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Chapter 1

Introduction

1.1 Background
Vibration is a common problem in various fields such as mechanical system and

rotating machinery, several studies using a vibration analysis technology that grasps the

target dynamics characteristics from actual measurement data have been conducted [1,2].

In the case of most of the exact measurement, when almost all methods are conducted

using sensors such as an accelerometer [3] and a laser Doppler vibrometer (LDV) [4],

these methods are the limited number of measurement points in a narrow area or point to

point domain because of a spot measurement. These methods can’t measure the whole

dynamics characteristics of the target object, compared with vibration simulation analy-

sis, such as finite element methods (FEM) [5]. To grasp the whole vibration dynamics by

measuring the displacement response, vision-based methods are developed, such as the

template macthing [6, 7], optical flow [8], digital image correlation (DIC) [9] and so on.

A vision sensor has potential benefits as a non-contact vibration measurement in a wide

area, such as numerous points measurement simultaneously. A vision sensor has high

spatial resolution and distribution. The vision-based approach of displacement measure-

ments has a limitation in terms of the spatial resolution that the image sensor of a vision

determines pixel pitch. Sub pixel-level vibration measurement with laser interferometry

using vision-based methods has been conducted such as electronic speckle pattern inter-

1



2 CHAPTER 1. INTRODUCTION

ferometry (ESPI) [10], as they utilize the interferometric fringe patterns for maginification

of small displacements at the laser-wavelength level. Besides, there is a limitation of a

low sampling rate, which is not suitable for high-speed invisible phenomena using con-

ventional vision systems mainly. However, they have designed standard video images for

human’s visible ability which can see something at 30 fps (NTSC) and 25 fps (PAL) al-

though they have a high spatial resolution. On the whole, the high-speed vision has func-

tions of high spatial resolution and high sampling rate which can see invisible phenomena

like the acoustic signal at hundreds or thousands of fps. Because a high-frame-rate (HFR)

image sensor is regarded as a collection of photosensors that can detect temporal periodic

changes in brightness signals. We have proposed a concept of vibration features with

vibration features using HFR images for capturing the time-varying changes in an im-

age as a vibration distribution [11–13]. Real-time high-speed vision systems to capture

high-speed phenomena that the human eye cannot see have been developed at 1000 fps

level [14–17]. With the acceleration of parallel processing on field programmable gate

arrays (FPGAs) and graphics processing units (GPUs), various real-time application ex-

amples with high frame rates have been reported, such as bridge vibration analysis [18],

tracking applications systems [19–21], and robot manipulation [22–25]. High-speed vi-

sion has a significant meaning as a dynamic sensing tool which can localize and detect

vibration source accurately by utilizing high spatial directivity of the image sensor, if it

can extract brightness change of extremely higher frequency level like acoustic signal

around vibration source at pixel level than the low frequency of background and so on.

1.2 Purpose of the research
In this study, we develop a vibration spectrum imaging system that implements the

pixel-level vibration frequency analysis to capture the time-varying brightness changes in

images as a vibration distribution. It realizes dynamic sensing tools for simultaneously
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Figure 1.1: Concept overview of this study.

analyzing fast phenomena vibrating at frequencies of dozens or hundreds of Hz, which

cannot be seen by the human eye. Our high-speed vision-based vibration analysis tar-

get is a human-invisible but audible phenomenon vibrating at an audio frequency level.

The vibration spectrum imaging system consists of a high-speed vision used as a sensor

for capturing the time-varying changes in an image as a vibration distribution with the

acceleration of parallel processing on GPU. We propose novel concepts to realize that a

vibration spectrum imaging for the high frequency targets fluctuate at dozens or hundreds

of Hz and high-speed moving and vibrating objects.

In our proposed vibration spectrum imaging method, we developed short-time Fourier

transform (STFT) functions for the time-varying brightness signals of all the pixels, as we

updated a conventional method [11–13] that detects only a specific frequency band with

a bandpass filter and didn’t apply an unknow frequency detection using a high-frame-rate

image. These are used parallel to produce a vibration spectrum imaging that calculates

the time-frequency response in real-time for each pixel and realizes to envision the time-

varying frequency response of the targets. Figure 1.1 shows the concept of our research

to visualize the time-frequency response change in the human audible phenomena.

Our concept is a pixel-level vibration spectrum imaging method that can detect

some frequencies in the audio frequency range. This concept was described in Section 3.2
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in detail, implemented in the proposed algorithm of Chapter 3. To demonstrate the ef-

fectiveness of this concept, several vibration pattern recognition results are reported in

Section 3.5, with pixel-level vibration spectrum images for all the pixels of HFR images,

in which the fan, multi-copter, and guitar string are rotating or vibrating. The bright-

ness signals for the pixels of their blades and strings fluctuated at dozens or hundreds of

Hz. After we verified the effectiveness of visualizing time-varying frequency response

of the targets through acoustic signal level examples such as vibrating guitar strings, we

made this concept expand two types of actual surveillance and monitoring application

for a multi-copter and a honeybee flying in a cluttered outdoor scene, as we utilize a

pixel-level vibration source localization method.

In the case of multi-copter, a fast vibration source localization method was de-

scribed in Chapter 4. Section 4.2 proposes a fast vibration source localization concept us-

ing frame-interpolated images and describes our algorithm’s details. Section 4.3 outlines

the real-time implementation of the algorithm on a high-speed vision system of 512×512

pixels at 1000 fps and evaluates the execution times of the system’s pixel-level digital

filters. To verify the effectiveness of our concept, Section 4.7 shows the possibility that

the performance of the proposed algorithm is almost the same with that of the previous

algorithm through we evaluated the experiment for HFR offline video and the real-time

experimental results for a flying multi-copter with propellers rotating at 95 rps.

In the case of honeybee, flight activity sensing was described in Chapter 5, and

verified its effectiveness through some experiments of flying honeybees in a cluttered

outdoor scene. In Section 5.2, we propose a concept of vibration source localization for

honeybee activity sensing that executes two-step pixel-level STFTs for an HFR video to

obtain the wing-flapping frequencies of fast-flying honeybees as their flight activities, and

the details of our algorithm are described. This chapter shows the potential to quantify the

wing-flapping frequencies of flying honeybees individually at the audio frequency level.
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1.3 Outline of thesis
This thesis is organized as 6 Chapters, including this introduction.

Chapter 2 summarized related works on vibration measurement, high-speed vision

and vibration source tracking.

In Chapter 3, a real-time high-speed vision-based vibration spectrum imaging for

visualization of time-varying frequency response was developed to verify the effective-

ness of our real-time vibration spectrum imaging method. They were demonstrated using

the vibration results for a fan, multi-copter, and guitar string, which had rotating or vi-

brating frequencies in the range of hundreds of Hz.

Chapter 4 explains the fast vibration source localization for a multi-copter using

pixel-level digital filters was proposed to verify the effectiveness of pixel-level accuracy

in vibration source tracking through several experimental results of offline high-frame-

rate videos and real-time implementation, which displayed various flight scenarios of a

multi-copter with its propellers rotating at 90-100 Hz.

In Chapter 5, an HFR-video-based honeybee activity sensing was proposed to real-

ize the activity sensing of honeybees flying in a natural outdoor environment by inspecting

pixel-level temporal frequency responses in the brightness in an HFR video, computed by

executing STFTs of the brightness signals at all pixels. The effectiveness of the proposed

algorithm was verified in several experiments which are how the spatial resolution of

an HFR video affects the sensitivity in our honeybee activity sensing algorithm and the

trajectories and flying activities of honeybees in the outdoor scene.

In Chapter 6, it summarized the contributions of this study and discussed future

work.

The appendix included the summary and future implementation of Onsite-Team-

Project in the TAOYAKA program which I belonged to became a global leader with a

broad perspective and learned onsite reverse innovation and bottom-up approach in a
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disadvantaged area with plenty of natural resources during master and Ph.D. courses in

Hiroshima University.



Chapter 2

Related works

2.1 Vibration measurement
Vibration measurements are effective, reliable, and nonintrusive technologies for

monitoring and inspecting various situations such as machine operation, milling process,

and structure health monitoring [26–29]. When we need to select appropriate sensors

to acquire a precise signal from a target object, we need to care about the possibility of

interpreting what the acquired signal indicates. During the vibration transmissions, the

vibration produced by a machine component consists of specific frequencies that don’t

change, although their levels vary from one location to another. Frequency analysis of

the vibration signal is widely used to diagnose machine faults [26]. In the case of cut-

ting forces and vibration, we widely utilized these measured parameters to improve their

confidence in sensor-based technologies [27]. However, it’s difficult for us to detect tool

faults because the vibration dynamics of the cutting tool forces were limited. The vi-

bration parameter is detected with a vibration sensor that can acquire an electrical signal

converted from these vibration signals by measuring a target body vibration through its

mechanical structure. We can analyze this electrical signal for vibration characteristics

such as amplitude, frequency, displacement, velocity, acceleration, phase, and period. We

can calculate a digital signal processing in the PC environment after converting the analog

signal to a digital signal.

7



8 CHAPTER 2. RELATED WORKS

Vibration measurements are commonly used such as displacement transducers (vi-

brometer, proximity probes), velocity transducer (velometer, LDV), accelerometer, vision

sensor.

Three types of displacement transducers are generally used for journal bearing

equipped rotating machinery for shaft vibration measurement because they preferred to

measure the low frequency vibration less than 10 Hz. Firstly, eddy current proximity

sensor is used as a non-contact sensor to measure displacement with the electromagnetic

induction principle that changes in the resistance of the material. The eddy current prox-

imity sensor that can measure displacement in non-contact methods is used to measure

the condition of jet engines [30]. Second, the inductive proximity switch can detect only

metal objects such as ferrous metals. When an alternating current passes through the coil,

the inductance of the coil changes in present value. It is considered an optimal measure-

ment estimated the rotor-to-stator position [31]. Third, capacitive sensors are non-contact

type sensor works on the principle of measuring the electrical capacitance of the gap

between the plates. Capacitive sensors are suited for high precision, high resolution, dy-

namics, and measured vibration amplitude for turbomachinery blades [32].

Velocity transducers are benefitial to use high frequency range of 10 –1000 Hz,

compared with displacement transducers. LDV can especially measure the absolute ve-

locity of a vibrating body by utilizing the Doppler shift of scattered laser light from the

target object. As LDV utilizes the Doppler shift between the output beam and the re-

flected beam that is a frequency-modulated laser beam from the target, it can measure the

target’ velocity. LDV is commonly used for a repeatable and constant vibration measure-

ment such as modal analysis that is a non-destructive process of determining the inherent

dynamics properties (natural frequencies, damping ratios, and modal shapes) of vibrating

structures [4], because of speckle drop out like laser distortion of speckle noise, although

it is of high accuracy and sensitivity.

Accelerometers are electromagnetic transducers to measure vibration acceleration
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of a target object [3]. The principle is utilizing the piezoelectric effect that the force

caused by vibration causes the mass to squeeze the piezoelectric materials which produce

an electrical charge that is proportional to the force exerted upon it. Accelerometers can

measure the vertical vibration of a target object in a various field such as tool condition

monitoring [33,34]. Although they can measure high frequency range with a compact and

light-weight body, they need to use amplifier for magnification of a weak input signal.

Vision sensor has potential benefits as a non-contact vibration measurement can

capture a high spatial resolution image at the same time, such as numerous numbers of

points measurement, as above sensors are the limited number of measurement points in a

narrow area because of a spot measurement. A vision sensors can measure displacement

and velocity by utilizing digital signal processing such as the template matching [6, 7],

optical flow [8], digital image correlation (DIC) [9] to grasp whole vibration dynamics.

Vision sensors have a limitation of the measurable frequency range in terms of low sam-

pling rate because input framerate is widely used at 30 fps (NTSC) and 25 fps (PAL).

2.2 High-speed vision
Conventional vision systems mainly elements standard video images for human’s

visible ability which can see something at 30fps (NTSC) and 25fps (PAL) and have been

applied to various fields, such as multimedia, industry, traffic system, biomedical, and so

on. Many appearance-based features, such as scale-invariant feature transform [35], Haar-

like features [36], histogram of oriented gradients [37], and local binary patterns [38],

which can be easily recognized by the human eye, have been used for target tracking in

various applications, such as traffic monitoring [39], human-computer interaction [40],

and so on. These systems are not suitable for high-speed invisible phenomena such as

cell-inspection, factory automation, and robot manipulation and so on, because of the low
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framerate. Real-time high-speed vision systems to capture high-speed phenomena that the

human eye cannot see have been developed at 1000 fps level [14–17]. We have already

shown the validity for high-speed tracking using high-speed vision systems such as optical

flow [41], camshift tracking [42], feature point tracking [43] and face tracking utilizing

Haar-like feature [44] with the acceleration of parallel processing on field programmable

gate arrays (FPGAs) and graphics processing units (GPUs). Laser triangulation [45, 46]

and LDV [47] as vibration detection using optics sensors have been proposed. Still it is

not suitable for these to measure the spatial frequency distribution simultaneously because

these approaches are mainly designated for micro-displacement measuring of one point,

such as spot inspection. On the while, in the case of high-speed vision, it can drastically

improve the amount of processing information per time. It can be visual sensing which

can give us new quality from the point of view that it can recognize and quantify high-

speed phenomena human can’t see. Mainly, it has the significant validity of a dynamic

sensing tool that can see the repetitive operation and phenomenon vibrating at sound

frequency level at dozens or hundreds of Hz as time-space distribution. And it has shown

the effectiveness of cell sensing in a microchannel [48, 49] and vision-based structural

modal analysis [50]. High-speed vision has a great meaning as a dynamic sensing tool

which can localize and track vibration source accurately by utilizing high space directivity

of the image sensor, if it can extract brightness change of extremely higher frequency

level like acoustic signal around vibration source at pixel level than the low frequency of

background and so on.

2.3 Vibration source localization
Numerous source localization methods have been proposed [51] to simulate the hu-

man auditory sense. The binaural approach utilizes left-right-differentiated acoustic fea-

tures such as interaural level difference (ILD) and interaural time difference (ITD) [52–54]
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corresponding the human’s left and right ear. The microphone-array approach such as

stereo auditory sense utilizing interaural time-intensity difference [55], correlative peak

calculation in differential arrival time distribution based on multi-microphone array sys-

tem [56–58], MUltiple-Signal-Classification (MUSIC) methods [59,60] utilizing quadra-

ture component in a subspace of signal and noise, and beamforming methods [61, 62]

emphasizing the directivity for designated direction, can improve localization perfor-

mance and robustness by using multiple microphones organized along with a spatial ge-

ometry. They have been used in many applications such as multi-speaker recognition

in human-computer interaction [63], mobile robot audition [64], and operational vibra-

tion surveillance in product machines [65], automobiles [66], and aircraft [67]. And the

open-access software of HARK [68] that consisting of sound source localization mod-

ules, sound source separation modules, and automatic speech recognition modules has

been used widely, as they realize their actual application in computational auditory scene

analysis. Also, the many applications related to monitoring vibration [69–71] by intro-

ducing sound source localization for the manufacturing line, automobile, and plane at

work have also been reported because we want to specify vibrated abnormal parts of

those machines. Following the recent popularization of multi-copter technologies, audio-

signal-based anti-multi-copter surveillance systems [72–75] can extract the sound drone-

propellers emit while rotating at dozens or hundreds of Hertz, have been developed to

detect illegal or abnormal drones. However, because of the low directivity of sound prop-

agation, the localization accuracy of these methods is limited still when microphones are

distant from source objects.

Considering that a multi-copter’s propellers rotating at dozens or hundreds of Hertz

are observable in an HFR video recording at 1000 fps or more, vision-based vibration

source localization methods [12, 13] have been proposed for multi-copter and honeybee

tracking by executing digital bandpass filters for brightness signals at all pixels; they can

localize the pixels around objects vibrating at frequencies in the audio frequency range
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without considering their appearances.

These vision-based methods can realize vibration source localization by detecting

the time-space change of image intensity as vibration distribution around vibration source.

This is because the image sensor is an aggregation of photodetector and image intensity

of each pixel. It is time sequential signal regarding brightness change in time space and

all the pixels in the image can pass the image intensity signal in a specific frequency

band by implementing pixel-level digital filter. This strong point is that it can realize the

pixel-level vibration source localization only by using digital filter without implementing

the recognition algorithm based on the spatial pattern. It is a valid method in the spe-

cial case that the frequency of multi copter’s propeller is much higher than one of the

backgrounds. A flying multi-copter was used to demonstrate the robustness of the meth-

ods under the appearance change of occlusion, scale, focus blur, illumination condition,

complex background, occlusion, scale, position, posture, and decrease resolution’s qual-

ity using low spatial resolution’s camera. Their temporal frequency responses (TFRs) in

brightness signals have been used for pixel-level vibration pattern recognition with a spe-

cific vibration pattern [76]. Since the wing-flapping frequencies of flying honeybees are

similar to the rotation frequencies of propellers of flying multi-copters, pixel-level digital

signal processing for HFR videos could be utilized for localizing flying honeybees. Their

wing-flapping frequencies could be obtained as their flight activities even when their ap-

pearances were sparse in the low resolution and blurred images.



Chapter 3

Real-time high-speed vision-based vibration

spectrum imaging

3.1 Introduction
Several studies that utilized vibration information for inspections in various fields

have been conducted in recent years [77–79]. Two main methods have been used to detect

vibration displacement: contact measurement and non-contact measurement. In contact

measurement, contact sensors such as accelerometers [80] are directly installed on the

target objects’ vibrated conditions. It is necessary to attach the sensor to the reference

point on the structure when attaching a contact sensor. However, it is often difficult or

impossible to access the structural points at which it is installed. In non-contact measure-

ment, the vibration displacement of the object to be measured is directly measured with

sensors such as an eddy current sensor [81], an optical fiber sensor [82], a laser Doppler

vibrometer [83], and an offline-based high-speed vision system [84]. A beneficial vibra-

tion analysis of the time-varying data measured by optical sensors in the frequency do-

main can then be conducted after remotely measuring the vibrated conditions of the target

objects. Especially in the case of engineering, it is necessary to measure the vibration dis-

placement [85]. In the case of a machine tool system, low vibration and noise equipment

are required for all kinds of machinery. Besides, it is always necessary to monitor and

13
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analyze the running condition of a machine during its operation [86]. It is essential to

perform vibration analysis and vibration design of mechanical structures to improve their

vibration resistance. Therefore, vibration detection with non-contact sensors is more im-

portant than contact sensors when we measure and monitor vibration information simply.

Although we can see high-speed vision system as a dynamic sensing tool in sub-

section 2.2, various types of dynamic sensing applications have been reported using high-

speed vision systems, such as the scratching behavior analysis of laboratory mice [87],

cell deformation analysis using microchannels [88,89], and vision-based structure analy-

sis [90, 91].

Because a high-frame-rate (HFR) image sensor is regarded as a collection of photo-

sensors that can detect temporal periodic changes in brightness signals, we have proposed

a tracking algorithm with vibration features using HFR images [11]. A pixel-level vi-

bration source localization method that uses pixel-level digital filters [12, 13] has been

proposed. A high-speed vision system is used as a sensor for capturing the time-varying

changes in an image as a vibration distribution. This method used multi-copter track-

ing as an example in subsection 4.1 and utilized the fact that the frequency band of the

multi-copter propeller was extremely high compared to the low-frequency band, which

included the background and cyclic time series brightness signals of the propeller region.

Moreover, the presence or absence of a signal was detected using a bandpass filter with

a center frequency corresponding to the rotation speed of the propeller for all the pixels.

Also, when we design to determine the target frequency band in this method, we need to

know the target frequency beforehand. Therefore, it was difficult to analyze a vibrating

object when there were large frequency fluctuations or a scene with an unknown vibration

frequency such as abnormal vibration.

In this vibration spectrum imaging method, we developed short-time Fourier trans-

form (STFT) functions for the time-varying brightness signals of all the pixels, as we

renewed a conventional method [12, 13] that detects only a specific frequency band with
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Figure 3.1: Concept of pixel-level vibration spectrum imaging method

a bandpass filter, based on a high-frame-rate image acquired with a high-speed vision

system. These are used in parallel to produce a vibration spectrum imaging system that

calculates the time-frequency response in real-time for each pixel and realizes to visualize

the time-varying frequency response of the targets.

3.2 Concept
The dynamic property of a vibrating object is expressed as its frequency response,

which can be obtained by converting the time-varying signal measured by an audio or

vibration sensor into a frequency in the frequency domain using the Fourier transform

in the majority of sound and vibration analyses. When a vision system operates at a

sufficiently high frame rate, temporal periodic changes can be observed in the brightness

signals at the pixels around vibrating objects corresponding to their vibration dynamic

properties in the audio frequency range. The brightness signals’ dynamic features can be

quantified in the form of a pixel-level distribution by converting the brightness signals for
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all the pixels of the HFR images into their temporal frequency responses using the Fourier

transform. On the premise of a high frame rate image, the proposed concept related to

the vibration spectrum imaging based on the STFT implementation for the time-varying

signal of all the pixels is shown in Figure 4.1. When the STFT sampling rate corresponds

to the high-speed vision system’s frame rate, the STFT can be used for vibration analysis

in a frequency range of less than half the frame rate. For example, when high-speed vision

at 1000 fps is used, it is possible to conduct a vibration analysis in the frequency band of

0-500 Hz. The processing flow in pixel-level vibration spectrum imaging with the final

objective of peak frequency detection is as follows.

3.3 Proposed algorithm

(a) Acquisition of input HFR images

The input HFR images are acquired at time k∆t (frame number k) as I(x, y, k∆t),

wherein the frame rate is f0 = 1/∆t.

(b) Computation of STFT images

For the input HFR images of K frames, the brightness signal at pixel (x, y) at time

k∆t is converted to its TFR F(x, y, t) using the STFT as follows:

F(x, y, t)=(F0(x, y, t),· · ·, FK−1(x, y, t)),

=STFT(I(x,y,k∆t),· · ·, I(x,y,(k+K−1)∆t). (3.1)

(c) Cut-off of low-frequency components

Low-frequency components of less than fk0 = f0k0/(2K) are cut-off from the STFT

image F(x, y, t) as follows:

F′(x, y, t) = (0, · · · , 0, Fk0(x, y, t), · · · , FK−1(x, y, t)). (3.2)
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(d) Normalization of cut-off STFT image

The cut-off STFT image F′(x, y, t) is normalized as follows:

F̃′(x, y, t) = F′(x, y, t)/|F′(x, y, t)| (3.3)

(e) Computation of peak-frequency

We detect the frequency at which the spectral component is the maximum in the

frequency band, excluding the DC component in (c) as the peak frequency for the power

spectrum calculated for each pixel.

P(x, y, t) =
f0
2K
· arg max F̃′k(x, y, t) (3.4)

3.4 Implementation for GPU-based high-speed vision
It is difficult to realize a real-time software implementation of the above algorithm

for high-speed vision using only a CPU because the number of STFT calculations for

all the pixels becomes increasingly significant. Therefore, in this study, we decided to

implement the real-time vibration spectrum imaging function using a GPU-based high-

speed vision system that combined general-purpose computing on a graphics processing

unit (GPGPU) board and a high-speed camera that enabled parallel implementation of

the proposed algorithm. This GPU-based high-speed vision system consisted of a high-

speed vision IDP Express [15], GPGPU board (Geforce GTX 1080Ti Blower, ZOTAC),

and Hewlett Packard PC (Z440 Workstation, (3.60 GHz, 6 cores, 15 MB, 2.4 GHz), Intel

C612 chipset, 32 GB memory, Windows 7 Professional OS (64 bit)). Besides, the IDP

Express consisted of the camera head and IDP Express board. This camera allowed 8 bit

gray-scale 512×512 images to be captured and processed at a maximum of 2,000 fps, and

the processed results were transferred to the PC memory at high speed. The Geforce GTX

1080 Ti (NVIDIA) on the ZOTAC Geforce GTX 1080Ti Blower had 3584 core proces-
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Table 3.1: Execution times on a PC.
Image size 128×128 256×256 512×512 1024×1024
K = 64 43.2 ms 373.2 ms 1854.6 ms 7434.8 ms

K = 128 117.7 ms 932.7 ms 4381.5 ms 17145.6 ms

K = 256 350.1 ms 2280.3 ms 9988.3 ms 40039.8 ms

K = 512 1028.9 ms 5178.1 ms 21860.8 ms 84388.7 ms

sors operating at a basic operating frequency of 1480 MHz, as well as 11 GB of GDDR

5X global memory with a bandwidth of 484.4 GB/ s, which provided the computational

performance needed to execute floating point arithmetic with 11.3 Tflops. We evaluate

the execution times of our algorithm using the personal computer (PC) and GPU to cal-

culate the subprocesses (a)–(e) in the pixel-level vibration spectrum imaging. Table 3.2

summarizes our algorithm’s execution times for various image sizes, where K indicates

the number of frames in the STFT computation. Our algorithm’s execution time increased

in proportion to the total number of image pixels and the number of images in the STFT

computation. In the case of the real-time software execution, the operable frame rates

of the vision system were 840, 206, 56, and 13 fps for images with sizes of 128×128,

256×256, 512×512, and 1024×1024, respectively, when K = 128. The software could

process the low-resolution images in real-time at several frames per second. In contrast,

our algorithm should be accelerated for the real-time processing of the higher resolution

images at dozens of frames per second by implementing the parallel processing logic

of our algorithm on specific accelerators such as general-purpose GPUs. When we im-

plemented a pixel-level STFT calculation for K = 128 frames using 512×512 images at

2000 fps, the execution could be performed in 17.89 ms. It was possible to conduct all of

the processes from the pixel-level STFT calculation to the peak frequency image output.

We confirmed that the vibration spectral image could be displayed in real-time, including

a series of operations, at 50 fps or higher.
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Table 3.2: Execution times on PC with GPU.
Image size 128×128 256×256 512×512 1024×1024
K = 64 0.66 ms 2.20 ms 7.60 ms 31.06 ms

K = 128 1.19 ms 4.85 ms 17.89 ms 74.08 ms

K = 256 2.55 ms 10.92 ms 42.06 ms 173.90 ms

K = 512 5.69 ms 24.50 ms 95.93 ms 391.85 ms

3.5 Real-time vibration spectrum experiments

3.5.1 Fixed fan with variable rotation speed

First, we conducted a real-time vibration imaging experiment using 512×512 im-

ages at 2000 fps for a fixed fan whose blade rotation speed fluctuated. In the center of the

image, we fixed a fan with four 5 mm long two-bladed propellers. We then changed their

speed to 275, 450, 150, and 350 rotations/second at time t = 0, 5, 10, and 15 s, respec-

tively. We considered 128 frames (K = 128) in this experiment when computing the STFT

operations;the cut-off frequency was fk0 = 30 Hz. Figure 3.2 shows the (a)input image;

(b) peak-frequency image, (c) STFT results for t = 0, 5, 10, and 15 s; and (d) vibration

frequency spectrum for a 1.5 s period at 15 s. We can see peak frequency fluctuated from

vibration frequency spectrum around a fan in (c) and (d). Based on these results, even

when the target vibration frequency fluctuated, a peak frequency corresponding to twice

the rotational speed of a fan was detected, and pixel-level vibration spectrum imaging was

realized in real-time.

3.5.2 Operation estimation for fixed multi-copter based on the rota-

tional speed of each propeller

We conducted a real-time vibration imaging experiment using 512×512 images at

500 fps for a multi-copter whose propeller rotation speed fluctuated. In the center of the

image, we fixed a multi-copter (RC EYE One Xtreme, CEI Conrad), 225×225×80 mm
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Figure 3.2: Vibration spectrum imaging for a fixed fan

in size, with four 138 mm long two-bladed propellers. At time t = 0, 5, 10, and 15 s, the

propeller operation was changed to hovering, moving forward, turning left, and turning

right. In the experiment, the STFT computation was conducted for K = 128 frames;
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the cut-off frequency was fk0 = 30 Hz. Figure 3.3 shows the (a)input image; (b) peak-

frequency image for t = 0, 5, 10, and 15 s; and (c) moving direction classification based

on the peak frequency. These results could be used to estimate the moving direction of the

multi-copter from the top view, and pixel-level vibration spectrum imaging was realized

in real-time.

3.5.3 Guitar string vibration

We conducted a real-time vibration imaging experiment with a vibrating open guitar

string using 512×512 images at 1000 fps. We considered 128 frames (K = 128) in this

experiment when computing the STFT operations; the cut-off frequency was fk0 = 0 Hz.

Figure 3.4 shows the (a)input image and (b) peak-frequency image for t = 0, 5, 10, and

15 s. These results indicate that peak frequencies of approximately 82, 110, 147, 196, 247,

and 330 Hz, corresponding to the frequencies of the 6th to 1st strings, were sequentially

detected from the top, and real-time imaging was realized for objects with vibrations at

the audio frequency level.

3.6 Concluding remarks
In this chapter, we developed a real-time vibration spectrum imaging system in

which STFT functions were implemented parallel for the time-varying signals of all the

pixels. This camera allowed vibration imaging at 50 fps or higher using 512×512 images

at hundreds and thousands of frames per second to be realized in real-time. Also, we

demonstrated its effectiveness through verification experiments using several vibrating

objects. We are planning to research mechanical vibration analysis, structural inspection,

and biological dynamics inspection as applied research on real-time vibration spectrum

imaging.
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Figure 3.3: Vibration spectrum imaging for a fixed multi-copter
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Chapter 4

A fast vibration source tracking algorithm using

pixel-level digital filters for a flying multi-copter

4.1 Introduction
With the recent decrease in the price of multi-copters, the use of drone technology

has expanded globally. Drone technology has been applied in various aerial photography

applications for the press, entertainment, infrastructure maintenance, and disaster mon-

itoring. It is predicted that a vast worldwide market for drone technology will emerge

in the next decade, including many aerial services such as delivery drones to transport

packages and wireless communication with drone-based mobile stations as well as aerial

photography. However, with the expansion of drone technology, the number of untoward

or unfortunate incidents with multi-copters caused by out-of-control crashes, terrorism,

smuggling, and privacy invasion has rapidly increased. These illegal and immoral in-

trusions with multi-copters have become a severe social problem when promoting drone

technology [92].

As a countermeasure against such illegal intrusions by multi-copters, there is a fast-

growing demand for surveillance technologies that can detect, localize, and identify mul-

tiple types of multi-copters flying in the air and regulations for air traffic control and

operations involving multi-copters. Acoustic signal-based drone monitoring systems that

25
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can identify the sound at dozens or hundreds of Hz generated by the rotating propeller

of a flying multi-copter have been developed [72–75]. There have been several systems

introduced for drone monitoring at airports and infrastructures in the European Union and

the United States of America. These acoustic-based systems can detect the presence of a

multi-copter by acoustic signal processing. However, they remain inaccurate in localiz-

ing and tracking a multi-copter when they are flying outdoors at a long distance from the

acoustic sensors because of the very limited spatial directivity of acoustic sensors.

Optical image sensors have an advantage over acoustic sensors with their acute

spatial directivity compared with acoustic sensors. Moreover, many vision-based target

tracking systems that can accurately localize a target object in images have been devel-

oped for robot vision [93]. These systems used conventional image sensors with stan-

dard video signals at dozens of frames per second and were suitably designed for the

naked human eye. Many appearance-based features, such as scale-invariant feature trans-

form [35], Haar-like features [36], histogram of oriented gradients [37], and local binary

patterns [38], which can be easily recognized by the human eye, have been used for target

tracking in various applications, such as traffic monitoring [39], human-computer interac-

tion [40], and so on. To detect flying objects, Rozantsev et al. [94] proposed an integrated

method that utilized both motion estimation from image sequences and appearance-based

features. It is difficult to detect time-varying brightness signals at hundreds of Hertz in

image sequences with dozens of frames per second, which correspond to the rotating

propellers of a multi-copter. The appearance-based method has limitations in tracking

accuracy and robustness when the appearance of a flying multi-copter changes according

to the lighting condition, background, occlusion, scale, and so on.

As we introduced a pixel-level vibration source localization method without any

knowledge of its appearance features in subsection 3.1, Jiang et al. [12, 13] proposed

this method to extract time-varying brightness changes with digital filters at all the pixels

in HFR images. However, its computational complexity was too high for the real-time



4.2 CONCEPT 27

execution of digital filters at all the pixels in the high image resolution of HFR images.

They succeeded in implementing ROI image tracking in real-time, as they utilized small

resolution in a limited area, compared with input resolution because of the limitation of

execution time. Thus, we propose a novel fast vibration source tracking algorithm that

can reduce the computational complexity of pixel-level digital filters for HFR videos by

virtually adjusting the sampling rates of the digital filters to twice the target’s vibration

frequency with frame interpolation through sampling rate locks in the object’s frequency.

Then we also developed a real-time multi-copter tracking system on which pixel-level

digital filters can detect vibration distributions around the rotating propellers of a flying

multi-copter. Finally, we realized that high-speed and high spatial resolution camera could

speed up. We need to implement the digital fiter regarding the higher resolution to monitor

vast areas.

4.2 Concept
Assuming that the frame rate of a vision system is a much higher than the target’s

vibration frequency, and its image sensor is a collection of photodetectors, Jiang’s method

[12] brought the realization that vibration source localization by extracting the specific

frequency components of brightness signals at pixels around vibrating objects with pixel-

level digital filters. Figure 4.1 illustrates this concept. The advantage of this concept is

that the simple implementation of digital filters on all the pixels enables vibration source

localization without appearance-based recognition. This method is effective in localizing

a vibrating object, whose vibration frequency is much larger than that of its background

scene, such as a flying multi-copter with rotating propellers, because of its robustness to

time-varying appearances that depend on lighting conditions, lens blur, scale, and posture

changes, and occlusion.

Real-time multi-copter tracking with pixel-level digital filters has been reported for
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Figure 4.1: Concept of vibration source localization method with pixel-level digital
filters

images at 1000 fps [13]. In contrast, the number of pixels on which digital filters were

implemented for real-time execution has been limited due to its computational complex-

ity. Digital filters were implemented at 128×128 pixels selected from 512×512 input

images in [13]. Thus, it is crucial to accelerate the speed of a vibration source localiza-

tion algorithm that simultaneously executes digital filters at much more pixels in HFR

images. This method enables real-time tracking with much higher spatial resolution of a

multi-copter flying in wide-view scenarios.

4.3 Proposed algorithm of vibration source tracking al-

gorithm using frame interpolation
In general, we can design the digital filter passing a specified vibration frequency

component if the object frequency is lower than the Nyquist frequency, half of the framer-

ate. On the while, the computational complexity of the proposed method [11–13] depends
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on the framerate. It calculates the bandpass filter, which refers to center frequency and

object frequency by each pixel for video image recording at fixed framerate. This is why

it is not necessarily efficient for the previous method to calculate extra complexity in the

case of tracking objects whose frequency is much lower than the framerate.

We propose the high-speed vibration source tracking algorithm which reduced the

complexity per unit time by implementing the pixel-level high pass filter that can pass the

frequency component around target frequency. After we set framerate twice as many as

target frequency using downsampling by frame interpolation, assuming we have already

known the target frequency, which is tracking the object’s frequency. Figure 4.2 shows

the flowchart of this method comparing the previous method. We selected the Linear

frame interpolation method, which can equalize the frame period, virtually not selecting

the Nearest neighbor interpolation method, which has the possibility of a frame period

being irregular. It has the purpose of accurately detecting the frequency component by

using a digital filter, assuming the sampling period is uniform. The detailed processing

flow of this proposed algorithm will show from now. The vibration feature to be evaluated

in this study is calculated as follows:

(1) Image acquisition

From an HFR camera operating at a fixed frame rate f0, an input image at time

t = k∆t is captured as follows:

Ik(x) = I(x, k∆t), (4.1)

where k, ∆t0 = 1/ f0, and x = (x, y) are the frame number, frame interval of the HFR

camera, and coordinate value of pixels, respectively.

(2) Downsampling with frame interpolation

When the target’s vibration frequency is fN(t) at time t, the virtual sampling time TK
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Figure 4.2: Flowcharts of vibration source tracking algorithms.

of the downsampled video ĨK(x) = Ĩ(x,TK) is updated by adding twice the cycle time of

the target vibration TN(TK−1) = 1/ fN(TK−1) to the previous sampling time TK−1 as follows:

TK = TK−1 + 2TN(TK−1), (4.2)

Downsampled images at time TK , ĨK(x) = Ĩ(x,TK) are generated by executing linear

frame interpolation between two input images Ik′(x), Ik′+1(x), which are sampled at the

two nearest times around time TK as follows:

ĨK(x) =
(
(k′+1)−TK

∆t

)
Ik′(x)+

(TK

∆t
−k′

)
Ik′+1(x), (4.3)

where k′ is an integer that satisfies k′∆t < TK ≤ (k′ + 1)∆t.

(3) Pixel-level high-pass filters

By applying infinite impulse response (IIR) high-pass filters to time-varying bright-

ness signals at all the pixels x in the downsampled images ĨK(x), the high-pass filtered
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images gK(x) = g(x,Tk) at time TK are computed as follows:

gK(x) =
P−1∑
s=0

bs ĨK−s(x) −
P−1∑
s=1

asgK−s(x), (4.4)

where P is the filter order, and as, bs are the tap coefficients; they determine the property

of the high-pass filter. ĨK(x) and gK(x) are initially set to zero images. The symmetry

frequency component has an aliasing effect on the downsampled images, concerning the

Nyquist frequency fN , enabling a high-pass filter with a pass frequency (1 − a/2) fN to

equivalently function as a bandpass filter, whose center frequency and bandwidth are fN

and a fN , respectively.

(4) Offset processing

To remove the offset values in the downsampled images and their high-pass filtered

images, the offset-difference images IAK(x) = IAK(x,TK) and gAK(x) = g
A
K(x,TK) at time TK

are computed by differentiating the maximum and minimum values of ĨK(x) and gK(x)

for time t = TK − TM to TK as follows:

IAK(x) = IMK (x) − ImK (x), (4.5)

gAK(x) = g
M
K (x) − gmK(x). (4.6)

The maximums and minimum images are computed as follows:

IMK (x) =max
TK−∆TM<t≤TK

Ĩ(x, t), ImK (x) =min
TK−∆TM<t≤TK

Ĩ(x, t), (4.7)

gMK (x) =max
TK−∆TM<t≤TK

g(x, t), gmK(x) =min
TK−∆TM<t≤TK

g(x, t), (4.8)

where ∆TM corresponds to M times of the vibration cycle time ∆TN = 1/ fN . ∆TN is twice

the frame interval of the downsampled images. The abovementioned process is executed

for 2M frames, corresponding to the M cycle time.
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(5) Image accumulation

The downsampled images IAK(x) and their high-pass filtered images gAK(x) after the

offset processing are accumulated in a certain interval of ∆TL as follows:

KK(x) =
∫ TK

TK−∆TL

IAK(x, t)dt, (4.9)

GK(x) =
∫ TK

TK−∆TL

gAK(x, t)dt, (4.10)

where ∆TL is set to L times the cycle time ∆TN .

(6) Vibration region extraction

The vibration region VK(x) is extracted by thresholding the ratio of the accumulated

images of the downsampled images KK(x) to those of their high-pass filtered images

GK(x), with a threshold θ2 as follows:

VK(x) =


1 (GK(x) > min(θ1, θ2 · KK(x))

0 (otherwise)
, (4.11)

where pixel x is judged as an ambiguous pixel that should not be extracted when GK(x)

is less than the threshold θ1.

The difference of vibration source localization for HFR images at a fixed frame

rate in [12] is that “(2) downsampling with frame interpolation” is added and the pixel-

level bandpass filters in [12] are replaced with “(3) pixel-level high-pass filters”; the other

sub-processes are similar to those in the previous method. Our algorithm can reduce its

computational complexity and required memory size in vibration source localization, cor-

responding to the target’s vibration frequency. It can accelerate the speed of pixel-level

digital filters by introducing, pixel-level digital filters, downsampling with frame interpo-

lation, in which the Nyquist frame rate of downsampled images is tracked to the target’s

vibration frequency using high-pass filters, whose filter order is half that of bandpass
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Table 4.1: Computational complexities per pixel per unit time (R = f0/ fN)
our proposed method

ADD / SUB MUL COMP
(1) image acquisition – – –
(2) down sampling 2 fN 4 fN –
(3) digital filter 4P fN (4P + 2) fN –
(4) offset processing 4 fN – 16M fN
(5) accumulation 8L fN – –
(6) vibration extraction – 2 fN 4 fN
total (8L + 4P + 6) fN (4P + 8) fN (16M + 4) fN

previous method
ADD / SUB MUL COMP

(1) image acquisition – – –
(2) down sampling – – –
(3) digital filter 4PR fN (4P + 1)R fN –
(4) offset processing 2R fN – 4MR2 fN
(5) accumulation 2LR2 fN – –
(6) vibration extraction – R fN 2R fN
total (2LR2 + (4P + 2)R) fN (4P + 2)R fN (4MR2 + 2R) fN

filters.

Here, we will discuss vibration source localization with pixel-level digital filters

when the translation speed of the target to be observed is not much larger than its vibration

frequency. We assume that the number of cycle times when the time-varying brightness

signal related to the target’s vibration is observable at the same pixel, and Np = A · fN/v

is sufficiently large for computing with digital filters; A, fN , and v are the size, vibration

frequency, and translation speed of the target to be observed, respectively.

4.4 The number of calculations and computational com-

plexities
Next, we will evaluate the number of calculations for adding and subtracting, multi-

plication, and comparison operation in this proposed method if we track vibration source

for target frequency fN(= f0/R), which is 1/R of frame rate f0. Table 4.4 shows the
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summary of the number of calculations which we need in 1 pixel per time unit. Here,

we remove the execution time regarding (1) Image acquisition. Comparing the previous

method, we also wrote the number of calculations with the previous method [12] is vi-

bration source tracking for a fixed frame rate. In the case of the proposed method, the

number of calculations in (2) Downsampling using frame interpolation takes 1 adding

and subtracting and two multiplication every time we generate 1 frame of interpolated

image.

The number of calculations of filter order P of (3) processing high pass filter need

2P adding and subtracting and 2P + 1 multiplication. (4) Offset processing with max-

min difference in M period of target frequency needs 2 adding and subtracting and 8M

comparison operation. (5) Image accumulation in L period of target frequency needs 4L

adding and subtracting. Finally, (6) Vibration source localization needs 1 multiplication

and 2 comparison operation. When we calculate the number of calculations per unit time

at 1 pixel is 2 fN times of that number. So, Total of those are number of adding and sub-

tracting D f i
add = (8L+4P+6) fN , number of multiplication D f i

mul = (4P+8) fN , and number

of comparison operation D f i
comp = (16M+4) fN . On the while, in the conventional vibration

source tracking method, the downsampling process of (2) is not used for comparison, but

the frame of (3) is used instead of a high-pass filter with filter order P for the input image

at frame rate f0. A bandpass filter with filter order 2P with level performance is directly

applied, and the processing from (4) to (6) is the same as the proposed method. For each

frame of the input image, adding and subtracting is performed 4P, and multiplication is

perfomed 4P + 1 for the 2P order bandpass filter processing in (3). For the M period of

the vibration in (4), offset processing using maximum/minimum value operation has 2P

adding and subtracting and 4M f0/ fN = 4MR multiplication. It is necessary to perform

adding and subtracting 2L f0/ fM = 4LR times in the integrated image calculation for L cy-

cles of the vibration in (5), one multiplication and two comparison operations in vibration

area extraction in (6), The number of calculations per pixel in the unit time is f0 = R fN
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Figure 4.3: Relationship between computational complexities and target vibration
frequency (P = 3, M = 3, L = 6)

times these, and if expressed in the form of R and fN , as shown in Table 4.4. Total num-

bers of calculations for the previous method are the number of adding and subtracting

Dpr
add = (2LR2 + (4P + 2)R) fN , number of multiplication Dpr

mul = (4P + 2)R fN , and number

of comparison operation Dpr
comp = (4MR2 + 2R) fN . The ratio of adding and subtracting

Qadd, the ratio of multiplication Qmull and the ratio of multiplication Qcomp, per time unit

between the proposed method and the previous method are given as follows:

Qadd =
D f i

add

Dpr
add

=
4L + 2P + 3

R((2P + 1) + LR)
, Qmul =

D f i
mul

Dpr
mul

=
2P + 4

R(2P + 1)
,

Qcomp =
D f i

comp

Dpr
comp
=

8M + 2
R(2MR + 1)

(4.12)

When the target frequency fN is satisfied with R ≥ 2 which means target frequency

is lower than Nyquist frequency f0/2, each of Qadd, Qmul and Qcomp are (4L+2P+3)/(4L+

4P+ 2), (P+ 2)/(2P+ 1), 1 and they are max value when R = 2. These equations indicate

that the proposed method can be faster than the previous method if the target frequency

is less than Nyquist frequency because all of ratio are less than 1 when filter order P is
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larger than 1 without considering the value of L and M.

For instance, Figure 4.3 shows the relationship between the number of calculations

ratio in Qadd, Qmul, Qcomp, and target frequency when parameters set as the filter order

P = 3, period of offset processing with max-min difference M = 3, the period of image

accumulation L = 6 for input framerate f0 = 2000 fps. These parameters are following

the experiment’s setting in section 4.7; the ratio in Qadd, Qmul, and Qcomp can be small and

small when target frequency is much smaller than input framerate. For example, when

we set target frequency fN = 200 Hz as R = 10.

The ratio of adding and subtracting Qadd, the ratio of multiplication Qmull and the

ratio of multiplication Qcomp are respectively 0.049, 0.143, 0.043. As a result, we can see

the proposed algorithm is faster than the previous algorithm because we can reduce the

number of adding and subtracting, number of multiplication and number of comparison

operation at 1 pixel per time unit.

4.5 Filter performance
When we want to speed up the function of vibration source localization, we need

to realize much less order of pixel-level digital filter than one of the previous. At the

same time, we maintain filter performance as well as previous. Much research has the

purpose that it can reduce the noise for the acoustic signal and so on, while it maintains

phase characteristics and restrains the ripple of the signal. However, our proposed al-

gorithm regarding vibration source localization has the purpose of whether it can detect

the pixel, which has a distinct frequency component for image intensity. That’s why

it is not such a severe problem to ripple in passband and stopband in a filter and non-

linear phase response with IIR filter because these image intensity’s phase periodically

changes at different timing pixel by pixel in general. On the other hand, setting narrow

transition bandwidth that we can separate passband with stopband is essential for filter
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Figure 4.4: Transient band in digital filter.

performance. We need to localize vibration source at pixel level from the point of view

that we can restrain misdetection for frequency component except for passband around

target frequency fN . After that, we decide to consist of a pixel-level digital filter for the

elliptic filter. We can design narrow transition bandwidth between passband and stopband

without compromising the ripple of passband and stopband.

As Figure 4.4 shows, we will evaluate filter performance by calculating transition

width ∆ f = ( f +st − f −st ) − a fN after calculating stopband f < f −st , f > f +st ( f
−
N = (1 −

a/2) fN , f +N = (1 + a/2) fN , a = 0.1) when we design elliptic filter which pass band f −N <

f < f +N around target frequency fN = 200 Hz and we set the parameters are maximum

passband ripple Ap = 1 dB and stopband gain Ast = 40 dB, These parameters are almost

same with experiment’s parameters which we set in section 4.7.

Figure 4.5 shows the gain characteristic of (a) case of using ecliptic high pass filter

whose order P = 2, 3, 5, 10 in proposed method and (b) case of using ecliptic bandpass

filter whose order is 2P in the previous method for input framerate f0 = 2000 fps. It

indicates the gain characteristic of frequency, which includes over Nyquist frequency

(200 Hz) in downsampling image at 400 fps in (a) without considering double image error
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Figure 4.6: Relationship between input frame rate f0 and transition bandwidth ∆ f

and effect because of downsampling with frame interpolation. Figure 4.6 indicates the

relationship between framerate f0 = and transition width ∆ f when we change framerate

from f0 = 420 fps to f0 = 2000 fps. In the case of filter order P = 3, transition with of (a)

is constantly 27.9 Hz regardless of input framerate, that of (b) in input framerate f0 = 500,

1000, 1500, 2000 fps is 27.2, 28.0, 28.2, 28.3 Hz. So the results of (a) are almost the same

with (b).

Next Figure 4.7 shows the relationship between filter order P(= 1, · · · , 10) and tran-

sition width. It indicates transition width of (a) and (b) when we set stopband gain Ast 40,

60, 80, 100 dB. If filter order P is larger and larger and input framerate f0 = 2000 fps,
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transition width of both (a) and (b) is smaller and smaller, and that of (a) is nearly cor-

responding with (b). For example, the transition width in Ast = 40 dB are corresponding

with

(a) 108.9 Hz, (b) 118.7 Hz in P = 2, (a) 27.9 Hz, (b) 28.3 Hz in P = 3, (a) 4.4 Hz,

(b) 4.4 Hz in P = 5 and (a) 0.1 Hz, (b) 0.1 Hz in P = 10. If a restriction of stopband gain

is severe, the filter order needs large order to realize designing a desirable filter, which is

narrow transition width from these graphs.

Figure 4.8 indicates the relationship between target frequency fN and the relative
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ratio of transition width ∆ f / fN when we set the parameter of target frequency fN from

20 Hz to 800 Hz in input framerate f0 = 2000 fps. When the filter order P is 2, the

relative ratio of (a) is a little bit different from (b) regarding target frequency. On the

other hand, when the filter order P is larger than 3, the relative ratio of (a) is almost the

same with (b). For example, when the filter order P is 3, a relative ratio of (a) is 0.139

regardless of target frequency and relative ratio of (b) in the target frequency f0 = 20,

80, 200, 800 Hz is 0.145, 0.143, 0.142, 0.136. So the relative ratio of (a) is also almost

the same with (b) in this case. As a result, when we design the digital filter which is the

center of target frequency, we can see downsampling by frame interpolation in (a) are not

almost effective for the filter performance regardless of the target frequency. That’s why

we demonstrate the algorithm which is vibration source tracking with pixel-level digital

filter can speed up while the filter characteristic that we need to track vibration source

maintains. This is because that the transition width especially is not so different from the

case that we design the digital filter whose order is the same with the previous method for

high framerate input images. It is regarding the proposed method in which we calculate

pixel-level digital filter for the downsampling image as well as the previous method.

4.6 Execution time
Next, we evaluated the execution time after we implemented the proposed algorithm

on the PC. We used a PC with an HP Z440 Workstation (Intel Xeon E5-1650v4 processer

@ (3.60 GHz CPU, 6cores, 15MB, 2.4 GHz), Intel C612 chipset, 32GB RAM, and Win-

dows 7 Enterprise 64-bit OS. Moreover, we use OpenMP [95] which makes multi-thread

for parallel processing to speed up when we implement the algorithm. We evaluated the

execution time for the proposed method, when we set the parameters as follow: vibration

frequency fN = 200 Hz, period of offset processing with max-min difference M = 3 and a

period of image accumulation L = 3 as well as the parameters we set for offline tracking
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Table 4.2: Execution times and image sizes (unit [s]).

(1) image
acquisition

(2) down
sampling

(3) digital
filter

(4) offset
processing

(5)
accumulation

(6) vibration
region
extraction

total

256
×
256

proposed 1 thr — 0.046 0.391 0.346 0.423 0.019 1.226
10 thr — 0.009 0.055 0.055 0.076 0.004 0.199

previous
(500 fps)

1 thr — — 3.894 0.748 1.238 0.028 5.909
10 thr — — 0.347 0.107 0.181 0.006 0.640

previous
(1000 fps)

1 thr — — 7.801 2.646 5.654 0.060 16.162
10 thr — — 0.672 0.382 0.710 0.013 1.777

previous
(2000 fps)

1 thr — — 15.836 13.994 25.179 0.128 55.136
10 thr — — 1.370 1.773 3.284 0.029 6.456

512
×
512

proposed 1 thr — 0.206 2.480 1.671 2.115 0.089 6.561
10 thr — 0.033 0.367 0.253 0.402 0.016 1.072

previous
(500 fps)

1 thr — — 15.893 3.759 6.581 0.121 26.354
10 thr — — 1.476 0.559 0.832 0.023 2.889

previous
(1000 fps)

1 thr — — 30.329 13.641 24.167 0.231 68.368
10 thr — — 2.894 1.783 3.646 0.050 8.373

previous
(2000 fps)

1 thr — — 61.814 58.702 179.196 0.494 300.206
10 thr — — 5.887 9.055 25.483 0.105 40.528

1024
×

1024

proposed 1 thr — 0.791 9.130 8.956 13.800 0.338 33.014
10 thr — 0.123 1.859 1.461 1.910 0.067 5.419

previous
(500 fps)

1 thr — — 61.484 20.398 31.271 0.456 113.609
10 thr — — 5.869 2.664 3.660 0.089 12.282

previous
(1000 fps)

1 thr — — 122.571 67.995 108.238 0.914 299.718
10 thr — — 11.621 7.863 14.787 0.177 34.448

previous
(2000 fps)

1 thr — — 175.137 199.587 524.962 1.403 901.089
10 thr — — 23.447 36.787 93.866 0.370 154.470

2048
×

2048

proposed 1 thr — 3.030 35.461 34.278 53.336 1.314 127.419
10 thr — 0.475 8.035 5.356 7.476 0.270 21.613

previous
(500 fps)

1 thr — — 175.717 58.774 91.418 1.354 327.263
10 thr — — 22.867 10.038 14.159 0.335 47.400

previous
(1000 fps)

1 thr — — 462.547 258.162 411.075 3.495 1135.279
10 thr — — 45.719 30.040 56.749 0.661 133.169

previous
(2000 fps)

1 thr — — 694.673 791.742 2067.934 5.477 3559.826
10 thr — — 91.720 143.438 361.117 1.361 597.636

experiment for multi-copter as we will explain about it in chapter 4.7.

Table 4.2 shows the breakdown of execution time for input image as 256×256,

512×512, 1024×1024 and 2048×2048 in input framerate f0 = 2000 fps in a second’s

time. Table 4.2 indicates the intermediate value of execution time when we measure the

execution time at 10 times trials with same processing. It also indicates breakdown of

execution time regarding case of fixed framerate ( f0 = 500, 1000, 2000 fps) to compare

fixed framerate. The execution time in both of thread 1 and thread 10 are increasing if the

image size is increasing. In other words, we can clearly see the tendency when execution

time in previous method is longer than that in proposed method especially in case of

that input framerate is so high. For example, if it is 512×512 image at input framerate

f0 = 500, 1000, 2000 fps, execution time in previous method is longer than proposed
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Figure 4.9: Breakdown percentages of execution times.

method as follow : 4.0, 10.4, 45.8 times in thread 1 and 2.7, 7.8, 37.8 times in thread 10.

Both method’s execution time of proposed and previous in thread 10 are shorter than that

in thread 1 regardless of image size as its ratio is about execution time in previous method

is longer than proposed method as follow : 4.0, 10.4, 45.8 times in thread 1 and 2.7,

7.8, 37.8 times in thread 10. Both method’s execution time of proposed and previous in

thread 10 are shorter than that in thread 1 regardless of image size as its ratio is about 1
6–

1
6

by using multi thread processing. Figure 4.9 indicates occupancy of each processing for

execution time. And both method’s occupancy is mainly consisted of (3) digital filter, (4)

offset processing and (5) Image accumulation in more than 90% regardless of image sizes

and number of thread. In this case, we can see (2) down sampling which we introduced

in proposed method is not interfere with other part of processing.

Next, Figure A.2 shows the relationship between execution time for input image

in a second’s time in both method and image size when we make number of pixel M

change from 20 to 1000 by every aproximately10 pixels in case of image size is M × M

pixel. The parameters show as follow: input framerate f0 = 2000 fps, number of thread

10 and filter order P =3. Execution time for input image in a second’s time in Figure

A.2 is within 1 second. In other words, maximum size of image which we can execute
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Figure 4.10: Relationship between execution times and image sizes.

on real time using thread 10 is 550×550 pixels in proposed method while that in previous

method at input framerate f0 = 500,1000,2000 fps is 340×340,240×240,130×130 pixels

respectively. So the number of pixels in previous method we can process on real time is

0.40, 0.20, 0.06 times as much as that in proposed method. As you can see these results, it

is possible for proposed algorithm to realize vibration source localization for much higher

space resolution than previous algorithm.

Figure 4.11 indicates relationship between execution time and number of thread

when we set number of threads as 1–12 in proposed algorithm (P=3) for 512×512 in-

put image in a second’s time at input framerate f0 = 2000 fps. Here, we show relative

change of execution time in previous method and proposed method for number of threads

as the execution time in thread 1 is standard. The execution times in thread 1 are 6.561

s in proposed algorithm and 23.314, 60.761, 268.990 s in previous algorithm ( f0 = 500,

1000, 2000 fps). When number of threads is larger than 10, execution regarding number

of threads is almost same in both algorithm while execution time in previous and pro-

posed algorithm is decreasing when number of threads is increasing. The execution times

in thread 10 are 0.971 s in proposed algorithm and 2.458, 7.232, 37.555 s in previous

algorithm ( f0 = 500, 1000, 2000 fps). Comparing with thread 1, execution time in pre-

vious algorithm is 0.15 times and execution times in previous algorithm( f0 = 500, 1000,
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Figure 4.12: Relationship between execution times and input frame rate.

2000 fps) are respectively 0.12, 0.14, 0.15 times, so the execution time in thread 10 speed

up around 7 times faster than thread 1. These execution times are depending on number

of PC processor cores which we evaluated, and it is corresponding to implementation of

vibration source tracking algorithm with multi thread by synchronizingWindows OS with

other standard software for processor Intel Xeon E5-1650v4 which provide 12 processing

thread with 6 physical cores.

Figure 4.12 indicates execution time in proposed and previous method (P =3) for

512×512 input image in a second’s time in thread 10 when input framerate f0 changes

between 400 and 2000 fps. The execution time in proposed algorithm is always 0.971 s
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by introducing down sampling processing with frame interpolation regardless of input

framerate. On the other hand, the execution time in previous algorithm ( f0 = 500, 1000,

2000 fps) is increasing with increasing input framerate as we explained before and indi-

cates 2.707, 7.866, 41.150 s respectively. For example, prosed method is over 40 times

faster than previous one in case of f0 = 2000 fps. The proposed method dramatically can

expect to speed up for previous method when input framerate f0 is much higher than tar-

get frequency fN = 200Hz because computational complexity is decided by dependence

of the target frequency fN = 200Hz.

Last, Figure 4.13 indicates the relationship between execution time and filter order

P in both previous and proposed method for 512×512 input image in a second’s time at

input framerate f0 = 2000 fps, when we set filter order P = 1–10. In Figure 4.13, we

can show relative change of execution time in previous method and proposed method for

filter order as the execution time in filter order P =3 is standard. The execution times in

proposed algorithm and in previous algorithm ( f0 = 500, 1000, 2000 fps) are increasing

as filter order P is increasing. In addition, execution times in filter order P =10 is 2.7

times in proposed method and 2.3, 1.8, 1.3 times longer than that in previous algorithm

in P =3. Moreover, the effect of execution time in previous algorithm for filter order

changing tends to be small when input framerate f0 is higher than target frequency fN .
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Figure 4.14: Experimental environment when video-shooting a fixed multi-copter.

This is because that computational complexity of (4) offset processing and (5) image

accumulation which need to process the number of periods for vibration frequency as

number of frame in a vibration period is increasing with increasing input framerate is

increasing regarding that filter order P for (2) digital filter in previous method can be

fixed value.

4.7 Experiments for a multi-copter

4.7.1 Video shooting a fixed multi-copter with various exposure time

Firstly, we checked wheter we could extract region in which multi-copter’s pro-

peller rotate as vibrated region in proposed algorithm as well as previous vibration source

localization. Considering about that there are double image errors which occurs in case

that exposure time is longer than the period of framerate in linear interpolated image after

recording 512×512 image of 8 bit color for a fixed multi-copter and fans at 2000 fps, when

we set exposure time as 0.5, 0.2, 0.1 m. We selected to use multi-copter (RC EYE One

Extreme by CEI Conrad company) which is size of object is 225×225×80 mm and have

4 two-blade propellers whose each size is 138 mm for evaluation. Figure 4.14 indicates



4.7 EXPERIMENTS FOR A MULTI-COPTER 47

input images

t=0.000s t=0.250s t=0.500s

frame interpolated images

t=0.000s t=0.250s t=0.500s

(a) exposure time 0.5 ms

input images

t=0.000s t=0.250s t=0.500s

frame interpolated images

t=0.000s t=0.250s t=0.500s

(b) exposure time 0.2 ms

input images

t=0.000s t=0.250s t=0.500s

frame interpolated images

t=0.000s t=0.250s t=0.500s

(c) exposure time 0.1 m

Figure 4.15: Input images when video-shooting a fixed multi-copter.

these experimental environment. We set the distance as 4.5 m from camera to multi-

copter and a pixel is corresponding to 1.0 mm for multi-copter’s position and 512×512

image is corresponding to 512×512 mm. In addition, we fixed the body of multi-copter

at an angle in order to monitor all of motion of 4 propellers. And we also fixed 2 two-

blade fans whose rotation speed is set as 250, 60 rotation per second respectively next to

multi-copter as we also can see background of trees on sun light. We make multi-copter’s

propeller rotating at 100 rps in all setting in this section. We set parameters in proposed

algorithm as follow: vibration frequency fN = 200 Hz, filter order P=3, period of offset

processing with max-min difference M =3, period of image accumulation L =6.

Figure 4.15 indicates input frames and frame interpolated images’ group in pro-

posed method when we set exposure time (a) 0.5 ms, (b) 0.2 ms, (c) 0.1 ms, frame inter-
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Figure 4.16: Extracted vibration features when video-shooting a fixed multi-copter.

Figure 4.17: Experimental environment for flying multi-copter.

polated images can be double image error when exposure time is longer especially while

motion blur in propeller’s region can be reduced and input image turns dark all over the

image.

Figure 4.16 shows vibration region by using proposed method as we compare vi-

bration region by implementing previous algorithm ( f0 = 500, 1000, 2000 fps) in the case
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of exposure time (a) 0.5 ms, (b) 0.2 ms, (c) 0.1 ms. We can detect areas in which there

are multi-copter’s propeller rotating at 100 rotation per second as vibration region while

we don’t detect areas in which there are fixed 2 two-blade fans whose rotation speed is

set as 250, 60 rps as vibration region in both methods. So this tendency is not depending

on exposure time. Furthermore, in terms of the number of detected pixels, when input

framerate f0 = 2000 is in the first case by 100 and 500 fps for previous method in Fig-

ure 4.16. This is because that there are some pixels whose difference are small between

max and min, and number of sampling is not enough to extract actual intensity change in

case of low framerate. So the number of pixels detected in equation (4.11) by calculating

30 frames, 15 frames and 8 frames ( f0 = 500, 1000, 2000 fps) regarding maximum and

minimum brightness for 15 ms ( fN = 200 Hz, M = 3), which is corresponding to equa-

tion (4.7). On the other hand, number of detected pixels in proposed algorithm in equation

(4.11) is decreasing because Nyquist frequency is corresponding to target frequency and

number of pixel which we can detect maximum and minimum brightness as its phase is

almost inversely at 180 degrees is increasing and number of pixel whose difference be-

tween max and min is much larger than previous method regardless of input framerate

f0 = 400 fps. As a result of these considerations, we can realize vibration source tracking

in proposed algorithm performs as well as that in previous algorithm regardless of double

image errors when the exposure time is small.

4.7.2 Video shooting a flying multi-copter

Next, we will show results of vibration source tracking for 512×512 image of 8 bit

color for a flying multi-copter in outdoor at 2000 fps as background is walking humans

and trees and so on when we apply the proposed algorithm. We used multi-copter which

is same one in chapter 4.7.1. Figure 4.21 indicates the experimental environment. Here,

we can monitor brightness change in enough period at the same pixel in this experiment

because of parameter Np = 35.4 as followed two-blade propeller’s size A is 138 mm,
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target frequency fN = 200 Hz, maximum speed v = 0.78 m/s. We recorded the experi-

mental images at 2 patterns as (1) case with large magnification and (2) case with wide

angle. We set the distance as 24.0 m from camera to flying multi-copter and 512×512

image is corresponding to 3072×3072 mm in (1) case and 7680×7680 mm in (2) case for

multi-copter’s position and a pixel is corresponding to 6.0 mm in (1) case and 15.0 mm

in (2) case. In addition, we used the parameters are same with previous indoor exper-

iment. Figure 4.18 indicates time sequential images of (a) input images with tracked

positions, (b) accumulated images of input KK(x), (c) pixel-wise filtered images GK(x),

(d) vibration features extracted by our proposed algorithm VK(x), (e) vibration regions ex-

tracted by previous algorithm ( f0 = 2000 fps) and (f) ROI input images for tracked regions

whose gravity position is center of this image, when video-shooting a flying drone with

large magnification. The rectangular region in (a) is corresponding to magnified 50×50

ROI image of (f). We can extract the vibration region which is corresponding to region

of multi-copter’s propeller rotating in proposed algorithm as well as previous algorithm

even though multi-copter moved around areas in full image. In addition, we can specify

the vibration source region which is same as position of flying multi-copter because there

is always multi-copter in center of ROI image of (f).

Figure 4.22 indicates time sequential image of (a) input images with tracked posi-

tions, (b) accumulated images of input, (c) pixel-wise filtered images, (d) vibration fea-

tures extracted by our proposed algorithm and (e) previous algorithm ( f0 = 2000 fps) and

(e) magnified images for tracked regions when video-shooting a flying drone with a wider

view angle. Even though multi-coper’s image is very low resolution’s image which cor-

responds to 30×30 image as Figure 4.22 (f) shows it, comparing with zoom image which

corresponds to about 50×50 pixels’region, we can realize pixel level vibration region ex-

traction for region of multi-copter’s propeller in proposed algorithm as well as that in

previous algorithm regardless of effect for noise which is moving humans and something

around natural tree in background. We can track multi-copter as vibration region because
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there is multi-copter in center of ROI image in almost all time although there are some

cases that the position of multi-copter is a little bit different from center of the image due

to some occlusion which the propeller sometimes overlaps multi-copter itself.

Figure 4.23 shows (a) time sequential data of gravity position and number of pix-

els regarding vibration region for 10 seconds and (b) xy trajectory of extracted vibration

region when a flying drone was video-shot with a wider view angle. In order to compare

with the results of extracted region in previous method, it also is shown in Figure 4.23

Moreover trajectory in Figure 4.23 (b) is plotted on input image in time t =0 in Figure

4.22 (a). The gravity position of vibration region in proposed method nearly corresponds

to that in previous method as it is same with up, down, left and right of movement of

multi-copter even though number of pixel in extracted vibration region change from 0 to

54 significantly when multi-copter moved in front of walking human and trees as back-

ground. Furthermore, we also can realize robust vibration source tracking with pixel level

digital filter for flying multi-copter though there are some occlusions which the propeller

sometimes overlaps multi-copter itself and some cases that the gravity position of multi-

copter is a little bit different from center of ROI image.

4.7.3 Real-time multi-copter detection

We show the experimental results of real-time vibration source detection when a

multi-copter moved against a background with trees and moving persons. The multi-

copter flew to the right and left directions above many people with quick arm and leg

movements. The 512×512 input images were captured at 2000 fps with 0.5 ms exposure.

We used multi-copter which is same one in chapter 4.7.1. The flapping frequency of each

propeller varied by approximately 95 rps. Figure 4.21 shows the experimental environ-

ment. The multi-copter flew at a distance of approximately 17.4 m from the camera. The

measurement area was 5.24×5.24 m for 512×512 pixels at a distance of 17.4 m from the

camera, where one pixel corresponds to 10.2 mm. The target vibration frequency was set
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to fN = 190 Hz and the pass bandwidth in the digital filters was 20 Hz so that the pixel-

level digital filters can pass the frequency components of time-varying brightness signals

in the range of 180–200 Hz. The parameters were set to M = 3, L = 6, and P = 3. Our

algorithm was executed in real time with multithread processing of 10 threads.

Figure 4.22 (a)–(c) shows the input images, the accumulated images of input and

high-pass filtered images. The images were taken at intervals of 1 s for t = 0–5 s. Fig-

ure 4.22 (d)–(e) shows the vibration pixels extracted by our algorithm and the previous

algorithm in [12] when f0 = 2000 fps. Figure 4.22 (f) shows the magnified images of

80×80 pixels around the vibration pixels extracted by our algorithm, corresponding to

the red-line windows illustrated in (a). When the multi-copter flew in the right and left

directions against the cluttered background with trees and moving persons, our algorithm

extracted certain pixels around the propellers of the multi-copter in real time. We can

confirm that the regions of interest illustrated in Figure 4.22 (f) included the multi-copter

at all the times, whereas their space resolution was too low for precise appearance-based

recognition.

Figure 4.23 illustrates (a) the graphs that show changes in the x- and y-coordinate

values of the averaged positions of the extracted pixels and the number of extracted pixels

for 5 s; and (b) the xy trajectory for 5 s was plotted over the input image at t = 0.

Corresponding to the left and right movements of the flying multi-copter, the xy trajectory

of the averaged positions of the extracted pixels were robust without any disturbance from

the cluttered background of the outdoor location.

4.8 Concluding remarks
In this chapter, we demonstrated vibration source tracking for object’s frequency is

200 Hz with input images at 2000 fps in proposed algorithm is over 10 times faster than

that in previous method after we propose a fast algorithm which reduce computational
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complexity per unit time by controlling sampling period for digital filter with downsam-

pled HFR images whose frame rates were virtually adjusted to twice the target vibration

frequency with frame interpolation, while locking in vibration frequency for tracking ob-

ject, we check the number of calculations and filter performance and we evaluate execu-

tion time on PC with CPU regarding vibration source tracking for high framerate video

images with pixel level digital filter. We confirmed that the execution time of our algo-

rithm was 1/10 or less than that of the previous algorithm when localizing a vibration

source using HFR images captured at 2000 fps. The effectiveness of this porposed algo-

rithm was verified by the experimental results for HFR offline video analysis and real-time

detection for multi-copter, in which a multi-copter with propellers rotating at 95 rps that

flew in a cluttered outdoor location was simultaneously localized using 512×512 images

at 2000 fps. Furthermore, in this section, we focused on speeding up for pixel level vibra-

tion source localization which can extract frequency information in image pixel by pixel

and we discussed with the case that frequency of multi-copter’s propeller is obviously

higher than frequency of background and the other object’s motion. However, robust

recognition method which integrated dynamics characteristic for acoustic frequency level

with space appearance characteristic can be meaningful if we consider about the case that

there are various kinds of dynamic background and multiple similar objects in a point

of view in actual scene. Moreover, vibration source localization for downsampled image

which controlled locking in the sampling period for peak frequency can also be valid by

detecting peak vibration frequency based on intensity change for acoustic signal and im-

age because the number of rotations of propeller and so on is not constant for condition

of multi-copter flying and depending on various kinds of that. Vibration source tracking

algorithm we proposed in this section will be able to process much more pixels than now

and we will improve this system which can track multi objects at the same time by utiliz-

ing that we can set variable framerate corresponding to various vibration frequency with

software after implementing the function of detecting vibration frequency automatically
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in future work. Finally, we will improve our vision-based vibration source localization

system with real-time feedback control of its frame rate so that it can robustly localize and

track a flying multi-copter when the rotation frequencies of its propellers are unknown or

vary over time..
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Figure 4.18: (a) Input images with tracked positions, accumulated images of (b)
input and (c) pixel-wise filtered images, vibration features extracted by (d) our pro-
posed algorithm and (e) previous algorithm ( f0 = 2000 fps), and (e) magnified images
for tracked regions when video-shooting a flying drone with large magnification.
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Figure 4.19: (a) Input images with tracked positions, accumulated images of (b)
input and (c) pixel-wise filtered images, vibration features extracted by (d) our pro-
posed algorithm and (e) previous algorithm ( f0 = 2000 fps), and (e) magnified images
for tracked regions when video-shooting a flying drone with a wider view angle.
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Figure 4.20: xy trajectory of extracted vibration region when a flying drone was
video-shot with a wider view angle.
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Figure 4.21: Experimental environment for flying multi-copter.
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Figure 4.22: (a) Input images; accumulated images of (b) input; (c) high-pass filtered
images; vibration pixels extracted by (d) our algorithm; and (e) previous algorithm
( f0 = 2000 fps); (f) magnified images.
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Figure 4.23: The xy trajectory of extracted vibration region when the video of the
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Chapter 5

HFR-video-based honeybee activity sensing

5.1 Introduction
Presently, the honeybee industry is of huge benefit to agricultural businesses by

pollinating the flowers of crops, vegetables, and fruits as well as by producing and storing

honey; the honeybee is recognized as one of the most efficient insect pollinators that

can transport and store pollen [96]. Colony collapse disorder (CCD) is the phenomenon

where the majority of worker bees in a colony disappear rapidly, leaving behind the queen.

The number of disappearances of beehives has increased drastically in the 2000s [97];

CCD has become a serious social problem that causes significant economic losses to

agricultural business because honeybees pollinate many agricultural crops. Whereas the

causes of CCD are not perfectly clarified yet, various possible causes such as plagues

and viruses, malnutrition, pesticides and miticides, beekeeping practices, electromagnetic

radiation, and genetically modified crops have been reported [98–100]. To obtain useful

knowledge for efficient beehive management without CCD outbreak, it is necessary to

monitor colony activity to elucidate the reason for this syndrome [101].

Honeybee colonies monitoring had been attempted already more than 100 years

ago; Gates [102] have reported the temperature data of a beehive collected manually ev-

ery hour over several days. The rapid progress of sensor technology in recent years has

resulted in the use of various types of electronic sensors such as (1) weight, (2) tempera-

61
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ture, humidity, and gas, (3) sound and vibration, and (4) forager traffic [103] to conduct

the continuous monitoring of honeybee colonies.

Beehive weight is related with colony growth and daily colony food demand as well

as colony component such as adults, brood, and food reserves. To provide information on

various issues such as weather effects [104], colony growth and consumption [105], and

hive abandonment [106], continuous weighing with a precise electronic balance has been

conducted. Temperature, gas concentration, and humidity are related with the metabolic

processes of the colony level; calculations from temperature and O2 consumption can be

used to estimate the energy produced by a colony. Monitoring with these modalities has

been conducted to observe colony temperature control against decreasing ambient temper-

ature [107], low O2 level due to reduced metabolic rate when water / energy conservation,

and longevity [108], daily cycle in O2 linked to forager activity [109], and time-varying

humidity near the brood in a beehive [110].

Vibration and sound observed in a hive or its surface involve biological informa-

tion that bees generate wing-flapping vibrations at many frequencies in the range of 10

to 1000 Hz to communicate such as the waggle dance [111–114]. The wing-flapping

vibration of a single bee was measured with laser vibrometry and analyzed with STFT

to examine it in the time and frequency domains [115]. By embedding an accelerom-

eter in the wall of hives, Bencsik et al. [116] analyzed its vibration data with principal

components analysis to examine its vibration frequencies to the noise in swarming events

robustly. By conducting 270-hour monitoring, several swarming events were observed

with increased sound intensity and decreased temperature and humidity in the hives [117].

One-year sound intensity data with several frequency bands was analyzed to quantify how

the sound in healthy hives differs from that in chalkbrood infected hives [118].

Forager activity [119,120], indicating how many older bees were gathering food, is

important to monitor honeybee colony health as well as food availability / demand, and

colony age structure. Hive entrance counters such as an electrical counter with a balance
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arm [121], photoelectric sensors [122, 123], and infrared light sensors [124] have been

developed. Danka et al. [125] measured forager traffics during blueberry pollination, and

faced a miscounting problem with photoelectric sensors because the bees tended to cluster

around the sensors; they improved the measurement accuracy by validating forager flights

with a visual count. Several attempts at forager traffic monitoring have been reported by

attaching RFID chips to bees [126, 127]; they can collect crucial information such as life

expectancy time and foraging time because bees tagged with chips are identified individ-

ually. The chips are small and weigh a few milligrams, however, it was too laborious

and expensive to attach them to numerous bees, and the hive entrance should be modi-

fied to set up RFID receivers. Several lidar-based systems [128–130] have been reported

for the large-area detection of honeybees. By detecting their wing-flapping in the audio

frequency range using mechanical laser scanning, they can measure the 3-D positions of

flying honeybees at a distance of hundreds of meters. However, they cannot keep track of

a specific flying honeybee to monitor its flying activity for a certain interval.

Activity analysis of honeybees inside beehives using automatic bee tracking and be-

havior labeling has been reported in [131,132]. Many systems and studies have analyzed

the flight activities of honeybees outside beehives with capacitance-sensor-based moni-

toring [133], wingbeat frequency analysis [134], radio-frequency identification (RFID)

chips for honeybee counting [135], and computer-vision-based monitroing such as hon-

eybee detection with background subtraction [136, 137], automated bee-counting sys-

tem [138, 139], and three-dimensional bee tracking [140]; they used standard videos

recorded at dozens of fps, in which the wing-flapping of bees were unobservable, and

because appearances of small honeybees in images became unclear without large mag-

nification, analyzable scenes were limited to small areas around the hive entrance. Most

of the researchers have handled honeybee monitoring in an exceedingly limited narrow

area around a beehive. Especially in vision-based analysis, there is a tradeoff between the

measurement area and detection accuracy, because the size of a honeybee is a dozen of
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millimeters; honeybees cannot be distinguished manually by their appearances in images

when the measurement area such as 1×1 m or more is much larger than their size.

As we introduced appearance-based tracking methods in subsection 2.2, the limita-

tion of these methods in tracking honeybees flying in a natural scene is the appearances

of honeybees change and become ambiguous in the low resolution images. By detecting

temporal periodic changes in brightness signals, HFR video analysis has been applied to

vibration distribution measurement such as structural vibration analysis [141–143] and

vocal fold vibration [144–146]. If honeybees with wings flapping at hundreds of Hertz

could be observed in an HFR video, activity sensing of honeybees flying within an area

that was a few meters in diameter around a beehive, which was much larger than the size

of a honeybee, could be realized without attaching sensors by using pixel-level digital

signal processing; this will help to quantify the colony health before and after CCD or

other serious incidents. Pixel-level digital signal processing was used for honeybee local-

ization in [147] to extract pixels around honeybees. When a honeybee is not hovering in

the same place, however, it is difficult to precisely obtain its wing-flapping frequency as

its flying activity. This is because one or no wave is observed in the image intensities at

pixels around fast-flying honeybees.

Therefore, we propose a concept of honeybee activity sensing that can precisely

obtain the wing-flapping frequencies of fast-flying honeybees as well as their positions

by executing two-step short-time Fourier transforms (STFTs) for an HFR video, which

is an extension of the honeybee localization algorithm in [147]. Pixel-level STFTs are

executed at all the pixels of an HFR video as the 1st-step process for honeybee localization

in a similar manner as in [147], and pixel-level STFTs of the image intensities around

honeybees are re-executed at all the pixels of the tracked region-of-interest (ROI) images

as the extended 2nd-step process to precisely obtain their wing-flapping frequencies. This

is because honeybees are virtually located at the centers in the tracked ROI images, and

multiple waves can be observed for precise frequency response computation.
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5.2 Concept
Western honeybees are often used in beekeeping all over the world; the sizes of

adult worker bees are 12–14 mm, and their wing-flapping frequencies when flying are

170–270 Hz in the audio frequency range [148]. It is difficult for a video-rate camera

operating at dozens of fps to detect such a small flying honeybee under natural complex

background conditions. Regarding an HFR camera as a collection of photo sensors, this

study proposes a quantification method for the flying activities of multiple honeybees in

images with pixel-level digital filters. Our method is an extension of the vision-based

vibration source localization approach [12], in which a pixel-level digital filter had been

used for localization whereas no pixel-level frequency response analysis had been consid-

ered. Figure 5.1 shows the concept of HFR-video-based activity sensing that this study

presents.

Fast-flying honeybees in an HFR video are localized with pixel-level digital sig-

nal processing when their appearances are poor in the low resolution and blurred im-

ages [147]. There are still many problems to precisely obtain their wing-flapping frequen-

cies as their flying activities. Here, the maximum flying speed of a western honeybee was

reported as 25 km/h in [149], and because this movement is so large, one or no wave is

observed at the same pixel. When a 12-mm-size honeybee is flying at 25 km/h, the dwell

time in a single pixel, where its wings are detectable, is 1.7 ms in the worst case; it is

smaller than one cycle time of its wing-flapping. Figure 5.2 illustrates the problems in

pixel-level digital signal processing for fast-flying honeybees. The temporal sequences

of image intensities at the pixels to be analyzed are largely dependent on background

scenes. Excluding a short time for one-or-no-wave observation of their flapping wings, it

is difficult to use pixel-level digital signal processing to obtain precise TFRs in image in-

tensities at pixels around fast-flying honeybees. A distinct peak in the frequency response

might not be detected for one-or-no-wave observation, as illustrated in Figure 5.2(a). In

addition, the latency effect in pixel-level digital signal processing [12, 13] enlarges when
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a fast-flying honeybee is being observed; several pixels are incorrectly detected as ghost

vibration regions even when the honeybee is not currently at these pixels owing to the

latency effect in the pixel-level STFTs, as illustrated in Figure 5.2(b). A 12-mm-size hon-

eybee at a flying speed of 25 km/h moves 0.44 m during the processing time of 64 ms in

executing STFTs with 32 samples for a 500-fps video; it is 37 times the length of its body.

Considering these issues in pixel-level digital processing, our HFR-video-based ac-

tivity sensing in this study, is designed with two-step pixel-level STFTs for the precise

estimation of the time-variant flapping frequency responses of individual flying honey-

bees as well as their locations and velocities, when numerous honeybees are observed in

the field of view of an HFR camera by executing the following processes as illustrated in

Figure 5.1.

5.3 Proposed algorithm

On the basis of the concept in Chapter 5.2, we implement a pixel-level signal pro-

cessing algorithm in this Chapter, with a two-step pixel-level STFT method for HFR-

video-based honeybee activity sensing, in which the 1st pixel-level STFTs are used for

vibration source localization and the 2nd pixel-level STFTs are used for precise TFR

computation. The details are provided in the following subsections.

5.3.1 Pixel-level vibration source localization

The input images of M×N pixels are acquired at time kτ (frame number k and

frame cycle time τ) as I(x, y, kτ), wherein the frame rate is f0 = 1/τ. The input images

are converted to the TFR image by executing the STFT with K1(= 2K′1) samples:

F(x, y, t) = (F0(x, y, t), · · · , FK′1−1(x, y, t)),

= STFT(I(x,y, t−K′1τ), · · · , I(x,y, t+(K′1−1)τ), (5.1)
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where K1 is the number of samples in the STFT for the input images, and FK(x, y, t)

indicates the frequency component image at a frequency of fK = f0K/K1 (K=0,· · ·,K′1−1).

The absolute value image of the cut-off TFR image F′k1(x, y, t), in which frequency

components less than fk1 are cut off from F(x, y, t), is normalized by that of the DC-cut-

off TFR image F′k0(x, y, t), whose cut-off frequency is fk0 as the following high-pass-filter

image:

H(x, y, t) =
|F′k1(x, y, t)|
|F′k0(x, y, t)|

, (5.2)

where ki (i=0, 1) is an integer to set the cut-off frequency fki = f0ki/K1 of the cut-off TFR

image as follows:

F′ki(x, y, t) = (0, · · · , 0, Fki(x, y, t), · · · , FK′1−1(x, y, t)). (5.3)

The vibration candidate region is detected pixel-wise by checking the DC-cut-off

TFR image F′k0(x, y, t) and the high-pass-filter image H(x, y, t) as follows:

V(x, y, t) =


1 (H(x, y, t)≥θH, |F′k0(x, y, t)|≥θF)

0 (otherwise)
, (5.4)

where θF is a threshold to determine whether the amplitude of the DC-cut-off TFR image

is detectable. θH is a threshold to determine whether the high-pass-filter image, which

indicates the ratio of the frequency components greater than or equal to the cut-off fre-

quency fk1 , is sufficiently large.
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5.3.2 Individual honeybee labeling

The zeroth- and first-moment features are calculated for M′N′ subregions Γab of

m × n pixels in V(x, y, t) as

Mpq(Γab, t) =
a(m+1)−1∑
x=am

b(n+1)−1∑
y=bn

xpyq · V(x, y, t) , (5.5)

where M = mM′ and N = nN′; p and q are non-negative integers to determine the order

in moment feature calculation, satisfying p + q ≤ 1. Γab (a=0,· · ·,M′−1, b=0,· · ·,N′−1)

is expressed as

Γab = {(x, y)| (am+s, bn+t), 0≤ s<m, 0≤ t<n}. (5.6)

To localize multiple honeybee regions in V(x, y, t), the connected components la-

beling process is accelerated to obtain the labeled honeybee regions with the cell-based

labeling algorithm using the moment features for M′×N′ subregions [?]. For the labeled

honeybee regions lO(t) (l = 0,· · ·, L−1) in V(x, y, t), the label-domain moment features

Mpq(lO(t)) (p+q ≤ 1) are sequentially accumulated, concurrently with the scanning of a

flag map Pab(t) of M′×N′ subregions:

Mpq(lO(t)) =
∑

(x,y)∈lO(t)

xpyq · V(x, y, t), (5.7)

where Pab(t) (a=0,· · ·,M′−1, b=0,· · ·,N′−1) is defined for each subregion Γab by checking

M00(Γab, t) as follows:

Pab(t) =


1 (M00(Γab, t) ≥ θP)

0 (otherwise)
, (5.8)
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and θP is a threshold to determine whether the subregion Γab is used for cell-based label-

ing.

The center positions of the labeled honeybee regions lO(t) are calculated as follows:

lx(t) = (lx(t), ly(t)) =
(
M10(lO(t))
M00(lO(t))

,
M01(lO(t))
M00(lO(t))

)
. (5.9)

The detailed processes used to calculate the label-domain moment features in an

image are given in [19, 20].

5.3.3 Frequency response computation for tracked honeybees

The labeled honeybee region lO(t) is defined as a sub-region of R×R pixels so that

the honeybee locates in its center, and its ROI image lI(x′, y′, t) of R×R pixels is selected

from the input image as

lI(x′, y′, t) = I(x′+lx(t)−R/2, y′+ly(t)−R/2, t), (5.10)

where (x′, y′) indicates the local coordinate system in the ROI image of R×R pixels.

For the ROI images, the image intensities at pixel (x′, y′) are converted to the TFR

ROI images by executing the STFT with K2(= 2K′2) samples as follows:

lF(x′, y′, t)= (lF0(x′, y′, t),· · ·, lFK′2−1(x
′, y′, t)),

=STFT(lI′(x′,y′, t−K′2τ),· · ·, lI′(x′,y′, t+(K′2−1)τ), (5.11)

where K2 is the number of samples in the STFT for the ROI images, and where lFK(x′, y′, t)

(l=0,· · ·, L−1) indicates the frequency component of the TFR ROI image at a frequency

of f ′K = f0K/K2 (K=0,· · ·,K′2−1).

The vibration pixels in the ROI images, lV(x′, y′, t) (l = 0,· · ·, L−1), are extracted

when the peak frequencies are greater than or equal to the cut-off frequency fk2 , and
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their TFR images at the peak frequencies are greater than or equal to a threshold θ′F to

determine whether the frequency spectrum peak is distinct:

lV(x′, y′, t)=


1 (lfpk(x′, y′, t)≥ fk2 ,

lFlkpk(x
′, y′, t)≥θ′F)

0 (otherwise)
, (5.12)

where k2 is an integer to set the cut-off frequency fk2 = f0k2/K2. The peak frequency in

the ROI image lfpk (l= 0,· · ·, L−1) for the l-th labeled honeybee region is determined by

searching the maximum value in the frequency range above the cut-off frequency fk2 as

follows:

lkpk(x′, y′, t) = arg max
k2≤K≤K′2−1

lFK(x′, y′, t), (5.13)

where lkpk(x′, y′, t) (l=0,· · ·, L−1) is an integer to set the peak frequency lfpk = f0 · lkpk/K2

at the pixel (x′, y′) in the ROI image.

To quantify whether there is a certain vibration component of honeybee flapping,

the averaged frequency response lF(x′, y′, t) (l=0,· · ·, L−1) is computed by averaging the

TFRs at the extracted vibration pixels in the ROI images as follows:

lF̄(t)=


1

lS (t)

∑
(x′,y′)∈lO(t)

lV(x′,y′, t)lF(x′,y′,t) (lS (t)≥θS )

∅ (otherwise)

, (5.14)

where lS (t) (l=0,· · ·, L−1) is the number of the vibration pixels in the l-th labeled honeybee

region lO(t),

lS (t) =
∑

(x′,y′)∈lO(t)

lV(x′,y′, t), (5.15)

and θS is a threshold to determine whether the wing-flapping of honeybees is observable.
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Independently of the brightness amplitude and the low frequency component in the

background scene, the normalized TFR lA(t) (l= 0,· · ·, L−1) is computed in the range of

their flapping frequencies by normalizing the cut-off TFR image,

lF̄′k2(t) = (0, · · · , 0, lF̄′k2(t), · · · ,
lF̄′K′2−1), (5.16)

whose cut-off frequency is fk2 , as follows:

lA(t) = lF̄′k2(t)/
∣∣∣lF̄′k2(t)∣∣∣ . (5.17)

Assuming that the flapping frequency of a honeybee is larger than a certain fre-

quency fH, the flying activity of the l-th labeled honeybee is computed as its flapping fre-

quency l fA(t) (l=0,· · ·, L−1) by detecting the peak frequency of lA(t) = (lA0(t), · · · , lAK′2−1(t))

in the following frequency range,

l fA(t) =
f0
K2

arg max
kH≤K≤K′2−1

lAK(t), (5.18)

where kH is an integer to set the frequency fH = f0kH/K2, which determines the frequency

range to be searched.

5.4 Sensitivity evaluation
First, we checked how the spatial resolution of an HFR video affects the sensitiv-

ity in our honeybee activity sensing algorithm when the image intensity at every pixel is

converted to a TFR over a period of time. We captured 8-bit color images of 1024×1024

pixels at 500 fps (τ = 2 ms) with a 0.5-ms-camera exposure when 12–14-mm size hon-

eybees flew around their beehive in a cluttered outdoor location. An HFR camera was

installed at a distance of 1.5 m from the beehive. The beehive was observed in the depth
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of field (DOF) of the HFR camera using 1024×1024 pixels, and the DOF far limit was set

to infinity with a small lens aperture. A 1024×1024 image corresponded to a 0.6×0.6-m-

area around the beehive; one pixel corresponded to 0.6 mm. In the evaluation, we used

HFR videos for 0.256 s of 64×64, and 256×256 pixels (M = N = 64 and 256), as well

as the original 1024×1024 HFR video (M = N = 1024), by interleaving the original HFR

video at every 16 and 4 pixel, respectively; the pixel interval in each resolution corre-

sponded to 9.6 and 2.4 mm, respectively. The parameters for step (1) are set as K1 =

32, fk0 = 31.25 Hz, fk1 = 62.5 Hz, θF = 400, and θH = 0.5, those for step (2) are set

as m = n = 4, 16, and 64, and θP = 1, 5, and 20 when M = N = 64, 256, and 1024,

respectively, and those for step (3) are set as R = 4, 16, and 64, when M = N = 64, 256,

and 1024, respectively, K2 = 128, fk2 = 62.5 Hz, θ′F = 400, θS = 1, and fH = 150 Hz.

These parameters are summarized in Table 5.1.

When the frequency range to be inspected is priorly known for wing-flapping of

honeybees, K1, fk0 , fk1 , K2, fk2 , and fH, which are used to determine the frequency range

and the number of samples in computing TFRs with pixel-level STFTs, can be set as uni-

versal values. They are independent of image resolution, image contrast and brightness,

and apparent sizes of honeybees in images; therefore, there is no need to determine them

each time the camera is deployed. The parameters m, n, θP, R, and θS depend on the

apparent sizes of honeybees in images, corresponding to camera parameters such as im-

age resolution, magnification ratio, and camera-to-object distance. They are independent

from time-varying image brightness and contrast in ambient sunlight; therefore, there is

no need to adjust these parameters once the camera is deployed at a fixed location. The

parameters θF , θH, and θ′F that mainly check the intensities of the pixel-level TFRs, de-

pend on image contrast and brightness, and background movement. Under time-varying

sunlight condition and background scene, they should be adaptively determined such that

honeybee regions are properly extracted as vibration pixels. However, in this study, we

manually determined these parameters for short-span HFR videos when there was no
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Table 5.1: Parameters used for the experiments in Subsection 5.4.

step parameter
64×64 256×256 1024×1024

(M=N=64) (M=N=256) (M=N=1024)

(1)

K1 32
fk0 31.25 Hz
fk1 62.5 Hz
θF 400
θH 0.5

(2)
m(=n) 4 16 64
θP 1 5 20

(3)

R 4 16 64
K2 128
fk2 62.5 Hz
θ′F 400
θS 1
fH 150 Hz

large time-variation in image brightness.

Figure 5.3 shows (a) the input images I(x, y, t), (b) the candidate vibration pixels

V(x, y, t), and (c) the locations of selected ROI images lI(x′, y′, t) for honeybees. Fig-

ure 5.4 shows the magnified ROI images lI(x′, y′, t) for “bee 1” and ”bee 2”, which are

labeled in Figure 5.3. Figure 5.5 shows the averaged TFRs lA(t) in the range from 62.5

to 250 Hz with a frequency resolution of 3.91 Hz, which were computed using the 2nd

pixel-level STFTs for these ROI images to determine the flying activities of the labeled

honeybees. “bee 1” was flying at a certain speed in the direction from right to left, and

“bee 2” was hovering in the input images. Figure 5.6 plots (a) the temporal changes in the

image intensities at A(960, 294), B(319, 609), and C(270, 50) in the original input images

of 1024×1024 pixels and (b) those at A′(32, 32) and B′(32, 32) in the tracked ROI images

of 64×64 pixels for 0.2 s. Here, point A is around “bee 1”, point B is around “bee 2”,

and point C is on a wooden box in the background as illustrated in Figure 5.3(a). Points

A′ and B′ correspond to the centers of the tracked ROI images for “bee 1” and “bee 2”,

respectively, as illustrated in the tracked 64×64 ROI images in Figure 5.4. As shown
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in Figure 5.6, no rapid changes were observed in the image intensity at point C in the

background scene. Only two or three pulses in a short-term duration were observed in the

image intensities at points A and B around the honeybees; they were flying at a certain

speed with their wings flapping at hundreds of Herz. In Figure 5.6(b), periodic waves

with a duration of 0.2 s on the envelope waves, which are drifting with the background

and illumination conditions around the honeybees, are observed at points A′ and B′ in the

tracked ROI images; no data was plotted when the tracking was failed. This is because

honeybee tracking enables the long-time observation of periodic changes in the image

intensities at the pixels around flying honeybees.

In all the cases of 64×64, 256×256, and 1024×1024 input images, candidate vi-

bration pixels were extracted around the flying honeybees with pixel-level digital signal

processing in our algorithm. The honeybees were tracked correctly in the selected ROI

images even when they can be hardly observed in a cluttered scene because their appar-

ent sizes were 1 or 2 pixels in the 64×64 input images. The vibration region of “bee 1”

had a comet-like shape, whose size is larger than the actual size of the honeybee because

the honeybee was flying at a high speed during 64 ms in the STFT computation with

K1 = 32. The honeybee’s velocity was used to determine the direction and length of the

comet shape. The vibration region of “bee 2”, hovering at the same place, had a small

and non-directional shape, compared with that of “bee 1”.

In the averaged TFRs for 256×256 and 1024×1024 input images in Figure 5.5, sig-

nificant frequency components were observed around 175 and 235 Hz, respectively. They

corresponded to the different wing-flapping frequencies of “bee 1” and “bee 2”, respec-

tively. Here, the peak frequency detection was conducted as a maximum search process,

and it was not very sensitive even in the case of a low signal-to-noise ratio. This was

because the small periodic waves corresponding to the wing flapping of the honeybees

had a distinct frequency component at their wing-flapping frequencies, whereas the TFRs

of the drifting envelope waves were almost flat in the frequency range for peak frequency
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detection because they did not have any specific frequency component. Their peak fre-

quencies were not apparently observed in both the averaged TFRs for “bee 1” and “bee 2”

for 64×64 input images because the locations of the selected ROIs fluctuated pixelwise at

every frame. These fluctuations are not negligible in pixel-level digital signal processing

when one pixel is similar or larger than the size of honeybee in the 64×64 input images.

The spatial resolution of a honeybee in an image was inversely proportional to its distance

from the camera. Honeybees at a distance of 24 m from the camera could be detected in a

1024×1024 image using pixel-level STFTs, which corresponded to a 9.6×9.6 m area with

a 9.7 mm pixel pitch. This was because honeybees at a distance of 1.5 m from the camera

were detected in 64×64 images, which corresponded to a 0.6×0.6 m area with the same

pixel pitch.

These evaluation results indicate that honeybee tracking can be robustly executed by

extracting around flying honeybees in an HFR video using the 1st pixel-level STFTs for

vibration source localization, independent of the image resolution. In the meantime, input

images with a certain spatial resolution, in which honeybees are apparently observed, are

required for the 2nd pixel-level STFTs to stably obtain the frequency responses of flying

honeybees to determine their flying activities.

5.5 Honeybee tracking experiment
To verify the trajectories and flying activities of honeybees in outdoor scene, 1024×1024

(M = N = 1024) input images, captured at 500 fps with a 0.5-ms camera exposure for

14 seconds, were analyzed with our activity sensing algorithm. We captured the 500-fps

video of 1024×1024 pixels for the same scene in a 0.6×0.6-m-area around their beehive

in a cluttered outdoor location as that had been analyzed in Subsection 5.4; one pixel

corresponded to 0.6 mm. The parameters in our algorithm were set to the same ones as

those set when M = N = 1024 in Subsection 5.4. In the experiment, most of the flying
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honeybees were wing-flapping at frequencies below the Nyquist frequency at 250 Hz.

Figure 5.7 shows (a) the 1024×1024 input image I(x, y, t) at t = 0 s, (b) the xy-

trajectories of the labeled honeybees lx(t) for t = 0–14 s, and (c) the flapping frequencies

of the labeled honeybees l fA(t). In (b), the labels of “bee 1”–“bee 10” indicate the in-

dexes in the labeling with moment feature accumulation. These indexes were updated as

those of their nearest honeybees at the previous frame; abandoned indexes that were not

assigned at the current frame, were reused when a newly labeled honeybee did not corre-

spond with any labeled honeybees at previous frame. Each xy-trajectory involves many

temporally-disconnected trajectories of different honeybees, because the duration times of

their trajectories were mostly less than one second and several trajectories were crossed

over each other. The peak frequencies of the labeled honeybees in (c) were color-mapped

as their flapping frequencies along their trajectories.

It can be observed that there are many complex-shape trajectories of honeybees

around their beehive, whereas there are gentle curved trajectories of honeybees in the

horizontal direction at distant places from their beehive. Here, these trajectories did not

involve the movements of the flying honeybees in the depth direction, because our method

was limited to 2-D measurements in the horizontal and vertical directions. The complex-

shape trajectories corresponded to those of honeybees hovering around their beehive, and

the flapping frequencies on the trajectories were mostly over 220 Hz; most of them entered

their beehive with hovering for a certain time when they flew back to their beehive. In

this experiment, most of the gentle curve trajectories at distant places from their beehive

corresponded to the honeybees which flew back to their beehive. The flapping frequen-

cies on the horizontal trajectories at distant places were mostly less than 200 Hz, because

the flapping frequencies of honeybees decreased for them to land at their beehives. The

flapping frequencies were uncertain at several segments on the honeybee trajectories due

to the unstable TFRs in brightness with the crosstalk background patterns and the trans-

parency of honeybee wings. We note that the wing-flapping of a honeybee at a frequency
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above the Nyquist frequency is undersampled as the low-frequency alias. If a honeybee

is flying with wing-flapping in the range from 250 to 300 Hz in a 500-fps video, it is de-

tected as an undersampled component in the range from 200 to 250 Hz; it is distinctively

separable from the background DC component in vibration source localization.

Figure 5.8 shows (a) the 64×64-input images l(x′, y′, t) in the tracked ROI around

“bee 2”, (b) the vibration pixels lV(x′, y′, t) and (c) the peak frequencies l fpk(x′, y′, t) in

the tracked ROI, (d) the time-transient averaged TFR lA(t) in the range of 62.5 to 250 Hz,

(e) the apparent flying speed |lu(t)|=|d lx(t)/dt| and flapping frequency lfA(t) of the labeled

honeybee, and (f) the flapping frequency color-mapped on its xy-trajectory when “bee 2”

flew back to its beehive from right to left for t = 6.36–6.96 s; (a)–(c) were obtained at

intervals of 0.20 s, and the moving averages of the speeds and flapping frequencies among

continuous 10 frames were plotted in (e).

In Figure 5.8, the apparent flying speed of the honeybee decreased from 3.3×103 pixel/s

at t = 6.36 s to 2.7×102 pixel/s at t = 6.96 s in the input images. The apparent speeds

correspond to 2.0 and 0.14 m/s, respectively, around its beehive when the velocity com-

ponents in the depth direction are ignored; the actual speeds of the honeybees flying in

3-D space are larger than these apparent speeds. It can be observed that a flying honey-

bee was always in the tracked 64×64 ROI images, and the vibration pixels were detected

around its flapping wings by detecting the peak frequencies in the tracked ROI. Compared

with the results in Figure 5.3(b), the vibration pixels have no comet-like shape because

the latency effect in digital signal processing when observing fast-flying honeybees was

remarkably reduced in the tracked ROI images by canceling the translational movements

of honeybees in the original input images. Corresponding to the wing-flapping frequency

of the honeybee, a significant frequency component around 175 Hz was observed in the

averaged TFR when the honeybee was flying at 1 m/s or more. Its peak frequency was

fluctuated for t = 6.65–6.85 s because the crosstalk in the averaged TFR was generated

by apparently-moving background patterns in the tracked ROI images.
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In a similar manner, Figure 5.9 and 5.10 show (a) the tracked ROI images, (b) the

vibration pixels, (c) the peak frequencies, (d) the averaged TFR, (e) the honeybee speed

and flapping frequency, and (f) the xy-trajectory with flapping frequency when “bee 1”

was hovering around its beehive for t = 7.64–8.24 s, and when “bee 1” took off and

flew away from its beehive for t = 8.82–9.12 s, respectively; the honeybee labeled as

“bee 1” in Figure 5.9 was different from that labeled as “bee 1” in Figure 5.10. When

the velocity components in the depth direction are ignored, the apparent flying speed of

a honeybee when hovering in Figure 5.9 was less than 1.6×102 pixel/s, corresponding

to 0.10 m/s in the actual scale. The apparent speed when flying away in Figure 5.10

increased from no translation at t = 8.82 s to 7.2×103 pixel/s at t = 9.12 s in input images,

corresponding to 4.3 m/s in the actual scale. In both cases, flying honeybees were stably

tracked in the ROI images, and the vibration pixels were detected around their flapping

wings as well as those in Figure 5.8. The flapping frequency when a honeybee was

hovering was around 235 Hz in Figure 5.9, and that when a honeybee flew away from its

beehive in Figure 5.10 increased from 150 to 205 Hz. The peak frequency in Figure 5.10

was misdetected for t = 8.82–8.85 s and 8.92–8.98 s with background crosstalk in the

tracked ROI images. It can be observed that the flapping frequency of a honeybee time-

varied depending on its flight status; the largest flapping frequency was observed when

the honeybee was hovering, followed by that when the honeybee was flying away from

its beehive, and that when the honeybee was flying back to its beehive.

These experimental results show that our HFR-video-based algorithm has pixel-

level acute sensitivity to localize and track small flying honeybees in a cluttered outdoor

scene where it is challenging for human eyes to discern them. It has the potential to quan-

tify individually the wing-flapping frequencies of flying honeybees at audio frequency

level, because it inspects their time-varying TFRs in all the tracked ROIs as their flight

activity indexes.
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5.6 Concluding remarks
In this chapter, we proposed a novel honeybee activity sensing algorithm that can

track and quantify the vibration properties in brightness at the pixel around wing-flapping

honeybees by executing two-step pixel-level STFTs for an HFR video. We conducted

a tracking experiment for honeybees flying around their beehive in a cluttered scene by

analyzing 1024×1024 images captured at 500 fps, and demonstrated the discriminative

ability of the HFR video to detect the flapping frequencies of honeybees at hundreds of

Hertz in the frequency range below 250 Hz as their flight activities, as well as its pixel-

level localization ability for individual honeybees. Considering the frequency spectrum

peaks are broad and their time-varying peak frequencies when different types of flying

insects are observed in an HFR video, we intend to improve our algorithm to distinguish

honeybees by collecting and analyzing both their appearances and time-varying frequency

spectrums using machine learning technology for pattern recognition. We also intend to

use an HFR video at thousands of fps such that the Nyquist frequency is much larger than

the wing-flapping frequencies of insects to be observed, and develop a real-time HFR

camera dedicated to long-time honeybee activity sensing by using graphic processing

units to accelerate the computational speed of pixel-level STFTs in our algorithm.
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Figure 5.1: Concept of pixel-level flight activity sensing method
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(a) input images

(b) vibration pixels

(c) locations of selected ROIs

Figure 5.3: Input images, candidate vibration pixels, and selected ROIs for honey-
bees in sensitivity evaluation.
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(a) bee 1

(b) bee 2

Figure 5.4: Magnified ROI images in sensitivity evaluation.
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(a) bee 1

(b) bee 2

Figure 5.5: Averaged TFRs in the selected ROI images in sensitivity evaluation.
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(a) original input images

(b) tracked ROI images

Figure 5.6: Temporal changes in image intensities in sensitivity evaluation.

Figure 5.7: xy-trajectories and flapping frequencies of labeled honeybees in 14 sec-
onds.
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(a) tracked ROI images

(b) vibration pixels in the tracked ROI

(c) peak frequencies in the tracked ROI

(d) time-transient averaged TFR
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(e) apparent flying speed and flapping frequency

(f) flapping frequency mapped on 0.60-s xy-trajectory

Figure 5.8: Tracked ROI images and flying activities when “bee 2” flew back to its
beehive for t = 6.36–6.96 s.
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(a) tracked ROI images

(b) vibration pixels in the tracked ROI

(c) peak frequencies in the tracked ROI

(d) time-transient averaged TFR
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(e) apparent flying speed and flapping frequency

(f) flapping frequency mapped on 0.60-s xy-trajectory

Figure 5.9: Tracked ROI images and flying activities when “bee 1” was hovering
around its beehive for t = 7.64–8.24 s.
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(a) tracked ROI images

(b) vibration pixels in the tracked ROI

(c) peak frequencies in the tracked ROI

(d) time-transient averaged TFR
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(e) apparent flying speed and flapping frequency

(f) flapping frequency mapped on 0.30-s xy-trajectory

Figure 5.10: Tracked ROI images and flying activities when “bee 1” flew away from
its beehive for t = 8.82–9.12 s.





Chapter 6

Conclusions

In this study, to realize the visualization of vibration information from target objects

whose dynamics property can be obtained by converting the time-varying signal measured

by an audio or vibration sensor into a frequency in the frequency domain. Moreover, we

developed a high-speed-vision-based pixel-level vibration spectrum imaging system in

which STFTs and digital filters were implemented in parallel for the time-varying signals

of all the pixels.

We proposed three concepts for the pixel-level vibration spectrum imaging. The

total concept is the pixel-level vibration spectrum imaging method. When a vision system

operates at a sufficiently high frame rate, temporal periodic changes can be observed

in the brightness signals at the pixels around vibrating objects corresponding to their

vibration’s dynamic properties in the audio frequency range. The brightness signals’

dynamic properties can be quantified in the form of a pixel-level distribution by converting

the brightness signals for all the pixels of the HFR images into their temporal frequency

responses using STFT. This method expands two types of applications for flying objects.

The first application proposes a fast algorithm for vision-based vibration source lo-

calization for flying multi-copter that can detect vibration sources at hundreds of Hertz by

inspecting time-varying brightness signals at each pixel in HFR images. Our algorithm

can significantly reduce the computational complexity of pixel-level digital filters for vi-
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bration source localization by virtually adjusting the sampling rate to twice the vibration

frequency of a target object to be tracked using downsampled HFR images with frame

interpolation while locking in vibration frequency for tracking objects.

The second application is pixel-level flight activity sensing method by utilizing

pixel-level vibration source localization and vibration spectrum imaging for flying hon-

eybee. This concept shows the flight activity sensing that can track and quantify the

vibration properties in brightness at the pixel around wing-flapping honeybees by execut-

ing two-step pixel-level STFTs for an HFR video. In several experimental results, flying

honeybees in 1024×1024 images captured at 500 fps demonstrate that, even when the im-

age region of the honeybee is low resolution, robust tracking can be achieved with activity

sensing in the frequency range up to 250 Hz, which is the Nyquist frequency when we

analyze a 500 fps video. The trajectory of a detected and labeled honeybee is monitored

with the peak frequency of these tracked STFTs as its flight activity.

This pixel-level STFT function for high-frame-rate images at 1000 fps or greater is

accelerated through its parallel-implementation on a GPU-based high-speed vision sys-

tem, and vibration spectrum images of 512×512 pixels can be obtained in real-time at

more than 50 fps. Its effectiveness was shown through several verification experiments,

including the vibration results for a fan, multi-copter, and guitar string, flying honeybee,

which had rotating or vibrating frequencies in the range of hundreds of Hz. These results

can show the possibility of applying for a real filed monitoring system.

The following issues remain to be solved in the future. The detection frequency

resolution is an issue when they use high-speed vision at hundreds and thousands of fps.

As we mentioned the Nyquist frequency and STFT samples, we determined frequency

resolution between these relationships. After detecting target frequency in the proposed

method, we implemented frame-locking into a target frequency to adjust the high accu-

racy of frequency resolution using the down-sampling method. Although we succeeded

in developing a real-time vibration imaging system at 2000 fps, there is much higher
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frequency’s phenomena that relate a natural frequency, a resonant frequency, and a chat-

tering frequency and so on than 1000 Hz in several fields such as milling process and

motor control process. Then, we need to plan to develop a real-time ultrafast vibration

imaging system at 10000 fps or more. We also intend to develop a real-time HFR camera

dedicated to long-time sensing by using GPU to accelerate the computational speed of

pixel-level STFTs in our algorithm. Furthermore, we also plan to research mechanical

vibration analysis, structural inspection, and biological dynamics inspection as applied

research on real-time vibration spectrum imaging in future works.





Appendix

Onsite project in TAOYAKA program

Overview of our onsite team project

In this section, I summarize the activity of the Onsite-Team-Project in the TAOY-

AKA program, which was held from April 2018 to March 2019. I belong to the TAOY-

AKA program, which promoted how to learn reverse innovation during my master and

Ph.D. course at Hiroshima University. In the TAOYAKA program, we made a group of

Onsite-Team-Project consisting of three members, which take up the challenge resolving

multicultural coexistence issues in a disadvantaged area, from amultilateral perspective of

cultural creation, technical creation, and social implementation. Our Onsite-Team-Project

focused on mobile application based rural development to promote sightseeing in Iinan

town in Shimane prefecture. The sightseeing of hilly and mountainous areas had an es-

sential role in Japan. However, it faces the common issues such as lack of labor and aging

of labor and lack of tourists. As the Japanese government would like to implement revi-

talization efforts outside of Tokyo, this area is drastically declining in population, which

has affected the economy and the social situation. Aging Population of Iinan Town, the

population is significantly growing in elderly residents. Our team has identified that Iinan

Town would greatly benefit from a social and economic revitalization project due to its

population decline, low level of tourism, and current economic situation. We proposed
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the social and economic revitalization of Iinan Town community through the develop-

ment and implementation of a mobile application using Augmented Reality (AR) with

embedded video camera and geolocation. It allows players to visit various rural com-

munity tourist spots and interact with rural community members by playing game story

(currently prototype stage).

This mobile application is explained as follows: When the player launches this ap-

plication, a mystery map launches the phone’s GPS, which will then provide directions to

the mystery rural town tourist spots. Players can see these cats only by looking through

this application interface. Different interactions allow you to befriend the virtual character

cats. When the player visits the tourist spot and scans the QR code at the tourist location,

a cat then appears through AR. The Players visit the tourist spots to learn more about how

to befriend the cats and find them by talking with community members. The objective of

this application is for players from all over Japan to visit the rural community to interact

with locals while visiting tourist spots and spend money within the community. More-

over, we propose the sustainable application development through the mobile application

to focus on tourism regarding young generation education and I-turn and U-turn to in-

crease the population. Increasing tourism in rural communities not only boosts the social

interaction among the elderly in the community but will possibly boost the economy of

the community.

For my part as a member of the Onsite-Team-Project, I assisted with the devel-

opment of a mobile application game using AR technology with integrated geo-location

tagging software to promote tourism, economic growth, and stimulate social interaction

for Iinan Town. Our team cooperated with the University of Texas at Dallas, Narrative

Systems laboratory in the USA.

Through this activity, I suggested that we promote a programming school as this

mobile application can be a sustainable development for the local community.

If local people continue to develop this application, they can get the benefits to pro-
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Figure A.1: Our prototype mobile application and future extension

mote tourism and expand IT Start-up companies and IT education development through

programming schools to stimulate their local economy. When they recruit a game from

a local school story after getting programming skills, they can implement a virtual enter-

tainment park with plenty of natural resources.

We purchased embedded systems for education kits and AI sticks such as NVIDIA

jetson tx2 and Intel Movidius stick in order to promote education for programming skills.

We applied YOLO (You Only Look Once) [150], which is a kind of AI technology-based

object recognition and localization. We can easily assign the AR object with this technol-

ogy because it includes appearance feature-based recognition and localization. Figure 6

shows that our proposed prototype application and future extension of an example of

object recognition and gender and age classification [151] using convolutional neural net-

works with embedded systems. Local people can expand AR mobile applications with

this equipment because programming skills implemented these technologies. Program-

ming skills can expand the future application.
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Future onsite implementation

Through the above activity, we have plans for future onsite implementation com-

bining this study’s technology. Advanced mobile phone camera technology, which can

capture images in hundreds of frames per second, can be used in disadvantaged areas such

as rural communities with none or insufficient electric infrastructures. For example, rural

areas have old structures such as houses and bridges to inspect manually for foundation

stability. Although there are not many infrastructural engineers within these rural areas.In

this situation, having a more straightforward method to inspect the stability of their foun-

dations, infrastructure, and monitoring systems are very important for rural community

members. Introducing an HFR video analysis that can extract pixel-level temporal fre-

quency responses at hundreds of Hz or more, for structure, health inspection, and even

monitoring, it would be a huge benefit to rural communities in Japan. It indicates that

a cellular phone with an HFR video camera can function as a convenient mobile struc-

ture inspection system by implementing a cloud service-based software application for

pixel-level temporary frequency analysis via the internet.

As we proposed a mobile application with geolocation, we can distribute efficient

inspection through sightseeing activity using location map in some event. Additionally

I would like to promote developing an automatic honeybee monitoring system using our

proposed method in a disadvantaged area that has plenty of flower resources.

As we explained about CCD in chapter 5.1, CCD has become a severe social prob-

lem that causes significant economic losses to agricultural business because honeybees

pollinate many crops. The number of honeybees is remarkably decreasing due to var-

ious issues such as enemy invasion and some disease, but the demand for honeybee is

increasing in various fields such as the Agricultural field and medical field.

Although there is a significant demand for honeybee for management, it’s challeng-

ing to monitor their activity and condition remotely. The younger generation and elderly

people can also manage honeybee monitoring using automated honeybee activity moni-
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Figure A.2: Future onsite implementation for honeybee monitoring

toring technology. Figure 6 shows that our proposed system for honeybee monitoring can

inform beekeepers using the mobile application when some incidents happen. When they

can monitor which beehive is active or non-active and which beehive is attacked or not,

they can manage the beehive more easily. If they utilize the honeybee monitoring system,

they will make nutritious honey and their agricultural, economic, and health benefits more

efficient. These plans have a sustainable possibility for onsite reverse innovation.
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