristics of GHB and LA uptake in A549 

cells. A linear time-dependent increase up to 1 min in [3H]GHB and [3H]LA uptake was 

observed in A549 cells. Compared to the uptake of both substrates at 37 °C, the uptake of 

both substrates was markedly suppressed at 4 °C (Fig. 1a). As MCT1 is known to be a 

proton-coupled symporter, the effect of extracellular pH on GHB and LA uptake was 

examined. As expected, [3H]GHB and [3H]LA uptake at pH 6.0 was much higher than that 

at pH 7.4 (Fig. 1b).  

There are several different inhibitors of MCT1, including the non-selective inhibitors 

such as α-cyano-4-hydroxycinnamate (CHC), LA, and phloretin, and the selective inhibitor 

AR. The effects of these inhibitors on GHB and LA uptake were examined. The Dixon plot 

revealed that concentration-dependent inhibition of [3H]GHB and [3H]LA uptake by CHC 

was competitive inhibition with Ki values of 0.84 and 1.75 mM, respectively (Fig. 2a). 

These values were comparable to the previously reported Ki value for CHC to MCT1 

(Bröer et al. 1999). In addition, both LA and phloretin significantly suppressed [3H]GHB 

uptake in a concentration-dependent manner (Figs. 2b, c). Furthermore, AR suppressed the 

uptake of both substrates in a concentration-dependent manner (Fig. 2d). These findings 

indicate that MCT1 is a functioning monocarboxylate transporter in A549 cells. 

Role of the TGF-β signaling pathway in functional expression of MCT1 in A549 cells  

We confirmed that 10 ng/mL of TGF-β1 treatment for 72 h markedly induced EMT-like 

phenotypical changes in A549 cells (Kawami et al. 2016). During TGF-β1-induced EMT, 



however, it was unclear whether functional expression of MCT1 changes or not. Therefore, 

the effect of TGF-β1 on uptake of GHB and LA as well as mRNA and protein expression 

levels of MCT1 was examined. The role of the TGF-β signaling pathway in TGF-β1-

induced alteration of MCT1 was also examined using SB431542 (SB), a TGF-β type I 

receptor kinase inhibitor. TGF-β1 significantly enhanced the uptake of [3H]GHB and 

[3H]LA in A549 cells, and these changes were neutralized by co-treatment with SB. (Fig. 

3a). In addition, TGF-β1 treatment led to an enhancement of mRNA and protein expression 

levels of MCT1, and co-treatment with SB suppressed the upregulation of MCT1 induced 

by TGF-β1 (Figs. 3b, c). These findings suggest that the TGF-β signaling pathway may be 

closely associated with functional expression of MCT1 in A549 cells. 

Contribution of MCT1 to TGF-β1-induced EMT in A549 cells 

As CHC and AR inhibited the uptake of GHB and LA, we investigated the effect of these 

inhibitors on TGF-β1-induced EMT in A549 cells. At first, we examined the effects of CHC 

and AR on the morphological changes induced by TGF-β1. Both inhibitors had no effect on 

the morphological changes induced by TGF-β1 (Fig. 4a). In addition, known TGF-β1-

induced alterations of mRNA expression such as a decrease in CK19 and an increase in α-

SMA were not changed by co-treatment with CHC and AR (Fig. 4b, c). These findings 

suggest that TGF-β1-induced EMT may be independent of MCT1 function.  



8. Discussion 

Currently, idiopathic pulmonary fibrosis (IPF) represents one of the most severe respiratory 

diseases. A better understanding of the pathogenetic mechanisms of IPF would promote the 

development of new therapeutic strategies for this disease. However, the etiopathogenesis 

of and therapeutic interventions for IPF is not well-elucidated. Recently, EMT has been 

recognized as an important contributor to pulmonary fibrosis. In addition, several recent 

studies have reported an association between MCT1 and EMT (Liu et al. 2016; Morandi et 

al. 2017). In this study, therefore, we have focused on the link between MCT1 function and 

TGF-β1-induced EMT in A549 cells. 

In the present study, we first attempted to characterize MCT1 function in A549 cells. In 

addition to the time-, temperature-, and pH-dependence of GHB and LA uptake in A549 

cells, the inhibitory effects of several MCT1 inhibitors were observed. CHC is widely used 

as a MCT1 inhibitor, and the Ki value of CHC was previously shown to be 0.43 mM in 

oocytes expressing MCT1 (Bröer et al. 1999). This was comparable to the values obtained 

in this study (0.84 mM for GHB uptake and 1.75 mM for LA uptake). To our knowledge, 

this is the first study that has characterized the function of MCT1 in A549 cells. A549 cells, 

which are derived from human lung carcinoma, are a useful in vitro model of alveolar type 

II epithelial (ATII) cells (Lieber et al. 1976). ATII cells have a highly oxidative metabolic 

phenotype and are heavily dependent on mitochondrial function for energy production 

(Lottes et al. 2014). It has also been reported that these cells import lactate through MCT1 

and use it as a substrate for mitochondrial energy production (Lottes et al. 2015). Our 



findings regarding MCT1 function in A549 cells are consistent with the notion of 

mitochondrial metabolism as alternative fuel in ATII cells. 

Kottman et al. (2012) reported the increased levels of lactate in the lung tissue of IPF 

patients. In addition, lactate derived from fibroblast foci can be used for ATP production via 

oxidative phosphorylation. MCT1 also plays an important role in the uptake of lactate in 

myofibroblasts (Tuder et al. 2012). To date, the regulation of MCT1 expression remains 

poorly understood. Although hypoxia inducible factor-1α is reported to be involved in the 

regulation of MCT4, there is no indication this factor is involved in MCT1 expression 

(Ullah et al. 2006). In the present study, we found that TGF-β1 induced GHB and LA 

uptake as well as the upregulation of mRNA and protein expression levels of MCT1 in 

A549 cells and that these effects were cancelled by co-treatment with SB. Therefore, the 

TGF-β signaling pathway may be involved in the regulation of the functional expression of 

MCT1. 

The detailed mechanisms underlying regulation of MCT1 by TGF-β1 remain unclear at 

this moment. However, c-myc, an oncoprotein, is reported to directly control the 

transcription of MCT1 (Doherty et al. 2015). Therefore, the role of the TGF-β signaling 

pathway in mRNA expression of c-myc was examined. As shown in Supplementary Fig. 1, 

TGF-β1 significantly upregulated mRNA expression levels of c-myc. Additionally, SB 

suppressed TGF-β1-induced enhancement of c-myc mRNA expression. Thus, it is possible 

that c-myc may be associated with the regulation of MCT1 by TGF-β1 in A549 cells. 

Among the members of SLC16A family, isoforms of MCT1-4 are known to be involved 

in monocarboxylate transport. MCT2 is expressed in restricted tissues, such as the liver 



parenchyma and proximal convoluted tubule of the kidney (Payen et al. 2019). Likewise, 

MCT3, which exports lactate, is expressed only in retinal pigment epithelium and choroid 

plexus epithelium (Pinheiro et al. 2012). As shown in Supplementary Fig. 2, the mRNA 

expression level of MCT4 was not affected by TGF-β1 or by co-treatment with SB, 

indicating that MCT1 is the predominant isoform of MCTs affected by the TGF-β signaling 

pathway in A549 cells. 

Our previous reports demonstrated that the RLE/Abca3 cell line derived from rat 

normal alveolar epithelium is a useful model to evaluate EMT (Takano et al. 2015, Kawami 

et al. 2017). Therefore, we attempted to examine the role of the TGF-β signaling pathway 

in functional expression of MCT1 using RLE/Abca3 cells. However, unfortunately, MCT1 

activity was much lower in RLE/Abca3 cells than in A549 cells (data not shown), and it 

was difficult to evaluate the effect of TGF-β1 on the functional expression of MCT1 using 

this cell line. Further investigations using other alveolar epithelial cell lines with significant 

MCT1 activity should provide a better understanding of the relationship between EMT and 

functional expression of MCT1. 

It has been reported that Warburg-like metabolic reprogramming in alveolar epithelial 

cells derived from IPF patients would result in increased glucose uptake mediated by 

glucose transporter 1 (GLUT1), a facilitative glucose transporter (Zank et al. 2018). 

Another report showed that aerobic glycolysis was enhanced during myofibroblast 

differentiation and lung fibrosis (Xie et al. 2015). Therefore, we examined the effect of 

TGF-β1 treatment on [3H]D-glucose uptake in A549 cells. D-glucose uptake was enhanced 

at 6, 9, and 12 h, but not at 24 and 72 h after treatment (Supplementary Fig. 3). In addition, 



GHB uptake was not affected by TGF-β1 at 24 h (data not shown). These findings suggest 

that, in an early phase, TGF-β1 may stimulate glucose uptake, while in a later phase, MCT1 

function is upregulated for oxidative metabolism in A549 cells. However, further studies 

are needed to clarify the mechanisms underlying such a metabolic shift during TGF-β1-

induced EMT. 

In addition to organ fibrosis, EMT also contributes to cancer progression, and metabolic 

reprogramming in cancer cells is well characterized. Tumors frequently display a glycolytic 

phenotype with increased uptake of glucose for glycolysis and concomitant synthesis of 

lactate (Morais-Santos et al. 2015). The lactate produced by hypoxic tumor cells may 

diffuse and be taken up by oxygenated tumor cells (Feron 2009). MCT1 regulates the entry 

of lactate into oxidative tumor cells (Fiaschi et al. 2012). Therefore, higher MCT1 

expression is assumed to be a prognostic indicator in human neuroblastoma and melanoma 

cell lines (Fang et al. 2006; Zhang et al. 2018). Moreover, Choi et al. (2014) reported that 

high MCT1 expression levels correlated with high tumor grade, advanced tumor stage, and 

lymphatic tumor invasion. Based on these studies, we examined the effect of CHC and AR 

on TGF-β1 induced EMT in A549 cells. Although CHC and AR clearly inhibited GHB and 

LA uptakes in A549 cells, CHC and AR did not affect TGF-β1-induced EMT-like 

morphological changes. Moreover, CHC and AR did not affect TGF-β1-induced changes in 

mRNA expression related to EMT, indicating that MCT1 transport function may not 

directly contribute to TGF-β1-induced EMT in A549 cells. Gray et al. (2016) demonstrated 

that knockdown of MCT1 (but not AZD3965, a promising MCT1 inhibitor) suppressed 

hepatocyte growth factor- and epidermal growth factor-induced tumor cell scattering and 



wound healing. Thus, our results suggest that MCT1 transport activity may not be crucial to 

the EMT process. Therefore, factors other than the transporter activity of MCT1 may be 

responsible for TGF-β1-induced EMT in A549 cells. 

Conversely, TGF-β1 is produced as a latent complex, and activation of TGF-β1 

generally requires the binding of αv integrin to an RGD motif in the latent form of TGF-β1 

(Shi et al. 2011). Alterations in pH resulting from endogenous production and release of LA  

is reportedly capable of activating latent TGF-β1 (Kottmann et al. 2012). In this context, 

LA concentration, which is regulated by MCT1, may be a key component during TGF-β1-

induced EMT under in vivo conditions. Therefore, the relationship between MCT1 

expression level, transporter activity of MCT1, and induction of EMT by TGF-β1 needs to 

be studied further. 

 

9. Conclusions 

We characterized MCT1 function in A549 cells and found that functional expression of 

MCT1 was upregulated by TGF-β1 treatment via the TGF-β1 signaling pathway, as 

evidenced by an inhibitory effect of SB. These findings may help in understanding the 

association of metabolic reprogramming with TGF-β1-induced EMT in alveolar epithelial 

cells.  
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13. Figure captions 

Fig. 1 (a) Time- and temperature-dependence of [3H]GHB and [3H]LA uptake in A549 
cells. The cells were incubated with [3H]GHB (100 nM) and [3H]LA (1 mM) for 0.25, 0.5, 
1, 3, and 5 min at 37 °C (open circles) or 4 °C (solid circles). (b) Effect of pH on the uptake 
of GHB and LA in A549 cells. The cells were incubated with [3H] GHB (100 nM) for 1 min 
at pH 7.4 (open column) or pH 6.0 (solid column). Each value represents the mean ± 
S.E.M. of three monolayers. **p<0.01, significantly different from the control. 
 

Fig. 2 (a) Dixon plot analysis of the inhibitory effects of CHC on MCT1-mediated 
transport. A549 cells were incubated with [3H]GHB (25 nM or 50 nM) and [3H]LA (1 mM 
or 2 mM) for 1 min in the absence or presence of varying concentrations of CHC (0.5, 1, 2 
mM) at pH 6.0. (b, c) Effect of phloretin and LA on the uptake of GHB in A549 cells. The 
cells were incubated with [3H]GHB (50 nM) for 1 min in the absence or presence of various 
concentrations of phloretin (10, 20, 100 µM) or LA (1, 5, 10 mM) at pH 6.0. (d) Effect of 
AR on the uptakes of GHB and LA in A549 cells. The cells were incubated with [3H]GHB 
(50 nM) or [3H]LA (1 mM) for 1 min in the absence or presence of various concentrations 
of AR (1, 3, 6, 10, 30, 100, 1000 µM) at pH 6.0. Each value represents the mean ± S.E.M. 
of three monolayers. **p<0.01, significantly different from the control.  
 

Fig. 3 Role of the TGF-β1 signaling cascade pathway on the function (a) and 
mRNA/protein expression levels (b, c) of MCT1 in A549 cells. The cells were treated with 
TGF-β1 (10 ng/mL) for 72 h in the absence or presence of SB (10 µM). After that, the 
treated cells were incubated with [3H]GHB (100 nM) and [3H]LA (1 mM) in the absence or 
presence of CHC (2 mM). GHB uptake value was calculated by subtracting [3H]GHB and 
[3H]LA amounts with CHC from that without CHC. mRNA and protein expression levels 
were evaluated by real-time PCR and western blot using total RNA and crude membrane 
fraction extracted from the treated cells, respectively. Each value represents the mean ± 
S.E.M. of three monolayers. *p< 0.05, **p< 0.01, significantly different from control cells. 
☨p< 0.05, ☨☨p< 0.01, significantly different from TGF-β1 treated cells.  
 

Fig. 4 Effect of CHC and AR on TGF-β1-induced changes in morphology and mRNA 
expression levels of CK19 and α-SMA in A549 cells. The cells were treated with TGF-β1 
(10 ng/mL) in the absence or presence of CHC (2 mM) or AR (1000 nM) for 72 h. After 
that, the morphology was observed by phase-contrast microscopy (a), and the mRNA 
expression levels of CK19 and α-SMA after co-treatment with CHC (b) or AR (c) were 
analyzed by real-time PCR using total RNA extracted from the treated cells. Each value 
represents the mean ± S.E.M. of three monolayers. *p< 0.05, **p< 0.01, significantly 
different from control cells. 
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Supplementary Fig. 1. Effect of TGF-β1 signaling pathway on
mRNA expression level of c-myc in A549 cells. The cells were
treated with TGF-β1 (10 ng/mL) in the absence or presence of
SB (10 µM) for 72 h. The mRNA expression level of c-myc was
analyzed by real-time PCR as described in the Materials and
Methods section. Each value represents the mean ± S.E.M.
of three monolayers. **p<0.01, significantly different from
control. ☨☨p<0.01, significantly different from control.
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Supplementary Fig. 2. Effect of TGF-β1 signaling pathway on
the mRNA expression level of MCT4 in A549 cells. The cells
were treated with TGF-β1 (10 ng/mL) in the absence or
presence of SB (10 µM) for 72 h. mRNA expression level of
MCT4 was analyzed by real-time PCR as described in the
Materials and Methods section. Each value represents the
mean ± S.E.M. of three monolayers.
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Supplementary Fig. 3. Effect of TGF-β1 treatment at different
time intervals on GLUT1 function in A549 cells. The cells were
not pretreated (open circle) or were pretreated with TGF-β1
(solid circle) for 6, 9, and 12 h (a), or 24 and 72 h (b),
respectively. The glucose uptake experiment was performed
using [3H]D-Glucose as a substrate. Each value represents the
mean ± S.E.M. of three monolayers. *p<0.05, **p<0.01,
significantly different from control.
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