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Title 1 

Image synthesis with deep convolutional generative adversarial networks for 2 

material decomposition in dual-energy CT from a kilovoltage CT 3 

 4 

Abstract 5 

 6 

Generative Adversarial Networks (GANs) have been widely used and 7 

it is expected to use for the clinical examination and image. The objective of 8 

the current study was to synthesize material decomposition images of bone-9 

water (bone(water)) and fat-water (fat(water)) reconstructed from dual-energy 10 

computed tomography (DECT) using an equivalent kilovoltage-CT (kV-CT) 11 

image and a deep conditional GAN. The effective atomic number images were 12 

reconstructed using DECT. We used 18,084 images of 28 patients divided into 13 

two datasets: the training data for the model included 16,146 images (20 14 

patients) and the test data for evaluation included 1938 images (8 patients). 15 
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Image prediction frameworks of the equivalent single energy CT images at 120 16 

kVp to the effective atomic number images were created. The image-synthesis 17 

framework was based on a CNN with a generator and discriminator. The mean 18 

absolute error (MAE), relative mean square error (MSE), relative root mean 19 

square error (RMSE), peak signal-to-noise ratio (PSNR), structural similarity 20 

index (SSIM), and mutual information (MI) were evaluated. The Hounsfield 21 

unit (HU) difference between the synthesized and reference material 22 

decomposition images of bone(water) and fat(water) were within 5.3 HU and 23 

20.3 HU, respectively. The average MAE, MSE, RMSE, SSIM, and MI of the 24 

synthesized and reference material decomposition of the bone(water) images 25 

were 0.8, 1.3, 0.9, 0.9, 55.3, and 0.8, respectively. The average MAE, MSE, 26 

RMSE, SSIM, and MI of the synthesized and reference material decomposition 27 

of the fat(water) images were 0.0, 0.0, 0.1, 0.9, 72.1, and 1.4, respectively. The 28 
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proposed model can act as a suitable alternative to the existing methods for the 29 

reconstruction of material decomposition images of bone(water) and fat(water) 30 

reconstructed via DECT from kV-CT. 31 

 32 

Keywords: Deep learning, Medical imaging, Artificial Intelligence, Dual-33 

energy CT, Material Decomposition 34 

 35 
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I. INTRODUCTION 58 

 59 

Dual-energy computed tomography (DECT) uses two different energy spectra 60 

(low and high energy) that can be created by combining two datasets acquired 61 

over the same region [1]. DECT can obtain different information such as the 62 

effective atomic number, monochromatic energy CT (mCT) number, iodine-63 

enhanced map, bone–water (bone(water)) density images, and fat–water 64 

(fat(water)) density images [2]. A (bone(water)) density image suppresses the 65 

water signal and enhances the calcium signal. It is created from the DECT data 66 

by estimating the amount of bone mineral, primarily composed of calcium, and 67 

subtracting this from the scanned original image [3, 4]. It is used for the 68 

diagnosis of bone marrow edema, which is a biomarker for arthritis, bone 69 

infarction, and hidden fractures. It is difficult to identify with traditional CT 70 

owing to the intrinsic low contrast of the involved tissues; it has been detected 71 

with magnetic resonance (MR) imaging [5]. MR represents the gold standard 72 

for soft tissue imaging and can provide quantitative fat-fraction measurements. 73 

A fat(water) image enhances the fat signal and suppresses other signals such as 74 

water and bone. Recently, Hyodo et al. reported that the DECT technique can 75 

estimate fat quantification in the liver [6].  76 

A GE Revolution CT scanner (GE Healthcare, Milwaukee, WI) can reconstruct 77 

the effective atomic number, 120 kVp equivalent images, monochromatic 78 

energy CT, iodine contrast-enhanced, and calcium-enhanced images using a 79 
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gemstone spectral imaging (GSI) technique [7]. The disadvantages of DECT 80 

are the increasing radiation dose, scan time, and cost.  81 

Deep learning has been widely used for denoising applications [8, 9]. The 82 

denoising technique has been improved using a wavelet residual network, 83 

which synergistically combines the expressive power of deep learning and the 84 

performance guarantee from framelet-based algorithms [10]. The improvement 85 

of the image resolution has led to a reduction in the radiation dose. 86 

Convolutional neural networks (CNNs) have been successfully applied to 87 

image synthesis and image processing. Dong et al. performed super-resolution 88 

imaging using a CNN algorithm. Streak artifacts due to beam hardening and 89 

photon starvation have been potentially problematic. Zhang et al. suppressed 90 

the artifacts dramatically using the CNN-based metal artifact reduction 91 

framework, which fuses the information from the original and corrected images.  92 

For material decomposition, deep learning plays a significant role. Liao and 93 

Lyu simulated pseudo-high-energy images from low-energy CT images to 94 

improve the quality of the material decomposition with a simple U-Net 95 

architecture [11, 12]. Clark et al. used multi-energy CT with DECT and 96 

spectral CT for material decomposition with a U-Net-based CNN architecture 97 

[13]. Another approach to the crossover architecture that incorporates two 98 

material generation pathways for the bone(water) density image and water–99 

bone (water(bone)) density images was introduced by Zhang et al. [14]. It 100 

used both kV-CT images at 80 and 140 kVp that used the DECT scan. These 101 
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studies did not directly predict material decomposition images from the single 102 

energy CT (SECT) images. 103 

In a recent study, an image-synthesis technique of cross modality with a 104 

generative adversarial network (GAN) was performed. GANs function by 105 

training two different networks: a generator network synthesizes an image, and 106 

a discriminator network distinguishes between the synthesized and reference 107 

images [15]. Florkow et al. proposed an image-synthesis framework of MR 108 

images to CT images with a two-dimensional (2D) CNN model [16]. For 109 

radiotherapy, the synthesis of PlanCT-like images from Cone beam computed 110 

tomography (CBCT) images with planning CT and CBCT datasets with GAN 111 

to improve the image quality of the CBCT was introduced in [17].  112 

The current study proposes an image-synthesis approach to material 113 

decomposition images of bone(water) and fat(water) reconstructed on DECT 114 

from the SECT of an equivalent kilovoltage CT (kV-CT) image at 120 kVp 115 

directly using a GAN-based CNN architecture. 116 

 117 

 118 

119 
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II. MATERIALS AND METHODS 120 

 121 

A) Data acquisition 122 

The DECT image for each patient was acquired with a Revolution DECT 123 

scanner (GE Healthcare, Princeton, NJ, USA). The DECT scans were 124 

performed at tube voltages of 80 and 140 kVp and exposures of 560 mA. The 125 

other scanning parameters were a rotation time (RT) of 1.0 s, slice thickness of 126 

0.5 mm, and field of view (FOV) of 360 mm. The material decomposition 127 

images of bone(water) and fat(water) and equivalent kV-CT images were 128 

reconstructed using the GSI technique. A total of 18,084 images from 28 129 

patients were analyzed as part of an institutional review board-approved study.  130 

 131 

B) Deep learning model 132 

A 16-bit Digital Imaging and Communications in Medicine (DICOM) image 133 

was converted to an 8-bit red-green-blue (RGB) portable network graphics 134 

(PNG) image, and the output 8-bit RGB PNG image from the 2D CNN model 135 

was converted to 16-bit DICOM images. The pixel number in the CT image 136 

ranged from -1000 to 3079 Hounsfield units (HU). The unused pixel value was 137 

eliminated. Subsequently, the values of the pixels in the CT images were 138 

converted to 8-bit (0–255) images by dividing by 16, which is the value 139 

obtained by dividing the maximum pixel value, that is, 3079 HU, by 256. The 140 

process of radiomics analysis is presented in Fig. 1. The pixel values of the 141 



9 

 

DECT and kV-CT images were rescaled using the RescaleSlope and 142 

RescaleIntercept tags from the DICOM header as follows: 143 

𝐼𝑚𝑎𝑔𝑒 𝐷𝑎𝑡𝑎 = (𝐼𝑚𝑎𝑔𝑒 𝐷𝑎𝑡𝑎) × 𝑅𝑒𝑠𝑐𝑎𝑙𝑒𝑆𝑙𝑜𝑝𝑒 + 𝑅𝑒𝑠𝑐𝑎𝑙𝑒𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +144 

1000. (1) 145 

Before calculating the radiomics features, we applied a medium smooth filter 146 

to the rescaled image data. An overview of the GAN network model is 147 

displayed in Fig. 1. This includes a generator (to estimate the material 148 

decomposition image) and discriminator (to distinguish the real material 149 

decomposition image from the generated image). The generator attempts to 150 

produce realistic images that confuse the discriminator. These CNN networks 151 

are trained simultaneously by evaluating θG,D . The generator comprised an 152 

encoder and decoder. The encoder mapped the image from the input image of 153 

512 × 512 resolution using a stack of eight convolutional layers, each followed 154 

by LeakyReLU activation functions and batch normalization. The number of 155 

convolutional filters was 64, 128, 256, 512, 1024, 1024, 1024, and 1024, 156 

respectively, with a kernel size of 4 × 4 and stride of 2. The decoder mirrored 157 

the encoding architecture, albeit utilizing fractionally strided convolution 158 

(deconvolution). The number of the deconvolution filters were 1024, 1024, 159 

1024, 1024, 512, 256, 128, and 64, respectively, in the layers that utilized ReLU 160 

activation functions. The discriminator used seven convolution layers to extract 161 

the features from the image and generate the output image. The number of 162 

convolutional filters was 64, 128, 256, 512, 1024, 1024, and 1024, respectively, 163 
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with a kernel size of 4 × 4 and stride of 2. 164 

The deep learning model was a conditional GAN that required paired images 165 

from the kV-CT and DECT images that were co-registered with voxel-wise 166 

correspondence. The label was the kV-CT image before synthesis. The loss was 167 

evaluated using the generator and discriminator.  168 

 169 

 ℒGAN(G, D)  =  𝔼y[log D( y)] +   𝔼x,z[log(1 −  D(G(x))]  (2) 170 

 171 

where G is the generator network, 𝔼 is the expectation value dependent on 172 

both x, the set of kV-CT images, and y, the set of target images that are DECT 173 

images. Moreover, it included an additional loss based on the absolute 174 

difference between the synthesized DECT image and input kV-CT image (L1 175 

norm loss). The L1 norm loss was calculated as 176 

 177 

 ℒL1(G)  =  𝔼x,y(|y − G(x)|1).    (3) 178 

 179 

The adversarial loss in Eq. (1) was calculated using the binary cross-entropy 180 

cost function. The final cost function used to optimize the network was a 181 

weighted summation of the losses in Eq. (2) and Eq. (3): 182 

 θG,D  = arg 𝑚𝑖𝑛⏟
𝐺

𝑚𝑎𝑥⏟
𝐷

( ℒL1(G) +  ℒGAN(G, D)).   (4) 183 

Here, hyperparameter lambda is the weighting factor for the L1 loss, which 184 
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was set to 100. The proposed models were implemented using TensorFlow 185 

packages (V1.7.0, Python 2.7, CUDA 9.0) on a Ubuntu 16.04 LTS system. 186 

Three hundred epochs were used to operate the model on an 11-GB NVIDIA 187 

GeForce GTX 1080 GPU. All three models were trained with instance 188 

normalization and identical hyperparameters, except for the batch size. For 189 

each iteration, a mini-batch of 2D images was randomly selected from the 190 

training set. 191 

 192 

 193 

Fig. 1 GAN framework of the material decomposition images of bone(water) 194 

(upper) and fat(water) (lower). Given an input image in a source contrast, the 195 
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generator learns to generate an image of similar anatomy in a target contrast 196 

and the discriminator learns to discriminate between the synthesized and real 197 

pairs of the material decomposition images.  198 

 199 

 200 

 201 

C) Evaluation 202 

The prediction accuracy of the model for the synthesized and reference 203 

material decomposition images of bone(water) and fat(water) was evaluated 204 

using the following five metrics: relative mean absolute error (MAE), relative 205 

root mean square (RMSE), structural similarity index (SSIM), signal-to-noise 206 

ratio (PSNR), and mutual information (MI). These metrics are defined as 207 

follows:  208 

 209 

𝑀𝐴𝐸 =
1

𝑛𝑥𝑛𝑦
∑

|𝑟(𝑖,𝑗)−𝑡(𝑖,𝑗)|

𝑟(𝑖,𝑗)

𝑛𝑥𝑛𝑦

𝑖,𝑗
.   (5) 210 

 211 

Here, 𝑟(𝑖, 𝑗) is the value of pixel (𝑖, 𝑗) in the planning CT image, 𝑡(𝑖, 𝑗) is 212 

the value of pixel (𝑖, 𝑗) in the target image, and 𝑛𝑥𝑛𝑦 is the total number of 213 

pixels. RMSE is defined as 214 

𝑅𝑀𝑆𝐸 = √
1

𝑛𝑥𝑛𝑦
∑ (

𝑟(𝑖,𝑗)−𝑡(𝑖,𝑗)

𝑟(𝑖,𝑗)
)

𝑛𝑥𝑛𝑦

𝑖,𝑗

2

.  (6) 215 
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The SSIM is computed based on consideration of the contrast, structure, and 216 

luminance to compute a similarity score between two images.  217 

The SSIM between two images 𝑥⃗ and 𝑦⃗ can be computed as [18] 218 

𝑆𝑆𝐼𝑀(𝑥⃗, 𝑦⃗) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑥

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
,  (7) 219 

𝐶1 = (𝑘1𝑄)2,  𝑘1 = 0.01,   (8) 220 

𝐶2 = (𝑘2𝑄)2,  𝑘2 = 0.03,   (9) 221 

where 𝐶1 and 𝐶2 are constants used to prevent a zero denominator and to 222 

maintain the stability of the formula. 𝑄  is the maximum CT value for the 223 

synthesized and reference images. The values of 𝑘1  and 𝑘2  are typically 224 

obtained from [19]. 𝜎𝑥 is an estimate in the discrete form 225 

𝜎𝑥 = (
1

𝑁−1
∑ (𝑥𝑖 − 𝜇𝑥)2𝑁

𝑖=1 )
1/2

.   (10) 226 

The correlation coefficient between 𝑥⃗  and 𝑦⃗  is defined as 𝜎𝑥𝑦 . It is 227 

expressed as 228 

𝜎𝑥𝑦 =
1

𝑁−1
∑ (𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)𝑁

𝑖=1 ,  (11) 229 

where 𝜇𝑥 is the mean intensity and can be expressed as 230 

𝜇𝑥 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 .    (12) 231 

The PSNR is calculated as 232 

𝑃𝑆𝑁𝑅𝐺𝐿 = 10 × 𝑙𝑜𝑔10 (
(𝑀𝐴𝑋)2

𝑀𝑆𝐸
).   (13) 233 

 234 
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Here, MAE and MSE are the possible maximum signal intensity and mean 235 

square error (or difference) of the image, respectively. MI is used as a cross-236 

modality similarity measure [20]. It is calculated as  237 

 238 

𝐼(𝑟: 𝑡) = ∑ ∑ 𝑝(𝑚, 𝑛)𝑙𝑜𝑔 (
𝑝(𝑚,𝑛)

𝑝(𝑚)𝑝(𝑛)
)𝑛∈𝐼𝑡𝑚∈𝐼𝑟
,  (14) 239 

where m and n are the intensities in the targeted monochromatic energy CT 240 

image Ir and predicted monochromatic energy CT image It, respectively. p(m, 241 

n) is the joint probability density of Ir and It, whereas p(m) and p(n) are 242 

marginal densities. p(m, n) can be calculated as follows:  243 

𝑝(𝑚, 𝑛) =
ℎ(𝑚,𝑛)

∑ ∑ ℎ(𝑚,𝑛)𝑛∈𝐼𝑡𝑚∈𝐼𝑡

,   (15) 244 

where ℎ(𝑚, 𝑛)  is the histogram of the pixel values in the reference 245 

monoenergetic CT image Ir and synthesized monoenergetic CT image It. 246 

Furthermore, the difference in the synthesized and reference monoenergetic CT 247 

numbers in the region of interest (ROI) was evaluated for several slices, from 248 

the feet to chest, in a manually drawn ROI, as depicted in Fig. 2. 249 
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 250 

  251 

Fig. 2 Method of measurement in the evaluation of the HU in the material decomposition images from feet to chest slice. The 252 

average and SD values of the HU were measured by creating a circular ROI, 2 cm in diameter. 253 
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 254 

III. RESULTS 255 

 256 

The time required to create the image synthesized model was approximately 257 

142.2 ± 3.1 h for conversion of the kV-CT to the material decomposition 258 

images of the bone(water) and fat(water). The rate to create the synthesized 259 

monochromatic energy CT images using all the trained models was 260 

approximately 7.2–8.1 images/s. The generator loss, discriminator loss, and L1 261 

norm loss in each prediction model are displayed in Figs. 3 and 4. 262 
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 263 

Fig. 3 Average training losses in the generator and discriminator in the CT-based prediction model for conversion of kV-CT to 264 

the material decomposition images of bone(water). 265 

 266 
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 267 

Fig. 4 Average training losses in the generator and discriminator in the CT-based prediction model for conversion of kV-CT to 268 

the material decomposition images of fat(water). 269 

 270 
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Figs. 5–10 display samples obtained by cross-modality generation for the 271 

synthesized and reference material decomposition images of bone(water) and 272 

fat(water). Table 1 presents the difference in HU values between the 273 

synthesized and reference material decomposition images of bone(water). The 274 

difference between the synthesized and reference material decomposition 275 

images is within 5.3 HU. The difference of the monochromatic energy CT 276 

number is within the appropriate range of the SD values in all ROIs. Table 2 277 

indicates the HU difference between the synthesized and reference material 278 

decomposition images of fat(water). The difference of the synthesized and 279 

reference material decomposition images is within 20.3 HU for the fat(water) 280 

images. The difference of the monochromatic energy CT number is within the 281 

appropriate range of the SD values in all ROIs. The RMSE in all ROIs was 0.6 282 

for the material decomposition image of bone(water) and 1.2 for the material 283 

decomposition image of fat(water).  284 

Tables 3 and 4 display the average MAE, MSE, RMSE, PSNR, and MI 285 

computed from feet to chest slices for the material decomposition images of 286 

bone(water) and fat(water). The MAE, MSE, and RMSE were less for the 287 

material decomposition image of fat(water). The PSNR and MI were greater 288 

for the material decomposition image of fat(water). There was no difference in 289 
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the SSIM. 290 

 291 

 292 

 293 

Fig. 5 Samples obtained from a material decomposition image of bone(water) 294 

at pelvic level: input image is the equivalent kV-CT image at 120 kVp, 295 

synthesized and reference images are the material decomposition images of 296 

bone(water), and MAE is the difference between the synthesized and reference 297 

bone(water) images. 298 

 299 

 300 

 301 
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Fig. 6 Samples obtained from a material decomposition image of bone(water) 302 

at abdominal level: input image is the equivalent kV-CT image at 120 kVp, 303 

synthesized and reference images are the material decomposition images of 304 

bone(water), and MAE is the difference between the synthesized and reference 305 

bone(water) images. 306 

 307 

 308 

 309 

Fig. 7 Samples obtained from a material decomposition image of bone(water) 310 

at chest level: input image is the equivalent kV-CT image at 120 kVp, 311 

synthesized and reference images are the material decomposition images of 312 

bone(water), and MAE is the difference between the synthesized and reference 313 

bone(water) images. 314 

 315 
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 316 

Fig. 8 Samples obtained from a material decomposition image of fat(water) at 317 

pelvic level: input image is the equivalent kV-CT image at 120 kVp, 318 

synthesized and reference images are the material decomposition images of 319 

fat(water), and MAE is the difference between the synthesized and reference 320 

fat(water) images. 321 

 322 

 323 

Fig. 9 Samples obtained from a material decomposition image of fat(water) at 324 

abdominal level: input image is the equivalent kV-CT image at 120 kVp, 325 

synthesized and reference images are the material decomposition images of 326 

fat(water), and MAE is the difference between the synthesized and reference 327 

fat(water) images. 328 

 329 
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 330 

Fig. 10 Samples obtained from a material decomposition image of bone(water) 331 

at pelvic level: input image is the equivalent kV-CT image at 120 kVp, 332 

synthesized and reference images are the material decomposition images of 333 

fat(water), and MAE is the difference between the synthesized and reference 334 

fat(water) images. 335 

 336 

 337 

 338 

Table 1. Difference (Δ) and SD values of synthesized and reference material 339 

decomposition of bone(water).  340 

 341 

 342 

Bone(water) 
 

 

 
Δ (HU) SD (HU) 

 

① 1.7 5.0 
 

② 0.8 11.5 
 

③ 3.0 26.1 
 

④ -1.8 5.2 
 

⑤ -2.2 4.1 
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⑥ 1.2 11.7 
 

⑦ -1.1 5.84 
 

⑧ 1.4 3.9 
 

⑨ 2.7 4.5 
 

⑩ 3.0 4.8 
 

⑪ -0.9 5.1 
 

⑫ 2.9 4.4 
 

⑬ 4.6 4.8 
 

⑭ -0.1 4.5 
 

⑮ 3.2 5.7 
 

⑯ 5.3 6.2 
 

⑰ -0.3 4.1 
 

⑱ -3.2 4.3 
 

⑲ -0.1 4.4 
 

⑳ 1.3 3.6 
 

㉑ -4.6 14.3 
 

㉒ 3.4 15.5 
 

㉓ -1.1 5.1 
 

 343 

 344 

Table 2. Difference (Δ) and SD values between synthesized and reference 345 

material decomposition of fat(water).  346 

 347 

 348 

Fat(water) 
 

 

 
Δ (HU) SD (HU) 

 

① -5.3  9.3  
 

② -5.0  8.2  
 

③ -7.4  7.8  
 

④ -3.6  31.5  
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⑤ -6.7  12.9  
 

⑥ -8.9  14.8  
 

⑦ -2.9  9.8  
 

⑧ -5.9  9.7  
 

⑨ 4.0  17.6  
 

⑩ -0.7  18.1  
 

⑪ 0.0  58.5  
 

⑫ -3.6  9.1  
 

⑬ -6.9  8.9  
 

⑭ -8.1  9.2  
 

⑮ -5.9  20.8  
 

⑯ -3.1  8.6  
 

⑰ -6.4  10.6  
 

⑱ -1.7  12.3  
 

⑲ 5.3  12.5  
 

⑳ -3.0  42.9  
 

㉑ 7.5  182.0  
 

㉒ -7.0  51.9  
 

㉓ -8.8  93.1  
 

 349 

 350 
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 351 

Table 3. Average MAE, MSE, RMSE, PSNR, and SSIM computed from feet to chest slices for the material decomposition 352 

images of bone(water). 353 

 354 

MAE  MSE  RMSE PSNR SSIM MI  

Average SD Average SD Average SD Average SD Average SD Average SD 

0.8 0.7 1.3 1.2 0.9 0.7 55.3 15.0 0.9 0.1 0.8 0.1 

 355 

 356 

Table 4. Average MAE, MSE, RMSE, PSNR, and SSIM computed from feet to chest slices for the material decomposition 357 

images of fat(water). 358 
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 359 

MAE  MSE  RMSE PSNR SSIM MI  

Average SD Average SD Average SD Average SD Average SD Average SD 

0.0 0.0 0.0 0.0 0.1 0.0 72.1 3.4 0.9 0.0 1.4 0.1 

360 
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IV. DISCUSSION 361 

 362 

DECT enables the separation of several additional materials including calcium, 363 

fat, and uric acid from a single kV-CT. It provides anatomic knowledge with 364 

functional information [21]. DECT requires post-processing to obtain material 365 

decomposition images. It requires 5 to 10 min of additional interpretation time 366 

after the scan [22]. Conversely, the proposed image-synthesized system can 367 

reconstruct a DECT image within 1 min automatically. GE scanners use dual 368 

X-ray sources; Siemens Healthiness scanners use dual X-ray sources and two 369 

data acquisition systems [23, 24]. Thus, the dual-source scanner cost is 370 

considerably greater than the standard SECT scanner. The Philips Healthcare 371 

scanner acquires DECT projection data using a layered detector. The high-372 

energy data and low-energy data are collected by the posterior and anterior 373 

detector layers, respectively [25]. All DECT data acquisition techniques pose 374 

a significant burden on the CT system hardware. Zhao et al. reported that, due 375 

to this fact, DECT scanners are not widely used in less-developed regions [26]. 376 

In addition to the increased cost and complexity of the imaging system, DECT 377 

can also increase the radiation dose owing to the additional CT scan. The 378 

image-synthesized approach with deep learning is expected to reduce the 379 

scanning radiation dose and imaging cost by synthesizing the DECT from the 380 

single kV-CT image.  381 
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Li et al. proposed a new image-domain method for DECT decomposition that 382 

combines conventional penalized weighted-least squares estimation with 383 

regularization based on a mixed union of learned transforms model [27]. The 384 

RMSE of the density image was 0.04–0.05. To compare the RMSE on the same 385 

scale, the material decomposition image was converted to a density image with 386 

a theoretical value. Here, the theoretical density values were 1 g/cm3 for the 387 

water and 1.92 g/cm3 for the bone used by Li. The RMSE in all ROIs was 0.55 388 

for the material decomposition image of bone(water) and 1.2 for the material 389 

decomposition image of fat(water). The RMSE of the density value in all ROIs 390 

was 0.01 for the material decomposition image of bone(water) and 0.02 for the 391 

material decomposition image of fat(water), which was significantly less than 392 

that of Li et al. Although other studies have proposed the image synthesis of a 393 

DECT, the accuracy of the image synthesis could not be directly compared 394 

because there were no studies evaluating the HU value. Moreover, previous 395 

studies used other reconstruction images such as low- and high-energy kV-CT, 396 

multi-energy images, and virtual non-contrast images [11–13]. These models 397 

required multiple images or additional reconstruction. The current study 398 

proposed a prediction model of the material decomposition images of 399 

bone(water) and fat(water) from a single kV-CT image with GAN architectures. 400 

The HU difference between the reference and synthesized material 401 

decomposition images of bone(water) and fat(water) were less than 5.3 HU and 402 

20.3 HU, respectively. The material decomposition images of the bone(water) 403 
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had a smaller MAE, MSE, and RMSE, and a greater PSNR and MI than the 404 

fat(water). The bone was highlighted and the other organ with a similar density 405 

to water in the material decomposition images of the bone(water), were less 406 

prominent. For the U-Net-based CNN employed by the previous study, the 407 

label was image-wise. Conversely, the model proposed in the current study 408 

used the label that was pixel-wise. Although the previous study could extract 409 

local imaging features, it was required to register the input and output images 410 

for model training. The current study used the kV-CT and material 411 

decomposition images reconstructed from the DECT image. No differences 412 

were observed in the alignment of the images. 413 

There is a possibility that certain patients could be affected by the beam-414 

hardening artifact. This could cause errors in the model training in the 415 

correlation of the training of the kV-CT and material decomposition images of 416 

the bone(water). However, these differences in each ROI were within the SD 417 

range. The proposed model could produce highly accurate DECT images 418 

within the noise estimations from the kV-CT images.  419 

There are limitations to the current study. First, the current study used 120 kV-420 

CT images reconstructed from DECT. The difference in the image quality of 421 

120 kV-CT images scanned via SECT and the equivalent 120 kV-CT images 422 

reconstructed from DECT for clinical patients were evaluated by Tawfil et al. 423 

The subjective image quality scores between the DECT and SECT groups did 424 

not indicate a significant difference. Thus, 120 kV-CT images from the DECT 425 
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images can be used as equivalent to the SECT images [28]. Moreover, the 426 

patients used for the current study were randomly selected, regardless of the 427 

presence or absence of disease. Therefore, evaluation of the lesion detectability 428 

could not be performed. In addition to evaluating the image similarities for 429 

complete images, we confirmed that the HU difference was within the noise in 430 

the local region from the pelvic to the chest level. Further studies will be 431 

performed to examine the quality of the synthesized images compared to the 432 

original images in terms of diagnostic performance.  433 

 434 

 435 

  436 
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 437 

V. CONCLUSION 438 

 439 

The current study proposed an image-synthesis framework using a GAN-based 440 

CNN architecture for kV-CT to material decomposition images of bone(water) 441 

and fat(water) scanned by DECT. The proposed image synthesis model showed 442 

a highly image quality and the difference of the monochromatic energy CT 443 

number is within the appropriate range of the SD values in the local region. 444 

Synthesized medical image generation can be a cost-effective approach for 445 

developing automated diagnostic technologies. 446 

  447 
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 537 

Figure captions 538 

Fig. 1. GAN framework of the material decomposition images of bone(water) 539 

(upper) and fat(water) (lower). Given an input image in a source contrast, 540 

Generator learns to generate an image of similar anatomy in a target contrast 541 

and Discriminator learns to discriminate between synthesized and real pairs of 542 

the material decomposition images.  543 

 544 

Fig. 2 Method of measurement in the evaluation of the HU in the material 545 

decomposition images from feet to chest slice. The average and SD values of 546 

the HU were measured by creating a circular ROI, 2 cm in diameter. 547 

 548 

Fig. 3 Average training losses in the generator and discriminator in the CT-549 

based prediction model for conversion of kV-CT to the material decomposition 550 

images of bone(water). 551 

 552 

Fig. 4 Average training losses in the generator and discriminator in the CT-553 

based prediction model for conversion of kV-CT to the material decomposition 554 

images of fat(water). 555 

 556 

Fig. 5 Samples obtained from a material decomposition image of bone(water) 557 

at pelvic level: input image is the equivalent kV-CT image at 120 kVp, 558 



40 

 

synthesized and reference images are the material decomposition images of 559 

bone(water), and MAE is the difference between the synthesized and reference 560 

bone(water) images. 561 

 562 

Fig. 6 Samples obtained from a material decomposition image of bone(water) 563 

at abdominal level: input image is the equivalent kV-CT image at 120 kVp, 564 

synthesized and reference images are the material decomposition images of 565 

bone(water), and MAE is the difference between the synthesized and reference 566 

bone(water) images. 567 

 568 

Fig. 7 Samples obtained from a material decomposition image of bone(water) 569 

at chest level: input image is the equivalent kV-CT image at 120 kVp, 570 

synthesized and reference images are the material decomposition images of 571 

bone(water), and MAE is the difference between the synthesized and reference 572 

bone(water) images. 573 

 574 

Fig. 8 Samples obtained from a material decomposition image of bone(water) 575 

at pelvic level: input image is the equivalent kV-CT image at 120 kVp, 576 

synthesized and reference images are the material decomposition images of 577 

bone(water), and MAE is the difference between the synthesized and reference 578 

bone(water) images. 579 

 580 
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Fig. 9 Samples obtained from a material decomposition image of bone(water) 581 

at abdominal level: input image is the equivalent kV-CT image at 120 kVp, 582 

synthesized and reference images are the material decomposition images of 583 

bone(water), and MAE is the difference between the synthesized and reference 584 

bone(water) images. 585 

 586 

Fig. 10 Samples obtained from a material decomposition image of bone(water) 587 

at pelvic level: input image is the equivalent kV-CT image at 120 kVp, 588 

synthesized and reference images are the material decomposition images of 589 

bone(water), and MAE is the difference between the synthesized and reference 590 

bone(water) images. 591 

 592 


