International Immunology

International Immunology

Autosomal recessive complete STAT1 deficiency caused by compound heterozygous intronic mutations

Journal:	International Immunology
Manuscript ID	INTIMM-20-0079.R1
Manuscript Type:	Original Research
Date Submitted by the Author:	17-Jun-2020
Complete List of Authors:	Sakata, Sonoko; Hiroshima University Graduate School of Biomedical and Health Sciences Health Sciences Major, Department of Pediatrics Tsumura, Miyuki; Hiroshima University Graduate School of Biomedical & Health Sciences, Department of Pediatrics Matsubayashi, Tadashi; Department of Pediatrics, Seirei Hamamatsu General Hospital, Shizuoka, Japan Karakawa, Shuhei; Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan Kimura, Shunsuke; Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan; Department of Pathology, Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA Tamaura, Moe; Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Throshima University Graduate School of Biomedical and Health Sciences, Tokyo Medical and Dental University, Tokyo, Japan Naruto, Takuya; Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan Mizoguchi, Yoko; Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan Kagawa, Reiko; Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan Kagawa, Reiko; Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan Nishimura, Shiho; Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan Imai, Kohsuke; Department of Pediatrics and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan Imai, Kohsuke; Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan Le Voyer, Tom: Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM

	Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan, Pediatrics and Developmental Biology Ohara, Osamu; Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan Kobayashi, Masao; Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan Okada, Satoshi; Hiroshima University Graduate School of Biomedical & Health Sciences, Department of Pediatrics
Keywords:	mycobacteria, virus, target RNA sequence, primary immunodeficiency

1 Title: Autosomal recessive complete STAT1 deficiency caused by compound heterozygous intronic

- 2 mutations
- 3
- 4 Authors
- Sonoko Sakata¹, Miyuki Tsumura¹, Tadashi Matsubayashi², Shuhei Karakawa¹, Shunsuke Kimura^{1,3Φ}, 5
- 6 Moe Tamaura¹, Tsubasa Okano⁴, Takuya Naruto⁴, Yoko Mizoguchi¹, Reiko Kagawa¹, Shiho Nishimura¹,
- 7 Kohsuke Imai⁴, Tom Le Voyer^{5,6}, Jean-Laurent Casanova^{5,6,7,8,9,10}, Jacinta Bustamante^{5,6,9,11}, Tomohiro
- Morio⁴, Osamu Ohara¹², Masao Kobayashi^{1, 130}, Satoshi Okada¹ 8 ,at
- 9

10 **Corresponding Author**

- 11 Satoshi Okada, MD, PhD
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences 12
- 1-2-3 Kasumi, Minami-Ku, Hiroshima-Shi, Hiroshima, 734-8551, Japan 13
- 14 Tell: +81-82-257-5212
- 15Fax: +81-82-257-5214
- 16 E-mail: sokada@hiroshima-u.ac.jp
- 17
- 18 Running title: Intron mutations cause STAT1 deficiency

19 Institutions

- 20 1. Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences,
- 21 Hiroshima, Japan
- 22 2. Department of Pediatrics, Seirei Hamamatsu General Hospital, Shizuoka, Japan
- 23 3. Department of Pathology, Hematological Malignancies Program, St. Jude Children's Research Hospital,
- 24 Memphis, TN, USA
- 4. Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental
- 26 Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- 27 5. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker
- 28 Hospital for Sick Children, 75015 Paris, France.
- 29 6. Paris University, Imagine Institute, Paris, France, EU
- 30 7. St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller
- 31 University, New York, NY 10065, USA
- 32 8. Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France, EU
- 33 9. Study Center of Immunodeficiencies, Necker Hospital for Sick Children, Paris, France, EU
- 34 10. Howard Hughes Medical Institute, New York, NY, USA
- 35 11. Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, Denmark, EU
- 36 12. Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan

- 37 13. Japan Red Cross, Chugoku-Shikoku Block Blood Center, Hiroshima, Japan
- ^Φcurrent affiliation 38
- 39
- 40 Number of words: 3,578 words
- 41
- 42 Keywords: mycobacteria, virus, target RNA sequence, primary immunodeficiency

.get RNA sequ

45 Abstract 46Autosomal recessive (AR) complete signal transducer and activator of transcription 1 (STAT1) 47deficiency is an extremely rare primary immunodeficiency that causes life-threatening mycobacterial 48 and viral infections. Only seven patients from five unrelated families with this disorder have been so 49 far reported. All causal STAT1 mutations reported are exonic and homozygous. We studied a patient 50with susceptibility to mycobacteria and virus infections, resulting in identification of AR complete 51 STAT1 deficiency due to compound heterozygous mutations, both located in introns: c.128+2 T>G 52and c.542-8 A>G. Both mutations were the first intronic STAT1 mutations to cause AR complete STAT1 deficiency. Targeted RNA-seq documented the impairment of STAT1 mRNA expression and 53 54 contributed to the identification of the intronic mutations. The patient's cells showed a lack of 55 STAT1 expression and phosphorylation, and severe impairment of the cellular response to IFN- γ and IFN-α. The case reflects the importance of accurate clinical diagnosis and precise evaluation, to 56include intronic mutations, in the comprehensive genomic study when the patient lacks molecular 5758 pathogenesis. In conclusion, AR complete STAT1 deficiency can be caused by compound 59 heterozygous and intronic mutations. Targeted RNA-seq based systemic gene expression assay may 60 help to increase diagnostic yield in inconclusive cases after comprehensive genomic study.

63	Introduction
64	Signal transducer and activator of transcription 1 (STAT1) is a latent cytoplasmic transcription
65	factor that has a fundamental role in signal transduction from both type I (IFN- α and IFN- β), type II
66	(IFN- γ) and type III (IFN- λ) interferons and also IL-27.(1) In response to IFN- γ , IFN- α/β , or
67	interleukin 27 (IL-27) stimulation, STAT1 forms a homodimer called gamma-interferon activation
68	factor (GAF). GAF translocates to the nucleus and binds to gamma-activating sequences (GAS) to
69	induce the transcription of target genes involved in antimycobacterial immunity.(1,2) STAT1 also
70	forms a heterotrimer with STAT2, and IRF9, which is known as interferon-stimulated gene factor 3
71	(ISGF3), after stimulation by IFN- α/β . ISGF3 binds the interferon-stimulated response element
72	(ISRE) and induces target genes involved in anti-viral immunity.(1,2)
73	Inborn errors in human STAT1 immunity cause at least four types of primary immunodeficiency:
74	i) autosomal recessive (AR) complete STAT1 deficiency; ii) AR partial STAT1 deficiency; iii)
75	autosomal dominant (AD) STAT1 deficiency; and iv) AD STAT1 gain of function.(3) Among them,
76	AR complete STAT1 deficiency is an extremely rare primary immunodeficiency (PID) that causes
77	life-threatening mycobacterial and viral infections. Indeed, only seven patients from five unrelated
78	families with AR complete STAT1 deficiency have been so far reported.(3-7) Those patients show
79	complete functional impairment of STAT1-dependent response to type I and type II interferons.(4)

80 This is a purely recessive disorder and no haplo-insufficiency at the STAT1 locus has been reported

81	for any of the known cellular or clinical phenotypes.(3) Prognosis of the patients with AR complete
82	STAT1 deficiency is poor, and hematopoietic stem cell transplantation (HSCT) is the only curative
83	treatment. Three patients received HSCT and long-term survival was achieved in two-patients.
84	Overall, five of the seven patients died before 18 months of age from mycobacterial infections (two
85	patients), viral infections (two patients), or multiorgan failure in the course of HSCT (one patient)
86	(summarized in Table 1).(3,7) Therefore, early diagnosis and appropriate therapeutic intervention are
87	necessary to avoid life-threatening events in this disorder.
88	Here we report a patient with AR complete STAT1 deficiency due to compound heterozygous
89	mutations, c.128+2 T>G/c.542-8 A>G, in STAT1. Both mutations were the first intronic STAT1
90	mutations reported to cause AR complete STAT1 deficiency. The case reflects the importance of
91	inclusion of non-coding regions and intronic mutations to obtain an accurate clinical diagnosis and
92	precise evaluation in the comprehensive genomic study when the patient lacks molecular
93	pathogenesis. In addition, targeted RNA sequencing (RNA-seq) based systemic gene expression
94	assay may enhance diagnostic yield in inconclusive cases after comprehensive genomic study.
95	

97 Case report

Material and Methods

96

98 The patient is a 6-year old Japanese boy who was born to non-consanguineous parents (Figure 1A).

99	He had no family history of PID. At the age of 1 month, the patient developed respiratory syncytial
100	virus (RSV) bronchiolitis and was treated with non-invasive positive pressure ventilation. He
101	received a BCG vaccination at 9 months. Five weeks later, the patient developed lymphadenitis in
102	the left axillar region. He then presented with a skin rash and fever. Lymph node biopsy was
103	performed at 11 months. The histopathological finding of the lymph nodes showed no granuloma.
104	Mycobacterium tuberculosis was detected by PCR from the lymph nodes and bone marrow. The
105	patient was started treatment with isoniazid (INH), rifampicin (RFP) and ethambutol (EMB) with the
106	suspicion of Mycobacterial tuberculosis infection. Twenty days later, the vaccine strain BCG was
107	confirmed as the pathogen by Southern blotting. Therefore, the patient was given a diagnosis of
108	disseminated BCG. Laboratory tests showed leukocytosis (47,800/µL) (Reference range: RR
109	6,000-17,500) and high levels of C-reactive protein (CRP: 10.8 mg/dL). Serum immunoglobulin
110	levels were normal. The patient displayed normal respiratory burst and normal T-lymphocyte
111	activation after phytohemagglutinin (PHA) or concanavalin A (ConA) stimulation. No obvious
112	abnormality was observed in the T and B cell counts, with normal results for T cell receptor excision
113	circles (TRECs) and K-deleting recombination excision circles (KRECs). Deep and comprehensive
114	phenotyping of immune cell subsets detected a decreased frequency of Th1 cells and myeloid DCs
115	(mDCs), and an increased frequency of Th17 cells (Supplementary Table 1). Since initial
116	antimycobacterial agents were clinically effective, the treatments with INH, RFP and EMB were

International Immunology

117	continued after diagnosis of disseminated BCG. Cumulatively, the patient received INH, RFP, and
118	EMB for 40, 28, and 2 months from this episode, respectively. The patient was diagnosed with
119	Mendelian susceptibility to mycobacterial diseases (MSMD) and subjected to trio-exome analysis at
120	the age of 11 months. However, trio-exome analysis failed to confirm the genetic etiology at that
121	time.
122	After that episode, he developed severe and recurrent infections, summarized in Supplementary
123	Table 2. At the age of 1 year and 4 months, he developed acute asthma associated with influenza A
124	infection. The laboratory tests showed an elevated level of serum CRP (12.0 mg/dL) without the
125	findings of pneumonia on radiological imaging. At the age of 2 years and 1 month, he presented with
126	febrile seizure. The blood examination showed thrombocytopenia (platelets $4.0 \times 10^{9}/L$), and
127	elevated levels of serum ferritin (8,404 $\mu g/L,$ RR 20–250) and soluble IL-2 receptor (8,270 U/ml,
128	RR 157-474). Although no obvious splenomegaly nor evidence of hemophagocytosis in the bone
129	marrow were detected, the patient was suspected of having developed hemophagocytic
130	lymphohistiocytosis (HLH) secondary to infection with an unknown pathogen and was successfully
131	treated with dexamethasone palmitate. At the age of 2 years and 11 months, he developed
132	bronchiolitis with a positive result of Mycoplasma pneumoniae antigen and treated with
133	azithromycin. At the age of 3 years and 1 month, he developed bilateral tibial osteomyelitis with an
134	elevated level of serum CRP (29.7 mg/dL). No obvious pathogen was identified from a biopsied

135	specimen by cultivation, and the osteomyelitis did not respond to antibacterial drugs. It gradually
136	improved with a long clinical course. Although there was no evidence, continuous treatment with
137	antimycobacterial agents might have contributed to the improvement of patient's illness. At the age
138	of 3 years and 6 months, he developed pneumonia due to human metapneumovirus (hMPV). He
139	suffered from dyspnea and showed an elevated level of serum CRP (24.5 mg/dL). At the age of 3
140	years and 9 months, he developed severe enterocolitis with bilious vomiting and paralytic ileus
141	associated with rotavirus infection. At the age of 3 years and 10 months, he suffered from Kawasaki
142	disease-like symptoms (a combination of fever, rash, swelling of the lips and neck lymph nodes, and
143	conjunctival injection) with elevated atypical lymphocytes and serum CRP (10.2 mg/dL). These
144	symptoms improved spontaneously without intravenous immunoglobulin treatment. At the age of 4
145	years and 2 months, he presented with pneumonia, which responded to antibacterial treatment. The
146	prophylaxis with INH was suspended at the age of 4 years and 4 months. At the age of 4 years and 8
147	months, 2 weeks after receiving his varicella vaccination, he developed vaccine-strain induced
148	varicella with a typical rash and fever, that was treated with oral acyclovir. At the age of 4 years and
149	9 months, he developed life-threatening <i>M. malmoense</i> mediastinal lymphadenitis and tibial
150	osteomyelitis (Figure 1B). The histopathological findings of mediastinal lymph node biopsy showed
151	no granuloma formation (Figure 1C). The symptoms gradually improved after starting RFP, EMB,
152	and clarithromycin (CAM). At the age of 5 years and 4 months, he developed influenza A

153 respiratory infection, which was treated with peramivir (CRP 19.3 mg/dL).

154	The systemic gene expression assay with targeted RNA-seq was performed and identified
155	decreased STAT1 expression with aberrant splicing. The exome data were then reanalyzed, resulting
156	in identification of compound heterozygous intronic mutations, c.128+2 T>G/c.542-8 A>G, ir
157	STAT1. The patient was thus given a diagnosis of AR complete STAT1 deficiency.
158	
159	Genomic DNA and whole exome sequencing
160	Genomic DNA was eluted from whole blood with a QIAamp DNA Mini Kit (Qiagen, Hilden,
161	Germany). Whole exome sequencing (WES) library preparation was performed with SureSelect XT
162	or QXT Reagent Kit (Agilent Technologies, Santa Clara, CA, USA) and SureSelect XT Human All
163	Exon V5 Kit (Agilent Technologies). The library was sequenced using the HiSeq1500 system
164	(Illumina, San Diego, CA, USA), and the variants were annotated as previously described.(8) For the

165 first analysis of exome data, we selected the following variants with a global minor allele frequency

166 (GMAF)>0.05 as candidate variants: variants in the cording sequence excluding synonymous

variants, variants located within 5 base points from exon-intron boundaries, or variants reported as

168 probably damaging, possibly damaging, disease_causing_automatic, or disease_causing in dbNSPF

169 (https://sites.google.com/site/jpopgen/dbNSFP), or variants reported in OMIM

170 (https://www.ncbi.nlm.nih.gov/omim) or Clinvar (https://www.ncbi.nlm.nih.gov/clinvar/). As for the

second analysis (reanalysis) of the exome data, we filtered the variants as previously described.(8)

172

173 Targeted RNA-seq and expression analysis

174	Total RNA was extracted from the PBMCs from the patient and 10 other PID patients without
175	genetic etiology after WES. Libraries for the targeted RNA-seq for a PID panel consist of 426
176	immune related genes, which include PID responsible genes reported from International Union of
177	Immunological Societies in 2017 (IUIS 2017), were prepared using an Agilent SureSelect Strand
178	Specific RNA library construction kit with RNAs prepared by the Trizol method (ambion). RNAs
179	derived from PID genes were enriched by hybridization with PID panel probes using a SureSeclect
180	target enrichment system (Agilent Technologies). The enriched libraries were sequenced on an
181	Illumina MiSeq under a 75-base paired-end run mode and the obtained reads were mapped to the
182	human reference genome (NCBI build 37.1) using STAR.(9,10) For expression analysis, the count
183	data were extracted using Rsubread(11) and normalized using DESeq2.(12) To analyze the effect of
184	splice-site mutations, the splicing pattern was assessed manually with IGV software.(13)
185	The detailed method of quantitative PCR and reverse transcription PCR (RT-PCR) are shown in
186	the Supplementary Methods.

187

188 Flow cytometry

189	The peripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation.
190	The PBMCs were suspended at a density of 10^4 cells/µl in serum-free RPMI1640. The cells were
191	incubated with IFN- γ (1,000 IU/ml) or IFN- α (1,000 IU/ml) for 15 minutes at 37°C in the presence
192	of FITC-conjugated CD14 (BD Biosciences, Franklin Lakes, NJ, USA). They were then washed in
193	RPMI1640 and were fixed and permeabilized according to the BD Phosflow protocol (Protocol III).
194	They were next stained with FITC-conjugated anti-CD14 and PE-conjugated anti-pSTAT1 (pY701)
195	(BD Biosciences), and subjected to flow cytometric analysis to analyze STAT1 phosphorylation.
196	Data were analyzed with FlowJo software (BD Biosciences).
197	
198	Immunoblot analysis and electrophoretic mobility shift assay (EMSA)
198 199	Immunoblot analysis and electrophoretic mobility shift assay (EMSA) The PBMCs or SV40 fibroblasts were incubated in the presence or absence of IFN-γ (1,000 IU/ml)
198 199 200	Immunoblot analysis and electrophoretic mobility shift assay (EMSA) The PBMCs or SV40 fibroblasts were incubated in the presence or absence of IFN-γ (1,000 IU/ml) or IFN-α (1,000 IU/ml) for 15 minutes and subjected to immunoblot analysis. Immunoblot analysis
198 199 200 201	Immunoblot analysis and electrophoretic mobility shift assay (EMSA) The PBMCs or SV40 fibroblasts were incubated in the presence or absence of IFN- γ (1,000 IU/ml) or IFN- α (1,000 IU/ml) for 15 minutes and subjected to immunoblot analysis. Immunoblot analysis was performed as described previously.(14,15) The following primary antibodies used for
 198 199 200 201 202 	Immunoblot analysis and electrophoretic mobility shift assay (EMSA) The PBMCs or SV40 fibroblasts were incubated in the presence or absence of IFN-γ (1,000 IU/ml) or IFN-α (1,000 IU/ml) for 15 minutes and subjected to immunoblot analysis. Immunoblot analysis was performed as described previously.(14,15) The following primary antibodies used for immunoblotting: an anti-pSTAT1 (pY701) antibody (Cell Signaling Technology, Danvers, MA,
 198 199 200 201 202 203 	Immunoblot analysis and electrophoretic mobility shift assay (EMSA) The PBMCs or SV40 fibroblasts were incubated in the presence or absence of IFN-γ (1,000 IU/ml) or IFN-α (1,000 IU/ml) for 15 minutes and subjected to immunoblot analysis. Immunoblot analysis was performed as described previously.(14,15) The following primary antibodies used for immunoblotting: an anti-pSTAT1 (pY701) antibody (Cell Signaling Technology, Danvers, MA, USA), an anti-STAT1α antibody against total STAT1 (Santa Cruz Biotechnology, Santa Cruz, CA,
 198 199 200 201 202 203 204 	Immunoblot analysis and electrophoretic mobility shift assay (EMSA) The PBMCs or SV40 fibroblasts were incubated in the presence or absence of IFN-γ (1,000 IU/ml) or IFN-α (1,000 IU/ml) for 15 minutes and subjected to immunoblot analysis. Immunoblot analysis was performed as described previously.(14,15) The following primary antibodies used for immunoblotting: an anti-pSTAT1 (pY701) antibody (Cell Signaling Technology, Danvers, MA, USA), an anti-STAT1α antibody against total STAT1 (Santa Cruz Biotechnology, Santa Cruz, CA, USA), and an anti-β-actin antibody (Sigma-Aldrich, St. Louis, MO, USA). EMSA was conducted as
 198 199 200 201 202 203 204 205 	Immunoblot analysis and electrophoretic mobility shift assay (EMSA) The PBMCs or SV40 fibroblasts were incubated in the presence or absence of IFN-γ (1,000 IU/ml) or IFN-α (1,000 IU/ml) for 15 minutes and subjected to immunoblot analysis. Immunoblot analysis was performed as described previously.(14,15) The following primary antibodies used for immunoblotting: an anti-pSTAT1 (pY701) antibody (Cell Signaling Technology, Danvers, MA, USA), an anti-STAT1α antibody against total STAT1 (Santa Cruz Biotechnology, Santa Cruz, CA, USA), and an anti-β-actin antibody (Sigma-Aldrich, St. Louis, MO, USA). EMSA was conducted as previously described.(15,16) Briefly, the cells were stimulated by incubation for 15 minutes with

³²P-labeled (αdATP) GAS (from *FCGR1* promoter) or ISRE (from *ISG15* promoter) probes for 30

- 208 minutes and subjected them to analysis.
- 209
- 210 Ethics Statement
- 211 We obtained written informed consent for genomic analysis and blood sample based functional
- studies of the patient, parents and siblings in accordance with the Declaration of Helsinki. The
- 213 genetic analysis and blood sample based functional studies were approved by the Institutional
- 214 Review Board of Hiroshima University and Tokyo Medical and Dental University.
- 215
- 216 **Results**
- 217 Identification of biallelic variants in STAT1

High-molecular weight genomic DNA was extracted from peripheral blood. Trio-whole-exome sequencing, which was performed at 11 months of age, identified a novel heterozygous variant, c.128+2 T>G, in the *STAT1* gene in the patient and his asymptomatic mother (**Figure 1A, 1D**). Rare variants in other known PID related genes reported in IUIS 2017 (*LRBA, NBN, NHEJ1*, and *TBX1*) were also identified (**Supplementary Table 3**).(10) However, they were not inferred to be disease-causing based on the clinical manifestations and their inheritance pattern. The c.128+2 T>G *STAT1* variant was confirmed by Sanger sequencing (**Figure 1D**). Monoallelic dominant negative

225	and loss-of-function mutations in STAT1, which are normally expressed at the protein level, have
226	been identified in patients with MSMD.(2,15-20) In contrast, a familial study of patients with AR
227	STAT1 complete deficiency, which investigated parents with monoallelic loss-of-expression
228	mutation in STAT1, revealed that there is no haploinsufficiency at the STAT1 locus.(3) The c.128+2
229	T>G variation identified in this study's patient was located at an essential splice site and was
230	suspected to disturb STAT1 protein expression. Based on a previous study that showed a lack of
231	haploinsufficiency, together with the presence of this variant in the asymptomatic mother, the
232	pathogenicity of the c.128+2 T>G variant was missed at the first analysis of the exome data.
233	A systemic gene expression assay using targeted RNA-seq identified decreased STAT1
234	expression and exon skipping at exon 8 of STAT1. We thus thoroughly reanalyzed the exome data
235	and identified a novel heterozygous intronic variant, c.542-8A>G, which was missed by the filtering
236	process of first analysis of the exome data (filtering strategy of the first analysis of exome data is
237	detailed in methods). This variant was confirmed by Sanger sequencing and was identified in the
238	asymptomatic father and elder sister (Figure 1A, 1D). Therefore, the patient was determined to have
239	compound heterozygous variations, c.128+2 T>G/c.542-8 A>G, in STAT1. Neither variant was
240	found in the Single Nucleotide Polymorphism Database (dbSNP), 1000 Genome Projects, the Exome
241	Aggregation Consortium (ExAc) database, or the genome aggregation database (gnomAD).
949	

243 Targeted RNA-seq and qPCR

244	A targeted RNA-seq based systemic gene expression assay of PBMCs was implemented to
245	investigate the molecular pathogenesis of the patient. This assay ranked STAT1 as among the top five
246	genes with reduced expression in the patients when we used the other 10 inconclusive PID patients
247	as controls (Figure 2). As expected, the splicing pattern assessed manually with IGV software
248	revealed intron retention at exon 3 associated with the c.128+2 T>G variant (Figure 3A).
249	Furthermore, we identified abnormal splicing in the form of exon skipping at exon 8 of the STAT1
250	gene (Figure 3B). We next performed a RT-PCR assay for STAT1 from PBMCs of the patient and
251	two healthy individuals. The RT-PCR assay, which spanned exon 3 and exon 7 of STAT1, confirmed
252	the reduced expression of STAT1 mRNA and the presence of intron retention by detecting
253	approximate 1,350 bp band in the patient (Supplementary Figure S1). The RT-PCR assay, which
254	spanned exon 6 and exon 10 of STAT1, also confirmed the presence of exon skipping at exon 8 by
255	detecting approximate 300 bp band in the patient. To confirm the result of the targeted RNA-seq and
256	evaluate the impact of the biallelic STAT1 variations on mRNA synthesis, we carried out qPCR from
257	PBMCs of the patient and a healthy control. This confirmed a severe decrease of STAT1 mRNA in
258	the patient's cells (9.4% of <i>STAT1</i> mRNA compared with the control's) (Figure 4A).
259	

260 Impaired STAT1 protein expression and phosphorylation

261	We performed flow cytometry to analyze the STAT1 function by detecting its phosphorylation
262	(pSTAT1) upon IFN- γ or IFN- α stimulation. The CD14 ⁺ monocytes from a healthy control showed
263	pSTAT1 upon IFN- γ or IFN- α (Figure 4B). In contrast, the CD14 ⁺ monocytes from the patient
264	completely lacked pSTAT1 in response to IFN- γ or IFN- α . To confirm this finding, PBMCs from the
265	patient and a healthy control were stimulated with IFN- γ or IFN- α and subjected to immunoblot
266	analysis. As shown in Figure 4C, PBMCs from the patient showed a complete lack of STAT1
267	protein expression and its phosphorylation upon IFN- γ or IFN- α stimulation. These results are
268	comparable to the patient's clinical manifestations, showing a series of severe mycobacterial and
269	viral infection, together with identifying a lack of granuloma formation associated with
270	mycobacteria infection. Taken together, the biallelic variations identified in the patient were
271	determined to be pathogenic mutations. The patient was thus given a diagnosis of AR complete
272	STAT1 deficiency.

274 STAT1 phosphorylation and DNA-binding ability in SV40-transformed fibroblasts

To confirm the molecular defects observed in the patient's PBMCs, we assessed the STAT1 protein and phosphorylation using SV40-transformed fibroblasts (SV40 fibroblast) from the patient, two healthy controls, and a disease control from a patient with AR complete STAT1 deficiency (STAT1-/-). The SV40 fibroblasts from the patient, as well as STAT1-/- SV40 fibroblasts, showed

279	a complete lack of STAT1 protein expression and its phosphorylation upon IFN- $\!\gamma$ and IFN- $\!\alpha$
280	stimulation (Figure 5A). Next, the DNA-binding ability of the wild-type (WT) and mutant STAT1
281	proteins were analyzed by EMSA. The SV40 fibroblasts were stimulated with IFN- γ or IFN- α for 15
282	minutes and subjected to EMSA. As shown in Figure 5B, SV40 fibroblasts from the patient, as well
283	as the STAT1-/- SV40 fibroblasts, presented a complete loss of DNA-binding activity to GAS in
284	response to IFN- γ or IFN- α stimulation. These results suggested that not only PBMCs but also SV40
285	fibroblasts from the patient lacked a cellular response to IFN- γ or IFN- α .
286	
287	Impaired cellular response to IFN-γ and IFN-α
288	STAT1 plays a nonredundant role in the upregulation of target genes upon IFN- γ and IFN- α
289	stimulation. The CD14 ⁺ monocytes from the patient and controls were stimulated with IFN- γ (100
290	IU/ml) or IFN- α (100 IU/ml) for 6 hours. They were then subjected to RNA-seq. The patient's
291	CD14 ⁺ monocyte showed global dysregulation of STAT1 target genes upon the monocyte being
292	stimulated with IFN- γ and IFN- α (Figure 6). These results suggest that the patient's cells display
293	impaired responses to IFN- γ and IFN- α .
294	
295	Discussion

We herein reported a patient with AR complete STAT1 deficiency due to STAT1 compound 296

297	heterozygous mutations, both located in introns: c.128+2 T>G and c.542-8 A>G. Both mutations
298	were private and absent from the public databases. Five mutations in STAT1 have been reported to
299	cause AR complete STAT1 deficiency in previous studies.(3-7) All of the previously reported
300	STATI mutations are located in exonic regions and have been identified in the homozygous state.
301	Therefore, the current case is the first AR complete STAT1 deficiency due to intronic STAT1
302	mutations. These mutations resulted in severe impairment of STAT1 mRNA expression. The c.128+2
303	T>G mutation was identified by WES during the first data analysis, whereas the c.542-8 A>G
304	mutation was missed at that time because the default filtering strategy stringently excluded intronic
305	variants beyond 5 base pairs from the exon-intron boundary. Monoallelic loss-of-function STAT1
306	mutations, which results in normal expression and exert a dominant negative effect on WT
307	STAT1-mediated IFN-y signaling, specifically disturb host immunity to mycobacteria and cause
308	MSMD (called AD partial STAT1 deficiency). In contrast, the previous studies, which analyzed
309	relatives of cases with AR complete STAT1 deficiency, clearly show a lack of haploinsufficiency in
310	human STAT1.(3-7,21-23) The patient in the present study was clinically diagnosed as MSMD
311	when the first exome data analysis was performed. The pathogenicity of the c.128+2 T>G mutations
312	was thus missed at that time because the mutations were inherited from the patient's asymptomatic
313	mother and predicted to disturb STAT1 protein expression by disturbing its splicing.
314	The identification of intronic mutations by comprehensive genomic study can be challenging.

315	Such mutations are easily missed in the filtering process of considerable numbers of variants of
316	unknown significance (VUS) in the analysis of exome data. Reflecting this difficulty, it took nearly
317	4 years to confirm the molecular cause in the current study. To investigate PID related genes with a
318	low expression level effectively, we performed targeted RNAseq, which enriched 426 immune
319	related genes, by focusing on PBMCs. This assay successfully ranked STAT1 as one of the top five
320	genes with reduced expression in the patient when we used another 10 inconclusive PID patients as
321	controls. This assay also detected exon skipping at exon 8 of STAT1 due to the c.542-8 A>G
322	mutation. The results suggested that targeted RNAseq is a potentially useful diagnostic tool for
323	identifying inconclusive PID patients after WES. Recent studies revealed that RNAseq-based
324	comprehensive transcriptomic analysis is a useful tool for detecting mis-splicing, which improved
325	the diagnostic yield of inconclusive cases by WES. This in turn led to an approximately 10%-35%
326	increase in the detection of pathogenic variants.(24-26) One major difficulty in transcriptomic
327	analysis is tissue-specific expression(26). Regarding this point, PID has an advantage as a target
328	disease for RNA-seq because we can use PBMCs for analysis. However, the introduction of
329	RNA-seq in the diagnosis of PID patients is still in its primitive stage.
330	After the first genetic study, which was performed at the age of 11 months, the patient presented
331	over the following several years with several episodes of severe virus infections. He developed

332 severe influenza A infection (at 1 and 5 years old), hMPV pneumonia (at 3 years old), enterocolitis

333	and paralytic ileus by rotavirus (at 3 years old) and vaccine-strain induced varicella (at 4 years old).
334	Especially, the episodes of paralytic ileus by rotavirus and vaccine-strain induced varicella strongly
335	suggested that the patient was prone to viruses. Retrospectively, these infectious phenotypes,
336	together with the histopathological finding of mycobacterial lymphadenitis, which lacked granuloma
337	formation, suggested AR complete STAT1 deficiency as a differential diagnosis. Indeed, the lack of
338	granuloma formation is a typical finding in patients with AR complete IFN- γ R1, IFN- γ R2, or
339	STAT1 deficiency.(27,28) However, the clinical rarity and lack of awareness of AR complete
340	STAT1 deficiency makes suspicion of this disorder unlikely. The delayed diagnosis in the current
341	study highlights the importance of clinical information and recognition of the characteristic findings
342	of specific disorders to minimize overlooking pathogenic mutations in WES. Genetic diagnosis
343	brings significant change in management in 25%-37% of patients with PID.(29,30) Indeed, it was
344	decided that the patient in the present study should undergo HSCT after confirming the molecular
345	diagnosis of AR complete STAT1 deficiency. However, the diagnostic yield of next generation
346	sequencing in PID patients ranges from 15%-to 46% (median = 25%)(31) and has room for
347	improvement. The experience of the case presented in this study suggests that the introduction of
348	targeted RNAseq has the potential to improve the diagnostic yield of patients with PID.
349	

353	Funding: This work was supported by Grants-in-Aid for Scientific Research from the Japan Society for
354	the Promotion of Science [16H05355 and 19H03620 to SO], Promotion of Joint International Research
355	from the Japan Society for the Promotion of Science [18KK0228 to SO], and the Practical Research
356	Project for Rare/Intractable Diseases from Japan Agency for Medical Research and development, AMED
357	to SO.
358	
359	Acknowledgements: The sequence analysis was supported by the Analysis Center of Life Science,
360	Natural Science Center for Basic Research and Development, Hiroshima University. We thank Michael
361	Ciancanelli for assistance.
362	
363	Author contributions: All authors contributed to the accrual of subjects and/or data. SO contributed to
364	the conception and design of the study. SS, TLV, JB and JLC drafted the manuscript. SS, MT, RK, SN,
365	and YM performed cellular assay and gene expression experiments. TM, SK performed the clinical work
366	and collected data. TO, TN, KI, TM, SK, OO and SO analyzed data obtained by whole exome sequence
367	and RNAseq. All authors have revised the manuscript for important intellectual content and approved the
368	final version.
369	

370 **Conflicts of interest statement:** The authors declare that they have no relevant conflicts of interest.

to per peries

Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H., and Schreiber,

R. D. 1998. How cells respond to interferons. Annual review of biochemistry

372

374

375

376

373 **References**

67:227.

1

- 377 2 Hirata, O., Okada, S., Tsumura, M., et al. 2013. Heterozygosity for the Y701C 378 STAT1 mutation in a multiplex kindred with multifocal osteomyelitis. 379 Haematologica 98:1641. 380 Boisson-Dupuis, S., Kong, X. F., Okada, S., et al. 2012. Inborn errors of 3 381 human STATI: allelic heterogeneity governs the diversity of immunological and 382 infectious phenotypes. Curr Opin Immunol 24:364. Dupuis, S., Jouanguy, E., Al-Hajjar, S., et al. 2003. Impaired response to 383 4 384 interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat 385 Genet 33:388. 386 5 Chapgier, A., Wynn, R. F., Jouanguy, E., et al. 2006. Human complete Stat-1 387 deficiency is associated with defective type I and II IFN responses in vitro 388 but immunity to some low virulence viruses in vivo. J Immunol 176:5078. 389 Vairo, D., Tassone, L., Tabellini, G., et al. 2011. Severe impairment of 6 390 IFN-gamma and IFN-alpha responses in cells of a patient with a novel STAT1 391 splicing mutation. Blood 118:1806. 392 7 Burns, C., Cheung, A., Stark, Z., et al. 2016. A novel presentation of STAT-1 393 homozygous loss-of-function mutation in an infant with 394 hyperinflammation-A case report and review of the literature. J Allergy Clin 395 Immunol Pract 4:777. 396 Naruto, T., Okamoto, N., Masuda, K., et al. 2015. Deep intronic GPR143 8 397 mutation in a Japanese family with ocular albinism. Sci Rep 5:11334. 398 9 Dobin, A., Davis, C. A., Schlesinger, F., et al. 2013. STAR: ultrafast 399 universal RNA-seq aligner. Bioinformatics 29:15. Picard, C., Bobby Gaspar, H., Al-Herz, W., et al. 2018. International Union 400 10 401 of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee 402 Report on Inborn Errors of Immunity. J Clin Immunol 38:96.
- Liao, Y., Smyth, G. K., and Shi, W. 2019. The R package Rsubread is easier,
 faster, cheaper and better for alignment and quantification of RNA sequencing
 reads. *Nucleic Acids Res* 47:e47.
- 406 12 Love, M. I., Huber, W., and Anders, S. 2014. Moderated estimation of fold

International Immunology

407		change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550.
408	13	Robinson, J. T., Thorvaldsdottir, H., Winckler, W., et al. 2011. Integrative
409		genomics viewer. Nat Biotechnol 29:24.
410	14	Mizoguchi, Y., Tsumura, M., Okada, S., et al. 2014. Simple diagnosis of STAT1
411		gain-of-function alleles in patients with chronic mucocutaneous candidiasis.
412		J Leukoc Biol 95:667.
413	15	Kagawa, R., Fujiki, R., Tsumura, M., et al. 2017. Alanine-scanning
414		mutagenesis of human signal transducer and activator of transcription 1 to
415		estimate loss- or gain-of-function variants. J Allergy Clin Immunol 140:232.
416	16	Tsumura, M., Okada, S., Sakai, H., et al. 2012. Dominant-negative STAT1 SH2
417		domain mutations in unrelated patients with Mendelian susceptibility to
418		mycobacterial disease. <i>Hum Mutat</i> 33:1377.
419	17	Ueki, M., Yamada, M., Ito, K., et al. 2017. A heterozygous dominant-negative
420		mutation in the coiled-coil domain of STAT1 is the cause of
421		autosomal-dominant Mendelian susceptibility to mycobacterial diseases. Clin
422		Immuno1 174:24.
423	18	Dupuis, S., Dargemont, C., Fieschi, C., et al. 2001. Impairment of
424		mycobacterial but not viral immunity by a germline human STAT1 mutation.
425		Science 293:300.
426	19	Chapgier, A., Boisson-Dupuis, S., Jouanguy, E., et al. 2006. Novel STAT1
427		alleles in otherwise healthy patients with mycobacterial disease. PLoS Genet
428		2:e131.
429	20	Sampaio, E. P., Bax, H. I., Hsu, A. P., et al. 2012. A novel STAT1 mutation
430		associated with disseminated mycobacterial disease. J Clin Immunol 32:681.
431	21	Chapgier, A., Kong, X. F., Boisson-Dupuis, S., et al. 2009. A partial form of
432		recessive STAT1 deficiency in humans. J Clin Invest 119:1502.
433	22	Kong, X. F., Ciancanelli, M., Al-Hajjar, S., et al. 2010. A novel form of
434		human STAT1 deficiency impairing early but not late responses to interferons.
435		Blood 116:5895.
436	23	Naviglio, S., Soncini, E., Vairo, D., Lanfranchi, A., Badolato, R., and Porta,
437		F. 2017. Long-Term Survival After Hematopoietic Stem Cell Transplantation for
438		Complete STAT1 Deficiency. J Clin Immunol 37:701.
439	24	Landrith, T., Li, B., Cass, A. A., et al. 2020. Splicing profile by capture
440		RNA-seq identifies pathogenic germline variants in tumor suppressor genes.
441		NPJ Precis Oncol 4:4.
442	25	Deelen, P., van Dam, S., Herkert, J. C., et al. 2019. Improving the

443 diagnostic yield of exome- sequencing by predicting gene-phenotype 444 associations using large-scale gene expression analysis. Nat Commun 10:2837. Marco-Puche, G., Lois, S., Benitez, J., and Trivino, J. C. 2019. RNA-Seq 445 26 Perspectives to Improve Clinical Diagnosis. Front Genet 10:1152. 446 447 27 Bustamante, J., Boisson-Dupuis, S., Abel, L., and Casanova, J. L. 2014. 448 Mendelian susceptibility to mycobacterial disease: genetic, immunological, 449 and clinical features of inborn errors of IFN-gamma immunity. Semin Immunol 450 26:454. Emile, J. F., Patey, N., Altare, F., et al. 1997. Correlation of granuloma 451 28 452 structure with clinical outcome defines two types of idiopathic disseminated 453BCG infection. J Pathol 181:25. Stray-Pedersen, A., Sorte, H. S., Samarakoon, P., et al. 45429 2017. Primary immunodeficiency diseases: Genomic 455 approaches delineate heterogeneous 456 Mendelian disorders. J Allergy Clin Immunol 139:232. 457 Rae, W., Ward, D., Mattocks, C., et al. 2018. Clinical efficacy of a 30 458 next-generation sequencing gene panel for primary immunodeficiency 459diagnostics. Clin Genet 93:647. Yska, H. A. F., Elsink, K., Kuijpers, T. W., Frederix, G. W. J., van Gijn, M. 460 31 461 E., and van Montfrans, J. M. 2019. Diagnostic Yield of Next Generation 462 Sequencing Genetically Undiagnosed in Patients with Primary 463 Immunodeficiencies: a Systematic Review. J Clin Immunol 39:577.

466467 Table.1 Summary of the patients with AR complete STAT1 deficiency

amily	Pt	Age at onset	Origin	STAT1 mutations	Mycobacterial infections	Other infections	Outcome	Ref.
1	1	3m	Saudi	c.1757-1758	disseminated	Recurrent	Died (16m)	(4,18)
			Arabia	delAG	BCG	disseminated	disseminated HSV-1	
				(homo)		HSV-1	(meningoencephalitis)	
2	2	2m	Saudi	c.1799T>C	disseminated	Severe virus	Died (12m)	(4)
			Arabia	(p.L600P)	BCG	infection(suspected)	Viral-like illness	
				(homo)				
2	3	3m	Saudi	c.1799T>C	disseminated		Died (3m)	(3)
			Arabia	(p.L600P)	Mycobacterial			
				(homo)	disease			
2	4	3m	Saudi	c.1799T>C	disseminated		Died (3m)	(3)
			Arabia	(p.L600P)	Mycobacterial			
				(homo)	disease			
3	5	3m	Pakistan	c.1928insA	disseminated	PolioIII	HSCT (8m)	(5)
				(homo)	BCG	Parainfluenza II	Died (11 m) by fluminant	
						Rhinovirus	EBV and multiorgan	
						EBV	failure	
4	6	10m	Pakistan	c.372G>C	disseminated	CMV, HSV1	HSCT (4y 7m)	(6,23)
				p.Q124H	Mycobacterium	Sepsis	Alive with multiple and	
				(homo)	kansasii	Enterovirus	severe complications	
						meningitis		
5	7	8m	Australia	c.88delA	no	Multisystem	HSCT (14m)	(7)
				(homo)		hyper-inflammation	Alive	
						MMR vaccine:		
						encephalopathic		
						HHV6		
						HLH		
6	This	11m	Japan	c.128+2 T>G	disseminated	RSV, Influenza A,	Alive (6y)	
	case			/c.542-8 A>G	BCG	hMPV infections		
				(compound	M. malmoense	Paralytic ileus by		
				hetero)	positive	rotavirus		
					mediastinal	Vaccine induced		
					lymphadenitis	varicella		
						HLH		

HSV: Herpes simplex virus, EBV: Epstein-Barr virus, HSCT: hematopoietic stem cell
transplantation, CMV: Cytomegalovirus, HHV6: Human herpesvirus 6, compound hetero:
compound heterozygous, HLH: hemophagocytic lymphohistiocytosis, RSV: respiratory syncytial

471 virus, hMPV: human metapneumovirus, y: years, m: months, homo: homozygous, hetero:
472 heterozygous

for per period

Figure 1

(A) Family pedigree. The proband is indicated with an arrow. Healthy individuals are shown in white. (B) Chest CT at 4 y 9 months. Mediastinal lymphadenitis is shown with a yellow arrow. (C) Hematoxylin and eosin staining of mediastinal lymph node biopsy shows the infiltration of various inflammatory cells, such as lymphocytes, plasmacytes, and neutrophils without granuloma formation. (D) Sanger sequence. Compound heterozygous mutations, c.128+2 T>G and c.542-8 A>G, in STAT1 identified in the patient. His mother carried heterozygous c.128+2 T>G, whereas his father and sister carry the heterozygous c.542-8 A>G mutation.

Figure 2 Dysregulated STAT1 expression in the patient's PBMCs. MAplot showing differentially expressed genes in the patient compared with inconclusive PID patients (control, n = 10) analyzed by target RNAseq. Each plot displays genes in the target RNAseq panel (n = 426). Count data of each gene was obtained by Rsubread and normalized with DESeq2. The X axis indicates average log2 expression of normalized counts in control and the y axis represents the log2 fold change (Log2FC) of normalized counts in the patient against average normalized counts of control.

Biallelic abnormal splicing of STAT1 in the patient detected by targeted RNAseq. (A) The c.128+2 T>G STAT1 mutation induced intron retention at exon 3, which was shown by IGV software with the coverage over the intronic region (gray lines) only in the patient sample (upper panel). (B) Exon skipping at exon 8 (red arrow) as a result of the c.542-8 A>G mutation was shown with Sashimi plot. Each line (red line: patient, blue line: normal) and number indicate junctions and read counts, respectively.

Figure 4

(A) Expression of STAT1 mRNA in PBMCs from the patient and a healthy control. Target gene expression was normalized against GAPDH and presented as n-fold increase over the expression in the healthy control.
(B) Flow cytometry analysis of STAT1 phosphorylation in CD14+ cells after stimulation with IFN-γ (1,000 IU/ml, red line) or IFN-a (1,000 IU/ml, blue line). (C) Immunoblot analysis of STAT1 protein and its phosphorylation in PBMCs from the patient and a healthy control. The PBMCs were stimulated with IFN-γ (1,000 IU/ml) or IFN-a (1,000 IU/ml) for 15 minutes for the analysis. NS: no stimulation, γ: IFN-γ, a: IFN-a

Α

B

Figure 5

(A) The SV40 fibroblasts from the patient and STAT1-/- SV40 fibroblasts showed complete lack of STAT1 protein expression and its phosphorylation upon IFN-γ and IFN-a. NS: no stimulation, γ: IFN-γ, a: IFN-a (B) The DNA-binding ability of the WT and mutant STAT1 proteins were analyzed by EMSA. The SV40 fibroblasts from the patient, as well as STAT1-/- SV40 fibroblasts, presented complete loss of DNA-binding activity to GAS in response to IFN-γ or IFN-a. NS: no stimulation, γ: IFN-γ, a: IFN-a

Figure 6

Global dysregulation of STAT1 target genes upon IFN-γ and IFN-α stimulation in patient's CD14+ monocyte. The CD14+ monocyte from the patient and controls are stimulated with IFN-γ (100 IU/ml; left) or IFN-α (100 IU/ml; right) for 6 hours and subjected to RNA sequencing. Log2FC; Log2 fold change.