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Chapter 1

Introduction

1.1 Optics in society

Light [1] is a fundamental matter for us. We get the image of the objects through
light, in other words, we mainly depend the recognition of our surroundings on our
eyes. From very old times, people have been manipulating light in their lives. For
example, mirrors are the most primitive tool to change the direction of propagating
light by the reflection. Lenses are other primitive tools. Using lenses, the light can be
concentrated at one point. It is said that people used magnifying glasses in ancient
Roman times. During the middle ages, various important optical tools were invented.
Eyeglasses were invented in the 14th century, which are still used in today’s world.
Microscopes and telescopes are invented in the 17th century. The invention of these
two greatly contributed to the promotion of the various field of science such as Biology
or Astronomy. One of the most significant invention for our society occurred in the
20th century; the lasers. The Internet has been developed so much as today because
the optical fiber communication was enabled by lasers. The compact data storage such
as CDs or DVDs were also realized. In addition, lasers are used in surgery. These
are only a few examples of whole applications of light. Of course, the LED is another
important invention.

In the present days, technologies using light still have many potentials to solve
various problems. In addition to the classical optics, the research field of photonics
or especially nanophotonics, which will be described in detail in the next section has
intensively studied for a few decades. The difference between optics and photonics are
not always clear, however, the former sometimes refer to the study of light in macro
scale using the glass lenses and prisms while the latter refers to the study of light in
micro scale in which photon is involved. The study of (nano)photonics became popular
by the recent development of nano fabrication technologies.

One of the most expected application is photonic integrated circuit, in which the
light is used as a signal instead of electrons. Since the invention of the integration
technologies, the density of integrated circuit has been rising, and contributed to the
dramatic development of the computers. In these days, however, problems such as the
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high power consumption and heat generation arise because of the quite high miniatur-
ization of current integrated circuits. These problems prevent further development of
the computers. Since the photonic integrated circuit might solve the above problems,
it is considered as the alternative means in the future.

Photonics also handles with energy problem. Because of the environmental problems
and the increasing the total amount of energy consumption in the world, renewable
energy is considered for the stable energy supply. Most familiar one is solar energy.
The current efficiency of the solar cell is relatively low which is about 20 percents. It
is expected the techonology of photonics enables realizing better efficiency.

Let us take a look at the study of light. The attempt to elucidate the nature of
light has also been conducted from the old time. In B.C., the ancient Greek or Roman
philosophers such as Democritus and Aristotle tried to identify the concepts of light.
However, it is relatively the recent era, the 17th century when the theory of optics was
developed dramatically. In the 17th century, the study for the fundamental properties
of light such as polarization, birefringence, the color of light and velocity is greatly ad-
vanced. Refraction theory was developed by scientists like Snell, Fermat, and Huygens.
Newton who formulated the fundamental law of classical dynamics also contributed to
optics. Newton argued that the white light was composed of the summation of waves
with different colors, which is a quite common fact in today’s optics.

In the following centuries, the theory of light developed and eventually, the behavior
of light could be described in the framework of electromagnetic theory by Maxwell. It
is easy to imagine that recent technological developments would have been impossible
without the development of optics.

1.2 Nanophotonics

The development of nano-fabrication technologies made us possible to manipulate the
light by the artificially fabricated thin plane device. The hundred-nanometer sized
patterns are fabricated on the thin dielectric plane. When the light impinges on the
pattern, its behavior changes. Using this patterned plane device, light can be controlled.
As the advantage, the size of the device is quite small compared to the conventional
bulky devices made of glasses. The research field is called nanophotonics. Although it
cannot be completely distinguished, this field is roughly divided into three categories;
photonic crystals [2], metasurfaces [3] and surface plasmon photonics (plasmonics) [4].

The photonic crystal is the artificial structure made by periodically arranged with
dielectric structures on the period whose scale is comparable to the wavelength of the
light. Figure 1.1 (a) shows the schematic of the photonic crystal slab, the hole is drilled
in the dielectric membrane on the constant period. The hole is filled with the dielectric
whose dielectric constant is different from that used for the membrane. Because of the
periodicity, the (photonic) band gap is formed similar to the solid crystals. This means
the light in a certain frequency band cannot propagate inside the photonic crystal. The
concept of the photonic crystal was first proposed by Yablonovich [5] in the late 1980s.
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As the application, photonic crystal waveguide is proposed. By eliminating the holes
in certain positions, light can be guided along where there is no hole as shown in Fig.
1.1 (b).
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Figure 1.1: (a) Schematic of the photonic crystal slab structure. Circular holes in which
the dielectric2 is filled are arranged on the periodic constant on the planar membrane
with dielectric1. Similar to the solid crystals, forbidden band is formed for the light
impinging on the structure. Light whose frequency lies inside the forbidden band cannot
propagate in the structure. (b) Schematic of the photonic crystal waveguide. Consider
removing the holes of certain positions so that there is a path in the periodic hole array
as shown in (b). In this case, the light with frequency in the forbidden band can be
guided along the path.

In addition, the field of metasurface has grown significantly from its theoretical
proposal in 2011 [3]. The metasurface is the subwavelength array composed of a unit
cell of the meta-atoms. Each meta-atoms are made of metal or dielectric materials.
Figure 1.2 (a) schematically shows an example of the patch structure which is used
in the metasurface. In each unit cell, geometrical parameters of individual rectangle
patches are gradually varied. Therefore, the impinging light takes different responses
according to the different in-plane position, and eventually, the propagation direction
of light changes. This deflection is called anomalous refraction. The most popularly
investigated application is meta-lens as shown in Fig. 1.2 (b). By properly arranging the
meta-atoms, the impinging parallel light can be concentrated at one point. Thus, the
compact lens is realized, which is called meta-lens [6]. In addition to the compactness,
meta-lens can ease the chromatic aberration which is an unavoidable problem in the
bulky glass lenses.

Plasmonics is another subject of growing interest. Plasmonic crystals were made by
the metal in contrast to the dielectric structure on photonic crystals. Figure 1.3 is the
illustration of a cylindrical plasmonic structure. This is only one of the examples, and
various types of geometries are used. In addition, coupling to the surface plasmon was
indicated by the dispersion relation. By the diffraction from the array, the incident light
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Figure 1.2: (a) Example of patch structure meta atom unit cell. In the unit atom, geo-
metrical parameters of rectangular patches are gradually varied. Therefore, impinging
light is diffracted in a certain direction. (b) Example of the metasurface application.
By properly arranging the meta atom cells, light can be concentrated at one focal point,
which enables the very thin compact lense.

can couple to the surface plasmons. A few applications were displayed. One of the most
advantageous point of the plasmonic crystal is its ability to concentrate light beyond
the diffraction limit, which realizes the very compact optical devices. The sensitivity of
the surface plasmon to the surrounding environment can be used for sensors. Besides,
various applications such as filters, cancer treatment and improving the efficiency of
solar cells are expected.

Surface plasmon
Wavevector

frequency
Light
line

Diffraction

Surface plasmon 
dispersion

Coupling

⚫Biosensor 
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⚫Compact device                   

beyond diffraction limit
⚫ Perfect optical absorber

Applications

Figure 1.3: Cylindrical array plasmonic structure (left). The dispersion relation indi-
cates the coupling to surface plasmon by the diffraction from array. A few applications
were displayed.

As a recent trend in nanophotonics, phenomena such as extraordinary transmission
(EOT) [7], bound states in the continuum (BICs) [8] and exceptional point (EP) [9] are
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studied intensively in order to realize novel applications to optical devices.

The first one, EOT was reported in 1998 by Ebbesen et al. They reported the
strong transmission of light through the subwavelength hole array drilled on the metal
membrane. This phenomenon was greatly drawn attention since such an enhanced
transmission was contrary to the classical diffraction theory, which states that the
light cannot be concentrated beyond the diffraction limit [10]. After the theoretical
investigation, it was revealed that the surface plasmon was involved in the EOT. The
discovery greatly accelerated the study of the plasmonics.

BIC was reported in 2008 [11] in photonics. However, its concept was firstly pro-
posed in 1929 [12] in quantum mechanics. If a physical system has the radiation port of
the energy, the resonant state on the system decays as time evolves. In contrast to such
a state, the BIC is purely localized and does not decay. Using the BIC, the confinement
of light on the nanostructure is greatly improved. Therefore the BIC is recently gaining
popularity.

The EP was also discussed in the quantum mechanics at first, and then it is dis-
cussed in the photonics. In the theoretical aspect, the study of EP contributes to the
development of the study of the non-Hermitian system. In addition, some applications
such as unidirectional reflectionless is proposed. Unidirectional reflectionless can be
applied to prevent the reflection wave propagating into the laser cavity, which hinders
the stable operation of the laser.

1.3 Study on the metal grating

In this work, we focus on the metal grating. Although the EOT was found very recently
as described above, similar phenomena were reported in metal grating over 100 years
ago. First of all, let me describe the history of the study on the optical response of
the metal grating. Fraunhofer was the first one to study the grating. Since then, the
spectral analysis using the grating began.

One remarkable finding occurred at the beginning of the 20th century. In 1902,
Wood found the anomalous bright or dark bands in the spectra of the reflected wave
from the metal grating [13], which could not have been explained by the existed theories.
This peculiar behavior is widely known as Wood’s anomaly. After Wood’s report, a lot
of theoretical studies to explain the optical properties of the metal grating have been
conducted. The early theoretical work was provided by Rayleigh [14] in 1907. Rayleigh
discovered that the anomalies are seen near the wavelength where the radiative or non-
radiative state of the particular diffraction order switches. Because of the Rayleigh’s
report, the anomaly is also called Rayleigh anomaly. After that, Fano attributed to the
anomalies to the excitation of a surface wave on the grating in 1941 [15]. Hessel and
Oliner explained anomalies using the guided wave of the grating in 1965 [16]. From
the late 1900s, some reported the involvement of the surface plasmon resonance to the
anomalies [17]. Despite these thorough works, sufficient physical interpretations for the
anomalies were yet to be present at that time.
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Corresponding to the discovery of EOT phenomenon on two-dimensional metal hole
array, the study for metal grating was further accelerated since the EOT like resonant
transmission behavior was also observed in the transmission type metal gratings. The
cross-sectional view of the ordinary transmission type metal grating is shown in Fig.
1.4(a). In contrast to the reflection type grating, light can be transmitted through the
slits and diffraction occurs for the transmitted waves. In the early 2000s, many scientists
have worked on to analyze the series of peculiar behaviors. One of the difficulties for the
interpretation of the anomalies is that it is hard to distinguish what kind of particular
physical factor is involved. In transmission type grating, anomalies are often observed as
the dip of the transmission spectrum ( 0 transmission ) or enhanced transmission. These
spectrum structures lie very close to each other in the spectrum bands. Fig. 1.4(b) shows
the schematic illustration of typically seen spectrum. In the 0th order transmission
spectrum, asymmetric spectrum profile (dip and peak ) will show up. Moreover, they
often lie at the wavelength of surface plasmon resonance on flat metal. Therefore,
at least in the 2000s, there were many interpretations to attribute the excitation of
surface plasmon to the enhanced transmission [18] or attribute the surface plasmon to
0 (inhibited) transmission [19]. In fact, it is gradually becoming apparent that such as
anomalous dip or peak in transmission spectra was caused by the interference of several
factors. In 2014, Yoon et al [20] explained the series of dip and peak in transmission
spectra as the Fano interference of two types of different transmission. In this way,
the various theoretical works to elucidate the origin of anomalies have been provided
in these 100 years, and became almost clear.

0th 1st 2nd 1st2nd 
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r t
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Figure 1.4: (a) Cross sectional view of the transmission type metal grating. (b) Typ-
ically observed schematics of 0th order transmission spectrum through transmission
type metal grating. Transmission dip and peak appears and these spectrum structures
often lies near the wavelength where radiative or non-radiative state of the particular
diffraction order switches.
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1.4 Purpose of this work

The purpose of this work is to analyze the peculiar optical responses of the metal
grating. This work is important for the theoretical and practical aspects.

In the theoretical aspect, the metal grating is very convenient for the theoretical
study. Despite its geometrical simplicity, metal grating exhibits most of the peculiar
phenomena which are observed in other nanophotonic structures. Since the geometry of
the metal grating is very simple, it can be described by relatively simple electromagnetic
frameworks such as a mode expansion method. In addition, the polarization can be
separated completely in two orthogonal modes. These facts make it easier to analyze
the phenomena, which makes it possible to understand the physics of those important
phenomena.

In the practical aspect, metal grating is frequently and ordinarily used in various
applications. For example, spectroscopy, waveguide couplers and plasmon sensors. In
those devices, we might want to avoid some of the phenomena because such phenomena
are sometimes unfavorable for the operation of the devices. If the mechanism of the
peculiar phenomena was understood clearly, we can predict whether the particular
phenomena appear on certain structure parameters and how such phenomena can be
avoided.

In this work, the numerical electromagnetic field analysis method was used for anal-
ysis.

1.5 Structure of the thesis

The main contents are divided into 6 chapters.
In Chapter 1, we have introduced the background and purpose of this study.
In Chapter 2, method of analysis used in this study is explained.
In Chapter 3, we analyzed the optical properties of single metal grating and the

influence of surrounding environmental effect (the presence of substrate). In the struc-
ture, the anomalous phenomena are seen near the wavelength where the radiative state
of the diffraction order changes. Based on the bound mode of the system, we analyzed
the peculiar behavior observed in the transmission or electric field enhancement spectra.

In Chapter 4, we analyzed the more complicated grating system; metal grating
placed on the dielectric waveguide, which corresponds to the grating coupler device. In
the structure, the presence of bound states in the continuum (BIC) is confirmed. We
discuss the polarization effect for the emergence of the BIC. For analysis, the theoretical
model; temporal coupled-mode theory (TCMT) was used.

In Chapter 5, we also discuss the same system as in Chapter 4 and BIC. But in this
chapter, we discuss the effect of the parameter change for the BIC. In addition, another
observed phenomenon is also discussed.

Finally, in chapter 6, overall summary and future perspective of this work is de-
scribed as a conclusion.
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Chapter 2

Method of analysis

Spatial coupled mode theory (SCMT) [21, 35] was used for the electromagnetic field
analysis in this study. The expression for three and four layers system are described in
section 2.1 and 2.2, respectively. The P-polarization case is considered.

In addition, temporal coupled mode theory (TCMT) was used as theoretical model,
which is described in section 2.3.

2.1 Spatial coupled mode theory for three layers

system

In SCMT with three layers system as shown in Fig. 2.1 the fields above (region I) and
below (region III) the grating are expanded into the plane and evanescent waves of the
diffraction order n, having the in-plane wavenumber kx = k0 + 2πn/Λ, where k0 is the
in-plane wavenumber of the incident wave. In the slit, the field is expanded into the
slit mode with propagating (for propagating mode) or attenuating (for cut-off mode)
constant qβ. β indicates the index of the slit mode. The fields are connected by the

boundary conditions between the regions using the surface impedance ZS = ε
−1/2
m Z0 at

the metal surface [23], where Z0 is the vacuum impedance. The amplitudes Aβ and Bβ

of the slit mode β propagating or attenuating in the +z and −z directions, respectively,
are obtained by the equations

∑
β

(
G−I,αβAβ +G+

I,αβBβ

)
=

2

f+
kx=k0(I)

Ykx=k0(I)Skx=k′0,α
, (2.1)

∑
β

(
G+

III,αβAβe
iqβh +G−III,αβBβe

−iqβh
)

= 0, (2.2)

where

G±(I,III),αβ =
∑
kx

Ykx(I,III)

f+
kx(I,III)

S∗kx,αSkx,β(1± ZsYeff,β)∓ Yslit,αβ, (2.3)
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Figure 2.1: Cross sectional view of 3 layers system with periodic grating.

f±kx(I,III) = 1± ZSYkx(I,III),

Ykx(I,III) =
ε1,3
Z0

kω
kz
,

k2
z = ε1,3k

2
ω − |kx|2, (2.4)

with ε1 = n2
1 and ε3 = n2

3 being the dielectric constants in regions I and III, respectively.

Skx,α =

∫
Λ

E∗x,kx(x)Ex,slit(α)(x)dx (2.5)

denotes the overlap integral between the electric fields Ex,slit(α)(x) of the slit mode with
mode index α and Ex,kx(x) of the in-plane wavenumber kx in the dielectric region.
Here the asterisk means the complex conjugate. The admittance of the slit mode
Yslit,αβ and the effective admittance Yeff,α in the mean field approximation [21] are
given, respectively, by

Yslit,αβ =

∫
Λ
E∗x,slit(α)(x)Hy,slit(β)(x)dx∫

Λ
E∗x,slit(α)(x)Ex,slit(β)(x)dx

(2.6)

and

Yeff,α =

∫
Λ
E∗x,k0(x)Hy,slit(α)(x)dx

Sk0,α
. (2.7)

In chapter 3, the explanation of the phenomena was proceeded based on the SCMT
with single slit mode approximation of the electromagnetic field inside the slit, which
is valid for very narrow slit case. Here the expression of the single mode approximated
SCMT is described.
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For the fields and the (complex) propagation constant q in the slit, we solved nu-
merically the transcendental equation derived from the boundary conditions for the
transverse-magnetic (TM) modes in the metal–insulator–metal waveguide, taking into
account the field penetration into the metal of εm. This mode is a propagating one,
having the x component of the electric field Ex,slit and y component of the magnetic
field Hy,slit symmetric in x with respect to the slit center and corresponding to the
transverse electromagnetic (TEM) mode in the perfect electric conductor (PEC) ap-
proximation (εm →∞). Under the single mode approximation, Eq. 2.1 and 2.2 can be
written as

G−I A+G+
I B =

2

f+
kx=k0(I)

Ykx=k0(I)Skx=k′0
(2.8)

G+
IIIAe

iqh +G−IIIBe
−iqh = 0, (2.9)

where we defined G±(I,III),00 ≡ G±(I,III), A0 ≡ A, B0 ≡ B, Skx=k′0,0
≡ Skx=k′0

, q0 ≡ q.

Using the solutions A and B, the 0th order transmittance can be calculated as

T0 =

∣∣∣∣∣Aeiqh(1 + ZSYeff) + Be−iqh(1− ZSYeff)

f+
k0(III)

Sk0

∣∣∣∣∣
2

. (2.10)

2.2 Spatial coupled mode theory for four layers sys-

tem

In the four layers system as shown in Fig. 2.2, the fields above (region I) and below
(region III and IV) the grating are expanded into the plane and evanescent waves of
the diffraction order n, having the in-plane wavenumber kx = k0 + 2πn/Λ, where k0 is
the in-plane wavenumber of the incident wave. In the slit, the field is expanded into the
slit mode with propagating (for propagating mode) or attenuating (for cut-off mode)
constant qβ. β indicates the index of the slit mode. The amplitudes Aβ and Bβ of
the slit mode propagating or attenuating in the +z and −z directions, respectively, are
obtained by the equations∑

β

(
G−I,αβAβ +G+

I,αβBβ

)
=

2

f+
kx=k0(I)

Ykx=k0(I)Skx=k′0,α
, (2.11)

∑
β

(
G+

IV,αβAβe
iqβh1 +G−IV,αβBβe

−iqβh1
)

= 0, (2.12)

where

G±I,αβ =
∑
kx

YkxI

f+
kxI

(Skx,α)∗Skx,β(1± ZsYeff)∓ Yslit,αβ, (2.13)
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G+
IV,αβ =

∑
kx

YkxIII

f−kxIII−IV

f+
kxIII−IV

(Skx,α)∗Skx,β(1 + ZsYeff)− Yslit,αβ, (2.14)

f+
kxIII−IV = f+

kxIII

Ykx(III) + Ykx(IV)

2Ykx(III)

e−ikz3(h2−h1) + f−kxIII

Ykx(III) − Ykx(IV)

2Ykx(III)

eikz3(h2−h1),(2.15)

f−kxIII−IV =
Ykx(III) + Ykx(IV)

2Ykx(III)

e−ikz3(h2−h1) −
Ykx(III) − Ykx(IV)

2Ykx(III)

eikz3(h2−h1). (2.16)
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Figure 2.2: Cross sectional view of 4 layers system with periodic grating.

2.3 Temporal coupled mode theory

2.3.1 Two modes and one port system

Temporal coupled mode theory (TCMT) describes the behavior of resonances in a
system in the time domain. Since the two resonant modes are involved in this study
as described in chapter 4 and 5, expression for the two resonant modes and one port
system with a near field coupling and a far (radiation) field coupling was provided
here as follows. The time evolution of the two mode amplitude aT = (a1, a2) can be
described by an effective Hamiltonian H̃ and input wave s+ with a coupling coefficient
vector D = (d1, d2) as

d

dt
a = −iH̃a + DTs+ = −i{Ω− i(Γi + Γe)}a + DTs+, (2.17)
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where

Ω =

(
ω1 α
α ω2

)
,Γe =

(
γe1 γ0

γ∗0 γe2

)
,Γi =

(
γi1 0
0 γi2

)
with ω1,2, γi1,2 and γe1,2 denoting the eigenfrequency, the internal loss, and the external
loss of mode 1 or 2, respectively, and d1,2 denoting the coupling between the external
radiation and modes 1 and 2 through the port. The off-diagonal terms α in Ω and
γ0 in Γe represent the near- and far-field coupling, respectively. Here, α is set to be
real assuming that the effect of material loss on α is negligible, and that the system
without material loss has time-reversal symmetry [24]. Considering the principle of the
conservation of energy, the outgoing wave s− can be written as

s− = cas+ + Da (2.18)

with ca representing the direct scattering coefficient.
From time-reversal symmetry and the energy conservation principle, the following

relations are derived [25]:
D†D = 2Γe, (2.19)

caD
∗ = −D. (2.20)

Using these relations, D and γ0 can be rewritten. First, expressing D as

D = (|d1|eiϕ1 , |d2|eiϕ2) (2.21)

and applying Eq. 2.19, following relations

|d1| =
√

2γe1, (2.22)

|d2| =
√

2γe2, (2.23)

ei(−ϕ1+ϕ2) =
γ0√
γe1γe2

(2.24)

are derived. From Eq. 2.20,
ca = −ei2ϕ1 , (2.25)

ca = −ei2ϕ2 (2.26)

are derived. Subtracting each side of Eq. 2.26 from Eq. 2.25, then

ei2ϕ1 = ei2ϕ2 . (2.27)

Thus,
ϕ2 = ϕ1 +mπ. (2.28)

From Eq. 2.24 and Eq. 2.28,

γ0 = ±√γe1γe2 ≡ p
√
γe1γe2. (2.29)
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Finally, D can be written as

D = eiϕd(
√

2γe1, p
√

2γe2). (2.30)

where ϕd is an arbitrary phase and p is a parity (±1) that represents the phase difference
between d1 and d2. Here p = 1 for the in-phase (|ϕ1−ϕ2| = 0) case, and p = −1 for the
anti-phase (|ϕ1 − ϕ2| = π) case. Hereafter, the phase ϕd is set to zero. This is always
possible by adjusting the reference position for the external radiation.

2.3.2 Derivation of the reflection coefficient

The reflection coefficients for the incident wave with angular-frequency ω can be derived
in TCMT as follows.

Consider a case that a is time harmonic, a ∝ e−iωt. Eq. 2.17 is written as

[i(Ω− ωI) + Γi + Γe)]a = DT s+. (2.31)

Taking the inverse matrix from the left side of Eq. 2.31,

a = [i(Ω− ωI) + Γi + Γe)]
−1DTs+. (2.32)

Substitute this into Eq. 2.18,

r(ω) ≡ s−
s+

= ca + D[i(Ω− ωI) + Γi + Γe)]
−1DT. (2.33)

Under the condition of Eq. 2.19 and Eq. 2.20, inverse matrix is

[i(Ω− ωI) + Γi + Γe)]
−1 =(

i(ω2 − ω) + γi2 + γe2 −iα− p√γe1γe2
−iα− p√γe1γe2 i(ω1 − ω) + γi1 + γe1

)
{(ω1 − ω)− i(γi1 + γe1)}{(ω2 − ω)− i(γi2 + γe2)}+ (iα + p

√
γe1γe2)2

. (2.34)

After the matrix calculation on the RHS of Eq. 2.34, we finally get r(ω) as

r(ω) = ca

[
1+

2
γe1{i(ω2 − ω) + γi2}+ γe2{i(ω1 − ω) + γi1} − i2pα

√
γe1γe2

{(ω1 − ω)− i(γi1 + γe1)}{(ω2 − ω)− i(γi2 + γe2)}+ (iα + p
√
γe1γe2)2

]
. (2.35)

2.3.3 Derivation of the amplitudes of modes

The amplitudes of each mode can be obtained from Eq. 2.32 as

a1 =
{i(ω − ω2)− (γi2 + γe2)}

√
2γe1 + (p

√
γe1γe2 + iα)p

√
2γe2

{ω − ω1 + i(γi1 + γe1)}{ω − ω2 + i(γi2 + γe2)} − (ip
√
γe1γe2 − α)2

s+, (2.36)
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a2 =
{i(ω − ω1)− (γi1 + γe1)}p

√
2γe2 + (p

√
γe1γe2 + iα)

√
2γe1

{ω − ω1 + i(γi1 + γe1)}{ω − ω2 + i(γi2 + γe2)} − (ip
√
γe1γe2 − α)2

s+. (2.37)

If |ω− ω1| and |ω− ω2| are much larger than the loss and the coupling coefficients, the
amplitudes are approximated by

a1 '
i
√

2γe1
ω − ω1

s+, (2.38)

a2 ' p
i
√

2γe2
ω − ω2

s+. (2.39)

Thus, the phase difference between a1 and a2 is determined by p in the region far from
resonances where the signs of ω − ω1 and ω − ω2 are the same.
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Chapter 3

Substrate effect on the anomalies of
transmission in the metal grating

3.1 Previous study on the optical properties of metal

grating

As described in the introduction that although metal gratings are a very fundamental
element in optics, a sufficiently complete explanation of their optical response is not
easy. In addition to the onset (or passing-off ) of a diffraction order, the surface plasmon
(SP) [19, 20, 26–38], Fabry– Perot (FP) (or cavity plasmon) [19, 20, 26–31, 33–38], and
the Fano resonances [20, 33–35, 38–40] and their interplay make the relevant spectra
extremely complicated with anomalous peaks and dips near the wavelength given by
the grating formula [41], λR = nΛ(−sinθ ± 1)/j, where Λ, n, and θ are the period of
the grating, the refractive index of the medium, and the angle of the light incidence,
respectively, and j = ±1,±2,±3, ... . Historically, the anomalous structures have been
called Wood’s or Wood–Rayleigh anomalies [42] and have also been discussed recently
in terms of extraordinary optical transmission [7]. In this paper, we call the wavelength
λR the Rayleigh wavelength for simplicity.

For the grating with a relatively narrow slit, which can be treated as a single-mode
waveguide, the 0th order transmission can be written by a FP formula [19, 20, 28, 29,
32–35],

T0 =

∣∣∣∣ τ1τ3

1− ρ1ρ3e2iqh

∣∣∣∣2 (3.1)

where ρ1 and ρ3 (τ1 and τ3) are the reflection (transmission) coefficients for the slit
mode at the incident- and the exit side interfaces, respectively, as illustrated in Fig.
3.1, q is the propagation constant of the slit mode, and h is the grating thickness.
Hence, T0 takes its peaks at the Fabry–Perot (FP) resonances, i.e., the minima in
the denominator, neglecting the variation of |τ1τ3|. The effect of SP at each interface
is involved in ρ1ρ3, τ1, and τ3. Here, it is important to distinguish the SP at the
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Figure 3.1: Schematic drawing of the structure investigated in this work (left) and the
illustration for τ ′s and ρ′s in Eq. 3.1 (right).

metal–dielectric interfaces with a finite slit width from that at the flat metal–dielectric
interface (SPF) [32,33]. It is known [19,20,28,29] that τ1,3, and hence T0 becomes nearly
zero around λSPF = Λ{εmε1,3/(εm+ε1,3)}1/2, where Λ is the period of the grating and εm
and ε1,3 are the permittivity of the metal and of each dielectric medium, respectively.
On the other hand, the SP resonance λSP depends also on the slit width [33]. In
particular, for wide slits, the SP resonance disappears (sitting in the region < λR with
a large damping) [33]. Recently, Yoon et al. successfully explained the roles of the SP in
the transmission spectra of metal gratings by focusing on the case of λR < λSP < λSPF
[20]. In particular, they showed that τ ′s ∼ 0 around λSPF is understood as the Fano
resonance caused by the interference between the wave transmitted from the slit to the
free space directly and that by way of the SP at the interface.

Most of the previous reports including [20], however, have dealt with a case where
the grating is placed in air (i.e., the dielectric constant below and above the grating is
the same). From an application point of view, it is important to consider the grating,
or metal apertures in general, on a dielectric substrate. For example, metal gratings
on a semiconductor have been shown to improve the performance of optoelectronic
devices such as photodiodes [43, 44] and photoconductive switches for terahertz emit-
ters/detectors [45–50]. Metal gratings on a substrate is also an important structure for
the perfect (or very high) optical absorption (POA) [51, 52]. Hence, for the design of
various devices, it is important to clarify how the presence of the substrate affects the
optical response of the grating. Though some reports have commented on the effect
of the substrate [26,31,34–37,39], no clear and concrete discussions were given, except
for the reports on POA investigating the role of the modes in the substrate [51,52]. In
addition, for the photoconductive switches, it is important to enhance the field near
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the grating in the substrate [47], which has not been investigated well.

In this work, we investigated the transmission T0 and the near-field enhancement E
around λR in the metal gratings on a semiconductor substrate. We considered rather
thin gratings, which are preferred because of easy fabrication. By using a spatial coupled
mode theory (SCMT), we can derive approximate analytical expression for, for example,
ρ1 and ρ3, giving clear physical pictures. It will be shown that, for telecom and longer
wavelengths, the peaks in the T0 and E spectra are pinned at λR in the thin gratings and
the peak vanishes with decreasing grating thickness. To elucidate the physics behind
the phenomena, we analyzed the bound mode (BM) of the system, which corresponds
to the FP resonance in narrow slit cases and gives the peaks in T0 and E. With the
decrease of the grating thickness, the BM disappears, which causes the pinning and
the vanishing of the peaks. The disappearance of the BM is a feature of the grating
on a semiconductor substrate, where the dielectric ambient sandwiching the grating is
highly asymmetric, contrary to the grating in the air where the BM is usually present.
The essential difference between the symmetric and asymmetric structures comes into
the BM in the total reflection phase arg(ρ1ρ3). We also show that the plasmonic band
gap is large at the grating–semiconductor interface, enhancing the disappearance of the
BM.

3.2 Method and results

3.2.1 Analyzed structure and calculation methods

The structure studied in this work is illustrated in Fig. 3.1. The Au grating with
a period Λ = 433.3 nm, thickness h, and slit width ws sits on a substrate with a
refractive index n3 = 3.6. The period corresponds to the Rayleigh wavelength in the
substrate at λR = 1560 nm for normal incidence. For comparison, we also show the
results for n3 = 1.0 with Λ = 1560 nm. The regions above the grating and inside the slit
are assumed to be air. Hence, for n3 = 3.6, the dielectric ambient above and below the
grating is highly asymmetric, while it is symmetric for n3 = 1.0. In the following, ws is
chosen to be 43.3 nm (= 0.1Λ for n3 = 3.6), unless otherwise stated. The permittivity
(εm of Au is modeled by a Drude–Lorentz fit to the Johnson– Christy data [53]. At
1560 nm, εm is about −125+ i11.5. In this paper, we discuss the 0th order transmission
(T0) and the near-field enhancement (E) for a p-polarized plane wave of wavelength
λ (wavenumber kω) incident from the air side. Although the near-field enhancement
could be characterized in various ways, in this work we chose E defined as the ratio of
the spatially averaged squared electric field amplitude |F (λ)|2 on a plane 10 nm below
the interface with and without the grating. This definition is directly related to the
enhancement of the photo excitation in the devices [43–50]. Though the magnitude of E
calculated in such a way depends on the distance from the metal (10 nm in the present
definition) and hence has no definite meaning, the spectral feature and its parameter
dependence are important for the device design.
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For the calculation of T0 (0th order transmission), E (electric field enhancement)
and other related quantities, we used a SCMT [21] which was described in Chapter 2.

The BM of the system is obtained in SCMT as the nontrivial solution of coupled
Eqs. 2.8 and 2.9 without light incidence,

G−(I)G
−
(III)e

−iqh −G+
(I)G

+
(III)e

iqh = 0, (3.2)

with respect to a complex frequency fBM with a negative imaginary part Im[fBM]. In
this work, the solution was searched for |Im[fBM]|/Re[fBM] < 0.3. The enhancement
E is maximized at the BM frequency Re[fBM] (wavelength λBM = c/Re[fBM], with c
the speed of light in vacuum), since the system is resonantly excited, neglecting the
shift due to Im[fBM]. The reflection coefficients for the slit mode at the slit–dielectric
interfaces can be calculated from

ρ1 =
A

B
= −

G+
(I)

G−(I)
, ρ3 =

B

A
= −

G+
(III)

G−(III)
. (3.3)

Using the reflection coefficients, we can rewrite the BM condition Eq. 3.2 as

1− ρ1ρ3e
2iqh = 0, (3.4)

which is simply the condition for the FP resonance. Hence, as far as the BM exists, the
peak in T0 can be also said to appear at λBM (with a finite deviation due to Im[fBM]
and the wavelength dependence of |τ1τ3|).

For Im[fBM] < 0, the propagation constant q can have a negative imaginary part
and the solutions of Eq. 3.4 expressed by

ln(|ρ1||ρ3|)− 2hIm{q}+ i{arg(ρ1ρ3) + 2hRe{q} − 2mπ} = 0 (3.5)

are labeled by an integer m. We can also calculate the bound modes at the grating–
substrate interface (BMI), which corresponds to the SP resonance in complex frequency
domain, as the nontrivial solution of Eq. 2.9 with no incidence (A = 0); i.e.,

G−III = 0. (3.6)

3.2.2 Transmission and enhancement spectra and bound mode

The E and T0 spectra of the grating on the substrate (n3 = 3.6) are shown in Figs.
3.2 (a) and 3.2 (b), respectively, for various h. To confirm the validity of the SCMT
calculation, the results obtained by rigorous coupled wave analysis (RCWA) [21] are
also plotted by the dashed lines. The SCMT results are in good agreement with RCWA,
particularly in the position of the peaks in the long (> 1500 nm) wavelength range,
which is a main issue in the following discussions. In the E spectra for λ > λR, the
peak red shifts with the increase of h for h ≥ 300 nm, following the shift of the BM
wavelength λBM indicated by the filled triangles. Qualitatively, such h dependence is a
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general feature of FP resonance. For h ≤ 200 nm, however, the BM disappears and the
peak is pinned at λR. This is the main subject of this paper and discussed in detail in
the next section. The same behavior is seen in the T0 spectra, except for h = 300 nm,
where a dip appears instead of a peak. In this case, λBM is close to λSPF. One can see
that T0 is nearly 0 around λSPF for all values of h. Hence, the dip (and T0 ∼ 0 for all
h) is ascribed to the Fano resonance causing τ3 ∼ 0 [see Eq. 3.1]. Though not shown
here, τ3 ∼ 0 around λSPF was confirmed by the SCMT calculation.

Figure 3.2: Calculated (a) E and (b) T0 spectra for n3 = 3.6 and ws = 43.3 nm (= 0.1Λ)
for several values of h. The solid and dashed lines are the results by SCMT and RCWA,
respectively. The spectra were vertically shifted by a step of 10 in (a) and of 0.5 in
(b) for visual clarity. The dotted and dash–dotted lines indicate the position of λR

and λSPF, respectively. The filled and open triangles indicate the position of λBM of
m = 1 and m = 2, respectively, calculated using the imaginary part of Eq. 3.5. Here,
the BMs with same m exist at two wavelengths (m = 2 for h = 400 and 500 nm, and
m = 1 for h = 300 nm). This occurs because the larger q (shorter λ) is compensated by
the smaller arg(ρ1ρ3), for the pair of the wavelengths, one shorter and the other longer
than the singular wavelength (λR or λ giving arg(ρ3) = 2π), as will be seen in Fig. 3.6.
Physically, it corresponds to the splitting of the FP resonance by the coupling to the
SP mode (anticrossing) via the steep variation of ρ’s [20], as mentioned in Section 3.1.

Here, we comment on the pinning of the peaks in T0 and E at λR seen in Fig.
3.2 for the case where BM disappears (h ≤ 200 nm). From the h dependence of the
BM position, the disappearing BM can be thought to lie in the region λ < λR. In
such cases, the BM becomes overdamped due to the coupling to the radiative 1st order
diffraction. As a result, as schematically illustrated in Fig. 3.3, the main part of the
virtual resonance is shaved off in λ < λR, leaving the tail in λ > λR with a peak at λR.
This model also explains the decrease of the peak height in E and T0 at λR with the
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decrease of h from 200 nm to 100 nm in Fig. 3.2, since the virtual resonance may get
away from λR with decreasing h.

Figure 3.3: Schematic illustration explaining the reason for the pinning of the peaks at
λR when the overdamped BM sits in the radiative range, λ < λR.

Next, let us show the results for the case of n3 = 1.0 (grating in air) and Λ = 1560
nm. Shown in Fig. 3.4 are the (a) E and (b) T0 spectra around λR (1560 nm) together
with λBM’s (triangles) for various h. Here, the same ws(= 43.3 nm) as that for Fig.
3.2 was chosen to keep the slit mode similar. As in Fig. 3.2, the peak positions in
the SCMT results (solid lines) are in good agreement with the RCWA results (dashed
lines). One can clearly see that the lowest order (m = 1) BM indicated by the filled
triangles blue shifts with the decrease of h, qualitatively as a feature of FP resonance.
Following the shift of the BM, the peaks in E and T0 blue shift with the decrease of h,
though the Fano resonance suppresses the peaks when λBM gets closer to λSPF. Here,
a significant difference from Fig. 3.2 (n3 = 3.6) can be noticed. The lowest order BM
does not disappear even for a small h. Correspondingly, the pinning of the peaks at λR

does not occur.
To see more clearly the difference between the two cases of n3 = 3.6 and n3 = 1.0

in the behavior of the BM, we plotted λBM as functions of h in Fig. 3.5 (red dots). In
the case of n3 = 3.6, the lowest-order BM intersects with λR = 1560 nm at a finite h,
as discussed above. In contrast, in the case of n3 = 1.0, the lowest-order BM does not
cross λR, but approaches a wavelength longer than λR in the limit of h→ 0, as seen in
Fig. 3.4.

Before discussing the reason for the different behavior in the BM between the two
cases, we comment here on the effect of the Fano resonance on E. As can be clearly
seen in the case of h = 300 nm in Fig. 3.2(a), the Fano resonance does not affect the E
spectra in the grating on the substrate. This can be explained as follows. In the case
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Figure 3.4: Calculated (a) E and (b) T0 spectra for n3 = 1.0, Λ = 1560 nm, and
ws = 43.3 nm for several values of h. The solid and dashed lines are the results by
SCMT and RCWA, respectively. The dotted and dash–dotted lines indicate the position
of λR and λSPF, respectively. The filled and open triangles indicate the position of λBM

of m = 1 and m = 2, respectively, calculated using the imaginary part of Eq. 3.5. The
spectra were vertically shifted by a step of 20 in (a) and of 0.5 in (b) for visual clarity.

of n3 6= n1, λSPF’s are different between the incident and exit (substrate) sides. Hence,
around the λSPF of the exit side, the Fano resonance occurs in the exit side (τ3 ∼ 0) but
not in the incident side (τ1 6= 0). In such a case, the slit mode can be excited. On the
other hand, as mentioned before, the Fano resonance in the grating is an interference
occurring in the far field between the waves directly transmitted from the slit and that
through the SP [20]. In other words, the excited slit mode is associated with the SP
wave at the exit-side interface, which contributes to the near-field enhancement, even
for τ3 ∼ 0. On the contrary, as seen in Fig. 3.4 (a), E is suppressed around λSPF in the
grating in air (n1 = n3). This is because τ1(= τ3) becomes also nearly zero and hence
the slit mode is not excited. Therefore, we can say that the survival of the E peak at
λSPF of the substrate-side interface is another feature of the gratings on a substrate, or
more generally of gratings in asymmetric ambient.

3.3 Discussions

3.3.1 Reflection phase and bound mode

We discuss first the absence/presence of the BM in terms of the reflection phase for the
slit mode. For the wavelength λ > λR, where only the 0th order diffraction is radiative,
moduli of the reflection coefficients |ρ1| and |ρ3| are not small. In such cases, the lowest-
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Figure 3.5: Red circles depict the h dependence of λBM for the case of (a) n3 = 3.6 and
(b) n3 = 1.0, both with ws = 43.3 nm. For comparison, Log(T0) is also shown by the
gray-scale map. The dashed lines indicate the position of λSPF.

order BM is given approximately by the phase condition (imaginary part) of Eq. 3.5
with m = 1 and hence the presence of BM in the limit of h→ 0 can be discussed in terms
of arg(ρ1ρ3) = 2π. In the highly asymmetric case (n3 >> n1), assuming arg(ρ1) = 0 for
simplicity, arg(ρ1) = 2π is necessary for the BM to exist. In the symmetric structure,
in contrast, arg(ρ1ρ3) = arg(ρ2

3) = 2π is realized with arg(ρ3) = π. Therefore, it is
important to know the range of arg(ρ3). It has been shown numerically that, starting
with 0 at large λ, arg(ρ3) increases to π at λR with decreasing λ in the case of εm →∞
(PEC approximation) [28]. In the case of εm = −5, arg(ρ3) has been shown to reach a
little in excess of 2π at λR [20].

In the SCMT, by considering only the 0th order diffraction G±(I,III) and neglecting

the metal loss, we can obtain an analytic expression for arg(ρ3) as

arg(ρ3) = π + 2tan−1b, (3.7)

where

b =
1√
|εm|

Z0Yeff

S2

[
Yslit

Yeff

− S2

]
− Z0Yslit

S2

√
k2
x − n2

3k
2
ω

n2
3kω

. (3.8)

Here, we also neglected the kx dependence of Skx, and wrote |Skx|2 = S2, where S2

can be estimated roughly to be ws/Λ. Equation 3.8 indicates that, with decreasing kω
(increasing λ) from kx/n3 (light line, λ = λR at kx = 2π/Λ corresponding to normal
incidence), b and hence arg(ρ3) decrease monotonically, neglecting the variation of
Yslit/Yeff , with a maximum value

bmax =
1√
|εm|

Z0Yeff

S2

[
Yslit

Yeff

− S2

]
(3.9)
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at kω = kx/n3(λ = λR). Hence, arg(ρ3) = 2π is not realized for λ > λR. Note also that
the PEC approximation (εm → ∞) gives bmax → 0 and Max[arg(ρ3)] → π, consistent
with [28].

In practice, the effects from other diffraction orders can modify arg(ρ3). Figure
3.6 (a) shows arg(ρ3)s obtained using Eq. 3.3 with diffraction orders up to 20th for
the case of n3 = 3.6 with various ws. In the case of ws = 0.1Λ (the case of Fig. 3.2,
arg(ρ3) is much smaller than 2π. Even with the finite value of arg(ρ1) (dashed line)
taken into account, arg(ρ1ρ3) = 2π is not realized, explaining the disappearance of the
BM for small h in Fig. 3.2. One can also see that, with the extremely narrow slit,
ws = 0.01Λ = 4.33 nm, arg(ρ3) slightly exceeds 2π.

On the other hand, for a visible wavelength where |εm| is small and hence bmax is
large, we can expect to find a wavelength realizing arg(ρ3) = 2π with a more practical
ws. As an example, arg(ρ3)s in the grating designed for λR = 780 nm are shown in Fig.
3.6(b). One can see that arg(ρ3) = 2π is realized in the range of λ > λR with ws = 43.3
nm, so that the BM is expected to exist even for h→ 0.

The reflection phase arg(ρ3)(= arg(ρ1)) for the case of n3 = 1.0 (grating in air) with
ws = 43.3 nm is shown in Fig. 3.6 (c). In this symmetric structure, the condition for the
BM to exist for h → 0 is arg(ρ3) = π. This condition is obviously realized in λ > λR,
consistently with Figs. 3.4 and 3.5(b). Interestingly, Eqs. 3.7 and 3.9 predict that, if
Yslit/Yeff > S2 is satisfied, bmax is positive and Max[arg(ρ3)] > π. Hence,a wavelength
giving arg(ρ3) = π always exists, which guarantees the presence of the BM, in the range
of λ > λR in the grating in symmetric ambient. Though it cannot be shown analytically,
for the slit mode considered here, Yslit/Yeff > S2 is satisfied for a very wide range of
ws and |εm|. The case where the condition is not satisfied could be a wide slit where
S2 is large. To check the validity of the prediction, we performed a numerical survey
for arg(ρ3) using Eq. 3.3 with diffraction orders up to 20th. An example is shown in
Fig. 3.6(d) for ws = 468 nm(= 0.3Λ). It can be confirmed that arg(ρ3) = π is realized
for a wide range (−5 to −10, 000) of εm. For such a large ws and large |εm|, the SP
resonance at the interface does not exist in the range of λ > λR [33]. Hence, we can
conclude that the presence of the BM is essentially an intrinsic feature in symmetric
structures, irrespective of the presence of the SP resonance.

Here, let us briefly comment on the analytic expression for the BM. With the same
simplification as for Eq. 3.7, the lowest-order BM can be obtained from Eq. 3.4 to be

kx = n3kω
√

1 + F 2, (3.10)

where

F =
n3

Z0Yslit

S2{bmax − cot(qh)} (3.11)

or

F =
n3(= n1)

Z0Yslit

S2{bmax + tan(qh/2)} (3.12)

27



L

L

L

L

L

L

L

L

L L

Figure 3.6: Wavelength dependence of the reflection phase arg(ρ3) in the substrate side.
(a) n3 = 3.6 with various ws (solid lines). Arg(ρ1) for ws = 0.1Λ (dashed line) is also
shown. (b) n3 = 3.6 designed for λR = 780 nm. (c) n3 = 1.0 with ws = 43.3 nm. (d)
n3 = 1.0 with ws = 468 nm for various εm. The black dotted lines indicate the position
of λR.

for the asymmetric and symmetric structures, respectively. For the asymmetric case,
ρ1 = 1 was assumed for simplicity. A finite value of arg(ρ1) can be included as an
additional phase to qh. Here bmax > 0 can be assumed, as shown above. The condition
F > 0 corresponding to λ > λR is not satisfied for h→ 0 in the asymmetric case, while
it is always satisfied in the symmetric case. The expressions 3.10–3.12 show explicitly
that the asymmetry strongly affects the presence of the BM through the reflection phase
arg(ρ1ρ3).
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3.3.2 Effect of band gap

The dispersion of BM gives us a further insight into the origin of its disappearance in
the asymmetric case. Figure 3.7(a) shows λBM (red line) and T0 (gray scale) as functions
of the in-plane wavenumber kx for the case of n3 = 3.6 and h = 100 nm. One can see
that the BM disappears when λBM seeks to cross the light line of the corresponding
diffraction order. An important point here is that the BM in the longer wavelength
(lower) branch bends near kx = 0, suggesting that the disappearing shorter wavelength
(upper) branch near kx = 0 also bends. The bending is due to the band gap caused by
the mixing between the crossing diffraction orders. Therefore, in addition to the nature
of the asymmetric structure discussed above, the mixing-induced band gap enhances
the disappearance of the BM in the upper branch. It is obvious that the band gap
observed here is predominantly related to the SP in the grating–substrate interface,
since the light line in the air-side and the geometrical FP resonance are far away from
this range. As is seen in the T0 spectra (gray scale map), the peak along the lower
branch is not visible for small kx , because the slit mode is not excited well due to the
mismatch between the slit mode and the incident wave in the in-plane symmetry.

L L

Figure 3.7: BM wavelength λBM (red line) and the T0 spectra (gray-scale map) as
functions of kx for n3 = 3.6 and h = 100 nm around the (a) 1st and (b) 2nd order λR.
The green dotted lines indicate the light line.

Before discussing the band gap in the SP at the substrate side interface, we comment
on the peaks in T0 and E around 780 nm; i.e., the 2nd order λR seen in Fig. 3.2. Shown
in Fig. 3.7(b) are λBM (red line) and T0 (gray scale) as functions of kx for the short
wavelength range. For the case of h = 100 nm shown here, the BM does not disappear
(λBM > 2nd order λR) because |εm| is small (∼ 25 at 780 nm). The correspondence
between the peak in T0 (and E, though not shown here) and the BM can be confirmed,
manifesting that the peaks in T0 and E can be explained (with the effect in T0 by the
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Fano resonance of the corresponding diffraction order) by the excitation of the BM in
the whole spectral range. Note that the band gap in the BM is clearly observed. In
addition, there is a tiny, but a finite, jump in the BM when it crossed the light line
(kx ∼ 0.25π/Λ), which comes also from the SP of the interface, as discussed below.

To confirm the band gap and the jump in the BM at the crossing with the light line
observed above originate from the SP at the grating–substrate interface, we calculated
the dispersion of the BMI, of which the real part λBMI corresponds to the SP resonance,
at the interface using Eq. 3.6. The results for n3 = 3.6 with several values of ws are
shown in Fig. 3.8(a). For ws = 0.1Λ, the upper branch disappears when it seeks to
become shorter than the light line. Therefore, in this case, SP resonance does not exist
for normal incidence in the range of λ > λR. In the case of ws = 0.01Λ = 4.33 nm,
though the upper branch exists at kx = 0, a large splitting of the BMI is observed. In
addition, a jump in the BMI at the crossing with the light line, as seen Fig. 3.7(b), is
clearly observed. Therefore, the band gap in the BM shown in Fig. 3.7 is concluded to
be caused by that in the SP (through ρ3) at the grating-substrate interface. Though
the physical interpretation of the jump in the BMI at the crossing with the light line is
not clear at present, it is obvious numerically to be due to the change in the character
(radiative or evanescent) of the diffraction order across the light line. We should stress
that the appearance of the jump is confirmed not to be the artifact in the SCMT, since
it is also observed in the RCWA calculation.

For comparison, the BMI in the case of n3 = 1.0 with ws = 43.3 nm is shown in
Fig. 3.8(b). Though the band gap at kx ∼ 0 is present, it is very small. In addition,
the jump in the BMI at the crossing with the light line is also very small. Therefore,
we can conclude that the opening of the band gap, including the effect of the jump
in the BMI, widens the parameter range of the BM to disappear in the gratings on a
high-index substrate.
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Figure 3.8: In-plane dispersion of λBMI at the substrate-side interface for (a) n3 = 3.6
with ws = 0.10Λ(43.3 nm), 0.05Λ and 0.01Λ and (b) n3 = 1.0 with ws = 43.3 nm.
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3.4 Observation position dependence of enhance-

ment in the substrate region

So far, enhancement was evaluated by averaging the electric fields 10 nm below the
grating (in the substrate region) over one period in in-plane direction. However, the
enhancement under the slit is sometimes important for some application such as im-
proving the efficiency of the photo conductive antenna. Therefore, the enhancement
was evaluated only under the slit. As a result, as will be shown below, a peculiar
dark band (zero enhancement) which was not seen in the averaged enhancement was
observed. The presence of dark band is critical problem for the practical application
using enhancement. In this section, the mechanism of the dark band under the slit is
analyzed.

3.4.1 Spectra of transmittance and enhancement

Figure 3.9 shows the gray scale mappings of T0 and enhancement (under the slit Eslit

and under the metal Emetal) of incident wavelength vs metal thickness. Several features
are seen.

1) There are several bright lines in both enhancement and transmittance scale in
Fig. 3.9. As described in the preceding section, bright lines correspond to the BMs.
The red shift of the bright lines is explained by the correspondence of the BMs to the
condition for the FP resonance (Eq. 3.4), which shifts linearly in varying thickness.

2) Even in the case that the slit ratio is low, transmittance is relatively high
(max(T0) > 0.8 for ws = 0.1Λ). Since, as mentioned above, the enhanced transmittance
( bright lines in Fig. 3.9) originated from the FP resonance, such an enhanced transmis-
sion is not peculiar. This enhanced transmission is in other words, the extraordinary
transmission. On the other hand, the enhancement is higher for the case of lower slit
ratio (ws = 0.1Λ). In the present case, the transmittance is high for the low slit ratio,
and the energy is concentrated in the narrow slit. Therefore, the enhancement is high
for the narrow slit.

3) Transmittance becomes 0 at λSPF, which came from the Fano resonance on the
metal-dielectric interface.

4) The similar dark band appears at the wavelength slightly longer than λR for
the enhancement under the slit Eslit. The dip caused by the Fano resonance occurs
in the far field. Therefore, no such a dip occurs for the near field which corresponds
to the enhancement. Indeed, no dark band appears for the enhancement under the
metal Emetal (decrease of Emetal in λ < λR comes from the radiation of the 1st order
diffraction).

In the following, the dark band in the enhancement under the slit is analyzed.
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Figure 3.9: Zeroth order transmission T0, enhancement under slit Eslit, and enhance-
ment under metal Emetal in grayscale as functions of the wavelength and the metal
thickness for Ws = 0.1Λ (a) and 0.2Λ (b). The arrows on the vertical axes indicate the
position of λR. Note that the scales for Eslit are different between the two cases.
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3.4.2 Origin of the dark band for the enhancement under the
slit

Basically, the peak of the enhancement occurs for the condition of Eq. 3.4 as mentioned
above. To consider the origin of the dark band in the enhancement under the slit Eslit,
the reflection coefficient on the substrate interface was calculated numerically. Figure
3.10 (a) shows the enhancement under the slit Eslit for the three different thickness,
and Fig. 3.10 (b) shows the phase and amplitude of ρ3 for ws = 0.1Λ. At the dip
wavelength (corresponds to the dark band), |ρ3| ' 1 and arg(ρ3) ' π, which means
ρ3 ' −1 (fixed end), then the electric field component parallel to the interface is nearly
0 at the interface. In the narrow slit case, slit mode is the single TM0 for the near
infrared region and is similar to the TEM mode. In this case, the vertical component
of the electric field Ez is also nearly zero. Therefore, the dark band which exists at the
wavelength slight longer than λR was caused by fixed end reflection of the slit mode.
Note that, although the rigorous fixed end is ρ3 = −1 , the wavelengths at which
arg(ρ3) ' π and ρ3 ' −1 occur are not exactly the same. However, arg(ρ3) ' π and
ρ3 ' −1 occur very close wavelengths. This indicates that presence of the dark band
in the enhancement under the slit Eslit in λ > λR is the general nature of the metal
grating.

3.4.3 Behavior of reflection coefficient

The approximated expression of the reflection coefficient was obtained as Eq. 3.7. For
simplicity, the slit mode is approximated as the TEM mode inside the MIM waveguide
with perfect conductor. Under this approximation, Yeff = Yslit = YTEM = 1/Z0. By
substituting kx = 2π/Λ = 2π/n3λR whose in-plane wavenumber corresponds to the
normal incident, then

b =
1

S2

1− S2√
|εm|
− 1

n3

√(
λ

λR

)2

− 1

 (3.13)

is obtained. From Eq. 3.13, b ' −∞ for the limit of the long wavelength λ >> λR.
In this case arg(ρ3) ' 0. By shifting the wavelength to the shorter region λ = λR, b
(arg(ρ3)) increases monotonously, and is

b(λ = λR) =
1

S2

1− S2√
|εm|

(3.14)

for λ = λR. Since S2 < 1, b(λ = λR) > 0. Therefore, arg(ρ3) > π.
Here, consider the wavelength which satisfies arg(ρ3) = π and |ρ3| = 1. arg(ρ3) = π

is satisfied when b = 0. Therefore, from Eq. 3.13, arg(ρ3) = π and |ρ3| = 1 is satisfied
for

λπ = λR

√√√√ε3

(
1− S2√
|εm|

)2

+ 1. (3.15)
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Figure 3.10: (a) Enhancement under slit Eslit and (b) the amplitude and phase of the
reflection coefficient ρ3 for the slit mode at the slit/substrate boundary. The dash-
dotted lines indicate the wavelength at which Eslit becomes minimal.
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On the other hand, |ρ3| = 1 corresponds to τ3 = 0 (condition for the dip caused by
Fano resonance in transmittance spectrum) and occurs at

λSPF ' λR

√
|εm|+ ε3
|εm|

(3.16)

as mentioned in the section 3.4.1. At the wavelength λSPF, b < 0. Therefore, arg(ρ3) <
π. arg(ρ3) = π and |ρ3| = 1 occurs close to each other in the spectrum, and ρ3 ' −1 in
between them. The presence of the dielectric ε3 only slightly alters λπ and λSPF. In the
presence of the metal loss, |ρ3| < 1 for τ3 = 0. Also, in case |εm| is small ( less than 5),
the wavelength which τ3 = 0 occurs deviates from λSPF. Qualitatively, however, there
always exists the wavelength which satisfies ρ3 ' −1 in the wavelength longer than λR.
Eq. 3.7 and the following equations (Eq. 3.13 to Eq. 3.16) were obtained by ignoring the
diffraction (evanescent) wave in the region III. To confirm the validation of the above
discussion which used these approximated equations, ρ3 without the approximation were
calculated for some conditions using SCMT as shown in Fig. 3.11. Solid and dashed
lines are the narrow slit (S2 is small) and wide slit (S2 is large) cases, respectively.

Here, we comment on the case |εm| is small ( (a) or (c)). In such a case, λSPF shifts
from λR toward longer wavelength because of the plasmonic properties of the metal
surface. In addition, electromagnetic field is strongly confined on the metal/dielectric
interface. Even in the finite slit width, surface plasmon is still quasi bound state
as long as the slit width is narrow since, in such a narrow width, radiation via the
scattering at the slits is weak. When such a relatively stable surface plasmon exists,
absorption by the metal at the resonant frequency is strong. Because of this, phase of
the reflection changes largely. Dips in |ρ3| for the solid lines of (a), (c) and the large
variation of arg(ρ3) correspond to the resonance. When the wavelength λ approaching
λR, the reflection phase exceeds 2π, which cannot be expressed by Eq. 3.7 and 3.8. The
discrepancy is considered to be come from ignoring the diffraction wave in Region III.

Although such a limitation exists for the range of application, the properties:

1) arg(ρ3)→ 0 for λ→∞
2) |ρ3| ' 1, arg(ρ3) < π for λSPF

3) λR < λπ < λSPF

4) λπ → λSPF when S2 → 0
are shown based on the approximated expressions, and can be confirmed in Fig. 3.11.
Therefore, it is the general property of the metal grating that the dark band which
corresponds to the fixed end reflection of the slit mode appears at the wavelength
slightly longer than λR. Note that, at the wavelength near λSPF of the metal/incident
region interface, most of the incident wave will not enter the slit (reflected). Therefore,
the enhancement on the exit side (substrate region) of the slit is also zero. In addition,
the enhancement under the metal is nearly zero. Thus, when the value of the dielectric
constant on each side of the grating is close, the origin of the dark bands in enhancement
is different.
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Figure 3.11: Amplitude and phase of the reflection coefficient ρ3 for various cases
of the grating and substrate parameters; (a) n3 = 3.6, εm = −20 + 0.1i, (b) n3 =
3.6, εm = −1000 + 0.1i, (c) n3 = 1.0, εm = −10 + 0.1i, and (d) n3 = 1.0, εm =
−1000 + 0.1i. The solid and dashed lines are the results for ws = 15.6 nm (0.036Λ) and
ws = 130 nm (0.3Λ) in (a) and (b), ws = 15.6 nm (0.01Λ) and ws = 468 nm (0.3Λ) in
(c) and (d), respectively. In all the cases, λR = n3Λ = 1560 nm.

3.5 Summary

In this work, which focuses on the BM, we discussed the spectral features and the
underlying physics in the transmission T0 and the averaged near-field enhancement E
in the metal gratings on a semiconductor substrate. It was found that, for telecom
and longer wavelengths, the BM disappears in the thin grating and the peaks in T0

and the averaged E are pinned at λR. In contrast, the BM in the gratings in air is
usually present, resulting in spectral peaks at the wavelength of the BM longer than
λR. However, the peaks are suppressed when the BM sits around λSPF due to the Fano
resonance. We showed that the difference comes predominantly from the dielectric
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symmetry above and below the grating and can be explained in terms of the reflection
phase for the slit mode at the grating–dielectric interfaces. We also showed that the
plasmonic band gap is large in the grating on a substrate enhancing the disappearance
of the BM.

In addition, we investigated the enhancement under the slit Eslit. The peak of
Eslit basically corresponds to BM. At the wavelength slightly longer than the Rayleigh
wavelength, the dark band which corresponds to the decrease of enhancement exists.
The dark band came from the fixed end reflection at the slit/dielectric interface. This
phenomenon is general for the metal grating.

Though we showed in this paper the results for the cases of a relatively narrow slit,
the discussion may also be valid for a wider slit as long as the propagating fundamental
slit mode is dominant. In addition, the physical picture based on the BM analysis is
valid for a wider range of the wavelength and of structural and material parameters.
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Chapter 4

Polarization dependence of bound
states in the continuum in the
dielectric waveguide with metal
grating

4.1 Study of bound states in the continuum

A bound state in the continuum (BIC) [8, 54] is a non-radiative state that lies in the
continuous spectral range spanned by the radiation modes. Unlike the quasi-bound
states, the BIC, in principle, has an infinitely high quality factor. Although the BIC
itself cannot be excited by the incident wave, the Q factor becomes very high near
the BIC, which is expected in high-Q devices. The BIC was originally mentioned in
Quantum Mechanics in 1929 by Von-Neumann and Wigner [12]. The phenomenon is
commonly seen in open-wave systems such as acoustics [55–57], water waves [58,59], and
optics [11,60–89]. In optics, the BIC is attracting interest in the context of metasurfaces
[60–62], photonic structures [11, 63–81, 84, 85, 88, 89] and plasmonics [82, 83]. So far,
various nano-photonic/plasmonic applications using BICs have been proposed, such as
lasers [84, 85], modulators [82], and filters [66], SHG or nonlinear optics [73,77] etc.

Most of the BICs found so far are categorized into two types: the symmetry-
protected BIC [60–62, 66, 68, 71–77, 80, 83, 85, 86] and the Friedrich-Wintgen (FW)
BIC [55–57, 63–65, 67–70, 72–75, 78, 79, 81–84, 86–91]. The former BIC results from the
incompatible symmetry of one of the localized modes with the external radiation field
that usually appears at the center of the Brillouin zone (at Γ point). The latter results
from the destructive interference of radiations from the two modes that can appear at
the off-Γ point around the crossing or anti-crossing point of the dispersion curves of the
two modes, depending on the strength of the coupling between them.

We focus on the FW-BIC formed between the two localized modes that are strongly
coupled by the near-field overlap with the structural perturbation that produces the
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coupling to external radiation. In this case, a mode anti-crossing occurs, and the BIC
appears on one of the two split-branches. Such a type of BIC is reported in cylindrical
resonator system [87–89] and the periodic structures such as photonic [63, 78, 79, 81]
or plasmonic structures [83]. As is pointed out by Friedrich and Wintgen [90], the
regime where the Q factor is kept high around the BIC becomes larger as the near-field
coupling becomes stronger. This regime is called the near BIC [83] or the supercavity
regime [88] and is targeted in searching for extraordinarily high-Q modes. Therefore, a
thorough understanding of the physics behind this type of BIC is quite important for
the realization of practical high-Q devices.

The position at which the FW-BIC appears is extremely sensitive to, and dependent
on, the structure and parameters of the system. In FW theory [90], it was shown
that the shift of the BIC position from the anti-crossing point is determined by the
strength of the couplings among the two closed and one open channel based on the
Feshbach projection operator method [92]. Moreover, which of the two interfering
resonances becomes a BIC was shown to depend on the sign of the product of the
matrix elements coupling these channels. Indeed, BICs have been observed on different
branches depending on the system, e.g., on the lower energy branch in a metal relief
grating coupled to a dielectric slab waveguide [83], and on the higher energy branch
in a low-contrast dielectric grating [79]. Therefore, it is important to understand how
the BIC position changes depending on the structure and parameters of the system, in
order to characterize the interfering resonances and to determine the optimum design
for a high-Q device.

In this chapter, we demonstrate a phenomenon where the branch at which the BIC
appears changes depending on the polarization of the waveguide modes that compose
the BIC, which can be selected by the polarization of incident light, in a dielectric-
waveguide/metal-grating structure. If the conclusion of FW theory is applicable to
this system, this phenomenon is caused by the sign change of the coupling coefficients
among waveguide modes and external radiation. We carry out two actions to confirm
this hypothesis. Initially, following temporal coupled mode theory (TCMT) [25, 93],
which describes general classical open-wave systems, we obtain the BIC condition for
the system with two resonant modes and one radiative mode. We pay attention to
the signs of the coupling coefficients, and check whether the system conforms to FW
theory. Next, we estimate the signs of the coupling coefficients by the waveguide-
mode decomposition of the electric fields inside the dielectric layer, which is obtained
numerically via the use of a spatial coupled mode theory (SCMT) [21,22,35], and observe
how the sign of the product of the coupling coefficients depends on the polarization of
incident light. We note here that SCMT and TCMT are essentially different theories
despite their similar names. SCMT is an electromagnetic theory for those systems with
a metallic aperture array, wherein Maxwell equations are solved by a modal expansion
of electromagnetic fields. On the other hand, TCMT is a more general theory. This
method derives a set of equations of motion for simple oscillators whose energy can
be transferred to the outside. Therefore, no specific electromagnetic formulation is
employed in it.
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Figure 4.1: Cross sectional structure of the device considered in this work.

4.2 Device structure

As the complex permittivity of the gold grating and backing metal, unless otherwise
stated, we used a Drude-Lorentz model fitted to the Johnson-Christy data [53]. In
some analyses, we consider the lossless gold by ignoring the imaginary part (loss) of the
gold permittivity. We note that this loss elimination is done only for the purpose of
theoretical analysis to elucidate the behavior of the BIC. We consider a planar dielectric
waveguide structure as shown in Fig. 4.1. It consists of a gold grating on a dielectric
layer with a backing metal layer of infinite thickness. Therefore, any wave incident
from the grating side is totally reflected except for some absorption. The reflectance
as well as the fields inside the device were calculated by the SCMT, for the incident
plane wave with S or P polarization, of which the electric or magnetic field has only
y-component. The grating with a period of Λ = 433 nm is composed of a gold strip
whose width wm is 0.98Λ for the P-wave and 0.8Λ for the S-wave. These widths were
chosen to facilitate clear observation of the BICs. Note that the grating is 0th order in
the air for the wavelength range considered here.

4.3 Calculation results

We display the dispersion of the 0th order reflectance on the gray scale map for the
two polarizations in Fig. 4.2. In both diagrams, dark bands (low reflectance = high
absorption) are clearly seen. The dashed lines indicate the dispersion of the empty
lattice modes of the dielectric waveguide sandwiched by the two flat metal planes. We
name the lowest order waveguide modes TM0 and TE0, and the second modes, TM1 and
TE1 for the P- and S-polarizations, respectively. The TE1 mode is cut off for λ > 1.25
µm. The dark bands correspond well to the empty lattice modes. Therefore, they are
attributed to absorption caused by the metallic loss in the grating and backing metal
associated with the dielectric waveguide modes.
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Figure 4.2: Reflectance as a function of the in-plane wave vector and the incident
wavelength; (a) P-wave incidence, (b) S-wave incidence. Axis of the wavelength is in
inverted scale (which means the linear scale in the frequency). The dashed lines indicate
the dispersion of the empty lattice modes of the dielectric waveguide. The red arrows
indicate the location of the BICs.

At the intersection of the two modes, in both polarizations, one can see an anti-
crossing that is caused by the near-field coupling between the two modes induced by
the grating. Moreover, near the anti-crossing, the dark band disappeared locally at
the positions indicated by the arrows in both polarizations. The disappearance of the
absorption corresponds to the BIC. Here a remarkable feature is that the BIC lies
on the lower-frequency branch for the P-polarization, whereas it lies on the higher-
frequency branch for the S-polarization. This feature is the subject of this study and
will be discussed in detail in the next section. However, we first confirm that the
disappearance of the absorption is indeed due to the formation of the BIC by evaluating
the imaginary part of the eigenfrequency along the lower and upper dark bands for
the P-wave and S-wave cases, respectively. In the calculation, the imaginary part of
the metal permittivity was removed so that the imaginary part of the eigenfrequency
corresponds to the external (radiation) loss. The results are shown in Fig. 4.3. In
both polarizations, the imaginary parts drop to zero at the point where the absorption
disappears (kx ∼ 0.2 [π/Λ]), demonstrating that the BICs are indeed formed at that
location.
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Figure 4.3: Imaginary part of the eigenfrequencies along the branch on which BIC
appears; (a) P-wave (lower branch) and (b) S-wave (upper branch).

4.4 Discussion

4.4.1 Theoretical analysis using temporal coupled mode the-
ory

In this chapter, the results were analyzed using the TCMT which was described in 2.3.
First, the reflectance spectra calculated using Eq. 2.35 are shown in Figs. 4.4 (c) and
4.4 (d) for p = 1 and −1, respectively, and α > 0 for both cases. The parameters
used in the calculations, listed in the caption, were decided so as to fit the SCMT
results redrawn in Figs. 4.4 (a) and 4.4 (b) from Figs. 4.2 (a) and 4.2 (b) with some
magnification. As is clearly seen, the reflectance spectra were accurately reproduced by
the TCMT calculation. Importantly, the positions of the BIC are correctly predicted.

The appearance of the BIC is analyzed as follows [24,90,94]. Omitting the internal
loss Γi , the eigenvalues for H̃ are determined by∣∣∣H̃− ωI

∣∣∣ = {(ω1 − ω)− iγe1}{(ω2 − ω)− iγe2}+ (iα + p
√
γe1γe2)2 = 0, (4.1)

where I is the identity matrix. If we express the two solutions of Eq. 4.1 as β and χ,
the sum and the product of them yield

β + χ = ω1 + ω2 − iγe1 − iγe2, (4.2)

βχ = (ω1 − iγe1)(ω2 − iγe2) + (iα + p
√
γe1γe2)2. (4.3)

When a BIC is realized, one of the solutions is purely real. In that case, the solutions
can be expressed using real numbers A and B as

β = A− iγe1 − iγe2, (4.4)

43



BIC

l
[m

m
]

(a)
BIC

(b)

(c)

kx [p/L]

l
[m

m
]

(d)

kx [p/L]

Figure 4.4: Reflectance as a function of the in-plane wave vector and the incident
wavelength around the anti-crossing point. (a) P-wave and (b) S-wave redrawn from
Figs. 4.2(a) and 4.2(b), respectively. The results of the TCMT calculation using Eq.
2.35 for (c) p = 1 and (d) p = −1 with the following parameters; (c) γi1/c = 2.03 ×
10−2, γi2/c = 3.15×10−2, γe1/c = 2.18×10−3, γe2/c = 4.42×10−3, α/c = 3.52×10−2, (d)
γi1/c = 6.24× 10−3, γi2/c = 2.64× 10−2, γe1/c = 5.77× 10−5, γe2/c = 3.33× 10−4, α/c =
3.28× 10−2. Here c is the velocity of light in a vacuum.
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χ = B. (4.5)

By substituting Eqs. 4.4 and 4.5 to Eq. 4.3, the following relations are obtained for A
and B,

A+B = ω1 + ω2, (4.6)

AB = ω1ω2 − α2. (4.7)

Therefore, A and B are the solutions of the equation

x2 − (ω1 + ω2)x+ ω1ω2 − α2 = 0. (4.8)

In addition, by comparing the imaginary parts of both sides of Eq. 4.3, the expression
for B is obtained as

B =
ω1γe2 + ω2γe1 − 2pα

√
γe1γe2

γe1 + γe2
. (4.9)

The solutions of Eq. 4.8 are

x± =
1

2
{ω1 + ω2 ±

√
(ω1 − ω2)2 + 4α2}. (4.10)

Because B must be one of the two solutions, x±, the following condition must be
satisfied for Eq. 4.9;

±
√

(ω1 − ω2)2 + 4α2 = −
(ω1 − ω2)(γe1 − γe2) + 4pα

√
γe1γe2

γe1 + γe2
. (4.11)

By squaring both sides of Eq. 4.11 the following conditions are obtained for the existence
of the BIC;

pα(γe1 − γe2) =
√
γe1γe2(ω1 − ω2). (4.12)

Here we note that the expression Eq. 4.12 was derived in [24, 90]. Substituting Eq.
4.12 into Eq. 4.1 and then solving Eq. 4.1 with respect to ω, we obtain the following
solutions

ω =


1
2
(ω1 + ω2) + pα

2
(
√

γe1
γe2

+
√

γe2
γe1

)− i(γe1 + γe2),

1
2
(ω1 + ω2)− pα

2
(
√

γe1
γe2

+
√

γe2
γe1

).
(4.13)

The latter solution represents the BIC, which does not have an imaginary part. There-
fore, the BIC appears in the lower frequency branch when

pα > 0, (4.14)

whereas the BIC appears in the higher frequency branch when

pα < 0. (4.15)
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Figure 4.5: Illustration of the quadrant where BIC appears in the dispersion diagram
near the anti-crossing point for (a)γe1 > γe2 and (b)γe1 < γe2. The red and blue
lines depict the dispersions whose radiation loss is the larger (broad linewidth) and the
smaller (narrow linewidth) of the two, respectively.

This result about the BIC-branch selection is consistent with the FW theory [90].

The regions where the BIC appears in the dispersion diagram can be discussed based
on Eqs. 4.12, 4.14, and 4.15. Consider the dispersion of ω1 and ω2 having positive and
negative slopes, respectively as shown in Fig. 4.5. Let us first consider the case of
pα > 0, for which, from Eq. 4.12, the signs of ω1 − ω2 and γ1 − γ2 should be the same.
Hence, ω1 > ω2 must be satisfied for γe1 > γe2, corresponding to division (1) or (4) in
Fig. 4.5(a), while ω1 < ω2 for γe1 < γe2, corresponding to division (2) or (3) in Fig.
4.5(b). On the other hand, considering Eq. 4.14, the BIC appears on the lower branch
for pα > 0. Therefore, the BIC appears in division (4) in Fig. 4.5(a) for γe1 > γe2 and
division (3) in Fig. 4.5(b) for γ1 < γ2, respectively. The case of pα < 0 can be analyzed
in a similar way. For γe1 > γe2 and γe1 < γe2, the BIC appears in division (2) in Fig.
4.5(a) and division (1) in Fig. 4.5(b), respectively. We further note that in both cases,
the BIC appears on the mode with the lower radiative loss.

Next, let us check the correspondence between the above argument and the result in
our structure shown in Fig. 4.4. In the case of P-wave excitation shown in Fig. 4.4(a),
we can see that the TM0 (ω1) mode with positive slope is narrower than the TM1 (ω2)
mode with negative slope, namely γe1 < γe2 corresponding to Fig. 4.5(b), and the BIC
is located on the branch in division (3), as confirmed by the fitting shown in Fig. 4.4(c).
Hence, the above argument predicts pα > 0. In the case of S-wave excitation, it is
clear from Fig. 4.4(b) that the linewidth of the TE0 (ω1) mode is much narrower than
the TE1 (ω2) mode, namely γe1 < γe2 corresponding again to Fig. 4.5(b), and the BIC
appears in division (1). Therefore, pα < 0 is predicted. In the next subsection, we will
confirm the above prediction, pα > 0 and pα < 0 for the P-wave and S-wave excitations,
respectively, in our specific structure, by checking the signs of p and α from the SCMT
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calculation.

4.4.2 Evaluation of the signs of p and α using spatial coupled
mode theory

As shown in the preceding section, the branch on which the BIC appears depends on
the sign of pα. Here, p denotes the phase difference (sign) between the coefficients
that couple the waveguide modes with the external radiation; p = 1 and −1 means
ϕ1−ϕ2 = 0 and π, respectively. The phase difference between the two waveguide modes
excited by the incident radiation is determined solely by these coupling coefficients, if
the effects of near- and far-field couplings are negligible. Thus, the sign p can be
evaluated easily from the phases of the excited waveguide modes. On the other hand,
α represents the near field (direct) coupling between two resonant modes. As shown
below, the sign(α) can also be found by inspecting the phases of the waveguide modes
that construct the coupled resonant modes at the anti-crossing point.

We determine the phase of the waveguide modes from the actual SCMT simulation.
Assume that the electric and magnetic fields inside the dielectric layer is expanded by
the propagating waveguide modes in the flat metal/dielectric/metal waveguide as [95]

E(x, z) = a1+E1+(x, z) + a2+E2+(x, z) + · · ·
+a1−E1−(x, z) + a2−E2−(x, z) + · · · ,

H(x, z) = a1+H1+(x, z) + a2+H2+(x, z) + · · ·
+a1−H1−(x, z) + a2−H2−(x, z) + · · · . (4.16)

Here, Ei±, Hi± represents the transverse components (in y-z plane in Fig. 4.1) of the
electric and magnetic fields of the i-th waveguide mode, respectively, and the signs +
and − denote the mode propagating in the +x and −x directions, respectively. ai±
represents the complex amplitude of each waveguide mode. As seen in Fig. 4.2, only
two modes are relevant near the BIC point. Hence, Eq. 4.16 can be simplified to

E(x, z) = a1sE1s(x, z) + a2s′E2s′(x, z),

H(x, z) = a1sH1s(x, z) + a2s′H2s′(x, z), (4.17)

where s and s′ are either + or −. In the case of Fig. 4.2(a) for the P-wave radiation,
mode 1 and mode 2 correspond to the TM0 mode propagating in +x direction and the
TM1 mode propagating −x direction, respectively. In the case of Fig. 4.2(b) for the
S-wave radiation, they correspond to the TE0 mode propagating in +x direction and
the TE1 mode propagating in +x direction, respectively. The direction of propagation
was determined from the slope of the corresponding empty lattice mode. The amplitude
ais is obtained by

ais =

∫
dz

(
E×H∗is + E∗is ×H

Eis ×H∗is + E∗is ×His

)
, (4.18)

using the electric field E and the magnetic field H obtained by the actual SCMT
calculation. The integration is performed over the dielectric region.
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4.4.3 Evaluation of p

We evaluate the phase difference at the wavelength where the anti-crossing occurs,
kx = 0.1905 [π/Λ] and 0.1600 [π/Λ] for the P-wave and S-wave excitations, respectively.
The calculated phase difference in SCMT is shown in Figs. 4.6(a) and 4.6(b) for the
P-wave and S-wave cases, respectively. We denote the upper and lower branch of the
coupled resonant wavelength as ω+ and ω−, respectively.
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Figure 4.6: Phase difference of two modes excited by the external radiation; (a) P-wave
at kx = 0.1905 [π/Λ] and (b) S-wave at kx = 0.1600 [π/Λ] by the SCMT calculations,
(c)p = 1 and (d)p = −1 by the TCMT calculations. Red dashed lines in (a) and (b)
indicate the wavelengths of the coupled resonant modes ω+ and ω−.

Around ω+ or ω−, the phase difference between the waveguide modes varies rapidly
due to the influence of the excitation of each resonator. However, in the region far from
ω+ and ω−, the phase difference shows a convergence to 0 for the P-polarization and π
for the S-polarization. In this region, the phase difference (sign) between the resonances
should coincide with p, because the effect of the resonances on the phase difference is
considered to be negligible (see Chapter 2.3 ).

For comparison, the phase differences were also calculated in TCMT. Figure 4.6(c)
is the phase difference for p = 1 using the same parameters as for Fig. 4.4(c), and Fig.
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4.6(d) is that for p = −1 with the parameters for Fig. 4.4(d). The overall behavior of
the phase difference in the SCMT results (Figs. 4.6 (a) and (b)) corresponds very well
to that in the TCMT results (Fig. 4.6 (c) and (d)). Therefore, it can be concluded that
p = 1 and p = −1 for the P- and S-polarizations, respectively.

4.4.4 Evaluation of α

The sign of α can be deduced from the phase of the eigenmode (quasi-bound mode). In
our strong near-field coupling system, the eigenmode is mainly determined by α near
the anti-crossing point. In TCMT, by equating the eigenfrequencies of the two resonant
modes, ω1 = ω2 = ω12, and neglecting Γi and Γe, we have the eigenfrequencies ω+ and
ω− from

|Ω− ωI| = 0, (4.19)

as
ω± = ω12 ± |α|, (4.20)

and the eigenvectors are derived from(
ω12 − ω α

α ω12 − ω

)(
a1

a2

)
= 0. (4.21)

Hence, for α > 0,
a1 = a2 for ω+, a1 = −a2 for ω− (4.22)

and when α < 0 we have,

a1 = −a2 for ω+, a1 = a2 for ω−. (4.23)

Therefore, the sign of α can also be evaluated from the phase difference arg(a1)-arg(a2)
at ω+ or ω− around the anti-crossing point. Here ω1 and ω2 correspond to either TM0

(TE0) or TM1 (TE1) for the P (S)-wave case. We evaluated a1 and a2 from the electric
field using Eq. 4.18. The electric field of the coupled resonant modes can be obtained
numerically by searching for the electromagnetic wave solution in the absence of the
incident wave using SCMT. In the calculation, we eliminated the imaginary part of the
permittivity of gold in the grating and backing metal. Table 4.1(a) shows the results
for the P-wave excitation at kx = 0.1905 [π/Λ] and Table 4.1(b) shows those for the
S-wave case at kx = 0.1600 [π/Λ]. In both cases, the phase difference is about 0 at ω+

and π at ω−, respectively. Therefore, it can be concluded that α is positive for both
polarizations.

4.4.5 Sign of pα

As shown above, p = 1 and p = −1 for the P- and S-polarizations, respectively and
α is positive for both cases. Although sign(p) can be changed by the redefinition of
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Table 4.1: Phase difference between the two waveguide modes to determine the sign(α).

[arg(aTM1-)−arg(aTM0+)](w+) [arg(aTM1-)−arg(aTM0+)](w−) sign(a) p

3.45×10-4p 0.997p + +1

(a) P-wave at kx = 0.1905 [p /L]

(b) S-wave at kx = 0.1600 [p /L]

[arg(aTE0+)−arg(aTE1+)](w+) [arg(aTE0+)−arg(aTE1+)](w−) sign(a) p

−1.93×10-2p 0.989p + −1

the phase of one of the waveguide modes, this change must be accompanied by the
change of sign(α) with sign(pα) unchanged [24]. Hence, we can conclude that sign(pα)
is positive in the P-polarization and negative in the S-polarization in our structure,
demonstrating that the prediction by the TCMT stated in Section 4.4.1 is correct.

4.5 Summary

In conclusion, we discussed, for the first time, the branch on which the FW-BIC ap-
pears in the anti-crossing dispersion of a photonic system with a simple and practically
important structure, namely dielectric waveguide with metal grating. We demonstrated
that the branch is selected by the incident polarization. The mechanism was explained
by TCMT in terms of the polarization-dependent phase relation between the relevant
waveguide modes forming the BIC. The polarization dependence of the BIC formation
in our simple structure implies the external controllability of BICs in various optical
and photonic devices. Here we want to mention that the polarization selectivity was
not found in the device where the top metal grating was replaced by a dielectric grating.
However, a question still remains whether the plasmonic nature plays an important role
in our structure, which is important not only from a viewpoint of optical physics, but
also for various applications, because non-plasmonic structures may be better to obtain
higher Q values. Although an answer has not been obtained, our discussion based on
the TCMT applies regardless of the presence of the plasmonic effect, implying that the
same or similar control of BICs is possible in various devices including all dielectric
ones.
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Chapter 5

Bound states in the continuum and
exceptional point in dielectric
waveguide equipped with metal
grating : grating thickness
dependence

5.1 Bound states in the continuum and exceptional

point

Resonant oscillations in open resonator systems (the system that possesses the radiation
port to the far region) normally decay with time because of the radiative dissipation of
the energy. Even in open systems, however, purely bound states can exist when some
requisite conditions are fulfilled. Such a non-decaying state in an open system is called
a bound state in the continuum (BIC) [8, 54] and was originally discussed in quantum
mechanics in 1929 by von Neumann and Wigner [12]. In optics, BIC was first studied
theoretically in 2008 [11] and then experimentally in a waveguide array in 2011 [96].
As BIC enables strong confinement of light, which results in high-Q resonances [65],
applications such as single mode lasers [84, 85], high-efficiency harmonic generation
[73, 97, 98], and biosensors [76] have been demonstrated. BICs can be categorized into
several types based on their physical origin [8]. Among them, two types of BIC, the
symmetry-protected BIC and accidental or Friedrich-Wintgen (FW) BIC [90], have been
mostly investigated. The former originates from the incompatibility of the symmetry
between the resonant mode and external radiation and appears at highly symmetric
points such as the Γ point in the reciprocal space of the periodic structure. The latter
is formed by the destructive interference between the radiation from the resonant modes
[8, 99], where the symmetry is generally not required, and can appear at a point of no
symmetry in the reciprocal space.

51



When the two relevant modes interact in the near field, the dispersion of the modes
anti-crosses, and the BIC lies on one of the split branches [90, 91, 100]. In optics,
recently, BICs appearing on the anti-crossed branch have been attracting attention and
are being discussed [79, 83, 87, 88] for applications such as high-Q super cavities with
subwavelength dielectric structures [88]. In the previous chapter ( [101]), we presented
that, in a dielectric waveguide connected with the far field through a metal grating,
the branch at which the BIC appears depends on the polarization of the mode, which
is explained by the difference in the parameter describing the coupling phase of the
modes with the external radiation, in a consistent manner with the original theory of
Friedrich and Wintgen [90]. In this chapter, we show that the branch at which the
FW-BIC emerges also depends on the grating thickness. On carefully inspecting the
dispersion relation, we found that the position at which the BIC appears is fixed at the
crossing of the original waveguide modes, while the coupled resonant modes of the entire
system move owing to the change in the grating thickness, thus resulting in the flipping
of the BIC branch. We also show that the criteria discussed in our previous chapter
for the branch at which the BIC appears still hold. In addition, we observed that the
magnitude of the anti-crossing gap, and hence, the internal (near field) coupling, varies
with the change in the grating thickness.

In parallel, with the equation of motion of essentially the same form as that describes
a system exhibiting the FW-BIC, the dynamics of non-Hermitian systems have been in-
tensively investigated with an emphasis on the presence and the influence of exceptional
points (EPs) at which the eigen solutions (resonant modes) formed from more than one
oscillator with the mutual coupling coalesce [102]. In optics and photonics, EPs in active
or passive parity-time (PT) symmetric structures as well as those in non-PT symmetric
structures have attracted a significant amount of interest [9,103] as such systems exhibit
various exotic as well as practically important phenomena at or around the EP. For ex-
ample, asymmetric mode switching [104], directional omni-polarizer [105], laser mode
selection [106–108], unidirectional invisibility or reflectionlessness [109], directional to-
tal absorption [110], loss-induced transparency [111], polarization control [112], and
enhancement of Sagnac sensitivity [113,114] have been proposed and/or demonstrated.
They are expected to lead to a new paradigm of optical systems.

Though many of the reports on EPs have dealt with the case of no external (ra-
diation) coupling, which is the origin of the FW-BIC, the EP is expected to appear
even with the radiation coupling, and hence, the BIC and EP are closely located in the
parameter space [102, 115]. In the last part of this article, we show that the EP can
indeed be realized near the BIC point in our device, where the tuning of the internal
coupling with the grating thickness plays a significant role. The continuous controllabil-
ity of the system with the use of such an additional parameter is expected to encourage
experimental investigations and the application of the BIC- and EP-related phenomena
in optics and photonics [116].
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5.2 Device structure and the methods of analysis

The system considered is a dielectric waveguide sandwiched by a metal grating and op-
tically thick backing metal, which is essentially the same structure as that considered in
our previous paper [101], as shown in Fig. 5.1. In this paper, we only vary the grating
thickness hmetal and fix the other parameters. We consider the region of the wavelength
where only the 0th order wave is radiative in the air region. For the permittivity of the
gold, unless otherwise stated, the Drude-Lorentz model fitting the reported experimen-
tal data [53] was used. In some cases, however, we eliminated the imaginary part of the
permittivity to neglect the loss and simplify the theoretical analysis. We will specify the
elimination when it is done. We consider a case where a P -polarized wave is incident
from the air region. Owing to the backing metal, the incident light is totally reflected
unless it is absorbed due to the ohmic loss at the metal surface. Strong absorption oc-
curs when the incident light excites the resonant mode, which comprises the waveguide
modes in the dielectric region with a modification of the slit-induced internal and exter-
nal (radiation) coupling. The dominant waveguide modes for the situation considered
in this paper are the first (lowest) and second transverse magnetic (TM) modes, TM0

and TM1, respectively, in the metal-dielectric-metal (MIM) structure.

Gold

ndiel = 3.6

nair = 1.0

wm = 0.9L

Gold (Optically thick)

Radiation

L = 433 nm

300 nm

x

z

y

hmetal

Figure 5.1: Cross-sectional structure of the device considered in this work.

For the analysis of the electromagnetic field and the resonant (eigen) mode in the
device, a spatial coupled-mode method (SCMT) [35] was used. In the SCMT, the wave
propagation in the grating layer was described by that in a slit sandwiched by the
nearby metal bars and the modes were calculated taking into account the permittivity
of gold [21, 22]. For the slit width of 43.3 nm considered here, only one propagating
mode is present. In addition, a temporal coupled-mode theory (TCMT) [25, 93] was
used to analyze the response obtained by the SCMT. It should be noted that the SCMT
and TCMT are essentially different from each other; the former is a numerical solver of
the EM field based on Maxwell’s equations, while the latter is an equation that describes
the motion of the oscillators corresponding, in the present case, to the original TM0

and TM1 modes with mutual internal and external coupling.
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5.3 Absorption spectra and the resonant mode of

the system

Figure 5.2 shows the dispersion relation of the absorption for the wave incident from
the air region in the gray-scale maps for the four cases of the grating thickness hmetal.
The solid lines on the absorption map indicate the wavelength corresponding to the
real part of the resonant mode frequency. It can be observed that the high-absorption
bands appear along the resonant modes. As mentioned above, each resonant mode can
be assigned to an originating MIM mode, except in the case of the anti-crossing region
wherein the modes are mixed by the slit. In all the cases of the grating thickness, as
indicated by the dashed circles, the absorption disappears locally near the anti-crossing.
This behavior is a signature of the emergence of the BIC. The imaginary part of the
resonant mode frequency is depicted in the lower panel for each hmetal with the same
colors for each branch as those used for the real part. In the calculation of the resonant
modes, the imaginary part of the metal permittivity was set to zero such that the
imaginary part of the resonant mode frequency is only due to the radiation loss. The
disappearance of the absorption corresponds to the vanishing imaginary part, which
confirms that the disappeared mode is indeed the BIC.

There are two remarkable features of the absorption map and resonant mode disper-
sion. First, the magnitude of the anti-crossing gap depends on hmetal. With the increase
in hmetal, the gap first becomes small and almost diminishes for hmetal ∼ 275 nm. The
gap then reappears with a further increase in hmetal. Second, the branch at which the
BIC appears changes as hmetal crosses ∼ 275 nm, where the gap shrinkage occurs. The
BIC appears on the lower branch for hmetal < 275 nm and on the higher branch for
hmetal > 275 nm. In the following, we discuss these features in detail, in the order of
1) the position and branch of the BIC and 2) the variation of the anti-crossing gap in
Sec. 4 and Sec. 5, respectively.

5.4 Position of the BIC

5.4.1 The position of the BIC in terms of the empty lattice
mode

Here, we first discuss the position and the branch of the BIC. In Fig. 5.3, we present a
magnified view of Fig. 5.2 near the anti-crossing. The position of the BIC is indicated
by the dashed circles. As mentioned above, the BIC appears on the lower (upper)
branch for hmetal < 275 (> 275) nm. For hmetal = 275 nm, the anti-crossing disappears,
and the BIC appears at the crossing point. On observing the figure more closely, we
notice that the position of the BIC is not moved by the change in hmetal. The broken
lines plotted in the figures are the empty lattice TM0 and TM1 waveguide modes, which
were obtained by folding the dispersion curves of these modes in the MIM waveguide
with flat metals (no slit) into the first Brillouin Zone. Interestingly and importantly, it
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Figure 5.2: Dispersion relation of the absorption and the resonant mode for the four
cases of hmetal: (a) 100 nm, (b) 200 nm, (c) 275 nm, and (d) 310 nm. In the upper panel,
the absorption is depicted by the gray scale along with the wavelength corresponding
to the real part of the resonant-mode frequency indicated by the blue and red lines. In
the lower panel, the imaginary part of the angular frequency of the resonant mode is
plotted using the same color as that used for the same branch in the real part. The
frequency was normalized by the speed of the light c in vacuum. It should be noted
that the wavelength is given in the inverted scale (linear in frequency). The dashed
circles indicate the position of the BIC.

can be clearly observed that the BIC is always located at the crossing point of the two
empty lattice bands, which does not move with the change in the grating thickness.
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Therefore, the branch inversion of the BIC that is observed in Fig. 5.2 is understood
to be a result of the movement of the leaky mode associated with the change in the
grating thickness over the BIC point, which is fixed at the crossing of the empty lattice
dispersion.

The appearance of the BIC at the crossing point of the empty lattice bands can
be explained using the SCMT as follows. For the BIC solution, the radiative fields in
the air region become null owing to the nature of the BIC. It can be realized when the
fields inside the slit are null, if the slit is single mode as in the present device. In such
cases, the fields in the dielectric region satisfy the same relation at the slit/waveguide
interface as that of the empty lattice MIM modes, which means that the fields inside the
dielectric region are those of the empty lattice modes when the BIC occurs. It should
be mentioned that, if the slit is not single mode, the null field in the air region does not
mean the null field in the slit and the BIC point can be shifted from the crossing point
of the empty lattice.
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Figure 5.3: Magnified view of the absorption map shown in Fig. 5.2. The dashed circles
and dashed lines indicate the position of the BIC and empty lattice bands, respectively

As another method of understanding the system, we calculated the reflection coeffi-
cient ρdiel for the wave approaching the slit/dielectric interface from the infinitely thick
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Figure 5.4: (a) Schematic showing the reflection coefficient ρdiel at the slit/dielectric
interface for the slit mode. (b) Schematic showing the reflection coefficient ρair at the
slit/air interface for the slit mode. (c) |ρdiel| as a function of kx and the wavelength
depicted in gray scale. The empty lattice bands of the waveguide are superimposed
by the dashed lines. (d) Amplitude (black solid line) and phase (red dashed line) of
ρdiel at kx = 0.185[π/Λ] for which the BIC appears. The blue, green, and orange lines
indicate the value of arg(ρdiel) required to satisfy Eq. 5.1 for the cases of hmetal = 200,
275, and 310 nm, respectively. The solid circle indicates the intersection of these lines
and arg(ρdiel), which gives the FP resonance.

grating as schematically depicted in Fig. 5.4 (a). Figure 5.4 (c) shows the dispersion of
|ρdiel| along with the empty lattice bands (indicated by dashed lines). It can be observed
that the anti-crossing of the bands and the BIC occurs and that the BIC is located at
the crossing of the empty lattice band, which is not affected by the grating. Then let us
elucidate the role of the finite thickness of the grating. Indicated by the black solid line
in Fig. 5.4(d) is arg(ρdiel) as a function of the wavelength for kx = 0.185 [π/Λ], where
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the BIC emerges at λ = 1563 nm. It should be noted that arg(ρdiel) is affected only
by the radiative mode because the BIC mode is not coupled to the slit as mentioned
above. The red dashed line is |ρdiel|. Between the dips in |ρdiel|, which correspond to
the coupled TM0-TM1 mode at approximately 1500 nm and uncoupled TM0 mode at
approximately 1800 nm, arg(ρdiel) varies gradually from 2π to 0. The wavelength of
the BIC λBIC is indicated by the vertical dotted line. Now, let us hypothesize that the
solution of the radiative mode of the entire system with a grating of finite thickness
can be viewed as the Fabry-Perot (FP) resonance for the wave propagating in the slit,
which is given by

arg(ρair) + arg(ρdiel) + 2βslithmetal = 2πm, (5.1)

where arg(ρair) is the phase of the reflection at the slit/air interface (See Fig. 5.4(b)),
βslit is the propagation constant in the slit, and m is an integer. The blue, green, and
orange lines in Fig. 5.4(d) indicate the value of arg(ρdiel) required to satisfy Eq. 5.1 for
hmetal = 200, 275, and 310 nm, respectively. Hence, the point at which the line for each
hmetal crosses arg(ρdiel) (indicated by the black circles) provides the wavelength that
satisfies Eq. 5.1. For hmetal = 200 nm, the wavelength of the crossing is shorter than
λBIC. This corresponds to Fig. 5.3 (b) where the BIC is located on the longer-wavelength
branch. For hmetal = 275 nm, the crossing is located near λBIC, which corresponds to
Fig. 5.3 (c). Then, for hmetal = 310 nm, the wavelength of the crossing is greater than
λBIC, which corresponds to Fig. 5.3 (d). It can be observed that the wavelength of the
radiative mode in Fig. 5.3 at kx = 0.185 [π/Λ], where the BIC emerges, is predicted
very well, which justifies the hypothesis, and that the thickness hmetal of the grating
can be said to determine the wavelength that satisfies the FP condition in the slit for
the radiative (non-BIC) solution. It should be mentioned again that the discussions
presented here are valid for the case in which the wave propagation in the slit is in the
single mode or only one mode is dominating.

5.4.2 Temporal coupled-mode theory appropriate for the present
system

The response of the present device can be analyzed using TCMT in Chapter 2 for
the two resonators corresponding to the empty-lattice TM0 and TM1 modes with the
internal and external coupling. Though the framework is essentially the same as that
in a previous chapter, it is necessary to modify Ω in order to keep the BIC solutions
fixed at the degenerate point of the two basis modes. As presented below, the matrix
Ω that satisfies this requirement is,

Ω =

 ω̃1 ≡ ω1 + pα
√

γe1
γe2

α

α ω̃2 ≡ ω2 + pα
√

γe2
γe1

 , (5.2)

where ω1,2 and γe1,2 are the eigenfrequency and external (radiation) loss of modes 1 or
2, respectively; α is the internal coupling; and p is the phase difference between the
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two modes for coupling to the external field. Here, p has the value of either +1 or
−1; p = +1 if the two modes are in phase (no phase difference), and p = −1 if the
two modes are out of phase (π phase difference) [101]. The modification comprises the

addition of pα
√

γe1
γe2

and pα
√

γe2
γe1

to the diagonal terms of Ω. The matrices

Γe =

(
γe1 γ0

γ0 γe2

)
, DT = eiϕd

( √
2γe1

p
√

2γe2

)
, (5.3)

where γ0 = p
√
γe1γe2 represents the radiation coupling and ϕd is an arbitrary phase,

are the same as before, and the matrix

Γi =

(
γi1 0
0 γi2

)
, (5.4)

where γi1,2 is the internal loss (in the metal in the present device) of each mode, was
included in Eq. 2.17 for generalization. The expression for D and the off-diagonal terms
of Γe are derived using the time-reversal symmetry and energy conservation law [25].

For the time dependence of e−iωt, the eigenfrequencies of the resonant modes are
obtained [24,90,94,102] from Eq. 2.17 as the solution of

{ω − (ω̃1 − iγt1)}{ω − (ω̃2 − iγt2)}+ (ipα +
√
γe1γe2)2 = 0 (5.5)

where γt1,2 = γi1,2 + γe1,2. The condition for one of the solutions being the BIC can be
derived from Eq. 5.5, by assuming that one of the solutions is purely real [101]. On
assuming γi1 = γi2 = 0 for simplicity, we obtain the condition

ω1 = ω2 ≡ ω0. (5.6)

Then, the solutions are

ω =

{
ω0 + pα(

√
γe1
γe2

+
√

γe2
γe1

)− i(γe1 + γe2)

ω0

. (5.7)

The first solution is radiative (leaky) with the loss γe1 + γe2, and the second solution is
the BIC, which has no imaginary part. Thus, the formulation is confirmed to provide the
BIC that always lies at the crossing point of the original eigenfrequencies, ω0 = ω1 = ω2.

5.4.3 Prediction of BIC-branch in terms of pα

In the preceding subsections, we showed that the BIC appears at the crossing point
of the empty-lattice modes. In our previous report [101], we showed that the branch
at which the BIC appears is determined by the sign of pα. Herein, we show that the
aforementioned rule still holds. In the TCMT analysis, as observed in Eq. 5.7, the
branches at which the BIC appears are determined as follows:

pα

{
> 0 (lower branch)
< 0 (upper branch)

, (5.8)

59



as in the case without modification [101]. Therefore, we check sign(pα) for the cases of
hmetal < 275 nm and hmetal > 275 nm, where the BIC appears at the upper and lower
branches, respectively, as shown in Fig. 5.2 or Fig. 5.3.

The evaluation of sign{pα} was conducted in the same manner as before [101],
i. e. by expanding the electromagnetic fields inside the dielectric waveguide of the
empty-lattice waveguide modes. In the present case, the dominant modes are the
right-propagating TM0 and the left propagating TM1 modes near the anti-crossing
point. Sign(p) and sign(α) are then evaluated from the complex amplitude of each
mode obtained in the expansion. Sign(p) is evaluated directly from the phase difference
between the complex amplitudes. Figure 5.5(a) and (b) show the calculated phase
difference at kx = 0.1839[π/Λ], which is slightly displaced from the point at which the
BIC emerges, for hmetal = 200 nm and 310 nm, respectively. At approximately λ =
1550nm, the phase is disturbed because the coupled resonance is excited. However, the
phase converges to 0 far away from the resonant wavelength in both cases. Therefore,
it can be concluded that p = 1 in both cases.

Sign(α) is evaluated based on the phase difference between the amplitudes at the
two solutions of the coupled resonant mode with the upper (ω+) and lower (ω−) fre-
quencies, as the coupled mode oscillation is viewed as the bonding or anti-bonding
solution depending on the sign of the coupling constant α. The phase difference for
hmetal = 200 nm and 310 nm are summarized in Table. 5.1. For hmetal = 200 nm, the
two modes are in phase (out of phase) at ω+ (ω−), which corresponds to α > 0, while
for hmetal = 310 nm, the two modes are out of phase (in phase) at ω+ (ω−), which corre-
sponds to α < 0. Therefore, we can conclude that pα is positive for hmetal = 200 nm and
negative for hmetal = 310 nm, which confirms that the criteria of Eq. 5.8 are satisfied.
We can also say that the sign(pα) is controlled by the grating thickness.
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(a) hmetal = 200 nm (b) hmetal = 310 nm
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Figure 5.5: Phase difference between the amplitudes of the two waveguide modes near
the anti-crossing (kx = 0.1839[π/Λ]) as a function of wavelength. (a) hmetal = 200 nm
and (b) hmetal = 310 nm.
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Table 5.1: Phase difference between the amplitudes of the two waveguide modes near
the anti-crossing (kx = 0.1839[π/Λ]) at the two coupled resonant modes ω+ and ω−.
(a) hmetal = 200 nm and (b) hmetal = 310 nm.

[arg(aTM1-)− arg(aTM0+)](w+) [arg(aTM1-) − arg(aTM0+)](w−) sign(a) p

5.982×10-3p 1.001p + 1

(a) Phase difference for hmetal = 200 nm

(b) Phase difference for hmetal = 310 nm

[arg(aTM1-)− arg(aTM0+)](w+) [arg(aTM1-)− arg(aTM0+)](w−) sign(a) p

1.001p -6.063×10-2p − 1

5.5 Variation of the anti-crossing gap and the emer-

gence of exceptional point

5.5.1 Grating thickness dependence of the anti-crossing gap

In this section, we discuss the second feature of the device, namely the variation of the
anti-crossing gap with the change of the grating thickness, hmetal. As seen in Eq. 5.7,
the difference in the real part of the angular frequency Re{∆ω} between the non-BIC
(radiating) and the BIC solutions is

Re{∆ω} =
pα

2
(

√
γe1
γe2

+

√
γe2
γe1

). (5.9)

Here, as mentioned above, p = 1 and sign(α) depends on hmetal. Although the radiation
losses, γe1 and γe2, are not exactly equal in our device, they are not much different, which
can be observed from the linewidth of the two bright lines in Fig. 5.2. Therefore, we
evaluate the value pα using an approximated relation pα = ∆ω, where ∆ω is evaluated
based on the real part of the resonant-mode frequencies at kx = 0.185 [π/Λ], where
the BIC appears. The result is shown in Fig. 5.6, where sign(α) was selected according
to the result presented in Sec. 5.4.3. The value of pα decreases as hmetal increases and
crosses zero at approximately hmetal = 275 nm.
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Figure 5.6: Value of pα as a function of the grating thickness calculated using Eq. 5.9.
Here p = 1 and the sign(α) were selected in accordance with the result obtained in Sec.
4.3.

5.5.2 Emergence of the exceptional point

Recently, with the same type of equation of motion as the TCMT (Eq. 2.17) used above,
the physics and the application of EPs in optics and photonics have been intensively
investigated [9,103]. Hence, it is interesting to consider the possibility of the realization
of EP in the device considered here. The eigenfrequencies of the system are obtained
[24,102] as the solution of Eq. 5.5.

ω =
(ω̃1 + ω̃2)− i(γt1 + γt2)±

√
D

2
, (5.10)

where

D ≡ {(ω̃1 − ω̃2)2 − (γt1 − γt2)2 + 4(α2 − γ2
0)} − i2{(ω̃1 − ω̃2)(γt1 − γt2) + 4αγ0}. (5.11)

The EP, where both the real and imaginary parts of the eigenfrequency coalesce, is
realized when D becomes zero, i.e., Re{D} = Im{D} = 0. Im{D} = 0 presents the
following condition.

ω1 − ω2 = − 4αγ0

γt1 − γt2
− pα

(√
γe1
γe2

+

√
γe2
γe1

)
, (5.12)

for which

Re{D} =
{(γt1 − γt2)2 + 4γ2

0}{4α2 − (γt1 − γt2)2}
(γt1 − γt2)2

(5.13)
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becomes zero when 4α2 = (γt1 − γt2)2. The condition for the EP is then expressed as

|γt1 − γt2| = 2|α|, (5.14)

ω1 − ω2 = ±2γ0 − pα(

√
γe1
γe2

+

√
γe2
γe1

) = p
√
γe1γe2

{
±2− α

(
1

γe2
− 1

γe1

)}
. (5.15)

In our device, ω1 − ω2 in Eqs. 5.12 or 5.15 are selected based on kx. The effect of the
radiation loss γe1,2 and the radiation coupling γ0 appears only in the form of the shift
of the conditions.
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Figure 5.7: Real (upper) and imaginary (lower) parts of the coupled resonant modes
for (a)hmetal = 269.5 nm and (b)hmetal = 286.5 nm. The real part is given by the
corresponding wavelength . For each hmetal, there exists a point at which the real and
imaginary parts coalesce, which indicates the EP.

Let us neglect the internal loss for the purpose of simplicity, i. e. γt1,2 = γe1,2.
Although it is difficult to evaluate precisely the values of γe1,2 in the specific structure,
|α| can be tuned by changing the grating thickness hmetal as shown in Fig. 5.6. Therefore,
we can identify a case where the EP emerges on varying hmetal. In Fig. 5.7, we show
the dispersion relation of the resonant mode frequency for hmetal = 269.5 nm and 286.5
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nm, for which the coalescence of both the real and imaginary parts are observed at
kx = 0.217[π/Λ] and kx = 0.140[π/Λ], respectively, thus demonstrating that the EPs
are generated as expected. Although not demonstrated here, the EP does not appear
for other hmetal. For the two cases of hmetal for which the EP is realized, α is evaluated
based on Fig. 5.6, and the values of γe1,2 are then estimated by the fitting of the
kx-dependent eigenfrequencies of the TCMT to those of the SCMT. The results are
α/c = 0.01 [1/µm], γe1/c = 0.05 [1/µm], and γe2/c = 0.07 [1/µm] for hmetal = 269.5 nm
and α = −0.02/c [1/µm], γe1/c = 0.06 [1/µm], and γe2/c = 0.1 [1/µm] for hmetal = 286.5
nm, where c is the speed of light in vacuum. Therefore, in the present case, Eq. 5.15 is
approximated as

ω1 − ω2 ' ±2γ0, (5.16)

which causes the EPs to appear at kx in a manner nearly symmetrical with respect
to the crossing point of the empty lattice modes, and hence, the BIC point, which is
consistent with Fig. 5.7.

Eq. 5.13 suggests that the eigenfrequencies have a split real part and degenerated
imaginary part for 4α2 > (γt1 − γt2)2, which corresponds to the effective (passive)
PT symmetric case and a split imaginary part and degenerated real part for 4α2 <
(γt1 − γt2)2, which corresponds to the broken (effective) PT case [116], provided that
Eq. 5.12 is satisfied. For the present device, we can observe the latter case for 269.5
nm < hmetal < 286.5 nm at a point between 0.217 [π/Λ] > kx > 0.140 [π/Λ] and the
former case outside these regions. Moreover, the structure presented here is suitable for
the introduction of the gain as the pumping can be performed either optically through
the slit or electrically through the grating and back metal. In either case of with or
without gain, the tunability of the parameter α in our structure is expected to be useful
in the control of the device. Lastly, we highlight that the control of α, which is realized
in this study by controlling the grating thickness, can be realized using non-built-in
methods. As discussed in Sec. 5.4.1, the dependence of the resonant mode of the entire
system, and hence, α, on the grating thickness can be attributed to the change in the
FP resonance in the slit. Therefore, we can expect that α can be varied by filling the
slit with a dielectric or applying a voltage between the neighboring metal bars of the
grating when the slit is filled with an electro-optical material. The latter method, if
realized, would be particularly useful.

5.6 Summary

In this paper, we reported the emergence of the FW-BIC and EP in a dielectric waveg-
uide comprising a metal grating, while focusing on their dependence on the grating
thickness. For any grating thickness, the BIC emerges at one of the branches near the
anti-crossing formed from the two waveguide modes TM0 and TM1 with internal (near
field) and external (radiation) coupling via the slit of the grating. It was determined
that, with a change in the thickness, the coupled modes move with the varying anti-
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crossing gap. The gap diminishes at a certain thickness, and the branch at which the
BIC appears flips. The change in the anti-crossing gap corresponds to the change in
the internal coupling constant.

We showed that, when the slit is narrow to support single-mode propagation, the
branch and position of the FW-BIC is determined by a simple rule: the FW-BIC
appears at the crossing point between the two waveguide modes in the empty-lattice
(zero slit-width) limit. In addition, these results are consistent with the criteria for the
branch at which the BIC appears based on the phase of each basis mode presented in
our previous paper. Owing to the dependence of the internal coupling on the grating
thickness, we can find the cases in which the EP appears in the same device based
only on the selection of the grating thickness, consistently with the prediction. As
the dependence of the anti-crossing gap on the grating thickness can be understood in
terms of the FP resonance in the slit, tuning could be performed using other methods
such as the voltage applied to the metal grating with the slit filled by an electro-optical
material. The BIC and EP in the dielectric waveguide comprising a metal grating,
particularly with such tunability, are expected to result in the development of functional
and high-performance optical and photonic devices as well as to become a platform for
the fundamental research of non-Hermitian systems.
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Chapter 6

Summary and conclusion of this
work

In conclusion, we have investigated the peculiar optical responses of metal grating
theoretically. As the system, we considered the grating is placed on dielectric substrate
or multimode waveguide, which are important for the applications. The summary of
work is shown as follows.

In chapter 3, the optical properties of a metal grating on the high refractive in-
dex substrate were investigated. Especially, the difference of the optical response with
or without the presence of the substrate was discussed. The peak was observed in the
transmittance and electric field enhancement spectra, which corresponded to the bound
mode of the system. Furthermore, the bound mode corresponds to FP resonant condi-
tion of the slit. As a most distinct feature of the metal grating on the substrate, the
bound mode disappears when the grating is thin and corresponding peak of enhance-
ment and transmittance also disappears.

In chapter 4 and 5, the peculiar phenomena were observed on the composite struc-
ture; metal grating placed on the multi-mode waveguide system were discussed. In this
structure, the BIC was observed. The feature of the BIC observed in this structure is
that the BIC lies on one of the anti-crossed branches, and the branch on which the BIC
lies is different depending on the polarization.

In addition to the polarization, the BIC branch changed depending on the grating
thickness. By the TCMT, the branch selection effect was explained by the two factors;
phase difference of the internal coupling of two modes and the difference of phase change
of two modes in coupling to the external field, which we denoted as pα, determine the
branch of the BIC.

Finally, the EP was observed at a certain grating thickness. Using the TCMT,
the EP appeared because the difference of the (uncoupled) radiation losses of the two
modes became comparable to the internal coupling coefficient of two modes. Similar to
chapter 3, the FP condition of the slit corresponded to the variation of the anti-crossed
gap level.

As a whole, the theoretical study to elucidate the mechanisms of the peculiar optical
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responses of metal grating was greatly advanced. The behavior of anomalies and other
peculiar phenomena such as the BIC and EP were explained very reasonably and simply
by using SCMT and TCMT. We note that the EP on the grating/dielectric waveguide
structure was discovered for the first time in this work.

The findings of this work may pave the new application using metal grating. First,
the band gap level of the anti-crossed band varied depending on the grating thickness,
and eventually, the branch on which BIC lies inverted. The dispersion of the anti-
crossed bands corresponded to the FP condition of the slit. This implies that the band
gap level or the branch of the BIC could be changed by filling some dielectric material
or by changing the dielectric constant of the material placed within the slit by applying
a voltage to the grating instead of varying the grating thickness. This may realize the
sensing device or novel optical device that can be controlled by voltage. The advantage
of the voltage control that it enables very fast modulation. Furthermore, using a similar
way, the EP could be controlled. Although there has not been considered yet what kind
of practical application is realized on this structure using EP, some practical application
such as unidirectional reflection was proposed using EP recently. With the development
of the study of the EP, the new application on this simple system might be realized.
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[34] S. Collin, G. Vincent, R. Häıdar, N. Bardou, S. Rommeluere, and J.-L. Pelouard,
“Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic
membrane,” Phys. Rev. Lett. 104, 027401 (2010).
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2013 Bloch surface eigenstates within the radiation continuum Light: Science &
Applications 2 (7) e84

[65] Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D and Soljačić
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