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Abstract

We consider a model with one down-type SU(2)L singlet vector-like quark (VLQ).
The VLQ is defined as a new quark whose left- and right-handed components belong
to the same representation of the gauge symmetry. In other words, both the left-
and right-handed components of VLQ feel the same interactions unlike the standard
model (SM) quarks. The VLQs are introduced in many new physics models, such as
the universal see-saw model which explains hierarchical structure of the SM quark
mass spectrum.

The recent lower limits for the VLQmass from ATLAS and CMS experiments are
about 1 TeV, ten times larger than the electroweak scale ∼100 GeV. The standard
model effective field theory (SMEFT) is a powerful tool for to investigation of such
a heavy particle. We investigate the model with VLQ on the basis of the SMEFT.

If we add the VLQs to the SM particle content, flavor-changing-neutral currents
(FCNCs) among the SM quarks are induced at the tree level. The tree level FCNCs
lead to new contributions to the observables of FCNC processes in the neutral B
meson systems. In order to clarify constraints on the parameters of VLQ, we evaluate
the FCNC processes with respect to b→ s transition in the neutral Bd,s meson
system; Bs

0-Bs
0 mixing, Bs

0→ µ+µ� and Bd
0→Xsγ. We construct SMEFT from the

model with VLQ up to the one-loop level in order to analyze these processes.
We find that the constraint on the model parameters from the branching ratio

of Bs
0→ µ+µ� is more stringent than that from the branching ratio of Bd

0→Xsγ.
Although we focused on the FCNC processes related to the b→ s transition, the
SMEFT constructed in this thesis can be applied to both b→d and s→d transitions.
In addition, the Wilson coefficient for the radiative transition b→sγ also contributes
to the CP asymmetry in the radiative decays, the inclusive and the exclusive b→
sl+l� processes.
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Chapter 1
Introduction

It is known that there are six quarks and six leptons in the standard model (SM)
of particle physics. The SM describes three fundamental interactions, strong, weak
and electromagnetic interactions. These interactions are introduced through a gauge
symmetry, SU(3)c× SU(2)L× U(1)Y . The SM particles are representations of the
gauge group SU(3)c× SU(2)L×U(1)Y . Left-handed quarks are triplet 3 of SU(3)c,
doublet 2 of SU(2)L and have U(1)Y charge 1

3
. Right-handed quarks are triplet 3 of

SU(3)c, singlet 1 of SU(2)L and have U(1)Y charge 4

3
for up-type quarks or �2

3
for

down-type quarks. The assignment of SU(2)L for the SM quarks is determined so
that the weak interaction acts only the left-handed quarks.

In the SM, interactions among the different flavors are controlled by two unitary
matrices, Cabibbo–Kobayashi–Maskawa (CKM) matrix [1, 2, 3] for the quarks and
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [4, 5] for the leptons. In other
words, the flavor mixing of quarks and leptons are governed by the CKM and PMNS
matrices in the SM, respectively. Characteristics of the quark sector in the SM are,

� Flavor-changing neutral currents (FCNCs) are suppressed by Glashow–Ili-
opoulos–Maiani (GIM) mechanism [6].

� CP violation is induced by one Dirac CP phase in the CKM matrix.

The FCNCs mean interactions which change species of quarks but do not change
the electromagnetic charge of the quarks. For example, a transition from b-quark to
s-quark (b→ s) is the FCNC process. Such interactions do not exist in the SM, and
thus FCNCs are induced at the one-loop level through the charged current in the
SM. This is one of the aspects of the GIM mechanism and leads to the suppression
of the FCNC processes in the SM. For example, we show a FCNC process b→ sZ

in the case of the SM in the left figure of Fig.1.1. The characteristics such as the
GIM mechanism are verified by precise measurements in B and K meson systems
and consistent with current experimental data. Especially the verification of the
unitarity of the CKM matrix is one of the most successful aspects of the SM [7, 8].
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Figure 1.1. Left figure : Flavor changing neutral current (FCNC) induced at the one-
loop level through the charged current. Right figure : FCNC among the SM quarks at the
tree level.

Although predictions of the SM are consistent with almost all experimental
results, there are several phenomena which the SM cannot explain. For example,
the SM cannot predict measured angles of the flavor mixing. These angles are free
parameters in the SM. The measured angles of the flavor mixing indicate a small
mixing in the quark sector while a large mixing in the lepton sector [7, 8, 9]. This
implies that there is some mechanism which leads to the characteristic pattern of
the flavor mixing behind the SM.

There are various models beyond the SM in order to explain the problems in the
SM. For instance, we proposed the models which clarify the flavor structures of the
quarks and leptons by using simplified mass matrices [10], or the models with flavor
symmetries which lead to the pattern of the flavor mixing [11].

Many new physics (NP) models predict existence of new particles which are
not included in the SM particle content. We focus on so-called “vector-like quarks”
(VLQs), as such the new particles. The VLQs are introduced in many NP models.
One of the NP models with VLQs is the universal see-saw model [12, 13, 14, 15, 16,
17, 18] which explain the hierarchical structure of the SM quark mass spectrum. It
is important to confirm the existence of the VLQs in order to verify the NP models.

The VLQs are defined as new quarks whose left- and right-handed components
belong to the same representation of the gauge symmetry. Therefore, both the
left- and right-handed components of VLQs feel the same interactions unlike the
SM quarks. As we will see in Sec.2.2, this feature leads to mass terms of the VLQs
without Yukawa interactions of the SM Higgs doublets and hence the masses of the
VLQs are independent of the energy scale of electroweak (EW) symmetry breaking.

The direct search of the VLQs are performed by the ATLAS [19]-[34] and CMS
[35]-[52] experiments at the Large Hadron Collider (LHC). Assuming VLQs are
coupled with only third generation quarks, recent lower limits for a mass of down-
type SU(2)L singlet VLQ are obtained as 1.22 TeV by ATLAS collaboration [34] and
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1.17 TeV by CMS collaboration [49] at 95% confidence level. One finds that these
limits for the VLQ mass are about one order larger than the EW scale (∼100 GeV).

If we add the VLQs to the SM particle content, new features arise in the model:

� FCNCs among the SM quarks are induced at the tree level (right figure in
Fig.1.1).

� The CKM matrix is not a unitary matrix.

These features mean that the GIM mechanism does not work in the model with
VLQs. Since the SM contributions to the FCNC processes are suppressed by the
GIM mechanism, it is expected that FCNC processes in the B and K meson systems
give stringent constraints on model with VLQs. We investigate the constraints on
the parameters of the VLQ from the FCNC processes in the neutral Bd,s meson
systems; Bs

0-Bs
0 mixing, Bs

0→ µ+µ� and Bd
0→Xsγ. The Bd

0 meson consists of the
b-quark and anti-d-quark while Bs

0 meson consists of the b-quark and anti-s-quark.
Those processes correspond to the b→ s transition at the quark level. One of the
observables related to the Bs

0-Bs
0 mixing is the mass difference of the neutral Bs

meson, ∆mBs. The ∆mBs is used in order to determine elements of the CKM matrix.
The Bs

0→ µ+µ� process is induced by the FCNC with the Z boson as shown in
Fig.1.1. The branching ratio is measured by the LHCb and CMS experiments [53,
54, 55, 56] at the LHC and its recent value is (3.0± 0.6�0.2

+0.3)× 10�9 reported by the
LHCb experiment [56]. The inclusive radiative decay Bd

0→Xsγ process corresponds
to the b→sγ transition at the quark level. The branching ratio is measured at BaBar
[57, 58, 59], Belle [60, 61, 62] and CLEO [63] experiments, and the averaged value of
these experimental results are (3.32±0.15)×10�4 [64]. We note that these branching
ratios are actually much smaller than the charged current procrss, Br[Bd

0→Xce+νe]=

(10.1± 0.4)× 10�2 [65].

If a new heavy particle exists, contributions from the new particle to the observ-
ables are measured as deviations from values predicted by the SM. The searches
for the deviations from the SM predictions are referred to as indirect searches.
Since we do not need to know kinematical information of the new heavy particle
in the analysis of the indirect searches, it is useful to describe the models without
dynamical degrees of freedom of the new heavy particle. This description is called
standard model effective field theory (SMEFT). The SMEFT is an effective field
theory (EFT) which consists of only the SM particles. There are higher-dimen-
sional operators which are invariant under the gauge symmetry of the SM; SU(3)c×
SU(2)L×U(1)Y . Effects from the new heavy particles are embedded in the higher-
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Figure 1.2. Integrating out a heavy particle Φ. The symbol ψ represents a SM particle.
The set of disk marks means insertion of an effective operator.

dimensional operators. The whole Lagrangian for the SMEFT can be written as [66,
67],

LSMEFT = LSM+
∑

i

[
ci
(5)

ΛNP
Oi
(5)+

ci
(6)

ΛNP
2 Oi

(6)+O

(
1

ΛNP
3

)]
, (1.1)

where Oi
(n) with n> 4 denotes dimension n operators and ΛNP corresponds to a NP

scale, such as the mass of new heavy particles. The term LSM is the SM Lagrangian
including only dimension 4 operators. The coefficients ci

(n) are coupling constants for
dimension n operators and called Wilson coefficients. The effects from the higher-
dimensional operators become small as the dimension of the operators increases
because of the suppression factor Λ4�n. If we impose the lepton number conservation,
the lowest dimension of the higher dimensional operators is six. A first attempt to
construct a complete set of dim.6 operators was given in Ref.[66]. In the following, we
use so-called “Warsaw basis” [67] which contains 59 baryon number conserving oper-
ators. The SMEFT allows us to analyze phenomena independently of NP models.
For instance, some constraints on the Wilson coefficients of the SMEFT from precise
measurements with respect to phenomena at the EW scale, namely electroweak
precision tests (EWPT) [68, 69, 70, 71, 72, 73, 74].

Once we fix a specific NP model with new heavy particles, the Wilson coefficents
can be expressed in terms of parameters of the NP model by integrating out the
new heavy particles. Figure.1.2 shows the procedure “integrating out”. The symbol
Φ represents a heavy particle which is integrated out while the symbol ψ represents
a SM particle. The set of disk marks means insertion of an effective operator. The
procedure “integrating out” is performed around the mass scale of the new heavy
particle. The mass scale of the new heavy particle is generally much higher than the
EW scale. The difference between the NP scale ΛNP and the EW scale ΛEW gives
rise to corrections which are proportional to ln(ΛNP/ΛEW). Such corrections will be
large in the case of ΛNP≫ΛEW. We can take account of the logarithmic corrections
by solving renormalization group (RG) equations for the Wilson coefficients with an
anomalous dimension matrix of the SMEFT [75, 76, 77]. The SMEFT allows us to
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connect observables at different energy scales, such as observables of the B meson
system and the EWPT.

In this thesis, we consider a model with one down-type SU(2)L singlet VLQ as a
simple model to clarify constraints on parameters of the VLQ. We expect that the
VLQ is much heavier than the EW scale because of the constraints from the direct
search at the LHC, and thus we investigate the model on the basis of the SMEFT.
There are rich phenomenology in the model with VLQ, for instance [78, 79, 80,
81]. The analyses of the model with VLQs in terms of the SMEFT were performed
in Refs.[82, 83, 84]. One of the new points of our work [84] is an analysis of the
inclusive radiative Bd

0 meson decay Bd
0→Xsγ on the basis of the SMEFT. We have

to construct SMEFT from the model with VLQ up to the one-loop level in order
to analyze the Bd

0→Xsγ process. We clarify constraints on the parameters of the
VLQ from the Bd

0→Xsγ process in addition to the Bs
0→µ+µ� process. The SMEFT

constructed in this thesis can be applied to other FCNC processes, namely b→ d

and s→d transitions. In addition, the Wilson coefficient for the radiative transition
b→ sγ also contributes to the CP asymmetry in the radiative decays [85, 86, 87],
the inclusive [88, 89] and the exclusive [90, 91, 92] b→ sl+l� processes.

This thesis is organized as follows. In Chap.2 and Chap.3, we give some reviews
as introduction. We briefly summarize the SM and the model with VLQ in Chap.2.
We show the features of the model with VLQ, such as the tree level FCNC and
violation of the CKM matrix. In Chap.3, we give the basic idea of EFT. As a simple
example, we construct an EFT by integrating out heavy SM particles, likeW boson.
We refer that EFT as weak EFT in this thesis.

After these chapters, we present our results based on Ref.[84]. In Chap.4, we con-
struct the SMEFT by integrating out the down-type SU(2)L singlet VLQ. Inserting
a vacuum expectation value into the Higgs field in the derived effective operators of
the SMEFT, we obtain the Lagrangian below the EW scale. The FCNCs and the
violation of the CKM unitarity are expressed in terms of the Wilson coefficients of
the SMEFT. We investigate RG effects for the Wilson coefficients obtained at the
tree level.

In the analysis of the neutral B meson systems, we use the weak EFT. We
present a procedure of matching the model with VLQ in terms of the SMEFT with
the weak EFT in Chap.5. In order to determine Wilson coefficients which we need to
compute the Bd

0→Xsγ process, we calculate the amplitude of the b→ sγ transition.
We carefully investigate the cancellation of the divergence in the b→ sγ amplitudes
since the violation of the CKM unitarity leads new divergence which does not appear
in the SM calculation.
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We give numerical results in Chap.6. We show the dependence of the branching
ratios of the Bs

0→ µ+µ� and the Bd
0→Xsγ processes on the parameters of the

VLQ. We also present parameter regions allowed by the experimental data of the
branching ratios of the Bs

0→µ+µ� and the Bd
0→Xsγ processes. Then, the summary

and discussion are given in Chap.7.
In Appendix.A, we give the derivation of formulae for the observables of the

neutral B meson systems, which are used in Chap.5. Appendix.B is devoted to the
computation of the amplitude for the b→sγ process. Here we focus on the diagrams
which also exist in the SM. We do not use the CKM unitarity in contrast to the SM
calculations.
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Chapter 2

Standard Model and Vector-like Quark

2.1 The Standard Model

In this section, we see the standard model (SM) of the particle physics. It is known
that there are four interactions acting among the elementary particles, namely
strong, weak, electromagnetic interactions and the gravity. The gauge symmetry
SU(3)c× SU(2)L×U(1)Y induces these interactions except the gravity in the SM.
The particle content with the quantum numbers under the SM gauge symmetry
are shown in Table 2.1. There are three generations of the fermions in the SM.
All the generations have the same quantum numbers. In Table 2.1, the symbols
Gµ
a, Wµ

I and Bµ with a=1∼8, I=1,2, 3 represent the SU(3)c gauge boson (gluons),
the SU(2)L gauge bosons and the U(1)Y gauge boson, respectively. The symbol
φ is the SU(2)L Higgs doublet. The U(1)Y hypercharge Y is written in the fourth
row of the Table 2.1 and relates to the electromagnetic charge Q as,

Q = I3
W +

Y
2
, (2.1)

where I3W denotes the third component of the weak isospin. The SM quark Lag-
rangian which is invariant under the SM gauge symmetry is given as,

LSM
q = LSM,K

q +LSM,Y
q , (2.2)

with

LSM,K
q = qL

ī iγµDLµ
q qL

i + uR
i iγµDRµ

u uR
i + dR

ī iγµDRµ
d dR

i , (2.3)

LSM,Y
q = �[yd

ijqL
īφdR

j + yu
ijqL

ī φ̃uR
j +h.c.] . (2.4)
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Particles
Fermions Gauge Bosons Scalar

qL
i =(uL

i , dL
i ) uR

i dR
i lL

i =(νL
i , eL

i ) eR
i Gµ

a Wµ
I Bµ φ

SU(3)c 3 3 3 1 1 8 1 1 1
SU(2)L 2 1 1 2 1 1 3 1 2
U(1)Y +1/3 +4/3 �2/3 �1 �2 0 0 0 1

Table 2.1. The particle content with quantum numbers in the SM. The index i=1, 2, 3

denotes generation of the fermions. The symbols Gµ
a, Wµ

I and Bµ with a=1∼ 8, I =1, 2,

3 represent SU(3)c gauge boson (gluons), SU(2)L gauge bosons and U(1)Y gauge boson,
respectively. The symbol φ is SU(2)L Higgs doublet.

The gauge interactions come from the covariant derivatives DL
q and DR

u,d in the
kinetic terms Eq.(2.3):

DLµ
q = ∂µ+ ig ′

YqL
2
Bµ+ ig

τ I

2
Wµ

I+ igs
λa

2
Gµ
a , (2.5)

DRµ
u = ∂µ+ ig ′

YuR
2
Bµ+ igs

λa

2
Gµ
a , (2.6)

DRµ
d = ∂µ+ ig ′

YuR
2
Bµ+ igs

λa

2
Gµ
a , (2.7)

where YqL, YuR and YdR denote the U(1)Y hypercharge of the qL, uR and dR respect-
ively. The 2× 2 matrices τ I with I =1, 2, 3 are called Pauli matrices and the 3× 3
matrices λa with a= 1∼ 8 are called Gell-mann matrices. The coupling constants
gs, g and g ′ correspond to the gauge couplings for the SU(3)c, SU(2)L and U(1)Y ,
respectively. The field φ̃ in Eq.(2.4) is defined by φ̃= iτ 2φ∗.

The subscript i in Eqs.(2.3) and (2.4) represents the generations of the quarks;
i= 1, 2, 3. We can see from the Eqs.(2.3) and (2.4) that the different generations
are mixed by the Yukawa interactions in Eq.(2.4) but not mixed by the gauge
interactions in Eq.(2.3). This basis is referred to as interaction basis or weak basis.

In Eq.(2.4), the both Yukawa coupling matrix yd and yu are general complex
matrix. One can take a basis where one of the Yukawa coupling matrices is real
diagonal without loss of generality. Here we adopt a real diagonal basis of the up-
type Yukawa coupling yu. This can be done by introducing the following unitary
transformtaions,

⎧
⎨

⎩
qL
i =UqL

ijqL
0j

uR
i =UuR

ij uR
0j

, (2.8)

where the 3× 3 unitary matrices UqL and UuR diagonalize the Yukawa coupling yu:

[UqL
† yuUuR]klqL

0kφ̃uR
0l ≡ Yu

kqL
0kφ̃uR

0k , (2.9)
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with Yuk≡diag[Yu, Yc, Yt]. The unitary transformtaions Eq.(2.8) affect the down-type
Yukawa interaction yd

ijqL
īφdR

j , but the modification can be absorbed into the Yukawa
coupling yd as,

yd
ijqL

īφdR
j = [UqL

† yd]kjqL
0kφdR

j ≡ yd
′kjqL

0kφdR
j . (2.10)

Therefore, we can take the basis where the Yukawa coupling of the up-type quarks is
real diagonal while that of the down-type quarks is general complex matrix without
loss of generality. We note that the kinetic terms in Eq.(2.3) do not change under
the transformations Eq.(2.8). The unitary transformation which do not change the
gauge interactions, such as the transformation Eq.(2.8), is called weak basis trans-
formation. In the following, we simply take the Yukawa coupling yu in Eq.(2.4) as
a real diagonal matrix, that is yu

ij→ yu
iδij.

2.1.1 Quark masses
We can see from the Table 2.1 that the left-handed fermions have different quantum
numbers from the right-handed fermions. This assignment of the quantum numbers
forbids mass terms of the SM fermions, like muūLuR, because of the electroweak
(EW) gauge symmetry SU(2)L × U(1)Y . In the SM, the Yukawa interactions in
Eq.(2.4) lead to the mass of the SM fermions. The EW gauge symmetry SU(2)L×
U(1)Y is broken down to the electromagnetic (EM) gauge symmetry U(1)EM by a
vacuum expectation value (VEV) v of the Higgs doublet φ,

φ → 1

2
√
(
0
v

)
. (2.11)

The Yukawa interactions become mass terms of the SM quarks by inserting the VEV
into the Higgs doublet φ:

LSM,Y
q → �[md

ijdL
īdR

j +Mu
iuL

ī uR
i +h.c.] , (2.12)

where the 3× 3 mass matrices md and Mu are defiend as,

md
ij ≡ v

2
√ yd

ij , (2.13)

Mu
i ≡ v

2
√ yu

i . (2.14)

These mass matrix md is generally non-diagonal complex matrix. We can obtain the
physical quark masses by diagonalizing md. We consider a bi-unitry transformation
of the quark fileds with unitary matrices KdL and KdR:

{
dL
i =KdL

imdL
′m

dR
i =KdR

imdR
′ m . (2.15)

The unitary matrices in Eq.(2.15) diagonalize the mass matrix md as,

KdL
† mdKdR = diag[md,ms,mb] ≡ Md , (2.16)
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wheremd,s,b are the physical quark masses. The quark mass terms Eq.(2.12) become,

LSM,Y
q → �

[
Md

id ′L
i dR
′ i+Mu

iuL
i uR

i +h.c.
]
. (2.17)

The basis where the quark mass matrices are diagonal is called mass basis.

2.1.2 Charged current and CKM matrix
In contrast to the weak basis transformation Eq.(2.8), the unitary transformations
in Eq.(2.15) change the gauge interactions in the kinetic terms Eq.(2.3). This is
because the left-handed down-type quarks in the quark doublet qL transform under
the transformation in Eq.(2.15) while the left-handed up-type quarks remain as they
are. Here we focus on the gauge interactions of the SU(2)L gauge bosons Wµ

1 and
Wµ

2 in the kinetic term of SU(2)L doublet quarks qL. After the transformations in
Eq.(2.15), these gauge interactions become,

qL
ī iγµDLµ

q qL
i ⊃ �g

2

(
uL
i dL

ī
)
γµ

(
0 Wµ

1� iWµ
2

Wµ
1+ iWµ

2 0

)(
uL
i

dL
i

)

= � g

2
√ [uL

i γµKdL
imdL

′mWµ
++ dL

′mKdL
†miγµuL

iWµ
�] , (2.18)

where the charged gauge boson W± is defined as,

Wµ
± ≡ 1

2
√ (Wµ

1∓ iWµ
2) . (2.19)

In the mass basis of the quarks, the different generations of the quarks are mixed by
the gauge interaction of the W boson. The mixing matrix KdL in Eq.(2.18) is called
Cabibbo–Kobayashi–Maskawa (CKM) matrix,

VCKM ≡ KdL . (2.20)

Since the CKM matrix is a unitary matrix, the CKM matrix satisfies the relations,
∑

i=u,c,t

VCKM
im∗ VCKM

in = δmn , (2.21)

∑

m=d,s,b

VCKM
im VCKM

jm∗ = δij . (2.22)

The quark mass terms Eq.(2.17) is invariant under rephasing of the quark fields,
{
dL
′m→ eiφdL

m
dL
′m

dR
′ m→ eiφdR

m
dR
′ m , and

⎧
⎨

⎩
uL
i → eiφuL

i
uL
i

uR
i → eiφuR

i
uR
i
, (2.23)

and hence some phases of the CKM matrix are absorbed into the quark fields.
Taking account of the rephasing and the unitarity relations Eqs.(2.21) and (2.22),
the number of degree of freedom in the CKM matrix is,

Mixing angle :
ng(ng� 1)

2
, (2.24)

Physical phase :
(ng� 2)(ng� 1)

2
, (2.25)
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where ng is the number of generations of quarks, that is ng=3 in the SM. Thus the
CKM matrix in the SM has three mixing angles and one physical phase.

2.1.3 Neutral currents

Next we focus on the gauge interactions of the SU(2)L gauge bosons Wµ
3 and the

U(1)Y gauge boson Bµ. Taking account of the transformations in Eq.(2.15), these
gauge interactions become,

LSM,K
q ⊃ �1

2

(
uL
i dL

ī
)
γµ

(
gWµ

3+ g ′YqLBµ 0

0 �gWµ
3+ g ′YqLBµ

)(
uL
i

dL
i

)

�g
′

2
[YuRuR

i γµuR
i +YdRdR

i γµdR
i ]Bµ

= � g
cw

[
uīγµ

(
1
2
L�Qusw

2

)
ui+ d ′mγµ

(
�1
2
L�Qdsw

2

)
d ′m

]
Zµ

�e[Quuīγµui+Qdd ′
mγµd ′m]Aµ , (2.26)

where cw= cosθw and sw= sinθw with the Weinberg angle θw. The symbol Zµ is the
Z boson while Aµ denotes the photon field, which are defined as

(
Wµ

3

Bµ

)
≡
(

cw sw
�sw cw

)(
Zµ
Aµ

)
. (2.27)

The electromagnetic charge e is related to the gauge couplings g and g ′:

e ≡ gg ′

g2+ g ′2
√ = gsw = g ′cw . (2.28)

One of the features in the SM is that the different generations (flavors) of the quarks
are not mixed by the Z and photon interactions Eq.(2.26). In other words, there
is no flavor changing neutral current (FCNC) at the tree level and the FCNCs are
induced by loop diagrams in the SM. This is one of the aspects of the Glashow–Ili-
opoulos–Maiani (GIM) mechanism [6].

2.2 Model with Vector-like Quark

We are going to investigate the model with VLQ in terms of the full theory. We
consider a model which contains one SU(2)L singlet down-type VLQ denoted as d4.
The representation of the VLQ under SU(3)c×SU(2)L×U(1)Y is,

dL,R
4 :

(
3,1,�2

3

)
. (2.29)

The most general Lagrangian for the VLQ is

LVLQ = dL
4̄ iγµDdR

µ dL
4+ dR

4̄ iγµDdR
µ dR

4

�[ydi4qLīφdR4 +MVLQ
44 dL

4̄dR
4 +MVLQ

4j dL
4̄dR

j +h.c.] , (2.30)
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where the covariant derivative is the same as that of the SM right-handed down-type
quarks. The VLQ d4 has the mass term without the Yukawa interaction through the
SU(2)L Higgs doublet since the representation of the left- and right-handed VLQ
is the same. In the present section, the indices i, j and k denote the generation of
SM quarks (i, j , k=1∼3) and indices α, β and γ represent all the quarks including
VLQ (α, β , γ=1∼ 4).

2.2.1 Diagonalization of Mass Matrix

We consider the steps of the diagonalization of the down-type quark mass matrix.
Here we take the up-type quark mass matrix diagonal. A 4× 4 mass matrix which
includes both the SM down-type quarks and the VLQ d4 is given as,

MD
(0) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vyd
11

2
√ vyd

12

2
√ vyd

13

2
√ vyd

14

2
√

vyd
21

2
√ vyd

22

2
√ vyd

23

2
√ vyd

24

2
√

vyd
31

2
√ vyd

32

2
√ vyd

33

2
√ vyd

34

2
√

MVLQ
41 MVLQ

42 MVLQ
43 MVLQ

44

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.31)

We can choose a basis where the elements
(
MVLQ

41 MVLQ
42 MVLQ

43
)
are zero by using a

weak basis transformation without loss of generality:

MD =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vyd
11

2
√ vyd

12

2
√ vyd

13

2
√ vyd

14

2
√

vyd
21

2
√ vyd

22

2
√ vyd

23

2
√ vyd

24

2
√

vyd
31

2
√ vyd

32

2
√ vyd

33

2
√ vyd

34

2
√

0 0 0 M4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡
(
mD JD
0 M4

)
, (2.32)

where mD is a 3× 3 matrix corresponding to the mass matrix of SM down-type
quarks and JD is a 3× 1 vector. We then diagonalize the mass matrix MD. First
we consider the diagonalization of the 3× 3 matrix part mD by using a bi-unitary
transformation:

dL
i = KL

ijdL
0j , (2.33)

dR
i = KR

ijdR
0j , (2.34)

where KL and KR are 3× 3 unitary matrices which diagonalize the matrix mD and
the mass matrix becomes,

MD
′ ≡

(
KL
† 0
0 1

)(
mD JD
0 M4

)(
KR 0
0 1

)

=

(
KL
†mDKR KL

†JD
0 M4

)
=

(
mD

diag JD
′

0 M4

)
, (2.35)
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Here we define,

JD
′ = KL

†JD, (2.36)

Yd
i4 = KL

†ijyd
j4, (2.37)

We then define unitary matrices UL,R which diagonalize 4× 4 mass matrix MD,

UL ≡
(
KL 0
0 1

)
VL , (2.38)

UR ≡
(
KR 0
0 1

)
VR , (2.39)

with

dL
α = UL

αβdL
′ β , (2.40)

dR
α = UR

αβdR
′ β, (2.41)

where VL,R in Eqs.(2.38) and (2.39) are 4 × 4 unitary matrices. The symbol d ′

represents the down-type quarks in the mass basis, d ′= ( d s b B )T where B denotes
the VLQ in the mass basis. We can diagonalize MDMD

† as follows:

UL
†MDMD

†UL = UL
†MDURUR

†MD
†UL

= VL
†
(
(mD

diag)2+JD
′ JD
′ † M4JD

′

M4JD
′ † M4

2

)
VL

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

md
2 0 0 0

0 ms
2 0 0

0 0 mb
2 0

0 0 0 MVLQ
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.42)

2.2.2 CKM unitarity and Z FCNC
The kinetic terms of the down-type VLQ d4 and the SM quarks are given as follows:

LK
q = qL

ī iγµDL
µqL

i + dR
i iγµDdR

µ dR
i + uR

i iγµDuR
µ uR

i + dL
4̄ iγµDdR

µ dL
4+ dR

4 iγµDdR
µ dR

4 . (2.43)

After the EW symmetry breaking and the diagonalization of the quark mass matrices,
the gauge interactions for the quarks including the VLQ are derived as,

LK
q ⊃ LW +LZ+LA+LG , (2.44)

with

LW = � g

2
√ [uL

i γµKL
ijVL

jβdL
βWµ

++h.c.], (2.45)

LZ = � g
cw
uiγµ

[
1
2
L� sw2Qu

]
uiZµ

� g
cw
dαγµ

[
�1
2
{δαβ�VL4α∗VL

4β}L� sw2Qd

]
dβZµ , (2.46)

LA = �e[Quuīγµui+Qddαγµdα]Aµ , (2.47)

LG = �gs
[
uīγµ

λa

2
ui+ dαγµ

λa

2
dα
]
Gµ
a , (2.48)
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where we omit the prime on the quark fields for simplicity. We can see that the
gluon and the photon interactions in Eqs.(2.47) and (2.48) are the same as that in
the SM. The matrix KL

ijVL
jβ in Eq.(2.45) corresponds to the 3× 4 CKM matrix in

the model with the down-type VLQ,

VCKM ≡ KLVL . (2.49)

It is important that FCNCs among the down-type quarks are induced by the Z
boson interaction. The existence of the FCNCs comes from the difference among the
isospin charge I3Wof the SM quarks and that of the VLQ (Since the VLQ is SU(2)L
singlet, it does not have the isospin charge). Actually, the FCNCs in Eq.(2.46) is
given as follows:

LZ ⊃
(
dL
1̄ dL

2̄ dL
3̄ dL

4̄
)
γµI3

W(d)

⎛

⎜⎜⎜⎜⎜⎜⎝

1
1
1
0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

dL
1

dL
2

dL
3

dL
4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠
Zµ

=
�
dL̄ sL̄ bL̄ BL

)
γµI3

W(d)VL
†

⎛

⎜⎜⎜⎜⎜⎜⎝

1
1
1
0

⎞

⎟⎟⎟⎟⎟⎟⎠VL

⎛

⎜⎜⎜⎜⎜⎜⎝

dL
sL
bL
BL

⎞

⎟⎟⎟⎟⎟⎟⎠Zµ

= dαγµI3
W(d)VL

iα∗VL
iβdL

βZµ

= dαγµI3
W(d)(δαβ�VL4α∗VL

4β)dL
βZµ , (2.50)

where I3W(d) =�
1

2
is the isospin charge of the SM down-type quarks. We use the

unitarity of VL in the last line of Eq.(2.50). This fact is that the GIM mechanism
does not work in the model with VLQ.

We define a matrix which represents the FCNC interaction as,

ZdNC
αβ ≡ δαβ�VL4α∗VL

4β . (2.51)

The 3× 4 CKM matrix is not a unitary matrix in the model with the VLQ:

∑

i=1

3

VCKM
iα∗ VCKM

iβ =
∑

i=1

3

VL
†αiVL

iβ = δαβ�VL4α∗VL
4β = ZdNC

αβ , (2.52)

since
∑

γ=1
4 VL

†αγVL
γβ = δαβ. The relation in Eq.(2.52) shows that the unitarity of

the 3× 4 CKM matrix does not hold due to the factor VL4α∗VL
4β which is related to

the matrix ZdNC in the FCNC interactions. In contrast to the Eq.(2.52), the CKM
unitarity with respect to the up-type sector holds in the full theory description:

∑

α=1

4

VCKM
iα VCKM

jα∗ = δij . (2.53)
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Chapter 3
Effective Field Theory

An effective field theory (EFT) is a useful tool to investigate a physical system. In
order to describe a physical system at an energy scale µ, we do not need to know
dynamics at a higher energy scale µ0≫µ. An EFT at the scale µ is built by removing
some dynamical degree of freedom related to the higher energy scale µ0. The EFT
allows us to simplify computations of the physical system at the energy scale µ since
we can focus on the relevant degree of freedom at the energy scale µ.

In the present chapter, we derive an EFT by removing the heavy particles in
the SM. In other words, we integrate out the heavy particles in the SM, such as
top quark, W±, Z and Higgs boson. Here we refer to the EFT as weak EFT. The
weak EFT is used to describe physical systems below the EW scale, such as B
meson system. The typical energy scale of the B meson system is the bottom quark
mass scale, µb∼mb∼ 5 GeV while the EW scale is around W± boson mass scale,
µEW∼MW∼80 GeV. Since the SM particles whose masses are around the EW scale
are heavy degrees of freedom in the B meson system, the weak EFT is suitable to
describe it. In this chapter, we give the basic idea of EFTs through simple examples
of the weak EFT.

3.1 Example of weak EFT: β decay

First we consider the weak EFT for the β decay as a simple example. The β decay
n→ p+e�+ ν̄e corresponds to d→u+e�+ ν̄e process at the quark level. This process
is induced by the weak interaction of W± boson. The diagrams of the β decay in the
SM and the weak EFT are shown in Fig.3.1. The left-hand side figure of Fig.3.1 is
the diagram in the SM while the right-hand side figure of Fig.3.1 is the diagram in
the weak EFT. In the right-hand side figure of Fig.3.1, the W± boson is integrated
out. The amplitude of the β decay in the SM is obtained as,

iASM =

[
uu

(
�i g

2
√ VudγµL

)
ud

]
�igµν
p2�MW

2

[
uē

(
�i g

2
√ γνL

)
uνe

]

= i
g2

2
Vud

1

p2�MW
2 [uuγ

µLud][uēγµLuνe] , (3.1)
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d u

e�

νē

W

d u

e�

νē

Figure 3.1. The β decay in the quark level. The left-hand side figure is the diagram in
the SM while the right-hand side figure is the diagram in the weak EFT.

where ui with i=u, d, e, νe denote Dirac spinors and Vud is the element of the CKM
matrix, Vij≡VCKMij . The symbol p is the momentum of the internalW± boson. Since
the typical scale of the momentum p is a mass scale of the initial state, that is mass
of the neutron; p2∼mN

2 ∼ 1GeV2. It allows us to expand the denominator of the
W± boson propagator:

ASM ≃ � g2

2MW
2 Vud[uuγ

µLud][uēγµLuνe] +O
(

p2

MW
2

)
. (3.2)

On the other hand, the amplutide in the weak EFT can be computed by introducing
an effective operator O(β)(µ),

Heff (d→u+ e�+ ν̄e) = C(β)(µ)O(β) ≡ C(β)(µ)[ūγµLd][ēγµLνe] , (3.3)

where C(β)(µ) is a coupling constant of the operator O(β) at energy scale µ. The
coupling constant C(β)(µ) is called Wilson coefficient. The effective operator O(β)

has mass dimension 6, and thus it is called higher dimensional operator. Since O(β)

has dim.6 and the mass dimension of Hamiltonian is four, the mass dimension of the
Wilson coefficient C(β)(µ) is �2. Using the Hamiltonian Eq.(3.3), we can calculate
the amplitude of β decay:

AEFT = �C(β)(µ)[uuγµLud][uēγµLuνe] . (3.4)

The Wilson coefficient C(β) in Eq.(3.3) is determined so that the amplitude in the
weak EFT Eq.(3.4) is equal to that in the SM Eq.(3.2). The Wilson coefficient C(β)

is given as,

C(β)(µEW) =
g2

2MW
2 Vud =

4GF
2

√ Vud , (3.5)

where GF =
g2

4 2
√

MW
2 =

1

2
√

v2
is Fermi constant. The matching condition ASM=AEFT

holds at the scale of integrating out W± boson field, µEW≃MW . Therefore, the
Wilson coefficient in Eq.(3.5) is defined at the scale µEW≃MW . In the following, we
call the scale of integrating out heavy particles as the matching scale. The Wilson
coefficient at an arbitrary scale µ can be obtained by solving renormalization group
(RG) equations as we will see in section 3.2. Here we neglect RG effects for simplicity.
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We can see from Eq.(3.3) that the Hamiltonian contains only the light degrees
of freedom which appear in the initial and final state of β decay. The Hamiltonian
does not contain the W± boson as a dynamical degree of freedom but contains the
information of theW± boson, the massMW and coupling g, in the Wilson coefficient.
Measurements of the β decay give constraints on the Wilson coefficient. Taking
account of the relation in Eq.(3.5), we can determine a value of VudGF from the
constraints on the Wilson coefficient.

3.2 Renormalization Group Effect

3.2.1 One-loop level matching

As we see in the previous section, we can determine concrete expression of Wilson
coefficients at the matching scale. However, the energy scale of a physical system
is generally different from that of the EW scale. In the present section, we see how
to compute the scale dependence of Wilson coefficients. In order to clarify the
scale dependence on the Wilson coefficients, we need RG equations of the Wilson
coefficients. Here we investigate the different example from the previous section to
derive the RG equation. We follow Ref.[93]. We consider the following Hamiltonian:

Heff =
4GF
2

√ Vcb
∗Vcs[C1(µ)O1+C2(µ)O2] , (3.6)

where the effective operators are defiend as,

O1 = [bᾱγµLcβ][cβ̄γµLsα] , (3.7)

O2 = [bβ̄γµLcβ][cβ̄γµLsβ] . (3.8)

The subscripts α, β in O1 and O2 denote color indices, α, β= r, g, b. For example,
we can compute the b̄→ s̄ c c̄ process by using the effective operators O1 and O2.
In order to clarify the scale dependence of the Wilson coefficients, we are going to
calculate amplitudes of the b̄→ s̄ c c̄ process up to the one-loop level.

The Wilson coefficient C2 can be determined by a similar diagram to the left-
hand side of Fig.3.1 at the tree level. The tree level amplitude of the b̄→ s̄ c c̄ process
is,

ASM
(0) ≃ � g2

2MW
2 Vcb

∗Vcs[vb
αγµLvc

α]
[
uc
βγµLvs

β ] , (3.9)
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Figure 3.2. Diagrams in the SM which contribute to C1 and C2 [93].

G

G
G
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O1, O2 O1, O2 O1, O2

Figure 3.3. Diagrams in the weak EFT which contain to C1 and C2 [93]. The set of disc
marks represent the effective operators O1 or O2.

which leads to the Wilson coefficient,

C2(µEW) = +1 . (3.10)

The Wilson coefficient C1 at the matching scale µEW is zero at the tree level since
the weak interaction do not change the color indices.

Next we consider matching at the one-loop level. Diagrams are induced by
quantum chromodynamics (QCD) corrections. The relevant diagrams are shown
in Figs.3.2 and 3.3. The diagrams shown in Fig.3.2 are one-loop diagrams in the
SM while diagrams in Fig.3.3 are one-loop diagrams in the weak EFT. These dia-
grams corresponds to one-loop QCD corrections to the tree level diagram which
is used to determine the Wilson coefficient C2 at the tree level Eq.(3.10). The
set of disk marks in Fig.3.3 represents insertions of the effective operators O1 or O2.

We show amplitudes of the b̄→ s̄ c c̄ process with the diagrams (a)-(c) in Fig.3.2:

ASM
(a) = �4GF

2
√ Vcb

∗VcsCF
αs
4π

[
CUV+ lnµ

2

λ2
� 1
2

]
[vb
αγµLvc

α]
[
uc
βγµLvs

β ] , (3.11)

ASM
(b) = �4GF

2
√ Vcb

∗Vcs
αs
4π

ln
[
MW

2

λ2

]
[vb
αγµTαβ

a Lvc
β][uc

γγµTγδ
aLvs

δ] , (3.12)

ASM
(c) =

16GF
2

√ Vcb
∗Vcs

αs
4π

ln
[
MW

2

λ2

]
[vb
αγµTαβ

a Lvc
β][uc

γγµTγδ
aLvs

δ] , (3.13)
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where αs≡ gs
2/(4π) and T a≡ λa/2. The subscripts α, β , γ and δ denote the color

indices. The symbol CF =4/3 defined by,

(T aT a)aβ = CF δαβ . (3.14)

The symbol µ in Eq.(3.11) is the matching scale while λ is IR cut-off scale which
have to be set to zero at the end of computations. The term CUV in Eq.(3.11) is
divergent term in the MS scheme,

CUV =
2
η
� γ+ ln4π , (3.15)

where γ is the Euler’s constant. The parameter η is introduced in dimensional
regularization and defiend as η=4� d with d→ 4.

The total amplitude of b̄→ s̄ c c̄ process from the one-loop diagrams is given by,

ASM
(1) = 2×

∑

i=a,b,c

ASM
(i) , (3.16)

where the factor 2 comes from the diagrams obtained by exchanging the external
quarks in Fig.3.2. Adding the amplitude at the tree level ASM

(0) to the amplitude ASM
(1) ,

we obtain the whole amplitude in the SM:

ASM = ASM
(0) +ASM

(1)

= �4GF
2

√ Vcb
∗Vcs

[
1+2CF

αs
4π

(
CUV+ ln µ

2

λ2
� 1
2

)
+
3
N
αs
4π

lnMW
2

λ2

]
Q2

�4GF
2

√ Vcb
∗Vcs

[
�3αs

4π
lnMW

2

λ2

]
Q1 , (3.17)

where

Q1 ≡ [vb
αγµLvc

β]
[
uc
βγµLvs

α
]
, (3.18)

Q2 ≡ [vb
αγµLvc

α]
[
uc
βγµLvs

β ] , (3.19)

and we used the Fierz identity,

(T a)αβ(T a)γδ = � 1
2N

δαβδγδ+
1
2
δαδδδβ , (3.20)

with N = 3. We have to renormalize the amplitude ASM in Eq.(3.17) since there
is divergence CUV. This can be achieved by taking account of the wave function
renormalization for the external quark fields,

q → q(0) = Zq
√

q , (3.21)

where q(0) is bare quark fields and the renormalization constant Zq
√

can be determ-
ined by a self-energy diagram in the QCD:

Zq = 1�CF
αs
4π
CUV . (3.22)
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Then a renormalized amplitude ASM
r in the SM is given as,

ASM
r = �4GF

2
√ Vcb

∗Vcs

[
1+2CF

αs
4π

(
ln µ

2

λ2
� 1
2

)
+
3
N
αs
4π

lnMW
2

λ2

]
Q2

�4GF
2

√ Vcb
∗Vcs

[
�3αs

4π
lnMW

2

λ2

]
Q1 . (3.23)

Next we show amplitudes of b̄→ s̄ c c̄ process with the diagrams (a)-(c) in Fig.3.3
in addition to the tree level amplitude AEFT

(1,0), and AEFT
(2,0). In the case of the insertion

of O1,

AEFT
(1,0) = �C1(µ)

4GF
2

√ Vcb
∗VcsQ1 , (3.24)

AEFT
(1a) = �C1(µ)

4GF
2

√ Vcb
∗Vcs

αs
4π

(
CUV+ ln µ

2

λ2
� 1
2

)[
� 1
2N

Q1+
1
2
Q2

]
, (3.25)

AEFT
(1b) = �C1(µ)

4GF
2

√ Vcb
∗VcsCF

αs
4π

(
CUV+ ln µ

2

λ2
� 1
2

)
Q1 , (3.26)

AEFT
(1c) = C1(µ)

4GF
2

√ Vcb
∗Vcs

αs
4π

(
4CUV+4ln µ

2

λ2
+5

)[
� 1
2N

Q1+
1
2
Q2

]
. (3.27)

For the insertion of O2,

AEFT
(2,0) = �C2(µ)

4GF
2

√ Vcb
∗VcsQ2 , (3.28)

AEFT
(2a) = �C2(µ)

4GF
2

√ Vcb
∗VcsCF

αs
4π

(
CUV+ ln µ

2

λ2
� 1
2

)
Q2 , (3.29)

AEFT
(2b) = �C2(µ)

4GF
2

√ Vcb
∗Vcs

αs
4π

(
CUV+ ln µ

2

λ2
� 1
2

)[
1
2
Q1�

1
2N

Q2

]
, (3.30)

AEFT
(2c) = C2(µ)

4GF
2

√ Vcb
∗Vcs

αs
4π

(
4CUV+4ln µ

2

λ2
+5

)[
1
2
Q1�

1
2N

Q2

]
. (3.31)

The whole amplitudes are,

AEFT
(C1) = AEFT

(1,0)+2×
∑

i=a,b,c

AEFT
(1i)

= �C1(µ)
4GF
2

√ Vcb
∗Vcs

[
1+2CF

αs
4π

(
CUV+ ln µ

2

λ2
� 1
2

)
+
αs
4π

3
N

(
CUV+ ln µ

2

λ2
+
11
6

)]
Q1

�C1(µ)
4GF
2

√ Vcb
∗Vcs

[
�3αs

4π

(
CUV+ ln µ

2

λ2
+

11
6

)]
Q2 , (3.32)

AEFT
(C2) = AEFT

(2,0)+2×
∑

i=a,b,c

AEFT
(2i)

= �C2(µ)
4GF
2

√ Vcb
∗Vcs

[
1+2CF

αs
4π

(
CUV+ ln µ

2

λ2
� 1
2

)
+
αs
4π

3
N

(
CUV+ ln µ

2

λ2
+
11
6

)]
Q2

�C2(µ)
4GF
2

√ Vcb
∗Vcs

[
�3αs

4π

(
CUV+ ln µ

2

λ2
+

11
6

)]
Q1 . (3.33)
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There are the divergent terms CUV in AEFT
(C1) and AEFT

(C2). We regard the Wilson coef-
ficient and the quark fields in the effective operators in Eq.(3.6) as bare quantities,

Heff → 4GF
2

√ Vcb
∗Vcs
[
C1
(0)O1(q

(0))+C2
(0)O2(q

(0))
]

=
4GF
2

√ Vcb
∗Vcs[C1(µ)O1+C2(µ)O2]

+
4GF
2

√ Vcb
∗Vcs

∑

i,j=1,2

[�
Zq
2Zij

(C)� δij
)
Cj(µ)Oi

]
, (3.34)

where C1,2
(0)(µ) denote bare Wilson coefficients and O1,2(q(0)) are effective operators

written by the bare quark fields. The symbol Zij
(C) represents renormalization con-

stant of the Wilson coefficients defined as Ci
(0)=Zij

(C)Cj. The Hamiltonian Eq.(3.34)
leads to counterterms,

AEFT
(C1),c = �C1(µ)

4GF
2

√ Vcb
∗Vcs

�
Zq
2Zi1

(C)� δi1
)
Qi , (3.35)

AEFT
(C2),c = �C2(µ)

4GF
2

√ Vcb
∗Vcs

�
Zq
2Zi2

(C)� δi2
)
Qi . (3.36)

The renormalization constant Zq is given in Eq.(3.22) while the renormalization
constant Zij

(C) is determined so that the counterterms remove these divergence:

Z(C) = 1� αs
4π
CUV

⎛

⎝
3

N
�3

�3 3

N

⎞

⎠. (3.37)

Then we obtain renormalized amplitudes in the weak EFT as,

AEFT
(C1),r ≡ AEFT

(C1)+AEFT
(C1),c

= �C1(µ)
4GF
2

√ Vcb
∗Vcs

[
1+2CF

αs
4π

(
ln µ

2

λ2
� 1
2

)
+
αs
4π

3
N

(
ln µ

2

λ2
+

11
6

)]
Q1

�C1(µ)
4GF
2

√ Vcb
∗Vcs

[
�3αs

4π

(
ln µ

2

λ2
+

11
6

)]
Q2 , (3.38)

AEFT
(C2),r ≡ AEFT

(C2)+AEFT
(C2),c

= �C2(µ)
4GF
2

√ Vcb
∗Vcs

[
1+2CF

αs
4π

(
ln µ

2

λ2
� 1
2

)
+
αs
4π

3
N

(
ln µ

2

λ2
+

11
6

)]
Q2

�C2(µ)
4GF
2

√ Vcb
∗Vcs

[
�3αs

4π

(
ln µ

2

λ2
+

11
6

)]
Q1 . (3.39)

The Wilson coefficients C1 and C2 can be determined by matching the renormalized
amplitude in the SM Eq.(3.23) with that in the weak EFT, Eqs.(3.38) and (3.39):

C1(µEW) = �3αs
4π

[
lnMW

2

µEW
2 � 11

6

]
+O(αs2) , (3.40)

C2(µEW) = 1+
αs
4π

3
N

[
lnMW

2

µEW
2 � 11

6

]
+O(αs2) . (3.41)
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and the effective Hamiltonian becomes,

Heff =
4GF
2

√ Vcb
∗Vcs[C1(µ)O1

ren+C2(µ)O2
ren] , (3.42)

with the effective operators in terms of the renormalized quark fields:

O1
ren = [bᾱγµLcβ][cβ̄γµLsα] , (3.43)

O2
ren = [bβ̄γµLcβ][cβ̄γµLsβ] . (3.44)

We can see that the Wilson coefficients in Eqs.(3.40) and (3.41) do not depend on
the IR cut off λ.

3.2.2 RG equations and anomalous dimension matrix

The combination Ci
(0)Oi=CiOi

ren is independent of the energy scale µ. Since Ci
(0)=

Zij
(C)Cj, the effective operator can be written as Oi=Zji

(C)�1Oj
ren. This leads to [93],

0 = µ
∂
∂µ

{
Ci
(0)Oi

}

=

(
µ
∂
∂µ

Ci

)
Oi
ren+Ci

(
Zkj
(C)�1µ

∂
∂µ

Zji
(C)
)
Ok
ren

=

(
µ
∂
∂µ

Ci

)
Oi
ren�Ci(Z�1)ij

(
µ
∂
∂µ

Zjk

)
Ok
ren , (3.45)

where we define Zkj
(C)�1=Zjk. The matrix (Z�1)ij

(
µ ∂

∂µ
Zjk
)
is called an anomalous

dimension matrix denoted as γ,

γik ≡ (Z�1)ij

(
µ
∂
∂µ

Zjk

)
. (3.46)

An explicit form of the anomalous dimension matrix can be obtained by Eq.(3.37):

γ =
αs
4π

⎛

⎝ � 6

N
6

6 � 6

N

⎞

⎠ ≡ αs
4π
γ(0) . (3.47)

We obtain a differential equation with respect to the energy scale µ from Eq.(3.45):

µ
∂
∂µ

Ck(µ) = Ci(µ)γik = γki
TCi(µ) . (3.48)

We refer to this differential equation as RG equation. A solution of the RG equation
with an initial condition µ= µEW is given as,

Ci(µ) = Uij(µ, µEW)Cj(µEW) , (3.49)

with an evolution matrix U ,

U(µ, µEW) = exp
[∫

gs(µEW)

gs(µ)

dgs
′γ
T(gs

′)
β(gs

′)

]
, (3.50)

30 Effective Field Theory



where the function β(gs) is defined by,

β(gs) ≡ µ
∂gs
∂µ

= �β0
gs
3

16π2
+O(gs5) , (3.51)

with β0= 11� 2f /3 and f is number of flavors. The evolution matrix at leading
order is obtained from Eq.(3.50),

U (0)(µ, µEW) = V diag

⎛

⎝
[
αs(µEW)
αs(µ)

]γ⃗(0)
2β0

⎞

⎠V �1 , (3.52)

where the matrix V diagonalizes the matrix γ(0),

γD
(0) = V �1γ(0)TV , (3.53)

with a diagonal matrix γD
(0). The vector γ⃗(0) is defined as,

γ⃗(0) =
( �

γD
(0))

11
�
γD
(0))

22

)
. (3.54)

Inserting Eq.(3.52) into Eq.(3.49), we obtain the Wilson coefficients at an arbitrary
scale µ. We can see from Eq.(3.49) that the Wilson coefficient C1 are mixed with
C2 when we take account of the RG effect and vice versa.
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Chapter 4
Matching with the SMEFT

4.1 Full Theory Lagrangian
In the following chapters, we present our results based on the Ref.[84]. We consider
the model with one SU(2)L singlet down-type VLQ whose representation is shown
in Eq.(2.29). In the present chapter, we match the model with the SMEFT by
integrating out VLQ field up to the one-loop level. The full theory Lagrangian for
the quarks LFull

q which is invariant under the SM gauge symmetry SU(3)c×SU(2)L×
U(1)Y is,

LFull
q = LSM

q + dL
4̄iγµDRµ

d dL
4+ dR

4iγµDRµ
d dR

4 � [ydi4qLīφdR4 +M4dL
4̄dR

4 +h.c.] , (4.1)

LSM
q = qL

ī iγµDLµ
q qL

i +uR
i iγµDRµ

u uR
i +dR

i iγµDRµ
d dR

i � [yd
ijqL

īφdR
j + yu

iqL
ī φ̃uR

i +h.c.] , (4.2)

where dL4 and dR
4 denote the left- and right-handed VLQ, respectively. The fields

with subscript i, j =1, 2, 3 are the SM quarks. The symbol φ is the Higgs doublet
in the SM and φ̃= iτ 2φ∗ where τ 2 is the Pauli matrix. The 3× 3 Yukawa coupling
for the up-type quarks yu is taken to be real diagonal. The 3× 4 matrix yd denotes
the Yukawa couplings among the down-type quarks including couplings among the
SM quark and the VLQ . A mixing term M4jdL

4̄dR
j is also allowed by the SM gauge

symmetry. However, we can remove the mixing term by rotating the down-type
quark fields as mentioned in Sec.2.2. The covariant derivatives in Eq.(4.1) are shown
in Eqs(2.5)-(2.7). In Eq.(4.1), both the kinetic terms of the left- and right-handed
VLQ contain DRµ

d since the left- and right-handed components belong the same
representation in the case of the VLQ.

4.2 Integrating out VLQ field at Tree Level
We integrate the VLQ field in the full theory Lagrangian Eq.(4.1) to obtain the
operators in the form of the SMEFT. We can also determine their Wilson coefficients
by matching the amplitudes computed in the full theory with those in the SMEFT.
We perform this procedure at the tree level. First we compute tree level amplitudes
which contain the VLQ field as an internal line. The computed amplitudes are
expanded up to O(M4

�2) while assuming that M4 is much larger than momenta of
the external fields. Then, we introduce higher-dimensional operators and Wilson
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φ

qL
i qL

j

φ

Cqφ
ji

φ φ

qL
i qL

j

dR
4

Figure 4.1. The figure in left-hand side is tree level diagram of qiφ→ qjφ process induced
by the VLQ field [84]. The figure in right-hand side is corresponding diagram after integ-
rating out the VLQ field. The Cqφ

ji denotes Wilson coefficient.

coefficients, which can reproduce the amplitudes. For the present model, the tree
level amplitude corresponds to the diagram in the left-hand side of Fig.4.1. The
diagram corresponds to qiφ→ qjφ process induced by the VLQ field. The amplitude
of qiφ→ qjφ process is obtained as,

A =
1
i
(�iyd

j4)(�iyd
j4∗)uq

j̄
[
R
i(p+M4)

p2�M4
2 L

]
uq
i

≃ yd
j4yd

i4∗

M4
2 uq

j̄(pL)uq
i+O(M4

�4), (4.3)

where uqi denotes spinor of the external quark field qi and p is momentum of the
internal VLQ field. We assume p2≪M4

2 in the last line of Eq.(4.3). We can intro-
duce an effective operator which reproduce the amplitude Eq.(4.3) up to O(M4

�4)

accuracy. Taking account of the invariance under the SM gauge symmetry, the
effective operator is given as [82, 83, 84, 94, 95, 96],

Leff
(tree) = iCqφ

ji(qL
j̄φ)γµDRµ

d (φ†qL
i ), (4.4)

where the Wilson coefficient Cqφ
ji is,

Cqφ
ji =

yd
j4yd

i4∗

M4
2 . (4.5)

The diagram in the right-hand side of Fig.4.1 corresponds to the effective operator
in Eq.(4.4). We can rewrite the effective operator in Eq.(4.4) by using equations of
motion derived by SM Lagrangian:

Leff
(tree) = �

Cqφ
ji

4

[
Oφq
(1)ji+Oφq

(3)ji]+

[
Cqφ
jk

2
yd
kiOdφ

ji +h.c.

]

, (4.6)

where the effective operators are defined in the SMEFT operator basis [67] as,

Oφq
(1)ji = [qL

j̄γµqL
i ][iφ†(Dµφ)� i(Dµφ)†φ], (4.7)

Oφq
(3)ji = [qL

j̄γµτ IqL
i ][iφ†τ I(Dµφ)� i(Dµφ)†τ Iφ], (4.8)

Odφ
ji = (φ†φ)(qL

j̄φdR
i ) . (4.9)
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j

+
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i qL

j

Bµ, Gµ
a Bµ,Wµ
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a Bµ,Wµ
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a

φ
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dR
4

φ φ
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φφ

Figure 4.2. The one-loop diagrams for the decays qLi → qL
jBµ, qLi→ qL

jWµ
I and qL

i→ qL
jGµ

a

[84]. The top figures are diagrams in the full theory while bottom-left and bottom-right
figures are diagrams in the effective field theory. The circular marks denotes the tree level
effective operators in Eq.(4.4). The square mark denotes new effective operators.

Wilson coefficients for the effective operators Oφq
(1)ji, Oφq

(3)ji and Odφ
ji are denoted as

Cφq
(1)ji, Cφq

(3)ji and Cdφ
ji , respectively. They can be obtained from Eq.(4.6) as follows [83]:

Cφq
(1)ji(µVLQ) = Cφq

(3)ji(µVLQ) = �
Cqφ
ji

4
= �yd

j4yd
i4∗

4M4
2 , (4.10)

Cdφ
ji (µVLQ) =

Cqφ
jk

2
yd
ki =

yd
j4yd

k4∗

2M4
2 yd

ki. (4.11)

Since the expressions of the Wilson coefficients in Eqs(4.10) and (4.11) are defined at
a matching scale µVLQ∼M4, we show the scale of the Wilson coefficients explicitly.
Finally, we obtain the effective Lagrangian Leff

(tree) in terms of the SMEFT operator
basis as,

Leff
(tree) = Cφq

(1)jiOφq
(1)ji+ Cφq

(3)jiOφq
(3)ji+ [Cdφ

jiOdφ
ji +h.c.] . (4.12)

4.3 Integrating out VLQ field at One-loop Level

The interactions among the SM quarks and the VLQ lead to the one-loop level con-
tributions to radiative decays of the SM quarks, such as b→sγ process. Therefore, we
have to match the model with the SMEFT at the one-loop level. The procedure is ,

i. We compute the amplitudes of the one-loop diagrams for the decays qLi →
qL
jBµ, qLi→ qL

jWµ
I and qLi→ qL

jGµ
a in terms of the full theory (see the top figures

in Fig.(4.2)). These diagrams contain the VLQ in internal lines. In order to
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remove divergence in the amplitudes, we renormalize the amplitudes with the
MS scheme.

ii. We calculate the amplitudes for the same decays as the step (i) by using
the effective operator Eq.(4.4) in addition to the SM Lagrangian (see the
bottom-left and bottom-center figures in Fig.(4.2)). We also renormalize the
computed amplitudes with the MS scheme.

iii. We introduce new effective operators. Wilson coefficients of the new oper-
ators are determined so that the renormalized amplitudes computed in the
step (ii) are equal to the renormalized amplitudes computed in the step (i).

4.3.1 Step (i): Renormalized amplitudes in the full theory

In the step (i), we derive renormalized amplitudes by using the full theory Lag-
rangian Eq.(4.1) in addition to the SM Lagrangian. We define momenta of the
external fields qL

i , qL
j and the gauge bosons as p, p ′ and q, respectively. In the

computation of the step (i), we treat the SM particles as massless particles. The
amplitude for the diagram in the top-left figure of Fig.(4.2) is given as,

�µ
B,(1)ji = g ′

YdR
2
· yd

j4yd
i4∗

16π2

[
�γµ
2

(
CUV+ ln

µVLQ
2

M4
2

)
� 3γµ

4
� 5q2γµ

36M4
2 �

(p2+ p′2)γµ
3M4

2

� 1

M4
2

{
1
3
p′γµp+

1
12
(p′γµq� qγµp)�

1
18
qγµq

}]
L, (4.13)

for the case where external gauge boson is the U(1)Y gauge boson Bµ. Here we do not
write spinors of the external quarks explicitly. The symbol CUV contain divergence:

CUV =
2
η
� γ+ ln4π , (4.14)

where η=4�d with d→4 comes from the dimensional regularization and γ is Euler’s
constant. We can obtain the amplutide for the case where the external gauge boson
is the gluon Gµ

a by replacing g ′YdR
2

with gs
λa

2
in Eq.(4.13).

The amplitude for the diagram in the top-right figure of Fig.(4.2) is given as,

�µ
B,(2)ji = g ′

Yφ
2
· yd

j4yd
i4∗

16π2

[
�γµ
2

(
CUV+ ln

µVLQ
2

M4
2

)
� 3γµ

4
� (p2+ p′2)γµ

6M4
2

+
γν

6M4
2(gµνq

2� qµqν)

(
ln�q

2

M4
2 �

5
6

)
�
p′pµ+ ppµ

′

3M4
2 �

qqµ
6M4

2

]
L, (4.15)
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for the case where external gauge boson is the U(1)Y gauge boson Bµ. We can obtain
the amplitude for the case where the external gauge boson is the SU(2)L gauge boson
Wµ

I by replacing g ′
Yφ
2

with g τ
I

2
in Eq.(4.15).

In order to remove the divergence in Eqs.(4.13) and (4.15), we perform a wave
function renormalization. A renormalization constant can be determined by a self-
energy diagram of the SM quark doublet qLi , which include the VLQ as an internal
line. The relevant diagram is shown in Fig.(4.3). The amplitude is given as,

Σji(p) =
yd
j4yd

i4∗

16π2

[
1
2

(
CUV+ ln

µVLQ
2

M4
2

)
+
3
4
+

p2

3M4
2

]
pL. (4.16)

The Lagrangian including counterterms for the SM quark doublet is,

L = qL
ī iγµDLµ

q qL
i +Lc , (4.17)

Lc =
{�

ZL
√ † ZL

√ )
ji� δji

}
qL
j̄ iγµ∂µqL

i

�
{�

ZL
√ † ZL

√ )
ji� δji

}
qL
j̄γµ
[
gs
λa

2
Gµ
a+ g

τ I

2
Wµ

I+ g ′
YqL
2
Bµ

]
qL
i , (4.18)

where ZL
√

is the renormalization constant defined by,

(qL
0)j = ZL

√ jiqL
i , (4.19)

with the bare SM quark doublet field (qL0)i. The renormalization constant is determ-
ined so that the counterterms in Eq.(4.18) removes the divergence in Eq.(4.16):

�
ZL

√ † ZL
√ )ji = δji� yd

j4yd
i4∗

32π2
CUV , (4.20)

and then we can obtain counterterms for qLiqL
jBµ, qLiqL

jWµ
I and qLi qL

jGµ
a vertices. Adding

the counterterms shown in Eq.(4.18) with Eq.(4.20) to the total amplitudes for
the qLi→ qL

jBµ process �µ
B,(1)+�µ

B,(2), we obtain the renormalized amplitude:

�rµ
B,ji = g ′

YqL
2
· yd

j4yd
i4∗

16π2

[
�γµ
2

{
ln
µVLQ
2

M4
2 +

3
2
+
p2+ p′2
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}]
L
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· yd
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i4∗
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2
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p2+ p′2

6
+
p′γµp

3
+
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36
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p′[γµ, q]� [q, γµ]p
24

]
L

+g ′
Yφ
2
· yd

j4yd
i4∗

16π2M4
2

[
γν

6
(gµνq2� qµqν)

(
ln�q

2

M4
2 �

5
6

)
�
p′pµ+ ppµ

′

3M4
2 �

qqµ
6M4

2

]
L, (4.21)

where we used YdR
2
+

Yφ
2
=

YqL
2
. In the same way as to the case of the qLi→ qL

jBµ process,
we can derive the renormalized amplitudes for the qLi→ qL

jWµ
I and qL

i→ qL
jGµ

a.
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Figure 4.3. Self-energy diagram of SM quark doublet qLi with internal VLQ field dR4 [84].

4.3.2 Step (ii): Renormalized amplitudes in the effective field
theory

Next we derive renormalized amplitudes by using the effective operator Eq.(4.4)
in addition to the SM Lagrangian. Here we also treat the SM particles as massless
particles. We can see that the amplitude of the bottom-left figure in Fig.(4.2) van-
ishes as long as the mass of φ is set to zero. The amplitude of the bottom-center
figure in Fig.(4.2) is obtained as,

�µ
B,(E)ji = �g ′Yφ

2
· yd

j4yd
i4∗

16π2M4
2γ

ν(gµνq2� qµqν)

[
1
6
CUV� ln �q

2

µVLQ
2 +

4
9

]
L, (4.22)

for the case where the external gauge boson is the U(1)Y gauge boson Bµ. We can
obtain the amplitude for the SU(2)L gauge boson Wµ

I by replacing g ′Yφ
2
with g τ

I

2
in

Eq.(4.22). A self-energy diagram of the quark doublet qLi induced by the effective
operator Eq.(4.4) vanishes as long as the mass of φ is set to zero. Therefore, there
is no wave function renormalization of qLi originating from the effective operator
Eq.(4.4). In order to remove the divergence in Eq.(4.22), we introduce a counterterm
by hand:

LcEFT = (ZEFT
B,ji� δji)qL

j̄γνqL
i (gµν!� ∂µ∂ν)Bµ

+(ZEFT
W,ji� δji)qL

j̄γντ IqL
i (gµν!� ∂µ∂ν)W Iµ . (4.23)

Adding the counterterms shown in Eq.(4.23) to the amplitude Eq.(4.22), we obtain
the renormalized amplitude as,

�rµ
B,(E)ji = �g ′Yφ

2
· yd

j4yd
i4∗

16π2M4
2γ

ν(gµνq2� qµqν)

[
�ln �q

2

µVLQ
2 +

4
9

]
L, (4.24)

with the renormalization constaint:

ZEFT
B,ji = δji� g ′

Yφ
2
· yd

j4yd
i4∗

16M4
2 ·

CUV
6

. (4.25)
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In the same way as to the case of the qLi → qL
jBµ process, we can derive the renor-

malized amplitudes for the qLi→ qL
jWµ

I and qL
i→ qL

jGµ
a processes.

4.3.3 Step (iii): Introducing effective operators

The renormalized amplitudes in the effective field theory Eq.(4.24) are not equal to
that in the full theory Eq.(4.21). We introduce new effective operators with Wilson
coefficients so as to match the amplitudes in the effective field theory with that in
the full theory. The difference between the renormalized amplitude of qLi → qL

jBµ

process Eq.(4.21) and Eq.(4.24) is,

∆�rµ
B,ji ≡ �rµ

B,ji��rµ
B,(E)ji

= g ′
YqL
2
· yd

j4yd
i4∗

16π2

[
�γµ
2

{
ln
µVLQ
2

M4
2 +

3
2
+
p2+ p′2

3M4
2

}
�
p′pµ+ ppµ

′

3M4
2 �

qqµ
6M4

2

]
L

�g ′YdR
2
· yd

j4yd
i4∗

16π2M4
2

[
7γν

36
(gµνq2� qµqν)+

p′[γµ, q]� [q, γµ]p
8

]
L

+g ′
Yφ
2
· yd

j4yd
i4∗

16π2M4
2

[
γν

6
(gµνq2� qµqν)

(
ln
µVLQ
2

M4
2 +

11
6

)]
L. (4.26)

In the same way as to the qLi→ qL
jBµ process, we can compute difference between the

amplitudes in the full theory and that in the effective field theory with respect to the
qL
i→ qL

jWµ
I and qL

i→ qL
jGµ

a processes. Then we can introduce new effective operators
which correct the difference among the full theory and the effective theory. Taking
account of the finite part in the self-energy diagram Eq.(4.16), the new effective
operators with Wilson coefficients are given as follows:

Leff
(1) = LeffK +LeffB +LeffW +LeffG , (4.27)

where

LeffK =
yd
j4yd

i4∗

16π2

(
1
2
ln
µVLQ
2

M4
2 +

3
4

)
qL
j̄iγµDLµ

q qL
i

+
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j4yd

i4∗

48π2M4
2(yd

jl∗dR
l φ†+ yu

jl∗uR
l φ̃†)iγµDLµ

q (yd
ikφdR

k + yu
ikφ̃uR

k) , (4.28)

LeffB = g ′2
yd
j4yd

i4∗

16π2M4
2

{
YdR
2
· 7
36
� Yφ

2

(
1
6
ln
µVLQ
2

M4
2 +

11
36

)}

×
[
YlL
2
Olq
(1)kkji+

YeR
2
Oqe
jikk+

YqL
2
Oqq
(1)jikk+

YuR
2
Oqu
(1)jikk+

YdR
2
Oqd
(1)jikk+

Yφ
2
Oφq
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]

+
g ′

16π2M4
2

(
YqL
2
· 1
12
� YdR

2
· 1
8

)
[yd
j4yd

i4∗{ydilOdB
jl + yu

iOuB
ji }+h.c.] , (4.29)
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Effective Operators Wilson Coefficients
OuG

ji �
qL
jσµν λ

a

2
uR
i
)
φ̃Gµν

a CuG
ji (µVLQ) � 1

24 ·
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16π2M4
2 yd

j4yd
i4∗yu

i

OuW
ji (qL

jσµντ IuR
i )φ̃Wµν

I CuW
ji (µVLQ)

1

24 ·
g

16π2M4
2 yd

j4yd
i4∗yu

i

OuB
ji (qL

jσµνuR
i )φ̃Bµν CuBji (µVLQ)

g ′

16π2M4
2

(
YqL
2
· 112 �

YdR
2
· 1
8

)
yd
j4yd

i4∗yu
i

OdG
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qL
jσµν λ

a

2
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i
)
φGµν

a CdG
ji (µVLQ) � 1

24 ·
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16π2M4
2 yd
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OdW
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I CdW
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1

24 ·
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16π2M4
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OdB
ji (qL
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ji (µVLQ)
g ′

16π2M4
2

(
YqL
2
· 112�

YdR
2
· 1
8

)
yd
j4yd

l4∗yd
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Table 4.1. The left-hand side table shows dipole type operators in the SMEFT [67]. The
symbols Gµνa , Wµν

I and Bµν denote the field strength of the SU(3)c, SU(2)L and U(1)Y

gauge bosons, respectively. The right-hand side table shows the corresponding Wilson
coefficients at the matching scale µVLQ [84].

Olq
(1)klji (lL

kγµlL
l )(qL

jγµqL
i ) Oqe

jikl (qL
jγµqL

i )(eR
kγµeR

l )
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l )(qL
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(1)jikl (qL
jγµqL

i )(uR
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l )
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jγµqL
i )(qL

kγµqL
l ) Oqu
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2
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i
)�
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2
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)
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(8)jikl �
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)�
qL
kγµλ
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2
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l
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Oqd
(8)jikl �

qL
jγµ

λa

2
qL
i
)�
dR
kγµλ

a

2
dR
l
)

Table 4.2. The 4-Fermi type effective operators in the SMEFT [67]. We note that the
operator Oqq

(8)jikl can be written in terms of the other effective operators [67].

LeffW = �g
2

4
· yd

j4yd
i4∗

16π2M4
2

(
1
6
ln
µVLQ
2

M4
2 +

11
36

)
[
Olq
(3)kkji+Oqq

(3)jikk+Oφq
(3)ji]

+
g

16π2M4
2 ·

1
24
[yd
j4yd

i4∗{ydilOdW
jl + yu

iOuW
ji }+h.c.] , (4.30)

LeffG = gs
2 yd

j4yd
i4∗

16π2M4
2 ·

7
36
[
Oqq
(8)jikk+Oqu

(8)jikk+Oqd
(8)jikk]

+
gs

16π2M4
2

(
� 1
24

)
[yd
j4yd

i4∗{ydilOdG
jl + yu

iOuG
ji }+h.c.] . (4.31)

The effective operators O in Eqs.(4.29)-(4.31) are listed in the Tables 4.1 and 4.2.
The right-hand side of the Table 4.1 shows the Wilson coefficients of the dipole oper-
ators in Eqs.(4.29)-(4.31). The symbols Gµν

a , Wµν
I and Bµν denote the field strength

of the SU(3)c, SU(2)L and U(1)Y gauge bosons, respectively. Note that the effective
operator Oqq

(8)jikk can be written in terms of the other effective operators in the
SMEFT by using the Fierz transformations [67],

Oqq
(8)jikl =

1
4
Oqq
(1)jlki+

1
4
Oqq
(3)jlki� 1

6
Oqq
(1)jikl . (4.32)
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4.3.4 Redefinition of the Yukawa couplings

We can see that the kinetic term of the SU(2)L doublet quark field qL
i is not a

canonical form because of the first term in Eq.(4.28):

LK
(q) = qL

j̄{δji+Z ji(µVLQ)}iγµDLµ
q qL

i , (4.33)

Z ji(µVLQ) ≡
yd
j4yd

i4∗

16π2

(
1
2
ln
µVLQ
2

M4
2 +

3
4

)
. (4.34)

The coefficient Z ji(µ) is not suppressed by the VLQ mass M4 but suppressed by the
loop factor ∼1/(16π2). We perform a rescaling of the field qL

i to rewrite the kinetic
term Eq.(4.33) into a canonical form. We define a rescaled field qL

′ k as,

qL
′ k ≡

{
δki+

1
2
Zki(µVLQ)

}
qL
i . (4.35)

The kinetic term of the doublet quark field becomes,

LK
(q) = qL

′ kiγµDLµ
q qL

′ k . (4.36)

The rescaling Eq.(4.35) modifies the Yukawa interactions among the SM quarks.
The modification can be absorbed into the Yukawa coupling as follows:

yd
jiqL

j̄φdR
i =

{
δkj� 1

2
Zkj(µVLQ)

}
yd
jiqL
′ kφdR

i ≡ Yd
kiqL

′ kφdR
i , (4.37)

yu
i qL
ī φ̃uR

i =

{
δki� 1

2
Zki(µVLQ)

}
yu
i qL
′ kφ̃uR

i ≡ Yu
kiqL

′ kφ̃uR
i , (4.38)

where we redefine the Yukawa coupling as,

Yd
ki ≡

{
δkj � 1

2
Zkj(µVLQ)

}
yd
ji , (4.39)

Yu
ki ≡

{
δki� 1

2
Zki(µVLQ)

}
yu
i . (4.40)

The tree level effective operator in Eq.(4.4) (or equivalently Eq.(4.12)) is also changed
by the rescaling Eq.(4.35). The modification can be absorbed into the Yukawa
coupling yd

i4 as,

Leff
(tree) = i

yd
j4yd

i4∗

M4
2 (qL

j̄φ)γµDRµ
d (φ†qL

i )

= i

{
δkj� 1

2
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}
yd
j4yd
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2
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}�
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)
γµDRµ

d (φ†qL
′ l)

≡ i
Yd
k4Yd

l4∗

M4
2

�
qL
′ kφ
)
γµDRµ

d (φ†qL
′ l) , (4.41)

where we define,

Yd
k4 ≡

{
δkj � 1

2
Zkj(µVLQ)

}
yd
j4 . (4.42)
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In the same way as to the tree level effective operator, the rescaling Eq.(4.35) affects
the one-loop level effective operators in Eqs.(4.28)-(4.31) and leads to two-loop level
corrections. We can simply take qL≃ qL

′ and yu,d≃Yu,d in the one-loop level effective
operators since we do not consider two-loop level contributions.

The up-type Yukawa coupling Yu in Eq.(4.40) is not diagonal matrix because of
the non-diagonal matrix Z ji(µVLQ). We can diagonalize Yu by unitary transforma-
tions of the SM quark fields without loss of generality. Therefore, we take the basis
where the up-type Yukawa coupling is diagonal. In this basis, we write the Yukawa
couplings as small letters yu,d and omit the prime symbol on the quark field for
simplicity. We summarize the Lagrangian at matching scale µVLQ:

LEFT = LSM
q +Leff

(tree)+Leff
(1) , (4.43)

where

LSM
q = qL

ī iγµDLµ
q qL

i + uR
i iγµDRµ

u uR
i + dR

ī iγµDRµ
d dR

i � [yd
ijqL

īφdR
j + yu

iqL
ī φ̃ uR

i + h.c.] ,

(4.44)

Leff
(tree) = i

yd
j4yd

i4∗

M4
2 (qL

j̄φ)γµDRµ
d (φ†qL

i ) = Cφq
(1)jiOφq

(1)ji + Cφq
(3)jiOφq

(3)ji + [Cdφ
jiOdφ

ji + h.c.] ,

(4.45)

and Leff
(1) is given in Eq.(4.27) with Eqs.(4.29)-(4.31).

4.4 Electroweak Symmetry Breaking

We rewrite the Lagrangian Eq.(4.43) in terms of the SM fields in the broken phase
of the SM gauge symmetry. We define the Higgs doublet φ as,

φ =

(
χ+

(v+h+ iχ0)/ 2
√

)
, (4.46)

where v is the VEV. The symbols h, χ+ and χ0 denote the physical Higgs boson,
the charged and neutral Nambu–Goldstone (NG) bosons, respectively.

4.4.1 SM + tree level effective operators

First we consider substituting Eq.(4.46) to the Higgs doublet φ in the SM quark
Lagrangian LSM

q and the tree level effective operators Leff
(tree). We can divide LSM

q +

Leff
(tree) into three parts after the substitution:

LSM
q +Leff

(tree) = Ldim.4
(0) +Ldim.5

(0) +Ldim.6
(0) . (4.47)
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The term Ldim.4
(0) is constituted by the mass terms of the SM quarks and dim.4

operators including the usual SM interactions. The explicit form of Ldim.4
(0) is given as,
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(0) = uīiγµ∂µui+ d īiγµ∂µdi�
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2
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[(
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]

+
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]
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√
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juR
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]
. (4.48)

The combination Cφq
(1)ji�Cφq

(3)ji vanishes if the relation Eq.(4.10) is taken into account.
However, the relations Eqs.(4.10) and (4.11) hold only the matching scale µVLQ

because of the RG effects. Therefore, we leave the terms which are proportional to
the combination Cφq

(1)ji�Cφq
(3)ji in Eq.(4.48). The terms Ldim.5

(0) and Ldim.6
(0) contain dim.5

and dim.6 operators which do not exist in the SM. Here we show only terms which
can contribute to b→ sγ process:

Ldim.5
(0) ⊃ �vg

{
Cφq
(1)ji�Cφq

(3)ji}dL
jγµdL
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]
, (4.49)

Ldim.6
(0) ⊃ �2e

{
Cφq
(1)ji�Cφq

(3)ji}dL
jγµdL

i χ+χ�Aµ . (4.50)

We can see that all the terms in Eqs.(4.49) and (4.50) vanish if the relation Eqs.(4.10)
and (4.11) is taken into account.

Next we consider a diagonalization of the down-type quark mass matrix in
Eq.(4.48). The 3× 3 mass matrix of the down-type quarks is,

md
jk ≡ v

2
√
(
yd
jk� v2

2
Cdφ
jk
)
. (4.51)

We diagonalize the mass matrix md
jk by two steps. First we diagonalize only the SM

Yukawa coupling yd
jk with unitary matrices KL and KR:⎧

⎨

⎩
dL
i =KL

imdL
(0)m

dR
i =KR

imdR
(0)m

, → (KL
†mkyd

jkKR
kn) ≡ yd

(0)mδmn, (4.52)
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where we define the diagonal Yukawa coupling yd
(0). The indices (0) indicates the

basis where the SM Yukawa coupling yd is diagonal. That basis corresponds to the
mass basis of the SM. The whole mass matrix md

jk becomes,

KL
†mjmd

jkKR
kn =

v

2
√
(
yd
(0)mδmn� v2

2
KL
†mjCdφ

jkKR
kn

)

≡ v

2
√
(
yd
(0)mδmn� v2

2
C̃dφmn

)
, (4.53)

Here we define the Wilson coefficients in the mass basis of the SM as C̃dφmn. The
definitions of the Wilson coefficients in the mass basis of the SM are,

C̃φq
(1)mn ≡ KL

†mjCφq
(1)jkKL

kn , (4.54)

C̃φq
(3)mn ≡ KL

†mjCφq
(3)jkKL

kn , (4.55)

C̃dφmn ≡ KL
†mjCdφ

jkKR
kn . (4.56)

Explicit forms of the C̃φq
(1)mn, C̃φq

(3)mn and C̃dφmn at the scale µVLQ are:

C̃φq
(1)mn(µVLQ) ≡ KL

†mjCφq
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kn = �yd
(0)m4yd

(0)n4∗

4M4
2 , (4.57)

C̃φq
(3)mn(µVLQ) = C̃φq
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†mjCdφ
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kn =
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(0)m4yd

(0)l4∗

2M4
2 yd

(0)lδln , (4.59)

where we used the relation Eqs.(4.10) and (4.11) and define the Yukawa couplings
among the SM quarks and the VLQ in the mass basis of the SM as,

yd
(0)m4 ≡ KL

†mjyd
j4 . (4.60)

The mass matrix Eq.(4.53) is still non-diagonal. We introduce unitary matrices VL
and VR which diagonalize the whole mass matrix Eq.(4.53):

⎧
⎨

⎩
dL
(0)m=VL

mpdL
′ p
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(0)m=VR

mpdR
′ p
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(
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)
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nq ≡ yd

′pδpq, (4.61)

where the prime indicates the complete mass basis of the SM down-type quarks with
the diagonal mass matrix,

Md ≡ v

2
√ yd

′ = diag[md,ms,mb] . (4.62)

The mixing angles of the unitary matrices VL,R are of the order of O(v2/M4
2) since

the off-diagonal elements of the mass matrix Eq.(4.53) is of the order of v2C̃dφmn∼
v2/M4

2. We define the Yukawa coupling in the complete mass basis as,

yd
′p4 ≡ VL

†pmyd
(0)m4 ≃ δpmyd

(0)m4+O
(
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M4
2

)
, (4.63)
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then we can take,
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′p4yd

′q4∗

2M4
2 yd

′ q+O
(
v4

M4
4

)
≃ C̃dφ

pq
(µVLQ)+O

(
v4

M4
4

)
. (4.66)

After the transformations Eqs.(4.52) and (4.61), we obtain the kinetic terms and
interactions among the SM quarks induced by the dim.4 Lagrangian Ldim.4

(0) in the
mass basis as,

Ldim.4
(0) = LK

q +LA
q +LW

q +LZ
q +Lχ±

q +Lh
q+Lχ0

q . (4.67)

The each part of the Lagrangian is given as follows:

LK
q = uī(iγµ∂µ�Mu

i)ui+ d p̄(iγµ∂µ�Md
p)dp , (4.68)

LA
q = �e[Quuiγµui+Qddpγµdp]Aµ , (4.69)

LW
q = � g

2
√ [uL

jVCKM
jp γµdL

pWµ
++h.c.] , (4.70)

LZ
q = � g

cw

[
ujγµ

(
1
2
ZuNC
ji L�Qusw

2 δji
)
ui�dpγµ

(
1
2
ZdNC
pq L+Qdsw

2 δpq
)
dq
]
Zµ , (4.71)

Lχ±
q =

g

2
√

MW
[ujVCKM

jq (Mu
iL�Md

qR)dqχ++h.c.] , (4.72)

Lh
q = � g

2MW
[Mu

iuīui+ dp̄HdNC
pq (Md

qR+Md
pL)dq]h , (4.73)

Lχ0
q =

ig
2MW

[ujZuNC
ji (Mu

iR�Mu
jL)ui� dpZdNC

pq (Md
qR�Md

pL)dq]χ0 , (4.74)

where we omit the prime on the down-type quark fields for simplicity. The symbols L
and R denote the chiral projection operators. The matrix Mu

i≡ vyui / 2
√

is diagonal
up-type quark mass matrix. The 3× 3 matrix VCKM is the CKM matrix defined as,

VCKM
jp ≡ KL

jm{δmn+ v2 C̃φq
(3)mn}VL

np . (4.75)

We can see from Eqs.(4.71) and (4.74) that the FCNCs arise from the 3× 3 non-
diagonal matrix ZdNC and ZuNC in the Z and χ0 interactions. The matrix ZdNC and
ZuNC are given as follows:

ZdNC
pq ≡ δpq+ v2VL

†pm{C̃φq
(1)mn+ C̃φq

(3)mn}VL
nq ≃ δpq+ v2

{
C̃φq
(1)pq+ C̃φq

(3)pq} , (4.76)

ZuNC
ji ≡ δji� v2

{
Cφq
(1)ji�Cφq

(3)ji} ≃ δji� v2VCKM
jp {

C̃φq
(1)pq� C̃φq

(3)pq}VCKM
†qi . (4.77)

The matrix ZuNC which induces the FCNC among the up-type quarks vanishes at
the matching scale µVLQ because of the relation Eq.(4.10). It is clear that the FCNC
interactions are suppressed by the factor v2/M4

2 since the Wilson coefficients are
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Figure 4.4. The relation Eq.(4.82) in complex plane [84].

order of M4
�2. Therefore, the FCNC processes are suppressed even though the GIM

mechanism does not work. If we neglect RG effect, the matrix ZdNC can be written as,

ZdNC
pq (µVLQ) ≃ δpq+v2{C̃φq

(1)pq(µVLQ)+ C̃φq
(3)pq(µVLQ)} = δpq� v2yd

′p4yd
′q4∗

2M4
2 . (4.78)

The FCNC in the h interaction Eq.(4.73) is only in the down-type quark sector and
induced by the 3× 3 non-diagonal matrix,

HdNC
pq Md

q ≡ v

2
√ [δpqyd

′ q� v2C̃dφ
pq
] . (4.79)

The matrix HdNC is equal to the matrix ZdNC at the matching scale µVLQ because
of the relations Eqs.(4.10) and (4.11):

HdNC
pq (µVLQ)Md

q = ZdNC
pq (µVLQ)Md

q . (4.80)

In the case of the SM, the CKM matrix is unitary matrix, i.e. VCKM
SM VCKM

SM† =

VCKM
SM†VCKM

SM = 1. However, the unitarity of the 3× 3 CKM matrix VCKM does not
hold in the present model since the Wilson coefficient C̃φq

(3)mn in Eq.(4.75) is not
unitary matrix. Using the expression Eq.(4.75), the product VCKM

† VCKM is given as,
∑

i=u,c,t

VCKM
ip∗ VCKM

iq ≃ δpq+2v2C̃φq
(3)pq = ZdNC

pq � v2
{
C̃φq
(1)pq� C̃φq

(3)pq} . (4.81)

Therefore, the product VCKM
† VCKM is equal to the matrix ZdNC

pq which induces the
FCNC among the down-type quarks at the matching scale µVLQ:

∑

i=u,c,t

VCKM
ip∗ VCKM

iq ≃ ZdNC
pq . (4.82)

This relation can be expressed as a quadrangle in complex plane shown in Fig.4.4.
We note that there is the same relation as Eq.(4.81) in the case of 3× 4 CKM
matrix in the full theory Eq.(2.52). Therefore, the violation of the CKM unitarity
VCKMVCKM

† =/ 1 comes from the existence of the VLQ, not the effect of integrating
out the VLQ. Similarly, the product VCKMVCKM

† is given as,
∑

p=d,s,b

VCKM
ip VCKM

jp∗ ≃ δij+2v2Cφq
(3)ij = ZuNC

ij + v2
{
Cφq
(1)ij+ Cφq

(3)ij} . (4.83)
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In the case of full theory, the product of the VCKM
† VCKM is equal to one if we sum up

all the flavor of SM down-type quarks in addition to the VLQ as shown in Eq.(2.53).
Thus the violation of the CKM unitarity in Eq.(4.83) comes from the effect of
integrating out the VLQ. Finally we present the dim.5 and 6 effective operators in
Eqs.(4.49) and (4.50) after the unitary transformations Eqs.(4.52) and (4.61):

Ldim.5
(0) ⊃ �vg

{
C̃φq
(1)pq� C̃φq

(3)pq}dL
pγµdL

q(Wµ
+χ�+Wµ

�χ+)

+i
{
C̃φq
(1)pq� C̃φq

(3)pq}dL
pγµdL

q(χ�∂µχ+� χ+∂µχ�)

+

[
v

2
√
{
C̃dφ
pq
+2C̃φq

(3)pqMd
q}dL

p dR
q χ+χ�+h.c.

]
, (4.84)

Ldim.6
(0) ⊃ �2e

{
C̃φq
(1)pq� C̃φq

(3)pq}dL
pγµdL

q χ+χ�Aµ . (4.85)

where we omit the prime on the down-type quark fields for simplicity.

4.4.2 One-loop level effective operators (dipole operators)

We substitute Eq.(4.46) for the Higgs doublet φ in the one-loop level effective oper-
ators in Eq.(4.27) with Eqs.(4.28)-(4.31). Here we focus on the dipole operators and
set h, χ±, χ0→ 0 in Eq.(4.46) since we need only the terms which are proportional
to the VEV v in next chapter. After the unitary transformations Eqs.(4.52) and
(4.61), the dipole operators in Eq.(4.27) with Eqs.(4.28)-(4.31) become,

Leff
(1) ⊃ +

v

2
√ (cwCuW

ji � swCuB
ji )[uL

jσµνuR
i Zµν] +

v

2
√ (swCuW

ji + cwCuB
ji )[uL

jσµνuR
i FAµν]

+
v

2
√ (�cwC̃dW

pq � swC̃dB
pq
)dL

pσµνdR
qZµν+

v

2
√ (�swC̃dW

pq
+ cwC̃dB

pq
)dL

pσµνdR
qFAµν

+
v

2
√ CuG

ji
[
uL
jσµν

λa

2
uR
iGµν

a

]
+

v

2
√ C̃dG

pq
[
dL
pσµν

λa

2
dR
qGµν

a

]

+vVCKM
pj∗ CuW

ji [dL
pσµνuR

iWµν
�] + vVCKM

jp C̃dW
pq
[uL
jσµνdR

qWµν
+] +h.c., (4.86)

where cw= cosθw and sw= sinθw with the Weinberg angle θw. We define the Wilson
coefficients in the down-type quark mass basis as,

C̃x
pq ≡ VL

†pmKL
†mjCx

jkKR
knVR

nq ≃ KL
†pjCx

jkKR
kq+O

(
v4

M4
4

)
, (4.87)

with the index x= uB, uW , uG, dB, dW , dG. The field strengths Zµν, FA
µν and

W±µν are defined as,

Zµν ≡ ∂µZν� ∂νZµ , (4.88)
FA
µν ≡ ∂µAν� ∂νAµ , (4.89)

W±µν ≡ ∂µW±ν� ∂νW±µ . (4.90)
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CuG
ji (µVLQ) � 1

24 ·
gs

16π2M4
2 ·

2
√

v
VCKM
jp yd

′p4yd
′q4∗VCKM

iq∗ Mu
i

CuW
ji (µVLQ)

1

24 ·
g

16π2M4
2 ·

2
√

v
VCKM
jp yd

′p4yd
′q4∗VCKM

iq∗ Mu
i

CuB
ji (µVLQ)

g ′

16π2M4
2

(
YqL
2
· 112 �

YdR
2
· 1
8

)
· 2
√

v
VCKM
jp yd

′p4yd
′q4∗VCKM

iq∗ Mu
i

C̃dG
pq (µVLQ) � 1

24 ·
gs

16π2M4
2 ·

2
√

v
yd
′p4yd

′q4∗Md
q

C̃dW
pq (µVLQ)

1

24 ·
g

16π2M4
2 ·

2
√

v
yd
′p4yd

′q4∗Md
q

C̃dB
pq (µVLQ)

g ′

16π2M4
2

(
YqL
2
· 112 �

YdR
2
· 1
8

)
· 2
√

v
yd
′p4yd

′q4∗Md
q

Table 4.3. The Wilson coefficients of the dipole operators in the mass basis [84].

Table 4.3 shows the Wilson coefficients of dipole operators in the mass basis. We
note that,

v

2
√ (�swC̃dW

pq
(µVLQ)+ cwC̃dB

pq
(µVLQ))dL

pσµνdR
qFAµν

= � e
16π2

· GF
6 2
√ Qd · v2

yd
′p4yd

′ q4∗

2M4
2 Md

qdL
pσµνdR

qFAµν . (4.91)

This is consistent with Ref.[84].

4.5 Renormalization Group Effects

We investigate RG effects from the matching scale µVLQ to the EW scale µEW. The
RG equations for the Wilson coefficients in the SMEFT are defined by,

16π2µ d
dµ
Ca(µ) = γabCb(µ) , (4.92)

where γab is an anomalous dimension matrix in the SMEFT given in Refs.[75, 76, 77].
We solve the RG equations under the first leading log approximation (LLA) [77, 83]:

Ca(µEW) ≃
[
δab�

γab
16π2

ln
µVLQ
µEW

]
Cb(µVLQ) . (4.93)

In the following, we focus on the RG effects for only the tree level Wilson coefficients
C̃φq
(1)pq, C̃φq

(3)pq since the coefficient C̃dφ
pq does not appear in our numerical analysis.

4.5.1 RG effects for C̃φq
(1)pq and C̃φq

(3)pq

The solutions of the RG equations for C̃φq
(1)pq and C̃φq

(3)pq are obtained under the first
LLA as follows:

C̃φq
(1)pq(µEW) ≃ C̃φq

(1)pq(µVLQ)�
KL
†piĊφq

(1)ijKL
jq

(4π)2
ln
µVLQ
µEW

, (4.94)

C̃φq
(3)pq(µEW) ≃ C̃φq

(3)pq(µVLQ)�
KL
†piĊφq

(3)ijKL
jq

(4π)2
ln
µVLQ
µEW

. (4.95)
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The coefficients of logarithmic terms are given as [77, 83],

Ċφq
(1)ij = 2[yuyu

†]ikCφq
(1)kj(µVLQ)+2Cφq

(1)ik(µVLQ)[yuyu
†]kj+6Tr[yuyu

†]Cφq
(1)ij(µVLQ)

�9
2
[yuyu

†]ikCφq
(3)kj(µVLQ)�

9
2
Cφq
(3)ik(µVLQ)[yuyu

†]kj , (4.96)

Ċφq
(3)ij = [yuyu

†]ik Cφq
(3)kj(µVLQ)+ Cφq

(3)ik(µVLQ)[yuyu
†]kj+6Tr[yuyu

†]Cφq
(3)ij(µVLQ)

�3
2
[yuyu

†]ik Cφq
(1)kj(µVLQ)�

3
2
Cφq
(1)ik(µVLQ)[yuyu

†]kj , (4.97)

where we take only the terms which are proportional to the up-type Yukawa coupling
into account. Since the top Yukawa coupling gives leading contributions, we focus
on the top Yukawa contributions:

KL
†piĊφq

(1)ijKL
jq ≃ 4mt

2

v2
[
λpp′
t C̃φq

(1)p′q(µVLQ)+ C̃φq
(1)pp′(µVLQ)λp′q

t
]
+

12mt
2

v2
C̃φq
(1)pq(µVLQ)

�9mt
2

v2
[
λpp′
t C̃φq

(3)p′q(µVLQ)+ C̃φq
(3)pp′(µVLQ)λp′q

t
]
, (4.98)

KL
†piĊφq

(3)ijKL
jq ≃ 2mt

2

v2
[
λpp′
t C̃φq

(3)p′q(µVLQ)+ C̃φq
(3)pp′(µVLQ)λp′q

t
]
+

12mt
2

v2
C̃φq
(3)pq(µVLQ)

�3mt
2

v2
[
λpp′
t C̃φq

(1)p′q(µVLQ)+ C̃φq
(1)pp′(µVLQ)λp′q

t
]
, (4.99)

where λpqt ≡ VCKM
tp∗ VCKM

tq . We simply replace KL by VCKM since we neglect O
(

v4

M4
4

)

terms. We consider the case of p= s and q= b to estimate the RG effects:

KL
†siĊφq

(1)ijKL
jb ≃

[
4mt

2

v2
λbb
t +

12mt
2

v2

]
C̃φq
(1)sb(µVLQ)�

9mt
2

v2
C̃φq
(3)sb(µVLQ)λbb

t , (4.100)

KL
†siĊφq

(3)ijKL
jb ≃

[
2mt

2

v2
λbb
t +

12mt
2

v2

]
C̃φq
(3)sb(µVLQ)�

3mt
2

v2
C̃φq
(1)sb(µVLQ)λbb

t , (4.101)

where we leave leading order terms with respect to the CKM matrix elements, that
is λbbt = |VCKMtb |2≈1. Since C̃φq

(1)sb(µVLQ)= C̃φq
(3)sb(µVLQ) as seen in Eq.(4.10), we obtain,

C̃φq
(1)sb(µEW) ≃

[
1� mt

2

(4π)2v2
(�5λbbt + 12) lnµVLQ

µEW

]
C̃φq
(1)sb(µVLQ) , (4.102)

C̃φq
(3)sb(µEW) ≃

[
1� mt

2

(4π)2v2
(�λbbt + 12) ln

µVLQ
µEW

]
C̃φq
(3)sb(µVLQ) . (4.103)

It is clear that the combination C̃φq
(1)sb(µEW)� C̃φq

(3)sb(µEW) =/ 0 because of the RG
effects. However, such a combination is suppressed by the factor 1/(4π)2 com-
pared with C̃φq

(1)sb(µEW) + C̃φq
(3)sb(µEW). We estimate numerical values of the ratio

C̃φq
(1)sb(µEW)/C̃φq

(1)sb(µVLQ) and C̃φq
(3)sb(µEW)/C̃φq

(3)sb(µVLQ). We set λbbt =1 for simplicity
and take mt= 173.1 GeV, v = 246 GeV with µEW=MZ = 91.1876 GeV [65] and
µVLQ= 1 TeV. The left figure in Fig.4.5 shows the dependence of the numerical
values of C̃φq

(1)sb(µEW)/ C̃φq
(1)sb(µVLQ) and C̃φq

(3)sb(µEW)/ C̃φq
(3)sb(µVLQ) on the matching

scale µVLQ. The horizontal axis is the matching scale µVLQ. The vertical axis is the
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Figure 4.5. Left : The scale dependence of ratio C̃φq
(n)sb(µEW)/ C̃φq

(n)sb(µVLQ) with n= 1, 3.
The horizontal axis is the matching scale µVLQ. The vertical axis is the ratio C̃φq

(n)sb(µEW)/

C̃φq
(n)sb(µVLQ). The blue line represents the dependence of the ratio for C̃φq

(1)sb on µVLQ while
the red line corresponds to that of the ratio for C̃φq

(3)sb. Here the scale µVLQ varies from 500
GeV to 10 TeV and µEW=MZ. Right : The numerical value of the ratio

{
C̃φq
(1)sb(µEW) �

C̃φq
(3)sb(µEW)

}
/
{
C̃φq
(1)sb(µEW)+ C̃φq

(3)sb(µEW)
}
as a function of the matching scale µVLQ.

ratio C̃φq
(n)sb(µEW)/C̃φq

(n)sb(µVLQ). The blue line represents the dependence of the ratio
for C̃φq

(1)sb on µVLQwhile the red line corresponds to that of the ratio for C̃φq
(3)sb. We find

from the left figure in Fig.4.5 that the Wilson coefficients at the EW scale C̃φq
(1)sb(µEW)

and C̃φq
(3)sb(µEW) are O(10%) smaller than that at the matching scale µVLQ because

of the RG effects. The right figure of Fig.4.5 shows numerical value of the ratio,

C̃φq
(1)sb(µEW)� C̃φq

(3)sb(µEW)

C̃φq
(1)sb(µEW)+ C̃φq

(3)sb(µEW)
=

mt
2

(4π)2v2
4λbb

t lnµVLQ

µEW

2� mt
2

(4π)2v2
(�6λbbt + 24) lnµVLQ

µEW

. (4.104)

One finds that the combination C̃φq
(1)sb(µEW)�C̃φq

(3)sb(µEW) is approximately ten times
smaller than C̃φq

(1)sb(µEW)+ C̃φq
(3)sb(µEW) and thus negligible.

4.6 Short Summary

We summarize the present chapter. We derive the effective operators in Eqs.(4.12)
and (4.27) with Eqs.(4.28)-(4.31) by integrating out the VLQ up to one-loop level.
After inserting the VEV into the Higgs doublet φ and diagonalizing the down-type
quark mass matrix Eq.(4.51), we obtain the higer dimensional operators Eqs.(4.84),
(4.85) and (4.86) in addition to the dim.4 operators in Eq.(4.67) with Eqs.(4.68)-
(4.74). In next chapter, we construct the weak EFT from the effective Lagrangian
shown in Eqs.(4.67) and (4.86). In the following chapters, we denote the elements
of the CKM matrix VCKM

ij as Vij for simplicity.
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Chapter 5
B Meson Systems in Model with VLQ
In this chapter, we investigate the neutral B meson systems in the model with VLQ.
This can be done by calculating Wilson coefficients of the weak EFT. In this thesis,
we take account of the RG effects from µVLQ to µEW in only the Bs

0→ µ+µ� process.
This is because new physics effects for the Bs

0→ µ+µ� process is induced at the tree
level while new physics contribute to the Bs

0-Bs
0 mixing and the Bd

0→Xsγ at the
one-loop level or O(ZdNC2 ). We give derivations of formulae for the observables of
the neutral B meson systems in Appendix.A.

5.1 Bs
0-Bs

0 Mixing and ∆mBs

The effective Hamiltonian for the Bs
0-Bs

0 mixing is,

Heff
∆B=2 =

GF
2

4π2
MW

2 (λsb
t )2CVLLOVLL+h.c. (5.1)

with a product of the CKM matrix elements λsbt ≡Vts∗Vtb and an effective operator,

OVLL = [sLγµbL][sLγµbL] . (5.2)

Here we use the notation of Ref.[97]. New contributions to the Wilson coefficient
CVLL from the effective Lagrangian shown in Eq.(4.67) are the violation of the CKM
unitarity and the tree level FCNC. These contributions are computed in Refs.[98, 99,
100, 101] in terms of the full theory description. The violation of the CKM unitarity
Eq.(4.82) leads to new contributions to the effective Hamiltonian:

Heff
(1)∆B=2 = � GF

2

4π2
MW

2 (λsb
t )2

(
Ētt� 4

ZNC
sb

λsb
t Et

′

)
[sLγµbL][sLγµbL] , (5.3)

where we leave only the top quark contributions. The first term in the parentheses
corresponds to the SM contribution shown in Eq.(A.34) with Ētt=�S0(xt) [102].
The second term is the result of the violation of CKM unitarity. The function Et

′ is
given as,

Et
′ = �3

8
xi

(xi� 1)2
lnxi+

3
8

xi
xi� 1

+ γ(xi, ξ)� γ(0, ξ) , (5.4)

with [102],

γ(xi, ξ) =
ξ

xi� ξ

(
3
4

1
xi� 1

+
1
8

ξ
xi� ξ

)
xi ln xi �

1
8

ξ2

xi� ξ

[
�
(
5+ ξ
1� ξ �

ξ
xi� ξ

)
lnξ + 1

]
,

(5.5)
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Figure 5.1. New diagrams which contribute to the Wilson coefficient CVLL [84].

where ξ is the gauge fixing parameter of the Rξ gauge.
The diagrams including the tree level FCNC contributes to the Wilson coeffi-

cient CVLL. These diagrams are shown in Fig.5.1 and lead to the following effective
Hamiltonian:

Heff
(NC)∆B=2 = � GF

2

4π2
MW

2 λsb
t 4ZNC

sb �t [sLγµbL][sLγµbL] , (5.6)

Heff
(tree)∆B=2 =

GF
2

√ (ZNC
sb )2[sLγµbL][sLγµbL] , (5.7)

where

�t =
1
4
xi�

3
8

xi
xi� 1

+
3
8
2xi

2� xi
(xi� 1)2

lnxi+ γ(xi, ξ)� γ(0, ξ) . (5.8)

The Heff
(NC)∆B=2 comes from the left-hand side diagram in Fig.5.1 while Heff

(tree)∆B=2

is derived by the right-hand side diagram in Fig.5.1. These results are consistent
with full theory calculations [98, 99, 100, 101]. Then the new physics contributions
to the Wilson coefficients are given as,

CLVV
(uv+NC)(µEW) = �4(�t�Et

′)
ZNC
sb

λsb
t ≡ �8Y0(xt)

ZNC
sb

λsb
t , (5.9)

CLVV
(tree)(µEW) =

4πsw
2

αem

(
ZNC
sb

λsb
t

)
2

, (5.10)

where the function Y0(x) is defined by [102, 103],

Y0(x) =
x
8
� 3
8

x
x� 1 +

3
8

x2

(x� 1)2 lnx . (5.11)

It is clear that the function Y0(x) does not depend on the gauge parameter ξ. The
total effective Hamiltonian can be written as,

Heff
∆B=2 =

GF
2

4π2
MW

2 (λsb
t )2CVLLOVLL+h.c.. (5.12)

with

CVLL = CVLL
SM +CLVV

(uv+NC)+CLVV
(tree) . (5.13)
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Z

s̄

b̄ µ�

µ+
ZdNC
sb

Figure 5.2. The tree level FCNC contribution to the C10 [84].

Finally, the mass difference of Bs
0 meson is given by (see Appendix A.1),

∆mBs ≃ 2|M12
Bs| = GF

2

6π2
MW

2mBsfBs
2 BsηBs|λsbt |2|CVLL(µEW)| . (5.14)

5.2 Bs
0→ µ+µ� Process

5.2.1 Branching ratio
The effective Hamiltonian for the Bs

0→ µ+µ� process is,

Heff
∆B=1 = �4GF

2
√ αem

4π
λsb
t C10O10+h.c. , (5.15)

with the effective operator,

O10 = [sL γµbL][µ γµγ5µ] , (5.16)

where we follow the notation of Refs.[104, 105, 106, 107]. In order to compute the
branching ratio of the Bs

0→µ+µ� process in the present model, we have to determine
the Wilson coefficient C10. The tree level FCNC contributes to the C10 as shown in
Fig.5.2. The new physics contribution appears as the tree level diagram while the
SM contribution comes from the one-loop diagrams shown in Fig.A.2. Therefore, the
violation effect of the CKM unitarity is suppressed by factor e2/(16π2) compared
with the tree level new physics contribution. The contribution to C10 from the tree
level diagram in Fig.5.2 is,

C10
NP(µEW) =

π
αem

· ZdNC
sb (µEW)
λsb
t , (5.17)

with,

ZdNC
sb (µEW) = v2

{
C̃φq
(1)pq(µEW)+ C̃φq

(3)pq(µEW)
}

≃
[
1� mt

2

(4π)2v2
(�3λbbt + 12) ln

µVLQ
µEW

]
ZdNC
sb (µVLQ) , (5.18)

where we take Eq.(4.78) into account. The branching ratio is given by Eq.(A.62):

BR[Bs0→ µ+µ�] = τBs
GF
4MW

4 sw
4

8π5
1� 4mµ

2

mBs
2

√
fBs
2 mBsmµ

2 |λsbt |2|ηYC10(µEW)|2
[
1+ ysA∆�

µµ

1� ys
2

]
,

(5.19)
with the total Wilson coefficient,

C10 = C10
SM+C10

NP . (5.20)
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Figure 5.3. Left : The numerical value of |C10| as a function of the parameter rsb. Right :
Difference between the numerical value of |C10|2 in the model with VLQ and the SM.
In both figures, the different colors of the line represent to different values of the phase
θsb. The solid lines correspond to the numerical value of |C10| with RG effect, that is
|C10|= |C10

SM+ C10
NP(µEW)|. The dashed lines are the values without RG effect, |C10|=

|C10
SM+C10

NP(µVLQ)|. Here we set mt=mt,MS(mt) with the pole mass mt,pole= 173.1 GeV
[65] and µVLQ=1 TeV, µEW=MW .

where we define C10
SM≡�Y0(xt)

sw
2 [102].

5.2.2 Numerical evaluation of the Wilson coefficient
We evaluate the new physics contribution to the Wilson coefficient C10 numerically.
We define parameters related to the FCNC coupling ZdNCsb ,

rsb ≡

∣∣∣∣∣∣∣∣∣∣
ZdNC
sb (µVLQ)

λsb
t

∣∣∣∣∣∣∣∣∣∣ , (5.21)

θsb ≡ arg

[
ZdNC
sb (µVLQ)

λsb
t

]
. (5.22)

The left figure of Fig.5.3 shows the numerical value of |C10| as a function of the
parameter rsb. The right figure of 5.3 shows the difference between the numerical
value of |C10|2 in the model with VLQ and the SM. In both figures, the different
colors of the line represent to different values of the phase θsb. The solid lines cor-
respond to the numerical value of |C10| with the RG effect, that is |C10|= |C10

SM+

C10
NP(µEW)|. The dashed lines are the values without the RG effect, |C10|= |C10

SM+

C10
NP(µVLQ)|. Here we take the top quark mass as the MS mass mt=mt,MS(mt)

computed by leading order QCD correction with the pole mass mt,pole= 173.1 GeV
[65] and µVLQ= 1 TeV, µEW=MW . There is the point where the absolute value
|C10| approaches zero in the left figure of Fig.5.3 because of the large new physics
contribution. Moreover, one finds in the right figure of Fig.5.3 that the new physics
contribution can become as large as the SM contribution. Also the RG effect from
µVLQ to µEW increases as the parameter rsb grows.
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γ γ

ui

uiui

W , χ

W , χW , χ

dp dp

Z, χ0, h

Figure 5.4. The diagrams contributing to the b→sγ(∗) process [84]. The diagrams (a�1)
and (a�2) also exist in the case of the SM. The diagram (b) contains the tree level FCNC
interactions. The diagram (c) corresponds to conterterms coming from the quark self-
energy and diagrams shown in Fig.5.5.

5.3 Branching ratio of Bd
0→Xsγ

We present effective Hamiltonian for the Bd
0→Xsγ process in Eq.(A.66). In the

branching ratio of the Bd
0→Xsγ process, we take account of new physics contribu-

tions to C2, C7γ and C8g with effective operators of the weak EFT,

O2 = (sLγµcL)(cLγµbL) , (5.23)

O7γ =
e

16π2
mb(sLσµνbR)FAµν , (5.24)

O8g =
gs

16π2
mb(sLσµνT abR)Gµν

a . (5.25)

The new physics contribution to C2 comes from the violation of the CKM unitarity,

4GF

2
√ λsb

c C2O2 ≃ �4GF

2
√ λsb

t

(
1� ZdNC

sb

λsb
t

)
C2O2 → C2

NP(µEW) = �ZdNC
sb

λsb
t , (5.26)

where the small product of the CKM matrix element λsbu is neglected. We give an
example of the computation for the Bd

0→Xsγ process in Appendix.B.

5.3.1 Effective Lagrangian in weak EFT
In order to obtain new physics contributions to the Wilson coefficients C7γ and C8g,
we calculate the amplitude of the b→ sγ and b→sγ∗ processes where γ∗ denotes off-
shell photon. The diagrams shown in Fig.5.4 in addition to the effective Lagrangian
Eq.(4.86) are contribute to the b→ sγ(∗) process. The diagrams (a� 1) and (a� 2)
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Z, χ0 γ

W±, χ±, C±, t

Figure 5.5. The Z-γ, χ0-γ mixing diagram at one-loop level [84]. The symbol C± rep-
resents the Faddeev–Popov ghost field.

are the same diagrams as the SM calculation [102]. The diagram (b) contains the
tree level FCNC interactions. The diagram (c) corresponds to conterterms coming
from the quark self-energy and the Z-γ, χ0-γ mixing diagrams shown in Fig.5.5. The
effective Lagrangian for the radiative decay process with on-shell photon b→ sγ has
been calculated in terms of the full theory of the model with VLQ [108, 109, 110].
On the other hand, the effective Lagrangian for the b→ sγ∗ process has not been
calculated yet. In order to check cancellation of the divergence in the amplitude, we
compute the radiative decay process including the off-shell photon contributions.

As shown in Appendix.B, the wavefunction renormalization determined by the
quark self-energy diagrams in Fig.(B.1) can remove the divergence in the diagrams
(a�1) and (a�2) of Fig.5.4 in the case of the SM. This is because the terms which
do not contain the up-type quark masses vanish after using the CKM unitarity in
the SM. This means that the wavefunction renormalization cannot remove all the
divergence in the diagrams (a� 1) and (a� 2) of Fig.5.4 if the CKM unitarity does
not hold. We explicitly show this fact in Appendix.B. The remaining divergence is
not taken the calculations of Refs.[108, 109, 110] into account since the divergence
appears in the b→ sγ∗.

In order to remove all the divergence, we have to take account of the Z-γ,
χ0-γ mixing diagrams shown in Fig.5.5. This diagram leads to a wave function
renormalization [111]:

(
Z0
µ

A0
µ

)
=

(
ZZZ

√
ZZA

√

ZAZ
√

ZAA
√

)(
Zµ

Aµ

)
, (5.27)

where the subscript “0” means bare quantities. The symbols Zij
√

with i, j=Z,A

are the renormalization constants. The off-diagonal elements ZZA
√

and ZAZ
√

are
determined by the diagrams in Fig.5.5. In the MS scheme, we obtain,

ZZA
√

= �egcw
8π2

CUV , (5.28)

ZAZ
√

=
egcw
16π2

CUV

(
�17
3
+

41
6
MZ

2

MW
2

)
, (5.29)
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as shown in Appendix B.2. The tree level FCNC through the Z boson leads to a
counterterm for b→ sγ(∗) vertex:

ZdNC
sb s̄γµLbZ0

µ → ZZA
√

ZdNC
sb s̄γµLbAµ . (5.30)

All the divergence in the diagrams (a�1) and (a�2) of Fig.5.4 are cancelled by the
counterterm Eq.(5.30) in addition to the counterterms induced by the wavefunction
renormalization of the external quark fields.

The finite part of the amplitude from the diagram in Fig.5.5 contributes to the
effective Lagrangian for the b→ sγ∗ process. Finally, we obtain the effective Lag-
rangian Leff(b→ sγ) for the on-shell photon and the effective Lagrangian Leff(b→
sγ∗) for the off-shell photon. We divide these effective Lagrangian into,

Leff(b→ sγ) ≡ LeffCC(b→ sγ)+Leffuv (b→ sγ)+LeffNC(b→ sγ) , (5.31)

Leff(b→ sγ∗) ≡ LeffCC(b→sγ∗)+Leffuv (b→sγ∗)+LeffNC(b→sγ∗)+LeffMix(b→sγ∗) , (5.32)

where the indices “CC” mean the contributions from the diagrams in (a� 1) and
(a� 2) of Fig.5.4 with the CKM unitarity relation, namely the SM contributions.
The subscripts “uv” and “NC” indicate the contributions from the violation of CKM
unitarity in (a�1) and (a�2) of Fig.5.4 and the diagram in Fig.5.4(b), respectively.
The index “Mix” represents the contributions from the finite part of the Z-γ and χ0-
γ mixing diagrams. Concrete form of these Lagrangian are given as follows [84]:

LeffCC(b→ sγ) = � GF e

8 2
√

π2

∑

i=c,t

λsb
i {QuFu(xi)+FW(xi)}s̄σµν(mbR+msL)bFA

µν , (5.33)

Leffuv (b→ sγ) =
GF e

8 2
√

π2
ZdNC
sb

(
2
3
Qu+

5
6

)
s̄σµν(mbR+msL)bFA

µν , (5.34)

LeffNC(b→ sγ) =
GF e

8 2
√

π2
Qd

∑

p=d,s,b

ZdNC
sp ZdNC

pb FZZ(rp, wp)s̄σµν(mbR+msL)bFA
µν

+
GF e

8 2
√

π2
Qd
2sw
2
∑

p=d,s,b

ZdNC
sb (δsp+ δpb)FZ(rp)s̄σµν(mbR+msL)bFA

µν

� GF e

4 2
√

π2
Qd
2sw
2
∑

p=s,b

ZdNC
sb FZ

′ (rp)s̄σµν(δpbmbR+ δspmsL)bFA
µν , (5.35)

for on-shell photon case and,

LeffCC(b→ sγ∗) = � GF e

8 2
√

π2

∑

i=c,t

λsb
i {Qufu(xi)+ fW(xi)}s̄γνLb∂µFA

µν , (5.36)

Leffuv (b→ sγ∗) = � GF e

8 2
√

π2
ZdNC
sb

{
Qu

(
�2
9
+
4
3
lnxu

)
� 16

9

}
s̄γνLb∂µFA

µν , (5.37)

LeffNC(b→ sγ∗) =
GF e

8 2
√

π2
Qd

∑

p=d,s,b

ZdNC
sp ZdNC

pb fZZ(rp, wp)s̄γνLb∂µFA
µν

+
GF e

8 2
√

π2
Qd
2sw
2
∑

p=d,s,b

ZdNC
sb (δsp+ δpb)fZ(rp)s̄γνLb∂µFA

µν , (5.38)
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LeffMix(b→ sγ∗) =
GF e

8 2
√

π2
ZdNC
sb

{(
10cw2 +

1
3

)
lnµEW

2

MW
2 +

4
3
cw
2

}
s̄γνLb∂µFA

µν

+
GF e

8 2
√

π2
ZdNC
sb

{
�2Qu(1� 4Qusw

2 )lnµEW
2

mt
2

}
s̄γνLb∂µFA

µν . (5.39)

for the off-shell photon. The loop functions corresponding to the SM contributions
are defined as,

Fu(xi) ≡
xi(2+3xi� 6xi2+xi

3+6xi lnxi)
4(xi� 1)4

, (5.40)

FW(xi) ≡
xi(1� 6xi+3xi

2+2xi
3� 6xi2 lnxi)

4(xi� 1)4
. (5.41)

fu(xi) ≡ �xi{18� 29xi+ 10xi2+ xi
3+ (32� 18xi)ln xi}

6(xi� 1)4
+

4
3(xi� 1)4

ln xi �
4
3
ln xu ,

(5.42)

fW(xi) ≡
xi{12� 11xi� 8xi2+7xi

3+2xi(12� 10xi+ xi
2)lnxi}

6(xi� 1)4
, (5.43)

which agree with the SM results in Ref.[102]. The functions FZZ, FZ , and FZ
′ are

given by,

FZZ(rα, wα) ≡ F1(rα)+F2(rα)+F3(wα) , (5.44)

FZ(rα) ≡ 2F1(rα) , (5.45)

FZ
′ (rα) ≡

1� rα2 +2rαln rα
(1� rα)3

, (5.46)

where rα≡ (md
p/MZ)2 and wα≡ (md

p/Mh)2 with md
p=(md,ms,mb). The symbol Mh

denotes the physical Higgs boson mass. The functions F1, F2 and F3 are,

F1(rα) ≡
4� 9rα+5rα

3 +6rα(1� 2rα)ln rα
12(1� rα)4

, (5.47)

F2(rα) ≡ rα
�20+ 39rα� 24rα2 +5rα

3 +6(�2+ rα)ln rα
24(�1+ rα)4

, (5.48)

F3(wα) ≡ �wα
�16+ 45wα� 36wα2 +7wα

3 +6(�2+3wα)lnwα
24(�1+wα)4

. (5.49)

The functions F1 and F2 come from the diagram in Fig.5.4(b) where the exchanged
particles are Z and χ0, respectively. The function F3 comes from the diagram in
Fig.5.4(b) where the Higgs boson h is exchanged. The functions fZZ and fZ in
Eq.(5.38) are defined as follows:

fZZ(rα, wα) ≡ f1(rα)+ f2(rα)+ f2(wα) , (5.50)

fZ(rα, wα) = 2f1(rα) , (5.51)

f1(rα) ≡
2+ 27rα� 54rα2 + 25rα3 � 6(2� 9rα+6rα

2)ln rα
18(1� rα)4

, (5.52)

f2(rα) ≡ rα
�16+ 45rα� 36rα2 +7rα

3 +6(�2+ 3rα)ln rα
36(1� rα)4

, (5.53)

f2(wα) = wα
�16+ 45wα� 36wα2 +7wα

3 +6(�2+ 3wα)lnwα
36(1�wα)4

. (5.54)
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We can obtain the effective Lagrangian for the b→sg(∗) process by replacing the
external photon which attached to quarks in Fig.5.4 with the gluon. They are given
as,

Leff(b→ sg) ≡ LeffCC(b→ sg)+Leffuv (b→ sg)+LeffNC(b→ sg) , (5.55)

Leff(b→ sg∗) ≡ LeffCC(b→ sg∗)+Leffuv (b→ sg∗)+LeffNC(b→ sg∗) , (5.56)

with

LeffCC(b→ sg) = � GF gs
8 2
√

π2

∑

i=c,t

λsb
i Fu(xi)s̄σµν(mbR+msL)

λa

2
bGaµν , (5.57)

Leffuv (b→ sg) =
GF gs
8 2
√

π2
· 2
3
ZdNC
sb s̄σµν(mbR+msL)

λa

2
bGaµν , (5.58)

LeffNC(b→ sg) =
GF gs
8 2
√

π2

∑

p=d,s,b

ZdNC
sp ZdNC

pb FZZ(rp, wp)s̄σµν(mbR+msL)
λa

2
bGaµν

+
GF gs
8 2
√

π2
Qdsw

2
∑

p=d,s,b

ZdNC
sb (δsp+ δpb)FZ(rp)s̄σµν(mbR+msL)

λa

2
bGaµν

� GF gs
4 2
√

π2
Qdsw

2
∑

p=s,b

ZdNC
sb FZ

′ (rp)s̄σµν(δpbmbR+δspmsL)
λa

2
bGaµν , (5.59)

and

LeffCC(b→ sg∗) = � GF gs
8 2
√

π2

∑

i=c,t

λsb
i fu(xi)s̄γν

λa

2
Lb∂µGaµν , (5.60)

Leffuv (b→ sg∗) = � GF gs
8 2
√

π2
ZdNC
sb

(
�2
9
+
4
3
lnxu

)
s̄γν

λa

2
Lb∂µGaµν , (5.61)

LeffNC(b→ sg∗) =
GF gs
8 2
√

π2

∑

p=d,s,b

ZdNC
sp ZdNC

pb fZZ(rp, wp)s̄γν
λa

2
Lb∂µGaµν

+
GF gs
8 2
√

π2
Qdsw

2
∑

p=d,s,b

ZdNC
sb (δsp+ δpb)fZ(rp)s̄γν

λa

2
Lb∂µGaµν . (5.62)

5.3.2 Determination of the Wilson coefficients C7γ
eff and C8g

eff

We show the effective Hamiltonian for b→ sγ process in Eq.(A.66). In b→ sγ pro-
cess, it is convenient to introduce so-called “effective coefficients” Ci

(0)eff [112, 113].
Concrete definition is given in Appendix A.3. As we see in Eq.(A.79), we can directly
take the leading order Wilson coefficients C7γ

(0)eff and C8g
(0)eff from the amplitudes

computed in the full theory at the one-loop level, that is the effective Lagrangian
Leff(b→ sγ) and Leff(b→ sg). We define C7γ

(0)eff and C8g
(0)eff as,

C7γ
(0)eff = C7γ

SM(0)eff +C7γ
SMEFT(0)eff +C7γ

NC(0)eff , (5.63)

C8g
(0)eff = C8g

SM(0)eff +C8g
SMEFT(0)eff +C8g

NC(0)eff . (5.64)
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The coefficients with the index “SM” are the SM contributions:

C7γ
SM(0)eff(µEW) = �1

2
[QuFu(xt)+FW(xt)] , (5.65)

C8g
SM(0)eff(µEW) = �1

2
Fu(xt) . (5.66)

The Wilson coefficients C7γ
SMEFT(0)eff and C8g

SMEFT(0)eff comes from the effective Lag-
rangian shown in Eq.(4.86). When we neglect the RG effects, we obtain,

C7γ
SMEFT(0)eff(µEW) = C7γ

SMEFT(0)eff(µVLQ) =
Qd

24
· ZdNC

sb

λsb
t , (5.67)

C8g
SMEFT(0)eff(µEW) = C8g

SMEFT(0)eff(µVLQ) =
1
24
· ZdNC

sb

λsb
t , (5.68)

where we use Eqs.(4.78) and (4.91). The Wilson coefficients C7γ
NP(0)eff and C8g

NP(0)eff

are defined by,

C7γ
NP(0)eff ≡ C7γ

uv(0)eff +C7γ
NC(0)eff , (5.69)

C8g
NP(0)eff ≡ C8g

uv(0)eff +C8g
NC(0)eff , (5.70)

where indices “uv” and “NC” corresponds to the subscripts in Eqs.(5.31) and (5.55).
These Wilson coefficients can be taken from Eqs.(5.34), (5.35), (5.58) and (5.59):

C7γ
uv(0)eff(µEW) =

1
2

(
2
3
Qu+

5
6

)
ZdNC
sb

λsb
t , (5.71)

C7γ
NC(0)eff(µEW) =

Qd

3
(1�Qdsw

2 )
ZdNC
sb

λsb
t , (5.72)

C8g
uv(0)eff(µEW) =

ZdNC
sb

3λsb
t , (5.73)

C8g
NC(0)eff(µEW) =

1
3
(1�Qdsw

2 )
ZdNC
sb

λsb
t . (5.74)

Here we set rα= wα= 0 in the loop functions FZZ, FZ , and FZ
′ since the Z and

Higgs bosons are much heavier than the down-type quarks. Then the remaining
contribution for C7γ

NC(0)eff and C8g
NC(0)eff comes from the function F1(rα) and FZ′ (rα),

which corresponds to the contributions from the Z boson exchanged diagram. We
also neglect O(ZdNC2 ) terms. In our numerical analysis, we include these new physics
effects in only O(αs0) term, that is the first term of D in Eq.(A.87).
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Chapter 6

Numerical Analysis

In the present chapter, we make the numerical analysis for the neutral B meson
systems which we investigate in Chap.5 and Appendix.A. We cannot use the SM
value for the product of the CKMmatrix elements λsbt ≡Vts∗Vtb in the model with VLQ
since the new physics contributions in CVLL affect the determination of the CKM
matrix elements. Therefore, we determine the absolute value of λsbt as a function
of the new physics parameters rsb and θsb through the mass difference of Bs

0 meson
∆mBs in Eq.(5.14):

|λsbt |2 ∝ [∆mBs]exp
|CVLL(rsb, θsb)|

, (6.1)

where [∆mBs]exp is experimental value of ∆mBs. In addition, we take account of a
constraint from the violation of CKM unitarity shown in Eqs.(4.81) and (4.82),

λsb
u +λsb

c +λsb
t ≃ ZdNC

sb (µVLQ) . (6.2)

Here we omit the tiny RG effect compared with ZdNC
sb (µVLQ) for simplicity. The

relation Eq.(6.2) can be rewritten as,
∣∣∣∣∣∣∣∣
λsb
c

λsb
t

∣∣∣∣∣∣∣∣
2
(
1� 2

∣∣∣∣∣∣∣∣
λsb
u

λsb
c

∣∣∣∣∣∣∣∣cosγs+
∣∣∣∣∣∣∣∣
λsb
u

λsb
c

∣∣∣∣∣∣∣∣
2
)

= 1� 2rsbcosθsb+ rsb
2 , (6.3)

where the angle γs is defined by γs≡�arg
[
�λsb

u

λsb
c

]
. We consider γs a free parameter

and thus we set �1≤ cosγs≤+1. In the following, we derive constraints on the rsb
and θsb from the branching ratios Br[Bs

0→ µ+µ�] and Br[Bd
0→Xsγ]. Numerical

values of input parameters are shown in Table 6.1.

First we investigate the branching ratio of the Bs
0→ µ+µ� process. The concrete

expression of the branching ratio is given in Eq.(5.19). As an experimental value of
the branching ratio, we adopt a result measured by LHCb [56],

Br[Bs0→ µ+µ�]Exp = (3.0± 0.6�0.2
+0.3)× 10�9 . (6.4)
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αem
�1(mb∼MW) 130.3± 2.3 [114] αs(MZ) 0.1179± 0.0010 [65]

MW 80.379± 0.012 GeV [65] MZ 91.1876± 0.0021 GeV [65]
GF 1.16638× 10�5 GeV�1 [65] sin2θw 0.23122 [65]
mc,MS 1.28± 0.025 GeV [65] mb 4.18�0.02

+0.03 GeV [65]
mt,pole 173.1± 0.9 GeV [65] mµ 105.6584 MeV [65]
mBd 5279.64± 0.13 MeV [65] mBs 5366.88± 0.17 MeV [65]
τBs (1.510± 0.004)× 10�12 s [65] ∆mBs (1.1688± 0.0014)× 10�11 GeV [65]
Br[Bd0→Xceνē]Exp (10.1± 0.4)× 10�2 [65] ∆�Bs (0.090± 0.005)× 1012 s�1 [65]
ηB 0.5510± 0.0022 [115] ηY 1.0113 [116]
Bs 1.327± 0.016± 0.030 [7] fBs 226.0± 1.3± 2.0 MeV [7]
Vub 0.00392�0.00021

+0.00015 [7] Vus 0.224791�0.000098
+0.000170 [7]

Vcb 0.04241�0.00151
+0.00040 [7] Vcs 0.973534�0.000073

+0.000057 [7]

Table 6.1. Numerical values of input parameters.

Figure 6.1. The dependence of Br[Bs0→ µ+µ�] predicted in the model with VLQ on
the parameter rsb. The difference between the range of θsb is expressed as the difference
between colors of the dots. All the dots satisfy the constraints from Eq.(6.3) with �1≤
cosγs≤+1. The experimentally allowed region shown in Eq.(6.4) is expressed as the gray
shaded region. The figure is reproduced from Ref.[84].

Figure 6.1 shows the dependence of Br[Bs
0→ µ+µ�] predicted in the model with

VLQ on the parameter rsb. The difference between the range of θsb is expressed as
the difference between colors of the dots. All the dots satisfy the constraints from
Eq.(6.3) with �1≤cosγs≤+1. The experimentally allowed region shown in Eq.(6.4)
is expressed as the gray shaded region. We note that the predicted branching ratio
is independent of the sign of θsb since the dependence of the branching ratio on the
θsb comes from only Re[C10

SM∗C10
NP]∝cosθsb. The dependence of Br[Bs

0→µ+µ�] on the
rsb can be understood by the left figure of Fig.5.3. We can see from the left figure
of Fig.5.3 that the total Wilson coefficient |C10| approaches zero around rsb≃ 0.01
for the small θsb. In other words, the Wilson coefficient C10

NP becomes C10
NP≃�C10

SM

and thus |C10|= |C10
SM+C10

NP|≃ 0 in the region around rsb≃ 0.01 with θsb≃ 0. This
gives rise to the small value of the branching ratio Br[Bs

0→ µ+µ�] at rsb≃ 0.01 and
0≤ θsb≤ π

4
. For rsb≃ 0.02 with 0≤ θsb≤ π

4
, the value of Br[Bs

0→ µ+µ�] comes close
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Figure 6.2. The dependence of Br[Bd0→Xsγ] predicted in the model with VLQ on the
parameter rsb. The difference between the range of θsb is expressed as the difference
between colors of the dots. All the dots satisfy the constraints from Eq.(6.3) with �1≤
cosγs≤+1. The experimentally allowed region shown in Eq.(6.6) is expressed as the gray
shaded region. These figures are reproduced from Ref.[84].

to the value of Br[Bs
0→ µ+µ�] at rsb=0, namely the predicted value in the SM [106,

107]:

Br[Bs0→ µ+µ�]SM = (3.57± 0.16)× 10�9 . (6.5)

One can find in the left figure of Fig.5.3 that the total Wilson coefficient |C10| is
also almost the same as the Wilson coefficient of the SM, |C10|≃ |C10

SM| in the region
around rsb≃ 0.02. This situation is realized by C10

NP≃�2C10
SM.

Next we analyze the branching ratio of the inclusive radiative decay Bd
0→Xsγ.

The analytical expression of Br[Bd
0→Xsγ] is shown in Eq.(A.84). The new physics

contributions are embedded in the Wilson coefficients C7γ
(0)eff(µb). We set µb=mb

in our numerical analysis. The current average of the experimental results are [64],

Br[Bd0→Xsγ]Exp = (3.32± 0.15)× 10�4 , (6.6)

which is given by the experimental data from BaBar [57, 58, 59], Belle [60, 61, 62] and
CLEO [63] experiments. We show the dependence of Br[Bd

0→Xsγ] predicted in the
model with VLQ on the parameter rsb in Fig.6.2. The difference between the range of
θsb is expressed as the difference between colors of the dots. All the dots satisfy the
constraints from Eq.(6.3) with �1≤ cosγs≤+1. The experimentally allowed region
shown in Eq.(6.6) is expressed as the gray shaded region. The Fig.6.2 shows that
the predicted value of Br[Bd

0→Xsγ] comes close to that of the SM prediction [117],

Br[Bd0→Xsγ]SM = (3.36± 0.23)× 10�4 , (6.7)

as rsb approaches zero. One finds that the filled regions by the colored dots are almost
the same as each other. Therefore, the branching ratio of the Bd

0→Xsγ depends on
the phase θsb weakly compared with the branching ratio of theBs

0→µ+µ�. Moreover,
the dependence of Br[Bd

0→Xsγ] on rsb is weaker than that of Br[Bs
0→ µ+µ�].
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Figure 6.3. Left : The region of (rsb, θsb) allowed by the experimental data of Br[Bs0→
µ+µ�] and Br[Bd0→Xsγ] shown in Eqs.(6.4) and (6.6), respectively. The blue dots satisfy
the constraints from both the Br[Bs0→ µ+µ�] and Eq.(6.3) with �1≤ cosγs≤+1. The
green dots satisfy the constraints from both the Br[Bd0→Xsγ] and Eq.(6.3) with �1≤
cosγs≤+1. Right : The constraints on the mass of VLQM4 and absolute value of product
of the Yukawa couplings |yd′s4yd′b4∗|. In the label of right figure, we omit the prime on yd

for simplicity. The blue dots satisfy the constraints from both the Br[Bs0→ µ+µ�] and
Eq.(6.3) with �1≤ cosγs≤+1. These figures are reproduced from Ref.[84].

The left figure of Fig.6.3 shows regions of (rsb, θsb) allowed by the experimental
data of Br[Bs

0→ µ+µ�] and Br[Bd
0→Xsγ] shown in Eqs.(6.4) and (6.6), respectively.

The blue dots satisfy the constraints from both the Br[Bs
0→µ+µ�] and Eq.(6.3) with

�1≤ cosγs≤+1. The green dots satisfy the constraints from both the Br[Bd
0→Xsγ]

and Eq.(6.3) with �1≤ cosγs≤+1. The values of rsb and θsb in the region where the
blue and green region overlap each other satisfy all the constraints from Br[Bs

0→
µ+µ�], Br[Bd

0→Xsγ] and Eq.(6.3) with �1≤ cosγs≤+1. In the region in the blue
ring, the predicted branching ratio Br[Bs

0→ µ+µ�] is smaller than the experimental
allowed region. Also one can understand that the allowed region around (rsb, θsb)∼
(0.02, 0) corresponds to the situation where C10

NP≃�2C10
SM. One finds that such a

large new physics effect does not excluded by the measurement of Br[Bd
0→Xsγ] even

though the branching ratio Br[Bd
0→Xsγ] is precisely measured at the experiments.

Finally, we show constraints on the mass of VLQ M4 and absolute value of
product of the Yukawa couplings |yd′s4yd′b4∗| in the right figure of Fig.6.3. One finds
that the stringent constraint on (rsb, θsb) is given by the branching ratio Br[Bs

0→
µ+µ�] in the left figure of Fig.6.3. Hence the right figure of Fig.6.3 shows a region
where the constraints from Br[Bs

0→ µ+µ�] and Eq.(6.3) with �1≤ cosγs≤+1 are
satisfied, as the blue dots. One finds that the lower limit on the mass of VLQ is
around 2 TeV for |yd′s4yd′b4∗|∼ 0.1 or around 6 TeV for |yd′s4yd′b4∗|∼ 1.
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Chapter 7

Summary and Discussion

We have investigated the model with one SU(2)L singlet down-type VLQ on the
basis of the SMEFT. In the model with VLQ, the GIM mechanism does not work.
This fact is understood as two features of the model with VLQ. One is the existence
of the tree level FCNCs induced by the Z boson, the Higgs boson and the neutral
NG boson. The other is the violation of the CKM unitarity. We presented these
features both in the full theory and the SMEFT descriptions in Chap.2 and Chap.4,
respectively. These features lead to new contributions to the observables of the
FCNC processes in the neutral B meson systems. The new physics contributions
can be as large as the SM contributions. This is because the SM contributions to
the FCNC processes are suppressed by the GIM mechanism while the new physics
contributions are not suppressed. Hence it is expected that the FCNC processes in
the neutral B meson systems give stringent constraints on the model with VLQ.

The recent lower limits for the VLQmass from the ATLAS and CMS experiments
[34, 49] are about ten times larger than the EW scale. We investigated the model
with VLQ on the basis of the SMEFT. The SMEFT is the effective field theory with
possible higher dimensional operators which are invariant under the SM gauge sym-
metry and consist of the SM fields. New physics effects are embedded in the higher
dimensional operators. We constructed the SMEFT from the model with VLQ by
integrating out the VLQ field. The FCNCs and the violation of the CKM unitarity
were represented in terms of the Wilson coefficients of the SMEFT as shown in
Eqs.(4.76) and (4.81), respectively. We took in the difference among the VLQ mass
scale and the EW scale by using the RG equations with the anomalous dimension
matrices in the SMEFT. One of the new points of our work [84] is matching the
model with the SMEFT at the one-loop level and obtain the Wilson coefficients of
the SMEFT which relates the radiative transitions of the SM quarks, such as the
b→ sγ process.
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In order to clarify constraints on the parameters of the VLQ, we evaluated the
FCNC processes in the neutral Bd,s meson system; Bs

0-Bs
0 mixing, Bs

0→ µ+µ� and
Bd
0→Xsγ. We present the analytical expressions of the mass difference of Bs

0 meson
∆mBs and the branching ratio of the Bs

0→ µ+µ� and the Bd
0→Xsγ processes in

Appendix.A. These expressions are written in terms of the Wilson coefficients of
the weak EFT. We calculated the Wilson coefficients of the weak EFT by using
the SMEFT derived in Chap.5. Also we computed the effective Lagrangian for the
b→ sγ∗ process in addition to the b→ sγ process to perform the renormalization of
the amplitudes of b→sγ(∗) process more completely than the full theory calculations
[108, 109, 110].

We performed the numerical analysis for the branching ratio of the Bs
0→ µ+µ�

and the Bd
0→Xsγ processes in Chap.7. We determined the product of the CKM

matrix elements λsbt through the mass difference of Bs
0 meson ∆mBs. We found

that the branching ratio Br[Bd
0→Xsγ] depends on the phase θsb weakly compared

with the branching ratio Br[Bs
0→ µ+µ�]. The constraint on the model parameters

(rsb, θsb) from the branching ratio Br[Bs
0→ µ+µ�] is more stringent than that from

the branching ratio Br[Bd
0→Xsγ] as shown in the left figure of Fig.6.3. One can

understand that the allowed region around (rsb, θsb)∼ (0.02,0) is the result of C10
NP≃

�2C10
SM. We also found such a large new physics effect does not excluded by the

constraint from the Br[Bd
0→Xsγ] even though the branching ratio Br[Bd

0→Xsγ] is
precisely measured at the experiments.

Although we focused on the FCNC processes related to the b→ s transition, the
Wilson coefficients of the SMEFT and the weak EFT in this thesis can be applied to
both b→d and s→d transitions. In addition, the Wilson coefficient for the radiative
transition b→ sγ also contributes to the CP asymmetry in the radiative decays [85,
86, 87], the inclusive [88, 89] and the exclusive [90, 91, 92] b→ sl+l� processes.

We comment on the additional contribution to the Wilson coefficient CVLL which
are used in the calculation of the mass difference ∆mBs. A box diagram where the
VLQ propagates in the loop contributes to the Wilson coefficient CVLL [82, 83]. We
denote this contribution as CVLL

(SMEFT) here. This is given as [82, 83],

CVLL
(SMEFT) =

[
GF
2

4π2
MW

2 (λsb
t )2

]�1(yd′s4yd′b4∗)2
8(4π)2M4

2 , (7.1)

As mentioned in Ref.[82], the Wilson coefficient CVLL
(SMEFT) becomes dominant com-

pared with the tree level contribution CVLL
(tree) in the large VLQ mass region. We

show the absolute value of the total Wilson coefficient CVLL= CVLL
SM + CVLL

NP as a
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Figure 7.1. The absolute value of total Wilson coefficient CVLL = CVLL
SM + CVLL

NP as a
function of the VLQ massMVLQ=M4. The solid line is the result without CVLL

(SMEFT) while
the dashed line is the result including CVLL

(SMEFT) in CVLL
NP . The different colors of the line

represent different values of the phase θsb. In the left figure, we take |yd′s4yd′b4∗|=0.1. In the
right figure, we set |yd′s4yd′b4∗|=1. We note that the range of both vertical and horizontal
axis is different between the left figure and the right figure.

function of the VLQ mass in Fig.7.1. The solid line is the result without CVLL
(SMEFT)

while the dashed line is the result including CVLL
(SMEFT) in CVLL

NP . The different colors
of the line represent to different values of the phase θsb. In the left figure, we take
|yd′s4yd′b4∗|= 0.1. In the right figure, we set |yd′s4yd′b4∗|= 1. One finds that the con-
tribution from CVLL

(SMEFT) is small in the case of |yd′s4yd′b4∗|= 0.1. On the other hand,
that is large in the case of |yd′s4yd′b4∗|=1. This is because CVLL

(SMEFT) is proportional to
(yd
′s4yd

′b4∗)2. Therefore, we have to take account of the contribution from CVLL
(SMEFT)

to CVLL in order to obtain more precise constraints for the large Yukawa coupling
case |yd′s4yd′b4∗|∼ 1.

Comment on Figs.6.1-6.3

Figures.6.1-6.3 are reproduced from the our published paper [84]. We note that
we computed again to make Figs.6.1-6.3 because,

• We updated the input parameters shown in Table 6.1.

• We do not take account of the RG effects for C̃φq
(1)pq, C̃φq

(3)pq from µVLQ to µEW
and the new physics contribution to the Wilson coefficient C2 (Eq.(5.26)) in
published paper [84].

Summary and Discussion 67



Acknowledgments.
I would like to thank my supervisor, Takuya Morozumi for valuable discussions

and advices throughout this work and research activity. I am thankful to Yusuke
Shimizu for many useful discussions and advices. Discussion with Takuya Moro-
zumi and Yusuke Shimizu was very helpful for me to extend my knowledge about
my study. I am grateful to Hiroyuki Umeeda for helpful discussions and advices
about flavor physics. I would like to also thank Morimitsu Tanimoto for helpful
discussions which extend my knowledge about the particle phenomenology. I am
thankful to staff members in the Elementary Particle Theory Group at Hiroshima
University: Masanori Okawa, Tomohiro Inagaki and Ken-Ichi Ishikawa provided
me useful advices and comments on my study. I am also grateful to students in
the Elementary Particle Theory Group at Hiroshima University for lots of advice.
Finally, I would like to express my appreciation for my parents.

68 Summary and Discussion



Appendix A
Neutral B Meson System

In the present chapter, we investigate a mixing and decay processes of the neutral
B mesons, namely Bd

0 and Bs
0. The Bd

0 meson consists of the anti-bottom quark b̄
and the down quark d while the Bs

0 meson consists of the anti-bottom quark b̄ and
the strange quark s. We focus on the decay processes Bs

0→ µ+µ� and Bd
0→Xsγ

in addition to the mixing of the Bs
0 and Bs

0. We note that the computation in this
chapter are based on the SM, not the model with the VLQ except Subsec.A.3.3. It
is useful for us to use a parametrization of the CKM matrix in the SM, so called
Wolfenstein parametrization [118, 7, 65, 119]:

VCKM =

⎛

⎜⎜⎜⎜⎜⎜⎝

1� λ2

2
λ Aλ3(ρ� iη)

�λ 1� λ2

2
Aλ2

Aλ3(1� ρ� iη) �Aλ2 1

⎞

⎟⎟⎟⎟⎟⎟⎠+O(λ
4) , (A.1)

where numerical values of the parameters are determined by experiments, for instance
λ= 0.225 [7].

We consider a general neutral meson system before we investigate the specific
processes. We follow the textbook [120]. We denote the general neutral meson as P 0

and the anti-particle of P 0 as P 0. Since the neutral mesons are not stable and decay
into other particles, a mass matrix of the neutral meson system can be given as,

R = M � i
2
� , (A.2)

M † = M , (A.3)

�† = � , (A.4)

where the Hermitian matrix M is just a mass matrix while the anti-Hermitian
part i

2
� which is called absorptive part represents decay of the neutral meson. The

matrices M and � are obtained in the second-order perturbation theory,

Mij = m0δij+ ⟨i|HW |j ⟩+
∑

n

P
⟨i|HW |n⟩⟨n|HW |j⟩

m0�En
, (A.5)

�ij = 2π
∑

n

δ(m0�En)⟨i|HW |n⟩⟨n|HW |j⟩ , (A.6)
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where i, j=1,2 with |1⟩= |P 0⟩, |2⟩= |P 0⟩. The symbol P denotes the principal part
prescription and theHW represents a Hamiltonian related to the transition |j⟩→ |i⟩.

The basis of the matrix R is |P 0⟩ and |P 0⟩. We can obtain eigenvalues and
eigenvectors by solving an eigenvalue equation. The eigenvectors of the matrix R
can be written as,

|PH ⟩ = pH |P 0⟩+ qH |P 0⟩ , (A.7)

|PL⟩ = pL|P 0⟩� qL|P 0⟩ , (A.8)

where the mixing parameters pH,L and qH,L are normalized as |pH |2+ |qH |2
√

=

|pL|2+ |qL|2
√

=1. The eigenvalues are given as follows:

µH = mH �
i
2
�H , (A.9)

µL = mL�
i
2
�L . (A.10)

The subscriptsH and Lmean the heavy eigenstate and light eigenstate, respectively.
We define a difference of the two eigenvalues µH and µL,

∆µ ≡ µH � µL = ∆m� i
2
∆� = 4R12R21+(R22�R11)2

√
, (A.11)

with ∆m≡mH�mL and ∆�≡�H��L. The symbol Rij denotes the (i, j) component
of the matrix R. The CPT and CP transformations for the |P 0⟩ and |P 0⟩ are,

CPT|P 0⟩ = eiνP |P 0⟩ , (A.12)

CPT|P 0⟩ = eiνP |P 0⟩ , (A.13)

CP|P 0⟩ = eiξP |P 0⟩ , (A.14)

CP|P 0⟩ = e�iξP |P 0⟩ , (A.15)

where the phases νP and ξP are arbitrary and unphysical. We can show from Eqs.(A.5)
and (A.6) thatM22 and �22 are equal toM11 and �11, respectively when the Hamilto-
nian HW is invariant under the CPT transformation, i.e. (CPT)HW(CPT)�1=HW .
Also the CP invariance impliesM11=M22, �11=�22,M21=e2iξPM12 and �21=e2iξP�12.
Thus, we can define a CPT and CP violating parameter θ:

θ ≡ R22�R11
∆µ

, (A.16)

and a CP violating real parameter δ,

δ ≡ |R12| � |R21|
|R12|+ |R21|

. (A.17)
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Taking the diagonalization of the matrixR into account, we can determine the ratios
of mixing parameters pH,L and qH,L in Eqs.(A.7) and (A.8) as,

qH
pH

=
∆µ(1+ θ)
2R12

=
2R21

∆µ(1� θ) , (A.18)

qL
pL

=
∆µ(1� θ)
2R12

=
2R21

∆µ(1+ θ)
. (A.19)

It is clear that the CPT invariance leads to θ=0 and qH
pH
= qL

pL
. Therefore, the absolute

value of the mixing parameter pL is the same as pH because of |pH |2 + |qH |2 =
|pL|2+ |qL|2=1. It is convenient to set the relative phase of |PH⟩ and |PL⟩ so as to
pH = pL. In this setup, the mixing parameter qL is equals to qH. Then, we redefine
the eigenvectors as,

|PH ⟩ = p|P 0⟩+ q |P 0⟩ , (A.20)

|PL⟩ = p|P 0⟩� q |P 0⟩ , (A.21)

in the case where we assume CPT invariance. The mixing parameters p, q and the
difference between the eigenvalues of R are obtained as follows:

∆µ = ∆m� i
2
∆� = 4R12R21

√
, (A.22)

q
p

=
∆µ
2R12

=
2M12

∗ � i�12∗
2M12� i�12

√
, (A.23)

Using the Eq.(A.22), we obtain,

(∆m)2� 1
4
(∆�)2 = 4|M12|2� |�12|2 , (A.24)

(∆m)(∆�) = 4Re[M12
∗ �12] . (A.25)

The above expressions are derived without any approximations. In the following
sections, we consider the case of neutral Bd and Bs meson systems.

A.1 Bs
0-Bs

0 Mixing and Mass difference ∆mBs

We compute M12 at leading order in the Bs
0 meson system. The component M12

Bs is
given by Eq.(A.5):

M12
Bs = ⟨Bs0|Heff

∆B=2|Bs0⟩ , (A.26)

where the Hamiltonian HW =Heff
∆B=2 is defined in terms of the weak EFT as [97],

Heff
∆B=2 =

GF
2

4π2
MW

2 (λsb
t )2CVLL

SM OVLL+h.c. (A.27)

with a product of the CKM matrix elements λsbt ≡Vts∗Vtb and an effective operator,

OVLL = [sLγµbL][sLγµbL] . (A.28)
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Figure A.1. Relevant diagrams to theM12
Bs in the SM. The symbol χ denotes the charged

NG boson χ±. The subscripts i, j represent the generation of the up-type quark, that is
u1=u, u2= c, and u3= t.

The Wilson coefficient CVLL
SM is determined by matching the weak EFT with the SM.

Figure A.1 shows the relevant diagrams of the SM. Taking account of the CKM
unitarity in the SM, we obtain the effective Hamiltonian as follows [102]:

Heff
∆B=2 = � GF

2

4π2
MW

2
∑

i=c,t

∑

j=c,t

λsb
i λsb

j Ēij[sL̄γµbL][sL̄γµbL] , (A.29)

where the function Ēij is given as,

Ēij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�
[{

1

4
� 3

2(xj� 1)
� 3

4(xj� 1)2

}
xixjlnxj
xj�xi

+(i↔ j)� 3xixj
4(xi� 1)(xj� 1)

]
, for i=/ j

�3

2

(
xi

xi� 1

)3
lnxi� xi

{
1

4
� 9

4

1

xi� 1
� 3

2

1

(xi� 1)2

}
, for i= j

(A.30)

with the parameter xi≡ (mu
i /MW)2. Numerical values of the functions Ētt, Ēcc and

Ēct= Ētc are,

|Ētt| ≃ 2.5, (A.31)

|Ēcc| ≃ 2.5× 10�4 , (A.32)

|Ēct| ≃ 2.2× 10�3 , (A.33)

with mt= 173.1 GeV, mc= 1.27 GeV and MW = 80.379 GeV [65]. We can see from
Eq.(A.1) that the product of the CKM matrix λsbc is the same order of magnitude
as λsbt . Therefore, the dominant contribution in Eq.(A.29) comes from the top quark
term which are proportional to (λsbt )2Ētt. We approximate Eq.(A.29) by,

Heff
∆B=2 =

GF
2

4π2
MW

2 (λsb
t )2S0(xt)[sL̄γµbL][sL̄γµbL] , (A.34)

where we redefine [93, 115],

Ētt ≡ �S0(xt) . (A.35)
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Comparing Eq.(A.34) with Eq.(A.27), we determine the Wilson coefficient CVLL
SM as,

CVLL
SM = S0(xt) . (A.36)

We obtain an expression of theM12
Bs by inserting the effective Hamiltonian Eq.(A.27)

into Eq.(A.26):

M12
Bs,SM ≃ �GF

2MW
2

12π2
fBs
2 mBsBsηBsCVLL

SM (λsb
t )2ei(ξb�ξs�ξBs) , (A.37)

where mBs is the mass of Bs
0 meson and ηBs= 0.5510±0.0022 [115] is QCD correc-

tion. The symbols fBs and Bs represent the Bs
0 meson decay constant and the bag

parameter of the Bs meson, respectively. The fBs and Bs are defined by [120],

⟨Bs0|(sγµLb)(sγµLb)|Bs0⟩ = �1
3
ei(ξb�ξs�ξBs)fBs

2 mBsBs , (A.38)

with

⟨0|bγµγ5s|Bs0(pµ)⟩ = �eiϕpµfBs , (A.39)

⟨0|sγµγ5b|Bs0(pµ)⟩ = �eiϕei(ξb�ξs�ξBs)pµfBs , (A.40)

The phase ϕ is arbitrary. The phases ξb, ξs and ξBs come from CP transformations
of the b-quark, s-quark and Bs meson states, similar to the ξP in Eq.(A.14), and
thus these phases are unphysical.

Since the absorptive part �12
Bs is related to the decay of Bs

0 meson, it is expected
that the absorptive part is dominated by the mass of Bs

0 meson, that is mBs∼mb.
On the other hand, the M12

Bs is proportional to S0(xt)∼xt=mt
2/MW

2 . This implies∣∣∣∣∣∣ �12
Bs

M12
Bs

∣∣∣∣∣∣≈O
(
mb
2

mt
2

)
≪1. Also experimental results show |∆�Bs|

∆mBs
≈ 6×10�11

1× 10�8 ≪1 [65]. Taking

account of |�12Bs|≪ |M12
Bs| and |∆�Bs|≪∆mBs in Eq.(A.24), we can approximate∆mBs

as,

∆mBs ≃ 2|M12
Bs,SM| = GF

2

6π2
MW

2mBsfBs
2 BsηBs|λsbt |2|CVLL

SM | . (A.41)

A.2 Bs
0→ µ+µ� (b→ sµ+µ�) Process

We investigate Bs
0→ µ+µ� process in this section. This process is induced by the

FCNC among the b-quark and s-quark. As we have seen in the previous section,
there is the mixing between Bs

0 and Bs
0. The mixing effect leads to a time dependent

oscillation among the Bs
0 and Bs

0 and affects the decay process Bs
0→ µ+µ�. First

we show a time dependent decay rate and an “untagged” decay rate in Bs
0→ µ+µ�

process which are given in [104, 105, 106, 107]. Here we follow the computation
summarized in Refs.[106, 107].
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A.2.1 Decay rate and branching ratio

The effective Hamiltonian for the Bs
0→ µ+µ� process is,

Heff
∆B=1 = �4GF

2
√ αem

4π
λsb
t C10O10+h.c. , (A.42)

with the effective operator,

O10 = [sL γµbL][µ γµγ5µ] . (A.43)

The Wilson coefficient of the SM will be given in the next subsection. Since the time
evolution of the mass eigenstates |PH0 ⟩ and |PL0⟩ are written as [120],

|PH0(t)⟩ = e�iµHt|PH0 ⟩ , (A.44)

|PL0(t)⟩ = e�iµLt|PL0⟩ , (A.45)

with the time t which is measured at the rest frame of decaying particles, the Bs
0

meson states at time t are given as follows:

|Bs0(t)⟩ = g+(t)|Bs0⟩+
q
p
g�(t)|Bs0⟩ , (A.46)

|Bs0(t)⟩ =
p
q
g�(t)|Bs0⟩+ g+(t)|Bs0⟩ , (A.47)

where

g±(t) ≡
1
2
(e�iµHt± e�iµLt) . (A.48)

It is useful to show relations,

|g±(t)|2 =
e��Bst

2

[
cosh ∆�Bst

2
± cos(∆mBs t)

]
, (A.49)

g+
∗ (t)g�(t) = �e

��Bst

2

[
sinh ∆�Bst

2
+ i sin(∆mBs t)

]
, (A.50)

where ∆�Bs≡�H ��L and �Bs≡ (�H+�L)/2. We parametrize M12
Bs by using M12

Bs,SM

in Eq.(A.37) as,

M12
Bs = M12

Bs,SM(re�iθ)2 , (A.51)

The real parameter r and the phase θ represent effects from a new physics model.
The case of (r, θ)= (1,0) corresponds to the SM. Similarly we introduce a phase ϕP
which represents new physics effects for the Wilson coefficient C10:

C10

C10
SM =

∣∣∣∣∣∣∣∣
C10

C10
SM

∣∣∣∣∣∣∣∣e
iϕP , (A.52)
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where C10
SM is the SM contribution in the total Wilson coefficient C10. The ratio of

the mixing parameter q

p
in Eq.(A.23) can be written by using the parametrization

Eq.(A.51):

q
p
≃ M12

Bs∗

M12
Bs

√
= e�i(ξb�ξs�ξBs�2θ)e�2iarg[λsb

t ] , (A.53)

where we take |M12
Bs|≫ |�12Bs| into account. We then obtain the time dependent decay

rates of Bs
0(t)→ µ+µ� and Bs

0(t)→ µ+µ� after computing the matrix elements
|⟨µ+µ�|Heff

∆B=1|Bs
0(t)⟩| and |⟨µ+µ�|Heff

∆B=1|Bs
0(t)⟩|:

�[Bs
0(t)→ µ+µ�] =

GF
4MW

4 sw
4

8π5
1� 4mµ

2

mBs
2

√
fBs
2 mBsmµ

2e��Bst|C10λsb
t |2

×
[
cosh ∆�Bst

2
�A∆�

µµsinh ∆�Bst
2

�Sµµsin(∆mBs t)

]
, (A.54)

�[Bs
0(t)→ µ+µ�] =

GF
4MW

4 sw
4

8π5
1� 4mµ

2

mBs
2

√
fBs
2 mBsmµ

2e��Bst|C10λsb
t |2

×
[
cosh ∆�Bst

2
�A∆�

µµsinh ∆�Bst
2

+Sµµsin(∆mBs t)

]
, (A.55)

Here we define [104, 105, 106, 107],

A∆�
µµ ≡ cos2(θ+ ϕP) , (A.56)
Sµµ ≡ sin2(θ+ ϕP) . (A.57)

It is clear that A∆�
µµ = 1 and Sµµ= 0 in the case of the SM. From Eqs.(A.54) and

(A.55), we can define the untagged decay rate [104, 105, 106, 107]:

⟨�[Bs0(t)→ µ+µ�]⟩ ≡ �[Bs
0(t)→ µ+µ�] +�[Bs

0(t)→ µ+µ�]

=
GF
4MW

4 sw
4

4π5
1� 4mµ

2

mBs
2

√
fBs
2 mBsmµ

2e
� t

τBs|C10λsb
t |2

×
[
cosh

(
yst
τBs

)
+A∆�

µµsinh
(
yst
τBs

)]
, (A.58)

where we use the parameters,

ys ≡
�L��H
�L+�H

= � ∆�Bs
2�Bs

, (A.59)

τBs =
1
�Bs

. (A.60)
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Figure A.2. Diagrams which leads leading order contribution to C10 in the SM.

The parameter τBs is the life time of Bs meson. We finally define branching ratio of
this process by integrating the untagged decay rate Eq.(A.58) in terms of t:

BR[Bs0→ µ+µ�] ≡ 1
2

∫

0

∞
dt ⟨�[Bs0(t)→ µ+µ�]⟩ . (A.61)

The concrete form of the branching ratio is given as,

BR[Bs0→ µ+µ�] = τBs
GF
4MW

4 sw
4

8π5
1� 4mµ

2

mBs
2

√
fBs
2 mBsmµ

2 |λsbt |2|C10|2
[
1+ ysA∆�

µµ

1� ys
2

]
, (A.62)

This expression can be rewritten by using the branching ratio of Bs
0→µ+µ� without

the Bs
0-Bs

0 mixing effect, which is denoted as Br[Bs
0→ µ+µ�]:

BR[Bs0→ µ+µ�] =

[
1+ ysA∆�

µµ

1� ys
2

]
Br[Bs0→ µ+µ�] . (A.63)

A.2.2 Wilson coefficient C10 in the SM

Here we show the leading order contribution of the SM to the Wilson coefficient C10.
Since there is no FCNC in the SM, the leading order contribution to C10 comes from
one-loop diagrams. The typical diagrams are shown in Fig.A.2. The result is [102],

C10
SM = �ηYY0(xt)

sw
2 , (A.64)

where ηY =1.0113 [116] is NLO correction. We used the CKM unitarity relation and
take only the top quark contribution into account. The function Y0(x) is given as,

Y0(x) =
x
8
� 3
8

x
x� 1 +

3
8

x2lnx
(x� 1)2 . (A.65)
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A.3 Bd
0→Xsγ (b→ sγ) Process

The inclusive radiative decay process Bd
0→Xsγ is the FCNC process induced by

the photon while the FCNC process Bs
0→ µ+µ� in the previous section is induced

by the Z boson. The radiative decay process Bd
0→Xsγ is described by the effective

Hamiltonian of the weak EFT [114, 115, 121]:

Heff
b→sγ =

4GF
2

√ λsb
c
∑

i=1

2

CiOi�
4GF
2

√ λsb
t

⎡

⎣∑

i=3

6

CiOi+
∑

i=7γ ,8g

CiOi

⎤

⎦, (A.66)

where the effective operators are 4-Fermi operators,

O1 = (sLγµT acL)(cLγµT abL) , (A.67)

O2 = (sLγµcL)(cLγµbL) , (A.68)

the QCD penguin operators,

O3 = (sLγµbL)
∑

q=u,d,s,c,b

(qγµq) , (A.69)

O4 = (sLγµT abL)
∑

q=u,d,s,c,b

(qγµT aq) , (A.70)

O5 = (sLγµγνγρbL)
∑

q=u,d,s,c,b

(qγµγνγρq) , (A.71)

O6 = (sLγµγνγρT abL)
∑

q=u,d,s,c,b

(qγµγνγρT aq) , (A.72)

and the dipole operators,

O7γ =
e

16π2
mb(sLσµνbR)FAµν , (A.73)

O8g =
gs

16π2
mb(sLσµνT abR)Gµν

a . (A.74)

The symbols FAµν and Gµν
a denote the field strength of the photon and gluons,

respectively. The dipole operator O7γ mainly contributes to the Bd
0→Xsγ process

and the other effective operators contribute through RG effects. We neglect λsbu =
Vus∗Vub≪λsb

t and thus λsbc ≃�λsbt in the SM.

A.3.1 Wilson coefficients and effective coefficients

It is convenient to introduce so-called “effective coefficients” Ci
eff [112, 113] in the

computation of the branching ratio of the Bd
0→Xsγ process. In the present operator

basis, the effective coefficients are defined as follows [114]:

Ci
eff(µ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ci(µ) , for i=/ 7γ , 8g,
C7γ(µ)+

∑
i=1
6 yiCi(µ) , for i=7γ ,

C8g(µ)+
∑

i=1
6 ziCi(µ) , for i=8g,

(A.75)
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where yi=
�
0, 0,�1

3
,�4

9
,�20

3
,�80

8

)
and zi=

�
0, 0, 1,�1

6
, 20,�10

3

)
in the dimensional

regularization with {γµ, γ5}=0 scheme, so-called naive dimensional regularization
(NDR) scheme. We briefly show why the effective coefficients are introduced on the
basis of Ref.[112]. We consider the computation of the b→ sγ amplitude by using
the weak EFT Hamiltonian Eq.(A.66). We write the amplitudes as,

AEFT ∼ C7γ⟨sγ |O7γ |b⟩tree+
∑

j

Cj⟨sγ |Oj |b⟩one-loop , (A.76)

where the subscript “tree” means a tree level matrix element while “one-loop” denotes
one-loop level matrix elements. If the matrix element of the effective operator Oj is
nonzero and contributes to the b→ sγ process, we can rewrite the matrix element
⟨sγ |Oj |b⟩one-loop by using the tree level matrix element ⟨sγ |O7γ |b⟩tree:

AEFT = C7γ⟨sγ |O7γ |b⟩tree+
∑

j

Cj⟨sγ |Oj |b⟩one-loop

= C7γ⟨sγ |O7γ |b⟩tree+
∑

j

yjCj⟨sγ |O7γ |b⟩tree

= [C7γ+
∑

j yjCj]⟨sγ |O7γ |b⟩tree , (A.77)

where yj is a number given by computing the one-loop level matrix element
⟨sγ |Oj |b⟩one-loop and corresponds to the parameter yi in Eq.(A.75). We can see
that the amplitude of the b→ sγ process is proportional to the combination C7γ+∑

j yjCj at the one-loop level. Therefore, it is convenient to define new coefficient

C7γ
eff ≡ C7γ +

∑
j yjCj and consider a RG equation with respect to the coefficient

C7γ
eff. We note that we can express the amplitude of b→ sγ process in the SM as,

ASM = A7γ⟨sγ |O7γ |b⟩tree . (A.78)

Since the matiching condition isASM=AEFT at the scale µEW, the condition leads to,

A7γ = C7γ+
∑

j yjCj = C7γ
eff , (A.79)

at the one-loop level. We consider the scale dependence of the effective coefficients.
The RG equations for the effective coefficients Ci

eff(µ) are written as [114],

µ
∂
∂µ

Ci
eff (µ) = Cj

eff(µ)γji
eff(µ) . (A.80)

We expand the effective coefficients and the anomalous dimension matrix γji
eff(µ)

with respect to the QCD coupling αs(µ):

Ci
eff = Ci

(0)eff +
αs(µ)
4π

Ci
(1)eff + ··· , (A.81)

γeff =
αs(µ)
4π

γ(0)eff +
αs
2(µ)
(4π)2

γ(0)eff + ··· . (A.82)
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The leading order anomalous dimension matrix γ(0)eff in NDR is [114],

γ(0)eff =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�4 8

3
0 �2

9
0 0 �208

243
173
162

12 0 0
4

3
0 0

416
81

70
27

0 0 0 �52
3

0 2 �176
81

14
27

0 0 �40
9
�100

9

4

9

5

6
�152

243 �587
162

0 0 0 �256
3

0 20 �6272
81

6596
27

0 0 �256
9

56
9

40
9
�2

3

4624
243

4772
81

0 0 0 0 0 0 32
3

0

0 0 0 0 0 0 �32
9

28
3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.83)

and γ(1)eff is also given in [114]. TheWilson coefficients in Eq.(A.75) at the matching
scale µEW≃MW are evolved to the Bdmeson mass scale µb≃mb. This can be done by
solving the RG equation Eq.(A.80) with the anomalous dimension matrices γ(0)eff

and γ(1)eff .

A.3.2 Branching ratio of Bd
0→Xsγ

In this thesis, we use a next-to-leading order (NLO) expression for the branching
ratio of the Bd

0→Xsγ process [114]:

Br[Bd0→Xsγ] = Br[Bd0→Xceνē] ·Rquark(δ)

(
1� δsl

NP

mb
2 +

δrad
NP

mb
2

)
, (A.84)

where δslNP and δrad
NP are non-perturbative corrections for the semi-leptonic and the

radiative decay rates which are computed by Heavy-Quark Effective Theory (HQET),
respectively [122, 114]. The symbol Rquark(δ) at NLO is defined as,

Rquark(δ) =
�[b→Xsγ]

Eγ>(1�δ)Eγmax

�[b→Xceνē]
· |λsb

t |2
|Vcb|2

· 6αem
πg(z)

F (z){|D |2+A(δ)} . (A.85)

The function g(z) with z =mc,pole
2 /mb,pole

2 is the phase space factor of the semi-
leptonic decay. The function F (z) includes the difference between the pole mass and
the MS mass of the b-quark and the NLO correction for the semi-leptonic decay.
The symbol δ represents the lower cut on the photon energy in bremsstrahlung
corrections, Eγ> (1� δ)Eγ≡ (1� δ)mb

2
. In our numerical analysis, we take Eγ> 1.6

GeV. The function A(δ) originates from the bremsstrahlung and virtual corrections
[114, 123, 124, 125]:

A(δ) =
{
e
�αs(µb)

3π
(7+2lnδ)lnδ�1

}∣∣∣∣C7γ
(0)eff(µb)

∣∣∣∣2+ αs(µb)
π

∑

i,j=1
i≤j

fij(δ)Ci
(0)eff(µb)Cj

(0)eff(µb) ,

(A.86)

where the functions fij(δ) are summarized in Ref.[114].
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The term |D |2 consists of the LO and NLO effective coefficient C7γ
(0)eff , C7γ

(1)eff

and the virtual corrections for b→ sγ process [114, 123, 124],

D = C7γ
(0)eff(µb)+

αs(µb)
4π

[
C7γ
(1)eff(µb)+

∑

i=1

8

Ci
(0)eff(µb)

{
ri+ γi7

(0)eff lnmb

µb

}]
, (A.87)

where ri can be found in Ref.[114].

A.3.3 EW penguin contribution to Wilson coefficients

It is pointed out in Refs.[109, 110] that the tree level FCNC contributes to the Wilson
coefficients of the electroweak penguin operators,

O3
Q = (sLγµbL)

∑

q=u,d,s,c,b

Qq(qγµq) , (A.88)

O4
Q = (sLγµT abL)

∑

q=u,d,s,c,b

Qq(qγµT aq) , (A.89)

O5
Q = (sLγµγνγρbL)

∑

q=u,d,s,c,b

Qq(qγµγνγρq) , (A.90)

O6
Q = (sLγµγνγρT abL)

∑

q=u,d,s,c,b

Qq(qγµγνγρT aq) . (A.91)

Including these opeartors, the effective coefficients are defined as [126, 127],

Ci
eff(µ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ci(µ) , for i=/ 7γ , 8g,
C7γ(µ)+

∑
i=1
6 yi

[
Ci(µ)� 1

3
Ci
Q(µ)

]
, for i=7γ ,

C8g(µ)+
∑

i=1
6 zi

[
Ci(µ)� 1

3
Ci
Q(µ)

]
, for i=8g,

(A.92)

where C1
Q=C2

Q=0 and yi=
�
0, 0,�1

3
,�4

9
,�20

3
,�80

8

)
and zi=

�
0, 0, 1,�1

6
, 20,�10

3

)

in the NDR scheme. One can find the leading order anomalous dimension matrix in
Refs.[126, 127].

The tree level FCNC contribution comes from the diagram shown in Fig.A.3.
The Wilson coefficients from this diagram are obtained as follows:

C3
NP(µEW) =

1
18
· ZdNC

sb

λsb
t , (A.93)

C5
NP(µEW) = � 1

72
· ZdNC

sb

λsb
t , (A.94)

C3
Q,NP(µEW) =

(
4
3
� sw2

)
· ZdNC

sb

λsb
t , (A.95)

C5
Q,NP(µEW) = � 1

12
· ZdNC

sb

λsb
t , (A.96)
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Figure A.3. The tree level FCNC contribution to the penguin operators.

Figure A.4. The dependence of
∣∣∣∣C7γ

(0)eff(µb=5 GeV)
∣∣∣∣ on the parameter rsb and θsb. The

solid line is the value of
∣∣∣∣C7γ

(0)eff(µb)
∣∣∣∣ with taking the Wilson coefficients of the penguin

operators shown in Eqs.(A.93)-(A.96). The dashed line is the value of
∣∣∣∣C7γ

(0)eff(µb)
∣∣∣∣ without

the Wilson coefficients of the penguin operators shown in Eqs.(A.93)-(A.96). The different
colors of the line represent to different values of the phase θsb. Here we set µb=5 GeV.

and the other Wilson coefficients of the penguin operators are zero at the tree
level. We estimate effects of these new physics contributions. Since there is no SM
contribution to the leading order Wilson coefficients of the penguin operators Ci

(0)

and Ci
Q(0), we only take account of the new physics contributions C3,5NP and C3,5

Q,NP.
After solving the RG equation, we obtain the effective Wilson coefficient C7γ

(0)eff(µb):

C7γ
(0)eff(5 GeV) = 0.695C7γ

(0)eff(MW)+ 0.086C8g
(0)eff(MW)� 0.158C2

(0)(MW)

+0.094C3NP(MW)+ 2.099C5NP(MW)

+0.044C3
Q,NP(MW)� 0.110C5

Q,NP(MW) , (A.97)

where we set µb=5 GeV and αs(MZ)=0.1179 [65]. Figure A.4 shows the dependence
of the absolute value of C7γ

(0)eff(µb=5 GeV) on the parameter rsb and θsb. The solid
line is the value of |C7γ

(0)eff(µb)| with taking the Wilson coefficients of the penguin
operators shown in Eqs(A.93)-(A.96), that is Eq.(A.97). The dashed line is the value
of |C7γ

(0)eff(µb)| without the Wilson coefficients of the penguin operators shown in
Eqs(A.93)-(A.96). The different colors of the line represent to different values of the
phase θsb. One finds that the Wilson coefficients Eqs.(A.93)-(A.96) give rise to the
O(10�3) correction to the dependence of |C7γ

(0)eff(µb)| on rsb. In Chap.6, we neglect
that modification since it is about ten times smaller than the leading order new
physics contributions to the C7γ

(0)eff.
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Appendix B

CKM Unitarity Violation in b→ sγ

B.1 Amplitude of b→ sγ without unitarity

In this section, we briefly show the computation of the amplitude of the b→ sγ

process. We focus on the diagrams which also exist in the SM. We do not use the
CKM unitarity in contrast to the SM calculations [102]. The relevant diagrams
are shown in Figs.B.1 and B.2. The Fig.B.1 shows the self-energy diagrams which
contribute to counterterms for the b→sγ vertex. The diagrams for the b→sγ vertex
are shown in Fig.B.2. Here we denote the up-type quark masses asmi with i=u, c, t.

B.1.1 Master Formulae

I1
µ(p, p′, q;mi,MW) ≡

∫
ddk
(2π)di

�
p′+ k+mi

)
γµ(p+ k+mi)

[(p+ k)2�m2][(p+ k)2�m2][k2�MW
2 ]

=
1

16π2

[
1
2
(1�CUV) γµ+ Ilyγµ�

γµ

MW
2

{
q2

6
I3y+

p2+ p′2

2
(I2y� I3y)

}]

� 1
16π2

[
xi I1yγµ+

mi

MW
2

{�
γµ p+ p′ γµ

)
I1y� (p+ p′)µI2y

}

+
1
MW

2

{
p′γµp (I1y� 2I2y+ I3y) +

�
p′γµq� qγµp

)I2y� I3y
2

�
qγµq

6
I3y

}]

� 1
16π2

γµ
{
� q2

6MW
2 xi

∂
∂xi

I2y�
p′2+ p2

2MW
2 xi

∂
∂xi

(I1y� I2y)
}
, (B.1)

I2
µν(p, p′, q;mi,MW) ≡

∫
ddk
(2π)di

kµkν

[k2�mi
2][(p+ k)2�MW

2 ][(p′+ k)2�MW
2 ]

=
gµν

64π2

(
CUV� lnMW

2

µ2

)
�

gµν

32π2
Iyl
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Figure B.1. Self-energy diagrams which contribute to counterterms for the b→sγ vertex.
The symbol ui with i=1, 2, 3 represents the SM up-type quarks.

+
gµν

64π2MW
2

{
q2

3
Iy3+(p2+ p

′2)(Iy2� Iy3)
}

� 1
16π2MW

2

{
1
3
(pµpν+ p′µp′ν)+

1
6
(pµp′ν+ pνp′µ)

}
Iy3 , (B.2)

I3
µ(p, p′, q;mi,MW) ≡

∫
ddk
(2π)di

kµ

[k2�mi
2][(p+ k)2�MW

2 ][(p′+ k)2�MW
2 ]

=
(p+ p′)µ

32π2MW
2 Iy2 , (B.3)

I4(p, p′, q;mi,MW) =

∫
ddk
(2π)di

1
[k2�mi

2][(p+ k)2�MW
2 ][(p′+ k)2�MW

2 ]

= � 1
16π2MW

2 Iy1�
1

32π2MW
2

{
q2

3MW
2 Iy3

′ +
p2+ p′2

MW
2 (Iy2

′ � Iy3′ )
}
, (B.4)

where xi≡mi
2/MW

2 , CUV=
2

η
� γ+ ln4π with d=4� η and

Iny =

∫

0

1

dy
yn

xiy+1� y
, (B.5)

Ily =

∫

0

1

dyy ln[m2y+M2(1� y)] , (B.6)

Iyl ≡
∫

0

1

dyy ln[y+xi(1� y)] , (B.7)

Iyn ≡
∫

0

1

dy
yn

y+xi(1� y)
, (B.8)

Iyn
′ ≡

∫

0

1

dy
yn

[y+xi(1� y)]2
. (B.9)

B.1.2 Wavefunction renormalization for quark fields

The QED Lagrangian with the bare down-type quark fields is,

Ld
Q = dL

0i(i∂� eQdA)dL0i+ dR
0i(i∂� eQdA)dR0i� dL0imd

0idR
0i� dR0imd

0idL
0i . (B.10)
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Figure B.2. The diagrams for the b→ sγ vertex in the SM. The symbols p, p′ and q

denote the momentum of the b-quark, s-quark and photon, respectively. The symbol ui

with i=1, 2, 3 represents the SM up-type quarks.

where index i=1, 2 and 3 corresponds to the d-, s- and b-quark, respectively. The
subscript “0” means bare quantities. We define the wave function renormalization
constant for the down-type quark fields:

dL
0i = ZL

√ ijdL
j , (B.11)

dR
0i = ZR

√ ijdR
j . (B.12)

The quantities without the subscript “0” are renormalized quantities. The other
renormalization constants, such as the wave function renormalization of the photon
field, do not lead to the flavor changing counterterms. Therefore, it is sufficient to
take account of only the renormalization of the down-type quark fields in our calcu-
lations. We obtain counterterms by inserting Eqs.(B.11) and (B.12) into Eq.(B.10):

Ld
Q = dL

j̄ (i∂� eQdA)dL
j + dR

j (i∂� eQdA) dR
j � dL

j̄md
j dR

j � dR
j md

j dL
j

+dL
j̄ ( ZL
√ †ji ZL

√ ik� δjk) i∂ dLk+ dR
j ( ZR
√ †ji ZR

√ ik� δjk)i∂ dRk

�dL
j̄ ( ZL
√ †jimd

0i ZR
√ ik�md

j δjk)dR
k � dR

j ( ZR
√ †jimd

0i ZL
√ ik�md

j δjk)dL
k

�eQd dL
j̄ ( ZL
√ †ji ZL

√ ik� δjk)AdLk� eQd dR
j ( ZR
√ †ji ZR

√ ik� δjk)AdR
k . (B.13)

The off-diagonal part of the counterterms is given as,

Σcount.
ij (p) = ( ZL

√ † ZL
√

)ijpL+( ZR
√ † ZR

√
)ijpR

�( ZL
√ †md

0 ZR
√

)ijR� ( ZR
√ †md

0 ZL
√

)ijL, (B.14)

�count.
µ,ij = �eQd ( ZL

√ † ZL
√

)ijγµL� eQd ( ZR
√ † ZR

√
)ijγµR, (B.15)
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with i=/ j. The renormalization constants ZL
√

and ZR
√

are determined so as to
remove the divergence in the amplitudes of the self-energy diagrams. We parametrize
the amplitudes of the self-energy diagrams as,

Σsb(p) = ALL
sb (p2)pL+ARR

sb (p2)pR+ALR
sb (p2)R+ARL

sb (p2)L, (B.16)

where the functions ALL
sb , ARR

sb , ALR
sb and ARL

sb can be obtained by computing the
amplitudes of the self-energy diagrams shown in Fig.B.1. Adding the counterterm
Σcount.
sb to Σsb, we obtain the renormalized amplitude of the self-energy diagrams:

Σren.
sb (p) = Σsb(p)+Σcount.

sb (p)

= {ALL
sb (p2) + ( ZL

√ † ZL
√

)sb}pL+ {ARR
sb (p2)+ ( ZR

√ † ZR
√

)sb}pR

+{ALR
sb (p2)� ( ZL

√ †md
0 ZR
√

)sb}R+ {ARL
sb (p2)� ( ZR

√ †md
0 ZL
√

)sb}L . (B.17)

The functions ALL
sb , ARR

sb , ALR
sb and ARL

sb contain divergence. There are some freedom
of how to subtract the divergence in these functions. Here we impose the on-shell
renormalization conditions [111]:

{p�mb+Σren.
sb (p)}ub(p) = 0 , with: pub(p)=mbub(p), and p2=mb

2 , (B.18)

us̄(p){p�ms+Σren.
sb (p)} = 0 , with: us̄(p)p=msus̄(p), and p2=ms

2 , (B.19)

where ub(p) and us̄(p) denote the spinor of the b- and s-quark, respectively. Inserting
Eq.(B.17) into these conditions, we obtain expressions of the renormalization con-
stants in terms of the functions ALL

sb , ARR
sb , ALR

sb and ARL
sb :

ZL
√ † ZL

√
= � 1

mb
2�ms

2 [ALL(mb
2)mb

2�ALL(ms
2)ms

2+ {ARR(mb
2)�ARR(ms

2)}mbms

+{ALR(mb
2)�ALR(ms

2)}mb+ {ARL(mb
2)�ARL(ms

2)}ms] , (B.20)

ZR
√ † ZR

√
= � 1

mb
2�ms

2 [ARR(mb
2)mb

2�ARR(ms
2)ms

2+ {ALL(mb
2)�ALL(ms

2)}mbms

+{ARL(mb
2)�ARL(ms

2)}mb+ {ALR(mb
2)�ALR(ms

2)}ms] . (B.21)

We calculate the amplitudes of the sefl-energy diagrams in Fig.B.1 to determine the
functions ALL

sb , ARR
sb , ALR

sb and ARL
sb .

B.1.3 Self-energy diagrams and counterterms

We define the loop integral,

Iself(p;mi,MW) ≡
∫

ddk
(2π)di

· 1

[p+ k�mi][k2�MW
2 ]

=
1

16π2

(
p

2
+mi

)
CUV�

1
16π2

∫

0

1

dz {p(1� z)+mi}ln s2 , (B.22)
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with

s2(p2) ≡ �p2z(1� z)+MW
2 (1� z)+mi

2z . (B.23)

The amplitude of the diagram (a) in Fig.B.1 is given as,

ΣW
sb(p) =

(
�i g

2
√ γµLVis

∗
)
i · (�igµν) Iself(p;mi,MW)

(
�i g

2
√ γνLVib

)

=
g2

32π2
λsb
i

{
CUV� 1� 2

∫

0

1

dz(1� z)ln s2(p2)
}
pL , (B.24)

where λsbi ≡Vis∗Vib. The amplitude of the diagram (b) in Fig.B.1 is,

Σχ
sb(p) =

{
i

g

2
√

MW
(miR�msL)Vis

∗
}
i · i Iself

{
i

g

2
√

MW
(miL�mbR)Vib

}

=
g2

32π2MW
2 λsb

i

{
1
2
CUV�

∫

0

1

dz (1� z)ln s2(p2)
}
p(mi

2L+msmbR)

+
g2

32π2MW
2 λsb

i

{
�CUV+

∫

0

1

dz ln s2(p2)
}
(mbR+msL)mi

2 . (B.25)

The total amplitude of the self-energy is obtained as follows:

Σsb(p) ≡ ΣW
sb (p)+Σχ

sb(p)

=
g2

32π2
λsb
i

{
CUV

(
1+

mi
2

2MW
2

)
� 1� 2

(
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mi
2

2MW
2

)∫

0

1

dz(1� z)ln s2(p2)
}
pL

+
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32π2
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{
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2

(
1
2
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1

dz (1� z)ln s2(p2)
)}
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+
g2

32π2
λsb
i

{
�CUV+

∫

0

1

dz ln s2(p2)
}
mi
2

MW
2 mbR

+
g2

32π2
λsb
i

{
�CUV+

∫

0

1

dz ln s2(p2)
}
mi
2

MW
2 msL. (B.26)

The functions ALL
sb , ARR

sb , ALR
sb and ARL

sb are determined as,

ALL
sb (p2) =

g2

32π2
λsb
i

{
CUV

(
1+

xi
2

)
� 1� 2

(
1+

xi
2

)∫

0

1

dz(1� z)ln s2(p2)
}
, (B.27)

ARR
sb (p2) =

g2

32π2
λsb
i

{
msmb

MW
2

(
1
2
CUV�

∫

0

1

dz (1� z)ln s2(p2)
)}

, (B.28)

ALR
sb (p2) =

g2

32π2
λsb
i

{
�CUV+

∫

0

1

dz ln s2(p2)
}
ximb , (B.29)

ARL
sb (p2) =

g2

32π2
λsb
i

{
�CUV+

∫

0

1

dz ln s2(p2)
}
xims . (B.30)

We then abtain the renormalization constants by using Eqs.(B.20) and (B.21):

ZL
√ † ZL

√
= � g2

32π2
λsb
i
[{

CUV

(
1+

xi
2

)
� 1
}
�
(
1+

xi
2

)
ln
[
MW

2

µ2

]
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�2
(
1+

xi
2

)∫

0

1

dy (1� y)ln[(1� y)+xiy]

+
mb
2+ms

2

MW
2 {2(I1y� 2I2y+ I3y)�xi(I2y� I3y)}

]
, (B.31)
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√
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[
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}

+
mbms

MW
2 {2(I1y� 2I2y+ I3y)�xi(I1y� I3y)}

]
. (B.32)

Finally the counterterm for the b→ sγ vertex �count.
µ,sb in Eq.(B.15) is given as follows:

�count.
µ,sb = �eQd ( ZL

√ † ZL
√

)sbγµL� eQd ( ZR
√ † ZR

√
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+

{
�1� 2

(
1+

xi
2

)∫

0

1

dy (1� y)ln[(1� y)+xiy]

}
γµL

+
msmb

MW
2 γµR

{
2(I1y� 2I2y+ I3y)�xi(I1y� I3y)�

∫

0

1

dz (1� y)ln[(1� y)+xiy]

}

+
mb
2+ms

2

MW
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]
. (B.33)

Since Qd=�1

3
=Qu+QW with QW =�1, we separate the counterterm �count.

µ,sb into
the terms which are proportional to Qu and the terms which are proportional to QW :

�count.
µ,sb = �c,Qu

µ,sb+�c,QW
µ,sb . (B.34)

B.1.4 b→ sγ amplitudes at one-loop level

We show the result of the amplitude for the diagrams in Fig.B.2. We define q= p� p′.

�ρ
(c) = �g

2

2
eQuλsb

i γµLI1ρ(p, p′, q;mi,MW)γµL

=
g2eQuλsb
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∂
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1
3
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)
qρq
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2 L

]
, (B.35)

�ρ
(d) = eQu

g2

2MW
2 Vis

∗Vib(miR�msL) I1ρ(p, p′, q;mi,MW)(miL�mbR)
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=
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, (B.37)
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, (B.38)
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(g) =
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+xi(�2Iy1+3Iy2� Iy3)
{
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, (B.40)

where we used the on-shell relations,

pub(p)=mbub(p), p2=mb
2 , (B.41)

us̄(p′)p′=msus̄(p′), p′2=ms
2 . (B.42)

We sum up these amplitudes in addition to the counterterms in Eq.(B.34). Here we
separate sum into two parts,

∑
x=c,d �ρ

(x)+�c,Qu
µ,sb and

∑
x=e∼h �ρ

(x)+�c,QW
µ,sb . Taking

account of the sum with respect to the up-typq quarks, we obtain,

∑

i=u,c,t

[ ∑

x=c,d
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]

=
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∑
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[ ∑
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]
, (B.44)

where the functions fu′(xi), Fu′(xi), fW
(1)′(xi), fW

(2)′(xi) and FW′ (xi) are defined as,

fu
′(xi) ≡ �4+ 38xi� 63xi2+ 14xi3+7xi

4� 6(4� 16xi+9xi2)lnxi
18(xi� 1)4

, (B.45)

Fu
′(xi) ≡ �8+ 38xi� 39xi2+ 14xi3� 5xi4+ 18xi2lnxi

12(xi� 1)4
, (B.46)

fW
(1)′(xi) ≡ �20+ 116xi� 153xi2+ 56xi3+xi

4+6xi
2(12� 10xi+xi

2)ln xi
18(xi� 1)4

, (B.47)

fW
(2)′(xi) ≡ 32� 164xi+ 225xi2� 104xi3+ 11xi4� 6xi2(12� 10xi+xi

2)lnxi
18(xi� 1)4

, (B.48)

FW
′ (xi) ≡ �10� 43xi+ 78xi2� 49xi3+4xi4+ 18xi3lnxi

12(xi� 1)4
. (B.49)

It is clear that there remain the divergence in Eq.(B.44) even though we add the
counterterms obtained from the wavefunction renormalization of the quark fields.
In the case of the SM where the CKM unitarity holds, the remaining divergence in
Eq.(B.44) vanishes by using the CKM unitarity relation

∑
i=u,c,tλsb

i =0.
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B.1.4.1 With CKM unitarity → SM case

When we use the CKM unitarity relation
∑

i=u,c,tλsb
i =0, we obtain the amplitudes

in the case of the SM:
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[ ∑
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]
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32π2
eQu

∑

i=c,t

λsb
i

⎡

⎣ γ
νL
MW

2 (q
2gρν � qρqν)

fu(xi)
2

+
1
MW

2 [q, γρ](mbR+msL)
Fu(xi)
2

⎤

⎦, (B.50)

∑

i=u,c,t

[ ∑

x=e∼h
�ρ
(x)+�c,QW

µ,sb
]

SM

=
g2

32π2
e
∑

i=c,t

λsb
i

[
1
MW

2 (q
2gρν � qρqν)γνL

fW(xi)
2

+
1
MW

2 [q, γρ](mbR+msL)
FW(xi)

2

⎤

⎦, (B.51)

where we set xu→ 0 and,

fu(xi) ≡ �xi{18� 29xi+ 10xi2+xi
3+(32� 18xi)lnxi}

6(xi� 1)4
+

4
3(xi� 1)4

lnxi�
4
3
lnxu , (B.52)

Fu(xi) ≡ xi(2+ 3xi� 6xi2+xi
3+6xi ln xi)

4(xi� 1)4
, (B.53)

fW(xi) ≡ xi{12� 11xi� 8xi2+7xi
3+2xi(12� 10xi+xi

2)lnxi}
6(xi� 1)4

, (B.54)

FW(xi) ≡ xi(1� 6xi+3xi
2+2xi

3� 6xi2 lnxi)
4(xi� 1)4

. (B.55)

The leading order Wilson coefficient in the case of SM, denoted as C7γ
(0)SM, can be

determined by the terms which are proportional to [q, γρ](mbR+msL) in Eqs.(B.50)
and (B.51). We note that the functions with respect to the parameter xi in Eqs.(B.52)-
(B.55) are derived by using the functions in Eqs.(B.45)-(B.49). For example,

∑

i=u,c,t

λsb
i Fu

′(xi) =
∑

i=c,t

λsb
i {Fu′(xi)�Fu′(xu)} →xu→0 ∑

i=c,t

λsb
i Fu(xi) . (B.56)

The terms which do not proportional to the up-type quark masses xi in Fu′(xi) are can-
celled out because of the subtraction Fu′(xi)�Fu′(xu). If theW boson is much heavier
than the top quark, that is xt≪ 1, the leading order terms in

∑
i=c,t λsb

i {Fu′(xi)�
Fu
′(xu)} are written as,

∑

i=c,t

λsb
i {Fu′(xi)�Fu′(xu)} ∼ λsb

c mc
2�mu

2

MW
2 +λsb

t mt
2�mu

2

MW
2 . (B.57)

Therefore, the function Fu(xi) is suppressed by the factor mi
2�mu

2

MW
2 in addition to the

CKM factor λsbi . We note that mc
2�mu

2

MW
2 ∼ 2.5× 10�4 with the values in [65]. This

suppression factor is the result of the GIM mechanism [6]. In realistic case where the
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top quark is heavier than the W boson, the parameter xt is larger than 1 (xt∼ 4.6)
and thus the top quark contribution becomes Fu(xt)∼ 1

4
≫ mc

2�mu
2

MW
2 . It is clear that

the function Fu(xi) vanishes if all the up-type quark masses are the same, that is
mu=mc=mt.

B.1.4.2 Violation of CKM unitarity

When we use the violation of the CKM unitarity in the model with VLQ Eq.(4.81),

∑

i=u,c,t

λsb
i ≃ ZdNC

sb , (B.58)

the Eqs.(B.43) and (B.44) become,

∑

i=u,c,t

[ ∑
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µ,sb

]
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g2

32π2
eQu
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λsb
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MW
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1
MW

2 [q, γρ](mbR+mqL)
Fu(xi)
2

]

+
g2

32π2
eQuZNC

sb
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MW

2 (q
2gρν � qρqν)

(
�1
9
+
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3
lnxu

)
� 1
3MW

2 [q, γρ](mbR+mqL)

]
, (B.59)

∑

i=u,c,t
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x=e∼h
�ρ
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µ,sb
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32π2
e
∑
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λsb
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2

⎤
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+
g2e
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CUV� lnMW

2

µ2
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γρL

]

+
g2e

32π2MW
2 ZdNC

sb

[
1
2

(
�10
9
q2γρ+

16
9
qqρ

)
L+ [q, γρ](mbR+msL)

FW
′ (xu)
2

]
, (B.60)

As we see above, there remain the divergence even though we add the counterterms
which come from the wave function renormalization of the external quark fields.
Therefore, we need additional counterterms which do not exist in the case of the SM.

B.2 Z-γ and χ0-γ mixing diagrams

We need additional counterterms to remove the divergence in Eq.(B.60). It is
important to consider mixing the Z boson and the neutral NG boson χ0 with the
photon at the one-loop level. Relevant diagrams are shown in Figs.B.3 and B.4.
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Figure B.3. Mixing Z with the photon at one-loop level. The symbol C is Faddeev–Popov
ghost. The symbol f denotes fermions in the SM, that is f = e, µ, τ , ua, ca, ta, da, sa, ba

where a is the color index, a= r, g, b.

χ0 χ0 γγ
W

χ

C

C

Figure B.4. Mixing χ0 with the photon at one-loop level. The symbol C is Faddeev–Popov
ghost.

Such mixing effects lead to the following wave function renormalization [111]:
(
Z0
µ

A0
µ

)

=

(
ZZZ

√
ZZA

√

ZAZ
√

ZAA
√

)(
Zµ

Aµ

)
, (B.61)

χ0,0 = Zχ0
√

χ0 , (B.62)

where the subscript “0” in the left-hand side means bare quantities while quantities
in the right-hand side are renormalized. The symbols Zij

√
with i, j =Z, A and

Zχ0
√

are the renormalization constants. In the case of the SM, there are no FCNC
in both the Z and photon interactions, the wave function renormalization Eq.(B.61)
does not contribute to the computation of the b→ sγ process. On the other hand,
there is FCNC in the Z boson interaction,

LZ ⊃ g
2cw

ZdNC
sb sL̄γµbLZ0µ , (B.63)
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in the model with VLQ, as seen in Eq.(4.71). This FCNC leads to a counterterm,

Lc = ZZA
√ g

2cw
ZdNC
sb sL̄γµbLAµ , (B.64)

through the wave function renormalization shown in Eq.(B.61).

The renormalization constants in Eqs.(B.61) and (B.62) can be determined so as
to remove the divergence in the amplitudes of the diagrams shown in Figs.B.3 and
B.4. Here we use the MS scheme. Counterterms for the amplitudes are given as [111],

Lc = Zµ[( ZZA
√

+ ZAZ
√

)(gµν!�∂µ∂ν)+ ZZA
√

gµνMZ
2]Aν � ZZA

√
MZAµ∂µχ0 , (B.65)

which lead to,

ΠZA,c
µν (q2) = �( ZZA

√
+ ZAZ
√

)(gµνq2� qµqν)+ ZZA
√

gµνMZ
2 , (B.66)

Πχ0A,c
µ (q2) = i ZZA

√
MZ qµ . (B.67)

We express the total amplitudes of the diagrams shown in Figs.B.3 and B.4 as,

ΠZA
µν (q2) = ΠZA,div.

µν (q2)+ΠZA,finite
µν (q2) , (B.68)

Πχ0A
µν (q2) = Πχ0A,div.

µν (q2)+Πχ0A,finite
µν (q2) , (B.69)

where the terms with index “div.” are proportional to the divenrgent part CUV while
the terms with index “finite” consist of finite terms. Here we focus on the divergent
part which are given as,

ΠZA,div.
µν (q2) =

egcw
16π2

[2gµνMZ
2+(gµνq2� qµqν)A]CUV , (B.70)

Πχ0A,div.
µ (q2) = i

egcw
8π2

MZ qµCUV , (B.71)

with,

A = 3+
MZ

2

6MW
2 �

MZ
2

MW
2

[
∑

f=e,µ,τ

2
3
Qf(If � 2Qfsw2 )+ 3
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2
3
Qf(If � 2Qfsw2 )

]
. (B.72)

The factor 3 comes from the degree of freedom with respect to the SU(3)c color. We
then determine the ZZA

√
so as to remove the divergence in χ0�Amixing,

Πχ0A,div.
µ (q2)+Πχ0A,c

µ (q2) = 0 , → ZZA
√

= �egcw
8π2

CUV . (B.73)

Then we can determine ZAZ
√

by,

ΠZA,div.
µ (q2)+ΠZA,c

µ (q2) = 0 , → ZAZ
√

=
egcw
16π2

CUV(2+A) . (B.74)

These results agree with Ref.[111]. We then obtain the counterterm for the b→ sγ

vertex from Eqs.(B.64) and (B.73):

�c,ZNC
µ,sb = � eg2

16π2
ZdNC
sb CUV γµL . (B.75)

94 CKM Unitarity Violation in b→ sγ



Also the finite part ΠZA,finite
µν and Πχ0A,finite

µν in Eqs.(B.68) and (B.69) contribute to
the b→ sγ vertex as follows:

�ρ
(ZA) = � eg2
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2� qρqν)γνL, (B.76)

�ρ
(χ0A) =

eg2

32π2
ZdNC
sb qρqν

MZ
2

[
2

(
�lnMW

2

µ2

)]
γνL . (B.77)

where �ρ
(ZA) and �ρ

(χ0A) correspond to the contributions from ΠZA,finite
µν and Πχ0A,finite

µν ,
respectively. In Eq.(B.76), we do not include the contribution from the light SM
particles since we do not integrate out these light particles. It is clear that the
counterterm shown in Eq.(B.75) removes the divergence in the amplitude Eq.(B.60).

B.3 Unitarity Violation in the model with VLQ

Adding the amplitudes Eqs.(B.75)-(B.77) to Eqs.(B.59) and (B.60), we obtain the
contributions to the b→ sγ vertex from the same diagrams as the SM without the
CKM unitarity:

∑
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