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Abstract

For analysis of complicated networks, we often use the graphs, consisting of the node set and the edge set. It

is known that computing of the distance of all pairs of nodes of the graph helps us analyzing. For example,

the diameter of a graph is defined by the minimum distance among the distance of all pairs of nodes of the

graph, and this values is useful to evaluate network latency. The Floyd-Warshall algorithm is a well-known

algorithm to compute the distance of all pairs of nodes of a graph, and its complexity is O(n3), where n is the

number of nodes. The Blocked Floyd-Warshall algorithm, a variant of the Floyd-Warshall has been proposed

to accelerate the Floyd-Warshall algorithm by means of a GPU architecture. A GPU (Graphics Processing

Unit) is a specialized circuit designed to accelerate computation for building and manipulating images. Latest

GPUs are designed for general purpose computing and can perform computation in applications traditionally

handled by the CPU. GPUs have recently attracted the attention of many application developers.

The first contribution of this thesis is to propose efficient parallel implementations of the Blocked Floyd-

Warshall algorithm, and evaluate their capability through computing experiment. The previously published

GPU implementations for the Blocked Floyd-Warshall algorithm perform many separated kernel calls for

costly barrier synchronization. This thesis proposes GPU implementations, which performs no barrier syn-

chronization and invokes only one kernel call. The previously published GPU implementations are called

by multiple kernel implementation, and the implementation proposed in this thesis is called by single kernel

one. Experimental results using NVIDIA Tesla V100 GPU show that our implementation runs up to 1.31

times faster than the previously published one. Our implementation with SIMD (Single Instruction, Multi-

ple Data) functions also runs up to 1.28 times faster than it. Secondly, this thesis proposes efficient GPU

implementations to execute the Blocked Floyd-Warshall algorithm for many graphs at the same time. A

bulk computation of a sequential algorithm is to execute it for many independent inputs in turn or in paral-

lel. From the experimental results, single kernel implementation runs up to 1.60 times faster than multiple

kernel one. In terms of implementations with SIMD functions, the single kernel implementation runs up to

1.89 times faster than it. Also the low-latency implementations for many graphs are proposed. Finally, the

parallel Floyd-Warshall algorithm is implemented on the multicore processors.

Several important tasks, including matrix computation, signal processing, sorting, dynamic programming,

encryption and decryption can be performed by oblivious sequential algorithms. A sequential algorithm is

oblivious if an address accessed at each time does not depend on the input data. The second contribution

of this thesis is to present a time-optimal implementation for bulk computation of an oblivious sequential

algorithm. This paper presents a tool, named C2CU, which automatically generates a CUDA C program

for a bulk computation of an oblivious sequential algorithm. The C2CU has been used to generate CUDA

C programs for the bulk computation of the bitonic sorting, Floyd-Warshall, and Montgomery modulo

multiplication algorithms. Compared to a sequential implementation on a single CPU, the generated CUDA

C programs for the above algorithms run, respectively, 199, 54, and 78 times faster.
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Chapter 1

Introduction

A Graphics Processing Unit (GPU) is a specialized circuit designed to accelerate computation or building

and manipulating images [21]. The most recent GPUs are designed for general purpose computing and can

perform computation in applications traditionally handled by the CPU. Hence, GPUs have recently attracted

the attention of many applications developers [21]. NVIDIA provides a parallel computing architecture

called CUDA (Compute Unified Device Architecture) [41], the computing engine for NVIDIA GPUs. CUDA

gives developers access to the virtual instruction set and memory of the parallel computational elements in

NVIDIA GPUs. In many cases, GPUs are more efficient than multicore processors, since they have hundreds

of processor cores and very high memory bandwidth [16,48,49].

The Floyd-Warshall algorithm [9,12,53] is a well-known dynamic programming algorithm to compute the

distance (or the length of a shortest path) of all pairs of nodes in a directed graph. Let n denote the number

of nodes of a directed graph. More specifically, A(i, j) (0 ≤ i, j ≤ n−1) represents the length of directed edge

(i, j) for the adjacency matrix A of given directed graph. The Floyd-Warshall algorithm outputs the distance

matrix D such that each D(i, j) is the length of a shortest path from node i to j. Though its time complexity

is O(n3), it has many applications. For example, it can be used to compute the diameter and the Average

Shortest Path Length (ASPL) of a directed graph [37]. If the algorithm is implemented on the GPU as it is,

n kernel calls are necessary for barrier synchronization. To accelerate the computation of the Floyd-Warshall

algorithm, the Blocked Floyd-Warshall algorithm [52] has been implemented on the GPU [25,27,43]. In the

Blocked Floyd-Warshall algorithm, the distance matrix D is partitioned into n
W ×

n
W tiles of size W ×W

each. Usually, W = 32 is selected to manipulate a tile of size 32 × 32 using several warps of 32 threads

each. Basically, a CUDA block is assigned to a tile and works for updating the values in it. Their GPU

implementations of the Blocked Floyd-Warshall algorithm involve n
W iterations of 3 kernel calls each. Thus, it

invokes 3 n
W kernel calls and so we call it the multiple kernel implementation. Also, the first kernel call of each

iteration uses only one CUDA block, and so parallelism of it is quite low. The researchers have implemented

the parallel Floyd-Warshall algorithm on the GPU [8, 20, 31, 44, 56]. Furthermore, some implementations

on other architectures are proposed. Abdelghany K, et al. [1] have present a parallel implementation using
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multiprocessors, and Bondhugula U. et al. [7] have proposed an FPGA implementation. Also, Han S-C

et al. [18] have proposed a CPU implementation using SIMD instructions. Accelerated algorithms [15,19,55]

to find all-pairs shortest paths are proposed. There are a lot of work [30, 46] for the Single-Source Shortest

Path problem.

The first main contribution of this thesis is to present efficient implementations of the Blocked Floyd-

Warshall algorithm that we call the single kernel implementation. We use the Single Kernel Soft Synchroniza-

tion (SKSS) technique [11,17], which we have presented to execute dynamic programming algorithm on the

GPU efficiently. It performs only one kernel call, and CUDA blocks are assigned to tiles dynamically. It has

no barrier synchronization by separated kernel call, more CUDA blocks work in parallel and so parallelism

is high. The experimental results for graphs with n = 256, 512, . . . , 32768 nodes show that our implemen-

tation is 1.05-1.31 faster than the previously published implementation on NVIDIA Tesla V100 GPU. Our

implementation with SIMD functions runs also 1.00-1.28 times faster than it. Furthermore, we also propose

efficient GPU implementations to execute the Blocked Floyd-Warshall algorithm for many graphs at the

same time using the SKSS technique. From the experimental results for m = 8, 16, . . . , 1024 graphs with

n = 128, 256, . . . , 2048 nodes each, our implementation runs 1.03-1.60 times faster than the multiple kernel

implementation for many graphs. Our implementation with SIMD functions runs 1.01-1.89 times faster than

the multiple kernel implementation for many graphs.

We present the low-latency implementations of the Blocked Floyd-Warshall algorithm for many graphs on

NVIDIA Tesla V100 GPU. The low-latency implementation outputs the results 1.45-5.90 times faster than

multiple kernel implementation, and 1.38-5.87 times faster than the single kernel one. Also, the low-latency

implementation with SIMD functions outputs the results 1.11-2.43 times faster than multiple kernel one with

SIMD functions, and 1.07-2.36 times faster than single kernel one with SIMD functions. Furthermore, on

the multicore processors, we implement the parallel Floyd-Warshall algorithm. We show the experimental

results on Intel Skylate-X CPU.

The second contribution of this thesis is to show an implementation of the bulk execution of oblivious

sequential algorithms on the UMM. Our implementation runs in O(ptw + lt) time units using p threads on

the UMM with width w and latency l, where t is the running time of the corresponding oblivious sequential

algorithm. We also prove that this implementation is time-optimal in the sense that any implementation

takes at least Ω( ptw + lt) time units on the UMM.

As a second contribution, we propose the C2CU tool, which allows converting a sequential C program into

a CUDA C program. As the resulting CUDA C program makes coalescing memory access, even developers

with few knowledge of CUDA C programming and GPU architecture can automatically generate CUDA C

programs tailored for the bulk execution. To assess the performance of the C2CU generated programs, we

have measured the running time of the bulk execution of three oblivious sequential algorithms: (i) bitonic

sort [3, 4]; (ii) Floyd-Warshall algorithm [9, 13, 54]; and (iii) Montgomery modulo multiplication [6, 32, 47].

For this purpose, the aforementioned sequential algorithms have been written in C programming language.

These sequential implementations were then fed to the C2CU generator to produce the corresponding CUDA

2



C programs. The CUDA C programs have been executed on the GeForce GTX Titan GPU. Compared to

the sequential implementation, running on a single CPU, the bulk execution of the bitonic sort runs 199

times faster while the Floyd-Warshall algorithm and Montgomery modulo multiplication run, respectively,

54 and 78 times faster. These experimental results are quite surprising since over 100 times acceleration

have been obtained.

The bulk execution latency of the generated CUDA C implementation can be improved depending on the

execution pattern. Thus, the third contribution of this work is to propose a modified execution pattern of the

bulk execution so as to reduce latency. Experimental results show that, using the appropriate parameters,

latency of the bulk execution can be reduced without compromising the overall running time.
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Chapter 2

GPU Architecture

A Graphics Processing Unit (GPU) is a specialized circuit designed to accelerate computation for building

and manipulating images [21, 28, 50]. Latest GPUs are designed for general purpose computing and can

perform computation in applications traditionally handled by the CPU. Hence, GPUs have recently attracted

the attention of many application developers [21, 38, 39, 42, 51]. NVIDIA provides a parallel computing

architecture called CUDA (Compute Unified Device Architecture) [41], the computing engine for NVIDIA

GPUs. CUDA gives developers access to the virtual instruction set and memory of the parallel computational

elements in NVIDIA GPUs. In many cases, GPUs are more efficient than multicore processors [29], since

they have hundreds of processor cores and very high memory bandwidth. GPU has multiple streaming

multiprocessors (SMs) and the global memory. Each streaming multiprocessor has multiple cores and the

shared memory. The shared memory is an extremely fast, on-chip memory, with lower capacity, usually

16-48 Kbytes. The global memory is implemented as an off-chip DRAM, allowing it to have a large capacity,

currently about 1.5-6 Gbytes, but its access latency is very long. Hence, efficient usage of the shared memory

and the global memory is key for CUDA developers to accelerate applications using GPUs. Figure 2.1

illustrates the GPU hardware architecture. CUDA provides a hierarchy of thread groups: Kernel, CUDA

block, Thread.

When a kernel is executed, it launches CUDA blocks, in which the number is limited to the resources

of SMs. Note that CUDA blocks wait for being launched. When a CUDA block complete the computation

and SM has enough resources to launch CUDA blocks, the waiting CUDA blocks are launched. The order

of launched CUDA blocks is arbitrary. After all CUDA blocks complete the computation, the kernel halt.

We need to consider bank conflicts of the shared memory access and coalescing of the global memory

access [29, 39, 40]. The global memory access is coalescing if the continuous locations in address space of

the global memory are accessed in the same time. The address space of the shared memory is mapped into

several physical memory banks. If two or more threads access the same memory bank at the same time, the

access requests are processed in turn. The shared memory access is bank conflicts if two or more threads

access the same memory bank at the same time.
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Hence, to maximize the memory access performance, CUDA threads should access distinct memory banks

to avoid bank conflicts. To maximize the bandwidth between the GPU and the DRAM chips, the consecutive

addresses of the global memory must be accessed at the same time. Thus, CUDA threads should perform

coalesced access when reading/writing to/from the global memory.

In [35], the authors have introduced two models, the Discrete Memory Machine (DMM) and the Unified

Memory Machine (UMM), which reflect the essential features of the shared memory and the global memory

of CUDA-enabled GPUs. Since the DMM and the UMM are promising as theoretical computing models for

GPUs, several efficient algorithms on the DMM and the UMM are published in [23, 33, 34, 36]. Figure 2.3

illustrates the architectures of the DMM and the UMM. The UMM and the DMM have three parameters:

(i) the number p of threads; (ii) width w; and (iii) memory access latency l. Each thread is a Random

Access Machine (RAM) [2], which can execute fundamental operations in a time unit. Threads are executed

in SIMD [14] fashion, and run on the same program and work on the different data. The p threads are

partitioned into p
w groups of w threads each, called warp. The p

w warps are dispatched for the memory

access in turn, and w threads in a dispatched warp send memory access requests to the memory banks (MBs)
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Figure 2.3: The architectures of the DMM and the UMM with width w = 4.

through the memory management unit (MMU). The MMU can be viewed as a multistage interconnection

network in which memory access requests are moved to destination memory banks in a pipeline fashion.

MBs constitute a single address space of the memory. A single address space of the memory is mapped to

the MBs in an interleaved way such that a word of data of address i is stored in the (i mod w)-th bank,

where w is the number of MBs. The main difference of the two architectures is the connection of the address

line between the MMU and the MBs, which can transfer an address value. In the DMM, the address lines

connect the MBs and the MMU separately, while a single address line from the MMU is connected to the

MBs in the UMM. Hence, in the UMM, the same address value is broadcast to every MB, and the same

address of the MBs can be accessed in each time unit. On the other hand, different addresses of the MBs

can be accessed in the DMM. Since the memory access of the UMM is more restricted than that of the

DMM, the UMM is less powerful than the DMM. In this work we consider the UMM. As a consequence, the

implementations resort only to global memory access.

On evaluating the performance of algorithms on the UMM, four parameters are considered: (i) the size

n of the input; (ii) the number p of threads; (iii) the width w; and (iv) the latency l of the memory access.

The width w is the number of the MBs as well as the number of threads in a warp. The latency l is

the number of time units to complete the memory access. In [34], we have shown that the prefix-sums

of n numbers can be computed in O( nw + nl
p + l log n) time units. Intuitively, a sequential algorithm is

oblivious if an address accessed at each time unit is independent of the input. For example, the prefix-sums

of an array b of size n can be computed by executing b[i] ← b[i] + b[i − 1] for all i (1 ≤ i ≤ n − 1) in

turn. This prefix-sum algorithm is oblivious because the address accessed at each time unit is independent
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of the values stored in b. The readers may think that the oblivious memory access is too restricted and

that most useful algorithms are not oblivious. However, many important and complicated tasks, including

matrix computation, signal processing, sorting, dynamic programming, and encryption/decryption, can be

performed by oblivious sequential algorithms.

As defined in [49], the bulk computation of a sequential algorithm is to execute it for many different

inputs in turn or in parallel. For example, suppose that we have p arrays, b0, b1, . . . bp−1, of size n each. We

can compute the prefix-sums of each bj (0 ≤ j ≤ p − 1) by executing the prefix-sum algorithm on a single

CPU in turn or concurrently on a parallel computer. The bulk computation has many applications. Indeed,

the conventional FFT algorithm [9] for n points, running in O(n log n) time, is oblivious. In practical signal

processing, an input stream is equally partitioned into many blocks, and the FFT algorithm is executed for

each block in turn or concurrently. This is exactly the bulk computation of the FFT algorithm. Many works

have been devoted to develop and implement parallel algorithms for a single input [21]. A single-input, effi-

cient GPU implementation for the bitonic sort has been presented in [26]. An efficient GPU implementation

of the Floyd-Warshall algorithm for a single, large-input graph, has been considered in [10,24]. However, to

the best of our knowledge, there is no efficient GPU implementation for the bulk computation of the above

algorithms in the literature.
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Chapter 3

Computing of All-Pairs Shortest

Paths of a Graph

3.1 The Floyd-Warshall algorithm and The Blocked Floyd-Warshall

Algorithm

In this section, we introduce Floyd-Warshall [9, 13,54] and Blocked Floyd-Warshall Algorithm [52].

Suppose that an n × n array D is initialized by the adjacency matrix A of an input directed graph G.

We describe the (Parallel) Floyd-Warshall algorithm in Algorithm 1.

Algorithm 1 (Parallel) Floyd-Warshall algorithm

for k ← 0 to n− 1 do

for i← 0 to n− 1 do in parallel

for j ← 0 to n− 1 do in parallel

D[i][j]← min{D[i][j], D[i][k] +D[k][j]}

end for

end for

end for

For the for-loop with counter k, the Floyd-Warshall algorithm updates the value of each D[i][j] so as to

store the length of a shortest path from node i to j with intermediate nodes 0, 1, . . ., k in D[i][j]. Hence,

after it evaluates min{D[i][j], D[i][k]+D[k][j]}, the value of D[i][k]+D[k][j] is the length of a shortest path

from node i to j via node k with intermediate nodes 0, 1, . . ., k − 1. Also, D[i][j] is stored the length of a

shortest path from node i to j with intermediate nodes 0, 1, . . ., k − 1. Thus, the algorithm computes the

distance matrix D correctly in O(n3) time. We also can execute for-loops with counter i and j in parallel.

The Blocked Floyd-Warshall Algorithm [52] is a modification of the Floyd-Warshall algorithm. This

algorithm inputs G = (V,E), the distance D : V × V → R and a positive integer W , and is similar to the

8



3.1 The Floyd-Warshall algorithm and The Blocked Floyd-Warshall Algorithm

Floyd-Warshall Algorithm. It divides D into n
W ×

n
W tiles, of size W ×W , each. It repeats computation of

tiles. Let DI,J denote a tile in the I-th row and J-th column. The Blocked Floyd-Warshall Algorithm is

described in Algorithm 2. To update the values of tile P of size W ×W , it calls procedure T (P,Q,R) for

tiles P , Q, and R.

Algorithm 2 Blocked Floyd-Warshall algorithm

for Z ← 0 to n
W − 1 do

T(DZ,Z , DZ,Z , DZ,Z) ▷ Computation of a pivot tile DZ,Z

for X ← 0 to n
W − 1 and X ̸= Z do

T(DX,Z , DX,Z , DZ,Z) ▷ Computation of a pivot column tile DX,Z

end for

for Y ← 0 to n
W − 1 and Y ̸= Z do

T(DZ,Y , DZ,Y , DZ,Z) ▷ Computation of a pivot row tile DZ,Y

end for

for X ← 0 to n
W − 1 and X ̸= Z do

for Y ← 0 to n
W − 1 and Y ̸= Z do

T(DX,Y , DX,Z , DZ,Y ) ▷ Computation of a non-pivot tile DX,Y

end for

end for

end for

procedure T(P,Q,R) ▷ /* P , Q and R are W ×W tiles. */

for k ← 0 to W − 1 do

for i← 0 to W − 1 do

for j ← 0 to W − 1 do

P [i][j]← min{P [i][j], Q[i][k] +R[k][j]}

end for

end for

end for

end procedure

Suppose that Z = c. Tile Dc,c is called a pivot tile, and DI,c with I ̸= c (Dc,J with J ̸= c) is called a

pivot column tile (pivot row tile, respectively). Also DI,J with I ̸= c and J ̸= c is called a non-pivot tile.

Figure 3.1 illustrates pivot tiles, pivot column tiles, pivot row tiles and non-pivot tiles of Blocked Floyd-

Warshall Algorithm when n
W = 4. For example, D0,0 is a pivot tile if Z = 0, and it is a non-pivot tile if

Z = 1.

Each execution of the for-loop with counter Z updates D such that each D[i][j] stores the length of

a shortest path from node i to j with intermediate nodes 0, 1, . . ., WZ − 1. Thus, the Blocked Floyd-

Warshall algorithm simulates the Floyd-Warshall algorithm and computes the distance matrix D correctly.
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3.2 GPU implementations of the Blocked Floyd-Warshall algorithm
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Figure 3.1: Pivot tiles, pivot column tiles, pivot row tiles and non-pivot tiles of Blocked Floyd-Warshall

Algorithm when n
W = 4. Note that tZ(X,Y ) is a task to execute procedure T (DX,Y , D∗,∗, D∗,∗), for any

loop counter Z.

Let tk(X,Y ) denote a task to execute procedure T (DX,Y , D∗,∗, D∗,∗), which updates the values of DX,Y

when the value of loop counter Z is k. In Figure 3.1, we illustrate the computation performed by Blocked

Floyd-Warshall algorithm for n
W = 4. The computation cost of procedure T for tiles of size W×W is O(W 3).

Thus, that of the Blocked Floyd-Warshall algorithm is n
W (1+2( n

W −1)+( n
W −1)2) ·O(W 3) = O(n3), which

is the same as the Floyd-Warshall algorithm.

3.2 GPU implementations of the Blocked Floyd-Warshall algo-

rithm

This section first explains the implementation of the computation of procedure T (P,Q,R) by a CUDA

block. We then go on to explain previously published implementation [27] that we call the multiple kernel

implementation. Finally, we present our implementation called the single kernel implementation.

To explain the GPU implementations, we introduce memories in the NVIDIA GPUs. CUDA uses two

types of memories in the NVIDIA GPUs: the shared memory and the global memory [41]. The shared

memory is an extremely fast on-chip memory with lower capacity, say, 16-48 Kbytes. The global memory is

implemented as an off-chip DRAM, and thus, it has large capacity, say, 1.5-6 Gbytes, but its access latency is

very long. The efficient usage of the shared memory and the global memory is a key for CUDA developers to

accelerate applications using GPUs. In particular, we need to consider the coalescing of the global memory

access [40]. To maximize the bandwidth between the GPU and the DRAM chips, the consecutive addresses

of the global memory must be accessed at the same time. Thus, CUDA threads should perform the coalesced

access when they access the global memory.
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Figure 3.2: The multiple kernel implementation executes Kernel A, B and C when n
W = 4

3.2.1 The computation of T (P,Q,R) by a CUDA block

We assume that W ×W matrices P , Q, and R are stored in the global memory. Without loss of generality,

we assume that W = 32. We use a CUDA block of 32c threads, where c (1 ≤ c ≤ 32) is an integer parameter

which can be selected to maximize the performance. The computation of procedure T (P,Q,R) can be done

in three steps.

Step 1 Copy P , Q, and R in the global memory to the shared memory.

Step 2 Call procedure T (P,Q,R).

Step 3 Copy the resulting values of P back to the global memory.

The space to load the values of P , Q and R are arranged in the shared memory or registers of 32c threads.

We describe the detail as follows:

(S1) The case that P is a pivot tile. To call procedure T (DZ,Z , DZ,Z , DZ,Z), the values of DZ,Z are stored

in memory of size W ×W , allocated on the shared memory.
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Figure 3.3: The task graph of the Blocked Floyd-Warshall algorithm when n
W = 4

(S2) The case that P is a pivot column or row tile. To call procedure T (DX,Z , DX,Z , DZ,Z) and procedure

T (DZ,Y , DZ,Y , DZ,Z), the values of DX,Z (or DZ,Y ) and DZ,Z are stored in memory of size 2 ·W ×W ,

allocated on the shared memory.

(S3) The case that P is a non-pivot tile. To call procedure T (DX,Y , DX,Z , DZ,Y ), the values of DX,Z and

DZ,Y are stored in memory of size 2 ·W ×W , allocated on the shared memory. The values of DX,Y

are stored in registers of 32c threads to accelerate the computation.

The Parallel Floyd-Warshall algorithm is executed using 32c threads such that each thread works for

updating W×W
32c = 32×32

32c = 32
c elements in X. Since the resulting value of an element in P is never used for

computing the other elements in P , P can be arranged in registers of threads.

The values of D in each tile are allocated in consecutive addresses on the implementations. When threads
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3.2 GPU implementations of the Blocked Floyd-Warshall algorithm

access W ×W = 32× 32 values in P , the implementations can perform coalesced access.

3.2.2 Multiple kernel implementation on the GPU

We assume that the adjacency matrix A of an input directed graph is stored in the global memory and the

distance matrix D must be computed and written in the global memory.

We introduce previously published GPU implementation [27].

For Blocked Floyd-Warshall Algorithm, when the values in a tile is computed, the tile depends on other

tiles. It is hard to implement computation of depending tiles with single kernel. The implementation has

three CUDA kernels: (1) Kernel A is to compute the values in a pivot tile, that is, to call procedure

T (DZ,Z , DZ,Z , DZ,Z) using (S1). (2) Kernel B is to do in pivot row tiles and pivot column tiles, that is, to

call procedure T (DX,Z , DX,Z , DZ,Z) or T (DZ,Y , DZ,Y , DZ,Z) using (S2). (3) Kernel C is to do in non-pivot

tiles, that is, to call procedure T (DX,Y , DX,Z , DZ,Y ) using (S3). It invokes these CUDA kernels for each

loop Z. Figure 3.2 illustrates tiles computed by each kernel when n
W = 4. The number of CUDA blocks of

Kernel A is one because there is just one pivot tile. Because the number of pivot row tiles and pivot column

tiles is n
W − 1, The number of CUDA blocks of Kernel B or C is 2( n

W − 1) or ( n
W − 1)2, respectively. For

the example in Figure 3.2, the number of CUDA blocks of Kernel A, B and C are 1, 2( n
W − 1) = 6 and

( n
W − 1)2 = 9, because of n

W = 4.

If the Floyd-Warshall algorithm is implemented on the GPU as it is, then a kernel is invoked for each

value of k and so n kernel calls are necessary. Also, a lot of memory access operations are performed for the

global memory. Thus, the Blocked Floyd-Warshall algorithm should be used to reduce the number of kernel

calls. Also, procedure T (P,Q,R) can be implemented using registers or the shared memory, and the global

memory access can be reduced.

The multiple kernel implementation invokes three kernel call for for-loop with counter Z. Thus, it invokes

3 n
W kernel calls totally. Thus, the overhead of separated kernel calls is quite large. Also, each Kernel A

invokes only one CUDA block and so parallelism is quite low.

We introduce the task graph of the Blocked Floyd-Warshall algorithm, as shown in Figure 3.3. Each node

of the task graph represents a task of computing values. Each direct edge of the task graph does dependency

of tasks. For any directed edges, we must start the task corresponding to its end node, after we complete the

task, corresponding to its start node. For the task graph illustrated in Figure 3.3, t0(1, 0) must be started

after t0(0, 0) is completed, because the graph has a direct edge from t0(0, 0) to t0(1, 0). Similarly, t0(1, 1)

must be started after t0(1, 0) is completed. Therefore, t0(1, 1) must be started after both t0(0, 1) and t0(1, 0)

are completed because the graph has direct edges from t0(0, 1) and t0(1, 0) to t0(1, 1).

3.2.3 Our single kernel implementation on the GPU

We explain our implementation for the Blocked Floyd-Warshall algorithm on the GPU. It uses the Single

Kernel Soft Synchronization (SKSS) technique [17]. The idea of the SKSS is to use a dependency graph

of tasks such that a directed edge from task u to v is drawn if task u must be completed before task v
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3.2 GPU implementations of the Blocked Floyd-Warshall algorithm

is processed. We can draw a task graph for ( n
W )3 tasks tK(I, J) (0 ≤ I, J,K ≤ n

W − 1) of the Blocked

Floyd-Warshall algorithm. For example, we assume that Z = c, I ̸= c, J ̸= c. Procedure T(DI,c, DI,c, Dc,c)

or T(Dc,J , Dc,J , Dc,c) must be executed after T(Dc,c, Dc,c, Dc,c) are completed. Procedure T(DI,J , DI,c,

Dc,J ) must be done after both T(DI,c, DI,c, Dc,c) and T(Dc,J , Dc,J , Dc,c) are completed. More specifically,

the task graph includes directed edges such that

• (tK−1(I, J), tK(I, J)) for all I, J , and K,

• (tK(K,K), tK(I,K)) and (tK(K,K), tK(K,J)),

• (tK(K,J), tK(I, J)) and (tK(I,K), tK(I, J))

Note that tK(K,K), tK(K,J), tK(I,K) or tK(I, J) is to compute values in pivot tiles, pivot column tiles,

pivot row tiles or non-pivot tiles.

As we can see in Figure 3.3, for all edges (tK′(I ′, J ′), tK(I, J)) in the task graph, task tK′(I ′, J ′) must

be completed before tK(I, J) starts, because the resulting value of DI′,J′ in iteration K ′ is used in DI,J in

iteration K. Clearly, every node is connected with at most three incoming edges.

We assign unique IDs from 0 to ( n
W )3 − 1 to all ( n

W )3 tasks by the topological sort of the task graph.

Figure 3.4 shows unique IDs of the task graph in Figure 3.3. More specifically, for all directed edges

(tK′(I ′, J ′), tK(I, J)) of the task graph, dK′(I ′, J ′) < dK(I, J) holds, where dK(I, J) denotes the assigned

ID of each task tK(I, J). In our implementation using the SKSS technique, CUDA blocks are assigned to

tasks in the order of task IDs. For this purpose, we use a zero-initialized global counter x in the global

memory. We invoke enough CUDA blocks and the first thread of every CUDA block increments x using

CUDA atomic function atomicAdd(&x,1), which exclusively increments the value of x by 1 and returns the

value of x before increment. Clearly, the first threads of CUDA blocks succeeding in executing atomicAdd

receive unique return values 0, 1, 2, . . . in turn. If the first thread receives the value greater than ( n
W )3 − 1,

then the CUDA block terminates. Otherwise, the CUDA block performs a task with IDs equal to the return

value. When the CUDA block performs the task, it must check if all previous tasks specified by directed

edges of the task graph are completed. For example, in Figure 3.3, if the return value is d1(2, 0), then the

CUDA block works for task t1(2, 0). It first checks if each of three tasks t0(2, 0), t1(1, 0), and t1(2, 1) is

completed. When one of the task is finished, then it copies the resulting values of the task in the global

memory. For example, if t0(2, 0) is completed, the resulting values of D2,0 are read. After all the resulting

values of D2,0, D1,0, and D2,1 are read, the Parallel Floyd-Warshall algorithm is executed for task t1(2, 0)

to compute T (D2,0, D1,0, D2,1).

Note that for an directed edge (tK′(I ′, J ′), tK(I, J)) of a task graph, the difference of unique IDs,

tK(I, J) − tK′(I ′, J ′), should be as large as possible. If it is larger, then more tasks are executed between

task tK′(I ′, J ′) and tK(I, J) and task tK′(I ′, J ′) is completed with higher probability when task tK(I, J)

starts.
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Figure 3.4: Unique IDs assigned by the topological sort when n
W = 4

3.2.4 Acceleration by using SIMD functions

In this subsection, we present SIMD (Single Instruction, Multiple Data) functions so as to accelerate com-

putation of addition and minimum selection using the Floyd-Warshall algorithm.

We assume that the length of all edges of graphs is 1. If the length of a shortest path between two

nodes is less than 2b, each value of the distance matrix D can be represented in at most b bits, during the

Floyd-Warshall algorithm are executing. Clearly, we can vectorize ⌊ 32b ⌋ values by a 32-bit integer.

Without loss of generality, we set b = 4. We can represent values of the distance matrix D as b = 4 bits

and vectorize 8 values by a 32-bit integer. For example, D[i][j], D[i][j + 1], . . . , D[i][j + 7] can be vectorized

by a 32-bit integer. If each D[i][j] is stored in a 32-bit integer, we need 8 addition and 8 minimum selection

for D[i][j′] ← min{D[i][k] +D[k][j′], D[i][j′]}, where j ≤ j′ ≤ j + 7, illustrated as Figure 3.5 (a). However,
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3.2 GPU implementations of the Blocked Floyd-Warshall algorithm

by using saturating addition, we can exchange 8 addition and 8 minimum selection into one saturating

addition and one minimum selection, shown in Figure 3.5 (b). Note that saturating addition is defined by

min{D[i][k] +D[k][J ], 2b − 1}. For example, we assume that 4-bit integers a[i], b[i] and c[i], 0 ≤ i ≤ 7, are

defined as follows:

a[8] = {1, 14, 13, 12, 2, 2, 2, 2};

b[8] = {1, 15, 1, 2, 14, 4, 5, 6};

c[8] = {15, 15, 1, 10, 1, 10, 1, 11};

We will compute d[i] = min{a[i] + b[i], c[i]}, 0 ≤ i ≤ 7, by using saturating addition. It is clear that

d[8] = {2, 15, 1, 10, 1, 6, 1, 8}.

When a[], b[] and c[] are vectorized by 32-bit integers x, y and z, we can get the integers, represented as

a binary number, as follows:

x = 0001 1110 1101 1100 0010 0010 0010 0010,

y = 0001 1111 0001 0010 1110 0100 0101 0110, and

z = 1111 1111 0001 1010 0001 1010 0001 1011.

Computation of saturating addition s = x+ y leads to s = 0010 1111 1110 1110 1111 0110 0111 1000.

Each of eight 4-bit numbers in s satisfies min{a[i]+b[i], 24−1}, 0 ≤ i ≤ 7. For example, since a[1]+b[1] =

29 > 24 − 1, the resulting value of the saturating addition is 1111(= 24 − 1). After that, by computing

t = min{s = x+ y, z}, we can get the resulting value

t = 0010 1111 0001 1010 0001 0110 0001 1000.

We suppose that eight 4-bit unsigned integers are vectorized by x or y.

We present saturating addition function addus8() and minimum selection function minus8() for 4-bit

unsigned integers as follows:

unsigned addus8(unsigned x,unsigned y)

{

s = (x & 0x77777777) + (y & 0x77777777); z = ((x & y) | (y & s) | (

s & x)) & 0x88888888;

m = (z >> 3) * 15;

return ((((x^y) & 0x88888888 )^s) | m);

}

unsigned minus8(unsigned x,unsigned y)

{

d = (x | 0x88888888) - (y & 0x77777777); ma = (((~(x^y)) & d) | ((x

^y) & x)) & 0x88888888;

mb = (ma >> 3) * 15;

return( (x & (~mb)) | ( y & mb ) );

}
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3.3 Bulk computation of the Blocked Floyd-Warshall algorithm

min min min min min min min min

+ + + + + + + +

D[k][j],D[k][j + 1], . . . ,D[k][j+ 7]

D[i][k]

D[i][j],D[i][j+ 1], . . . ,D[i][j+ 7]

min

+

(a) (b)

Figure 3.5: (a) The computation of D[i][j′] ← min{D[i][j′], D[i][k] + D[k][j′]} for D[i][j′], j ≤ j′ ≤ j + 7.

(b) We can compute D[i][j′], j ≤ j′ ≤ j + 7, by one saturating addition and one minimum selection, when

D[i][j] is represented as 4 bits and D[i][j′], j ≤ j′ ≤ j + 7, are vectorized by a 32-bit integer.

When two 32-bit integers are input, SIMD functions addus8() or minus8() returns a resulting 32-bit

integer by saturating addition or minimum selection, respectively.

Clearly, we can use these SIMD functions for any other implementations. We can propose single or

multiple implementations using these SIMD functions. Also, CUDA has SIMD intrinsic functions for 32-

bit integers with b = 8, 16. We have written SIMD functions with b = 4, and have applied them to our

implementation.

3.3 Bulk computation of the Blocked Floyd-Warshall algorithm

Suppose that we need to execute the Blocked Floyd-Warshall algorithm for many directed graphs. We will

show how the Blocked Floyd-Warshall algorithm is executed for multiple directed graphs in parallel.

Let m be the number of directed graphs with n nodes each. In the multiple kernel implementation, we

can simply invoke 3 n
W kernels in turn. Recall that for a single directed graph, Kernel A, B, and C invokes

1, 2( n
W − 1), and ( n

W − 1)2 CUDA blocks, respectively. For bulk computation, Kernel A is to compute the

values in pivot tiles of m directed graphs. So, it invokes m CUDA blocks. Similarly, Kernel B and C is to

do in pivot column tiles and pivot row tiles of m directed graphs. They invoke 2m( n
W − 1) and m( n

W − 1)2

CUDA blocks, respectively. Given m directed graphs, we can execute this algorithm at the same time.

Bulk computation for m directed graphs of size n can be done by one kernel call using our single kernel

implementation. For this purpose, we assign unique IDs to m( n
W )3 tasks for m directed graphs as follows.

Let dK(I, J) denote a unique ID in the range [0, ( n
W )3 − 1] assigned for task tK(I, J) of a directed graph.

We assign an ID m ·dK(I, J)+ g to a task tK(I, J) of the g-th (0 ≤ g ≤ m−1) directed graph. For example,

suppose that we have m directed graphs, each of which has the task graph illustrated in Figure 3.3. Clearly,

m tasks t0(0, 0) are assigned unique IDs 0, 1, . . ., m − 1, respectively. Also, m tasks t1(1, 1) are assigned

unique IDs m, m + 1, . . ., 2m − 1, respectively. Thus, the difference of IDs of t0(0, 0) and t1(1, 1) for the
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3.4 Experiment results

Table 3.1: The running time (in milliseconds) of our single and the multiple kernel implementation

n = 256 n = 512 n =

1024

n =

2048

n =

4096

n =

8192

n =

16384

n =

32768

# of threads Multiple kernel implementation [27]

64 0.545 1.090 2.863 29.37 65.5 454 3508 27852

128 0.336 0.671 1.970 8.15 52.6 397 3125 24860

256 0.263 0.488 1.556 7.21 53.6 371 2924 23433

512 0.244 0.463 1.549 8.43 54.0 408 3209 25942

1024 0.261 0.537 1.860 9.53 66.1 501 3935 31252

# of threads Our single kernel implementation

64 0.487 1.185 2.520 13.45 67.2 482 3977 32123

128 0.256 0.600 1.547 7.61 50.0 365 2955 23699

256 0.187 0.406 1.327 6.84 47.4 326 2594 20722

512 0.203 0.400 1.541 8.20 56.9 399 3275 26524

1024 0.293 0.543 2.168 12.15 78.2 606 4982 40515

Speedup 1.31x 1.16x 1.17x 1.05x 1.11x 1.14x 1.13x 1.13x

same graph is d1(1, 1) − d0(0, 0) = m. If m is large, then task t0(0, 0) is completed with high probability

when t1(1, 1) starts. Thus, we can get better performance for the bulk computation. For example, Figure 3.6

shows unique IDs within [0, ( n
W )3 − 1 = 255] for 4 graphs and n

W = 4.

3.4 Experiment results

In this paper, we use NVIDIA Tesla V100 GPU for the experiment. We show average of the running time

in all tables.

We have implemented our single kernel implementation and the multiple kernel implementation published

previously [27] for the Blocked Floyd-Warshall algorithm. Note that the computation of the Blocked Floyd-

Warshall algorithm is oblivious in the sense that the same computation is performed for any directed graphs.

So, the running time only depends on the number of nodes.

Tables 3.1 and 3.2 show the running time of implementations for graphs with n = 256, 512, . . . , 32768

nodes. To execute procedure T (P,Q,R), we use CUDA blocks with 64, 128, . . ., 1024 threads. We use

the same CUDA program to execute procedure T (P,Q,R) for both our single kernel implementation and

multiple kernel implementation. In the tables, the running time is highlighted when it is the best for each

n. From the tables, we can see that the running time is the best when 256 or 512 threads per block are

used for almost all number of nodes. It also shows the speed-up of the best running time of the single kernel

implementation over the multiple kernel implementation. We can see that our single kernel implementation

runs 1.05-1.31 times faster than the multiple kernel implementation, because the number of kernel calls in
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3.4 Experiment results

Table 3.2: The running time (in milliseconds) of our single and the multiple kernel implementation with

SIMD functions

n = 256 n = 512 n =

1024

n =

2048

n =

4096

n =

8192

n =

16384

n =

32768

# of threads Multiple kernel implementation [27] with SIMD functions

64 0.844 1.680 3.359 8.86 64.3 285 1893 15655

128 0.479 0.963 1.800 6.26 71.9 337 2282 17583

256 0.270 0.637 1.198 4.52 43.1 251 1838 14415

512 0.183 0.419 0.949 4.21 31.8 213 1684 13450

1024 – – – – 26.8 187 1440 11531

# of threads Our single kernel implementation with SIMD functions

64 0.831 1.660 4.618 13.04 65.6 432 3154 27664

128 0.422 0.851 2.008 5.48 35.7 449 3325 26830

256 0.213 0.446 1.095 4.15 27.6 223 1673 13112

512 0.164 0.328 0.837 4.08 25.9 186 1439 11402

1024 – – – – – 194 1522 12084

Speedup 1.12x 1.28x 1.13x 1.03x 1.04x 1.00x 1.00x 1.01x

Table 3.3: The data transfer time (in milliseconds) of our implementations

n = 256 n = 512 n = 1024 n = 2048

Single kernel 0.0623 0.1869 0.683 2.667

Single kernel with SIMD functions 0.0280 0.0430 0.105 0.355

n = 4096 n = 8192 n = 16384 n = 32768

Single kernel 10.60 42.28 169.0 675.6

Single kernel with SIMD functions 1.35 5.31 21.2 84.5

our implementation is smaller than that of the multiple kernel implementation. From Table 3.2, we can see

that our single kernel implementation using SIMD functions with b = 4 runs 1.00-1.28 times faster than the

multiple kernel implementation.

For the implementations without SIMD functions, we set W = 32, that is, the size of each tile is 32× 32,

because of capacity of the shared memory. For the single or multiple kernel implementation with SIMD

functions, we define the size of each tiles by 8 × 64 if n ≤ 4096 or n ≤ 2048, respectively. Otherwise we

define it by 16× 128. They run faster than any other sizes. If the size of each tile is 8× 64, the tile includes

8× 64 = 512 values. Each thread of every CUDA block performs updating of values. We cannot use CUDA

blocks with the number of threads, which exceeds the number of values. Hence, for single or multiple kernel

implementation with SIMD functions, the running time is invalid in Table 3.2, when the number of threads

is 1024 and n ≤ 4096 or n ≤ 2048, respectively.
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3.4 Experiment results

K = 0
Graph G0 Graph G1 Graph G2 Graph G3

0 5 7 9 1 11 13 15 2 17 19 21 3 23 25 27

4 28 30 32 10 33 35 37 16 38 40 42 22 43 45 47

6 29 48 50 12 34 51 53 18 39 54 56 24 44 57 59

8 31 49 60 14 36 52 61 20 41 55 62 26 46 58 63

K = 1
Graph G0 Graph G1 Graph G2 Graph G3

124 72 95 113 125 78 100 116 126 84 105 119 127 90 110 122

73 64 69 71 79 65 75 77 85 66 81 83 91 67 87 89

96 68 92 94 101 74 97 99 106 80 102 104 111 86 107 109

114 70 93 112 117 76 98 115 120 82 103 118 123 88 108 121

K = 2
Graph G0 Graph G1 Graph G2 Graph G3

176 178 134 157 179 181 140 162 182 184 146 167 185 187 152 172

177 188 136 159 180 189 142 164 183 190 148 169 186 191 154 174

135 137 128 133 141 143 129 139 147 149 130 145 153 155 131 151

158 160 132 156 163 165 138 161 168 170 144 166 173 175 150 171

K = 3
Graph G0 Graph G1 Graph G2 Graph G3

220 222 224 196 225 227 229 202 230 232 234 208 235 237 239 214

221 240 242 198 226 243 245 204 231 246 248 210 236 249 251 216

223 241 252 200 228 244 253 206 233 247 254 212 238 250 255 218

197 199 201 192 203 205 207 193 209 211 213 194 215 217 219 195

Figure 3.6: Unique IDs within [0, ( n
W )3 − 1 = 255] for 4 graphs and n

W = 4

Table 3.3 also shows the data transfer time for graphs with n = 256, 512, . . ., 32768 nodes. For the

implementations with/without SIMD functions, the data transfer time of single kernel implementation is

equal to that of the multiple one, because the transferred data on both implementations are the distance

matrix. The size of the distance matrix on the implementation with SIMD functions is 32
b times smaller than

that of one without SIMD functions. In the implementations with SIMD functions, we set b = 4. That is,

each value D of the distance matrix is stored in a b = 4-bit, and eight 4-bit unsigned integers are vectorized

by a 32-bit integer. So, the data transfer time of the simple kernel implementation with SIMD functions is

8 times faster than the ones without them.

3.4.1 Efficiency of computing the diameter and the ASPL of a graph

We show the efficiency of computing the diameter and the ASPL of a graph.

When we start Breadth First Search (BFS) from a node, we can find the length of a shortest path from

the node to other nodes. From this fact, we can compute the length of a shortest path of all pairs of nodes

by executing BFS from each node. Clearly, its complexity is O(n(n + |E|)), and smaller than that of both
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3.4 Experiment results

the Floyd-Warshall algorithm and the Blocked Floyd-Warshall algorithm where |E| is the number of edges

of a given graph. To evaluate our single kernel implementation using SIMD functions, we implement the

method of using BFS on the GPU, called the simple implementation with BFS. Each thread of CUDA blocks

executes BFS from a node.

Tables 3.4 and 3.5 show the running time of our single kernel implementation with SIMD functions and

the simple implementation with BFS. As mentioned above, our single kernel implementation with SIMD

functions does not depend on the number of edges. So, we copy the best running time for each n in Table 3.2

to Tables 3.4 and 3.5. For the simple implementation with BFS, we input connected graphs with n nodes

and n(n−1)
2 × r

100 edges, where n = 256, 512, 1024, . . ., 32768 and r = 0.05, 0.1, 0.25, 0.5, 1, 5, 10, 20, 50. For

example, a graph with n = 256 and r = 0.5 has n(n−1)
2 × r

100 = 163 edges. Because the graphs are connected,

any graph with n nodes has at least n − 1 edges. Hence, there is no connected graph with n = 256 and

r = 0.5, because of n(n−1)
2 × r

100 = 163 < n− 1 = 255.

When almost of the graphs are input, our single kernel implementation with SIMD functions is 1.60-

352.46 times faster than simple GPU implementation with BFS. When the number of edges is large, that

is, (n ≤ 2048) or (n = 4096 and r ≥ 0.1) or (n ≥ 8192 and r ≥ 0.25), our single kernel implementation runs

faster than simple implementation with BFS.

The complexity of simple implementation with BFS per node is O(n+ |E|). When the number of edges

is large, its complexity is large and the running time of each threads is long. Hence, the running time of our

implementation is smaller than that of simple implementation with BFS, and we conclude that our single

kernel implementation with SIMD functions is efficient.

3.4.2 For Bulk Computation

Tables 3.6 and 3.7 shows the running time of the bulk computation of the Blocked Floyd-Warshall algorithm

for m = 8, 16, . . . , 1024 input graphs with n = 128, 256, . . ., 2048 nodes each. For each pair of m and n, we

execute both our single kernel implementation and the multiple kernel implementation for CUDA blocks with

64, 128, . . ., 1024 threads each, and take the best one. For the implementations without SIMD functions,

the bulk computation for 1024 graphs with 2048 nodes cannot be executed since the global memory usage

exceeds the capacity of the global memory of Tesla V100 GPU. From Table 3.6, we can see that our single

kernel implementation runs 1.03-1.60 times faster than the multiple kernel implementation. From Table 3.7,

we can also see that our single kernel implementation with SIMD functions runs 1.01-1.89 times faster.

In general, our single kernel implementation has better advantages over the multiple kernel implementa-

tion for small graphs, because the ratio of computation cost of Kernel A in the multiple kernel implementation

is large. However, if both the number of nodes and the number of graphs are small and the running time

is small, then the speedup ratio is small. This is because the fixed overhead for invoking CUDA program is

imposed for both implementations.
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3.5 Low-Latency GPU Implementation for Bulk Computation

DtoHkernelHtoD

DtoHkernelHtoD

DtoHkernelHtoD

time

Stream 0

Stream 1

Stream 2

Figure 3.7: The behavior of our proposed low-latency GPU implementation, executing three streams

3.5 Low-Latency GPU Implementation for Bulk Computation

In Section 3.3, we have proposed the GPU implementations of the bulk computation of the Blocked Floyd-

Warshall algorithm. Clearly the time to transfer between Host and the device increases if many graphs

are given, and latency increases. We propose the low-latency implementation using the stream, which is

a sequence of CUDA operations. CUDA may run operations in different streams concurrently, and may

interleave them from different streams. Hence, our implementation can decrease latency by hiding the time

to transfer between Host and the device. Figure 3.7 illustrates the behavior of the our proposed one, executing

three streams. In the figure, “HtoD”, “kernel” and “DtoH” correspond to the data transfer from Host to

Device (i.e. GPU), kernel computation (i.e. bulk computation); and the data transfer from Device to Host,

respectively. When m graphs are given, our implementation invokes m streams. Each stream copies the

distance matrix of a graph from Host to Device, and executes the single kernel implementation with/without

SIMD functions. Finally, it copies the resulting distance matrix graph to Host.

Tables 3.8 and 3.9 show the running time of the low-latency implementation and the bulk computation

by our single or multiple kernel implementation with/without SIMD functions. We input m = 8, 16, . . . , 1024

directed graphs with n = 128, . . ., 2048 nodes each. Note that the running time of the bulk computation

includes the data transfer time. When we input 1024 graphs with n = 2048, we cannot execute the imple-

mentations without SIMD functions because of the shortage of memory space on the GPU. Hence, we write

“N/A” in Table 3.8.

From Table 3.8, the low-latency implementation runs 1.45-5.90 times faster than the multiple kernel

implementation, and does 1.38-5.87 times faster than the single one. In terms of implementations with

SIMD functions, from Table 3.9, the low-latency implementation with SIMD functions runs 1.11-2.43 times

faster than the multiple implementation with SIMD functions, and does 1.07-2.36 times faster than the

single one. When the number of graphs is large, the speed up of factor is large, and the implementation

is efficient. We consider the case that 1024 graphs with n = 2048 are input. From Table 3.7, the single

kernel implementation with SIMD functions can compute the discance matrix in 3004 ms, From Table 3.9,

Low-latency implementation with SIMD functions runs in 3052 ms, and its transfer time is small. We can see

that it hides the time to transfer between Host and Device. We conclude that our implementations reduce

latency by hiding the time to transfer between Host and the device.
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3.6 Multicore Implementations Using SIMD Functions

3.6 Multicore Implementations Using SIMD Functions

In previous sections, we have proposed and evaluated GPU implementations of the parallel Blocked Floyd-

Warshall algorithm. In this section, we propose multicore implementations of the parallel Floyd-Warshall

algorithm using SIMD intrinsics, called Intel Advanced Vector Extensions 512 (Intel AVX-512) [22]. Intel

AVX-512 is an instructions set, and available on Intel Xeon Phi Processors and Skylate-X CPUs. It also

provides intrinsics by using 512-bits registers, called ZMM registers. When we use Intel AVX-512, we

can store sixteen 32-bits integers to one ZMM register. For two values that are vectorized by such the

ZMM registers, we can also execute saturating additions and minimum selections. OpenMP is an API

that supports multi-platform shared-memory parallel programming in C/C++ and Fortran [45]. By using

OpenMP, we can implement the Parallel Floyd-Warshall algorithm on the multicore processors. We propose

two implementations of the Parallel Floyd-Warshall algorithm, shown in Algorithm 1 on the multicore

processors: One is to use our SIMD functions presented in Section 3.2.4 and the other is to use Intel AVX-

512.

Table 3.10 shows the running time of multicore implementations of the parallel Blocked Floyd-Warshall

algorithm on Intel Skylate-X CPU with our functions and Intel AVX-512. Intel Skylate-X CPU has 18 cores

and we can use Hyper-Threading on it. We executed the implementations with 1, 2, 4, 8, 16, 18, 32, 36 threads.

We input directed graphs with n = 512, 1024, . . ., 4096 nodes each. Table 3.10 (a) and (b) show the running

time when each value of the distance matrix D is stored in 28 − 1 and 216 − 1 bits, respectively. For the

tables, we highlight the best running time among that of all threads. From Table 3.10, the implementation

with Intel AVX-512 runs faster than one with our functions. We expect that this is caused by the fact that

Intel AVX-512 is designed so as to maximize the capability of Intel CPU. Intel Skylate-X CPU includes

Hyper-Threading Technology, and this technology enable to launch at most 36 threads simultaneously. In

terms of the implementation with our functions, when n ≥ 2048 except the case b = 16 and n = 4096, the

running time of the implementation with 36 threads is the smallest for each 1, 2, 4, 8, 16, 18, 32, 36 threads,

because of Intel Skylate-X CPU. Even if b = 16 and n = 4096, the running time of the implementation with

36 threads is nearly equal to that of 18 threads. When n ≤ 1024, the running time of the implementation with

18 threads is the smallest of all, because the fixed overhead for using OpenMP is larger than computation of

the algorithm. Though the implementation with Intel AVX-512 by using multiple threads runs faster than

one by using only one thread, we cannot expect the best number of threads, executing the implementation

with Intel AVX-512. because the running time depends on performance of Intel AVX-512.
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3.6 Multicore Implementations Using SIMD Functions

Table 3.4: The running time (in milliseconds) of our single kernel implementation with SIMD functions and

simple implementation with BFS when n = 256, 512, . . . , 4096. Note that # of edges is r% edges of clique

with n nodes.

r =

0.05

r =

0.1

r =

0.25

r =

0.5

r = 1 r = 5 r = 10 r = 20 r = 50

n = 256 # of edges

16 32 81 163 326 1632 3264 6528 16320

Our Ker. Simple implementation with BFS

time 0.164 N/A N/A N/A N/A 0.402 1.151 1.726 3.799 7.727

Speedup N/A N/A N/A N/A 2.46x 7.04x 10.55x 23.23x 47.24x

n = 512 # of edges

65 130 327 654 1308 6540 13081 26163 65408

Our Ker. Simple implementation with BFS

time 0.328 N/A N/A N/A 1.595 2.693 7.563 13.452 24.433 54.358

Speedup N/A N/A N/A 4.87x 8.22x 23.08x 41.05x 74.57x 165.90x

n = 1024 # of edges

261 523 1309 2618 5237 26188 52377 104755 261888

Our Ker. Simple implementation with BFS

time 0.837 N/A N/A 3.988 5.656 8.612 28.339 51.344 94.925 218.861

Speedup N/A N/A 4.77x 6.76x 10.29x 33.86x 61.35x 113.43x 261.52x

n = 2048 # of edges

1048 2096 5240 10480 20961 104806 209612 419225 1048064

Our Ker. Simple implementation with BFS

time 4.08 N/A 10.17 20.10 30.15 50.46 204.21 371.09 669.36 1436.61

Speedup N/A 2.50x 4.93x 7.40x 12.38x 50.10x 91.04x 164.22x 352.46x

n = 4096 # of edges

4193 8386 20966 41932 83865 419328 838656 1677312 4193280

Our Ker. Simple implementation with BFS

time 25.9 25.8 42.3 70.6 120.9 216.0 868.3 1577.8 2813.5 6149.3

Speedup 1.00x 1.64x 2.73x 4.67x 8.36x 33.59x 61.03x 108.82x 237.84x
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3.6 Multicore Implementations Using SIMD Functions

Table 3.5: The running time (in milliseconds) of our single kernel implementation with SIMD functions and

simple implementation with BFS when n = 8192, 16384, 32768. Note that # of edges is r% edges of clique

with n nodes.
r = 0.05 r = 0.1 r = 0.25 r = 0.5 r = 1

n = 8192 # of edges

16775 33550 83875 167751 335503

Our Ker. Simple implementation with BFS

time 186 120 182 362 654 1226

Speedup 0.65x 0.98x 1.95x 3.52x 6.59x

r = 5 r = 10 r = 20 r = 50

# of edges

1677516 3355033 6710067 16775168

Simple implementation with BFS

4815 7994 13256 27080

Speedup 25.89x 42.97x 71.26x 145.57x

r = 0.05 r = 0.1 r = 0.25 r = 0.5 r = 1

n = 16384 # of edges

67104 134209 335523 671047 1342095

Our Ker. Simple implementation with BFS

time 1439 658 1089 2395 4555 8774

Speedup 0.46x 0.76x 1.66x 3.17x 6.10x

r = 5 r = 10 r = 20 r = 50

# of edges

6710476 13420953 26841907 67104768

Simple implementation with BFS

35291 54276 74139 131598

Speedup 24.52x 37.72x 51.52x 91.45x

r = 0.05 r = 0.1 r = 0.25 r = 0.5 r = 1

n = 32768 # of edges

268427 536854 1342136 2684272 5368545

Our Ker. Simple implementation with BFS

time 11402 4463 7919 18226 35257 68960

Speedup 0.39x 0.69x 1.60x 3.09x 6.05x

r = 5 r = 10 r = 20 r = 50

# of edges

26842726 53685452 107370905 268427264

Simple implementation with BFS

295724 481468 690765 1179091

Speedup 25.94x 42.23x 60.58x 103.41x
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Table 3.6: The running time (in milliseconds) of the single and multiple kernel implementation for m =

8, 16, . . . , 1024 directed graphs with n = 128, 256, . . . , 2048 nodes each

# of graphs n = 128 n = 256 n = 512 n = 1024 n = 2048

8 Multiple kernel 0.1069 0.272 1.145 6.62 46.9

Single kernel 0.0999 0.194 0.901 5.83 43.4

Speedup 1.07x 1.40x 1.27x 1.14x 1.08x

16 Multiple kernel 0.1374 0.434 1.94 12.5 92.5

Single kernel 0.0930 0.319 1.62 11.4 86.6

Speedup 1.48x 1.36x 1.19x 1.10x 1.07x

32 Multiple kernel 0.182 0.665 3.50 24.2 183

Single kernel 0.114 0.538 3.10 22.6 173

Speedup 1.60x 1.24x 1.13x 1.07x 1.06x

64 Multiple kernel 0.239 1.154 6.61 47.7 365

Single kernel 0.179 0.906 6.10 45.0 345

Speedup 1.34x 1.27x 1.08x 1.06x 1.06x

128 Multiple kernel 0.382 1.93 12.9 94.7 729

Single kernel 0.313 1.75 12.1 89.8 690

Speedup 1.22x 1.10x 1.06x 1.06x 1.06x

256 Multiple kernel 0.684 3.69 25.4 189 1456

Single kernel 0.532 3.44 24.1 179 1380

Speedup 1.28x 1.07x 1.05x 1.05x 1.05x

512 Multiple kernel 1.25 7.17 50.4 377 2911

Single kernel 1.04 6.87 48.2 359 2761

Speedup 1.21x 1.04x 1.04x 1.05x 1.05x

1024 Multiple kernel 2.16 14.1 100.3 752 N/A

Single kernel 2.06 13.7 96.4 717 N/A

Speedup 1.05x 1.03x 1.04x 1.05x N/A
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Table 3.7: The running time (in milliseconds) of the single and multiple kernel implementation with SIMD

functions for m = 8, 16, . . . , 1024 directed graphs with n = 128, 256, . . . , 2048 nodes each

# of

graphs n = 128 n = 256 n = 512 n = 1024 n = 2048

8 Multiple kernel with SIMD functions 0.0786 0.187 0.615 3.45 24.8

Single kernel with SIMD functions 0.0532 0.132 0.590 3.21 23.9

Speedup 1.48x 1.42x 1.04x 1.07x 1.04x

16 Multiple kernel with SIMD functions 0.0794 0.286 1.130 6.48 48.8

Single kernel with SIMD functions 0.0630 0.206 0.921 6.16 46.9

Speedup 1.26x 1.39x 1.23x 1.05x 1.04x

32 Multiple kernel with SIMD functions 0.1116 0.352 1.92 12.4 96.5

Single kernel with SIMD functions 0.0788 0.285 1.71 11.9 93.8

Speedup 1.42x 1.24x 1.12x 1.05x 1.03x

64 Multiple kernel with SIMD functions 0.1734 0.542 3.56 24.3 192

Single kernel with SIMD functions 0.0915 0.466 3.13 23.6 188

Speedup 1.89x 1.16x 1.14x 1.03x 1.02x

128 Multiple kernel with SIMD functions 0.203 0.972 6.29 48.2 382

Single kernel with SIMD functions 0.146 0.866 5.94 47.1 375

Speedup 1.39x 1.12x 1.06x 1.02x 1.02x

256 Multiple kernel with SIMD functions 0.306 1.81 12.3 96.1 764

Single kernel with SIMD functions 0.244 1.68 11.9 94.3 751

Speedup 1.25x 1.08x 1.03x 1.02x 1.02x

512 Multiple kernel with SIMD functions 0.519 3.17 24.2 193 1527

Single kernel with SIMD functions 0.447 3.04 23.8 189 1502

Speedup 1.16x 1.04x 1.02x 1.02x 1.02x

1024 Multiple kernel with SIMD functions 0.940 6.19 48.2 383 3052

Single kernel with SIMD functions 0.865 6.06 47.9 378 3004

Speedup 1.09x 1.02x 1.01x 1.01x 1.02x
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Table 3.8: The running time (in milliseconds) of our low-latency implementation and the single and multiple

kernel implementation for m = 8, 16, . . . , 1024 directed graphs with n = 128, . . . , 2048 nodes each. When

we input 1024 graphs with n = 2048, we cannot execute the implementations because of the shortage of

memory space on the GPU.

# of graph n = 128 n = 256 n = 512 n = 1024 n = 2048

8 Multiple kernel 0.210 0.624 2.495 11.93 68.0

Single kernel 0.196 0.560 2.255 11.13 64.5

Low-Latency 0.107 0.272 1.145 6.62 46.9

Speedup from Multiple ker. 1.96x 2.29x 2.18x 1.80x 1.45x

Speedup from Single ker. 1.83x 2.06x 1.97x 1.68x 1.38x

16 Multiple kernel 0.326 1.116 4.60 23.04 134.6

Single kernel 0.292 1.014 4.30 21.94 128.8

Low-Latency 0.137 0.434 1.94 12.47 92.5

Speedup from Multiple ker. 2.38x 2.57x 2.37x 1.85x 1.46x

Speedup from Single ker. 2.13x 2.34x 2.22x 1.76x 1.39x

32 Multiple kernel 0.537 2.011 8.80 45.3 267.7

Single kernel 0.478 1.896 8.42 43.7 257.1

Low-Latency 0.182 0.665 3.50 24.2 183.3

Speedup from Multiple ker. 2.95x 3.02x 2.51x 1.87x 1.46x

Speedup from Single ker. 2.63x 2.85x 2.41x 1.81x 1.40x

64 Multiple kernel 0.917 3.819 17.19 89.9 534

Single kernel 0.875 3.582 16.69 87.2 514

Low-Latency 0.239 1.154 6.61 47.7 365

Speedup from Multiple ker. 3.84x 3.31x 2.60x 1.88x 1.46x

Speedup from Single ker. 3.66x 3.10x 2.52x 1.83x 1.41x

128 Multiple kernel 1.728 7.230 33.96 179.1 1066

Single kernel 1.672 7.072 33.24 174.2 1028

Low-Latency 0.382 1.925 12.85 94.7 729

Speedup from Multiple ker. 4.52x 3.76x 2.64x 1.89x 1.46x

Speedup from Single ker. 4.38x 3.67x 2.59x 1.84x 1.41x

256 Multiple kernel 3.345 14.27 67.6 357.5 2131

Single kernel 3.211 14.05 66.4 348.3 2056

Low-Latency 0.684 3.69 25.4 188.7 1456

Speedup from Multiple ker. 4.89x 3.87x 2.66x 1.89x 1.46x

Speedup from Single ker. 4.69x 3.81x 2.61x 1.85x 1.41x

512 Multiple kernel 6.559 28.29 134.8 714 4262

Single kernel 6.351 28.03 132.7 697 4112

Low-Latency 1.253 7.17 50.4 377 2911

Speedup from Multiple ker. 5.23x 3.95x 2.67x 1.89x 1.46x

Speedup from Single ker. 5.07x 3.91x 2.63x 1.85x 1.41x

1024 Multiple kernel 12.733 56.37 269.2 1428 N/A

Single kernel 12.660 55.97 265.3 1393 N/A

Low-Latency 2.158 14.13 100.3 752 N/A

Speedup from Multiple ker. 5.90x 3.99x 2.68x 1.90x N/A

Speedup from Single ker. 5.87x 3.96x 2.65x 1.85x N/A
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Table 3.9: The running time (in milliseconds) of our low-latency implementation and the single and multiple

kernel implementation with SIMD functions for m = 8, 16, . . . , 1024 directed graphs with n = 128, . . . , 2048

nodes each.
# of graph n = 128 n = 256 n = 512 n =

1024

n =

2048

8 Multiple kernel with SIMD functions 0.110 0.258 0.801 4.14 27.5

Single kernel with SIMD functions 0.096 0.209 0.791 3.91 26.6

Low-Latency with SIMD functions 0.079 0.187 0.615 3.45 24.8

Speedup from Multiple ker. 1.39x 1.38x 1.30x 1.20x 1.11x

Speedup from Single ker. 1.22x 1.48x 1.29x 1.13x 1.07x

16 Multiple kernel with SIMD functions 0.122 0.407 1.48 7.82 54.1

Single kernel with SIMD functions 0.117 0.323 1.29 7.52 52.2

Low-Latency with SIMD functions 0.079 0.286 1.13 6.48 48.8

Speedup from Multiple ker. 1.54x 1.42x 1.31x 1.21x 1.11x

Speedup from Single ker. 1.48x 1.13x 1.14x 1.16x 1.07x

32 Multiple kernel with SIMD functions 0.175 0.538 2.61 15.1 107.1

Single kernel with SIMD functions 0.154 0.484 2.40 14.6 104.4

Low-Latency with SIMD functions 0.112 0.352 1.92 12.4 96.5

Speedup from Multiple ker. 1.56x 1.53x 1.36x 1.22x 1.11x

Speedup from Single ker. 1.38x 1.38x 1.25x 1.18x 1.08x

64 Multiple kernel with SIMD functions 0.277 0.894 4.91 29.6 213

Single kernel with SIMD functions 0.207 0.831 4.49 28.9 209

Low-Latency with SIMD functions 0.173 0.542 3.56 24.3 192

Speedup from Multiple ker. 1.60x 1.65x 1.38x 1.22x 1.11x

Speedup from Single ker. 1.20x 1.53x 1.26x 1.19x 1.09x

128 Multiple kernel with SIMD functions 0.416 1.656 8.96 58.8 425

Single kernel with SIMD functions 0.346 1.561 8.62 57.7 417

Low-Latency with SIMD functions 0.203 0.972 6.29 48.2 382

Speedup from Multiple ker. 2.05x 1.70x 1.42x 1.22x 1.11x

Speedup from Single ker. 1.70x 1.61x 1.37x 1.20x 1.09x

256 Multiple kernel with SIMD functions 0.658 3.16 17.6 117.2 848

Single kernel with SIMD functions 0.608 3.03 17.2 115.4 835

Low-Latency with SIMD functions 0.306 1.81 12.3 96.1 764

Speedup from Multiple ker. 2.15x 1.75x 1.43x 1.22x 1.11x

Speedup from Single ker. 1.99x 1.67x 1.40x 1.20x 1.09x

512 Multiple kernel with SIMD functions 1.205 5.83 34.8 235 1696

Single kernel with SIMD functions 1.145 5.72 34.4 231 1671

Low-Latency with SIMD functions 0.519 3.17 24.2 193 1527

Speedup from Multiple ker. 2.32x 1.84x 1.44x 1.22x 1.11x

Speedup from Single ker. 2.21x 1.80x 1.42x 1.20x 1.09x

1024 Multiple kernel with SIMD functions 2.285 11.50 69.4 467 3390

Single kernel with SIMD functions 2.217 11.39 69.1 462 3342

Low-Latency with SIMD functions 0.940 6.19 48.2 383 3052

Speedup from Multiple ker. 2.43x 1.86x 1.44x 1.22x 1.11x

Speedup from Single ker. 2.36x 1.84x 1.43x 1.21x 1.10x
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Table 3.10: The running time (in milliseconds) of multicore implementations of parallel Blocked Floyd-

Warshall algorithm with our SIMD functions and Intel AVX-512.

# of n = 512 n = 1024 n = 2048 n = 4096

threads Our Func. AVX-512 Our Func. AVX-512 Our Func. AVX-512 Our Func. AVX-512

(a) Each value D are stored in 8 bits

1 133.59 2.14 1071.29 10.70 8570.3 324.8 59302.6 1808.7

2 68.47 1.94 547.35 7.04 4312.1 167.6 30111.4 975.8

4 37.78 1.50 286.10 5.04 2207.3 56.0 15408.5 501.6

8 21.38 1.55 154.19 4.81 1139.0 26.8 8023.6 250.2

16 14.88 2.69 101.52 6.17 667.9 19.3 4976.5 76.2

18 13.76 3.00 84.77 6.38 584.8 18.0 4413.6 66.6

32 17.32 5.58 96.59 10.50 626.1 19.7 5091.7 78.1

36 17.99 6.52 85.61 10.78 559.2 23.2 4250.0 72.5

(b) Each value D are stored in 16 bits

1 249.87 4.49 1962.57 81.42 13717.0 651.3 123087 7245

2 124.12 3.54 994.96 29.54 6966.0 337.6 61116 3996

4 72.43 2.45 510.38 11.72 3528.2 171.5 31093 2231

8 37.07 2.17 305.89 8.05 1881.1 58.9 15981 1543

16 25.72 2.25 165.64 7.40 1163.6 27.6 9102 586

18 21.37 2.72 140.25 8.15 1143.6 27.5 8245 551

32 25.41 5.86 158.55 10.64 1218.6 30.6 9056 547

36 26.02 7.06 144.38 10.32 1021.2 32.6 8255 564

# of n = 8192 n = 16384

threads Our Func. AVX-512 Our Func. AVX-512

(a) Each value D are stored in 8 bits

1 524617 36258 4191203 274350

2 264836 20460 2119707 154531

4 135305 16410 1075147 123546

8 68765 14107 543037 107541

16 39969 14385 312090 112798

18 35928 14296 282888 115156

32 38185 14107 299638 114646

36 35517 14753 266808 116730

(b) Each value D are stored in 16 bits

1 985918 82276 8052052 730061

2 487654 48550 3992515 425921

4 247932 39013 2024565 338038

8 125368 35903 1020158 323986

16 71800 37450 586676 346229

18 65511 38249 531268 354970

32 71179 38816 576077 361863

36 63543 39733 516402 369829
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Chapter 4

A CUDA C Program Generator for

Bulk Execution of a Sequential

Algorithm

The first contribution of this paper is to show an implementation of the bulk execution of oblivious sequential

algorithms on the UMM. Our implementation runs in O(ptw + lt) time units using p threads on the UMM

with width w and latency l, where t is the running time of the corresponding oblivious sequential algorithm.

We also prove that this implementation is time-optimal in the sense that any implementation takes at least

Ω(ptw + lt) time units on the UMM.

As a second contribution, we propose the C2CU tool, which allows converting a sequential C program into

a CUDA C program. As the resulting CUDA C program makes coalescing memory access, even developers

with few knowledge of CUDA C programming and GPU architecture can automatically generate CUDA C

programs tailored for the bulk execution. To assess the performance of the C2CU generated programs, we

have measured the running time of the bulk execution of three oblivious sequential algorithms: (i) bitonic

sort [3, 4]; (ii) Floyd-Warshall algorithm [9, 13, 54]; and (iii) Montgomery modulo multiplication [6, 32, 47].

For this purpose, the aforementioned sequential algorithms have been written in C programming language.

These sequential implementations were then fed to the C2CU generator to produce the corresponding CUDA

C programs. The CUDA C programs have been executed on the GeForce GTX Titan GPU. Compared to

the sequential implementation, running on a single CPU, the bulk execution of the bitonic sort runs 199

times faster while the Floyd-Warshall algorithm and Montgomery modulo multiplication run, respectively,

54 and 78 times faster. These experimental results are quite surprising since over 100 times acceleration

have been obtained.

The bulk execution latency of the generated CUDA C implementation can be improved depending on the

execution pattern. Thus, the third contribution of this work is to propose a modified execution pattern of the
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Figure 4.1: The UMM with width w = 4 and latency l = 5.

bulk execution so as to reduce latency. Experimental results show that, using the appropriate parameters,

latency of the bulk execution can be reduced without compromising the overall running time.

The rest of this chapter is organized as follows. Section 4.1 defines the Unified Memory Machine (UMM).

Section 4.2 presents the bulk execution of the oblivious sequential algorithms considered in this work. Sec-

tion 4.3 presents the proposed C2CU generator. Section 4.4 evaluates the performance of the generated

CUDA C programs using the GeForce GTX Titan. Section 4.5 proposes a modified execution pattern of the

bulk execution so as to reduce execution latency.

4.1 The Unified Memory Machine (UMM)

The main purpose of this section is to define the Unified Memory Machine (UMM) [35]. Let us define the

UMM with width w and latency l. The memory of the UMM is partitioned into address groups A[0], A[1], . . .,

such that each A[j] (j ≥ 0) consists of addresses j · w, j · w + 1, . . ., (j + 1) · w − 1. Figure 4.1 illustrates

address groups for UMM with width w = 4. Also, the memory access is performed through l-stage pipeline

registers as illustrated in Figure 4.1. Let p be the number of threads of the UMM and T (0), T (1), . . .,

T (p−1) be the p threads. We assume that p is a multiple of w. The p threads are partitioned into p
w groups,

called warps, with w threads each. More specifically, p threads are partitioned into p
w warps W (0),W (1),

. . ., W ( p
w − 1) such that W (i) = {T (i · w), T (i · w + 1), . . . , T ((i + 1) · w − 1)}. Warps are dispatched for

the memory access in turn, and w threads in a warp try to access the memory at the same time. More

specifically, W (0),W (1), . . . ,W ( p
w − 1) are dispatched in a round-robin manner if at least one thread in a

warp requests memory access. If no thread in a warp needs memory access, such warp is not dispatched.

When W (i) is dispatched, w threads in W (i) send memory access requests, one request per thread, to the

MBs.

Each warp sends memory access requests to the MBs through the l-stage pipeline registers. We assume

that each stage can store memory access requests destined for the same address group. For example, since

the memory access requests by W (0) are separated in three address groups in Figure 4.1, they occupy three

stages of the pipeline registers. Also, those by W (1) are in the same address group, they occupy only one

stage. In general, if the memory access requests by a warp are destined for k address groups, they occupy k

stages. For simplicity, we assume that the memory access is completed as soon as the request reaches the
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last pipeline stage. Thus, all memory access requests by W (0) and W (1) in our example are completed in

3(address groups) + 1(address group) + 5(latency)− 1 = 8 time units. We also assume that a thread cannot

send a new memory access request until the previous memory access request is completed. Hence, if a thread

sends a memory access request, it must wait at least l time units to send a new memory access request.

4.2 Oblivious sequential algorithms and the bulk execution

The main purpose of this section is to introduce oblivious sequential algorithms and their corresponding

bulk execution. Intuitively, a sequential algorithm is oblivious if an address accessed at each time unit is

independent of the input. More precisely, there exists a function a : {0, 1, . . . , t − 1} → N , where t is the

running time of the algorithm and N is a set of all non-negative integers such that, for any input of the

algorithm, it accesses address a(i) or does not access the memory at each time i (0 ≤ i ≤ t − 1). In other

words, at each time i (0 ≤ i ≤ t− 1), it never accesses an address other than a(i).

Let us see an example of oblivious algorithms. Suppose that an array b of n numbers is given. The

prefix-sum computation is a task to store each i-th prefix-sum b[0]+ b[1]+ · · ·+ b[i] in b[i]. Let r be a register

variable. The following algorithm computes the prefix-sum of n numbers.

Algorithm 3 Algorithm Prefix-sums

r ← 0;

for i← 0 to n− 1 do

r ← r + b[i];

b[i]← r;

end for

Since b[0], b[1], . . ., b[n − 1] are added to r in turn, the prefix-sums are stored in b correctly when this

algorithm terminates. Let us see the address accessed at each time unit to confirm that this algorithm is

oblivious. For simplicity, we ignore access to registers and local computation such as addition and we assume

that such operations can be done in zero time unit. Clearly, memory access operations performed in this

algorithm are: read b[0], write b[0], read b[1], write b[1], . . ., read b[n − 1], and write b[n − 1]. Hence, the

memory access function a is a(2i) = a(2i + 1) = i for all i (0 ≤ i ≤ n − 1), and thus, this algorithm is

oblivious.

Suppose that we need to execute a sequential algorithm for many different inputs on a single CPU in

turn or on a parallel machine at the same time. We call such computation as a bulk execution. For instance,

suppose that we have p arrays b0, b1, . . . , bp−1 of size n each on the UMM. The goal of the bulk execution of

the prefix-sums is to compute the prefix-sums of every bj (0 ≤ j ≤ p− 1) on the UMM in parallel. We use p

threads and each thread T (j) (0 ≤ j ≤ p−1) computes the prefix-sums of bj by using the Parallel Algorithm

Prefix-sums. Let rj (0 ≤ j ≤ p − 1) be a register of thread T (j). The prefix-sums can be computed in

parallel by the following algorithm:

Let us consider two arrangements of the p arrays of size n each as follows:
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Algorithm 4 Parallel Algorithm Prefix-sums

for j ← 0 to p− 1 do in parallel

rj ← 0;

for i← 0 to n− 1 do

rj ← rj + bj [i];

bj [i]← rj ;

end for

end for

• row-wise: they are arranged in a 2-dimensional array with p rows and n columns, such that each bj [i]

(0 ≤ i ≤ n − 1, 0 ≤ j ≤ p − 1) is stored in the j-th row and in the i-th column, which is allocated in

address j · n+ i;

• column-wise: they are arranged in a 2-dimensional array with n rows and p columns, such that each

bj [i] (0 ≤ i ≤ n− 1, 0 ≤ j ≤ p− 1) is stored in the i-th row and in the j-th column, which is allocated

in address i · p+ j.

Figure 4.2 illustrates the column-wise and row-wise arrangements for p = 8 arrays of size n = 6 each.

Let us evaluate the time to execute the prefix-sum algorithm for the row-wise arrangement (row-wise prefix-

sums) and column-wise arrangement (column-wise prefix-sums). For simplicity, we assume that p is multiple

of w and that n is sufficient large so that n ≥ w. In the row-wise arrangement, for each i (0 ≤ i ≤ n − 1),

b0[i], b1[i], . . . , bp−1[i] stored in addresses i, i + n, . . . , i + (p − 1)n, are accessed by p threads. They are in

p different address groups and corresponding p memory access requests occupy p pipeline stages. Thus, it

takes p+ l−1 time units to complete them. Figure 4.3 illustrates the memory access requests by warps W (0)

and W (1) with w = 4 on the row-wise arrangement. Each warp has w = 4 memory access requests and

their memory addresses are in p = 8 address groups. These requests occupy p = 8 pipeline stages, taking

p + l − 1 = 8 + 6 − 1 time units to complete. In the column-wise arrangement, for each i (0 ≤ i ≤ n − 1),

b0[i], b1[i], . . . , bp−1[i] stored in continuous addresses i ·p, i ·p+1, . . . , i ·p+(p−1), are accessed by p threads.

They are in p
w address groups. The corresponding p

w memory access requests occupy p
w pipeline stages,

taking p
w + l− 1 time units to complete them. Figure 4.4 depicts the memory access requests by warp W (0)

and W (1) with w = 4 for the column-wise arrangement. Warps W (0) and W (1) have w = 4 memory access

requests whose memory addresses are in p
w = 8

4 = 2 address groups. Their requests occupy p
w = 8

4 = 2

pipeline stages, taking p
w + l−1 = 8

4 +6−1 = 2+6−1 time units to complete. A round of the memory access

performed by p threads is a stride access if the threads access distinct address groups. Figure 4.3 depicts a

stride access pattern. Conversely, a coalesced memory access occurs when the threads in p
w warps access the

same address group (depicted in Figure 4.4). For latter reference, we summarize the above discussion in the

following lemma:

Lemma 4.2.1 A round of the memory access performed by p threads can be completed in p
w + l − 1 time

units using coalesced access and in p+ l − 1 time units using stride access.
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Figure 4.2: Column-wise and Row-wise arrangements for p = 8 arrays of size n = 6 each.

From Lemma 4.2.1, the computation of the row-wise prefix-sums takes (p+ l−1) ·O(n) = O(np+nl) time

units. Likewise, each contiguous access takes p
w + l − 1 time units and the computation of the column-wise

prefix-sums takes ( p
w + l − 1) ·O(n) = O(npw + nl) time units. Thus, we have:

Lemma 4.2.2 The row-wise prefix-sums of an array of size p × n and the column-wise prefix-sums of an

array of size n× p can be computed in O(np+ nl) and O(npw + nl) time units, respectively, using p threads

on the UMM with width w and latency l.

We can evaluate the running time of any oblivious algorithm in the same way. Suppose that we have an

oblivious sequential algorithm whose execution takes t time units. Without loss of generality, the algorithm

works on an array of size n. Similarly to the prefix-sum computation above, suppose that the oblivious

sequential algorithm is executed for p inputs of size n each, using p threads on the UMM in parallel. We can

consider two arrangements, row-wise and column-wise arrangements for the oblivious sequential algorithm.
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Figure 4.3: Memory access requests executed by warps W (0) and W (1) with w = 4 and p = 8 for the

row-wise arrangement.

We say that such execution is a row-wise oblivious computation if the p arrays are arranged in 2-dimensional

array of size p × n such that each row corresponds to an input array of the oblivious sequential algorithm.

Likewise, a column-wise oblivious computation occurs if the input is arranged in 2-dimensional array of size

n× p, such that each column corresponds to an input array.

Let us evaluate the computing time on the UMM for the row-wise and the column-wise arrangements.

Let a(j) (0 ≤ j ≤ t− 1) denote the address accessed by the oblivious sequential algorithm. In the row-wise

arrangement, for each j (0 ≤ j ≤ t− 1), p threads access a(j), a(j) + n, . . . , a(j) + (p− 1)n, which are in p

different address groups. According to Lemma 4.2.1, such memory access takes p+ l − 1 time units. Thus,

the oblivious algorithm runs in (p + l − 1) · t = O(pt + lt) time units on the row-wise arrangement. In the

column-wise arrangement, they access a(j) ·p, a(j) ·p+1, . . . , a(j) ·p+(p−1), which are in p
w address groups.

Since such memory access takes p
w + l − 1 time units from Lemma 4.2.1, the oblivious algorithm runs in

( p
w + l − 1) · t = O(ptw + lt) time units. Thus, we have:

Theorem 4.2.1 Any row-wise oblivious computation of size p× n and any column-wise oblivious computa-

tion of size n× p run in O(pt+ lt) and in O(ptw + lt) time units, respectively, using p threads on the UMM

with width w and latency l, where t is the running time of the corresponding oblivious sequential algorithm.

We also prove that column-wise oblivious computation for Theorem 4.2.1 is time-optimal on the UMM.

Since an oblivious algorithm running t time units is executed p times, it may involve pt memory access

operations. Since the width of the UMM is w, it takes at least pt
w time units to complete pt memory access

operations. Furthermore, since an oblivious algorithm performs t memory access operations in turn, it takes
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Figure 4.4: Memory access requests executed by warps W (0) and W (1) with w = 4 and p = 8 for the

column-wise arrangement.
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Figure 4.5: The behavior of C2CU generator.

at least lt time units on the UMM. Thus, we have:

Theorem 4.2.2 Any implementation of bulk execution of an oblivious algorithm for p inputs takes at least

Ω(ptw + lt) time units using p threads on the UMM with width w and latency l, where t is the running time

of the oblivious sequential algorithm.

4.3 C2CU Generator

The main purpose of this section is to describe C2CU generator. The C2CU takes as input a sequential

algorithm, written in C programming language and generates the corresponding CUDA C program for the

bulk execution on a CUDA-enabled GPUs. Figure 4.5 illustrates the behavior of C2CU generator. The

generated C program accepts p independent inputs, which are copied from the host to the device memory

(global memory) of the GPU for bulk execution. The CUDA device program with p threads is spawned, and

each thread executes the sequential program for one input. After all threads terminate, p outputs obtained

by all threads are copied back to the host.
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Let us see how the C2CU generates a CUDA C program using the Floyd-Warshall algorithm [9,13,54] as

an example. The Floyd-Warshall algorithm is described in Section 3.1, and computes the distances of shortest

paths of all-pairs of nodes in a directed graph. It uses a 2-dimensional array D of size n× n representing an

n-node graph. We assume that, initially, D[i][j] (0 ≤ i, j ≤ n − 1) stores the distance between nodes i and

j, if it exists, and +∞ otherwise. The Floyd-Warshall algorithm is described as follows:

Algorithm 5 Floyd-Warshall algorithm

for k ← 0 to n− 1 do

for i← 0 to n− 1 do

for j ← 0 to n− 1 do

D[i][j]← min{D[i][j], D[i][k] +D[k][j]}

end for

end for

end for

After termination of the algorithm, D[i][j] stores the distance of the shortest path from node i to j. If

no such path exists, it stores +∞. The C program in Figure 4.6 is a direct implementation of the Floyd-

Warshall algorithm. The values of D is updated by calling update dist, although it is not necessary to be

a function. The reason is to show the C2CU supports function calls. The C program includes the directive

#pragma kernel in line 22. Most C compilers, such as the GNU C compiler, ignore this directive. Hence,

this C program can be compiled correctly, and it computes the all-pairs shortest-distance of an input graph

using the Floyd-Warshall algorithm. The above directive is used to specify the function call for the bulk

execution on the GPU. Thus, a function call just after directive #pragma kernel will be executed on the

GPU in the CUDA C program obtained by C2CU.

Figure 4.7 shows the CUDA C program generated by the C2CU from the C program shown in Figure 4.6.

Users can specify the number p of inputs (i.e. the number p of threads) and the number of threads in each

CUDA block, by using the C2CU options. These values are defined as __P__ (= p) and __T__ in lines 2 and

3. In Figure 4.7, they are set to 2048 and 64, respectively. Thus, 32 CUDA blocks, with 64 threads each, are

spawned by CUDA kernel call floyd_warshall<<<__B__,__T__>>>() in line 31. Since the generated CUDA

C program accepts p inputs, a 3-dimensional array D of size N ×N × p, allocated in the host memory, are

used to store them. Also, a 3-dimensional array __D of the same size, allocated in the device memory (i.e. the

global memory of the GPU), is used. In line 30, the cudaMemcpyToSymbol function is used to copy p inputs

stored in D to __D. After the bulk execution by CUDA kernel call floyd_warshall<<<__B__,__T__>>>()

in line 31, the cudaMemcpyToSymbol function is used to copy the resulting values from __D back to D.

CUDA kernel call floyd_warshall<<<__B__,__T__>>>() in line 31 invokes __B__ CUDA blocks with

__T__ threads each. Thus, __P__ (= p) threads execute the Floyd-Warshall algorithm on the CUDA-enabled

GPU. Since blockDim.x is the number __B__ of threads in a CUDA block and blockIdx.x and threadIdx.x

take values in [0, __B__ − 1] and [0, __T__ − 1], respectively, __id__ in line 15 takes value from 0 to p − 1.

Hence, the device function update_dist(i,j,k,__id__) is executed for __id__ in [0, p− 1] on the GPU in
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1: #define N 1024

2: float D[N][N];

3: void update_dist(int i, int j, int k){

4: if( D[i][j] > D[i][k] + D[k][j] ) {

5: D[i][j] = D[i][k] + D[k][j];

6: }

7: }

8:

9: void floyd_warshall(){

10: int i,j,k;

11: for(k=0;k<N;k++) {

12: for(i=0;i<N;i++) {

13: for(j=0;j<N;j++) {

14: update_dist(i,j,k);

15: }

16: }

17: }

18: }

19:

20: int main(int argc, char *argv[]){

21: input_array();

22: #pragma kernel

23: floyd_warshall();

24: ...

Figure 4.6: A C program implementation of the Floyd-Warshall algorithm.

parallel. The reader should have no difficulty to confirm that the CUDA C program in Figure 4.7 executes

the Floyd-Warshall algorithm for p inputs in parallel.

Let us see how C2CU converts a C program into a CUDA C program for general cases and confirm

that the generated CUDA C program performs coalesced memory access. If the original C program uses a

d-dimensional array a of size s1 × s2 × · · · × sd, a CUDA C program generated by C2CU uses a (d + 1)-

dimensional array a of size s1 × s2 × · · · × sd × p. If the original C program accesses a[i1][i2] · · · [id] then

each thread with ID id of the CUDA C program accesses a[i1][i2] · · · [id][__id__]. Since a[i1][i2] · · · [id][0],

a[i1][i2] · · · [id][1], . . ., a[i1][i2] · · · [id][p− 1] are allocated in consecutive addresses, these memory accesses by

the p threads are coalesced.
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1: #define N 1024

2: #define __P__ 2048

3: #define __T__ 64

4: #define __B__ __P__/__T__

5: float D[N][N][__P__];

6: __device__ float __D[N][N][__P__];

7:

8: __device__ void update_dist(int i, int j, int k, int __id__){

9: if( __D[i][j][__id__] > __D[i][k][__id__]

+ __D[k][j][__id__] ) {

10: __D[i][j][__id__] = __D[i][k][__id__] + __D[k][j][__id__];

11: }

12: }

13:

14: __global__ void floyd_warshall(){

15: int __id__ = blockIdx.x * blockDim.x + threadIdx.x;

16: int i,j,k;

17: for(k=0;k<N;k++) {

18: for(i=0;i<N;i++) {

19: for(j=0;j<N;j++) {

20: update_dist(i,j,k,__id__);

21: }

22: }

23: }

24: }

25:

26: int main(int argc, char *argv[])

27: {

28: input_array();

29: #pragma kernel

30: cudaMemcpyToSymbol(__D, D, sizeof(float)*N*N*__P__, 0);

31: floyd_warshall<<<__B__,__T__>>>();

32: cudaMemcpyFromSymbol(D, __D, sizeof(float)*N*N*__P__, 0);

33: ...

Figure 4.7: A CUDA program for the bulk execution of the Floyd-Warshall algorithm generated by C2CU.
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Figure 4.8: Bitonic sort for n = 8.

4.4 Experiment results

The main purpose of this section is to show the experimental results on GeForce GTX Titan. GeForce GTX

Titan has 14 streaming multiprocessors with 192 cores each. Hence, it can run 2688 threads in parallel. Note

that, a single kernel call to GeForce GTX Titan can run more than 2688 threads in a time sharing manner

using CUDA [41] parallel programming platform. All input and output data are stored in the global memory

of the GPU. Recall that the UMM does not allow to use the shared memory of the streaming multiprocessors.

In the experiments, we consider the following sequential algorithms:

• bitonic sort [3, 4];

• Floyd-Warshall algorithm [9,13,54]; and

• Montgomery modulo multiplication [6, 32,47].

Bitonic sort is a well-known parallel sorting algorithm developed by K. E. Batcher [4]. It can be described

as a sorting network with comparators as illustrated in Figure 4.8. Since the number of compare-exchange

elements in each stage is fixed, the bitonic sort can be written as an oblivious sequential algorithm.

Montgomery modulo multiplication is used to speed the modulo multiplication X · Y · 2−R mod M

for R-bit numbers X, Y , and M . The idea of Montgomery modulo multiplication is not to use direct

modulo computation, which is very costly in terms of the computing time and hardware resources. By

iterative computation of Montgomery modulo multiplication, the modulo exponentiation PE mod M can be

computed, which is a key operation for the RSA encryption and decryption [5]. Since R is at least 1024,

to use Montgomery modulo multiplication for RSA encryption and decryption, addition/multiplication is

repeated to perform R-bit addition/multiplication. Figure 4.9 illustrates how the product (a · b) of two

integers, a and b of large bits, is computed. Both a and b are partitioned into four integers and the sum

of pair-wise products is computed. Since Montgomery modulo multiplication repeats computation of the

product and the sum of two large integers, it can also be computed by an oblivious sequential algorithm.

We have written a C program for bitonic sort that sorts n = 32, 1K (= 1024) and 32K (= 32768) 32-bits

float numbers. The C2CU was used to convert it into a CUDA C program for the bulk execution of bitonic

sort with parameter p = 64, 128, . . . , 4M. However, due to the global memory capacity of the GPU, it is
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Figure 4.9: Multiplication of two integers with large bits.

executed up to p = 128K and p = 4K when n = 1K and n = 32K, respectively. The CUDA C program

invokes p threads in p
64 CUDA blocks with 64 threads each to sort p inputs of n numbers each.

Figure 4.10 (1) shows the computing time for the bulk execution of bitonic sort. Recall that, from

Theorem 4.2.1, the bulk execution of a sequential algorithm can be computed in O(ptw + lt) time units, where

p is the total number of threads, l is the memory access latency, and t is the running time of the original

sequential algorithm. The bulk execution of bitonic sort for n = 32 takes about 0.13ms when p ≤ 1K.

Further, the computing time is proportional to p when p ≥16K and it runs 65.1ms when p = 4M. Thus, we

can think that O(lt) = 0.13ms and O(ptw ) = (15.5p)ns. More specifically, the bulk execution of bitonic sort

for n = 32 and p ≥ 1K can be computed in approximately 0.13ms+(15.5p)ns. To see the speed-up factor,

the original C program is repeatedly executed p times on a Intel Xeon CPU (2.66GHz). Figure 4.10 (2)

shows the speed-up factor of the GPU over the CPU. We can see that the bulk execution of bitonic sort on

the GPU can achieve a speed-up of more than 180 times when n = 32 and p ≥ 128K. Furthermore, when

n = 32 and p = 4M, the GPU is 199 times faster than the CPU.

Our C implementation of the Floyd-Warshall algorithm works on graphs having n = 16, 64, and 256

nodes. We use 32-bit floating-point numbers to store the length of each edge. As before, the C program is

converted into a CUDA C program using C2CU with parameters p = 16, 64, and 256. However, due to the

global memory capacity of the GPU, it is executed up to p = 16K and p = 1K when n = 64 and n = 256,

respectively. The CUDA C program also invokes p threads in p
64 CUDA blocks with 64 threads each.

Figure 4.11 (1) shows the computing time for the bulk execution of the Floyd-Warshall algorithm. We

will show that the bulk execution time of the Floyd-Warshall algorithm matches the O(ptw + lt) time units of

Theorem 4.2.1. As can be observed in Figure 4.11 (1), the bulk execution of the Floyd-Warshall algorithm

for n = 16 takes about 3.4ms when p ≤ 512. The computing time is proportional to p when p ≥4K,

running in 42.6ms when p = 128K. Thus, we can think that O(ln3) = 3.4ms and O(pn
3

w ) = (325p)ns. More

specifically, the bulk execution of the Floyd-Warshall algorithm for n = 16 and p ≥ 512 can be computed in

approximately 3.4ms+(325)ns. Figure 4.11 (2) shows the speed-up of the GPU over the CPU. We can see

that the bulk execution on the GPU can achieve a speed-up of more than 30 times when n = 16 and p ≥ 8K.
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Figure 4.10: The computing time (ms) of bitonic sort on CPU and GPU, and the speed-up for n = 32, 1K,

32K, and p = 64, 128, . . ., 4M.

Furthermore, when n = 16 and p = 128K, the GPU is 54 times faster than the CPU.

Finally, we have written a C program for Montgomery modulo multiplication for n = 512, 16K (= 16384),

and 1M (= 1048576) bits. The C2CU was used to convert it into a CUDA C program with parameter

p = 64, 128, . . . , 2M. However, due to the global memory capacity, it is executed for p = 64K and p = 2K

when n = 16K and n = 1M, respectively. The CUDA C program also invokes p threads in p
64 CUDA blocks

with 64 threads each.

Figure 4.12 (1) shows the computing time for the bulk execution of Montgomery modulo multiplication.

As above, we will show that the O(ptw + lt) time units of Theorem 4.2.1 holds for the bulk execution of the

Montgomery modulo multiplication. The bulk execution of the algorithm for n = 512 takes about 0.45ms

when p ≤ 512. Also, the computing time is proportional to p when p ≥128K and it runs 124ms when p = 2M.

Thus, we can think that O(ln2) = 0.45ms and O(pn
2

w ) = (59.1p)ns. More specifically, the bulk execution of

the algorithm for n = 512 can be computed in approximately 124ms+(5.9p)ns. Figure 4.12 (2) shows the

speed-up of the GPU over the CPU. We can see that the GPU can achieve a speed-up of more than 70 times

when n = 512 and p ≥ 32K. Furthermore, when n = 512 and p = 2M, the GPU is 78 times faster than the
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Figure 4.11: The computing time (ms) of the Floyd-Warshall algorithm on CPU and GPU, and the speed-up

for n = 16, 64, 256, and p = 64, 128, . . ., 128K.

CPU.

4.5 Low-latency implementation for Bulk Execution

In previous sections, we have presented and evaluated the proposed C2CU generator. The obtained results

showed substantial speed-up. On the other hand, latency increases due to the fact that the final output is

computed at the host only after receiving all the partial results from the device. More specifically, suppose

that p inputs s0, s1, . . . , sp−1 are given in turn. The CUDA C program generated by the C2CU provides

p outputs, u0, u1, . . . up−1, which are available only after the termination of the CUDA C program. An

alternative to reduce latency is to obtain each output ui as soon the corresponding input si is given. In

this section we explore this idea to reduce the bulk execution latency. To achieve this goal, the input is

partitioned into groups and the bulk execution is performed on the GPU for each group in turn. As shown

in Figure 4.13, the idea is to partition the p inputs into p
b groups of b inputs each. Then, the generated

CUDA C program performs the computation for each group b in turn.
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Figure 4.12: The computing time (ms) of the Montgomery modulo multiplication on CPU and GPU, and

the speed-up for p = 64, 128, . . ., 4M.

We assume that each group of b inputs is given to the main memory of the host PC at each interval

of time T > 0. From the host PC, each group is then transferred to the global memory of the GPU. The

timeSetEvent() is used for invoking the computation of each bulk execution after T time units. Clearly,

the latency between inputs is bounded by T . After the completion of the bulk execution, the resulting

values are copied back to the main memory of the host PC. These operations are repeated for all groups in

turn. Figure 4.14 illustrates how the computation and data transfer are performed. In the figure, “HtoD”,

“kernel” and “DtoH” correspond to the data transfer from Host to Device (i.e. GPU), kernel execution (i.e.

bulk execution); and the data transfer from Device to Host, respectively.

As in the previous section, the performance evaluation of the proposed low-latency alternative has been

carried out on the GeForce GTX Titan. Figure 4.15 shows the throughput and the latency for the bulk

execution of the bitonic sort with p = 128M (= 134217728) inputs of n = 32 numbers for b = 1K, 2K,

. . ., 4M. When b ≤ 8K, the throughput is proportional to b. The throughput increases slightly when

8K≤ b ≤ 128K, and it remains unchanged when b ≥ 128K. The latency remains unchanged when b ≤ 8K,

and it is proportional to b when b ≥ 8K. We can see that the throughput saturates when b ≥ 128K due to

45



4.5 Low-latency implementation for Bulk Execution

b inputs

b outputs

p inputs

GPU

CPU

b outputsb outputs

b inputs

Figure 4.13: Low-latency GPU implementation outline.

HtoD kernel DtoH HtoD kernel DtoH HtoD kernel DtoH

0 T 2T
T

Time

HtoD

Figure 4.14: The behavior of the proposed low-latency GPU implementation.

the bandwidth limitation between the device and the host PC.

We can see that the throughput for b = 128K is almost the same as that for b = 4M. The latency is

12.0ms when b = 128K and 373ms when b = 4M. Clearly, by selecting b = 128K allows for low-latency

computation with nearly maximum throughput.

We have also evaluated the performance for the Floyd-Warshall algorithm with p =640K (= 655360)

graphs of n = 16 nodes each with parameter b = 64, 128, . . ., 64K. Figure 4.16 shows the throughput

and the latency. When b ≤ 4K, the throughput is proportional to b and the latency increases slightly.

When b ≥ 4K, the throughput increases slightly and the latency is proportional to b. We can see that the

throughput saturates for b ≥ 4K. The reason for such behavior is the bandwidth limit between the device

and the host PC.

We can see that the throughput for b = 4K is slightly smaller than that for b = 64K. The latency is

4.82ms when b = 4K and 48.3ms when b = 64K. Clearly, choosing b = 64K allows for low latency and high

throughput for the bulk execution in this case.

We have further evaluated the performance for Montgomery modulo multiplication on the GPU. Figure

4.17 shows the throughput and the latency for p =4M (= 4194304) inputs of n = 512 bits each with parameter

b = 512, 1K, . . ., 2M. When b ≤ 8K, the throughput is proportional to b. The throughput increases slightly

when 8K ≤ b ≤ 64K, and it remains unchanged when b ≥ 64K. The latency increases slightly when b ≤ 4K,

and it is proportional to b when b ≥ 4K. We can see that the throughput saturates when b ≥ 64K due to

the bandwidth limitation between the device and the host PC.
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Figure 4.15: Throughput (GB/sec) and latency (ms) for the bulk execution of bitonic sort for p = 128M

inputs of n = 32 numbers each.
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Figure 4.16: Throughput (GB/sec) and latency (ms) for the bulk execution of the Floyd-Warshall algorithm

for p = 640K inputs of n = 16 nodes each.

We can see that the throughput for b = 64K is slightly lower than that for b = 512K. On the other hand,

the latency is 13.3ms when b = 64K and 406ms when b = 2M. The best performance, in terms of the latency

and the throughput, is achieved when b = 64K.
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Figure 4.17: Throughput (GB/sec) and latency (ms) for the bulk execution of the Montgomery modulo

multiplication for p = 4M inputs of n = 512 bits each.
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Chapter 5

Concluding remarks

For first contributions: First, we have proposed efficient GPU implementations of the Blocked Floyd-Warshall

algorithm, and have evaluated them through experimental results using NVIDIA Tesla V100. It performs

no barrier synchronization and invokes only one kernel call. Also, we have proposed SIMD functions so as

to execute saturating addition and minimum selection for updating values. We have applied these SIMD

functions to GPU implementations and multicore implementations.

When we give one graph, we have proposed single kernel implementation for a graph on the GPU. Our

Single kernel implementation runs 1.05-1.31 times faster than multiple kernel implementation. Also, we

have applied SIMD functions to above GPU implementations. Our Single kernel implementation with SIMD

functions runs 1.00-1.28 times faster than multiple kernel implementation with SIMD functions.

Secondly, we have proposed four GPU implementations for many graphs at the same time: multiple

kernel implementation without/with SIMD functions and single kernel implementation without/with SIMD

functions. In terms of implementations without SIMD functions, single kernel implementation runs 1.03-1.60

times faster than multiple kernel implementation. Also, single kernel implementation runs 1.01-1.89 times

faster than multiple kernel one.

If many graphs are given, the time to transfer between Host and the device increases and latency in-

creases. Hence, we have proposed the low-latency implementations. In terms of implementations without

SIMD functions, the low-latency implementation outputs the results 1.45-5.90 faster than multiple kernel

implementation, and 1.38-5.87 faster than single kernel implementation. Also, the low-latency implemen-

tation with SIMD functions outputs the results 1.11-2.43 faster than multiple kernel implementation, and

1.07-2.36 faster than single kernel implementation.

Finally, we have implemented parallel Floyd-Warshall algorithm on the multicore processors.

For second contributions: This work focuses on the performance of the bulk execution of an oblivious

sequential algorithm. In this regard, the first contribution of this paper was to present a time-optimal

implementation for the bulk execution of an oblivious sequential algorithm.

Next, we have proposed a tool, termed C2CU, to assist developers to generate appropriate CUDA C
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programs tailored for the bulk execution. The proposed C2CU takes as input a C language program of

a sequential algorithm and generates the CUDA C program for the bulk execution on a CUDA-enabled

GPU. Experimental results have shown that the generated CUDA C program, executed on the GeForce

GTX Titan, can deliver speed-up of 199 times as compared to its original C program running on an Intel

Xeon CPU. Although the obtained results showed substantial speed-up, latency has increased since the

final result is computed at the host only after receiving all the partial results from the device. Hence, our

third contribution was to propose a low-latency GPU implementation for the bulk execution of an oblivious

sequential algorithm. Experimental results confirmed that the aforementioned implementation delivers high-

throughput at low-latency.
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