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Abstract 

The current study aims to determine the optimal irradiation interval of fractionated stereotactic radiosurgery 

(SRS) by using an improved cellular automata (CA) model. The tumor growth process was simulated by 

considering the amount of oxygen and the density of blood vessels, which supplied oxygen and nutrient 

required for cell growth. Cancer cells died by the mitotic death process due to radiation, which was quantified 

by the LQ-model, or the apoptosis due to the lack of nutrients. The radiation caused increased permeation of 

plasma protein through the blood vessel or the breakdown of the vasculature. Consequently, these changes 

lead to a change in radiation sensitivity of cancer cells and tumor growth rate after irradiation. The optimal 

model parameters were determined with experimental data of the rat tumor volume. The tumor control 20 
probability (TCP) was defined as the ratio of the number of histories in which all cancer cells died after the 

irradiation to the total number of the histories per simulation. The optimal irradiation interval was defined 

as the irradiation interval that TCP was the maximum. For one fractionation treatment, the ratio of hypoxic 

cells to the total number of cancer cells kept decreasing until day 16th after irradiation; whereas the number 

of surviving cancer cells begun increasing immediately after irradiation. This intricate relationship between 

the hypoxia (or reoxygenation) and the number of cancer cells lead to an optimal irradiation interval for the 

second irradiation. The optimal irradiation interval for two-fraction SRS was six days. The optimum intervals 

for the first-second irradiations and the second-third irradiations were five and two days, respectively, for 

three fraction SRS. For 4 and 5-fraction treatments, the optimum first-interval was five days, which was 

similar to three fraction treatment. The remaining intervals should be one day. We showed that the improved 30 
CA model could be used to optimize the irradiation interval by explicitly including the reoxygenation after 

irradiation in the model. 

 

Keyword: automata model, radiation effect, hypoxia, SRS 

 

mailto:daika99@hiroshima-u.ac.jp


2 

 

 

1. INTRODUCTION 

Technological advancement in stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT) 

allows us to deliver radiation in a single large fraction precisely to the tumor-bearing volume [1-4]. Although 

the radiation damage to cancer cells causes mainly direct cell death, i.e., mitotic catastrophe, recent studies 40 
showed that in addition to the direct cell death, indirect cell death through vascular damage occurs when 

tumors are exposed to high dose hypo-fractionated irradiation [5, 6]. Kim et al. described experimental 

evidence that the indirect cell death due to vascular damage and ensuing immune responses may play crucial 

roles in the response of a tumor to SRS and SBRT [7]. Meanwhile, Carlson et al. suggested that tumor 

hypoxia is a serious problem with daily fractioned SBRT because of a reduction in inter-fractionation 

reoxygenation associated with single high dose irradiation [8]. Hypoxia causes the production of the slow-

proliferating stem-cell-like phenotype of cells, decreases senescence, creates chaotic and malfunctioning 

blood vessels, and augments metastasis, which all together further induce therapy resistance [9]. Assuming 

that 10%-20% of cancer cells are hypoxic and using the conventional radiobiological model, Brown, et al. 

indicated that the radiation doses used in SBRT are insufficient to kill all the clonogenic cells in 1-3 cm 50 
diameter tumors [10].  

Mathematical modeling of biological processes is widely used to enhance the quantitative 

understanding of biomedical phenomena. These models provide quantitative knowledge that can be applied 

in both experimental and clinical settings. In cancer biology, many mathematical models have been 

developed [11, 12]. Von Neumann conceived the idea of cellular automata (CA) [13]. Models based on 

cellular automata have been widely utilized in studies related to biological systems [14, 15]. Duchting and 

Vogelsager proposed the application of CA for modeling cancers with radiotherapy effects [16]. Richard et 

al. developed a simple deterministic model based on a cellular automaton [17, 18], which is useful to describe 

the dynamics of a population of proliferating cells. The cellular automata can be used to model the treatment 

response of tumors and the effects of the oxygen diffusion on the response to radiation therapy. Paul-60 
Gilloteaux et al. incorporated the blood vessel and oxygen diffusion map into a CA simulation [19].  

In the current study, we built a cellular automata model for simulation of hypo-fractionated 

radiotherapy or SRS/SBRT. Our model included direct cell death caused by radiation (or mitotic catastrophe) 

and indirect death by apoptosis. We explicitly incorporated the radiation damage of blood vessels caused by 

the death of endothelial cells in the model. The damage to blood vessels lead to decreased oxygen supply to 

the tumor, which in turn affected the radiation sensitivity and the growth rate of cancer cells after irradiation. 

Furthermore, the decrease of the nutrient supply due to the radiation damage of blood vessels caused death 

of the cancer cells by indirect death mechanism (or apoptosis). The model contained four populations of 

cancer cells: proliferating cancer cells, doomed cells, dead cancer cells, and arrested cells. Using the 
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proposed model, we studied the optimized fractionation schedule for SRS/SBRT to maximize the tumor 70 
control probability (TCP) by taking advantage of reoxygenation after irradiation. 

 

2. METHODS AND MATERIALS 

A. Cellular Automata model 

Automata are commonly placed on a grid structure and updated at discrete time intervals to reflect their new 

states based on changes in the environment. In the current study, we implemented a two-dimensional (2D) 

cellular automata model to study the response of a tumor to radiotherapy and the impact of the tumor 

microenvironment (vascularization, nutrient, and oxygen levels) on the therapeutic response. Every 

compartment or pixel in the 2D lattice was assigned to one of the following six cell types: healthy cell, cancer 

cells in four different states (proliferating cancer cell, doomed cell, dead cancer cell, and arrested cell), and 80 
blood vessel. The division and multiplication of cancer cells depended on the type of neighbor cells, 

mechanical pressure, and cellular microenvironment. Arrested cells were created from cancer cells by 

apoptosis due to the lack of nutrients. Doomed cells were created from proliferating cancer cells by 

irradiation. The arrested and doomed cancer cells were converted to dead cancer cells at a constant rate. 

Cellular automata simulation started with four cancer cells at the center of the 2D lattice. The simulation was 

continued for a certain period before and after irradiation to observe the dynamic changes of the cell 

population and the spatial distribution. Our simulation was stochastic, so we ran many histories per 

simulation with fixed model parameter values. 

Our simulation used a 2D lattice composed of square pixels of 15 µm × 15 µm. The volume of the 

tumor in the 3D space was estimated by taking the 3/2 power of the 2D volume. We used a 2D model to keep 90 
the simulation time in a reasonable length for a parametric study (to run many cases by varying model 

parameters.) The total volume of a tumor before treatment was 0.5 - 1 cc. 

Simulating blood vessels is essential in this work. Helmlinger et al. reported blood vessel diameters 

in the range of 10–80 μm and the median radius of 22.5 μm [20]. Thus, in our model, blood vessels were 

randomly assigned to the lattice by assuming that one blood vessel occupied one pixel. The initial vessel 

density (i.e., the ratio of the number of blood vessels to the total number of pixels in the 2D lattice) was set 

at 3.8%. We assumed that the number of blood vessels could increase slowly with a constant growth rate. 

 

A.1 Proliferation 

There are three factors affecting the proliferation and invasion of cancer cells. Those are the type of neighbor 100 
cells, mechanical pressure, and cellular microenvironment, such as the amount of oxygen and nutrient 

available for cancer cells. 

Each cell in a pixel has neighbors. Each cell chooses its next state, based on some predefined rules 

along with the surrounding microenvironment. The critical part of the implementation of cellular automata 
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is the definition of proper rules so that the model can simulate the natural phenomena appropriately. For a 

proliferating cancer cell at a pixel, the cell is duplicated to two cancer cells with a probability PC at each 

time step. One of those remains at the original location, and the other (or daughter cell) moves to one of the 

four neighbor pixels, which is occupied by a normal cell.  

The mechanical pressure within the tumor is an essential factor in the local invasion. Qi et al. 

proposed a modified cellular automata model for cancer growth [21]. To reproduce the Gompertzian-like 110 
growth of tumors, they incorporated biologic properties such as the cytotoxic effect of the immune system 

and the mechanical pressure inside the tumor into the cellular automata model in addition to the proliferation 

of cancer cells. Following the Qi et al., we included the effects of mechanical pressure in our model as 

follows. Only if the pressure inside the tumor was high enough, the expansion of the tumor was possible. 

The mechanical pressure was related to the density of cells. 

Let Nc, Nd, ND, and Na denote the number of cancer cells, doomed cells, dead cancer cells, and 

arrested cells, respectively. Then, the total number of cancer cells, N, was a sum of these four cancer cell 

types,  

 

N = Nc +  Nd +  ND +  NaR  (1) 120 
 

We defined the average radius of the cancer cell distribution or tumor, Rt, as 

 

 Rt = (ΣRi, j)/N       (2) 

 

We assumed that the center of a cell coincided with the center of a pixel in the 2D lattice. The center of the 

tumor, then, was calculated as the center of mass of all four types of cancer cells. In Eq.(2), Ri,j is the 

distance of the cell at pixel (i,j) from the center of the tumor.  

We introduced the density of cells, ρ, to describe the effect of mechanical pressure on tumor 

development. It was defined by 130 
ρ =  N/𝑅𝑅𝑡𝑡2 P

  (3) 

The cancer cell growth mechanism depends on the magnitude of the density ρ relative to a critical density 

ρc. The relationship between ρ and ρc is given as follows [21]:  

(i) If ρ <= ρc, the daughter cell resulting from the proliferation, can only occupy one of the inside nearest 

neighboring sites originally occupied by normal cells with the same probability.  

(ii) If ρ > ρc, the daughter cell can invade any one of the nearest neighboring sites originally occupied by 

normal cells with the same probability. 

Qi et al. [21] found the optimum value of ρc to be 3.7 through extensive simulation, and we adopted the same 
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value in the current simulation. Since the pixel size was 15 µm × 15 µm, ρc could be calculated as 3.7/(0.015 

× 0.015) cells/mm2 = 1.6 × 106 cells/cm2 in 2D simulation. The volume of the tumor in the 3D space was 140 
estimated by taking the 3/2 power of the 2D volume. Consequently, the ρc in the 3D simulation is to be (1.6 

× 106)3/2 = 2.0 × 109 cm3.  

Oxygen and nutrient concentrations affect cancer cell proliferation. The probability of cell 

proliferation, Pc, is represented by 

𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃 � 𝑅𝑅𝑂𝑂2
𝑅𝑅𝑂𝑂2𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝑅𝑅𝑛𝑛𝑛𝑛
𝑅𝑅𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚

�  (4) 

The second factor in Eq. (4) indicates the effect of oxygen and nutrient. The parameters 𝑅𝑅𝑂𝑂2 and 𝑅𝑅𝑛𝑛𝑛𝑛 are the 

local oxygen and nutrient concentrations, respectively.  𝑅𝑅𝑂𝑂2𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑅𝑅𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚  were estimated maximum 

oxygen and nutrient concentrations. We assumed that 𝑅𝑅𝑂𝑂2𝑚𝑚𝑚𝑚𝑚𝑚 is equal to the normal oxygen level, which is 

21% [22]. Here, the oxygen concentration is given as the partial oxygen pressure of the standard atmospheric 

pressure. The maximum 𝑅𝑅𝑛𝑛𝑛𝑛 is 100%, but it does not exceed 10 % under normal circumstances. In Eq. (4), 150 
the unmodulated cell proliferation probability P0 was calculated from the tumor volume doubling time, Tcd, 

and the time step used for the simulation, ∆t, as follows. 

𝑃𝑃𝑃𝑃 = 1
2
𝑒𝑒
�𝐼𝐼𝐼𝐼(2) 𝛥𝛥𝛥𝛥

𝑇𝑇𝑐𝑐𝑐𝑐
�
     (5) 

A.2 Oxygen and nutrient concentrations 

Our model incorporated the oxygen (O2) diffusion through blood vessels by assuming that the tumor is 

homeostasis or in a steady-state, leading to no net change of oxygen from cell consumption. The O2 maps of 

the 2D lattice were computed at each time step. We calculated the oxygen distribution or map by assuming 

that the spatial distribution of oxygen concentration per blood vessel follows the Gaussian distribution. Note 

that the blood vessels are lines running perpendicular to the lattice plane. If the blood vessel is located at a 

pixel at (0, 0), the amount of oxygen, or the partial oxygen pressure, RO2, at a pixel at (x, y) can be represented 160 
by 

𝑅𝑅𝑂𝑂2(𝑥𝑥, 𝑦𝑦) = 1
2𝜋𝜋𝜎𝜎2

𝑒𝑒
−𝑥𝑥2−𝑦𝑦2

2𝜎𝜎2        (6) 

Note that Eq. (6) is a solution of a diffusion equation with a diffusion coefficient σ. The value σ was 

determined by fitting experimental data [19, 20] with Eq. (6), as shown in Figure 1. The estimated value σ  

was 2.4.  

The transport process of nutrients in tissue can be represented by the same diffusion equation as 

oxygen, but with a diffusion coefficient different from oxygen. Hence, we used Eq. (6) to estimate the amount 

of nutrients available by a cell at pixel (x, y). The current study assumed that the oxygen level was in an 

equilibrium state, where the oxygen supply and consumption were balanced. Thus, the oxygen level changed 

instantly and achieved a new equilibrium state after the blood vessel or the tumor cell died. 170 
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Figure 1: The partial pressure of oxygen, O2, (% of atmospheric pressure, pO2) as a function of the 

distance from the surface of one vessel wall. The experimental data were taken from [19, 20]. The solid 

line indicates the fitted line using Eq. (6). 

 

A.3 Indirect damage by apoptosis 

The number of cancer cells, adjacent to a blood vessel, can impact on the available nutrients [22]. In other 

words, as the number of cancer cells increases, the more nutrients will be required, which leads to nutrient 

scarcity. The current study assumed that the cancer cell turns to the arrested cell with the apoptosis 

probability Pnd if the nutrient was smaller than the threshold value, 𝑅𝑅𝑛𝑛𝑛𝑛∗ , of 1 %. The repair of the arrested 180 
cell was not considered, i.e., the repair probability Par was set to equal to 0. 

 

A.4 Radiation Response 

The cancer cell is damaged by the irradiation, which causes direct cell death. The killing probability, PLQ, 

was calculated by using the linear-quadratic (LQ) model: [23] 

𝑃𝑃𝐿𝐿𝐿𝐿 = 1 − 𝑒𝑒−𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏2          (7) 

The effective dose, D’, is smaller than the physical dose D when the oxygen effect is considered: 

𝐷𝐷’ = 𝐷𝐷/𝐻𝐻𝐻𝐻𝐻𝐻        (8)
  Here HRF is the hypoxia reduction factor and defined by [8]: 

𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑚𝑚𝑚𝑚+𝑅𝑅𝑂𝑂2
𝑘𝑘+𝑅𝑅𝑂𝑂2

        (9)
  

190 

where k is the oxygen partial pressure at which the HRF is half the maximum value, and m is the maximum 

HRF. The current study used 2.804 for m and 0.1076 for k. These values were taken from the past study in 

which the authors estimated the value of m and k parameters by fitting the formula with experiment data 

[19]. Thus, when the oxygen effect on the cell-killing capacity is considered, the killing probability PLQ now 

must be modified by replacing D by the effective dose D’ in Eq. (7), as follows: 

𝑃𝑃𝐿𝐿𝐿𝐿 = 1 − 𝑒𝑒−𝑎𝑎𝑎𝑎′−𝑏𝑏𝑏𝑏′
2

          (10) 
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For the current study, we modeled the effects of radiation damage of blood vessels. Potiron et al. 

showed that blood vessels become more permeable and increase tumor oxygenation after irradiation by using 

a Monte Carlo approach with in vitro experimental data [24]. The amount of O2 passing through the 200 
endothelial wall is increased by a multiplicative factor Lf if radiation damages a blood vessel cell. The Lf is 

1.5 from the measurement data in vitro [19]. We assumed that the blood vessels become more permeable for 

dose below 6 Gy. At doses above 6 Gy, the radiation induces vessel death, which causes hypoxia, 

consequently, tumor radio-resistance. This phenomenon is known as the tumor bed effect. By following the 

work of Paul-Gilloteaux et al. [19], we modeled the radiation damage of blood vessel such that the vessel 

survival probability, Pdv, decreases linearly from 1 to 0.2 for the dose between 6 and 30 Gy,  and it decreases 

linearly from 0.2 to 0.0 between 30Gy and 40Gy. In short, Pdv can be expressed by 

 

𝑃𝑃𝑑𝑑𝑑𝑑 = �

1.0 𝑓𝑓𝑓𝑓𝑓𝑓 0 𝐺𝐺𝐺𝐺 ≤ 𝐷𝐷 ≤ 6 𝐺𝐺𝐺𝐺 (11𝑎𝑎)
−0.8/24 ∗ (𝐷𝐷 − 6) + 1.0 𝑓𝑓𝑓𝑓𝑓𝑓 6 𝐺𝐺𝐺𝐺 < 𝐷𝐷 ≤ 30 𝐺𝐺𝐺𝐺 (11𝑏𝑏)
−0.2/10 ∗ (𝐷𝐷 − 30) + 0.2 𝑓𝑓𝑓𝑓𝑓𝑓 30 𝐺𝐺𝐺𝐺 < 𝐷𝐷 ≤ 40 𝐺𝐺𝐺𝐺 (11𝑐𝑐)

0 𝑓𝑓𝑓𝑓𝑓𝑓 40 𝐺𝐺𝐺𝐺 < 𝐷𝐷 (11𝑑𝑑)

 

 
210 

Song et al. showed that cancer cells are hypoxic due to the inadequate blood supply, and they die 

even without radiation exposure [25]. The current study assumed the indirect death of cancer cells that 

occurred by a lack of blood flow, resulting in a decrease in the supply of the nutrient to the cells.  

 

A.5 Summary of biologic processes used in cellular automata simulation 

We made a model that can accurately predict cell death depending on oxygen and nutrient levels and vessel 

density.  The diagram shown in the flowchart of Figure 2 summarizes the biologic processes with transition 

parameters (probabilities and half-lives) implemented in the current CA model. The biologic processes 

simulated by the model can be described as follows: 

1) Blood vessels are randomly distributed on the 2D lattice. The oxygen and nutrient distributions are 220 
obtained for each blood vessel. Then, the concentrations at each pixel were calculated as a sum of 

contributions from all blood vessels. 

2) The current study assumed that the mitotic catastrophe is the main mechanism of radiation-induced 

cell death. This assumption is in good agreement with the general consensus of the occurrence of 

mitotic catastrophe [27]. 

3) Cancer cells proliferate with probability Pc and by the lattice rules. 

4) A cancer cell, which cannot multiply due to radiation damage, turns to a doomed cell. Here, the 

doomed cell is the cancer cell, which is damaged by radiation and will die eventually in the future.  

If the random probability of death Pd2 was smaller than the killing probability of radiation PLQ, the 

cancer cell is replaced by a doomed cell. 230 
5) A cancer cell can turn to an arrested cell by a lack of nutrients. If the nutrient level is smaller than 
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the threshold value, 𝑅𝑅𝑛𝑛𝑛𝑛∗  , the cancer cell is replaced with an arrested cell with the apoptosis 

probability Pnd. An arrested cell turns to a cancer cell if the random probability of death Pid is smaller 

than apoptosis repair probability Par. Our simulation is not considered the threshold of value of the 

nutrient level, the apoptosis probability, and repair probability; thus, 𝑅𝑅𝑛𝑛𝑛𝑛∗ , Pnd, and Par were set to 0. 

6) The arrested cell is replaced with a dead cell at a constant rate with the half-life of Ta. The doomed 

cell is replaced by a dead cell at a constant rate with the half-life of Td. 

7) There is a balance between the supply and consumption of oxygen by cancer cells in a tumor before 

irradiation. After irradiation, some cancer cells die and stop consuming the oxygen. This extra 

amount of oxygen becomes available for the remaining cells (doomed cells and surviving cancer 240 
cells). Lambda, Λ, defines the fraction of the oxygen re-distributed to/or shared by surviving cancer 

cells out of the total amount of extra oxygen being available for cells in the tumor after a single 

irradiation. Λ=0 means no extra oxygen is available to the cancer cells. Λ=1 means the whole extra 

oxygen becomes consumable by the cancer cells. The value depends on many factors, such as the 

oxygen consumption rate (or the metabolism) of the remaining cells in the tumor, the 

microenvironment, including the interstitial fluid pressure, and the distance of the cells from blood 

vessels, which were not included in the current model. In this study, we selected a Λ value of 0.3 so 

that the model could closely simulate the change of oxygen before and after irradiation by including 

the oxygen redistribution effect on the hypoxia.  

8) The dead cell is dissolved at a constant rate and replaced by a normal cell with the half-life of Tc. 250 
 

It is noted that our simulation model can easily accommodate non-uniform dose distributions, which are 

designed to conform to the tumor volume. However, we assumed a uniform dose distribution for all the 

results presented in the current work. Furthermore, we set the time step of the simulation ∆t to one day for 

all the simulation results presented in this study. 
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 260 
Figure 2: The process of the cellular automata model in the current study. 

 

B. Model validation and parameter optimization 

To validate our CA model, we used the experimental data published by Barendsen et al.  [29]. They used 

rhabdomyosarcoma tumors, which were transplanted in rats. Tumors were exposed to the 300 kV X-rays 

with the radiation dose ranging from 10 Gy to 40 Gy in one fraction. The volume of the tumor before and 

after irradiation was measured by a caliper.  

For the CA simulation, the volume of the tumor was determined by adding the numbers of four 

types of cancer cells (proliferating cancer cells, doomed cells, dead cancer cells, and arrested cells) at every 

time step. Since the volume of all cells is the same, the 2D volume of tumor is proportional to the number of 270 
cells. Then, the volume of the tumor in the 3D space was estimated by taking the 3/2 power of the 2D volume.  

We attempted to match simulation results with Barendsen’s experimental data by varying the model 

parameters. For the simulation, the irradiation was performed on the 20-th day. The α/β value of the LQ 

model was set to 5 Gy. The model parameter values were used for the subsequent simulations for the 

irradiation interval optimization study.  
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C. Optimal irradiation interval  

Before and after radiation therapy, the oxygen concentration in tumor changes because of the change in 

oxygen consumption and supply. After irradiation, the tumor may become more hypoxic than before the 

irradiation; however, the surviving cancer cells eventually gain oxygen due to four mechanisms: (1) reduced 280 
O2 metabolism, (2) improved circulation, (3) shrinkage, and (4) migration [30]. The time scale of these 

reoxygenation processes after the high dose delivered in a short time is not well characterized. We 

hypothesized that the oxygen level per cell in surviving cancer cells increases due to the excessive supply 

caused by the sudden death of oxygen starving cancer cells. Since the oxygen environment rapidly changes 

with the changes in the number of oxygen-consuming cancer cells after irradiation, we could expect that at 

a specific time after irradiation, the ratio of hypoxic and anoxic cells take a minimum then it increases again 

making the tumor hypoxic. Therefore, we think there is an optimum time after the first irradiation at which 

the second irradiation is the most effective in terms of the cell-killing capacity of the radiation. If there are 

more than two fractions of irradiation, there may be an optimum time for the third fraction, too. In this work, 

we studied the optimum time intervals only for two and three fraction treatments. 290 
For the analysis, we used the model parameters obtained in Section B. The tumor was irradiated 

with a uniform dose. The first irradiation was delivered on the 100th day after the start of the simulation. For 

the single fraction treatment, we used 20 Gy.  For the 2 to 5 fraction treatment, the dose per fraction, d’, was 

calculated by using the biological equivalent dose (BED), and it is given by. 

 

𝑑𝑑′ =
−𝛼𝛼 𝛽𝛽⁄ +�𝛼𝛼 𝛽𝛽⁄ 2+4𝛼𝛼 𝛽𝛽⁄

𝑛𝑛′2
∙𝐵𝐵𝐵𝐵𝐵𝐵1𝑓𝑓𝑓𝑓

2
 (12) 

where α⁄β=5, n’ is the number of the fraction. The d' is the dose per fraction in two and three fractions. 
𝐵𝐵𝐵𝐵𝐵𝐵1𝑓𝑓𝑓𝑓  is the biologically equivalent dose with dose d given in one fraction. 𝐵𝐵𝐵𝐵𝐵𝐵1𝑓𝑓𝑓𝑓  is calculated as 

follows: 

𝐵𝐵𝐵𝐵𝐵𝐵1𝑓𝑓𝑓𝑓 = 𝑑𝑑 �1 + 𝑑𝑑
𝛼𝛼 𝛽𝛽⁄

�  (13) 300 

where d = 20 Gy.  

The tumor control probability (TCP) was defined as the ratio of the number of histories in which all 

cancer cells died after the irradiation to the total number of the histories per simulation. The optimal 

irradiation interval was defined as the irradiation interval that TCP was the maximum. We evaluated the 

following quantities. 

• Tumor volume 

• Total volumes of the proliferating cancer cells, doomed cells, dead cancer cells, and arrested cells 

after irradiation 

• The ratio of hypoxic cancer cells to the total number of cancer cells: 

We used three levels of hypoxia: 0.2% oxygen level, which was used for hypoxia in Paul-Gilloteaux 310 
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et al. [19], 0.4% oxygen level, which is radiobiological hypoxia [22]. 

• Vessel volume and vessel density inside the tumor. The vessel density is the ratio of the vessel 

volume to the total volume of the cancer. 

• The second and third treatment days to achieve the maximum TCP for fractionated treatment. 
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3. RESULTS 

A. The optimal model parameters 

Figure 3 shows the total tumor volumes, which were the sum of cancer cells, doomed cells, dead cells, and 

arrested cells, for the Barendsen’s experiments. Both the experimental data (symbols) and the CA simulation 

results (lines) are plotted. In the figure, the volume was normalized to the volume of day 20, on which the 320 
tumor was irradiated. The relative tumor volume of the simulation agreed with the measurement within 

standard deviations for 0, 10, 20, 30, and 40 Gy cases. Some of the fitting parameters were listed in Table 1.  

 

  

Figure 3: The relative tumor volume of the measurement and the simulation.  For each simulation and 

calculation, the total tumor volume was normalized on day 20, on which the tumor was irradiated. 

 

 
Table 1: The values of model parameters obtained by fitting the simulation with the experimental data. 

Here, Tcd is the doubling time of the tumor, Td is the time of the doomed cell to die, Tc is the time of the 330 
dead cell to clear, and L is the ratio of the oxygen redistribution from dead cells to surviving cells. 

 

Parameters Fitting value 

Tcd (days) 0.6 

                  α/β 5 

Td (days) 5 

Tc (days) 6 

Vessel density (g/cm3) 0.038 

Λ 0.3 
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B. Characteristics of single fraction 

Figure 4 (a) shows the volume of the tumor, “Total”, including all four types of cells (proliferating cancer 

cells, doomed cells, dead cells, and arrested cells), and the volume of proliferating cancer cells, “Tumor”, as 

a function of time. A single dose of 13.5 Gy was given to the tumor on day 100. Both volumes were 

normalized to the total tumor volume on day 100. The number of proliferating cancer cells decreased 

instantly after irradiation, then it rapidly increased. On the other hand, the total tumor volume gradually 

decreased until day 26; then, it started growing.  

Figure 4 (b) shows the volume of dead cells as a function of time. The volume of dead cells kept 340 
increasing until day 110, after which it decreased. The time scale was governed by the two time constants: 

the transition time from the doomed to dead cells, Td (= 5 days), and the clearance time of the dead cells, Tc 

(= 6 days). 

Figure 5 (a) shows the total volume of blood vessels inside the tumor as the function of time in days. 

To calculate the volume, only blood vessels, whose neighboring cells were one of the cancer cells 

(proliferating, doomed, dead, and arrested), were considered to be the inside of the tumor. The volume of 

blood vessels increased as the tumor grew before irradiation. The volume suddenly decreased at the time of 

irradiation, i.e., on day 100, due to radiation-induced death. Then, the volume stayed constant for about 25 

days because the blood vessel had a high chance of having non-healthy cells such as proliferating cancer, 

doomed, dead, or arrested cells in the neighborhood. Between day 125 to day 140, the volume decreased 350 

because most of the doomed and dead cells disappeared during this time, as shown in Figure 4 (b), resulting 

in a less amount of blood vessels inside the tumor. After day 140, the number started increasing again because 

of the increase of the tumor size and the formation of new blood vessels.  

Figure 5 (b) shows the blood vessel density inside the tumor as the function of time in days. As 

discussed above, the number of blood vessels in the tumor was almost constant from the time of irradiation 

(day 100) to day 125. But the actual tumor size decreased, as seen in Figure 4 (a). This resulted in a rapid 

increase in the density, reaching the maximum at day 125. After that, the density decreased due to the 

decreasing number of blood vessels inside the tumor, as indicated in Figure 5 (a).  

Figure 6 (a) shows the relative number of hypoxic cells or the ratio of the number of hypoxic 

proliferating cancer cells to all proliferating cancer cells after irradiation with 13.5 Gy on day 100. For the 360 
analysis, we considered that a cancer cell with oxygen concentration at 0.2% and 0.4% levels as the hypoxia 

threshold. The ratio increased immediately after irradiation for all hypoxia thresholds. The peak ratios were 

0.20 and 0.41 for 0.2 and 0.4% hypoxia threshold, respectively, on day 101. Then, it kept decreasing until 

days 105 and 108 for the three thresholds because the doomed cells continuously died and stopped 

consuming the oxygen. The redistribution of the available oxygen from the dead cancer cells to the surviving 

proliferating cancer cells, whose number was much smaller than pre-irradiation, caused the increase of 



14 

 

average oxygen level (pO2) per cancer cell, as seen in Figure 6 (b). This led to a decrease in the ratio of 

hypoxic cancer cells, as seen in Figure 6 (a). The decrease in the number of hypoxic cells indicates the re-

oxygenation of the tumor.  

Figure 7 shows the average HRF values in cancer cells from day 100 to day 120. The HRF decreased 370 
until day 114, and then it increased again. HRF decreased because of the increase of the average oxygen 

concentration per cell, which is seen in Figure 6 (b). 

Figure 8 shows the relative numbers of hypoxic cells at 0.4% oxygen level, which is radiobiological 

hypoxia after irradiation for three different doses of 5, 10, and 15 Gy. The trend is similar to that seen in 

Figure 6 (a) with 13.5 Gy. The cells became hypoxic after irradiation, but the ratio of hypoxic cells decreased 

to a very low level within about seven days after irradiation. Also, we can observe the level of hypoxia is 

higher for larger doses because there is more damage to the blood vessels with increasing dose. 

C. The optimal interval of fractionated treatment 

We calculated the dose per fraction for 2- to 5-fraction treatments, which gave the same treatment effect, or 

BED, as the one-fraction of 20 Gy treatment by using Eq. (12) and (13). The doses per fraction were 13.5 380 
Gy, 10.6 Gy, 9.0 Gy, and 7.8 Gy for 2-, 3-, 4-, and 5-fraction treatments, respectively. Figure 9 shows that 

TCP calculated on the 100th day after the first irradiation as the function of the interval between the first and 

second fraction for the two fraction treatment. The maximum TCP was achieved for a six-day interval, 

suggesting that the optimal irradiation interval for two fraction treatment was six days. Table 2 shows the 

TCP as the function of the intervals between the first and second fraction and between the second and third 

fractions for the three fraction treatment with 10.6 Gy per fraction. The optimal irradiation interval was five 

days for the first interval and two days for the second interval. Table 3 shows the TCP for 4-fraction treatment 

with 9.0 Gy per fraction. The optimal irradiation interval was five days for the first interval, one day for the 

second interval, and one day for the third interval. Table 4 shows the TCP for 5-fraction treatment with 7.8 

Gy per fraction. The optimal irradiation interval was five days for the first interval, one day for the second 390 
interval, one day for the third interval, and one day for the fourth interval. The daily fraction scheme resulted 

in the lowest TCP for 2 to 5 fraction treatments 
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Figure 4: (a) Relative volumes of the entire tumor (“Total”) and proliferating cancer cells (“Tumor”) vs. the 

time in days. The volumes were normalized to the total tumor volume at the time of the irradiation. (b) The 400 
volume of the dead cells vs. the time in days. For (a) and (b), the tumor was irradiated with a single dose 

of 13.5 Gy on day 100. 

  

 

 

   

 
Figure 5: (a) The volume of blood vessels vs. the time in days. (b) The vessel density vs. the time in days. 

The vessel density is the ratio of the vessel volume to the total volume of the cancer.A single dose of 13.5 

Gy was given to the tumor on day 100.  410 
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Figure 6: (a) The fraction of the number of hypoxic cells at 0.2% and 0.4% oxygen levels to the total 

cancer cells vs. the time in days. (b) The ratio [%] of the average partial oxygen pressure, pO2, per cancer 

cell vs. the time in days. A single dose of 13.5 Gy was given to the tumor on day 100.  

 

 

 420 
Figure 7: The average HRF values in cancer cells on day 100 to day 120. A single dose of 13.5 Gy was 

given to the tumor on day 100.  

 

     

Figure 8: The fraction of the number of hypoxic cells to the number of all cancer cells vs. the time in days. 
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The tumor was irradiated with 5, 10, and 15 Gy on day 100. 

 

 

 

   430 
Figure 9: TCP vs. the interval between two fractions of 13.5 Gy each. The first irradiation was made on 

day 100.  
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Table 2: TCP vs. the intervals between the first and second irradiation (First interval) and between 

the second and third irradiation (Second interval) for three fraction treatment with fraction dose of 

10.5 Gy. 

 

  First interval 

  2day 3day 4day 5day 6day 7day 8day 

Second Interval 

1day 0.1 0.14 0.38 0.34 0.31 0.28 0.24 

2day 0.12 0.21 0.3 0.38 0.32 0.22 0.21 

3day 0.18 0.17 0.16 0.3 0.25 0.16 0.14 

4day 0.25 0.16 0.1 0.18 0.16 0.09 0.07 

5day 0.15 0.12 0.09 0.15 0.09 0.04 0.02 

6day 0.1 0.085 0.07 0.06 0.03 0 0 

 

Table 3: TCP for 4-fraction SRS (9 Gy/fraction), intervals between fractions in days. 440 
 

 1 1 1 1  3rd to 4th 

1st to 2nd 1 2 3 4  2nd to 3rd 

1 0.18 0.22 0.19 0.47 

 

2 0.25 0.21 0.37 0.39 

3 0.34 0.39 0.38 0.38 

4 0.44 0.41 0.29 0.27 

5 0.56 0.34 0.27 0.25 

6 0.48 0.45 0.36 0.23 

7 0.44 0.36 0.34 0.28 

8 0.40 0.36 0.26 0.05 
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Table 4: TCP for 5-fraction SRS (7.8 Gy/fraction x 5), intervals between fractions in days. 

(a) Intervals between 3rd to 4th and 4th to 5th are fixed to one day. 

 
 1 1 1 1 1  4th to 5th 

 1 1 1 1 1  3rd to 

 1st to 2nd 1 2 3 4 5  2nd to 

 1 0.14 0.37 0.41 0.47 0.42 

 

2 0.35 0.41 0.48 0.49 0.39 

3 0.42 0.42 0.43 0.34 0.30 

4 0.51 0.50 0.43 0.38 0.34 

5 0.58 0.48 0.46 0.36 0.24 

6 0.56 0.42 0.34 0.21 0.20 

7 0.38 0.42 0.24 0.12 0.10 

8 0.24 0.36 0.34 0.11 0.02 

 

 

(b) Intervals between 2nd to 3rd and 4th to 5th are fixed to one day. 

 
 1 1 1 1 1  4th to 5th 

 1 2 3 4 5  3rd to 4th 

1st to 2nd 1 1 1 1 1  2nd to 3rd 

1 0.14 0.23 0.22 0.28 0.35 

 

2 0.35 0.39 0.46 0.34 0.21 

3 0.42 0.34 0.23 0.21 0.19 

4 0.51 0.45 0.38 0.32 0.27 

5 0.58 0.48 0.38 0.30 0.22 

6 0.56 0.38 0.28 0.21 0.12 

7 0.38 0.28 0.34 0.25 0.16 

8 0.24 0.31 0.19 0.16 0.13 

 450 
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4. DISCUSSION 

A previous study introduced a concept of doomed cells, which are cancer cells damaged by radiation 

but do not die instantly after irradiation [31]. However, the study was limited to a point kinetic model 

in which either spatial variation of cell populations or the effects of microenvironment such as oxygen 

and nutrient were not considered. In the current study, we created a two-dimensional cellular automata 

model by including four cancer cell populations (proliferating cancer cells, doomed cells, dead cancer 

cells, and arrested cells) and blood vessels. The inclusion of blood vessels explicitly in the model 

allowed us to study the effects of oxygen and nutrient on the tumor growth and the radiation response. 

Our model could mimic the experimental data very well with a proper selection of model 

parameters. The proliferating cancer cell population decreases after irradiation because they initially 460 
become doomed cells due to damage in DNA. However, the number of cancer cells in the doomed cell 

population gradually decreased as cell death progresses.  Consequently, the simulation results showed 

that the total tumor volume kept decreasing for 22 days after irradiation after 13.5 Gy with one fraction. 

Eventually, the tumor volume started increasing because of the proliferation of the surviving cancer 

cells. 

The cancer cells in a hypoxic environment are more resistant to radiation damage than oxic 

cells, and the degree of hypoxia strongly depends on the number of blood vessels and the amount of 

blood flow in a tumor [32]. Horsman et al. found that tumor blood vessels are often intermittently 

closed and open, and thus, cancer cells adjacent to the intermittently closed vessels are hypoxic [33]. 

Song et al. reported that 10 Gy irradiation increased the carbonic anhydrase 9 (CA9), which is the 470 
indicator of tumor hypoxia, for several days after irradiation in HT-1080 human prostate cancer 

xenografts in nude mice[26]. Furthermore, in the same paper, the authors showed that high-dose 

irradiation significantly increased HIF-1α (hypoxia-inducible factor -1α) and CA9 in FSaII sarcoma 

of mice.  Maeda et al. also showed that high-dose irradiation caused vascular dysfunction, increased 

tumor hypoxia, and increased HIF-1α [34]. Moreover, Goda et al. observed in two murine tumor 

models that after irradiation with a single high-dose, the tumor perfusion decreased, and tumor oxygen 

pressure (pO2) also decreased in parallel [35]. Kioi et al. reported that the blood flow decreased but 

recovered three weeks after irradiation for glioblastoma in mice [36].  

The current study is consistent with these past studies in terms of the temporal changes of 

vessel volume and vessel density, which cause increased tumor hypoxia, after irradiation. Our study 480 
showed that the number of blood vessels decreased after irradiation due to the radiation damage, but 

the vessel density increased after irradiation because the decrease of the tumor size. The density started 

decreasing on the 25-th day after irradiation, although the day depends on the pattern of tumor volume 

change. Furthermore, we demonstrated an increase in oxygen level and a decrease in the HRF in the 

cancer cells after irradiation. Our simulation results showed that the proportion of hypoxic cells among 
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the surviving cancer cells decreased up to 7 days after single high-dose irradiation. The result is 

consistent with the Song et al., who reported that hypoxic cell fraction decreases and takes its minimum 

on 5th to 10th days after irradiation depending on the radiation dose [26]. 

The optimal interval of fractionated SRS, which maximizes the tumor control probability 

(TCP), could be determined by taking advantage of the timing of the reoxygenation after irradiation. 490 
In the current study, the optimal irradiation interval for two-fraction treatment with 13.5 Gy per 

fraction was six days. The optimum interval does not match the day when the reoxygenation is 

maximum after irradiation because the optimum interval is determined by an intricate balance between 

the number of hypoxic cells and the proliferation of surviving cancer cells. The increase of the 

radiation damage due to the decrease of the hypoxic cells is dominant until the sixth day. After that, 

the enhanced radiation damage is compromised by the increased number of proliferating cancer cells, 

resulting in a less effect of reoxygenation-aided cell kill capacity on the final tumor size.  

For three-fraction treatment with 10.5 Gy per fraction, the first optimum interval was five 

days. Furthermore, the second irradiation interval was only two days. Since less number of cancer 

cells are alive after the first irradiation, the reoxygenation effect of oxygen redistribution is smaller. 500 
This causes the cancer cells to become hypoxic again quicker, resulting in a short optimum interval 

between the second and the third fractions.  

For 4-fraction treatment with 9.0 Gy per fraction, the optimum first-interval was five days, 

which was similar to three fraction treatment. The second interval and third interval were one day, and 

the total treatment time was equal to the three-fraction treatment. Since less number of cancer cells 

are alive after the first irradiation, the reoxygenation effect is smaller. This causes the cancer cells to 

become hypoxic again faster, resulting in a short optimum interval between the second and the third 

fractions. After the third fraction, the cancer cell becomes hypoxic again more quickly since the 

reoxygenation effect is much smaller, resulting in a short optimum interval between the third and the 

fourth fractions.  510 

For 5-fraction treatment with 7.8 Gy per fraction, we observed the same trend as that of the 

4-fraction treatment. The optimum first-interval was five days. The remaining intervals should be one 

day. However, it is noteworthy that two fractionation schedules with the first, second, and third 

intervals of 2, 4, 1 day, and 2, 1, 3 days resulted in similar TCPs. 

For 2 to 5 fraction treatment, a daily fractionation scheme is not recommended since the TCP 

is the lowest.  Fractionations with constant intervals would not be good. The current results indicated 

an optimal fractionation scheme with 5 or 6 days for 1st to 2nd fraction and one-day interval after that. 

The first two-thirds of dose should be delivered within 7 days to maximize the treatment effect 

regardless of the number of fractions since the 6 or 7 day time period corresponds to the time of 

reoxygenation. 520 
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The current study showed that there is an optimal irradiation interval for fractionated 

SRS/SBRT, and the interval length depends on the dose per fraction. The results were obtained by 

simulation with biologic parameters optimized for animal experiments; therefore, more study with 

model parameters relevant to humans must be performed in the future to make a definitive 

recommendation on the optimal fractionation intervals. Nevertheless, we think that in the clinical 

setting, a first-interval of at least more than one day but less than a week could maximize the treatment 

outcome by exploiting the reoxygenation effect in fractionated SRS and SBRT. 
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5. CONCLUSIONS 

A new CA model could fit the experimental rat data with the rat tumor model very well. The CA 530 
simulation could be used to optimize the irradiation interval by taking advantage of reoxygenation for 

the best outcome of the therapy. We found that the optimum interval for two fraction treatment (13.5 

Gy per fraction) was six days. The optimum scheduling of fractionated treatment was determined by 

an intricate balance of enhanced radiation damage due to reoxygenation and the repopulation of 

proliferating cancer cells. Hence, a proper selection of simulation parameters is required to enhance 

the reliability of the prediction results for clinical applications. 
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APPENDIX: NOTATIONS 

 
Symbol Meaning 

Tcd [days] Tumor volume doubling time 
Ta [days] Half-life of apoptotic cell death 
Td [days] Half-life of doomed cell death 
Tc [days] Half-life of dead cell clearance 

Λ The ratio of oxygen redistribution from dead cells to surviving cells 
Pc Probability of cancer cell proliferation 
PO Unmodulated probability of cancer cell proliferation 
PLQ Probability of cancer cell death by radiation 
Pnd Probability of cancer cell death by apoptosis due to the lack of nutrient 
Par Probability of repair of arrested cell 
Pdv Probability of blood vessel cell death 
𝑅𝑅𝑛𝑛𝑛𝑛∗  The nutrient threshold for apoptotic cell death 
𝑅𝑅𝑂𝑂2∗  Threshold oxygen pressure for hypoxia 
ρc Critical density 

RO2 Oxygen content in a cell, % of standard atmospheric pressure 
Rnu Nutrient concentration in a cell, % of the maximum possible amount 

σ [cm] The spread of Gaussian distribution of  oxygen in tissue 
d [Gy] Dose per fraction 
D [Gy] Radiation dose 
D’ [Gy] Effective dose due to hypoxia and the lack of nutrient 

Lf Oxygen leakage factor of damaged blood vessel 
HRF Hypoxia reduction factor 
TCP Tumor control probability 
BED Biologically effective dose 

∆t [day] Timestep of CA simulation 

 

 

  



25 

 

REFERENCES 

 

1. Timmerman, R., et al., Stereotactic body radiation therapy for inoperable early stage lung 

cancer. JAMA, 2010. 303(11): p. 1070-6. 550 
2. Kim, H.A., T. Rhim, and M. Lee, Regulatory systems for hypoxia-inducible gene expression 

in ischemic heart disease gene therapy. Adv Drug Deliv Rev, 2011. 63(8): p. 678-87. 

3. Nagata, Y., Stereotactic body radiotherapy for early stage lung cancer. Cancer Res Treat, 

2013. 45(3): p. 155-61. 

4. Staehler, M., et al., Single fraction radiosurgery for the treatment of renal tumors. J Urol, 

2015. 193(3): p. 771-5. 

5. Kocher, M., et al., Computer simulation of cytotoxic and vascular effects of radiosurgery in 

solid and necrotic brain metastases. Radiother Oncol, 2000. 54(2): p. 149-56. 

6. Park, H.J., et al., Radiation-Induced Vascular Damage in Tumors: Implications of Vascular 

Damage in Ablative Hypofractionated Radiotherapy (SBRT and SRS). Radiat Res, 2012. 177: 560 
p. 311-27. 

7. Kim, M.S., et al., Radiobiological mechanisms of stereotactic body radiation therapy and 

stereotactic radiation surgery. Radiat Oncol J, 2015. 33(4): p. 265-75. 

8. Carlson, D.J., et al., Hypofractionation results in reduced tumor cell kill compared to 

conventional fractionation for tumors with regions of hypoxia. Int J Radiat Oncol Biol Phys, 

2011. 79(4): p. 1188-95. 

9. Vaupel, P., D.K. Kelleher, and M. Hockel, Oxygen status of malignant tumors: pathogenesis 

of hypoxia and significance for tumor therapy. Semin Oncol, 2001. 28(2 Suppl 8): p. 29-35. 

10. Brown, J.M., M. Diehn, and B.W. Loo, Jr., Stereotactic ablative radiotherapy should be 

combined with a hypoxic cell radiosensitizer. Int J Radiat Oncol Biol Phys, 2010. 78(2): p. 570 
323-7. 

11. Araujo, R.P., and D.L. McElwain, A history of the study of solid tumour growth: the 

contribution of mathematical modelling. Bull Math Biol, 2004. 66(5): p. 1039-91. 

12. Cristini, V., et al., Nonlinear simulations of solid tumor growth using a mixture model: 

invasion and branching. J Math Biol, 2009. 58(4-5): p. 723-63. 

13. Pesavento, U., An implementation of von Neumann's self-reproducing machine. Artif. Life, 

1995. 2(4): p. 337-354. 

14. Ganguly, N., et al., A Survey on Cellular Automata, Centre for High-Performance Computing, 

Dresden University of Technology. 2003, Technical Report 9. 

15. Alber, M.S., et al., On Cellular Automaton Approaches to Modeling Biological Cells, in 580 
Mathematical Systems Theory in Biology, Communications, Computation, and Finance, R. J. 

and G. D.S., Editors. 2003, Springers: New York, NY. 



26 

 

16. Duchting, W. and T. Vogelsaenger, Recent progress in modelling and simulation of three-

dimensional tumor growth and treatment. Biosystems, 1985. 18(1): p. 79-91. 

17. Richard, M., et al., Cellular automaton model of cell response to targeted radiation. Appl 

Radiat Isot, 2009. 67(3): p. 443-6. 

18. Richard, M., et al., A computer model of the Bystander effect: effects of individual behaviours 

on the population response. Appl Radiat Isot, 2009. 67(3): p. 440-2. 

19. Paul-Gilloteaux, P., et al., Optimizing radiotherapy protocols using computer automata to 

model tumour cell death as a function of oxygen diffusion processes. Scientific Reports, 2017. 590 
7(1): p. 2280. 

20. Helmlinger, G., et al., Interstitial pH and pO2 gradients in solid tumors in vivo: high-

resolution measurements reveal a lack of correlation. Nat Med, 1997. 3(2): p. 177-82. 

21. Qi, A.S., et al., A cellular automaton model of cancerous growth. J Theor Biol, 1993. 161(1): 

p. 1-12. 

22. McKeown, S.R., Defining normoxia, physoxia and hypoxia in tumours—implications for 

treatment response. Br J Radiol. March 2014; 87(1035): 20130676. 

23. Gerlee, P. and A.R. Anderson, A hybrid cellular automaton model of clonal evolution in 

cancer: the emergence of the glycolytic phenotype. J Theor Biol, 2008. 250(4): p. 705-22. 

24. Potiron, V.A., et al., Improved functionality of the vasculature during conventionally 600 
fractionated radiation therapy of prostate cancer. PLoS One, 2013. 8(12): p. e84076. 

25, 26. Song, C.W., et al., Reoxygenation and Repopulation of Tumor Cells after Ablative 

Hypofractionated Radiotherapy (SBRT and SRS) in Murine Tumors. Radiat Res, 2019. 

192(2): p. 159-168. 

27. Castedo M, Perfettini JL, Roumier T, et al. Cell death by mitotic catastrophe: a molecular 

definition. Oncogene. 2004 Apr 12;23(16):2825-37. 

29. Barendsen, G.W. and J.J. Broerse, Experimental radiotherapy of a rat rhabdomyosarcoma 

with 15 MeV neutrons and 300 kV x-rays. I. Effects of single exposures. Eur J Cancer, 1969. 

5(4): p. 373-91. 

30. Kallman, R.F., The phenomenon of reoxygenation and its implications for fractionated 610 
radiotherapy. Radiology, 1972. 105(1): p. 135-42. 

31. Watanabe, Y., et al., A mathematical model of tumor growth and its response to single 

irradiation. Theor Biol Med Model, 2016. 13(1): p. 6. 

32. Hall, E.J. and A.J. Giaccia, Radiobiology for the Radiologist. 7th ed. 2011, Philadelphia, PA: 

Lippincott Williams&Wilkins. 

33. Horsman, M.R., C. Grau, and J. Overgaard, Reoxygenation in a C3H mouse mammary 

carcinoma. The importance of chronic rather than acute hypoxia. Acta Oncol, 1995. 34(3): p. 

325-8. 



27 

 

33. Maeda, A. et al., In Vivo Imaging Reveals Significant Tumor Vascular Dysfunction and 

Increased Tumor Hypoxia-Inducible Factor-1alpha Expression Induced by High Single-Dose 620 
Irradiation in a Pancreatic Tumor Model. Int J Radiat Oncol Biol Phys, 2017. 97(1): p. 184-

194. 

34. Goda, F., et al., The relationship between partial pressure of oxygen and perfusion in two 

murine tumors after X-ray irradiation: a combined gadopentetate dimeglumine dynamic 

magnetic resonance imaging and in vivo electron paramagnetic resonance oximetry study. 

Cancer Res, 1996. 56(14): p. 3344-9. 

35. Kioi, M. et al., Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of 

glioblastoma after irradiation in mice. J Clin Invest, 2010. 120(3): p. 694-705. 

 

  630 



28 

 

Figure captions  

Figure 1: The partial pressure of O2 (% of atmospheric pressure, pO2) as a function of the distance 

from the surface of one vessel wall. The experimental data were taken from [19, 20]. The 

solid line indicates the fitted line using Eq. (6). 

Figure 2: The process of the cellular automata model in the current study. 

Figure 3: The relative tumor volume of the measurement and the simulation.  For each simulation and 

calculation, the total tumor volume was normalized on day 20, on which the tumor was 

irradiated. 

Figure 4: (a) Relative volumes of the entire tumor (“Total”) and proliferating cancer cells (“Tumor”) 

vs. the time in days. The volumes were normalized to the total tumor volume at the time of 640 
the irradiation. (b) The volume of the dead cells vs. the time in days. For (a) and (b), the 

tumor was irradiated with a single dose of 13.5 Gy on day 100. 

Figure 5: (a) The volume of blood vessels vs. the time in days. (b) The vessel density vs. the time in 

days. A single dose of 13.5 Gy was given to the tumor on day 100. 

Figure 6: (a) The ratio of the number of hypoxic cells at 0.2% and 0.4% oxygen levels to the total 

cancer cells vs. the time in days. (b) The ratio of the average partial oxygen pressure, pO2, 

per cancer cell vs. the time in days. A single dose of 13.5 Gy was given to the tumor on day 

100. 

Figure 7: The average HRF values in cancer cells on day 100 to 120. A single dose of 13.5 Gy was 

given to the tumor on day 100. 650 

Figure 8: The ratio of the number of hypoxic cells to the number of all cancer cells vs. the time in 

days. The tumor was irradiated with 5, 10, and 15 Gy on day 100. 

Figure 9: TCP vs. the interval between two fractions of 13.5 Gy each. The first irradiation was made 

on day 100. 

 

 

 


