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Abstract

We consider a model with one down-type SU(2)., singlet vector-like quark (VLQ).
The VLQ is defined as a new quark whose left- and right-handed components belong
to the same representation of the gauge symmetry. In other words, both the left-
and right-handed components of VLQ feel the same interactions unlike the standard
model (SM) quarks. The VLQs are introduced in many new physics models, such as
the universal see-saw model which explains hierarchical structure of the SM quark
mass spectrum.

The recent lower limits for the VL.Q mass from ATLAS and CMS experiments are
about 1 TeV, ten times larger than the electroweak scale ~100 GeV. The standard
model effective field theory (SMEFT) is a powerful tool for to investigation of such
a heavy particle. We investigate the model with VLQ on the basis of the SMEFT.

If we add the VLQs to the SM particle content, flavor-changing-neutral currents
(FCNCs) among the SM quarks are induced at the tree level. The tree level FCNCs
lead to new contributions to the observables of FCNC processes in the neutral B
meson systems. In order to clarify constraints on the parameters of VL.Q), we evaluate
the FCNC processes with respect to b— s transition in the neutral B;, meson
system; BS—B?Q mixing, ES — ptp~ and E(z)—> Xyy. We construct SMEFT from the
model with VLQ up to the one-loop level in order to analyze these processes.

We find that the constraint on the model parameters from the branching ratio
of EQ — ptp~ is more stringent than that from the branching ratio of B_C(l) — X.
Although we focused on the FCNC processes related to the b— s transition, the
SMEFT constructed in this thesis can be applied to both b— d and s— d transitions.
In addition, the Wilson coefficient for the radiative transition b— sy also contributes
to the CP asymmetry in the radiative decays, the inclusive and the exclusive b —

slT1~ processes.
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Chapter 1

Introduction

It is known that there are six quarks and six leptons in the standard model (SM)
of particle physics. The SM describes three fundamental interactions, strong, weak
and electromagnetic interactions. These interactions are introduced through a gauge
symmetry, SU(3). x SU(2);, x U(1)y. The SM particles are representations of the
gauge group SU(3). x SU(2), x U(1)y. Left-handed quarks are triplet 3 of SU(3),,
doublet 2 of SU(2);, and have U(1)y charge % Right-handed quarks are triplet 3 of
SU(3)., singlet 1 of SU(2), and have U(1)y charge % for up-type quarks or —% for
down-type quarks. The assignment of SU(2);, for the SM quarks is determined so
that the weak interaction acts only the left-handed quarks.

In the SM, interactions among the different flavors are controlled by two unitary
matrices, Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2, 3] for the quarks and
Pontecorvo-Maki-Nakagawa—Sakata (PMNS) matrix [4, 5] for the leptons. In other
words, the flavor mixing of quarks and leptons are governed by the CKM and PMNS

matrices in the SM, respectively. Characteristics of the quark sector in the SM are,

—  Flavor-changing neutral currents (FCNCs) are suppressed by Glashow—Ili-
opoulos-Maiani (GIM) mechanism [6].

— CP violation is induced by one Dirac CP phase in the CKM matrix.

The FCNCs mean interactions which change species of quarks but do not change
the electromagnetic charge of the quarks. For example, a transition from b-quark to
s-quark (b— s) is the FCNC process. Such interactions do not exist in the SM, and
thus FCNCs are induced at the one-loop level through the charged current in the
SM. This is one of the aspects of the GIM mechanism and leads to the suppression
of the FCNC processes in the SM. For example, we show a FCNC process b— sZ
in the case of the SM in the left figure of Fig.1.1. The characteristics such as the
GIM mechanism are verified by precise measurements in B and K meson systems
and consistent with current experimental data. Especially the verification of the

unitarity of the CKM matrix is one of the most successful aspects of the SM |7, §|.
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Figure 1.1. Left figure : Flavor changing neutral current (FCNC) induced at the one-
loop level through the charged current. Right figure : FCNC among the SM quarks at the

tree level.

Although predictions of the SM are consistent with almost all experimental
results, there are several phenomena which the SM cannot explain. For example,
the SM cannot predict measured angles of the flavor mixing. These angles are free
parameters in the SM. The measured angles of the flavor mixing indicate a small
mixing in the quark sector while a large mixing in the lepton sector [7, 8, 9]. This
implies that there is some mechanism which leads to the characteristic pattern of
the flavor mixing behind the SM.

There are various models beyond the SM in order to explain the problems in the
SM. For instance, we proposed the models which clarify the flavor structures of the
quarks and leptons by using simplified mass matrices [10], or the models with flavor

symmetries which lead to the pattern of the flavor mixing [11].

Many new physics (NP) models predict existence of new particles which are
not included in the SM particle content. We focus on so-called “vector-like quarks”
(VLQs), as such the new particles. The VLQs are introduced in many NP models.
One of the NP models with VLQs is the universal see-saw model [12, 13, 14, 15, 16,
17, 18] which explain the hierarchical structure of the SM quark mass spectrum. It

is important to confirm the existence of the VLQs in order to verify the NP models.

The VLQs are defined as new quarks whose left- and right-handed components
belong to the same representation of the gauge symmetry. Therefore, both the
left- and right-handed components of VLQs feel the same interactions unlike the
SM quarks. As we will see in Sec.2.2, this feature leads to mass terms of the VLQs
without Yukawa interactions of the SM Higgs doublets and hence the masses of the
VLQs are independent of the energy scale of electroweak (EW) symmetry breaking.

The direct search of the VLQs are performed by the ATLAS [19]-[34] and CMS
[35]-[52] experiments at the Large Hadron Collider (LHC). Assuming VLQs are
coupled with only third generation quarks, recent lower limits for a mass of down-
type SU(2)L, singlet VLQ are obtained as 1.22 TeV by ATLAS collaboration [34] and
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1.17 TeV by CMS collaboration [49] at 95% confidence level. One finds that these
limits for the VL(Q) mass are about one order larger than the EW scale (~100 GeV).

If we add the VLQs to the SM particle content, new features arise in the model:

— FCNCs among the SM quarks are induced at the tree level (right figure in
Fig.1.1).

— The CKM matrix is not a unitary matrix.

These features mean that the GIM mechanism does not work in the model with
VLQs. Since the SM contributions to the FCNC processes are suppressed by the
GIM mechanism, it is expected that FCNC processes in the B and K meson systems
give stringent constraints on model with VLQs. We investigate the constraints on
the parameters of the VLQ from the FCNC processes in the neutral By, meson
systems; BS—B?S mixing, ]_?2 — putp~ and Eg — Xsy. The B_g meson consists of the
b-quark and anti-d-quark while §2 meson consists of the b-quark and anti-s-quark.
Those processes correspond to the b— s transition at the quark level. One of the
observables related to the Bg-BT? mixing is the mass difference of the neutral B,
meson, Amp,. The Amp, is used in order to determine elements of the CKM matrix.
The ES — ptp~ process is induced by the FCNC with the Z boson as shown in
Fig.1.1. The branching ratio is measured by the LHCb and CMS experiments |53,
54, 55, 56| at the LHC and its recent value is (3.0 4 0.6153) x 107 reported by the
LHCD experiment [56]. The inclusive radiative decay E}} — Xy process corresponds
to the b— sy transition at the quark level. The branching ratio is measured at BaBar
[57, 58, 59], Belle |60, 61, 62] and CLEO [63] experiments, and the averaged value of
these experimental results are (3.3240.15) x 10~* [64]. We note that these branching
ratios are actually much smaller than the charged current procrss, Br[BJ— X.etv,] =
(10.140.4) x 1072 [65].

If a new heavy particle exists, contributions from the new particle to the observ-
ables are measured as deviations from values predicted by the SM. The searches
for the deviations from the SM predictions are referred to as indirect searches.
Since we do not need to know kinematical information of the new heavy particle
in the analysis of the indirect searches, it is useful to describe the models without
dynamical degrees of freedom of the new heavy particle. This description is called
standard model effective field theory (SMEFT). The SMEFT is an effective field
theory (EFT) which consists of only the SM particles. There are higher-dimen-
sional operators which are invariant under the gauge symmetry of the SM; SU(3).. x
SU(2)L, x U(1)y. Effects from the new heavy particles are embedded in the higher-
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> < Integrate out

Figure 1.2. Integrating out a heavy particle ®. The symbol v represents a SM particle.

The set of disk marks means insertion of an effective operator.

dimensional operators. The whole Lagrangian for the SMEFT can be written as [66,
67,

o ©

1
Lsyerr = Lsm+ Z ANP AZ O; (©6) + O( A )
- NP

(1.1)

where (’)Z(") with n >4 denotes dimension n operators and Anp corresponds to a NP
scale, such as the mass of new heavy particles. The term Lgys is the SM Lagrangian

including only dimension 4 operators. The coefficients cZ(")

are coupling constants for
dimension n operators and called Wilson coefficients. The effects from the higher-
dimensional operators become small as the dimension of the operators increases
because of the suppression factor A*~". If we impose the lepton number conservation,
the lowest dimension of the higher dimensional operators is six. A first attempt to
construct a complete set of dim.6 operators was given in Ref.[66]. In the following, we
use so-called “Warsaw basis” [67] which contains 59 baryon number conserving oper-
ators. The SMEFT allows us to analyze phenomena independently of NP models.
For instance, some constraints on the Wilson coefficients of the SMEFT from precise
measurements with respect to phenomena at the EW scale, namely electroweak
precision tests (EWPT) (68, 69, 70, 71, 72, 73, 74].

Once we fix a specific NP model with new heavy particles, the Wilson coefficents
can be expressed in terms of parameters of the NP model by integrating out the
new heavy particles. Figure.1.2 shows the procedure “integrating out”. The symbol
® represents a heavy particle which is integrated out while the symbol 1) represents
a SM particle. The set of disk marks means insertion of an effective operator. The
procedure “integrating out” is performed around the mass scale of the new heavy
particle. The mass scale of the new heavy particle is generally much higher than the
EW scale. The difference between the NP scale Axp and the EW scale Agw gives
rise to corrections which are proportional to In(Axp/Agw). Such corrections will be
large in the case of Axp>> Agw. We can take account of the logarithmic corrections
by solving renormalization group (RG) equations for the Wilson coefficients with an
anomalous dimension matrix of the SMEFT |75, 76, 77]. The SMEFT allows us to
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connect observables at different energy scales, such as observables of the B meson
system and the EWPT.

In this thesis, we consider a model with one down-type SU(2),, singlet VLQ as a
simple model to clarify constraints on parameters of the VLQ. We expect that the
VLQ is much heavier than the EW scale because of the constraints from the direct
search at the LHC, and thus we investigate the model on the basis of the SMEFT.
There are rich phenomenology in the model with VLQ, for instance |78, 79, 80,
81]. The analyses of the model with VLQs in terms of the SMEFT were performed
in Refs.[82, 83, 84]. One of the new points of our work [84] is an analysis of the
inclusive radiative B} meson decay l?g — Xy on the basis of the SMEFT. We have
to construct SMEFT from the model with VLQ up to the one-loop level in order
to analyze the Eg — Xy process. We clarify constraints on the parameters of the
VLQ from the B_g — Xy process in addition to the Z?S — up~ process. The SMEFT
constructed in this thesis can be applied to other FCNC processes, namely b— d
and s— d transitions. In addition, the Wilson coefficient for the radiative transition
b— sv also contributes to the CP asymmetry in the radiative decays [85, 86, 87],
the inclusive [88, 89| and the exclusive [90, 91, 92| b— si*l~ processes.

This thesis is organized as follows. In Chap.2 and Chap.3, we give some reviews
as introduction. We briefly summarize the SM and the model with VLQ in Chap.2.
We show the features of the model with VLQ, such as the tree level FCNC and
violation of the CKM matrix. In Chap.3, we give the basic idea of EF'T. As a simple
example, we construct an EF'T by integrating out heavy SM particles, like W boson.
We refer that EFT as weak EFT in this thesis.

After these chapters, we present our results based on Ref.[84]. In Chap.4, we con-
struct the SMEFT by integrating out the down-type SU(2);, singlet VLQ. Inserting
a vacuum expectation value into the Higgs field in the derived effective operators of
the SMEFT, we obtain the Lagrangian below the EW scale. The FCNCs and the
violation of the CKM unitarity are expressed in terms of the Wilson coefficients of
the SMEFT. We investigate RG effects for the Wilson coefficients obtained at the

tree level.

In the analysis of the neutral B meson systems, we use the weak EFT. We
present a procedure of matching the model with VLQ in terms of the SMEFT with
the weak EF'T in Chap.5. In order to determine Wilson coefficients which we need to
compute the B?C? — Xy process, we calculate the amplitude of the b— s transition.
We carefully investigate the cancellation of the divergence in the b — sy amplitudes
since the violation of the CKM unitarity leads new divergence which does not appear

in the SM calculation.
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We give numerical results in Chap.6. We show the dependence of the branching
ratios of the §£ — putu~ and the E? — Xy processes on the parameters of the
VLQ. We also present parameter regions allowed by the experimental data of the
branching ratios of the B?S — utp~ and the E? — Xy processes. Then, the summary
and discussion are given in Chap.7.

In Appendix.A, we give the derivation of formulae for the observables of the
neutral B meson systems, which are used in Chap.5. Appendix.B is devoted to the
computation of the amplitude for the b— sy process. Here we focus on the diagrams
which also exist in the SM. We do not use the CKM unitarity in contrast to the SM

calculations.



Chapter 2
Standard Model and Vector-like Quark

2.1 The Standard Model

In this section, we see the standard model (SM) of the particle physics. It is known
that there are four interactions acting among the elementary particles, namely
strong, weak, electromagnetic interactions and the gravity. The gauge symmetry
SU(3). x SU(2)r, x U(1)y induces these interactions except the gravity in the SM.
The particle content with the quantum numbers under the SM gauge symmetry
are shown in Table 2.1. There are three generations of the fermions in the SM.
All the generations have the same quantum numbers. In Table 2.1, the symbols
G4, Wl and B, with a=1~8, I =1,2,3 represent the SU(3). gauge boson (gluons),
the SU(2);, gauge bosons and the U(1)y gauge boson, respectively. The symbol
¢ is the SU(2);, Higgs doublet. The U(1)y hypercharge Y is written in the fourth
row of the Table 2.1 and relates to the electromagnetic charge @) as,

Q = 1Y +§ , (2.1)
where I}V denotes the third component of the weak isospin. The SM quark Lag-

rangian which is invariant under the SM gauge symmetry is given as,

Loy = L+ Ly (2.2)

with
L&k = ain"Di i+ ufin" D uf + diin" Dy di | (2.3)
‘CgM,Y = —[HQJQE¢d1]%+ yijqi'eb% + h.c.] . (2.4)

15
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. Fermions Gauge Bosons  Scalar
S = (updl) wh  dh l=(de) ck  Gp WS B,
SU(3). 3 3 3 1 1 8 1 1 1
SU(2). 2 1 1 2 1 1 3 1 2
ULy ¥1/3  +4/3 —2/3 —1 2 0 0 0 1

Table 2.1. The particle content with quantum numbers in the SM. The index i=1,2,3
denotes generation of the fermions. The symbols GJ;, WJ and B, witha=1~8,I=1,2,
3 represent SU(3). gauge boson (gluons), SU(2);, gauge bosons and U(1)y gauge boson,

respectively. The symbol ¢ is SU(2);, Higgs doublet.

The gauge interactions come from the covariant derivatives D} and D}é’d in the
kinetic terms Eq.(2.3):

Y. 1 a
Df, = 0utig LB, +igT W] +¢g%ag, (2.5)
Y, M
Dify = Ou+ig 5" Bu+igs5 Gy, (2.6)
Y, M
D}, = 8u+zg’%RBu+zgSTGz, (2.7)

where Y,1,, Yur and Y;r denote the U(1)y hypercharge of the ¢, ur and dg respect-
ively. The 2 x 2 matrices 7/ with I =1,2,3 are called Pauli matrices and the 3 x 3
matrices \* with a =1~ 8 are called Gell-mann matrices. The coupling constants
gs, g and ¢’ correspond to the gauge couplings for the SU(3)., SU(2), and U(1)y,
respectively. The field ¢ in Eq.(2.4) is defined by b =iT2P".

The subscript 7 in Egs.(2.3) and (2.4) represents the generations of the quarks;
i=1,2,3. We can see from the Eqgs.(2.3) and (2.4) that the different generations
are mixed by the Yukawa interactions in Eq.(2.4) but not mixed by the gauge

interactions in Eq.(2.3). This basis is referred to as interaction basis or weak basis.

In Eq.(2.4), the both Yukawa coupling matrix y; and vy, are general complex
matrix. One can take a basis where one of the Yukawa coupling matrices is real
diagonal without loss of generality. Here we adopt a real diagonal basis of the up-
type Yukawa coupling 7,. This can be done by introducing the following unitary

transformtaions,

i __rrtg 07
a.=Ugrar

ij 05’

. (2.8)

where the 3 x 3 unitary matrices U,z and U,r diagonalize the Yukawa coupling v,:

U yaUurlFaf*ouly = YEqEoudf | (2.9)
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with Y, =diag[Y,, Y., Y;]. The unitary transformtaions Eq.(2.8) affect the down-type
Yukawa interaction y7q; ¢d%, but the modification can be absorbed into the Yukawa

coupling yy as,

vidody = Uhwd“afed) = yialrods. (2.10)
Therefore, we can take the basis where the Yukawa coupling of the up-type quarks is
real diagonal while that of the down-type quarks is general complex matrix without
loss of generality. We note that the kinetic terms in Eq.(2.3) do not change under
the transformations Eq.(2.8). The unitary transformation which do not change the
gauge interactions, such as the transformation Eq.(2.8), is called weak basis trans-
formation. In the following, we simply take the Yukawa coupling v, in Eq.(2.4) as

a real diagonal matrix, that is y/ — y20%.

2.1.1 Quark masses

We can see from the Table 2.1 that the left-handed fermions have different quantum
numbers from the right-handed fermions. This assignment of the quantum numbers
forbids mass terms of the SM fermions, like m,urugr, because of the electroweak
(EW) gauge symmetry SU(2);, x U(1)y. In the SM, the Yukawa interactions in
Eq.(2.4) lead to the mass of the SM fermions. The EW gauge symmetry SU(2)., x
U(1)y is broken down to the electromagnetic (EM) gauge symmetry U(1)gm by a
vacuum expectation value (VEV) v of the Higgs doublet ¢,

6 %( 5 ) (2.11)
The Yukawa interactions become mass terms of the SM quarks by inserting the VEV
into the Higgs doublet ¢:

Loy — —[midid)+ Mujuk+h.c] (2.12)

where the 3 x 3 mass matrices my and M, are defiend as,

¥ (%

mg = ﬁyéj, (2.13)
M= Ly 2.14
75V (2.14)

These mass matrix my is generally non-diagonal complex matrix. We can obtain the
physical quark masses by diagonalizing my. We consider a bi-unitry transformation

of the quark fileds with unitary matrices Ky, and Kyg:

dp=Kijdp" '

The unitary matrices in Eq.(2.15) diagonalize the mass matrix m, as,

K mgKqr = diaglmg, ms,my) = My, (2.16)
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where my ; ; are the physical quark masses. The quark mass terms Eq.(2.12) become,
Loy — —[Mécﬁdzl%i-i-MéU_EUﬁ—l— h.c.] . (2.17)

The basis where the quark mass matrices are diagonal is called mass basis.

2.1.2 Charged current and CKM matrix

In contrast to the weak basis transformation Eq.(2.8), the unitary transformations
in Eq.(2.15) change the gauge interactions in the kinetic terms Eq.(2.3). This is
because the left-handed down-type quarks in the quark doublet gy transform under
the transformation in Eq.(2.15) while the left-handed up-type quarks remain as they
are. Here we focus on the gauge interactions of the SU(2), gauge bosons W;} and
W2 in the kinetic term of SU(2);, doublet quarks g. After the transformations in

Eq.(2.15), these gauge interactions become,

1 12 i
o = 43 e ™ (3)
= —%%Wff LW+ LR W (2.18)
where the charged gauge boson W is defined as,
wE = L(W;}:Fz'wﬁ). (2.19)

! V2
In the mass basis of the quarks, the different generations of the quarks are mixed by
the gauge interaction of the W boson. The mixing matrix Ky, in Eq.(2.18) is called
Cabibbo-Kobayashi-Maskawa (CKM) matrix,

VCKM = KdL- (220)

Since the CKM matrix is a unitary matrix, the CKM matrix satisfies the relations,

> ViV = o, (2:21)
i=u,c,t

> V&RV = 69, (2.22)
m=d,s,b

The quark mass terms Eq.(2.17) is invariant under rephasing of the quark fields,

uf, — e'Pury}

rm i¢§nL rm
{dL L nd : (2.23)

dR™ — e'drdp™ ’ Uk — ei%Ruﬁ
and hence some phases of the CKM matrix are absorbed into the quark fields.
Taking account of the rephasing and the unitarity relations Eqgs.(2.21) and (2.22),

the number of degree of freedom in the CKM matrix is,

Mixing angle : gy —1) (2.24)

Physical phase : (ng=2)(ng = 1) (2.25)
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where ny is the number of generations of quarks, that is n,=3 in the SM. Thus the

CKM matrix in the SM has three mixing angles and one physical phase.

2.1.3 Neutral currents

Next we focus on the gauge interactions of the SU(2);, gauge bosons W,? and the
U(1)y gauge boson B,. Taking account of the transformations in Eq.(2.15), these

gauge interactions become,

1/ — - gW2+g'Y,B 0 ul
Lk O ——( ) )7“ 8 — 3 ;
’ 2 0 *g% + 9'YqrBy, dp,

/

Yo rudry ufs + Yardiry"d] By

= —Ci[uiv“<%L — Qus'%u>ui + d’_m'y”(—%L — st%ﬂ>d’m}Zu

w

—e[Quuinu’ + Qad A Ay, (2.26)

where ¢, = cosf,, and s, =sinf,, with the Weinberg angle 6,,. The symbol Z, is the
Z boson while A, denotes the photon field, which are defined as

()= Cno)() i)

The electromagnetic charge e is related to the gauge couplings g and ¢’

!/
e = 99— gs, = glew. (2.28)

One of the features in the SM is that the different generations (flavors) of the quarks
are not mixed by the Z and photon interactions Eq.(2.26). In other words, there
is no flavor changing neutral current (FCNC) at the tree level and the FCNCs are
induced by loop diagrams in the SM. This is one of the aspects of the Glashow-Ili-
opoulos-Maiani (GIM) mechanism [6].

2.2 Model with Vector-like Quark

We are going to investigate the model with VLQ in terms of the full theory. We
consider a model which contains one SU(2)y, singlet down-type VLQ denoted as d*.
The representation of the VLQ under SU(3). x SU(2) x U(1)y is,

di r (3, 1, —%) . (2.29)
The most general Lagrangian for the VLQ is
~[yi'abo i+ M qdidi + Mif qdidfy + e, (2.30)
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where the covariant derivative is the same as that of the SM right-handed down-type
quarks. The VLQ d* has the mass term without the Yukawa interaction through the
SU(2);, Higgs doublet since the representation of the left- and right-handed VLQ
is the same. In the present section, the indices i, 7 and k£ denote the generation of

SM quarks (i, j,k=1~3) and indices «,  and = represent all the quarks including
VLQ (o, B, 7y=1~4).

2.2.1 Diagonalization of Mass Matrix

We consider the steps of the diagonalization of the down-type quark mass matrix.
Here we take the up-type quark mass matrix diagonal. A 4 x 4 mass matrix which

includes both the SM down-type quarks and the VLQ d* is given as,

vyg! vy’ wyd® oyg?
V2 V2 V2 V2
vyg! vyg®  wyg? woyd!
Ml(;o) _ V2 V2 V2 V2 ) (2.31)
vyd' vyl vy vyl
V2 V2 V2 V2

Myiq Miyiq Mitq Miiq

We can choose a basis where the elements ( Métq Mg MEq ) are zero by using a

weak basis transformation without loss of generality:

11 12 13 14
VYd VYd VYd VYd

VZooV2VZ V2

vyg' wyg® vyd® vwgt mn J
Mp = | v2 V2 V2 2 E< oD ]\f > (2.32)
31 32 33 34 4
VYq VYd VYd VYd

VZooV2 V2 V2
0 0 0 My

where mp is a 3 X 3 matrix corresponding to the mass matrix of SM down-type
quarks and Jp is a 3 X 1 vector. We then diagonalize the mass matrix Mp. First

we consider the diagonalization of the 3 x 3 matrix part mp by using a bi-unitary

transformation:
di = KpPdy, (2.33)
diy = KHdY, (2.34)

where K and Ky are 3 x 3 unitary matrices which diagonalize the matrix mp and

the mass matrix becomes,
.|.

ro_ K; 0 mp Jp Kr O

MD_(@ 1)(0 M4><0 1

_ | KlmoKr Kjap \ _( mb* Jh (2.35)
0 My 0 My )’
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Here we define,

Jh = K}lJp, (2.36)
vt = K (2.37)
We then define unitary matrices Ur, r which diagonalize 4 x 4 mass matrix Mp,
_ K, 0
U = < 0 1>VL, (2.38)
. Kr 0O
Ur = < 0 1>VR, (2.39)
with
g = UrdpP, (2.40)
dg = USPap”, (2.41)

where Vi g in Eqs.(2.38) and (2.39) are 4 x 4 unitary matrices. The symbol d’
represents the down-type quarks in the mass basis, d'=(d s v B)T where B denotes
the VLQ in the mass basis. We can diagonalize MpM, g as follows:
U MpMLUL = U MpURULIM UL
diagy2 Al
A (mp*®)?+ JpJp' MaJp Vi
My Jh! M?
m3 0 0 0
0 m2 0 0

_ , 2.42
0 0 m¢ 0 (242)

0 0 0 Mg
2.2.2 CKM unitarity and Z FCNC
The kinetic terms of the down-type VLQ d* and the SM quarks are given as follows:
L} = a4 iy, D}f'qt + ng iy, Dl pdh + QE iy, DY puk + d} iy, DY pdf + dh i Dipdh.  (2.43)
After the EW symmetry breaking and the diagonalization of the quark mass matrices,
the gauge interactions for the quarks including the VLQ are derived as,

L D Lw+Lz+LatLa, (2.44)
with
Lw = —L [y KiVPawt + b, (2.45)
\/i w
9 il i
Ly = —au ’7“|:§L - Squu:|u Zy,
Cg da’7“|: {5(1,8 _ VL40¢*VL4ﬂ}L _ S%UQd]dﬁZu , (2.46)
La = —e[Quuiru’+ Qud®y"d] A, , (2.47)

Lo = —gs[ ’y“%u +d°"y“)\ do‘]G“ (2.48)
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where we omit the prime on the quark fields for simplicity. We can see that the
gluon and the photon interactions in Eqgs.(2.47) and (2.48) are the same as that in
the SM. The matrix K}7V;’’ in Eq.(2.45) corresponds to the 3 x 4 CKM matrix in
the model with the down-type VLQ,

Vexkm = KLVp. (2.49)

It is important that FCNCs among the down-type quarks are induced by the Z
boson interaction. The existence of the FCNCs comes from the difference among the
isospin charge I3 of the SM quarks and that of the VLQ (Since the VLQ is SU(2)y,
singlet, it does not have the isospin charge). Actually, the FCNCs in Eq.(2.46) is

given as follows:

1 df
- - 1 d?
Lz o (b g dp df i@l || |
L
0 d%
1 d,
_ - 1 S
= (d s b B )i @y M 171 R v
0 By
= AV (d)Vie vy z,
= A% (d) (6% — Vi vitPyap z,, (2.50)

where I3V(d) = —% is the isospin charge of the SM down-type quarks. We use the
unitarity of V; in the last line of Eq.(2.50). This fact is that the GIM mechanism
does not work in the model with VLQ.

We define a matrix which represents the FCNC interaction as,

798, = §o8 —ylery P (2.51)

The 3 x 4 CKM matrix is not a unitary matrix in the model with the VLQ:
3 3
> VAV = D VIV = 0t VY = 20K (2.52)
i=1 i=1

since 2471 V197 — 528 The relation in Eq.(2.52) shows that the unitarity of
’yi

the 3 x 4 CKM matrix does not hold due to the factor V***V;* which is related to

the matrix Zsnc in the FCNC interactions. In contrast to the Eq.(2.52), the CKM

unitarity with respect to the up-type sector holds in the full theory description:

4
> VitV = 67 (2.53)
a=1



Chapter 3
Effective Field Theory

An effective field theory (EFT) is a useful tool to investigate a physical system. In
order to describe a physical system at an energy scale p, we do not need to know
dynamics at a higher energy scale 110> . An EFT at the scale p is built by removing
some dynamical degree of freedom related to the higher energy scale py. The EFT
allows us to simplify computations of the physical system at the energy scale u since
we can focus on the relevant degree of freedom at the energy scale .

In the present chapter, we derive an EFT by removing the heavy particles in
the SM. In other words, we integrate out the heavy particles in the SM, such as
top quark, W*, Z and Higgs boson. Here we refer to the EFT as weak EFT. The
weak EFT is used to describe physical systems below the EW scale, such as B
meson system. The typical energy scale of the B meson system is the bottom quark
mass scale, 1, ~my~5 GeV while the EW scale is around W* boson mass scale,
pew~ My ~80 GeV. Since the SM particles whose masses are around the EW scale
are heavy degrees of freedom in the B meson system, the weak EFT is suitable to
describe it. In this chapter, we give the basic idea of EFTs through simple examples
of the weak EFT.

3.1 Example of weak EFT: 3 decay

First we consider the weak EFT for the g decay as a simple example. The § decay
n— p+e~ + 1, corresponds to d— u+ e~ 4 i, process at the quark level. This process
is induced by the weak interaction of W= boson. The diagrams of the 3 decay in the
SM and the weak EFT are shown in Fig.3.1. The left-hand side figure of Fig.3.1 is
the diagram in the SM while the right-hand side figure of Fig.3.1 is the diagram in
the weak EFT. In the right-hand side figure of Fig.3.1, the W¥ boson is integrated
out. The amplitude of the [ decay in the SM is obtained as,

. s —igw [ .9
o [ gl
— My
7
= 15 Vud—

5 m[mﬂ‘% ug) [teyuLuw,| (3.1)

23
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Y
Y

Figure 3.1. The (3 decay in the quark level. The left-hand side figure is the diagram in
the SM while the right-hand side figure is the diagram in the weak EFT.

where u; with i =wu, d, e, v, denote Dirac spinors and V4 is the element of the CKM
matrix, V;; = Védou The symbol p is the momentum of the internal W= boson. Since
the typical scale of the momentum p is a mass scale of the initial state, that is mass
of the neutron; p?> ~m% ~ 1 GeV2. It allows us to expand the denominator of the

W= boson propagator:

2 2
~ g
Asm =~ 2MW‘/ud[uufy“Lud] [ue’yHLuVe] + O( M%;) . (32)

On the other hand, the amplutide in the weak EF'T can be computed by introducing

an effective operator O (),
Hepp(d—u+e +2) = CO(OW) = CO () [ay"Ld)ev,Lve], (3.3)

where C® () is a coupling constant of the operator O'?) at energy scale pu. The
coupling constant C® () is called Wilson coefficient. The effective operator O®)
has mass dimension 6, and thus it is called higher dimensional operator. Since O
has dim.6 and the mass dimension of Hamiltonian is four, the mass dimension of the
Wilson coefficient C?)(p) is —2. Using the Hamiltonian Eq.(3.3), we can calculate
the amplitude of 8 decay:

Appr = —CO(u) [Ty Lud)[dey L) - (3-4)
The Wilson coefficient C®) in Eq.(3.3) is determined so that the amplitude in the
weak EFT Eq.(3.4) is equal to that in the SM Eq.(3.2). The Wilson coefficient C'%)

is given as,

4G
CO(upw) = g —=—Vud FVud, (3.5)
2Mg, v
where Gr = . \/;jww f ~ is Fermi constant. The matching condition Agv = Agpr

holds at the scale of integrating out W= boson field, pgw =~ My, Therefore, the
Wilson coefficient in Eq.(3.5) is defined at the scale pugw=> My . In the following, we
call the scale of integrating out heavy particles as the matching scale. The Wilson
coefficient at an arbitrary scale p can be obtained by solving renormalization group

(RG) equations as we will see in section 3.2. Here we neglect RG effects for simplicity.
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We can see from Eq.(3.3) that the Hamiltonian contains only the light degrees
of freedom which appear in the initial and final state of § decay. The Hamiltonian
does not contain the W¥ boson as a dynamical degree of freedom but contains the
information of the W= boson, the mass My and coupling ¢, in the Wilson coefficient.
Measurements of the [ decay give constraints on the Wilson coefficient. Taking
account of the relation in Eq.(3.5), we can determine a value of V,4Gr from the

constraints on the Wilson coefficient.

3.2 Renormalization Group Effect

3.2.1 One-loop level matching

As we see in the previous section, we can determine concrete expression of Wilson
coefficients at the matching scale. However, the energy scale of a physical system
is generally different from that of the EW scale. In the present section, we see how
to compute the scale dependence of Wilson coefficients. In order to clarify the
scale dependence on the Wilson coefficients, we need RG equations of the Wilson
coefficients. Here we investigate the different example from the previous section to

derive the RG equation. We follow Ref.[93]. We consider the following Hamiltonian:

4G,
Hegr = — VbVl CL(n)O1 + Cali) O (3.6)

where the effective operators are defiend as,

01 = [baY"Legllegy*Lsal, (3.7)
Oz = [bgy"Leg|[cpy"Lsg|.

The subscripts a, # in O and Os denote color indices, a, 3 =1, g, b. For example,
we can compute the b— 5 ¢ process by using the effective operators O; and Os.
In order to clarify the scale dependence of the Wilson coefficients, we are going to

calculate amplitudes of the b— 5 ¢ ¢ process up to the one-loop level.

The Wilson coefficient C5 can be determined by a similar diagram to the left-
hand side of Fig.3.1 at the tree level. The tree level amplitude of the b— 5 ¢ ¢ process

is,

2 . _
ARy = L vavilvg Lo [ulyrLof) (3.9)
2ME,
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G
(a) (b) (c)

Figure 3.2. Diagrams in the SM which contribute to Cy and C5 [93].

(a)
Figure 3.3. Diagrams in the weak EFT which contain to C; and Cs [93]. The set of disc

marks represent the effective operators O; or Os.

which leads to the Wilson coefficient,
CQ(,UEW) = +1. (3.10)

The Wilson coefficient (' at the matching scale pgw is zero at the tree level since
the weak interaction do not change the color indices.

Next we consider matching at the one-loop level. Diagrams are induced by
quantum chromodynamics (QCD) corrections. The relevant diagrams are shown
in Figs.3.2 and 3.3. The diagrams shown in Fig.3.2 are one-loop diagrams in the
SM while diagrams in Fig.3.3 are one-loop diagrams in the weak EFT. These dia-
grams corresponds to one-loop QCD corrections to the tree level diagram which
is used to determine the Wilson coefficient Cy at the tree level Eq.(3.10). The
set of disk marks in Fig.3.3 represents insertions of the effective operators O or Os.

We show amplitudes of the b— 5 ¢ process with the diagrams (a)-(c) in Fig.3.2:

a 4 w14 3
A(Sl\)/I = —%V V;sCF [CUV—I—IH)\2 2:|[U?’7”LU?][U?7“LU§] , (3.11)
® _ AGr as [Miy] =, — a6
- T 5 cs 2 c sl .
Agir % Vay Ve i In [ 3 [y YT gLv, B [uly Ty5Lvg] (3.12)
21 _
ARy = v el M| G L A T (3.13)
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where o, = g2/ (4m) and T*= \*/2. The subscripts «, 3, v and § denote the color
indices. The symbol Cr=4/3 defined by,

(TT%,5 = Cpoags. (3.14)

The symbol p in Eq.(3.11) is the matching scale while A is IR cut-off scale which
have to be set to zero at the end of computations. The term Cyy in Eq.(3.11) is

divergent term in the MS scheme,
Cuv = %—7—}—1114#, (3.15)

where 7 is the Euler’s constant. The parameter 7 is introduced in dimensional
regularization and defiend as n=4 — d with d — 4.
The total amplitude of b— 5c¢¢é process from the one-loop diagrams is given by,
Agp = 2% Y AR, (3.16)
i=a,b,c
where the factor 2 comes from the diagrams obtained by exchanging the external
quarks in Fig.3.2. Adding the amplitude at the tree level A gu to the amplitude ASM,
we obtain the whole amplitude in the SM:

Asm = A§%+A§134

4Gr 21 3 as, M,
ﬂv %s[1+2CF <Cuv+lnF 5>+]T[4_1 2 |@
AGFy s M
_7;‘@‘48[—3%111%} Q1, (3.17)
where
Qi = [Ey Lol [ulyrLog], (3.18)
Q2 = [vfy Lod)[uly Lof] (3.19)
and we used the Fierz identity,
1 1
(Ta)aﬁ(Ta)vé = _Wéaﬂ&/é"'g(saéfséﬂa (3.20)

with NV =3. We have to renormalize the amplitude Agy in Eq.(3.17) since there
is divergence Cyy. This can be achieved by taking account of the wave function

renormalization for the external quark fields,

g = ¢ =./Zq, (3.21)

where ¢ is bare quark fields and the renormalization constant -/ Z, can be determ-

ined by a self-energy diagram in the QCD:

Zy = 1— CF COuv. (3.22)
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Then a renormalized amplitude A& in the SM is given as,

N 4Gp. 4 Qs ;ﬂ 1 3 s M%V
SM = —TVcbVés[l”CF—(lnﬁ‘i TN e |9
- b Ves| — | Q1. (3.23)
\/_

Next we show amplitudes of b— 5cé process with the diagrams (a)-(c) in Fig.3.3

in addition to the tree level amplitude AEFT, and AEFT In the case of the insertion
of Ol,

4GFy
At = —Ciln) S ViVsQr. (3.24)
(la) _ AGr 21N 1 1
Agpr = Cl(ﬂ)\/ﬁv V;s <CUV+ID)\ 5 2NQ1+2Q2 , (3.25)
4G p2
A‘(ElFb)T = _Cl(M)TFV VcsCF <CUv+1n 2 2>Q1, (3.26)
c 4G 1 1
A = Cilp )\/—FVchs <4CUV+41I1 2 >[_WQ1+§Q2]- (3.27)
For the insertion of O,
AGF
A = ~Calp) 5 VidVisQa, (3.28)
12
A = —Calp )\/—Vb%SCF (CUV‘Flnv—i)Q% (3.29)
4Gp w2 1
A = —Ca(w) =% i ViVes g <CUv+1n>\ )[5@ Qz], (3.30)
(2¢) _ 4GF 1, 1
The whole amplitudes are,
At = A +2x Y Aper
i=a,b,c
_ 4Gp p? 1 Qs
= Cl(#)ﬁ ‘/cs[l‘FQCF—(CU\H—ln)\ >+4 N(C +1In /\2—|— >]Q1
4GFy 2
_CI(M)_ZFV;bV;s[—3%<CUV+1n 5vl )]Qm (3.32)
At = AGp+2x Y Api
i=a,b,c
4Gy p? 1Y, as 3 11
= ~Gw)— Ve Vcs|:1+2CF—<CUV+ln)\ 2>+4 N(C'UV+ln Tte >]Q2
AGFy 4 s 2 11
_C2(M)—2F‘/;b‘/cs[—3Z—W<CUv+ln%+F>]Q1- (3.33)
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There are the divergent terms Cyy in AEE%T) and AE%QT) We regard the Wilson coef-

ficient and the quark fields in the effective operators in Eq.(3.6) as bare quantities,

AGF 4
Hegr = gVl CF01(a®) + €270x(4)]
= @ch%s[Cl(N)OI‘FCQ(M)OQ]
V2
A4GF .
g Vv 3. (2125 =8,)Ci(mOi] (331

1,7=1,2

where 01(02)( 1) denote bare Wilson coefficients and Oy 5(¢'?)) are effective operators
written by the bare quark fields. The symbol Zi(jc ) represents renormalization con-
stant of the Wilson coefficients defined as C’Z-(O) = Zi(jc )C’j. The Hamiltonian Eq.(3.34)

leads to counterterms,

c 4G *

Al = —Cl(mT;%b%s(Z,?Z;f)—%)Qi, (3.35)
c 4G *

A = —02(M)T2F cb‘/cs(Z(?Zi(QO)_(siQ)Qi- (3.36)

The renormalization constant Z, is given in Eq.(3.22) while the renormalization

constant ZZ-(jC )is determined so that the counterterms remove these divergence:

3
3 -3
7@ = 1-2Cn| Y . (3.37)
47 _3 3
N
Then we obtain renormalized amplitudes in the weak EFT as,
cl),r __ C1 C1),c
- _owiryy s (2 1\ as 30 2 11
- Cl(ﬂ) \/§ ‘/cb‘/és|:1 +2CF47T<IH 2 2> + y N<1n 2 4 G o)
_ 4GF * - Qg ,U:2 11
Cl(u)ﬁVcchS[ 3E<IHF+F>]Q2, (3.38)
c2),r _ Cc2 C2),c
- _ AGFy as( p2 1\ s 3( p? 11
4Gp * 9 Qs /LQ 11
C2(M)ﬁvcb%s|: 3 47T<ln wtg )@ (3.39)

The Wilson coefficients C; and Cs can be determined by matching the renormalized
amplitude in the SM Eq.(3.23) with that in the weak EFT, Eqgs.(3.38) and (3.39):

o[, ME 11 2

as 3, M3 11 9

Co(pew) = 1+ 5 G
HEW
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and the effective Hamiltonian becomes,

4G * ren ren
Hepr = —aVigVes[C1(1) O™ + Ca( 1) 05 (3.42)
V2
with the effective operators in terms of the renormalized quark fields:
O = [ Legl G Lsa) (3.43)
05" = [bgy"Leg][cay"Lsg].- (3.44)

We can see that the Wilson coefficients in Eqs.(3.40) and (3.41) do not depend on
the IR cut off \.

3.2.2 RG equations and anomalous dimension matrix

The combination CfO)Oi = C;0;*" is independent of the energy scale u. Since Ci(o) =
Zl(]C )C’j, the effective operator can be written as O; = Z](ZC )_105‘”‘. This leads to [93],

)
0 = u%{q@oz}

0 ren (€)1 0 () ren

8 ren —_ a ren
(1 Jorm— itz 2 )OE™ (3.45)

where we define Z,gf)_l = Zjj,. The matrix (Z _1)ij<u%2jk> is called an anomalous

dimension matrix denoted as 7,
Yie = (Z71)i NiZ'k : (3.46)
J 8# J

An explicit form of the anomalous dimension matrix can be obtained by Eq.(3.37):

6
~5 6
_ % N = %0 4
¥ y _% =7 (3.47)

We obtain a differential equation with respect to the energy scale p from Eq.(3.45):

HanCHi) = Cilie = G (3.48)

We refer to this differential equation as RG equation. A solution of the RG equation

with an initial condition u= pugw is given as,
Ci(p) = Uy(p, new)Cji(pEW) , (3.49)

with an evolution matrix U,

gs(ﬂ) T/ ./
U, pow) = exp[ [ g (g,s)], (3.50)
gs(,UfEW) ﬁ(gs)
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where the function ((gs) is defined by,

— ags _ 953 5
8o = nge = ~Pogery +O(6l). (351)

with fy=11—2f/3 and f is number of flavors. The evolution matrix at leading
order is obtained from Eq.(3.50),

7(0)
UOu, pew) = Vdiag([%]%)vl , (3.52)

where the matrix V diagonalizes the matrix v(©),

A e MOk 7 (3.53)

with a diagonal matrix 71()0 ). The vector 7 is defined as,

7O = () (W), ) - (3.54)

Inserting Eq.(3.52) into Eq.(3.49), we obtain the Wilson coefficients at an arbitrary
scale p. We can see from Eq.(3.49) that the Wilson coefficient € are mixed with

C5 when we take account of the RG effect and vice versa.






Chapter 4
Matching with the SMEFT

4.1 Full Theory Lagrangian

In the following chapters, we present our results based on the Ref.[84]. We consider
the model with one SU(2),, singlet down-type VL() whose representation is shown
in Eq.(2.29). In the present chapter, we match the model with the SMEFT by
integrating out VLQ field up to the one-loop level. The full theory Lagrangian for
the quarks L£{,,;, which is invariant under the SM gauge symmetry SU(3). x SU(2),, x
U(1)y is,

Lha = L+ dlin" Diydl + dieiy" Diydfe— [yi'al o dh+ Madldh+ h.c.], (4.1)
Loy = dhiv" DL ai +upin" Dy ul+ diin Db dly — [y b o dh+ yiai dub +hec],  (4.2)
where di and d denote the left- and right-handed VLQ, respectively. The fields
with subscript ¢, 7 =1,2, 3 are the SM quarks. The symbol ¢ is the Higgs doublet
in the SM and ¢ = i72¢* where 72 is the Pauli matrix. The 3 x 3 Yukawa coupling
for the up-type quarks y, is taken to be real diagonal. The 3 x 4 matrix y; denotes
the Yukawa couplings among the down-type quarks including couplings among the
SM quark and the VLQ . A mixing term M ‘ljcl;‘-fcl%r is also allowed by the SM gauge
symmetry. However, we can remove the mixing term by rotating the down-type
quark fields as mentioned in Sec.2.2. The covariant derivatives in Eq.(4.1) are shown
in Eqs(2.5)-(2.7). In Eq.(4.1), both the kinetic terms of the left- and right-handed
VLQ contain DI%M since the left- and right-handed components belong the same
representation in the case of the VLQ.

4.2 Integrating out VLQ field at Tree Level

We integrate the VLQ field in the full theory Lagrangian Eq.(4.1) to obtain the
operators in the form of the SMEFT. We can also determine their Wilson coefficients
by matching the amplitudes computed in the full theory with those in the SMEFT.
We perform this procedure at the tree level. First we compute tree level amplitudes
which contain the VLQ field as an internal line. The computed amplitudes are
expanded up to O(M;?) while assuming that M, is much larger than momenta of

the external fields. Then, we introduce higher-dimensional operators and Wilson

33
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qL ay, qL 4ar,
Figure 4.1. The figure in left-hand side is tree level diagram of ¢‘¢— ¢7¢ process induced

by the VLQ field [84]. The figure in right-hand side is corresponding diagram after integ-
rating out the VLQ field. The C’g; denotes Wilson coefficient.

coefficients, which can reproduce the amplitudes. For the present model, the tree
level amplitude corresponds to the diagram in the left-hand side of Fig.4.1. The
diagram corresponds to ¢‘¢— ¢’¢ process induced by the VLQ field. The amplitude
of ¢'¢— ¢’¢ process is obtained as,

A = i R

i I p?- M7
o~ 7MZ Uy (PL)ug 4 ), .

where u;, denotes spinor of the external quark field ¢* and p is momentum of the
internal VLQ field. We assume p? < M7 in the last line of Eq.(4.3). We can intro-
duce an effective operator which reproduce the amplitude Eq.(4.3) up to O(M;™*)
accuracy. Taking account of the invariance under the SM gauge symmetry, the
effective operator is given as [82, 83, 84, 94, 95, 96],

£ = iCl(alo) V" DR, (oTdh), (4.4)
where the Wilson coefficient C’gj) is,

J4, idx*
Ji _ Ya Yd
th - Mf : (4'5)

The diagram in the right-hand side of Fig.4.1 corresponds to the effective operator

in Eq.(4.4). We can rewrite the effective operator in Eq.(4.4) by using equations of
motion derived by SM Lagrangian:

(tree) Cast Wi, i1, | Cab ki
Lop” = = 7106 + 067" |+ | 5" wd'Odg + hc.

f , (4.6)

where the effective operators are defined in the SMEFT operator basis [67] as,

0p)" = lar*al)li"(Dud) — i( D)9, (4.7)
OGP = lafy*r'ahlio ! (Dus) — i(Dys) r'6), (4.8)

0L = (d1¢)(dlodh). (4.9)
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RS ¢
g 7 N ql
S AN ENE
i S dj %
B, G} B#,VV“I

\_
B, Gy § By, W/ B, W/, G,

Figure 4.2. The one-loop diagrams for the decays g} — q{Bﬂ, a4 — qLW and qf — g} G
[84]. The top figures are diagrams in the full theory while bottom-left and bottom-right
figures are diagrams in the effective field theory. The circular marks denotes the tree level

effective operators in Eq.(4.4). The square mark denotes new effective operators.

Wilson coefficients for the effective operators O(l)ﬂ (’)g;)ji and Ocjlfb are denoted as

C¢q . C¢q 7 and Cdd), respectively. They can be obtained from Eq.(4.6) as follows [83]:

()i (3)ji Co i
Coi"(viq) = Cg”'(viq) = —Tq = T (4.10)
. C’ k4%
Cio(pvrq) = Qq‘z’y’“ = yé]\yj2 yi' (4.11)

Since the expressions of the Wilson coefficients in Eqs(4.10) and (4.11) are defined at
a matching scale pyrq~ M4, we show the scale of the Wilson coefficients explicitly.
Finally, we obtain the effective Lagrangian ng;e) in terms of the SMEFT operator

basis as,

ﬁé?ﬁe) _ C(I)JZO((M)]Z_'_C(g)q)ﬂo(?))ﬂ [Cg;(?g;—l—h,c,]. (4.12)

4.3 Integrating out VLQ field at One-loop Level

The interactions among the SM quarks and the VLQ lead to the one-loop level con-
tributions to radiative decays of the SM quarks, such as b— sy process. Therefore, we
have to match the model with the SMEFT at the one-loop level. The procedure is ,

. We compute the amplitudes of the one-loop diagrams for the decays qi —
qLB#, qa,— qLVV,;’ and ¢ — ngZ in terms of the full theory (see the top figures
in Fig.(4.2)). These diagrams contain the VLQ in internal lines. In order to
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remove divergence in the amplitudes, we renormalize the amplitudes with the
MS scheme.

ii. We calculate the amplitudes for the same decays as the step (i) by using
the effective operator Eq.(4.4) in addition to the SM Lagrangian (see the
bottom-left and bottom-center figures in Fig.(4.2)). We also renormalize the

computed amplitudes with the MS scheme.

iii. We introduce new effective operators. Wilson coefficients of the new oper-
ators are determined so that the renormalized amplitudes computed in the

step (ii) are equal to the renormalized amplitudes computed in the step (i).

4.3.1 Step (i): Renormalized amplitudes in the full theory

In the step (i), we derive renormalized amplitudes by using the full theory Lag-
rangian Eq.(4.1) in addition to the SM Lagrangian. We define momenta of the
external fields ¢, qi and the gauge bosons as p, p’ and ¢, respectively. In the
computation of the step (i), we treat the SM particles as massless particles. The

amplitude for the diagram in the top-left figure of Fig.(4.2) is given as,

rB Wi gYar vd e CUV+1n“2VLQ 3% 5¢%m (P4 )
p 2 1672 2 M3 4 36M? 3M3
11, 1, 1 . 13
3z 3P W — ) — g g | L (4.13)

for the case where external gauge boson is the U(1)y gauge boson B,,. Here we do not

write spinors of the external quarks explicitly. The symbol Cyy contain divergence:
2
Cyv = E — v+ Indm, (4.14)

where =4 — d with d— 4 comes from the dimensional regularization and ~ is Euler’s
constant. We can obtain the amplutide for the case where the external gauge boson

is the gluon GY, by replacing g’% with gsg in Eq.(4.13).
The amplitude for the diagram in the top-right figure of Fig.(4.2) is given as,

14 4% 2 2
rB@isi _ g/ﬁ' Yl Yd [_ﬁ(CUV_l_lnNVLQ) 3% (")

p 72 16w | 2 M3 4 6M7

v 2 / /
Y a2 o=@ 5\ _PPutPPu_ AU | 415
+6Mf(g’wq q“q”)< s, 6) M7 6MZ| (4.15)
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for the case where external gauge boson is the U(1)y gauge boson B,,. We can obtain
the amplitude for the case where the external gauge boson is the SU(2), gauge boson

W by replacing g’% with g%l in Eq.(4.15).

In order to remove the divergence in Eqgs.(4.13) and (4.15), we perform a wave
function renormalization. A renormalization constant can be determined by a self-
energy diagram of the SM quark doublet ¢}, which include the VLQ as an internal

line. The relevant diagram is shown in Fig.(4.3). The amplitude is given as,

B J4, idx 2
Sii(p) = YL !1<C +1n “VLQ>+3+

1672 M} 3M} pL (4.16)

The Lagrangian including counterterms for the SM quark doublet is,

L = qiiv*Dfgi+Le, (4.17)
Lo = {(VZ'Z1 )7 = 67} ¢} in"D,qh,
i i A2 " 1 Y, i
(V22— 59 gi gs7Gu+g%W;f+g’%LBu ar, (4.18)

where v/ 7, is the renormalization constant defined by,
(@) = VZi"4, (4.19)

with the bare SM quark doublet field (gf)!. The renormalization constant is determ-
ined so that the counterterms in Eq.(4.18) removes the divergence in Eq.(4.16):

. By g4, idx
(VZ'VZ)" = 67— A Cyy (4.20)

and then we can obtain counterterms for qfquu, qiqu;f and qfngZ vertices. Adding
the counterterms shown in Eq.(4.18) with Eq.(4.20) to the total amplitudes for
the ¢} — qﬁB process F D 4 F (@) , we obtain the renormalized amplitude:

L

Bji _ Yo yiwd| ), mq 3 pP+p”
Lol =g 16W2[ —{1 +o+

B 2 M} 2 3M?

/YdR ycjl4ycll4* p2+p/2 }j’yﬂ}j ( q2_q q )+}5’[%:?ﬂ - [ﬂa '7#]]5 I
2 16m2M} 6 3 36 Gru i 24

Lty L, (421)

j4 *
Yo yi'va® [v” —q° 5)_7’%%}9& A9

2 In—2 — 2
2 1672002 & (Gt ququ)<nM4 G M2 M2

YdR + %: % In the same way as to the case of the ¢j — quu process,

we can derive the renormalized amplitudes for the ¢} — quLI and ¢} — inZ.

where we used <&
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P RN
/ \ ¢
/ \ '
qr, —s—1 > ly 4
die

Figure 4.3. Self-energy diagram of SM quark doublet ¢}, with internal VLQ field d [84].

4.3.2 Step (ii): Renormalized amplitudes in the effective field
theory

Next we derive renormalized amplitudes by using the effective operator Eq.(4.4)
in addition to the SM Lagrangian. Here we also treat the SM particles as massless
particles. We can see that the amplitude of the bottom-left figure in Fig.(4.2) van-
ishes as long as the mass of ¢ is set to zero. The amplitude of the bottom-center

figure in Fig.(4.2) is obtained as,

14, 4% 2
B,(E)ji 1o yé Yd v 2 1 q 4
r — _gYe Yavi - “Cuy—1 v 4.22
1w g 2 167r2M427 (g/u/q Q,uqy) 6 uv n,U%/LQ 9 y ( )

for the case where the external gauge boson is the U(1)y gauge boson B,,. We can
obtain the amplitude for the SU(2),, gauge boson W,/ by replacing g’% with g%l in
Eq.(4.22). A self-energy diagram of the quark doublet gf induced by the effective
operator Eq.(4.4) vanishes as long as the mass of ¢ is set to zero. Therefore, there
is no wave function renormalization of g} originating from the effective operator
Eq.(4.4). In order to remove the divergence in Eq.(4.22), we introduce a counterterm
by hand:

LET = (Zgih — 07 gi"a (9,00 — 9,0,) B

+(Zigd — 07 af v Tk (g0 — 8,0, W (4.23)

Adding the counterterms shown in Eq.(4.23) to the amplitude Eq.(4.22), we obtain

the renormalized amplitude as,

4 4% 2
B,(E)ji Yo yivat L o —¢* 4
I = —qg/X. a7 _ — —In——+—-|L 4.24
T g 2 167T2M£’Y (gﬂl/q Q,uqv)[ nN%/LQ—i_g ) ( )
with the renormalization constaint:
. 3 Y, J4, idx
2B = gii—gte Yavi Cov, (4.25)

2 16M; 6
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In the same way as to the case of the g — quH process, we can derive the renor-

malized amplitudes for the ¢} — quVMI and ¢} — q{G,‘j processes.

4.3.3 Step (iii): Introducing effective operators

The renormalized amplitudes in the effective field theory Eq.(4.24) are not equal to
that in the full theory Eq.(4.21). We introduce new effective operators with Wilson
coefficients so as to match the amplitudes in the effective field theory with that in
the full theory. The difference between the renormalized amplitude of ¢j — quu
process Eq.(4.21) and Eq.(4.24) is,

ATSI = pBai _ph®)
_ Y yivet MVLQ+3 P+p” | Pty o
2 1672 3M3 3M3 6M4
Yar yé4yé4* 7" Py d) — s ulp
' 2 167 2M2 36 (guuq _qqu)+ 3 L

L. (4.26)

Y 74 idx v 11
/_¢ yd Yd i 2 _ l /’LVLQ
95 T6n 2M2[ 5 (9 q“q”>< M6

In the same way as to the ¢ — quu process, we can compute difference between the
amplitudes in the full theory and that in the effective field theory with respect to the
g — ng,{ and qj — q{GZ processes. Then we can introduce new effective operators
which correct the difference among the full theory and the effective theory. Taking
account of the finite part in the self-energy diagram Eq.(4.16), the new effective

operators with Wilson coefficients are given as follows:

L = LSp+ L8+ L8+ LGy, (4.27)
where
K. _ yé4y&4*<lln MVLQ+3> diniDd i
eff 1672 \ 2 M2 4 vy 4L
S Ty i DY, o+ i) (129
487r2M2 RO )Y LD, \Yd PaRr i duf,

£B, = g Yali vi v Yarp 7 Yo 1 MVLQ+11
bl 1672MZ) 2 36 2\ 6 M7 ' 36

[ ZLO( Vkkji %Rogékk_i_ﬁo(l)jikk+%O§i)jikk+%o( )jikk Y;bo(l)]z

! Y, 1 Y;r 1 idsr g O
+9_(£.__ﬂ._>[ Yy Lyl Ol 4yl 0T £ heel] (4.29)
4
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Effective Operators Wilson Coefficients

fZG ((Eaﬂ”gu}%)&(;ﬁy (MVLQ) _i 16W2M2ycjl4ycll4*y'z
O (g T'ub) oW, Cliv(ivi) %" oY Ui
Olly_(alo™ k)58, Ctr R R
Ol (Qig#V%d}é)beﬁy Cic(1via) —% 16W2M2ygl4y14*yzz
Oy (glo™Tdi)oWi,  Cliv(pvia) TR R

O (qho™di)d B <%ﬂﬂw@)]&gﬁ(%?_%_z@”_ﬁé@Mw“

Table 4.1. The left-hand side table shows dipole type operators in the SMEFT [67]. The
symbols G, VVHI,, and B, denote the field strength of the SU(3)., SU(2);, and U(1)y
gauge bosons, respectively. The right-hand side table shows the corresponding Wilson
coefficients at the matching scale uviq [84].

O™ (ydh) (aly"ah) O (qfyuah)(efyek)
klji Tk i1kl I

Ol(s) ’ (ZIEWuTIlL)(QLVHT 1) Oéi)J (qL’yuq ) (ufyruk)

Okl (gl )( 1 ) O®)jikl G A N (kA l)

h alyuat) (afrv at o (9005 ) (Wi ik

OB (giy rlgh) (ghyirigh)  ODT™ (gfygh) (dbyrdh)
i1kl ikl A

O™ (glyyah) (abry at) 0(8” (dsab) (dhydl)

Table 4.2. The 4-Fermi type effective operators in the SMEFT [67]. We note that the

operator Oéz)jikl can be written in terms of the other effective operators [67].

. N va v 11 MVLQ+11 [O(B)kk]z+0(3)jikk+O(S)ji]
eff 4 16m2M2\ 6 M2 36 aq bq

9 1 4, idx g, il ji

14
N

£31 = 96 36
e o oY Ol + Ok} + e (431

16m2M2\ 24
The effective operators O in Eqs.(4.29)-(4.31) are listed in the Tables 4.1 and 4.2.
The right-hand side of the Table 4.1 shows the Wilson coefficients of the dipole oper-
ators in Eqs.(4.29)-(4.31). The symbols G%,, W, and B, denote the field strength

of the SU(3)., SU(2)., and U(1)y gauge bosons, respectively. Note that the effective
8)]1]{:]@

(8)jikk (8)jikk (8)jikk
[qu ’ +Oquj +quj ]

operator O, can be written in terms of the other effective operators in the

SMEFT by using the Fierz transformations [67],

®)gikl L a@jtki | 1 A@)dtki 1 A1) ikl
O’ = 700 +70uw 5% (4.32)
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4.3.4 Redefinition of the Yukawa couplings

We can see that the kinetic term of the SU(2); doublet quark field ¢f is not a

canonical form because of the first term in Eq.(4.28):

5%1) = gl {57+ Zji(MVLQ)}iry#Dg#qi, (4.33)
]4 4% 1
y L, 3
Z3(pvLg) = y61l63;2 <§ln M4Q+ 4> (4.34)

The coefficient Z7( 1) is not suppressed by the VLQ mass M, but suppressed by the
loop factor ~1/(1672). We perform a rescaling of the field ¢j, to rewrite the kinetic
term Eq.(4.33) into a canonical form. We define a rescaled field ¢* as

1 .
@' = {5’“+§Z’“(MVLQ)}QE- (4.35)
The kinetic term of the doublet quark field becomes,
= g w“DL,Aq : (4.36)

The rescaling Eq.(4.35) modifies the Yukawa interactions among the SM quarks.

The modification can be absorbed into the Yukawa coupling as follows:

vialodi = {6’ff—§zkj<mq>}yd ai'odh = YieFody, (437)
siabduy = {5432 one) bukai ok = Yk, (439

where we redefine the Yukawa coupling as,
Y = {5”—%ij(uvm)}y§i, (4.39)
v = {0 L2 ) bk (1.40)

The tree level effective operator in Eq.(4.4) (or equivalently Eq.(4.12)) is also changed
by the rescaling Eq.(4.35). The modification can be absorbed into the Yukawa
coupling y4* as,

ﬁé}l}ee) = ;Y yd (QL¢)7“ Df,(olat)

N TP e (. —
= 1{5'” —52M(1vie) } yd]\g%l {5” ~52"(1via) } (at"¢)y"Ditu(dlat)
) Yk4yl4* P
i~ —(ai"0) v Diul(oTat) (4.41)
4

where we define,

v = {89 - 2900 [l (1.42)
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In the same way as to the tree level effective operator, the rescaling Eq.(4.35) affects
the one-loop level effective operators in Eqgs.(4.28)-(4.31) and leads to two-loop level
corrections. We can simply take g, ~ g7, and y,, 4= Y, 4 in the one-loop level effective
operators since we do not consider two-loop level contributions.

The up-type Yukawa coupling Y, in Eq.(4.40) is not diagonal matrix because of
the non-diagonal matrix Z7(uyrq). We can diagonalize Y, by unitary transforma-
tions of the SM quark fields without loss of generality. Therefore, we take the basis
where the up-type Yukawa coupling is diagonal. In this basis, we write the Yukawa
couplings as small letters v, 4 and omit the prime symbol on the quark field for

simplicity. We summarize the Lagrangian at matching scale pvrq:
ree 1
Lepr = Lo+ L+l (4.43)
where

Léy = qiiv" D}, gi + ukiv" D,k + diiv? D,di — [yiai ¢ df + yigid uk + h.c]

(4.44)
dyite ; i i ii ii i i
Ll = i P (qfo)y Di(olat) = COTOLY + COTOG + [Ch0% + hel
4
(4.45)

and £} is given in Eq.(4.27) with Eqs.(4.29)-(4.31).

4.4 Electroweak Symmetry Breaking

We rewrite the Lagrangian Eq.(4.43) in terms of the SM fields in the broken phase
of the SM gauge symmetry. We define the Higgs doublet ¢ as,

b = X (4.46)
(vt htixo)/vT ) |

where v is the VEV. The symbols h, x™ and yo denote the physical Higgs boson,
the charged and neutral Nambu-Goldstone (NG) bosons, respectively.

4.4.1 SM + tree level effective operators

First we consider substituting Eq.(4.46) to the Higgs doublet ¢ in the SM quark

Lagrangian £y, and the tree level effective operators Eé?]?e) . We can divide £+

Eg?fe) into three parts after the substitution:

Lo+ L = £+ L s+ L8 (4.47)

dim.
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The term ES?ZM is constituted by the mass terms of the SM quarks and dim.4

operators including the usual SM interactions. The explicit form of ££§3n. 4 1S given as,

(0) iong i Jious g V(L gk V2K 7 i
Edim.4 = uy aﬁtu +d'iy aud _ﬁ Ya _7Cd¢ d dR+ yuuLuR—i—hc

—e[QuJ'y“ui + Qdcﬁv“di]Au - %[ {677+ 02 ng)ji}u_ify“di%Jr + h.c.]
9 [sji (1 (3) AR, g ST
_E[(S] - UQ{C¢q -C, g Hudytui Z, + aQusg,u YHu'Z),
[ o7 42 {C) + MY i d] 2+ F-Qusty diydiZ,

T
K __{ 204"y }>u_£dz’%x++h.c.]
+[{6

. 2 —
+[ {07+ %) ”}yudLqu +he.] -~ %Hyﬁ’“—%cglg}dﬁdgmh.cl
[ ( c —2(C87 ey k}>ddeX0+hc}
\y/% [\;g(aﬁ v{ciI — cf;>j"})yzu_iuﬁxo+h.c.]. (4.48)

The combination Célq)ji - Cé;z)ji vanishes if the relation Eq.(4.10) is taken into account.
However, the relations Eqgs.(4.10) and (4.11) hold only the matching scale pviq
because of the RG effects. Therefore, we leave the terms which are proportional to
the combination C(%)ji — C(f;)ji in Bq.(4.48). The terms £ - and L), , contain dim.5
and dim.6 operators which do not exist in the SM. Here we show only terms which

can contribute to b— sy process:

‘Cc(:l(i)znﬁ o —vug {C(l) cly ]Z}dL'}/MdL WJX_ +W, x")

_H{C(l Ji ]Z}d]’Y“dL(Xfa X+ _ X+8 X*)
+ \/_{cgf;Jr 207y V] dfx X + hc. (4.49)
L6 D ~2e{CM — Iy dfyrdi A (4:50)

We can see that all the terms in Eqs.(4.49) and (4.50) vanish if the relation Egs.(4.10)
and (4.11) is taken into account.
Next we consider a diagonalization of the down-type quark mass matrix in
Eq.(4.48). The 3 x 3 mass matrix of the down-type quarks is,
miF = %(ygk - %2%2) : (4.51)
We diagonalize the mass matrix mék by two steps. First we diagonalize only the SM

Yukawa coupling yjk with unitary matrices K and Kpg:

(Om .
A =Ki"d Co (KRR = P, (4.52)
dfy = Kjrd)"™
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where we define the diagonal Yukawa coupling y3. The indices (0) indicates the
basis where the SM Yukawa coupling y, is diagonal. That basis corresponds to the

mass basis of the SM. The whole mass matrix mJ" becomes,

mi i " v S U2 i "
KLT JmékKE = ﬁ(yc(zo) 0 —7KLT ]C§§K1’§>
2
= U [ Omgmn _Y_Gmn 4.53
ﬁ<yd 5 Cdo > (4.53)

Here we define the Wilson coefficients in the mass basis of the SM as Cjj". The

definitions of the Wilson coefficients in the mass basis of the SM are,

comt = KfmcS ) kn (4.54)
5(3 i ~(3) 5k

e = Kgm{cng” K", (4.55)
Ciy" = K[™CKE". (4.56)

Explicit forms of the ééjl)mn, ééz)m" and Cjj" at the scale uyrq are:

~ . . (0)m4_ (0)ndx*
Co™ (uviq) = KimeS M (kb = Y Yd (4.57)
AM
5(3)mn A(1)mn
Céq) (tviq) = Céﬁq) (bviq) » (4.58)
_ . y(O)m4y(0)l4* o)1
Cit*(uviq) = KP™eh(wiq K = 242y Plsin (4.59)

2M?
where we used the relation Eqs.(4.10) and (4.11) and define the Yukawa couplings
among the SM quarks and the VL(Q in the mass basis of the SM as,

m4 mj j
" = K (4.60)

The mass matrix Eq.(4.53) is still non-diagonal. We introduce unitary matrices V},

and Vi which diagonalize the whole mass matrix Eq.(4.53):

{ dp" = vPdp?

t (0)m v? 5
: VP g O — —Cat | VR = o, (4.61)
d(O)m — YmPgLP 2
'R — VYR R

where the prime indicates the complete mass basis of the SM down-type quarks with

the diagonal mass matrix,

My = —=yj = diaglma,ms,m). (4.62)

V2
The mixing angles of the unitary matrices Vj,  are of the order of O(v?/M§) since
the off-diagonal elements of the mass matrix Eq.(4.53) is of the order of 1)2(3[%” ~
v?/ MZ. We define the Yukawa coupling in the complete mass basis as,

2
y(/lp4 = VBmeyL(iO)m4 ~ 5pmyc(lO)m4+O<%>, (463)
4
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then we can take,

VTpmé(l)mn(MVLQ)an _ y/p4y/q4* ~ C( )Pq+0 v (4.64)
Lo Téa L AM3 i Mf
1p4 1q4x* 4
VTpmé(?))mn Ve — _Yd y ~ C( )pq 10) 4.65
fpms q y/p4yéq4* 1q ! 5Pq vt
v tpmEmn VAL O ~ C o — . 4.66
I eV = Uiy o M4) Hmia) +0( 1) (400

After the transformations Eqs.(4.52) and (4.61), we obtain the kinetic terms and
interactions among the SM quarks induced by the dim.4 Lagrangian £d1rn 4 in the

mass basis as,

Lons = Lh+LE+ Lo+ L+ L+ LE+ LY. (4.67)

The each part of the Lagrangian is given as follows:

Ll = Ji(iwaﬁ — M)l + dP(in"8, — MP)dP (4.68)
£f = —elQuuirul + QudPyd| A, (4.69)
Ly = \/_[ VCKM’VMalfWuJr +hel, (4.70)
L} = —%[J7“<1Z53\10L— Qusgufsji)Ui—d_p’Y“( ZdNCL+QdS%v(Spq>dq:|Z#7 (4.71)
£l = \/‘%\4 [V (ML — MIR)d%* + h.c] (4.72)
‘Cgco - 2M [u ZuNc(MziR MJL)U - dedNC(Mc?R — MJL)d o, (4.74)

where we omit the prime on the down-type quark fields for simplicity. The symbols L
and R denote the chiral projection operators. The matrix M =wvy’/+/2 is diagonal

up-type quark mass matrix. The 3 x 3 matrix Vexy is the CKM matrix defined as,
j im ( cmn 5(3)mn n
Vb = KPm{6mm 02O (4.75)

We can see from Eqs.(4.71) and (4.74) that the FCNCs arise from the 3 x 3 non-
diagonal matrix Zync and Z,nc in the Z and Yy interactions. The matrix Z;nc and

ZyuNc are given as follows:

Zhhe = B4 s o HED I (076)
Zie = 82T P~ g 2R {CP— ePP VA (4.77)

The matrix Z,n¢ which induces the FCNC among the up-type quarks vanishes at
the matching scale pvyrq because of the relation Eq.(4.10). It is clear that the FCNC

interactions are suppressed by the factor v? /M7 since the Wilson coefficients are
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Figure 4.4. The relation Eq.(4.82) in complex plane [84].

order of M, 2. Therefore, the FCNC processes are suppressed even though the GIM

mechanism does not work. If we neglect RG effect, the matrix Z;nc can be written as,

1p4d 1q4x

ZRicpvia) = 67+ v{C)" (ivig) +C5 M (via)} = 67— w2 U (4.78)
4

The FCNC in the h interaction Eq.(4.73) is only in the down-type quark sector and

induced by the 3 x 3 non-diagonal matrix,
HXM] = NG [5pqy’q - UQCN'C%] ) (4.79)

The matrix Hync is equal to the matrix Zync at the matching scale pvrq because
of the relations Eqs.(4.10) and (4.11):

HpXc(pvi) My = Zc(pvi) My . (4.80)

In the case of the SM, the CKM matrix is unitary matrix, i.e. VERMVira =

VCSII;/II\EVCKM— 1. However, the unitarity of the 3 x 3 CKM matrix Ve does not
hold in the present model since the Wilson coefficient C}f?mn in Eq.(4.75) is not
unitary matrix. Using the expression Eq.(4.75), the product VJKMVCKM is given as,

Vi 5(3 5(1 5(3
Z CII?(M kM = 6pq+2v26<§5q)pq - ZggIC_UQ{Céq)pq_céq)pq}' (4.81)

i=u,c,t

Therefore, the product VCTKMVCKM is equal to the matrix ZJ¥- which induces the

FCNC among the down-type quarks at the matching scale pyrq:
Z élng ckm = ZgNc - (4.82)

i=u,c,t
This relation can be expressed as a quadrangle in complex plane shown in Fig.4.4.
We note that there is the same relation as Eq.(4.81) in the case of 3 x 4 CKM
matrix in the full theory Eq.(2.52). Therefore, the violation of the CKM unitarity
Verm Vi # 1 comes from the existence of the VLQ, not the effect of integrating
out the VLQ. Similarly, the product VCKMVJKM is given as,

* i 3)1 % %
ST VbV = 091200 = 2 +o{el)T VY (4.83)
p=d,s,b
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In the case of full theory, the product of the VCTKMVCKM is equal to one if we sum up
all the flavor of SM down-type quarks in addition to the VLQ as shown in Eq.(2.53).
Thus the violation of the CKM unitarity in Eq.(4.83) comes from the effect of
integrating out the VLQ. Finally we present the dim.5 and 6 effective operators in
Eqgs.(4.49) and (4.50) after the unitary transformations Eqgs.(4.52) and (4.61):

Lty D —vg {C5PT—CEP Y dPydi (W, x— + W x ™)
+Z~{C*(1)m . é(s)pq}dp’y”dq(x_ﬁuf _ X+a Y7)

{ {4 2CSPINIY A dfx T+ hec (4.84)

L"((i(i)zn.ﬁ D —26{C¢q — C¢q pq}d_ffy“dg xtx A4,. (4.85)

where we omit the prime on the down-type quark fields for simplicity.

4.4.2 One-loop level effective operators (dipole operators)

We substitute Eq.(4.46) for the Higgs doublet ¢ in the one-loop level effective oper-
ators in Eq.(4.27) with Eqs.(4.28)-(4.31). Here we focus on the dipole operators and
set h, xT, xo— 0 in Eq.(4.46) since we need only the terms which are proportional
to the VEV v in next chapter. After the unitary transformations Eqgs.(4.52) and
(4.61), the dipole operators in Eq.(4.27) with Eqgs.(4.28)-(4.31) become,

£ o+ (cuCliy — suClp) o ub Zu) + —=(suCiy + cuCiig) uf o u Faya)

V2 V2
v 5 5 v v 5 5 v
+ﬁ(—CwC5{;}V—swC5 LYdP o, Zw+ﬁ(—swcggv+cw€5 LydPot diFaum
Uit ufon Sk, |+ Ch dRon s dc,
+T uG| ULo 5 URG +ﬁ dG| Ao o
O VEACIy [dP o g, W +vVé§M553v[Ui0“”d%%t] +h.c., (4.86)

where ¢, = cos#,, and s,, =sinf,, with the Weinberg angle 8,,. We define the Wilson

coefficients in the down-type quark mass basis as,
. o ol
Cr1 = VI KM KEVR ~ KIPICFRR ¢ 0( e > (4.87)
4

with the index v =uB,uW uG,dB,dW dG. The field strengths Z* F}" and

W*H are defined as,

Zm = orZv — v, (4.88)
FIY = OrAY — VA, (4.89)
WEw = GrIVE — VIV K, (4.90)
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Ji 1 Js V2 ip /p4 /q4* S i
(VL) —51 T e VoKMYd VoM
Ji 1 g V2 14 1qdxy rigE i
Cow (1vig) o1 Toair Ve ya™ Vet M
24 16m2M3
Ji g’ Yoo 1 Yar 1Y\ V2 /p4 /q4>«< ik i
Cop(viQ) tomp\ 5 13— 55 ) o Vekya VexmMa
16m2Mj 8
5Dq 1 Js f 1p4 1q4x 7 rq
Cac(pviQ) T2 Tenoaz v o Yd M
5pq 1 g V2 pd 1qdx g rq
Caw (pvLQ) 31 Teeag o Y4 Ya Mg
g’ Yoo 1 Ygr 1 \f 1p4. 1g4% 1 rq
CdB ( NVLQ) 1672M32 < 2 12 2 y Ya M

Table 4.3. The Wilson coefficients of the dipole operators in the mass basis [84].

Table 4.3 shows the Wilson coefficients of dipole operators in the mass basis. We
note that,

%(_Swégf/]{/(u\/LQ) + cwédp%(ﬂVLQ))d_fguyd}%FAuy
e Gr 1p4, 1q4* =
4

This is consistent with Ref.[84].

4.5 Renormalization Group Effects

We investigate RG effects from the matching scale pyrq to the EW scale pgw. The
RG equations for the Wilson coefficients in the SMEFT are defined by,

d
16#2#@6’11(#) = YaCol) (4.92)

where 7, is an anomalous dimension matrix in the SMEFT given in Refs.|75, 76, 77].

We solve the RG equations under the first leading log approximation (LLA) [77, 83]:

Sor Yab
b 672

In the following, we focus on the RG effects for only the tree level Wilson coefficients

Co(pEw) =~ lnﬂ\g:;‘? Co(pvrq) - (4.93)

C¢q ba C 3)p “since the coefficient C2f does not appear in our numerical analysis.

4.5.1 RG effects for C( )P4 and é((;;)pq

The solutions of the RG equations for 5&)” 7 and ééz)p 7 are obtained under the first
LLA as follows:

~ KTmc( )UKJ"I
ohra ~ @ra LoptviQ 4.94
6q  (HEW) dg  (MVLQ) = (471)2 " HEW 49
3 Klpip )ZJKJq
CE" ) = €L (i) =~ S (4.95)

(4)? HEW
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The coefficients of logarithmic terms are given as |77, 83|,

¢ = 2Lyuyllact™ (uviq) + 2650  (vea) [yuylle + 6 Telyay IC 7 (pviq)

9 ki 9 i

~5lual)inCoy " (1viQ) =5 Cog ™ (mvio) lyuslli (4.96)
C9 = Tyl (iviq) + C5 ™ (vi) [yl + 6 Te[yu1C Y (viq)

3 ki 3

~5 i Cog ™ (viq) — 5o " (via) sl (4.97)

where we take only the terms which are proportional to the up-type Yukawa coupling
into account. Since the top Yukawa coupling gives leading contributions, we focus

on the top Yukawa contributions:

KJPELPRI A5 (30 )+ )|+ 2 v
- 92;” [N CEP'9 (i) + €7 (ivi@) Mg (4.98)

KLTpng;)ingq ~ 217}7’2Lt[)\t ’C¢(>q) (MVLQ)+é<§>?;)pp,(MVLQ))\2/q] 12th§)q) U via)
3:;2” [ Ao 'C(l)p “(1viq) +C~$1)pp/(NVLQ)>\tp/q] , (4.99)

where A, = Vb V. We simply replace K by Vexw since we neglect O(%)

terms. We consider the case of p=s and ¢ =0 to estimate the RG effects:

st i 4 12 s s

KJCo VK]~ { Z;t by + mt}c(l) “(1viq) — 0(3) "(1vLQ) Mo (4.100)
st i 2 12 s s

Kp Céq)] K{' =~ { zt)\ib+ mt]céq) "(iviq) — C(l) P (vrQ) N » (4.101)

where we leave leading order terms with respect to the CKM matrix elements, that

is My, = | Vdfkn|?~ 1. Since C (,uVLQ) :ééz)Sb(uVLQ) as seen in Eq.(4.10), we obtain,

2
sb m VL sb
L) (umw) ~ {1 — (ZLW—)I;UQ(—5X§,1,+ 12) In ’;Eﬂcﬁ (pvrq) (4.102)
2
5(3)sb ~ m HVLQ | 5(3)sb

It is clear that the combination éé)z)Sb(uEw) — éfl’])Sb(uEW) %0 because of the RG
effects. However, such a combination is suppressed by the factor 1/(47)* com-
pared with éé}z)Sb(uEw) —1—C~$;)Sb(uEw). We estimate numerical values of the ratio
C&)Sb( LEW)/ éé;)Sb(uVLq) and (ff;)Sb( pEW) / ég’])Sb( pvLq). We set A, =1 for simplicity
and take m;=173.1 GeV, v =246 GeV with ugw = Mz =91.1876 GeV [65] and
pvig =1 TeV. The left figure in Fig.4.5 shows the dependence of the numerical
values of éé}l)Sb(uEw) / éé?Sb(/VLVLQ) and éé?Sb(,uEW) / C’g’z)Sb(uVLQ) on the matching

scale pyrq. The horizontal axis is the matching scale piy1,q. The vertical axis is the
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Figure 4.5. Left: The scale dependence of ratio C n)s (MEW)/C(;Z)S (pvrg) with n=1, 3.

The horizontal axis is the matching scale uvrq. The Vertical axis is the ratio é;Z)Sb(,uEW)/
ééZ)Sb(MVLQ). The blue line represents the dependence of the ratio for égl)‘gb on fyr,q while
the red line corresponds to that of the ratio for C~(3)Sb Here the scale pv1,q varies from 500
GeV to 10 TeV and pugw = Myz. Right: The numerical value of the ratio {C( )Sb UEW) —
}/{C(l)éb C(?’)Sb(ugw )} as a function of the matching scale pvLq.

rati(~) ééZ)Sb( pEw)/ éé)z)Sb(/JVLQ). The blue line represents the dependen(ie of the ratio
for C é);)‘gb on pyrq while the red line corresponds to that of the ratio for Cd()?;)Sb. We find
from the left figure in Fig.4.5 that the Wilson coefficients at the EW scale C (g])Sb( UEW)
and égf])sz’( pew) are O(10%) smaller than that at the matching scale uvrq because
of the RG effects. The right figure of Fig.4.5 shows numerical value of the ratio,

5(1)sb m3 t 7. BVLQ

Cou ™ (pmw) — Coy ™ (pw) Gz o (4104)
5(1)sh (3) - ' '
Cop (pmwW) +Coy ™ (HEW) 2— (4) B (— 6)\b~|—24)1n’;‘;;§

One finds that the combination (fé)lq)Sb(uEw) — Cdxz )**(ugw) is approximately ten times
smaller than é&)Sb( pLEW) + (fé)?;)Sb( pew) and thus negligible.

4.6 Short Summary

We summarize the present chapter. We derive the effective operators in Eqgs.(4.12)
and (4.27) with Eqs.(4.28)-(4.31) by integrating out the VLQ up to one-loop level.
After inserting the VEV into the Higgs doublet ¢ and diagonalizing the down-type
quark mass matrix Eq.(4.51), we obtain the higer dimensional operators Eqs.(4.84),
(4.85) and (4.86) in addition to the dim.4 operators in Eq.(4.67) with Eqs.(4.68)-
(4.74). In next chapter, we construct the weak EFT from the effective Lagrangian
shown in Eqs.(4.67) and (4.86). In the following chapters, we denote the elements
of the CKM matrix Vi as V;; for simplicity.



Chapter 5
B Meson Systems in Model with VLQ

In this chapter, we investigate the neutral B meson systems in the model with VLQ.
This can be done by calculating Wilson coefficients of the weak EFT. In this thesis,
we take account of the RG effects from pvyrq to pgw in only the B — u*pu~ process.
This is because new physics effects for the B — pu+u~ process is induced at the tree
level while new physics contribute to the BQ-ES mixing and the ES — X,y at the
one-loop level or O(Zixc). We give derivations of formulae for the observables of

the neutral B meson systems in Appendix.A.

5.1 BY-B? Mixing and Amp,
The effective Hamiltonian for the BS—B_E mixing is,
_ Gt
Heyf=? = 4—7TF2MV2V(>\§b)2CVLLOVLL+h.C- (5.1)
with a product of the CKM matrix elements A, = V;:Vj, and an effective operator,
OviL = [5c7"br][50ubr) - (5.2)
Here we use the notation of Ref.[97]. New contributions to the Wilson coefficient
Cvyrr, from the effective Lagrangian shown in Eq.(4.67) are the violation of the CKM
unitarity and the tree level FCNC. These contributions are computed in Refs.[98, 99,
100, 101] in terms of the full theory description. The violation of the CKM unitarity
Eq.(4.82) leads to new contributions to the effective Hamiltonian:
- Gt T A=A -
HPPT? = —4—7£MI%/(/\§b)2<Ett - 4)\—1;;0 Eé)[sL’V“bL] [STyubr] | (5.3)
where we leave only the top quark contributions. The first term in the parentheses
corresponds to the SM contribution shown in Eq.(A.34) with Ey = —Sp(x;) [102].

The second term is the result of the violation of CKM unitarity. The function E is

given as,

B - _3_ % . a

Bl = 3oty no7 @9 -10.9), (5.4)
with [102],

& (31 1 & N\, 1 & 71 [5+& ¢
Y(z5, &) = xi—§<1xi—1+§xi—§)xllnxz §xi—§[ <1_§ a:i—f)lnf—i_l]’

51
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Figure 5.1. New diagrams which contribute to the Wilson coefficient Cvyry, [84].

where ¢ is the gauge fixing parameter of the R; gauge.
The diagrams including the tree level FCNC contributes to the Wilson coeffi-

cient Cyrr. These diagrams are shown in Fig.5.1 and lead to the following effective

Hamiltonian:
- G?
Hilﬁfc JAB=2 _ e B MENGAZRCT (s o] [spyube] (5.6)
ree = G J—
HGFINPT? = F(Z )2 [sLyu][scvube) (5.7)
V2
where
= 1 3w 3 222 —

81‘1—1 S(i—

The He?fc JAB=2 (omes from the left-hand side diagram in Fig.5.1 while Hé}rfe JAB=2
is derived by the right-hand side diagram in Fig.5.1. These results are consistent
with full theory calculations [98, 99, 100, 101]. Then the new physics contributions

to the Wilson coeflicients are given as,

uv+NC =3 Z ZSb
CON N umw) = —4(0 - BT /\b = —8Yo(z) )\Tbc (5.9)
(tree) 47(-82 Zf\}b(j 2
Cryy' (kEW) = o 8 | (5.10)
em Sb

where the function Yy(z) is defined by [102, 103],

r 3 =z R

W) = 5T s a1t s oy

Inz. (5.11)

It is clear that the function Yj(z) does not depend on the gauge parameter . The
total effective Hamiltonian can be written as,
AB=2 GE 2 (4t 2
Hepf = = TWQMW()\sb) CvriOvLL + h.c.. (5.12)
with

Cvin = CWYL+ CI(;V\;FNC) + Cgﬁ?) . (5.13)
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Figure 5.2. The tree level FCNC contribution to the Cig [84].

Finally, the mass difference of B? meson is given by (see Appendix A.1),

Gr

B,

MVWLBszs B, | \op 2| CviL(pew)] - (5.14)

5.2 BY— utp~ Process

5.2.1 Branching ratio

The effective Hamiltonian for the ﬁ) — ptp~ process is,

_ 4GF dem
M = 5

with the effective operator,

»C10010 + h.c. (5.15)

Ow = [sLy"br)[mysml (5.16)
where we follow the notation of Refs.[104, 105, 106, 107]. In order to compute the
branching ratio of the B — ;1= process in the present model, we have to determine
the Wilson coefficient C'1g. The tree level FCNC contributes to the C}g as shown in
Fig.5.2. The new physics contribution appears as the tree level diagram while the
SM contribution comes from the one-loop diagrams shown in Fig.A.2. Therefore, the
violation effect of the CKM unitarity is suppressed by factor e?/(167%) compared
with the tree level new physics contribution. The contribution to Cg from the tree

level diagram in Fig.5.2 is,

Z
Cl (pEw) = O:T dN(;\(MEW), (5.17)

with,
Ziko(uew) = v*{Ch)" (umw) + Coy " (nmw) )
2
my HVLQ
~ 1= 3+ 12)1 7z : 5.18
[ (@) (=3App+ 12) In———== P ] iNo(ivig) (5.18)
where we take Eq.(4.78) into account. The branching ratio is given by Eq.(A.62):

== GEM Y st 4m? 1+ yA
BRIBY— o] = o, SR 1 30 g oy ) 2 25
s mBs 1—y2
(5.19)

with the total Wilson coefficient,
Cio = CR'+ O . (5.20)
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Figure 5.3. Left: The numerical value of |Cyg| as a function of the parameter ry,. Right:
Difference between the numerical value of |Cjp|? in the model with VLQ and the SM.
In both figures, the different colors of the line represent to different values of the phase
sp. The solid lines correspond to the numerical value of |Cig| with RG effect, that is
|C10| = |CF + CNF (uew)|. The dashed lines are the values without RG effect, |Cyo| =
|+ ONF (piveq)|. Here we set my =my ws(m¢) with the pole mass my pole=173.1 GeV
[65] and pvrg=1 TeV, prpw = M.
where we define C§) = —Xor [102].

S

5.2.2 Numerical evaluation of the Wilson coefficient

We evaluate the new physics contribution to the Wilson coefficient Cg numerically.

We define parameters related to the FCNC coupling Z:%c,

sb
ey = M) (5.21)
)‘sb
sb
O = arg[M]. (5.22)
sb

The left figure of Fig.5.3 shows the numerical value of |Co| as a function of the
parameter rg. The right figure of 5.3 shows the difference between the numerical
value of |Cyo/? in the model with VLQ and the SM. In both figures, the different
colors of the line represent to different values of the phase 6,. The solid lines cor-
respond to the numerical value of |Cj| with the RG effect, that is |Cio| = |CTT+
CI¥ (ew)|- The dashed lines are the values without the RG effect, |Cyo| = |CT+
C10 (pviq)|- Here we take the top quark mass as the MS mass m; = m, yg(my)
computed by leading order QCD correction with the pole mass m; pole =173.1 GeV
[65] and pvrg=1 TeV, ppw= M. There is the point where the absolute value
|C10| approaches zero in the left figure of Fig.5.3 because of the large new physics
contribution. Moreover, one finds in the right figure of Fig.5.3 that the new physics
contribution can become as large as the SM contribution. Also the RG effect from

tviq to pew increases as the parameter rg, grows.
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dr dr

Y g

(b) (¢)

Figure 5.4. The diagrams contributing to the b— s'y(*> process [84]. The diagrams (a — 1)
and (a —2) also exist in the case of the SM. The diagram (b) contains the tree level FCNC
interactions. The diagram (c) corresponds to conterterms coming from the quark self-

energy and diagrams shown in Fig.5.5.

5.3 Branching ratio of Eg — X

We present effective Hamiltonian for the E(z) — Xy process in Eq.(A.66). In the
branching ratio of the B} — X,y process, we take account of new physics contribu-

tions to Cs, Cr, and Cg, with effective operators of the weak EFT,

Oy = (S_L’mCL)(C_LV“bL) (5.23)
O7, = 16 2mb(SLO' Ybr) Fapw (5.24)
Ogg = 16 (sLo™TR) Gy, (5.25)

The new physics contribution to C’g comes from the violation of the CKM unitarity,

4GF 4GF Z _ _ZEISII{IC
\/Q \/_)\ ( )\ )0202 — 02 (MEW) = )\zb )

where the small product of the CKM matrix element A}, is neglected. We give an

— 250209 >~ —

(5.26)

example of the computation for the Eg — Xy process in Appendix.B.

5.3.1 Effective Lagrangian in weak EFT

In order to obtain new physics contributions to the Wilson coefficients C7,, and Cy,,
we calculate the amplitude of the b— sy and b— s7* processes where v* denotes off-
shell photon. The diagrams shown in Fig.5.4 in addition to the effective Lagrangian
Eq.(4.86) are contribute to the b— sy process. The diagrams (a —1) and (a — 2)
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Figure 5.5. The Z-v, xo-7y mixing diagram at one-loop level [84]. The symbol C* rep-
resents the Faddeev—Popov ghost field.

are the same diagrams as the SM calculation [102]. The diagram (b) contains the
tree level FCNC interactions. The diagram (c¢) corresponds to conterterms coming
from the quark self-energy and the Z-~, yo-y mixing diagrams shown in Fig.5.5. The
effective Lagrangian for the radiative decay process with on-shell photon b— sy has
been calculated in terms of the full theory of the model with VLQ [108, 109, 110].
On the other hand, the effective Lagrangian for the b — sy* process has not been
calculated yet. In order to check cancellation of the divergence in the amplitude, we

compute the radiative decay process including the off-shell photon contributions.

As shown in Appendix.B, the wavefunction renormalization determined by the
quark self-energy diagrams in Fig.(B.1) can remove the divergence in the diagrams
(a—1) and (a —2) of Fig.5.4 in the case of the SM. This is because the terms which
do not contain the up-type quark masses vanish after using the CKM unitarity in
the SM. This means that the wavefunction renormalization cannot remove all the
divergence in the diagrams (a — 1) and (a — 2) of Fig.5.4 if the CKM unitarity does
not hold. We explicitly show this fact in Appendix.B. The remaining divergence is
not taken the calculations of Refs.[108, 109, 110] into account since the divergence

appears in the b— sy*.

In order to remove all the divergence, we have to take account of the Z-7,
Xo-7y mixing diagrams shown in Fig.5.5. This diagram leads to a wave function

renormalization [111]:

Zy | _ | VZzz N Zan ( 2" ) (5.27)
A VZAzZ N ZAa Al )7
where the subscript “0” means bare quantities. The symbols /Z;; with i,j =2, A

are the renormalization constants. The off-diagonal elements \/Zzx and v/ Zxy are
determined by the diagrams in Fig.5.5. In the MS scheme, we obtain,

__egcw

Zzn = a2 Cuv, (5.28)
egcw 17 41 M2

Zaz = I — =2 2

AZ 1672 CUV( 376 ME )’ (5:29)
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as shown in Appendix B.2. The tree level FCNC through the Z boson leads to a

counterterm for b— sy*) vertex:
ZReEVLOZY — N ZzaZikcsyLbA*. (5.30)

All the divergence in the diagrams (a — 1) and (a —2) of Fig.5.4 are cancelled by the
counterterm Eq.(5.30) in addition to the counterterms induced by the wavefunction
renormalization of the external quark fields.

The finite part of the amplitude from the diagram in Fig.5.5 contributes to the
effective Lagrangian for the b — sy* process. Finally, we obtain the effective Lag-
rangian L.rr(b— s7) for the on-shell photon and the effective Lagrangian L.;r(b—
s7*) for the off-shell photon. We divide these effective Lagrangian into,

Legr(b—sy) = Egc(jc(b%sy)%— g}’f(b—w'y)—kﬁglﬁ(b—w'y), (5.31)

5.3
Lepr(b—sv*) = Eecﬁc(b%s'y*)+£é‘}’f(b%37*)—i-ng?c(b—w'y*)—i-E%cij‘(b—wv*), (5.32)

where the indices “CC” mean the contributions from the diagrams in (@ — 1) and
(a —2) of Fig.5.4 with the CKM unitarity relation, namely the SM contributions.
The subscripts “uv” and “NC” indicate the contributions from the violation of CKM
unitarity in (a — 1) and (a —2) of Fig.5.4 and the diagram in Fig.5.4(b), respectively.
The index “Mix” represents the contributions from the finite part of the Z-+ and yo-

~ mixing diagrams. Concrete form of these Lagrangian are given as follows [84]:

G v
Leffb—sy) = —3 \/gezz Ny {QuPF (i) + Fyy (20) Y50, (mpR +m )b FLY,  (5.33)
1=c,t
£2%(b — _Gre g R+ msL)bFI" 5.34
eff(b—s7) = SVon? ZgNe Qu SJW(mb +mgL) , (5.34)
G e S — 4
,Cyf(}(b—}s’y) = 8\/}217T2Qd Z ZdﬁcZglgCFZZ(rp,wp)sow(mbR—l—mSL)bFlf
p=d,s,b

G
+—EE Q353 Y Ziko(0F + 6P Fy(ry) 5o (myR + meL)b FY
8\/5 p=d,s,b

GFe s v
4\/5 3 52, Z;b ZchFZ(rp)sou,,(ép mpR + 6PmsL)b F{" (5.35)

for on-shell photon case and,
Gre

Leffb—sy) = — ﬁﬂz Noo{ Quu(®i) + fv(2:)}57,LbOLFL" (5.36)
uv * G s 16 — v
Lo s7) = — OB d&c{czu< 2, 1nxu>—g}meaﬂFA‘ S (a7
. G _
LG b—s77) = o gQQd > ZikeZinetzrp wp)snLbFf
p=d,s,b
+ GFG Z dNC 55p+5pb)fz(rp)§%Lb8#FX”, (538)

2
8\/§ pdsb
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ix * Gre s 1 : 4 _ v
LD — sy = T%Zdﬁc{@o&ﬁg)lnﬁ%+§c5}snybauF;
Gre

_|_—

8y/272

for the off-shell photon. The loop functions corresponding to the SM contributions

2
Zj&c{—QQu(l — 4Qusi)ln%—¥v}s%LbﬁuFX’/. (5.39)
my

are defined as,
xi(2+ 3z; — 627 + 23 + 625 1n x;)

z;(1 —6x; + 31:22 + 23:;?’ — Gx? In x;
Fi(z) = &4 i ). (5.41)
L 2 {18 —29z; + 1027 + x} + (32 — 182;)In 2} 4 4
fu(xl) - 6(1171—1)4 + 3($l_1)41n i gh’l Loy
(5.42)
) _ L Qp2 3 ) _ , 2 .
() = ;{12 — 11z; — 87 + Tz + 2x;(12 — 10z; + z7)Iln x;} 7 (5.43)

6(z; —1)*
which agree with the SM results in Ref.[102]. The functions Fyz, Fz, and F; are
given by,

FZZ(TOU 'wa) = Fl(ra) + F2(Ta) + F3(wa) ) (544)
Fz(ro) = 2Fi(ra), (5.45)

2
Fyra) = ~pomee (5.46)

where 7, = (m} / Mz)? and w, = (m}/ My)? with m}f = (mg, ms, mp). The symbol M;,
denotes the physical Higgs boson mass. The functions F}, F» and Fj are,
4—9rq+ 53 +6ra(1 —2r)Inr,

Fi(r,) = 1201 — o) , (5.47)
—20+39ra7241“3+57“§4+6 —2+7ro)nry
Fy(ra) = 1o 24(_1“&)4( ) , (5.48)
—16 4+ 45wq — 36w2 + Tw + 6(—2 + 3wa)In we
F(wa) = —wg ST E )4( ) . (5.49)

The functions F; and F» come from the diagram in Fig.5.4(b) where the exchanged
particles are Z and Yy, respectively. The function Fj comes from the diagram in
Fig.5.4(b) where the Higgs boson h is exchanged. The functions fzz and fz in
Eq.(5.38) are defined as follows:

fZZ("“om wa) = fl(ra) + f2(7“a) + f2(wa) s (5'50)
fZ(TOH wOé) - 2f1(7'a) bl (551)
24 2Trg — 5412 2513 — 6(2 — 9o + 6r2)In T,
filra) = 180 7)1 : (5.52)
=16 445ra — 3672 + Trs 4+ 6(—2 4 3ra)In T,
fo(ra) = ra 36(1—ra)? , (5.53)

—16 4 45w — 36wZ + Tw3 4 6(—2 + 3wa)Inwq

folwa) = wa 36(1 — wa)?

(5.54)
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We can obtain the effective Lagrangian for the b—sg™) process by replacing the
external photon which attached to quarks in Fig.5.4 with the gluon. They are given

as,
Ler(b = £S5 L2:(b LG (b 5.55
eff(b—=59) = Lefp(b—sg) +LFp(b—sg) + Legp(b—sg), (5.55)
Lepp(b—35g") = LFFHb—sg") + LEFp(b— sg*) + LEF(b— sg*) (5.56)
with
CC Gng )\a a 1/
Lesr(b—sg) = “8on 22 Ny Fou(24)50 0 (mpR + ms L ) bG+ (5.57)
Grgs 2 A
cff(b—sg) = 8\/}%92 3 NCSUW(mbRﬂ—mS )—bG“ (5.58)
Grys _ A auw
Eg‘?‘(bﬁsg) = 8\/F§g7r2 Z ZdNCZdleICFZZ(TP’wp)SUMV(mbR+ms )—bG“
p=d,s,b
GFgS Q Z Z (5sp+ 6pb)F ( )7 ( R+ ))\abGaMV
8\/5 5 WdSw dNC Z\T'p) S0\ msL)—-
p=d,s,b
Grgs A\

-3 ﬁﬂQstfu Zb Z;ﬁCFZ'(rp)gaW(apbmb3+5spm5L)7bGW, (5.59)
p=s,

and
L9 (h— sg*) = —CF9s Al A Lbacom 5.60
eff( _>59) = 8\/? 22 sbfu 5171)371/ ( . )
1=c,t
uv * G S S 2 4 a )\a apv
eff(b—sg*) = —8\/%g7T2de{IC<—§+§lnxu>s%7LbﬁuG H (5.61)
. Grys b _ A auw
Lifi(b—sg*) = 8v2n? ;Sb ZdNCZdNCfZZ(TP’wP)S'VVTLbaNG :
G S S S S /\a apuv
+2 \/F;T 5Qasts Y ZiRo(0%+0™) f(rp) 57 5 LbOGH . (5.62)
p=d,s,b

5.3.2 Determination of the Wilson coefficients C’ ff and C’eff

We show the effective Hamiltonian for b— sy process in Eq.(A.66). In b— sy pro-
cess, it is convenient to introduce so-called “effective coefficients” C’i(o)ef ! [112; 113].
Concrete definition is given in Appendix A.3. As we see in Eq.(A.79), we can directly
take the leading order Wilson coefficients C’ég)ef T and Cég)ef 7 from the amplitudes
computed in the full theory at the one-loop level, that is the effective Lagrangian
Lepr(b— s7v) and Lesr(b— sg). We define C’ég)eff and C’ég)eff as

0O)e SM(0)e SMEFT(0)e NC(0)e

07() ff - C7,, ( ) ff“[ C?f\/ ( ) ff 07'« ( ) ff7 (563)
0)e SM(0)e SMEFT(0)e NC(0)e

Cé eff _ 08 (0)eff C (0)eff C (0) ff. (5.64)
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The coeflicients with the index “SM” are the SM contributions:
OO () = __[Qu (@) + Fyw(x)], (5.65)

e 1
Cog " (pew) = 5 (@) (5.66)

The Wilson coefficients 07834 EFTOef] and Cg;VIEFT(O)ef 7 comes from the effective Lag-

rangian shown in Eq.(4.86). When we neglect the RG effects, we obtain,

CSMEFTOEf (| ) CSMEFT(O Jedf Qi Zike (5.67)

MVLQ) = 24 )\ )

CSMEFT 0% (i) OSMEFT(O I (o) = 1 .ZdNC (5.68)

where we use Eqgs.(4.78) and (4.91). The Wilson coefficients C’;\;P(O)eff and C’ggp(o)eff
are defined by,

NP(0)e _
ng()ff

NP(0)e uv(0)e NC(0)e
ONPOAS . quoO)eff | oNCO)ed] (5.69)

Cg;;(o)eff i ngc(o)eff, (5.70)

where indices “uv” and “NC” corresponds to the subscripts in Egs.(5.31) and (5.55).
These Wilson coefficients can be taken from Egs.(5.34), (5.35), (5.58) and (5.59):

wv(0)e ff _ 12 5\Zikc
Coy 7 (pEw) = 2<3Qu+6> N, (5.71)

e Zsb
Coy O () = %(1—@1530) SR (5.72)

sb

Zsb
Cuv(())eff _ dNC 573
8¢ (/’LEW) 3)\21) ; ( )
e 1 Zsb

Cé\lgc(o) ff(uEW) — §(1*Qd8?ﬂ) ;\1%\11)0' (5.74)

Here we set 7, = w, =0 in the loop functions Fzz;, Fz, and Fy since the Z and
Higgs bosons are much heavier than the down-type quarks. Then the remaining
contribution for C’NC Il and CNC )T comes from the function Fy(r,) and F4(rs),
which corresponds to the contributions from the Z boson exchanged diagram. We
also neglect O(Zjxc) terms. In our numerical analysis, we include these new physics
effects in only O(a?) term, that is the first term of D in Eq.(A.87).



Chapter 6

Numerical Analysis

In the present chapter, we make the numerical analysis for the neutral B meson
systems which we investigate in Chap.5 and Appendix.A. We cannot use the SM
value for the product of the CKM matrix elements X, = V;:V}; in the model with VLQ
since the new physics contributions in Cyryy, affect the determination of the CKM
matrix elements. Therefore, we determine the absolute value of A, as a function
of the new physics parameters 7y and 6, through the mass difference of BY meson
Amgp, in Eq.(5.14):

[Amp,] exp

)\t 2 X b PsleXD
st |CvLL(Tsb, Osb)|

(6.1)

where [Amp |exp i experimental value of Amg,. In addition, we take account of a
constraint from the violation of CKM unitarity shown in Eqgs.(4.81) and (4.82),

YA+ Ay~ Ziko(pvig) - (6.2)

Here we omit the tiny RG effect compared with Zjkc(pvig) for simplicity. The

relation Eq.(6.2) can be rewritten as,

Xoo|? sb Ay | 2
: 1 —2|32 cosvs + | = 1—2rgcosbsy+ 15y, (6.3)
)‘sb sb sb
where the angle s is defined by v, = —arg[—:\\gb } We consider 75 a free parameter
sb

and thus we set —1 <cosvs < +1. In the following, we derive constraints on the 7,
and 6, from the branching ratios Br[BY — p*u~] and Br[B} — X,y]. Numerical

values of input parameters are shown in Table 6.1.

First we investigate the branching ratio of the B — ™~ process. The concrete
expression of the branching ratio is given in Eq.(5.19). As an experimental value of

the branching ratio, we adopt a result measured by LHCD [56],

Br[B? = utp e = (3.04£0.6703) x 1077, (6.4)
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aom(my~ M) 130.3+£2.3 [114]  as(Mz) 0.1179+0.0010 [65]
My, 80.379£0.012 GeV [65] My 91.1876 £0.0021 GeV [65]
Gr 1.16638 x 10=° GeV—!  [65]  sin%0,, 0.23122 [65]
M, 3iS 1.28 4£0.025 GeV [65]  my 4187003 GeV [65]
Mt pole 173.140.9 GeV [65]  myu 105.6584 MeV [65]
ma, 5279.64 £0.13 MeV [65]  mp, 5366.88 +£0.17 MeV [65]
B, (1.510£0.004) x 10725 [65] Amp, (1.168840.0014) x 107! GeV [65]
Br[B} — Xeeve]pxp (10.1£0.4) x 1072 [65] ATz,  (0.090 4+ 0.005) x 102 s~! [65]
nB 0.5510 + 0.0022 [115]  ny 1.0113 [116]
B 1.3274+0.016 +£0.030 [7] fB. 226.0+1.3+2.0 MeV [7]
Vi 0.0039270 00027 (71 Vs 0.22479170:000008 (7]
Vi 0.0424170 00727 71 Vi 0.97353470:000075 [7]

Table 6.1. Numerical values of input parameters.
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Figure 6.1. The dependence of Br[BY — u*u~] predicted in the model with VLQ on
the parameter rg,. The difference between the range of 6y is expressed as the difference
between colors of the dots. All the dots satisfy the constraints from Eq.(6.3) with —1 <
cosvs < +1. The experimentally allowed region shown in Eq.(6.4) is expressed as the gray
shaded region. The figure is reproduced from Ref.[84].

Figure 6.1 shows the dependence of Br[B? — u*pu~] predicted in the model with
VLQ on the parameter rg. The difference between the range of 0y, is expressed as
the difference between colors of the dots. All the dots satisfy the constraints from
Eq.(6.3) with —1 <cos~s <+1. The experimentally allowed region shown in Eq.(6.4)
is expressed as the gray shaded region. We note that the predicted branching ratio
is independent of the sign of fy, since the dependence of the branching ratio on the
0,5 comes from only Re[CT*CTF] oc cosfy,. The dependence of Br[BY — u*p~] on the
rsp can be understood by the left figure of Fig.5.3. We can see from the left figure
of Fig.5.3 that the total Wilson coefficient |C1g| approaches zero around 7,2~ 0.01
for the small ;. In other words, the Wilson coefficient CYF becomes CTF ~ —C{M
and thus |Cyo| = |CT+ CRF| ~ 0 in the region around ry,~ 0.01 with 6,,~0. This
gives rise to the small value of the branching ratio Br[B? — p*u~] at 74,~0.01 and
0<0,4< %. For r4,~0.02 with 0 <6, < %, the value of Br[BY — it~ comes close
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Figure 6.2. The dependence of Br[Eg — Xsv] predicted in the model with VLQ on the
parameter rg,. The difference between the range of 6y, is expressed as the difference
between colors of the dots. All the dots satisfy the constraints from Eq.(6.3) with —1 <
cosvs < +1. The experimentally allowed region shown in Eq.(6.6) is expressed as the gray
shaded region. These figures are reproduced from Ref.[84].

to the value of Br[BY — pu*pu~] at ry,=0, namely the predicted value in the SM [106,
107]:
Br[BY = ptp sy = (3.5740.16) x 1079 (6.5)
One can find in the left figure of Fig.5.3 that the total Wilson coefficient |Ciol is
also almost the same as the Wilson coefficient of the SM, |C1o| =~ |CT| in the region
around 74~ 0.02. This situation is realized by CNF ~ —2CTN
Next we analyze the branching ratio of the inclusive radiative decay BJ — X,v.
The analytical expression of Br[B} — X,v] is shown in Eq.(A.84). The new physics
contributions are embedded in the Wilson coeflicients C’éo)ef s (). We set pip=my,

v
in our numerical analysis. The current average of the experimental results are [64],

Br[B) = XY|mp = (3.3240.15) x 1074, (6.6)

which is given by the experimental data from BaBar [57, 58, 59], Belle [60, 61, 62] and
CLEO [63] experiments. We show the dependence of Br[B?g — X¢v| predicted in the
model with VLQ on the parameter ry, in Fig.6.2. The difference between the range of
O, is expressed as the difference between colors of the dots. All the dots satisfy the
constraints from Eq.(6.3) with —1 <cos7s <+1. The experimentally allowed region
shown in Eq.(6.6) is expressed as the gray shaded region. The Fig.6.2 shows that
the predicted value of Br[l?g — Xy] comes close to that of the SM prediction [117],

Br[B)— Xoylsm = (3.36+£0.23) x 1074, (6.7)

as rg, approaches zero. One finds that the filled regions by the colored dots are almost
the same as each other. Therefore, the branching ratio of the B_g — Xy depends on
the phase 6, weakly compared with the branching ratio of the B — p*u~. Moreover,
the dependence of Br[l??l — Xy on ry, is weaker than that of Br[B?— utu~].
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Figure 6.3. Left : The region of (rs, 0s) allowed by the experimental data of Br[B? —
ptp~] and Br[B_g — X¢v] shown in Eqs.(6.4) and (6.6), respectively. The blue dots satisfy
the constraints from both the Br[BY — u*p~] and Eq.(6.3) with —1 < cosy, < +1. The
green dots satisfy the constraints from both the Br[B_g — Xsv] and Eq.(6.3) with —1 <

cosys < +1. Right : The constraints on the mass of VLQ M, and absolute value of product

/s4 /b4*

of the Yukawa couplings |yg |. In the label of right figure, we omit the prime on yq4

for simplicity. The blue dots satlsfy the constraints from both the Br[Bg — utp~] and
Eq.(6.3) with —1 <cos~y, <+1. These figures are reproduced from Ref.[84].

The left figure of Fig.6.3 shows regions of (74, 0s) allowed by the experimental
data of Br[B?— 7] and Br[BY— X,7] shown in Eqs.(6.4) and (6.6), respectively.
The blue dots satisfy the constraints from both the Br[B? — u*u~] and Eq.(6.3) with
—1<cosvys<+1. The green dots satisfy the constraints from both the Br[B?g — X
and Eq.(6.3) with —1 <cosvs <+1. The values of ry and 6y, in the region where the
blue and green region overlap each other satisfy all the constraints from Br[B? —
phpl, Br[B?g — Xyy] and Eq.(6.3) with —1 <cosvs < +1. In the region in the blue
ring, the predicted branching ratio Br[B? — u*1~] is smaller than the experimental
allowed region. Also one can understand that the allowed region around (rgp, fsp) ~
(0.02,0) corresponds to the situation where ONF ~ —2C{}. One finds that such a
large new physics effect does not excluded by the measurement of Br[EE} — X¢7] even
though the branching ratio Br[gg — Xy7] is precisely measured at the experiments.

Finally, we show constraints on the mass of VLQ M, and absolute value of
product of the Yukawa couplings |y,**yi"**| in the right figure of Fig.6.3. One finds
that the stringent constraint on (rs, 0s) is given by the branching ratio Br[BS
] in the left figure of Fig.6.3. Hence the right figure of Fig.6.3 shows a region
where the constraints from Br[B? — u*p~] and Eq.(6.3) with —1 < cos~y, <41 are
satisfied, as the blue dots. One finds that the lower limit on the mass of VLQ is
around 2 TeV for |y;**y?**| ~0.1 or around 6 TeV for |y **ys’**| ~ 1.



Chapter 7

Summary and Discussion

We have investigated the model with one SU(2);, singlet down-type VLQ on the
basis of the SMEFT. In the model with VLQ, the GIM mechanism does not work.
This fact is understood as two features of the model with VLQ. One is the existence
of the tree level FCNCs induced by the Z boson, the Higgs boson and the neutral
NG boson. The other is the violation of the CKM unitarity. We presented these
features both in the full theory and the SMEFT descriptions in Chap.2 and Chap.4,
respectively. These features lead to new contributions to the observables of the
FCNC processes in the neutral B meson systems. The new physics contributions
can be as large as the SM contributions. This is because the SM contributions to
the FCNC processes are suppressed by the GIM mechanism while the new physics
contributions are not suppressed. Hence it is expected that the FCNC processes in

the neutral B meson systems give stringent constraints on the model with VLQ.

The recent lower limits for the VL(Q mass from the ATLAS and CMS experiments
[34, 49| are about ten times larger than the EW scale. We investigated the model
with VLQ on the basis of the SMEFT. The SMEFT is the effective field theory with
possible higher dimensional operators which are invariant under the SM gauge sym-
metry and consist of the SM fields. New physics effects are embedded in the higher
dimensional operators. We constructed the SMEFT from the model with VLQ by
integrating out the VLQ field. The FCNCs and the violation of the CKM unitarity
were represented in terms of the Wilson coefficients of the SMEFT as shown in
Eqgs.(4.76) and (4.81), respectively. We took in the difference among the VLQ mass
scale and the EW scale by using the RG equations with the anomalous dimension
matrices in the SMEFT. One of the new points of our work [84] is matching the
model with the SMEFT at the one-loop level and obtain the Wilson coefficients of
the SMEFT which relates the radiative transitions of the SM quarks, such as the
b— sy process.
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In order to clarify constraints on the parameters of the VLQ, we evaluated the
FCNC processes in the neutral B, ¢ meson system; BS—E’ mixing, ES — ptp~ and
Eg — Xyy. We present the analytical expressions of the mass difference of BY meson
Amp, and the branching ratio of the ES — utp~ and the 1?3 — Xy processes in
Appendix.A. These expressions are written in terms of the Wilson coefficients of
the weak EFT. We calculated the Wilson coefficients of the weak EFT by using
the SMEFT derived in Chap.5. Also we computed the effective Lagrangian for the
b— sv* process in addition to the b— sy process to perform the renormalization of

the amplitudes of b— s7*) process more completely than the full theory calculations
[108, 109, 110].

We performed the numerical analysis for the branching ratio of the ES — utp”
and the Eg — Xy processes in Chap.7. We determined the product of the CKM
matrix elements X, through the mass difference of BY meson Amgp. We found
that the branching ratio Br[gg — Xy7] depends on the phase 0y, weakly compared
with the branching ratio Br[B? — p*pu~]. The constraint on the model parameters
(rsp; Osp) from the branching ratio Br[B?— p*u~] is more stringent than that from
the branching ratio Br[l?f} — Xyv| as shown in the left figure of Fig.6.3. One can
understand that the allowed region around (rg, 0s) ~ (0.02,0) is the result of CT ~
—205. We also found such a large new physics effect does not excluded by the
constraint from the Br[B?g — Xyv| even though the branching ratio Br[Eé’ — Xv] is

precisely measured at the experiments.

Although we focused on the FCNC processes related to the b— s transition, the
Wilson coefficients of the SMEFT and the weak EFT in this thesis can be applied to
both b— d and s— d transitions. In addition, the Wilson coefficient for the radiative
transition b— s7 also contributes to the CP asymmetry in the radiative decays [85,
86, 87], the inclusive [88, 89] and the exclusive [90, 91, 92] b— sITI~ processes.

We comment on the additional contribution to the Wilson coefficient Cyq1, which
are used in the calculation of the mass difference Amp,. A box diagram where the

VLQ propagates in the loop contributes to the Wilson coefficient Cyyy, [82, 83]. We

denote this contribution as CSYEFT) here. This is given as [32, 83],
— s bd*\2
SMEFT) [ GF o o o] T Wi i)
C(\/'LL - |:4ﬂ_2MW(>‘sb) :| 8(47[')2M42 ’ (71)

As mentioned in Ref.[82], the Wilson coefficient CY ) becomes dominant com-
pared with the tree level contribution C’&,tiie) in the large VLQ mass region. We

show the absolute value of the total Wilson coefficient Cyry, = C%YL, + CYLL as a
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Figure 7.1. The absolute value of total Wilson coefficient Cyry, = CYL + CVEL as a

function of the VLQ mass Myrq=Mj. The solid line is the result without C{3yrr - while

the dashed line is the result including C’VSLl\]/fEFT in CYFL. The different colors of the line

represent different values of the phase . In the left figure, we take |y *y,***|=0.1. In the

/s4 /b4*

right figure, we set |yg | =1. We note that the range of both vertical and horizontal

axis is different between the left figure and the right figure.

function of the VLQ mass in Fig.7.1. The solid line is the result without C’VSLI%EFT

while the dashed line is the result including CVSLI\I{EFT) in CYFL. The different colors
of the line represent to different values of the phase 6. In the left figure, we take

lys*tyi | = 0.1. In the right figure, we set |yi**y***| = 1. One finds that the con-

tribution from CSYEFT) is small in the case of |y;**y/***| =0.1. On the other hand,

1,104 (SMEFT
Py CEMEFD) 5o proportional to

Therefore, we have to take account of the contribution from C’VSLI\I{EFT)

that is large in the case of |y | =1. This is because

(y/s4y/b4*)

to Cyrr in order to obtain more precise constraints for the large Yukawa coupling

case |y/s4 /b4*’ 1.

Comment on Figs.6.1-6.3

Figures.6.1-6.3 are reproduced from the our published paper [84]. We note that

we computed again to make Figs.6.1-6.3 because,
e We updated the input parameters shown in Table 6.1.

e We do not take account of the RG effects for C¢1)p e C¢q P4 from pyLg to pew
and the new physics contribution to the Wilson coefficient Cy (Eq.(5.26)) in
published paper [84].
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Appendix A
Neutral B Meson System

In the present chapter, we investigate a mixing and decay processes of the neutral
B mesons, namely B$ and BY. The BY meson consists of the anti-bottom quark b
and the down quark d while the B? meson consists of the anti-bottom quark b and
the strange quark s. We focus on the decay processes Eé) — putp~ and E&) — Xy
in addition to the mixing of the BY and §£. We note that the computation in this
chapter are based on the SM, not the model with the VLQ except Subsec.A.3.3. It
is useful for us to use a parametrization of the CKM matrix in the SM, so called
Wolfenstein parametrization [118, 7, 65, 119]:

1— ’\; A AX(p—in)
Vekm = )\ 1N AN +O(\Y), (A1)
2
AN(1—p—in) —AN? 1

where numerical values of the parameters are determined by experiments, for instance
A=0.225 [7].

We consider a general neutral meson system before we investigate the specific
processes. We follow the textbook [120]. We denote the general neutral meson as P°
and the anti-particle of PY as PY. Since the neutral mesons are not stable and decay

into other particles, a mass matrix of the neutral meson system can be given as,

Mt = M, (A.3)
rf = r, (A.4)

where the Hermitian matrix M is just a mass matrix while the anti-Hermitian
part %I‘ which is called absorptive part represents decay of the neutral meson. The
matrices M and I' are obtained in the second-order perturbation theory,

iHwn)(n|Hwlj)
mo— E,

Mi; = modij+ (i Hwlj) +) p! : (A.5)

Ty = 27%_ 8(mo— En)(i[Hw|n)(n|Hwlj), (A.6)
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where i, j =1,2 with [1) = |P°), |2) = | P%). The symbol P denotes the principal part

prescription and the Hy represents a Hamiltonian related to the transition |j) — |7).

The basis of the matrix R is |P% and |P%. We can obtain ecigenvalues and
eigenvectors by solving an eigenvalue equation. The eigenvectors of the matrix R

can be written as,

|P) = pulP% + qu|PY), (A7)
|PL) = pp|P% — qu|PY), (A.8)

where the mixing parameters py ; and gy  are normalized as /|pu|*+ |qu|* =
V|pol?+ lqr|* =1. The eigenvalues are given as follows:

ug = mg— %FH , (A.9)

ur = mL—%I‘L. (A.10)

The subscripts H and L mean the heavy eigenstate and light eigenstate, respectively.

We define a difference of the two eigenvalues pg and puy,

Au = UH— KU = Am—%AF = \/4R12R21+(R22—R11)2, (All)

with Am=my —my, and AI'=I}y —I},. The symbol R;; denotes the (i, j) component
of the matrix R. The CPT and CP transformations for the |P% and |P% are,

CPT|P% = ¢ivr|PY), (A.12)
CPT|PY%) = ¢ivr|PY) (A.13)
CP|P% = ¢iP|PO), (A.14)
CP|PY) = e~ir|PY) (A.15)

where the phases vp and £p are arbitrary and unphysical. We can show from Eqs.(A.5)
and (A.6) that My and I'sy are equal to My; and Iy, respectively when the Hamilto-
nian Hyy is invariant under the CPT transformation, i.e. (CPT)Hy (CPT) " '=Hy.
Also the CP invariance implies M1 = Moo, T11 =15, Mo = e?%PM ;5 and Ty = P15,
Thus, we can define a CPT and CP violating parameter 6:

Roo — Ry

0 = An

(A.16)

and a CP violating real parameter 0,

_ |Rug| — [Ra|

= . A7
| R12| + | Ra1 (A.17)
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Taking the diagonalization of the matrix R into account, we can determine the ratios
of mixing parameters py 1, and gy in Egs.(A.7) and (A.8) as,

qu Ap(l+6) 2R21

PH 2R12 Au(l — 6’) ( )
qL Ap(l—0) 2Ry

L — . A.19
DL 2R12 Ap(l1+0) ( )

It is clear that the CPT invariance leads to =0 and Z—Z:Z—i. Therefore, the absolute
value of the mixing parameter p; is the same as py because of |py|*+ |qu|* =
|pr|?>+ |qr|?=1. Tt is convenient to set the relative phase of |Py) and |P) so as to
pr = pr- In this setup, the mixing parameter ¢, is equals to qg. Then, we redefine
the eigenvectors as,

Pi) = p|P%) +q|PY), (A.20)

|PL) = plP% —q|P°, (A.21)
in the case where we assume CPT invariance. The mixing parameters p, ¢ and the

difference between the eigenvalues of R are obtained as follows:

AM = Am—%AF = \/4R12R21, (A22)

q Ap 2M{5 — il
— f— pr— A'2
P 2R12 \ 2Mo— il (A.23)

Using the Eq.(A.22), we obtain,

(Am)?~ (AT = 4|Misf? ~ [Fisf?, (A.24)
(Am)(AT) = 4Re[MI1] . (A.25)

The above expressions are derived without any approximations. In the following

sections, we consider the case of neutral B; and Bs meson systems.

A.1 B?-B? Mixing and Mass difference Amp
We compute M, at leading order in the BY meson system. The component MlBj is
given by Eq.(A.5):

Miy = (BIHEFTBY), (A.26)

where the Hamiltonian Hyy =HZ7=2 is defined in terms of the weak EFT as [97],

_ G%
Heff > = 4—7TF2MVQV(>\§b)2C\S/¥LOVLL+h.c. (A.27)

with a product of the CKM matrix elements \,, = V;:V};, and an effective operator,

OviL = [sty*br)[scyubr) - (A.28)
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b —— W —— S b — —— S
_ W _ X
BS ut ¢ A u! BS BS u' A u? Bg
i W 7 i W .
§ ——MWWWWWW—— b § ——MWWWW—— b
b W —— 8 b Ban inbvints ol
_ w _
BS u' A u? BS Bg u' A u? BS
_ X - _ X -
§ 1l —— < 0 5§ 1l —— 0

Figure A.1. Relevant diagrams to the M 1% in the SM. The symbol x denotes the charged

NG boson x*. The subscripts 4, j represent the generation of the up-type quark, that is

ul=wu, u?=c, and vd=t.

The Wilson coefficient C{}}, is determined by matching the weak EFT with the SM.
Figure A.1 shows the relevant diagrams of the SM. Taking account of the CKM
unitarity in the SM, we obtain the effective Hamiltonian as follows [102]:
L _ G e
HEF™? = —475]\/—/51/ Z Z Nep ALy Eii[SLyPbr)[Spyube) (A.29)
i=c,t j=c,t

where the function E;; is given as,

_ l_ 3 _ 3 xilengcj . . _L X .
_ [{4 2(zj — 1) 4(%._1)2} ; — % +(i+> ) (@i = 1)(a; — 1) Jfori = j
v 3 T 31 19 13 1 fori— i

o\ z—1 NT; — Tiy 7 4 z—1 5(%_1)2 , Iort =

with the parameter z; = (m!,/ My/)%. Numerical values of the functions Ey, E,. and
Ect = Etc are,

(A.30)

|Ey| ~ 2.5, (A.31)
|Eeel ~ 2.5x107%, (A.32)
|Eu| ~ 2.2x1073, (A.33)

with m; =173.1 GeV, m.=1.27 GeV and My, =80.379 GeV [65]. We can see from
Eq.(A.1) that the product of the CKM matrix Ag, is the same order of magnitude
as \,. Therefore, the dominant contribution in Eq.(A.29) comes from the top quark

term which are proportional to (\,)2E;;. We approximate Eq.(A.29) by,

_ G} _ _
HEF™> = MR ()2 So(w) sty bu) (st (A34)
where we redefine (93, 115],

Ey = —So(xy) . (A.35)
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Comparing Eq.(A.34) with Eq.(A.27), we determine the Wilson coefficient C{Y}, as,
CAL = So(zy). (A.36)

We obtain an expression of the M3 by inserting the effective Hamiltonian Eq.(A.27)
into Eq.(A.26):

2172
.S GzM e
MM~ - lf;ﬂ_gvv F8,m, Bon, CRYL(Nep) 2" (S0~ 6788 (A.37)

where mp, is the mass of BY meson and np, =0.551040.0022 [115] is QCD correc-
tion. The symbols fg_ and B, represent the BY meson decay constant and the bag

parameter of the By meson, respectively. The fgz and B; are defined by [120],

(BEI(FY L) (3 Lb) B = — 664 g B, (A.38)

with
(01by 58| BI(pH)) = —e“phfs, (A.39)
(057730 BY(pH)) = —eeel@m8m e, f (A.40)

The phase ¢ is arbitrary. The phases &, & and &g, come from CP transformations
of the b-quark, s-quark and Bs meson states, similar to the &p in Eq.(A.14), and
thus these phases are unphysical.

Since the absorptive part T'js is related to the decay of B meson, it is expected
that the absorptive part is dominated by the mass of BY meson, that is mp, ~my,.
On the other hand, the M7 is proportional to Sy(z;) ~z;=m? /Mg, This implies

Bs 2 —
]\1;15;3 R~ O(m—g> < 1. Also experimental results show 1212l ~ 810 o<1 [65]. Taking
12 my

AmBs 1x 1078
account of |I'*| < | Mi3| and |ATp,| < Amp, in Eq.(A.24), we can approximate Amp,

as,

G2
Amp, ~ 2‘M1%S’SM| = 6—7T};M%ﬂn35f§3357733\)\2b\2!0\s/%. (A.41)

A.2 B_g—> ptpu~ (b— spuTu~) Process

We investigate §£ — putp~ process in this section. This process is induced by the
FCNC among the b-quark and s-quark. As we have seen in the previous section,
there is the mixing between B? and 52. The mixing effect leads to a time dependent
oscillation among the BY and ES and affects the decay process ES — pt . First
we show a time dependent decay rate and an “untagged” decay rate in §§) — ot
process which are given in [104, 105, 106, 107]. Here we follow the computation
summarized in Refs.[106, 107].
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A.2.1 Decay rate and branching ratio

The effective Hamiltonian for the §£ — puu” process is,

— 4 m
/Hﬁf?—l = —% O:EIT )\ébcloOlo—{— h.c., (A.42)

with the effective operator,
Ow = [SLy*bul[Eyosp] - (A.43)

The Wilson coefficient of the SM will be given in the next subsection. Since the time

evolution of the mass eigenstates |Pg) and |P0) are written as [120)],

|Pa(t)) = e | Py), (A.44)
|PL(1) = e | Pp), (A.45)

with the time ¢ which is measured at the rest frame of decaying particles, the BY

meson states at time ¢ are given as follows:

1BY(t)) = g+<t>rB£>+§gf<t>rE£>, (A.46)
1BY(t)) = %g_<t>\B£>+g+<t>u?2>, (A.47)

where
g+(t) = %(e‘i“Ht:te_i“Lt). (A.48)

It is useful to show relations,

—Ig,t
PO [cosh Angtj:cos(AmBst)], (A.49)
% e 1Bt Algt ..
gi(t)g-(t) = — 5 sinh R +isin(Amp,t) |, (A.50)

where Al =1y — I}, and Iy, = (Iiy + 1) /2. We parametrize Mgs by using MIB;’SM
in Eq.(A.37) as,

MBs = MBSM(pe—it)2 (A.51)

The real parameter r» and the phase 6 represent effects from a new physics model.
The case of (r,6)=(1,0) corresponds to the SM. Similarly we introduce a phase ¢p

which represents new physics effects for the Wilson coefficient C:

e (A.52)

Cio ‘ Cho
SM — |SM
Cio Cio
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where C{)! is the SM contribution in the total Wilson coefficient Cyo. The ratio of

the mixing parameter % in Eq.(A.23) can be written by using the parametrization

Eq.(A.51):
MBS* . t
q L 12 oil&— &€ —20) o —2iargNee] (A.53)
p M

>0
rates of BY(t) — ptp~ and BY(t) — ptp~ after computing the matrix elements
(e [HEF T BI(E))] and [(up [HEF T BI(1)]:

B;
where we take | M5

into account. We then obtain the time dependent decay

T[BYUt) = ptu] = G%é‘ﬁwi 1= Z:ngi fBmpmipe” 5 CroNg|”
X [cosh AI;BJ — ARfsinh Alpt Supsin(Amp, t) ], (A.54)
T[BJ(t) = ptp~] = G%é\ﬁvsi 1= ﬁ B mpmie B C1oNg
X [cosh AgBSt _ Z’Iﬁsinh% + Syusin(Amp, t) ], (A.55)
Here we define [104, 105, 106, 107],
AR = cos2(0+ ¢p) (A.56)
Sy = sin2(0+ ¢p) . (A.57)

It is clear that AWM =1 and S, =0 in the case of the SM. From Egs.(A.54) and
(A.55), we can define the untagged decay rate [104, 105, 106, 107]:

(T[BA(t) = whu~]) = T[BL(t)— ptp ] +T[BY) = ptp]

GAMA o A2 ot
= F47TV5V “y 1= m2” fB.mpmpe ™| CroXg|?
Bs
X [cosh < 73{;15 ) + ARLsinh ( ?i;t >} , (A.58)
where we use the parameters,
_ I—Tyg _ Alp,
Y= Tty 20p, (8.59)
o= . (A.60)

IB,
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Figure A.2. Diagrams which leads leading order contribution to Cjg in the SM.

The parameter 75, is the life time of B, meson. We finally define branching ratio of

this process by integrating the untagged decay rate Eq.(A.58) in terms of ¢:

1

! /0 Tt (OB = ). (A.61)

BR[B{ — 7]

The concrete form of the branching ratio is given as,

- _ GEMiyst 4m?, 1+ ys ARR
BR[B{ = pfu™] = 75, Fgﬂvg,vw 1—m2“f25m35m3|)\§b|21010!2 % ,  (A62)
B — JIs

This expression can be rewritten by using the branching ratio of ES — utp~ without
the BY-B? mixing effect, which is denoted as Br[l?g — putu]:

1+ ys ARE.

e
—Ys

}Br[BS% prp). (A.63)

A.2.2 Wilson coefficient C;p in the SM

Here we show the leading order contribution of the SM to the Wilson coefficient Cj,.
Since there is no FCNC in the SM, the leading order contribution to Cg comes from

one-loop diagrams. The typical diagrams are shown in Fig.A.2. The result is [102],

Yo(x
CcRt = _L;?( o (A.64)

where 7y =1.0113 [116] is NLO correction. We used the CKM unitarity relation and

take only the top quark contribution into account. The function Yy(x) is given as,

3 =z 3 2nz
—ga:—1+§(x—1)2' (A.65)

Yo(z) = ¢
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A.3 1?3 — X5y (b— s7v) Process

The inclusive radiative decay process Eg — Xy is the FCNC process induced by
the photon while the FCNC process §S — uTp” in the previous section is induced
by the Z boson. The radiative decay process 1?3 — Xy is described by the effective
Hamiltonian of the weak EFT [114, 115, 121]:

s 4GF ¢ 4G
H = FA ,,Z Ci0; — FA [Z CiOi+ > CO; (A.66)
1=77,8¢g
where the effective operators are 4-Fermi operators,
Or = (3T er) @y T ) (A67)
Oz = (5cyucL)(eybe), (A.68)
the QCD penguin operators,
O3 = (wbr) Y. (@), (A.69)
q=u,d,s,c,b
Or = (rwT) Y, (;'T%), (A.70)
q=u,d,s,c,b
Os = Grwwwbn) D, (@""7%), (A.71)
q=u,d,s,c,b
Os = (rwnwwT) > (@ yy"T), (A.72)
q=u,d,s,c,b
and the dipole operators,
O7y = 16 2mb(8L0 Ybr) Fauw (A.73)
Ogg = 16 (50" TbR) G, - (A.74)

The symbols Fy,, and G}, denote the field strength of the photon and gluons,
respectively. The dipole operator Oz, mainly contributes to the E(} — Xy process
and the other effective operators contribute through RG effects. We neglect Ay, =
ViV < Ny and thus A&~ — ., in the SM.

A.3.1 Wilson coefficients and effective coefficients

It is convenient to introduce so-called “effective coefficients” C¢// [112, 113] in the
computation of the branching ratio of the B} — X,y process. In the present operator

basis, the effective coefficients are defined as follows [114]:

Cilw), for i 77,89,
Cleff(ﬂ) = C7’y(/JJ) + Z?:l Y CZ(/_L) , fOI' Z: 777 (A75)
Csg(p) + Z?:l 2 Ci(p), for i=8yg,
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where y; = (0, 0, —%, —%, —%, —%) and z; = (0, 0,1, —%, 20, —%) in the dimensional
regularization with {v#, 75} =0 scheme, so-called naive dimensional regularization
(NDR) scheme. We briefly show why the effective coefficients are introduced on the
basis of Ref.[112]. We consider the computation of the b— sy amplitude by using

the weak EFT Hamiltonian Eq.(A.66). We write the amplitudes as,

AgrT ~ C7V<3'7 |O7’y |b>tree + Z Cj <37|Oj |b>one-loop s (A76)
J

where the subscript “tree” means a tree level matrix element while “one-loop” denotes
one-loop level matrix elements. If the matrix element of the effective operator O; is
nonzero and contributes to the b— sy process, we can rewrite the matrix element

(57|0;]b)one-toop by using the tree level matrix element (s7|O7+|b) tree:

-AEFT = C7'y <37‘O7'y‘b>tree + Z Cj <3’Y ’OJ ’b>one-loop
J

= C7'y <37‘O7'y‘b>tree +Z ijj <57’O7’y‘b>tree
J

=[O+ X505 (571073 b) s (A7)

where y; is a number given by computing the one-loop level matrix element
(s710;|b)onetoop and corresponds to the parameter y; in Eq.(A.75). We can see
that the amplitude of the b — sy process is proportional to the combination C7, +
>_,;4iC; at the one-loop level. Therefore, it is convenient to define new coefficient
C?,’;f =Cry+ Zj y;C; and consider a RG equation with respect to the coefficient
C’?f;f . We note that we can express the amplitude of b— sy process in the SM as,

Asm = A7 (57|07+b) tree - (A.78)

Since the matiching condition is Asyn = Agpr at the scale ugw, the condition leads to,

Agy = Cr+ Y 4C = G, (A.79)

at the one-loop level. We consider the scale dependence of the effective coefficients.
The RG equations for the effective coefficients C#//( 1) are written as [114],

a e e e
i O ) = Gl () (A.80)

We expand the effective coefficients and the anomalous dimension matrix V;if um

with respect to the QCD coupling a(p):

cett — Oets | as(i) oess (A.81)
(2 (2 47.(_ (2 ’ °
2
et = Q) oefs | 05 () (s 4 .. (A.82)

47 (47)?
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The leading order anomalous dimension matrix »¢// in NDR is [114],

8 2 208 173

s 0 00 e e

4 416 70

52 176 14

00 0 -2 2 I 1

0 o % _10 4 5 152 587

O)eff _— 9 9 9 5 TR
! N 0 0 0 26 (g 99 _622 659 | (A.83)

3 R 27

0 o _26 56 40 2 4624 4772

~9 9 9 3 3 8

0 0 0 0 0 0 % 0

32 28

00 0 o0 00 -2 =

and yV¢/7 is also given in [114]. The Wilson coefficients in Eq.(A.75) at the matching
scale pugpw=~ My are evolved to the B; meson mass scale iy >~m;y. This can be done by

solving the RG equation Eq.(A.80) with the anomalous dimension matrices ¢/
and Meff,

A.3.2 Branching ratio of B_g—> Xy

In this thesis, we use a next-to-leading order (NLO) expression for the branching
ratio of the BY — X,y process [114]:

mb m%

Br[BY — X7] = Br{Bj— XcerZ] - Ryuank(0) ( i %d) ’ (A.84)
where d3F and dNE are non-perturbative corrections for the semi-leptonic and the
radiative decay rates which are computed by Heavy-Quark Effective Theory (HQET),
respectively [122, 114|. The symbol Rquak(d) at NLO is defined as,
F[b—>XS’Y]E’Y>(1_6)E$aX |>\ | GaemF

unark(5) = F[b—)XCGV;] |Vb|2 ﬂ-g()

(){ID?+ A(0)} . (A.85)

The function g(z) with z = mg,pole / mbvpole is the phase space factor of the semi-
leptonic decay. The function F'(z) includes the difference between the pole mass and
the MS mass of the b-quark and the NLO correction for the semi-leptonic decay.
The symbol § represents the lower cut on the photon energy in bremsstrahlung
corrections, E, > (1 —0)E,=(1—4§)5 In our numerical analysis, we take £, > 1.6
GeV. The function A(4) originates from the bremsstrahlung and virtual corrections
[114, 123, 124, 125]:

—220b) (74 91n6)Ins e s e e
) = {eETmOms L p0ers, 0 @ ub S )OO ()OO (),
,2]531
(A.86)

where the functions f;;(d) are summarized in Ref.[114].
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The term |D|* consists of the LO and NLO effective coefficient C’ég)ef 7 C%)ef !
and the virtual corrections for b— sy process [114, 123, 124],

8
D = O () + )| et 5 C£°>eff<ub>{m+vf”effln%}], (A.87)
=1

where 7; can be found in Ref.[114].

A.3.3 EW penguin contribution to Wilson coefficients

It is pointed out in Refs.[109, 110] that the tree level FCNC contributes to the Wilson

coefficients of the electroweak penguin operators,

0F = Grwbt) >, Ql@r*"), (A.88)
q=u,d,s,c,b

OF = (wTh) Y.  Quey'T%), (A.89)
q=u,d,s,c,b

0F = Gomwwbs) Y. Qu(@r""%0) . (A.90)
q=u,d,s,c,b

0¢ = (1 1) Qo(qy*y"7Tq) (A.91)

6 SLYu Vv Ypd “OL a\qY"YY q)- .

q=u,d,s,c,b

Including these opeartors, the effective coefficients are defined as [126, 127],

Cilp) for i 4 77.8g.
Cfff(/ll) = C7'Y(lu) + Z?:l yz [C@(M) - %CZQ(M)} , for Z: 7*')/7 (A92>
Csg(1) + Xy 2 [Cilw) = 5CR(w)], for i =8g,

Q_ ~Q_ . 1 4 20 80 . 1 10
where C* =C5¥ =0 and y; = (O, 0, =3, =9 — 3 —?) and z;= (O, 0,1, —5,20, —?)
in the NDR scheme. One can find the leading order anomalous dimension matrix in
Refs.[126, 127].

The tree level FCNC contribution comes from the diagram shown in Fig.A.3.

The Wilson coefficients from this diagram are obtained as follows:

CYP(upw) = %Zjic (A.93)
C (pmw) = —7—12-2520, (A.94)
C8 ) = (354 ) -2, (A.95)
CoN (pew) = _ L Zike (A.96)

12 N,
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s q

Figure A.3. The tree level FCNC contribution to the penguin operators.
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Figure A.4. The dependence of |C§9Y)eff(ub: 5 GeV)’ on the parameter 74, and 6,5, The
solid line is the value of |C§9Y)ef ! (Mb)| with taking the Wilson coefficients of the penguin
operators shown in Eqgs.(A.93)-(A.96). The dashed line is the value of |C§9Y)eff(/¢b)| without
the Wilson coefficients of the penguin operators shown in Egs.(A.93)-(A.96). The different

colors of the line represent to different values of the phase 65, Here we set up=>5 GeV.

and the other Wilson coefficients of the penguin operators are zero at the tree
level. We estimate effects of these new physics contributions. Since there is no SM
contribution to the leading order Wilson coefficients of the penguin operators CZ-(O)
and C’iQ(O), we only take account of the new physics contributions Cé\g’ and C’%NP.

After solving the RG equation, we obtain the effective Wilson coefficient C’ég)ef ! (1)

CYH (5 GeV) = 0.695CE ! (M) +0.086 CL)“ (M) — 0.158CL” (Myy)

Ty g
+0.094CYF (M) 4 2.099 C3F (My,)
+0.044CENP (M) — 0.110C2 N (M) | (A.97)

where we set 1, =5 GeV and as(Mz) =0.1179 [65]. Figure A.4 shows the dependence
of the absolute value of Cég)ef ! (uy="5 GeV) on the parameter rg, and . The solid
line is the value of ]C’ég)ef ! ()| with taking the Wilson coefficients of the penguin
operators shown in Eqs(A.93)-(A.96), that is Eq.(A.97). The dashed line is the value
of ]C’%g)ef 7 ()| without the Wilson coefficients of the penguin operators shown in
Eqs(A.93)-(A.96). The different colors of the line represent to different values of the
phase 0. One finds that the Wilson coefficients Eqgs.(A.93)-(A.96) give rise to the
O(1073) correction to the dependence of \C§9Y)eff(ub)\ on 7g. In Chap.6, we neglect
that modification since it is about ten times smaller than the leading order new

physics contributions to the Cég)ef 7






Appendix B
CKM Unitarity Violation in b — s~y

B.1 Amplitude of b— s+ without unitarity

In this section, we briefly show the computation of the amplitude of the b— sv
process. We focus on the diagrams which also exist in the SM. We do not use the
CKM unitarity in contrast to the SM calculations [102]. The relevant diagrams
are shown in Figs.B.1 and B.2. The Fig.B.1 shows the self-energy diagrams which
contribute to counterterms for the b— s vertex. The diagrams for the b— sy vertex

are shown in Fig.B.2. Here we denote the up-type quark masses as m; with i =u, c,t.

B.1.1 Master Formulae

T _ [_d% (f + K+ ma)y (p+ K+ ma)
(p,p', q;mi, My) = /(Qﬂ)di [(p+ k)2 —m?|[(p+ k)2 — m?|[k2 — MZ/]

1 [1 p +p?
= 16”2[—(1—CUVWHW—”—{FI 2 - (Izy—fsy)H

M2

-+, |

T 16 2[%[1‘1’7

+M—3V{W%<hy—2fzy+fsy>+(M ey g Ly,

1 q> 0 7 2yp? 0
_ wl _ Y
167r2w{ 602 o, 2 T oz, Vi, v = o) (B-1)
I#V(p o', q;mg, M ) = / d% k“kl’
y Py gy 110, w) = .
2 (2m)4i [k2 —m7][(p+ k)2 — M) [(p' + k)% — M|

_ g M\ _ 9"
= 64n? (CUVID 12 )32772 Ly

83
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Figure B.1. Self-energy diagrams which contribute to counterterms for the b— sy vertex.

The symbol u! with i =1, 2, 3 represents the SM up-type quarks.

4 2
g
12z, {q Iz +(0* +p?) (L2 Iy3)}
1 1uu TH 1V 1”/1/ |2
a2z 3 6 Y3 '
L6720z, | 3P PP+ g ) (B.2)
d% kt
I¥ y /, ;mi,M = ;
ot amdi) = @)% (62— m?][(p+ )2 = MR][(0/ + k)? — M)
_ (p+p)*
= gomonrg (5:9)

dik; 1
(2m)di (k2 —m3][(p+ k)2 — M) [(p + k)% — M

L(p,p', ¢;mi, M) = /

1 1 p +p / /
= — I — I3+ - B.4
16m2M3, 327T2M5V{3M2 Mg, (L2 93)}’ (B4)

where x;=m?/ M, CUV:%— v+ Ind7 with d=4 — n and

1 n
y
I,, = dy—~4 B.5
) / v (B.5)
1
L, = /clyyln[m2y—i—M2(1—y)]7 (B.6)
0
1
I = / dyylnly+z:(1 — )], (B.7)
)
1 yn
I, = dy— 94 B.8
Y /0 4 y“‘mz( y) ( )
I, = [ d v B.9
Y / YTy+m( -y (B.9)

B.1.2 Wavefunction renormalization for quark fields
The QED Lagrangian with the bare down-type quark fields is,

L£E = dY(id — eQqA)dY + d% (P — e QuA)dY — d¥ mYidY — dY mYidYi . (B.10)
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Figure B.2. The diagrams for the b — sy vertex in the SM. The symbols p, p’ and ¢

denote the momentum of the b-quark, s-quark and photon, respectively. The symbol v’

with ¢ =1, 2,3 represents the SM up-type quarks.

where index ¢ =1,2 and 3 corresponds to the d-, s- and b-quark, respectively. The
subscript “0” means bare quantities. We define the wave function renormalization

constant for the down-type quark fields:

¥ = Z,"di (B.11)
4% = VZg"d} . (B.12)

The quantities without the subscript “0” are renormalized quantities. The other
renormalization constants, such as the wave function renormalization of the photon
field, do not lead to the flavor changing counterterms. Therefore, it is sufficient to
take account of only the renormalization of the down-type quark fields in our calcu-
lations. We obtain counterterms by inserting Eqs.(B.11) and (B.12) into Eq.(B.10):

L8 = dj (if — eQuA)d] + d} (i — e QuA) diy — dj m} dfs — dfym i
+d) (VZ N2 — 69%) i@ df + df(V Zr N 2™ — 5%)id dfy
—di (V71T mBi Zr ™ — mi 6% dh — di, (v Zr T mG/ 2L — mi 69%)dk
—eQud} (VZ, T ZL " — 557 AdE — e Qudh(v Zr T ZR' — 57%) A d, . (B.13)
The off-diagonal part of the counterterms is given as,
(VZ.'VZ1) L+ (VZr'V Zr)IpR
—~(VZ " mIVZr) IR — (VZr mivZ) L, (B.14)
Dlaise. = —eQa(VZ'VZ1) "L — eQa(VZr'V Zr) "' R, (B.15)

EZ)UHt. (p)
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with i # j. The renormalization constants v/Z; and v/Zg are determined so as to
remove the divergence in the amplitudes of the self-energy diagrams. We parametrize

the amplitudes of the self-energy diagrams as,
S(p) = ARL(P?)PL + ARR(PP)PR + ATR(PP) R+ Aiy (p°)L (B.16)

where the functions A3%, Afk, A% and A3, can be obtained by computing the
amplitudes of the self-energy diagrams shown in Fig.B.1. Adding the counterterm

330 e, to 2%, we obtain the renormalized amplitude of the self-energy diagrams:

Efgn(p) = éb(fp) Count( )
{ARL(?) + (VZLVZL) WL+ {Ala(p®) + (VZr'V ZR) " }pR
HAR(P?) = (VZL iV Zr)* YR+ { AL (p?) — (V2R miV Z1) "} L (B.17)

The functions A5%, AR, A% and A3, contain divergence. There are some freedom
of how to subtract the divergence in these functions. Here we impose the on-shell

renormalization conditions [111]:

{p—mp+ 38 () un(p) 0, with: pus(p) =myus(p), and p*=mj, (B.18)
(PP —ms + 3 ()} = 0, with: uy(p)p=myiy(p), and p*=mZ, (B.19)

where u(p) and u,(p) denote the spinor of the b- and s-quark, respectively. Inserting
Eq.(B.17) into these conditions, we obtain expressions of the renormalization con-

stants in terms of the functions A§4, Aslg, A% and AY

Ne AN fmg;mmm(mb)mb — App(m2)m?2 + { Arr(m3) — Arg(m?2) ymym,
+{ALr(mg) — ALr(m2)ymp + {ArL(mi) — Arp(m2)}my] (B.20)

VZr s = —mmm(mam% — Apr(m2)m2 + {App(md) — Apy(m2)ymym,
+{ARrL(m?) — Arr(m2)Ymy, + {ALr(m3) — ALr(m2)}my] . (B.21)

We calculate the amplitudes of the sefl-energy diagrams in Fig.B.1 to determine the
functions A%, A, A% and A

B.1.3 Self-energy diagrams and counterterms

We define the loop integral,

[ d%k 1
Lsas(ps ms, Mw) = / @m)% g+ F—mi[k? — M7

__r iy 1t B s
N 167r2(§+m1)CUV 16%2/0 dz{p(1—z)+m}ns®, (B.22)
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with

s2(p?) = —pr(l—2)+ M (1—2)+miz.
The amplitude of the diagram (a) in Fig.B.1 is given as,

Sib(p) = <—i%V“L V) i+ (—igu) Lte(ps ms Mw)(—i%v% m)

2 1
_ 9 i 1 _ 2( 2
= 32%2)\Sb { Cuyv—1 2/0 dz(1—z)lns*(p )};ﬂL,

where A, = V;:Vj,. The amplitude of the diagram (b) in Fig.B.1 is,

Exb(P) - {ZﬁMW(miRmSL)ViS}Z‘ZIself{Zm(miLmbR)V;b}
2 1
g i J1
- 327r2MV2V)\Sb{5CUV[) dz(1-z)ln SQ(PZ)}}”(m?L+mSmbR)
2 1
32 %MQ { CUV+A dZIHSQ(P2)}(mbR+mSL)mZ2,

The total amplitude of the self-energy is obtained as follows:

£(p) = ZSb() =(p)

= 35 2>\ {CUV(1+2’A§'V2V>—1—2(1
9> i [msme(1 ! 2(,,2
I32ﬂ-2>\5b{ Az, <§CUV—/O dz(1—2)ns*(p ))}]JR
+g—2)\éb{CUv+/ldzlns (p 2)}1277%}2
3272 0 M3,

2

1
—Z )i CUV+/ dz1n s%(p? }ﬂmsL.
592 { ; e

The functions Af4, Ag, A% and Ay, are determined as,

2 1
sb2y _ 9 i Ti\ _ 4 _ Zi _ 2/, 2
AfpL(p®) = 3972 sb{CUV(1+2> 1 2(14‘2)[) dz(1 z)lns(p)},
s g msmy [ 1 !
Ai?) = e (Lo~ [as- ) )},
1
M) = gl ~Cuvt [ demnst) Laim,
0

1
AFL(P?) = 32 55\ { C'UV+/szlns2(p2)}acims.

+ 2"]\225) /0 "dz(1 - 2)n s2(p2)}ﬂ

87

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)
(B.28)
(B.29)

(B.30)

We then abtain the renormalization constants by using Eqgs.(B.20) and (B.21):

VZiNZL = 5 2>\ [{OUV(1+%)1}(1+ﬂ)1n[Ag—fV]
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~2(1+2) [ dy 1=l — ) +0)

2 2
LI 0, 20y 1)~ iy~ I} (B.31)
w
2 1
t g i msmmyp 1 MW
VZR'\Zr = _W)\sb[ MVQV{ Cuv — 3 { } /dy(l—y)ln[(l—y)+$iy]}
+ I 20y, 2, + T,) -<11y—fsy>}]. (B.32)

Finally the counterterm for the b— sy vertex I*:*% in Eq.(B.15) is given as follows:

count.
TS = —eQu(VZL VZ1) ™ML — eQu (VZr'VZr) "R
2 2
g°eQa ., My, ( ) msMp
— =2 )3 (1 39 Nz
3272 S”[(CUV e ){ Tt ) +2M2 i

+{—1 - 2(1 +%)/Oldy (1—y)n[(1-y) +my]}7’%

1
+_n;\2mb uR{ (Iy = 202y + I3y) = wi(l1y = I3y) = / dz(l—y)ln[(l_y)+xiy]}
0

w
2 2
B L 20, ~ 20, + o)~ (T2~ )} | (B.33)
Since Q= —%: Q.+ Qw with Quw = —1, we separate the counterterm I'**% into

the terms which are proportional to ), and the terms which are proportional to Qy:

,sb sb sb
Tash = TES TSt (B.34)

count. c,Qu c

B.1.4 b— sv amplitudes at one-loop level

We show the result of the amplitude for the diagrams in Fig.B.2. We define g=p—p’.

2 .
' = —%eQu/\iw“LI1p(p7p’, q; mi, M)y, L

26 u)\z
— LoDl (G- 2) 42001~ )L

2
q x; O 2 mi +m? 0
{_<?37i12y B §I3y — 20y - IQy)) bMW ( tOx; o v = 12y) = Iy Igy)}’pr

Mgy
s R
_Q(Ily - 2121; + I3y)%_ (21131 - 3I2y+ 131/)—2[g? ’Yp} (mbR+ msL)
M3, 2Myy
QP}I
+( 211 —I 13 ) }, (B.35)

'@ Vin(miR —myL) I p(p, ', ¢ mi, M) (m; L — myR)

eQ“zMW



B.1 AMPLITUDE OF b— sy WITHOUT UNITARITY 89

_ GQ?:;—PZM[ {;(1 —Cuv) +(Ly —xifly)}pr_ gMszUV%
+””‘§MLV2:”3%L{%(QIM—3IQ@,+I@) 5”2 88 (Iy — IQy)}
+mA2—Z;7pR{% — I3y + Ily} — fﬁ[ﬁl’ Yol (MmpR +mgL) (L2 + I3y)
+M22 VPL{_%IM g%%’aa Izy} ](\IZIV {ziIQy_%I3y}}’ (B.36)

(e) _ dPk " . g —ighe 7’1:91/5

e = —_ LV —— LV,

G /<2w>Di( AL ) —F- ml< ol b><pf+k>2—M%V<p+k>2—Mav
Xie[gap(p' = p+p' +k)g+ gap{—0" =k — (p+k)}p+ gsp{r+k— (' — D)}l

2

= g—Qe)\gb|:(3CUV —2—-3n M‘%V)fpr —6Ly,L+ M(

327 MW 51y2 — 5[y3)7pL

2[4 q 2ms
+ q2< iy QIyg)’prJr f/ 31 s+2L, |L+ ﬂz\zmb(lyg—fy;;)'pr

MW 3 w w
mpR — mgsY,f L

B = [ (e gt v

o gt N S
(p'+k)? — M, (p+k)?— Mg

2 2 2
q mb + mg
= 32 6>\Sb|:$ Iyl’YpL_'_ {3MWIé M‘%V (IZ;2 ! )}’YPL

e ngap

1
_leg(mefpr —2q,pL + mbg'pr)} , (B.38)
w

1

dk
F(g) — ; 9 R —m,L)V;% v (9 LV
= [\ eV

Mg gt
W+ k)220 I (k)2 MR,
2 i mi —|—ms
= 32 e>\sb|:x2 Iyl'VpL + {3]%4WI3; I}WW {IZ;Z — / ) ’pr
1
—m Lys(2m2y,L + 2qop'L — ms'yp/qL)] , (B.39)

dk
M = / - R —m L)V - L —myR)V;
’ (27) 45 Z\/iMW(m " /é m; ZﬁMW(m msR)Vip

xie{(p+k)+(p'+Fk)}p (p/—|—/€;2— M3, (p+k;)i2— Mg,

2 i |1 mpins mMpMes
- %exsb[—(cw—ln M%V)Vp<xiL+ ]\21%/ R) —Iylvp(miL—i— J\Z%V R)
+3 J‘\’}‘Q Lyl + — S (mi A m3) (=201 + 41— 203) L
w
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msmy

M2 Yo+

+a;(—21y1 + 31y — Iyg){ [mb;mpR — ms'ypij]}

1
2ME,
1 3 q

—|—J;i<§ly3 L ha Iy1> ]6 vva] (B.40)
where we used the on-shell relations,

pus(p) =myup(p),  p>=mj, (B.41)
u(p)p =mgis(p'),  pP=m3. (B.42)

We sum up these amplitudes in addition to the counterterms in Eq.(B.34). Here we
eea T and S TN 4 TA5) . Taking

account of the sum with respect to the up-typq quarks, we obtam,

s |z ]

separate sum into two parts, > oL

i=u,c,t | x=c,d
B 32W2MW Z X, [quv_qpqm L=+ [ ol (mp R+ ms L) =521 (B.43)
> {Z L, +F’”b]
i=u,c,t Lz=e~h
2, )
- 3927r2 > >‘sb|:2<CUV_1n—2)’7pL
1=u,c,t
L Rt m, 1) EA) B.44
2M2{q W hw () + daof 7 ()} +Mz [, Yol (mu R+ L) == | (B.44)

where the functions f.(z;), Fi(z:), %' (z:), f&(x;) and Fjy(x;) are defined as,

4+ 38x; — 6327 + 1423 + Ta} — 6(4 — 162, + 927 In z;

fulzs) = — 18z~ 1) ; (B.45)
Fiw) = —8+ 38w; — 393;1%24(;1:1_35§ )—4 5xf 4 182¢In z; 7 (B.46)
FD () = —20 + 1162; — 15327 + 5165(1—#_:541; 622(12 — 10z + z?)ln z; ’ (B.AT)
£ = 32 — 164z, 4+ 22522 — 104;;3(1;23:1;*)4— 627(12 — 10z; + z3)Inz; ’ (B.48)
Flo(z) = — 10 —43x; + 78xi2(;119jc11;— 4zt 4 1823 x; . (B.49)

It is clear that there remain the divergence in Eq.(B.44) even though we add the
counterterms obtained from the wavefunction renormalization of the quark fields.
In the case of the SM where the CKM unitarity holds, the remaining divergence in
Eq.(B.44) vanishes by using the CKM unitarity relation " L=0.

=u,c,t
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B.1.4.1 With CKM unitarity — SM case

When we use the CKM unitarity relation ), e, . Aso=0, we obtain the amplitudes
in the case of the SM:

> | X LU
i=u,c,t | x=c,d SM

= 3o 26Qu Z >\sb|: Mé; (q29p1/ - QpQV> fu(;cz) + ML‘%VM’ ’Yp](mbR + msL) Fuéxl) ] R (BSO)

i=c,t

3 { 3 F$>+F“5"] )

i=u,c,t Lae=e~h

- 327r262 Asb{Mz (€%Gor — 4p0) ”wa( )+W[71 ’Vp}(mbR+msL)FW2(x">], (B.51)

i=c,t

where we set x, — 0 and,

fiey = _m{18= 20w+ 106% +_x1 : (32— 18z)Ina} 3(3:2»4— 1)41”1—%1”“ (B.52)
Fu(zi) = xi(2 4 3z; —4?;?;!—11;44— 6x;In ;) , (B.53)
Furls) = 2 {12 — 11z; — 827 —|—g?3i—|;21x)i(12 —10x; + x)Inz;} ’ (B.54)
e (i (B.55)

The leading order Wilson coefficient in the case of SM, denoted as C§g)SM, can be
determined by the terms which are proportional to [¢, v,](msR +m,L) in Egs.(B.50)
and (B.51). We note that the functions with respect to the parameter z; in Eqgs.(B.52)-
(B.55) are derived by using the functions in Eqs.(B.45)-(B.49). For example,

Z Ay Fl () Z N { () — Fl(z) Z Ny Fy () . (B.56)

i=u,c,t i=c,t i=c,t

The terms which do not proportional to the up-type quark masses z; in F;(z;) are can-
celled out because of the subtraction Fy(x;) — Fy;(z,). If the W boson is much heavier
than the top quark, that is x; < 1, the leading order terms in Zi:c’t Nop{ Fo(;) —
Fu(x,)} are written as,

2 2 2 2

Ny {FL(2:) — Fl(za)} ~ Nopime—Mu i, T = Thu (B.57)
2 } W IR

i=c,t

Therefore, the function F,(z;) is suppressed by the factor = % in addition to the
CKM factor A, We note that mcMzm" ~ 2.5 x 107* with the values in [65]. This
w

suppression factor is the result of the GIM mechanism [6]. In realistic case where the
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top quark is heavier than the W boson, the parameter z; is larger than 1 (z;~4.6)
2
mMQm“. It is clear that

and thus the top quark contribution becomes F,(x;) ~i>>
the function F,(z;) vanishes if all the up-type quark masses are the same, that is

My = Me = My

B.1.4.2 Violation of CKM unitarity

When we use the violation of the CKM unitarity in the model with VLQ Eq.(4.81),

SNy = Zike, (B.58)

1=u,c,t

the Egs.(B.43) and (B.44) become,

L |z ]
i=u,c,t | x=c,d

i | YL, o Julzi) 1 Fu(z:)
= » (0P Gpw — 4ot ==+ [ L
o 2eQ P sb|:M%V(q Gov = Gplv) =5+ M%/[g Yol (MR +myL) 5
VL, 1 2 1
32 QeQUZ |:MW(q Gpv QpQV)< §+§1n xu) m[ 77p](mbR+qu)] ) (B'59)

> [ X neng]

i=u,c,t Le=e~h
1 vrdwz) | 1 Fyw ()
T 32r 262 Asb{_ (%o = 40V L= gl el (B4 s L) =5
g 9% e c ) M3, I
T35, 2dNC UV — nM— Yp
g-e o |1 10 16 FIﬁV(CCu)
+327r2M3VZdNC[2( 5 0+ g9 | L+ el (me R A me L) —2== 1 (B.60)

As we see above, there remain the divergence even though we add the counterterms
which come from the wave function renormalization of the external quark fields.

Therefore, we need additional counterterms which do not exist in the case of the SM.

B.2 Z-~ and xo-7v mixing diagrams

We need additional counterterms to remove the divergence in Eq.(B.60). It is
important to consider mixing the Z boson and the neutral NG boson y( with the

photon at the one-loop level. Relevant diagrams are shown in Figs.B.3 and B.4.
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W 7~
g/ N
/vvv\{\ /}\/vv\,

~N—_~ X ~N—~ X
l”—-\‘\ Ve -~
/ Ay \
Z v W / | X
A MW l |
Z vy o Z N,
See-” WYAVAVAAVAVAVAL L AV AVAVAVAVAVAVAY

f

Figure B.3. Mixing Z with the photon at one-loop level. The symbol C' is Faddeev—Popov
ghost. The symbol f denotes fermions in the SM, that is f=e, u, 7, u% ¢ t% d%, s, b

where a is the color index, a=7r, g,b.

W = C
Y ' Yy
A 24 MW
\\ _ //X \\-__—’/ C

Figure B.4. Mixing xo with the photon at one-loop level. The symbol C'is Faddeev—Popov
ghost.

Such mixing effects lead to the following wave function renormalization [111]:

Z8\ _ [ VZaz NZan [ Z*
(Ae‘)‘(m m)(A) (B.61)
X0,0 = v/ZxoXo0, (B.62)

where the subscript “0” in the left-hand side means bare quantities while quantities
in the right-hand side are renormalized. The symbols \/ZT] with 7, j =7, A and
\/Zy, are the renormalization constants. In the case of the SM, there are no FCNC
in both the Z and photon interactions, the wave function renormalization Eq.(B.61)
does not contribute to the computation of the b — sy process. On the other hand,
there is FCNC in the Z boson interaction,

L; O %Zj{(]c SLYMbL Zo, (B.63)
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in the model with VLQ, as seen in Eq.(4.71). This FCNC leads to a counterterm,

Lo = v Zza=L

Zike sty A, (B.64)
zcw

through the wave function renormalization shown in Eq.(B.61).

The renormalization constants in Eqs.(B.61) and (B.62) can be determined so as
to remove the divergence in the amplitudes of the diagrams shown in Figs.B.3 and

B.4. Here we use the MS scheme. Counterterms for the amplitudes are given as [111],
Lo = Zu[(NZza +VZaz)(g"O — 010") +Zza 9" MZ| A, — \/ Zza Mz A" D x0 (B.65)

which lead to,

4% J(®) = —(VZza +VZaz)(9"¢* — ¢"¢") + N Zza g"" M3, (B.66)
Y 4 (0% = ivVZza Mzq". (B.67)

We express the total amplitudes of the diagrams shown in Figs.B.3 and B.4 as,

I54(6%) = 54 aiv.(6) + 15 gnice(4?) (B.68)
HXOA( 2) = HXOA le( 2)+H55A,ﬁnite(q2)a (B69)

where the terms with index “div.” are proportional to the divenrgent part C'yy while
the terms with index “finite” consist of finite terms. Here we focus on the divergent

part which are given as,

v €9Cuw v v v
M5 an (49 = S55(20"" Mz + (9"7¢* — ¢"¢") AlCuv, (B.70)
Y 4 aiv.(07) = e8gcw Mzq"Cuv, (B.71)
with,
Mz Mz 2 2 2 2
A = 345 S QI —2Qpsh)+3 > Qi —2Qpsy) | (B.T2)
6MW MW f=e,pu,T 3 f=u,c,t,d,s,b 3

The factor 3 comes from the degree of freedom with respect to the SU(3).. color. We

then determine the v/Zza so as to remove the divergence in xo— A mixing,

_egcw
H;()A,div( )+HX0A c( 2) - 0 — VZZ g/]_r CUV (B73)

Then we can determine \/Zaz by,
4 aiv.(?) + 154 (7)) = 0, = VZaz = 16 QCUV(2+A) (B.74)

These results agree with Ref.[111|. We then obtain the counterterm for the b— sy
vertex from Egs.(B.64) and (B.73):

2
s € s
T e = ——165;2 Zike Cuv L. (B.75)
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Also the finite part 1%} g0 and 04 e in Egs.(B.68) and (B.69) contribute to

the b— sv vertex as follows:

2

(24) _ 1 v 9ot M
L = “3or QZdNC{ 2gpvIn —- /ﬂ 3M2 =77 90 } L— 32 QZdNC &2 2( —In 2 )7 L
e.g sb 2 3C’u) 1 2cw y
- ZdNC(g vq” —( qy){_< +— )11’1MW—|— L
3272 b P MZ, " 6MZ, 3M3Z,
2 2
€gQu o (1 2
+ =—2 u 2w 1 14 - v yLa B76
167207, ch<2 Qus ) nmt (9pva® — apa) (B.76)
2 2
(xod) _ €9" geb oy Miv \ | v
FpXO == 327‘(’2 dNC ]&% |:2(_1n7>:|'7 L. (B77)
ZA
where Fp( ) and FP(XO ) correspond to the contributions from 174 finite a0d T4 Grites

respectively. In Eq.(B.76), we do not include the contribution from the light SM

particles since we do not integrate out these light particles. It is clear that the

counterterm shown in Eq.(B.75)

removes the divergence in the amplitude Eq.(B.60).

B.3 Unitarity Violation in the model with VLQ

Adding the amplitudes Eqgs.(B.75)-(B.77) to Eqgs.(B.59) and (B.60), we obtain the

contributions to the b— sy vertex from the same diagrams as the SM without the

CKM unitarity:

> [z e

i=u,c,t | x=c,d
_ GQQQu
 64m2M3

=

X 1

r=e~h

>

i=u,c,t

+(@%Gpr — Qpq0)Y {
2

|

647 2M2

M Yol (M R+ my L (

—Zikc(gpa® — QpQU){ (1065

1
2

€g Qu

+167r2M2

ZdNC(

Z Abfu

s sb

[(q Gov — Qpd)Y {

i=c,t

12
—2Qy sw>ln

.
i

+£1nx
3 u

2
Zike 9

(Z2A) (x04)
+Fp +pr0 :|
sb
9 dNC}
5 sb )

) — =7
g ZdNC
2]

,u + =cy,
aa)V'L .

(B.78)

c,t

,sb
FC ZNc

CQW+

16

> NSz

i=c,t

Z Aoy Fiy (2

Lt

1

3) Mz 3

(god® - (B.79)
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