
Hiroshima Math. J.
00 (0000), 1–32

Consistent variable selection criteria in multivariate linear
regression even when dimension exceeds sample size

Ryoya Oda

(Received Xxx 00, 0000)

Abstract. This paper is concerned with the selection of explanatory variables
in multivariate linear regression. The Akaike’s information criterion and the Cp

criterion cannot perform in high-dimensional situations such that the dimension of

a vector stacked with response variables exceeds the sample size. To overcome this,
we consider two variable selection criteria based on an L2 squared distance with
a weighted matrix, namely the scalar-type generalized Cp criterion and the ridge-

type generalized Cp criterion. We clarify conditions for their consistency under
a hybrid-ultra-high-dimensional asymptotic framework such that the sample size

always goes to infinity but the number of response variables may go to infinity.

Numerical experiments show that the probabilities of selecting the true subset by
criteria satisfying consistency conditions are high even when the dimension is larger

than the sample size. Finally, we illuminate the practical utility of these criteria

using empirical data.

1. Introduction

Multivariate linear regression is an important and very widely used infer-
ential statistical methodology. It is the cornerstone of many theoretical and ap-
plied statistics textbooks (see, e.g., Srivastava, 2002, chap 9; Timm, 2002, chap
4) and it has widespread applications in many fields. Let Y = (y(1), . . . ,y(n))

′

be an n × p observation matrix stacking individual p response variables, and
X = (x(1), . . . ,x(n))

′ be an n × k observation matrix stacking individual non-
stochastic k explanatory variables, where n is the sample size. Note that X
may include the intercept term that the column vector is 1n,where 1n is an
n-dimensional vector of ones. Assume that rank(X) = k < n to ensure the
existence of variable selection criteria used in this paper. We consider linear
regression for n samples of a vector of individual p response variables and k ex-
planatory variables on {(y′

(i),x
′
(i))

′| i = 1, . . . , n}. Then, the multivariate linear

regression is written as

Y = XΘ+ E,
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where Θ is a k × p unknown matrix of regression coefficients, and each row of
an n× p error matrix E is identically distributed with a mean vector 0p, which
is a p-dimensional vector of zeros, and a covariance matrix Σ.

In actual data analysis contexts, it is important to specify salient explana-
tory variables affecting response variables. In multivariate linear regression, this
is regarded as the problem of selecting the best subset of explanatory variables.
Variable selection criteria are widely used in empirical contexts to choose the
best subset of explanatory variables. The Akaike’s information criterion (AIC)
(Akaike, 1973; 1974) and the Cp criterion (Sparks et al., 1983) which is a mul-
tivariate version of Mallows’ Cp criterion (Mallows, 1973; 1995) are well-known
examples in this respect. The AIC and Cp criterion are estimators of risk func-
tions, the Kullback-Leibler loss function and the mean squared prediction error
standardized by the true covariance matrix, respectively. Further, as extensions
of the AIC and Cp criterion, the generalized information criterion (GIC) and
the generalized Cp (GCp) criterion were proposed by Nishii et al. (1988) and
Nagai et al. (2012), respectively. The GIC and GCp criterion were generalized
from the AIC and Cp criterion by replacing “2” (the penalty term for model
complexity) with any positive number. Note that the GIC includes the AIC, the
Bayesian information criterion (BIC) proposed by Schwarz (1978), a consistent
AIC (CAIC) proposed by Bozdogan (1987), and the Hannan-Quinn information
criterion (HQC) proposed by Hannan and Quinn (1979). Further, the GCp cri-
terion includes the Cp criterion and the modified Cp (MCp) criterion proposed
by Fujikoshi and Satoh (1997).

Importantly, there are increasing demands in recent years vis-a-vis analyzing
high-dimensional data such that p exceeds n (for an example, see Wille et al.,
2004). For high-dimensional cases, we need a variable selection criterion which
can be operationalized even when p > n. However, note that the GIC consists
of the logarithm of the determinant of the sample covariance matrix, and the
GCp criterion consists of the inverse matrix of the sample covariance matrix.
Therefore, since the sample covariance matrix becomes singular when p is larger
than n, more precisely n − k < p, the GIC always gives −∞ and the GCp

criterion cannot be defined when p > n. However, criteria proposed by Fujikoshi
et al. (2011), Yamamura et al. (2010), and Kubokawa and Srivastava (2012) are
calculable even when p > n. Fujikoshi et al. (2011) proposed the prediction
error (PE) criterion based on the mean squared prediction error. Yamamura et
al. (2010) and Kubokawa and Srivastava (2012) proposed criteria using a ridge-
type sample covariance matrix as an estimator of the true covariance matrix.
Moreover, their criteria are exact or asymptotically unbiased estimators of risk
functions under some conditions.

In this paper, we consider consistency as one of the asymptotic properties
of variable selection criteria. In a given variable selection context, the desired
outcome is to specify explanatory variables which substantively affect the re-
sponse variable according to the nature and extent of available empirical data.
In other words, it is hoped that the true subset of variables is identified as the
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best subset by variable selection. Since we do not know the true subset, we use a
variable selection criterion to maximize the probability of selecting the true sub-
set. When the probability that the chosen subset is the true subset approaches
1, consistency is assured, i.e., the following equation holds:

P (ĵ = j∗) → 1,

where ĵ is the best subset according to a variable selection criterion and j∗ is
the true subset. It is expected that a consistent variable selection criterion has
a high probability of selecting the true subset when the amount of data is suf-
ficient. Therefore, consistency is an important property of a variable selection
criterion. In the context of n > p, assuming that the true distribution of the
error vector is the multivariate normal distribution, Fujikoshi et al. (2014) and
Yanagihara et al. (2015) obtained the consistency properties of criteria such as
the AIC and Cp criterion. They used a moderate-high-dimensional asymptotic
framework such that both n and p go to ∞ but p does not exceed n. More-
over, Yanagihara et al. (2015) also used an asymptotic framework defined by
adding k/n → 0 to the moderate-high-dimensional asymptotic framework. Re-
laxing the normality assumption, Yanagihara (2015) dealt with conditions for
consistency of the GIC under the moderate-high-dimensional asymptotic frame-
work. Under the normality assumption, Yanagihara (2016) obtained conditions
for consistency of the GCp criterion under a hybrid-moderate-high-dimensional
asymptotic framework such that n goes to ∞ and p may go to ∞ but p/n
converges to some positive constant included in [0, 1). Relaxing the normal-
ity assumption, Yanagihara (2019) focused on conditions for consistency of the
GIC and GCp criterion under the hybrid-moderate-high-dimensional asymptotic
framework. As such, therein, p does not exceed n. On the other hand, in the
context where p > n, Katayama and Imori (2014) considered variable selection
criteria based on a lasso-type estimation for the inverse of the covariance matrix.
Under the normality assumption, they showed that the criteria are consistent in
a restricted-ultra-high-dimensional asymptotic framework such that both n and
p go to infinity but p may exceed n and log p/n → 0 while k/n → 0.

The aim of this paper is to obtain conditions for consistency of variable
selection criteria (which are introduced in subsection 2.1) under non-normality
and a high-dimensional asymptotic framework such that n goes to infinity but p
may exceed n. To obtain conditions for consistency, the following hybrid-ultra-
high-dimensional (HUHD) asymptotic framework is mainly used:

HUHD : n → ∞, p/n → c ∈ [0,∞], k: fixed,

where c = ∞ means that p/n goes to ∞. The HUHD asymptotic framework has
two key characteristics. First, the divergence speed of p is not restricted, hence
this asymptotic framework incorporates an asymptotic framework such that n
and p go to ∞ but p may be larger than n, namely the ultra-high-dimensional
(UHD) asymptotic framework, which is written as

UHD : (n, p) → ∞, p/n → c ∈ [0,∞], k: fixed.
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Second, the HUHD asymptotic framework also includes the large-sample as-
ymptotic framework such that only n tends to ∞. From this, it is expected that
consistent variable selection criteria under the HUHD asymptotic framework
select the true subset with high probability regardless of the size of p.

The remainder of the paper is organized as follows. In section 2, we present
the necessary notation and assumptions to clarify conditions for consistency. In
section 3, we obtain conditions for consistency. In section 4, for the purposes
of verification, we conduct numerical experiments and illuminate the practical
utility of consistent criteria by using real data examples. Technical details are
provided in the Appendix.

2. Preliminaries

2.1. Models and Criteria. Suppose that j denotes a subset of ω = {1, . . . , k}
containing kj elements, and Xj denotes an n× kj matrix consisting of columns
of X indexed by elements of j, where kA is the number of elements in a set A
denoted by kA = #(A). For example, if j = {1, 2, 4}, then Xj consists of the
first, second, and fourth column vectors of X. Then, the candidate model Mj

with kj explanatory variables from subset j is expressed as follows:

Mj : Y = XjΘj + Ej , (1)

where Θj is a kj × p unknown matrix of regression coefficients, and each row
of Ej is identically distributed with a mean of 0p and a covariance matrix Σj .
Let j∗ (⊂ ω) be a true subset, and assume that the data are generated from the
following true model Mj∗ with kj∗ true explanatory variables:

Mj∗ : Y = Xj∗Θ∗ + E∗,

where Θ∗ is a kj∗ × p unknown matrix of true regression coefficients and E∗ =
(ε1, . . . , εn)

′ is an n×p true error matrix. Assume that ε1, . . . , εn are identically
distributed according to a distribution of ε with

E[ε] = 0p, Cov[ε] = Σ∗, E[||ε||4] < ∞,

where ||ε||2 = ε′ε and Σ∗ is a p× p true unknown covariance matrix. Although
it is typical to assume independence of ε1, . . . , εn, here we assume a moment
condition which relaxes independence; specifically, we assume that for any i ̸= j,
ε1, . . . , εn are satisfied with the following moment condition:

E[εiε
′
j ] = E[εi]E[ε′j ], E[||εi||2||εj ||2] = E[||εi||2]E[||εj ||2],

E[εiε
′
iεjε

′
j ] = E[εiε

′
i]E[εjε

′
j ].

Note that the above moment condition is similar to assuming independence.
Without loss of generality, we sort column vectors of X as X = (Xj∗ ,Xjc∗

),
where set Ac denotes the compliment of set A. Moreover, for expository purposes,
we represent Xj∗ , Xω, kj∗ and kω as X∗, X, k∗, and k, respectively.
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We consider two variable selection criteria based on the following weighted
L2 squared distance:

d(A,B|G) = tr{(A−B)G−1(A−B)′},
where G is a positive definite matrix. Let Sj be an estimator of Σj in the
candidate model Mj , which is given by

Sj =
1

n− kj
Y ′(In − Pj)Y ,

where In is the n × n identity matrix, and Pj is the projection matrix to the
subspace spanned by the columns of Xj , i.e., Pj = Xj(X

′
jXj)

−1X ′
j . Then, the

minimum value of d(Y ,XjΘj |G) for Θj is expressed as

min
Θj

d(Y ,XjΘj |G) = tr{Y ′(In − Pj)Y G−1} = (n− kj)tr(SjG
−1). (2)

The minimum value in (2) expresses a measurement about the goodness of fit for
model Mj . Using (2) in the candidate model Mj , the following class of variable
selection criteria is considered:

L(j|α,G) = (n− kj)tr(SjG
−1) + αpkj , (3)

where α is a positive constant which expresses the complexity of the model
Mj . It is straightforward that (3) with α = 2 and G = Sω is the Cp criterion
proposed by Sparks et al. (1983) when n > p. Moreover, (3) with G = Sω is
the GCp criterion proposed by Nagai et al. (2012). However, the GCp criterion
cannot be defined when p > n. Therefore, we consider two criteria obtained by
substituting one of two specific weighted matrices instead of Sω into G in (3).
By substituting the scalar matrix p−1tr(Sω)Ip into G, we define the scalar-type
generalized Cp (SGCp) criterion as follows:

SGCp(j|α) = p−1L(j|α, p−1tr(Sω)Ip) = (n− kj)
tr(Sj)

tr(Sω)
+ αkj . (4)

Note that the SGCp(j|α) criterion is obtained by dividing L(j|α, p−1tr(Sω)Ip)
by p because the divided p is redundant for variable selection. The SGCp criterion
with α = 2 is essentially the same as the PE criterion proposed by Fujikoshi et al.
(2011). Moreover, the value tr(Sj)/tr(Sω) in (4) corresponds to the MANOVA
test statistic in Fujikoshi et al. (2004). They applied the Dempster trace criterion
when p > n for tests about one and two sample mean vectors in Dempster (1958;
1960). Note that there is no inverse of the sample covariance matrix in the SGCp

criterion. Thus, this criterion is calculable even when p > n. Let Sλ be the ridge-
type sample covariance matrix, which is defined by

Sλ = Sω +
tr(Sω)

λ
Ip,

where λ is a positive ridge parameter. Then, by substituting Sλ intoG, we define
the ridge-type generalized Cp (RGCp) criterion as follows:

RGCp(j|α, λ) = L(j|α,Sλ) = (n− kj)tr(SjS
−1
λ ) + αpkj . (5)
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The first term in (5) is similar to that of the ridge-type Cp criterion used by
Kubokawa and Srivastava (2012). If Sω is invertible and λ = ∞, then (5) coin-
cides with the GCp criterion. However, Sω is singular when p > n. The scalar
matrix λ−1tr(Sω)Ip keeps Sλ invertible even in such case. The best subsets are
given by minimizing the SGCp criterion and RGCp criterion, i.e., defined by

ĵS = argmin
j∈J

SGCp(j|α), ĵR = argmin
j∈J

RGCp(j|α, λ), (6)

where J is a family of subsets of ω denoted by J = {j1, . . . , jK} and K is the
number of candidate subsets.

2.2. Assumptions for Consistency. We prepare assumptions for consis-
tency. To describe several classes of j that express the column indexes of X in
the candidate model (1), we separate J into two sets, one is a family of over-
specified subsets that includes the true subset, i.e., J+ = {j ∈ J |j∗ ⊂ j}, and
the other is a family of underspecified subsets that are not overspecified subsets,
i.e., J− = J c

+∩J . Let a p×p non-centrality matrix and parameter be expressed
by

∆j = Θ′
∗X

′
∗(In − Pj)X∗Θ∗, δ2j = tr(∆j). (7)

It should be noted that ∆j = Op,p and δ2j = 0 hold from properties of projection
matrices if and only if j ∈ J+, where Op,p is the p× p matrix with all elements
as zero. Then, we prepare the following assumptions for consistency:

A1. The true subset j∗ is included in J , i.e., j∗ ∈ J .

A2. lim sup
p→∞

1

p
tr(Σ∗) < ∞.

A3. lim sup
p→∞

κ4

tr(Σ∗)2
< ∞, where κ4 = E[||ε||4]− tr(Σ∗)

2 − 2tr(Σ2
∗).

A4. For every j ∈ J−, there exists ℓ ∈ j∗ ∩ jc such that

lim inf
n→∞

1

n
x′
ℓ(In − Pωℓ

)xℓ > 0, lim inf
p→∞

1

p
||θℓ||2 > 0,

where ωℓ = {ℓ}c, and xℓ and θℓ are the ℓ-th column vectors of X∗ and
Θ′

∗, respectively.

Assumption A1 is needed to consider consistency. From the definition of J+, the
true subset j∗ can be regarded as the smallest overspecified subset. Assumption
A2 is a regularity assumption for the true covariance matrix Σ∗. If the number
of response variables whose variances are O(p) is finite and the variances of the
other response variables are O(1), assumption A2 holds. Assumption A3 is the re-
striction for the fourth moment of ε. From properties of the multivariate normal
distribution (e.g., Magnus and Neudecker, 1979; Himeno and Yamada, 2014),
κ4 = 0 when ε is distributed according to the multivariate normal distribution.
Moreover, some specific multivariate distributions such as the multivariate t-
distribution or the multivariate contaminated normal distribution are satisfied
with assumption A3. Assumption A4 concerns explanatory variables and true re-
gression coefficients. In terms of explanatory variables, this means that a sample
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covariance of residuals in the linear regression of xℓ with the remaining Xωℓ
does

not converge to 0. It is straightforward to show that this is weaker than assuming
lim infn→∞ n−1λmin(X

′X) > 0, where λmin(A) is the minimum eigenvalue of a
square matrix A. The assumption for true regression coefficients is essentially
used in Katayama and Imori (2014). For example, when all the elements of each
θℓ are non-zero constants not converging to 0, the assumption for true regression
coefficients holds. Moreover, even when half of the elements of θℓ are zeros and
the remaining half are non-zero constants not converging to 0, the assumption
is satisfied. Hence, the assumption for the true regression coefficients will be not
unrealistic. Further, if p diverges as fast as n, i.e., c ∈ [0,∞) in the HUHD as-
ymptotic framework, the assumption for true regression coefficients can become
weaker such as lim infp→∞ q−1

p ||θℓ||2 > 0 for some qp → ∞ (p → ∞). Note that
assumption A4 does not always have to hold for every ℓ ∈ j∗. For example, if J
is a set of nested subsets, i.e., J = {{1}, . . . , {1, . . . , k}}, then assumption A4
needs to hold only for ℓ = k∗. If assumption A4 is supported, for every j ∈ J−,
the following inequality holds (the proof is given in Appendix A):

inf
n>k,p≥1

1

np
λmax(∆j) > 0, (8)

where λmax(A) is the maximum eigenvalue of a square matrix A.
Furthermore, we consider the following assumption that is regarded as a

special case of assumption A3:

A3′. lim
p→∞

ξ2

tr(Σ∗)2
= 0, where ξ2 = max {κ4, tr(Σ

2
∗)}.

Assumption A3′ is used under the UHD asymptotic framework, and this assump-
tion is stronger than assumption A3. For example, assumption A3′ is satisfied if
the following conditions hold:

lim
p→∞

tr(Σ2
∗)

tr(Σ∗)2
= 0, ε = Σ

1/2
∗ u, u = (u1, . . . , up)

′,

E[ua] = 0, E[u4
a] ≤ ru (a = 1, . . . , p),

E[u2
au

2
b ] = 1 (a ̸= b), E[uaubucud] = 0 (a ̸= b, c, d),

(9)

where ru is a positive constant not dependent on p. When ε = Σ
1/2
∗ u, κ4 is

calculated as follows:

κ4 =

p∑
a=1

{(Σ∗)aa}2
(
E[u4

a]− 3
)
≤ |ru − 3|tr(Σ2

∗),

where (A)ab expresses the (a, b)-th element of a matrix A. The condition about
the true covariance matrix limp→∞ tr(Σ2

∗)/tr(Σ∗)
2 = 0 is called the sphericity

condition, and it is often used for p ≫ n setting (e.g., Aoshima et al., 2018).
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3. Main Results

3.1. Conditions for Consistency of the SGCp Criterion. We obtain con-
ditions for consistency of the SGCp criterion (4). Recall that the best subset
chosen by minimizing the SGCp criterion is defined by (6). Then, the SGCp

criterion is consistent if P (ĵS = j∗) → 1. The probability P (ĵS = j∗) can be
expressed as

P (ĵS = j∗) = P
(
∩j∈J∩{j∗}c {SGCp(j|α) > SGCp(j∗|α)}

)
.

We separate J ∩{j∗}c into J+∩{j∗}c and J− because the non-centrality matrix
∆j in (7) behaves differently for each of the cases of j ∈ J+ ∩{j∗}c and j ∈ J−.

From this and the subadditivity of a measure, a lower bound of P (ĵS = j∗) is
written as

P (ĵS = j∗) ≥ 1− PS − PS ,

where PS and PS are defined by

PS = P
(
∪j∈J+∩{j∗}c {SGCp(j|α) ≤ SGCp(j∗|α)}

)
, (10)

PS = P
(
∪j∈J− {SGCp(j|α) ≤ SGCp(j∗|α)}

)
. (11)

To obtain conditions for consistency of the SGCp criterion, we consider condi-

tions such that PS and PS converge to 0. First, we prepare the results about
the orders of several probabilities. For subsets j, h ⊂ ω, let W , Uj , and Vj,h be
random matrices defined by

W = E ′
∗(In − Pω)E∗, Uj = Θ′

∗X
′
∗(In − Pj)E∗, Vj,h = E ′

∗(Pj − Ph)E∗. (12)

Then, we derive the following lemma about the orders of the tail probabilities
for functions of (12) (the proof is given in Appendix B).

Lemma 1. Let W , Uj, and Vj,h be given by (12), and let r1 > 0, r2 > 0,
r3 < 0, r4 > 0, r5 > 0, and r6 > 0. Then, under the HUHD asymptotic
framework, the following results hold:

(i) If r1 > tr(Σ∗) and r2 < tr(Σ∗), then we have

P
(
(n− k)−1tr(W ) ≥ r1

)
= O

(
ξ2n−1{r1 − tr(Σ∗)}−2

)
,

P
(
(n− k)−1tr(W ) ≤ r2

)
= O

(
ξ2n−1{tr(Σ∗)− r2}−2

)
,

where ξ2 is given in assumption A3′.
(ii) For j ⊉ j∗, we have

P (tr(Uj) ≤ r3) = O
(
tr(Σ∗∆j)|r3|−2

)
,

where ∆j is defined by (7).
(iii) For j ⊋ h, if r4 > tr(Σ∗), then we have

P (tr(Vj,h) ≥ (kj − kh)r4) = O
(
ξ2{r4 − tr(Σ∗)}−2

)
.

(iv) For j ⊋ h, if r6/r5 → 0, then we have

P (tr(Vj,h)− (kj − kh)tr(Σ∗) + r5 ≤ r6) = O(ξ2r−2
5 ).
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By using Lemma 1, we give the orders of PS and PS (the proof is given in
Appendix C).

Lemma 2. Suppose that assumptions A1, A2, and A4 hold, and for some
constants τS satisfying 0 < τS < 1, the following equations hold:

lim
n→∞,p/n→c

ατS > 1, lim
n→∞,p/n→c

n−1α = 0, (13)

under the HUHD asymptotic framework. Then, the orders of PS and PS defined
in (10) and (11) are given by

PS = O
(
ξ2tr(Σ∗)

−2 max
{
(ατS − 1)−2, n−1(1− τS)

−2
})

,

PS = O
(
ξ2tr(Σ∗)

−2 max
{
(ατS − 1)−2, n−1(1− τS)

−2
})

+O
(
max

{
ξ2n−2p−2, ξ2tr(Σ∗)

−2n−1, λmax(Σ∗)n
−1p−1

})
,

where ξ2 is defined in assumption A3′.

Next, we obtain conditions for consistency of the SGCp criterion (4). Note
that the results in Lemma 2 are derived without assumptions A3 and A3′.
We use assumption A3 or A3′ to obtain consistency conditions, although the
UHD asymptotic framework is used when assumption A3′ is supported. It is
straightforward that lim supp→∞ ξtr(Σ∗)

−1 < ∞ holds under assumption A3,

but limp→∞ ξtr(Σ∗)
−1 = 0 holds under assumption A3′. By using this fact and

Lemma 2, we obtain consistency conditions about α (the proof is given in Ap-
pendix D).

Theorem 1. Suppose that assumptions A1, A2, A3, and A4 hold. Then,
the SGCp criterion is consistent under the HUHD asymptotic framework if the
following conditions are satisfied:

lim
n→∞,p/n→c

α = ∞, lim
n→∞,p/n→c

α

n
= 0. (14)

Furthermore, when replacing assumption A3 with assumption A3′, the SGCp

criterion is consistent under the UHD asymptotic framework if the following
conditions are satisfied:

lim
(n,p)→∞,p/n→c

α > 1, lim
(n,p)→∞,p/n→c

α

n
= 0. (15)

From Theorem 1, if assumption A3′ is supported, the SGCp criterion is
consistent under the UHD asymptotic framework even when α is a constant not
dependent on n and p such as α = 2. When assumption A3′ is not supported
but assumption A3 is, α should diverge to render the SGCp criterion consistent.
Moreover, if (14) holds, then (15) holds. It is difficult to verify whether assump-
tion A3′ holds using empirical data. Hence, we recommend that (14) be used to
render the SGCp criterion consistent by deciding α. On the other hand, we also
obtain conditions for inconsistency (the proof is given in Appendix E).



10 Ryoya Oda

Theorem 2. Suppose that assumptions A1, A2, A3, and A4 hold. Let
conditions of α under the HUHD asymptotic framework be as follows:

C1. limn→∞,p/n→c α < 1 and there exists j ∈ J+ ∩ {j∗}c such that

lim
n→∞,p/n→c

κ4I(κ4 > 0) + 2tr(Σ2
∗)

(1− α)2tr(Σ∗)2
< kj − k∗, (16)

where I(κ4 > 0) is an indicator function, i.e., if κ4 > 0 then I(κ4 >
0) = 1, otherwise I(κ4 > 0) = 0.

C2. There exists j ⊊ j∗ such that

lim
n→∞,p/n→c

αtr(Σ∗)

δ2j
> (k∗ − kj)

−1.

Then, if either of the conditions C1 or C2 is satisfied, the SGCp criterion is

inconsistent, i.e., limn→∞,p/n→c P (ĵS = j∗) < 1 holds under the HUHD asymp-
totic framework. Furthermore, when replacing assumption A3 with assumption
A3′, (16) and lim(n,p)→∞,p/n→c P (ĵS = j∗) = 0 always hold under the UHD
asymptotic framework if lim(n,p)→∞,p/n→c α < 1.

We observe that the SGCp criterion is inconsistent when α is too small
from condition C1 or too large from condition C2. Although we cannot cover all
the consistency or inconsistency conditions of α from only Theorems 1 and 2,
these theorems nevertheless provide much information about the consistency or
inconsistency of the SGCp criterion.

3.2. Conditions for Consistency of the RGCp Criterion. We obtain con-
ditions for consistency of the RGCp criterion (5). In the same way as subsection

3.1, a lower bound of P (ĵR = j∗) is written as

P (ĵR = j∗) ≥ 1− PR − PR,

where PR and PR are given by

PR = P
(
∪j∈J+∩{j∗}c {RGCp(j|α, λ) ≤ RGCp(j∗|α, λ)}

)
, (17)

PR = P
(
∪j∈J− {RGCp(j|α, λ) ≤ RGCp(j∗|α, λ)}

)
. (18)

First, we obtain the orders of PR and PR. Then, we examine the orders by using
moments of a statistic. It is difficult to calculate the moments of a′S−1

λ a because
of the existence of the inverse matrix of Sλ, where a is a p-dimensional vector.
Therefore, we do not evaluate a′S−1

λ a directly, but evaluate the following lower
and upper bounds:

||a||2λmin(S
−1
λ ) ≤ a′S−1

λ a ≤ ||a||2λmax(S
−1
λ ). (19)

By using (19) and Lemma 1, we give the orders of PR and PR (the proof is
given in Appendix F).
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Lemma 3. Suppose that assumptions A1, A2, and A4 hold, and for some
constants τR satisfying 0 < τR < 1 the following equations hold:

lim
n→∞,p/n→c

λ−1pατR > 1, lim
n→∞,p/n→c

n−1(1 + λ−1)pα = 0,

under the HUHD asymptotic framework. Then, the orders of PR and PR defined
in (17) and (18) are given by

PR = O
(
ξ2tr(Σ∗)

−2 max
{
(λ−1pατR − 1)−2, n−1(1− τR)

−2
})

,

PR = O
(
ξ2tr(Σ∗)

−2 max
{
(λ−1pατR − 1)−2, n−1(1− τR)

−2
})

+O
(
max

{
ξ2n−2p−2, ξ2tr(Σ∗)

−2n−1, λmax(Σ∗)n
−1p−1

})
,

where ξ2 is defined in assumption A3′.

By using Lemma 3, we obtain consistency conditions of the RGCp criterion.
Since the RGCp criterion has the two parameters α and λ, the conditions are
connected with α and λ.

Theorem 3. Suppose that assumptions A1, A2, A3, and A4 hold. Then,
the RGCp criterion is consistent under the HUHD asymptotic framework if the
following conditions are satisfied:

lim
n→∞,p/n→c

pα

λ
= ∞, lim

n→∞,p/n→c

(1 + λ−1)pα

n
= 0. (20)

Furthermore, when replacing assumption A3 with assumption A3′, the RGCp

criterion is consistent under the UHD asymptotic framework if the following
conditions are satisfied:

lim
(n,p)→∞,p/n→c

pα

λ
> 1, lim

(n,p)→∞,p/n→c

(1 + λ−1)pα

n
= 0. (21)

The proof of Theorem 3 is omitted because the theorem can be proved in the
same way as Theorem 1. From Theorem 3, if we set λ = 1 and α = α̃/p (α̃ > 0),
conditions (20) and (21) are the same as (14) and (15), respectively. Note that
conditions (20) and (21) may be strong because they are derived using inequality
(19). From Theorem 3, we observe that the larger λ becomes, the larger α should
be, to satisfy conditions (20) and (21). Furthermore, we also obtain conditions
for inconsistency (the proof is given in Appendix G).

Theorem 4. Suppose that assumptions A1, A2, A3, and A4 hold. Let
conditions of α under the HUHD asymptotic framework be as follows:

C3. limn→∞,p/n→c(1 + λ−1)pα < 1 and there exists j ∈ J+ ∩ {j∗}c such
that

lim
n→∞,p/n→c

κ4I(κ4 > 0) + 2tr(Σ2
∗)

{1− (1 + λ−1)pα}2tr(Σ∗)2
< kj − k∗. (22)
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Table 1. Assumptions and asymptotic behaviors of n and p to
ensure consistency of six criteria.

Criterion Assumptions Asymptotic behavior
1 A1, A2, A3′, A4 p → ∞
2 A1, A2, A3, A4 free
3 A1, A2, A3, A4 log log p/ log n → 0
4 A1, A2, A3′, A4 p → ∞
5 A1, A2, A3, A4 free
6 A1, A2, A3, A4 log log p/ log n → 0

C4. There exists j ⊊ j∗ such that

lim
n→∞,p/n→c

pαtr(Σ∗)

λδ2j
> (k∗ − kj)

−1.

Then, if either of the conditions C3 or C4 is satisfied, the RGCp criterion is

inconsistent, i.e., limn→∞,p/n→c P (ĵR = j∗) < 1 holds under the HUHD asymp-
totic framework. Furthermore, when replacing assumption A3 with assumption
A3′, (22) and lim(n,p)→∞,p/n→c P (ĵR = j∗) = 0 always hold under the UHD

asymptotic framework if lim(n,p)→∞,p/n→c(1 + λ−1)pα < 1.

From Theorem 4, we observe that λ should be large in order not to satisfy
conditions C3 and C4. However, if λ is large, pαλ−1 in (20) and (21) is small
and then the condition of α to have consistency becomes restricted.

4. Numerical Experiments

4.1. Criteria for Numerical Experiments. To conduct numerical experi-
ments, we use the following six criteria:

Criterion 1: the SGCp criterion with α = 2.
Criterion 2: the SGCp criterion with α = log n.

Criterion 3: the SGCp criterion with α = (log n/ log log p)1/2.
Criterion 4: the RGCp criterion with α = 2p−1 and λ = 1.
Criterion 5: the RGCp criterion with α = p−1 log n and λ = 1.

Criterion 6: the RGCp criterion with α = p−1(n log n/ log log p)1/2

and λ = n1/2.

Table 1 shows the assumptions and asymptotic behaviors of n and p to ensure
the consistency of the above six criteria. We observe that to ensure consistency,
p has to diverge for criteria 1 and 4, but p does not have to diverge for criteria
2, 3, 5, and 6. Further, criteria 3 and 6 are consistent when log log p/ log n → 0.
Since this slightly restricts the behavior of p, it may not be suitable where p
increases dramatically. However, such a case is unrealistic, so this behavior is
reasonable for empirical contexts. Note that the penalty terms kjα or kjpα in
criteria 1, 2, 4, and 5 do not include p, but those in criteria 3 and 6 do.
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For comparison, we also consider criteria in Katayama and Imori (2014)
given by

HGIC(j) = p+ log
∣∣(1− kj/n)DSj

∣∣+ βpkj ,

where DSj
= diag{(Sj)11, . . . , (Sj)pp} and diag{(A)11, . . . , (A)pp} is the diago-

nal matrix with diagonal elements corresponding to those of a p × p matrix A.
Especially, we use the following three HGICs from their paper:

Criterion 7: the HGIC with β = n−1(log p)(log log p)1/2.
Criterion 8: the HGIC with β = n−1(log p)(log log p).
Criterion 9: the HGIC with β = n−1(log p)(log log p)3/2.

From Katayama and Imori (2014), criteria 7, 8, and 9 are consistent under
several assumptions such as normality when p → ∞ and log p/n → 0 for our
numerical studies.

4.2. Simulations. We verify the foregoing exposition by simulations. The
probabilities of selecting the true subset j∗ were evaluated by Monte Carlo simu-
lations with 10,000 iterations. Ten subsets jm = {1, . . . ,m} (m = 1, . . . , 10), with
several different values of n and p, were prepared for these simulations. We gener-
ated the explanatory matrixX as follows. We independently generated s1, . . . , sn
from U(−1, 1), where U(a, b) denotes a uniform distribution on the range (a, b).
Using s1, . . . , sn, we constructed an n × k matrix of explanatory variables X,
where the (a, b)-th element is defined by sb−1

a (a = 1, . . . , n; b = 1, . . . , k). The
true subset was determined by j∗ = {1, 2, 3, 4, 5}. The true coefficient matrix Θ∗
adhered to the following structure:

Θ∗ = (θ1, . . . ,θk∗)
′, θa =


(
a(−1)a−11′

⌊p/2⌋,0
′
⌈p/2⌉

)′
(a : odd)(

0′
⌊p/2⌋, a(−1)a−11′

⌈p/2⌉

)′
(a : even)

,

where ⌊·⌋ and ⌈·⌉ are the floor and ceiling functions, respectively. For these

numerical simulations, we expressed E∗ as Z∗Σ
1/2
∗ , where Z∗ = (z1, . . . , zn)

′

and z1, . . . , zn are independent and identically distributed from z = (z1, . . . , zp)
′

with mean 0p and covariance matrix Ip. Let ν = (ν1, . . . , νp)
′, ζ = (ζ1, . . . , ζp)

′ ∼
i.i.d. Np(0p, Ip), and τ ∼ χ2(10) be mutually independent random vectors and
variable. Then, z is generated from the following four distributions:

(D1) multivariate normal distribution: z = ν.
(D2) multivariate t-distribution with 10 degrees of freedom: z = (8/τ)1/2ν.
(D3) independent skew-normal distribution with shape parameter 10:

za =

(
1− 2

π
η2
)−1/2

(
νa√

1 + 102
+ η |ζa| −

√
2

π
η

)
(a = 1, . . . , p),

where η = 10/
√
1 + 102.
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(D4) independent log-normal distribution:

za =
exp (νa)−

√
e√

e(e− 1)
(a = 1, . . . , p).

Note that distributions (D1)-(D4) are satisfied with κ4 = O(tr(Σ2
∗)). The true

covariance matrix Σ∗ was set as the following two structures:

(S1) exchangeable structure with correlation 0.8:

Σ∗ = (1− 0.8)Ip + 0.81p1
′
p.

(S2) autoregressive structure with correlation 0.8: (Σ∗)ab = (0.8)|a−b|.

Note that assumption A3′ is not satisfied when the true covariance matrix Σ∗ is
(S1), but assumption A3′ is satisfied when the true covariance matrix Σ∗ is (S2)
under distributions (D1)-(D4). Under these settings, we used the 8 combinations
of the four distributions and the two true covariance matrices (S1) and (S2).
Tables 2-9 show the probabilities of selecting the true subset j∗ using each of the
nine criteria. In each table, the probabilities of selecting the true subset j∗ were
evaluated for distributions (D1)-(D4) and the two covariance matrices (S1) and
(S2). When the true covariance matrix Σ∗ has an exchangeable structure, i.e., in
Tables 2, 4, 6, and 8, it appears that criteria 2, 5, and 6 are consistent for both
cases where only n is large and where n and p are large, but criteria 1 and 4 are
not consistent. This is because assumption A3 is satisfied for the cases of (S1)
and distributions (D1)-(D4), but assumption A3′ is not satisfied for such cases.
Moreover, although criterion 3 is consistent from Table 1, it looks inconsistent
in Tables 2, 4, 6, and 8. This is because the penalty term in criterion 3 is smaller
than that in criterion 1 for our numerical simulations. On the other hand, when
the true covariance matrix Σ∗ has an autoregressive structure, i.e., in Tables 3,
5, 7, and 9, we observe that criteria 1 and 4 also are consistent except for the case
that only n is large because (S2) is satisfied with limp→∞ tr(Σ2

∗)/tr(Σ∗)
2 = 0,

so assumption A3′ is satisfied for the cases of (S2) and distributions (D1)-(D4).
This result accords with Theorem 1 and Theorem 3. In Tables 2-9, criteria 7, 8,
and 9 are consistent when n and p are large, but they are not consistent when
only n is large. Further, we observe that the probabilities by criteria 7, 8, and 9
are low when p/n = 10 and n ≤ 100. In sum, the probabilities by criterion 6 are
the highest across Tables 2-9.

4.3. Empirical Examples. First, we verify the probabilities of selecting the
true subsets by using real data. The dataset pertains to 8 groups (g = 1, . . . , 8)
of black cotton fibers dyed by Indigo and its derivative dyes. Each cotton fiber
has 55 samples, and each sample has 541 variables, which are the absorbances for
wavelengths from 240 nm to 780 nm in steps of 1 nm. Let the explanatory matrix
be denoted as X = (T ,19)⊗ 125, where T = (e1, . . . , e8) and ea (a = 1, . . . , 8)
is a 9-dimensional vector such that the (a + 1)-th element is one and the other
elements are zeros, and the symbol ⊗ denotes the Kronecker product (see, e.g.,
Harville, 1997). Here, the 9-th column vector of X expresses the intercept term.
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Table 2. True subset selection probabilities (%) for distribution
(D1) and covariance matrix (S1).

Criterion
n p 1 2 3 4 5 6 7 8 9
20 10 21.63 14.98 22.55 17.16 8.08 8.47 20.61 20.16 19.07
50 10 60.36 40.23 59.66 66.62 24.93 33.85 59.03 58.01 55.66

100 10 76.52 77.66 82.75 93.46 66.19 92.64 75.95 71.39 66.84
300 10 76.85 98.84 87.04 94.07 99.94 100.00 78.37 74.04 69.62
500 10 77.93 99.29 89.00 94.35 99.98 100.00 79.48 75.35 70.58
20 10 21.63 14.98 22.55 17.16 8.08 8.47 20.61 20.16 19.07
50 25 61.12 38.26 60.76 67.77 22.35 59.33 45.61 41.91 37.58

100 50 76.81 80.63 72.85 93.73 70.28 99.84 81.69 71.91 59.54
300 150 78.03 98.97 75.24 94.07 99.95 100.00 99.32 99.86 99.71
500 250 79.15 99.32 76.87 94.72 99.98 100.00 99.65 99.92 99.99
20 20 22.29 15.53 23.61 17.72 8.98 13.70 17.20 16.54 15.47
50 50 62.23 40.07 61.01 69.52 24.00 71.87 33.67 24.71 17.24

100 100 77.29 79.20 70.82 93.73 69.63 99.93 65.98 49.18 32.14
300 300 78.08 99.12 73.07 94.35 99.91 100.00 99.71 99.75 95.57
500 500 77.61 99.51 74.10 94.49 99.98 100.00 99.92 99.98 99.99
20 200 22.34 15.55 23.73 17.92 8.65 22.15 1.93 0.45 0.05
50 500 62.46 39.86 56.29 69.84 24.57 86.62 5.75 1.10 0.11

100 1000 78.29 79.10 64.59 94.62 69.38 100.00 23.71 6.37 0.71
300 3000 77.91 99.11 68.65 94.40 99.95 100.00 98.79 77.91 27.54
500 5000 78.15 99.37 70.10 94.78 99.96 100.00 100.00 99.97 88.23

Table 3. True subset selection probabilities (%) for distribution
(D1) and covariance matrix (S2).

Criterion
n p 1 2 3 4 5 6 7 8 9
20 10 30.50 14.80 32.68 28.33 10.36 22.29 30.09 28.72 25.72
50 10 82.05 52.56 83.80 91.24 45.42 89.56 78.53 73.66 67.77
100 10 83.71 98.18 89.67 94.43 98.45 99.99 83.28 78.35 72.95
300 10 84.68 99.73 93.09 94.52 99.96 100.00 85.88 82.02 76.97
500 10 84.49 99.85 94.33 95.03 100.00 100.00 86.26 82.18 77.18
20 10 30.50 14.80 32.68 28.33 10.36 22.29 30.09 28.72 25.72
50 25 90.56 52.56 87.53 94.82 47.00 98.20 75.27 65.29 53.06
100 50 97.02 99.78 95.13 98.42 99.74 99.98 99.86 98.53 91.47
300 150 99.84 100.00 99.71 99.88 100.00 100.00 100.00 100.00 100.00
500 250 99.99 100.00 99.96 100.00 100.00 100.00 100.00 100.00 100.00
20 20 36.12 11.95 43.92 32.64 8.51 39.09 19.76 16.49 13.49
50 50 96.34 60.40 91.27 97.75 56.98 99.25 37.88 11.56 1.64
100 100 99.44 99.81 97.78 99.74 99.80 99.98 97.21 74.30 14.13
300 300 99.99 100.00 99.98 99.99 100.00 100.00 100.00 100.00 100.00
500 500 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
20 200 42.48 2.60 78.26 41.12 2.31 79.96 0.00 0.00 0.00
50 500 99.80 63.28 99.88 99.79 62.75 99.95 0.00 0.00 0.00
100 1000 100.00 99.87 100.00 100.00 99.87 100.00 0.77 0.00 0.00
300 3000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.91 1.98
500 5000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.99
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Table 4. True subset selection probabilities (%) for distribution
(D2) and covariance matrix (S1).

Criterion
n p 1 2 3 4 5 6 7 8 9
20 10 22.29 15.96 22.52 18.23 9.30 10.22 20.60 20.22 19.13
50 10 61.48 40.40 60.74 67.76 24.75 34.53 60.41 58.71 56.19

100 10 77.39 78.92 83.05 93.94 66.97 92.39 76.78 72.65 67.66
300 10 77.70 99.01 87.88 94.55 99.95 100.00 79.01 74.94 70.17
500 10 77.41 99.21 88.80 94.35 99.98 100.00 79.13 75.02 70.73
20 10 22.29 15.96 22.52 18.23 9.30 10.22 20.60 20.22 19.13
50 25 61.17 38.43 60.62 68.15 23.01 59.65 46.28 42.45 38.38

100 50 78.41 78.98 74.38 94.00 69.74 99.83 80.51 71.61 59.57
300 150 78.17 99.06 75.18 94.21 99.96 100.00 99.40 99.88 99.60
500 250 78.43 99.23 76.29 94.37 99.97 100.00 99.61 99.94 99.99
20 20 22.07 15.90 23.70 18.16 9.62 14.41 17.21 16.40 15.53
50 50 62.04 40.12 60.64 69.32 25.68 71.64 33.99 26.04 18.39

100 100 77.57 78.97 71.01 93.83 69.61 99.92 66.47 49.38 31.81
300 300 78.03 99.05 73.13 94.44 99.95 100.00 99.75 99.74 95.35
500 500 77.96 99.43 74.18 94.53 99.98 100.00 99.89 99.99 100.00
20 200 22.95 15.90 24.15 18.60 9.56 22.99 2.07 0.55 0.12
50 500 61.84 40.02 56.49 69.89 24.87 85.74 6.26 1.12 0.09

100 1000 78.47 79.00 64.86 94.29 69.99 99.97 24.41 6.80 0.67
300 3000 78.29 99.01 69.30 94.41 99.96 100.00 98.81 78.31 28.53
500 5000 78.13 99.35 70.35 94.28 99.95 100.00 99.99 99.89 87.79

Table 5. True subset selection probabilities (%) for distribution
(D2) and covariance matrix (S2).

Criterion
n p 1 2 3 4 5 6 7 8 9
20 10 30.11 15.39 31.54 28.33 10.83 23.41 29.59 28.25 26.02
50 10 81.60 52.82 83.98 91.25 45.54 88.72 78.12 73.27 67.12
100 10 83.97 97.60 90.35 94.57 98.05 100.00 83.64 79.17 73.61
300 10 84.61 99.66 93.46 95.28 99.98 100.00 86.06 81.78 77.19
500 10 84.91 99.84 94.50 95.22 100.00 100.00 86.49 82.24 77.50
20 10 30.11 15.39 31.54 28.33 10.83 23.41 29.59 28.25 26.02
50 25 89.73 52.59 86.55 93.67 47.28 97.34 75.13 65.57 53.62
100 50 96.64 99.66 94.42 98.42 99.62 99.97 99.74 98.30 90.77
300 150 99.83 100.00 99.68 99.90 100.00 100.00 100.00 100.00 100.00
500 250 99.99 100.00 99.96 99.99 100.00 100.00 100.00 100.00 100.00
20 20 34.99 12.91 42.79 32.77 9.68 38.90 20.75 17.61 14.52
50 50 95.85 58.85 90.59 97.68 55.56 99.28 40.15 14.80 2.26
100 100 99.14 99.77 97.23 99.53 99.73 99.95 97.24 74.44 18.24
300 300 100.00 100.00 99.96 100.00 100.00 100.00 100.00 100.00 100.00
500 500 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
20 200 43.38 4.80 69.97 41.56 4.42 73.24 0.00 0.00 0.00
50 500 99.67 62.22 98.37 99.66 61.48 99.37 0.00 0.00 0.00
100 1000 100.00 99.78 99.77 100.00 99.78 99.87 2.37 0.00 0.00
300 3000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.76 3.27
500 5000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.99
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Table 6. True subset selection probabilities (%) for distribution
(D3) and covariance matrix (S1).

Criterion
n p 1 2 3 4 5 6 7 8 9
20 10 21.90 15.89 22.29 17.83 9.05 9.33 21.26 20.80 19.72
50 10 59.15 39.59 58.61 66.40 23.76 33.31 57.89 56.95 54.66

100 10 76.84 79.04 83.15 93.42 67.42 92.36 76.28 71.56 66.69
300 10 78.27 99.16 88.31 94.67 99.95 100.00 79.67 75.24 70.73
500 10 78.11 99.27 89.12 94.63 100.00 100.00 79.95 75.28 70.45
20 10 21.90 15.89 22.29 17.83 9.05 9.33 21.26 20.80 19.72
50 25 60.47 37.59 60.24 66.81 22.21 57.71 44.78 41.00 36.97

100 50 77.58 78.89 73.17 93.82 69.48 99.93 80.24 70.42 58.81
300 150 78.13 99.02 75.21 94.14 99.95 100.00 99.42 99.76 99.73
500 250 78.48 99.29 76.27 94.25 99.98 100.00 99.70 99.88 99.98
20 20 22.79 15.79 24.12 18.15 9.16 13.64 17.69 16.80 15.85
50 50 61.81 39.58 60.21 68.69 24.81 71.49 33.74 25.24 17.51

100 100 76.79 79.34 69.97 93.52 69.42 99.98 65.84 49.07 31.76
300 300 78.34 99.08 73.58 94.53 99.98 100.00 99.84 99.85 95.62
500 500 78.19 99.26 74.54 94.53 99.96 100.00 99.83 99.97 99.99
20 200 21.35 15.30 23.11 17.62 8.74 21.52 1.90 0.37 0.05
50 500 62.10 39.74 56.75 69.79 24.51 86.52 5.73 0.94 0.10

100 1000 77.68 79.05 64.83 93.55 69.59 99.98 23.94 6.41 0.62
300 3000 79.06 99.06 69.29 94.59 99.99 100.00 98.83 77.64 27.51
500 5000 78.27 99.33 70.53 94.64 99.97 100.00 99.98 99.94 88.55

Table 7. True subset selection probabilities (%) for distribution
(D3) and covariance matrix (S2).

Criterion
n p 1 2 3 4 5 6 7 8 9
20 10 30.45 14.76 32.27 28.07 10.16 23.14 30.34 29.17 26.12
50 10 81.52 52.70 83.44 90.82 45.01 90.16 78.40 73.37 67.27
100 10 84.10 98.11 90.46 94.78 98.23 100.00 83.70 78.96 73.43
300 10 84.42 99.71 93.04 94.73 99.99 100.00 85.64 81.46 76.40
500 10 84.96 99.88 94.16 95.04 100.00 100.00 86.56 82.52 77.86
20 10 30.45 14.76 32.27 28.07 10.16 23.14 30.34 29.17 26.12
50 25 91.01 52.23 87.82 95.06 46.94 98.17 76.08 65.60 53.29
100 50 96.60 99.71 94.45 98.18 99.68 99.99 99.79 98.55 91.70
300 150 99.89 100.00 99.69 99.92 100.00 100.00 100.00 100.00 100.00
500 250 100.00 100.00 99.99 100.00 100.00 100.00 100.00 100.00 100.00
20 20 34.51 11.45 42.51 31.57 7.84 37.78 19.87 16.62 13.61
50 50 95.68 60.97 91.13 97.35 57.68 99.19 39.87 12.94 2.02
100 100 99.37 99.71 97.79 99.63 99.69 99.96 97.49 75.85 14.72
300 300 99.99 100.00 99.97 99.99 100.00 100.00 100.00 100.00 100.00
500 500 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
20 200 42.35 2.47 78.67 40.77 2.29 79.88 0.00 0.00 0.00
50 500 99.78 63.15 99.81 99.77 62.60 99.93 0.00 0.00 0.00
100 1000 100.00 99.84 100.00 100.00 99.84 100.00 0.97 0.00 0.00
300 3000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.90 1.69
500 5000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.99
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Table 8. True subset selection probabilities (%) for distribution
(D4) and covariance matrix (S1).

Criterion
n p 1 2 3 4 5 6 7 8 9
20 10 24.34 18.28 24.92 21.26 12.14 14.48 23.71 22.97 21.98
50 10 60.32 43.80 60.30 67.20 30.36 43.29 60.05 58.69 55.96

100 10 75.85 77.48 81.35 92.46 67.97 88.79 75.24 71.37 66.70
300 10 78.01 98.91 87.99 94.37 99.80 100.00 79.23 74.98 70.45
500 10 77.40 99.47 89.01 94.43 99.95 100.00 79.05 75.17 70.67
20 10 24.34 18.28 24.92 21.26 12.14 14.48 23.71 22.97 21.98
50 25 59.68 40.15 58.88 67.84 26.31 61.64 50.03 46.20 42.21

100 50 76.63 78.70 73.07 93.02 69.83 99.55 81.24 73.02 61.75
300 150 79.18 98.99 76.09 94.54 99.97 100.00 99.32 99.82 99.72
500 250 78.87 99.47 76.67 94.77 99.97 100.00 99.71 99.95 99.98
20 20 23.65 17.89 24.85 20.57 11.35 17.57 20.81 19.84 19.00
50 50 61.52 40.95 60.03 69.55 26.75 71.89 36.77 28.51 20.89

100 100 77.85 77.94 71.18 93.93 68.29 99.85 67.17 51.20 33.10
300 300 78.72 98.95 74.09 94.34 99.99 100.00 99.64 99.82 95.78
500 500 77.95 99.16 74.17 94.37 99.97 100.00 99.82 99.99 100.00
20 200 21.99 16.18 23.77 18.22 9.37 22.62 2.48 0.52 0.09
50 500 62.30 39.45 57.04 69.65 24.20 85.51 6.97 1.42 0.10

100 1000 77.91 79.46 64.73 94.00 70.21 99.98 25.04 6.58 0.55
300 3000 78.44 99.15 68.10 94.53 99.94 100.00 98.87 79.62 29.35
500 5000 79.02 99.36 70.49 94.82 99.96 100.00 99.99 99.91 88.51

Table 9. True subset selection probabilities (%) for distribution
(D4) and covariance matrix (S2).

Criterion
n p 1 2 3 4 5 6 7 8 9
20 10 32.63 20.03 33.69 32.97 16.82 30.72 34.48 32.00 28.36
50 10 77.75 57.62 79.44 87.20 52.67 85.82 76.31 71.51 65.27
100 10 83.87 94.52 89.47 94.32 93.98 99.53 83.45 78.79 73.54
300 10 84.60 99.66 92.98 94.95 99.98 100.00 85.69 81.74 76.93
500 10 83.69 99.82 93.65 94.73 100.00 100.00 85.08 81.05 76.19
20 10 32.63 20.03 33.69 32.97 16.82 30.72 34.48 32.00 28.36
50 25 87.57 55.58 85.15 92.23 51.24 95.57 84.33 78.54 70.73
100 50 96.08 99.33 93.67 97.82 99.18 99.89 99.92 99.33 95.79
300 150 99.77 100.00 99.58 99.88 100.00 100.00 100.00 100.00 100.00
500 250 99.98 100.00 99.98 99.99 100.00 100.00 100.00 100.00 100.00
20 20 35.49 16.77 39.99 34.43 13.66 40.56 33.45 30.82 27.57
50 50 94.34 60.21 88.51 96.00 57.19 98.38 64.54 38.32 15.21
100 100 98.78 99.60 96.46 99.32 99.56 99.89 99.13 89.61 46.20
300 300 99.98 100.00 99.95 99.99 100.00 100.00 100.00 100.00 100.00
500 500 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
20 200 43.46 4.89 69.53 41.61 4.55 73.07 0.00 0.00 0.00
50 500 99.67 62.63 99.05 99.69 62.00 99.67 0.00 0.00 0.00
100 1000 100.00 99.90 99.97 100.00 99.90 99.98 14.76 0.00 0.00
300 3000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.98 14.35
500 5000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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Moreover, let the family of candidate subsets be all of the subsets included in
the intercept term, i.e., J = {j ∈ P({1, . . . , 9})| j ∩ {9} ̸= ∅}, where P(A) is
the power set of a set A. Then, for each group b = 1, . . . , 8, we carried out the
following two steps:

Step 1. Let Ug (g = 1, . . . , 8) be the 25 × 541 response matrices by random
sampling without replacement from group g. Further, let U9,b be the
25× 541 response matrices by random sampling without replacement
from the remaining samples in group b. Then, the response matrix is
constructed as Yb = (U ′

1, . . . ,U
′
8,U

′
9,b)

′.

Step 2. Let the coefficient matrix Θb given by Θb = (θ1,b, . . . ,θ8,b,θ9,b)
′.

Then, apply multivariate linear regression with X and Θb to the re-
sponse matrix Yb, and choose the best subset by performing variable
selection from the explanatory variables excepting the intercept, i.e.,
from the elements of J .

From steps 1 and 2, we have n = 225, p = 541, and k = 9 in this example.
Note that θb,b should be 0p and the remainder should not be 0p, because U9,b

is extracted from the same group as Ub. Hence, we know that the true subset
is j∗,b = {1, . . . , 9} ∩ {b}c when Yb is used as the response matrix. Moreover, to
increase calculation speed, instead of a variable selection method such as (6), we
used the best subset j̃ by the following method:

j̃ = {ℓ ∈ ω| SC(ωℓ) > SC(ω)}, (23)

where SC(j) expresses the value of a variable selection criterion (SC) for model
Mj , and ωℓ is defined in assumption A4. The selection method as per (23) was
proposed by Zhao et al. (1986). From Nishii et al. (1988), it is known that when
k is fixed, a criterion under (23) is consistent if the criterion under the selection
method such as (6) is consistent. For these settings, we iterated steps 1 and 2
10, 000 times for each group b = 1, . . . , 8. Table 10 shows the probabilities of
selecting the true subset by the nine criteria for each group b = 1, . . . , 8. We
observe that the probabilities by criterion 6 are highest except where b = 5, 6.
However, all nine criteria have very low probabilities where b = 5, 6. This is
because groups 5 and 6 are very similar. Actually, letting ȳg be the sample
mean vector of group g, we have ||ȳ5 − ȳ6|| ≒ 0.46 but ||ȳg − ȳh|| ≥ 1.60 for
the cases of g, h ̸= 5, 6 (g ̸= h). Hence, groups 5 and 6 will be very similar on
average. Moreover, criterion 6 selected {1, . . . , 9} ∩ {5, 6}c as the best subset for
many iterations when b = 5, 6.

Next, we provide an example of variable selection using empirical data from
Wille et al. (2004) as well as Yamamura et al. (2010). There are 795 genes which
may exhibit associations with 39 genes from two biosynthesis pathways in Ara-
bidopsis thaliana. All variables were logarithmically transformed. We configured
the former 795 genes to response variables (p = 795) with the latter 39 genes
and an intercept as explanatory variables (k = 40). The sample size is n = 118.
We searched for the best subset of these models by using the selection method
(23). Table 11 shows the explanatory variables selected by each criterion and the
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Table 10. True subset selection probabilities (%) for each group
b = 1, . . . , 8 in the black cotton fibers dataset

Criterion
b 1 2 3 4 5 6 7 8 9
1 79.96 97.09 76.19 90.82 99.55 99.98 56.07 4.63 0.04
2 84.12 98.33 80.43 94.15 99.84 100.00 99.88 99.96 99.29
3 97.94 100.00 96.79 99.80 100.00 100.00 92.85 16.50 0.47
4 86.62 98.75 83.16 95.37 99.86 100.00 32.92 3.48 0.03
5 5.65 0.11 8.41 1.66 0.00 0.00 0.00 0.00 0.00
6 12.14 0.42 16.45 4.31 0.01 0.00 0.00 0.00 0.00
7 72.52 92.94 68.48 85.56 91.70 98.86 90.40 60.48 21.15
8 99.57 100.00 98.98 99.96 100.00 100.00 100.00 100.00 100.00

number of elements of the best subsets. From Table 11, we observe that criteria
7, 8, and 9 selected zero explanatory variables, and criteria 2 and 5 selected few
variables. On the other hand, criteria 3 and 6 selected about half of the variables.

5. Conclusions and Discussions

We obtained the conditions for consistency of the SGCp criterion and RGCp

criterion under the HUHD and UHD asymptotic frameworks. Importantly, con-
sistency is established under non-normality and does not rely on the divergence
speed of the dimension of the vector stacked with response variables p. Numeri-
cal studies suggest that criterion 6 has the highest probabilities of selecting the
true subset, although consistency of criterion 6 holds when log log p/ log n → 0.

Herein, the scalar matrix p−1tr(Sω)Ip and the ridge-type sample covariance
matrix Sλ were used as G in the weighted L2 squared distance d(A,B|G). The
SGCp criterion and RGCp criterion are invariant under transformation by a
scalar times orthogonal matrices of Y , i.e., Y : Y → aY F , where F satisfies
FF ′ = F ′F = Ip and a ∈ R. However, they are not invariant under transforma-
tion by nonsingular matrices of Y , so their consistency is affected by the elements
of Σ∗ even for overspecified subsets. This is often the case in high-dimensional
contexts such that p > n. On the other hand, using diag{(Sω)11, . . . , (Sω)pp}
or Sω + λ−1diag{(Sω)11, . . . , (Sω)pp} as G may eradicate the influence of the
diagonal elements of Σ∗. Hence, it is also important to examine consistency in
such cases. To do so would require assuming normality of the error vector and
this represents fruitful terrain for future research.

Finally, we consider the influence of increasing p on consistency. To do so,
another expression of multivariate linear regression is given by

vec(Y ) = (Ip ⊗X)vec(Θ) + vec(E),

where vec(A) is the np-dimensional vector consisting of the columns of an n× p
matrix A = (a1, . . . ,an) and is defined by vec(A) = (a′

1, . . . ,a
′
n)

′ (see, e.g.,
Harville, 1997). From the above expression, multivariate linear regression is re-
garded as univariate linear regression with the np-dimensional response vector
vec(Y ) and the explanatory matrix Ip ⊗X formally. From this, at first glance
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Table 11. Selected explanatory variables based on the Ara-
bidopsis thaliana dataset

Criterion
Name 1 2 3 4 5 6 7 8 9

Intercept 1 1 1 1 1 1 0 0 0
AACT1 1 0 1 1 0 1 0 0 0
AACT2 0 0 1 0 0 1 0 0 0
CMK 0 0 1 0 0 0 0 0 0

DPPS1 0 0 0 0 0 0 0 0 0
DPPS2 1 0 1 1 0 1 0 0 0
DPPS3 0 0 0 0 0 0 0 0 0
DXPS1 0 0 0 0 0 0 0 0 0

DXPS2(cla1) 1 0 1 1 0 1 0 0 0
DXPS3 0 0 1 0 0 0 0 0 0

DXR 1 0 1 1 0 1 0 0 0
FPPS1 0 0 0 0 0 0 0 0 0
FPPS2 0 0 0 0 0 0 0 0 0

GGPPS1mt 0 0 0 0 0 0 0 0 0
GGPPS2 0 0 0 0 0 0 0 0 0
GGPPS3 0 0 0 0 0 0 0 0 0
GGPPS4 0 0 0 0 0 0 0 0 0
GGPPS5 0 0 0 0 0 0 0 0 0
GGPPS6 1 0 1 1 0 1 0 0 0
GGPPS8 0 0 0 0 0 0 0 0 0
GGPPS9 0 0 0 0 0 0 0 0 0
GGPPS10 0 0 0 0 0 0 0 0 0
GGPPS11 0 0 1 0 0 0 0 0 0
GGPPS12 1 0 1 1 0 1 0 0 0

GPPS 1 0 1 1 0 1 0 0 0
HDR 1 0 1 1 0 1 0 0 0
HDS 1 0 1 1 0 1 0 0 0

HMGR1 1 0 1 1 0 1 0 0 0
HMGR2 0 0 1 0 0 1 0 0 0
HMGS 0 0 1 0 0 0 0 0 0
IPPI1 1 0 1 1 0 1 0 0 0
IPPI2 0 0 1 0 0 1 0 0 0
MCT 0 0 1 0 0 0 0 0 0

MECPS 0 0 1 0 0 1 0 0 0
MK 0 0 0 0 0 0 0 0 0

MPDC1 0 0 0 0 0 0 0 0 0
MPDC2 0 0 1 0 0 0 0 0 0
PPDS1 0 0 0 0 0 0 0 0 0

PPDS2mt 0 0 0 0 0 0 0 0 0
UPPS1 1 0 1 1 0 1 0 0 0

#(j̃) 13 1 23 13 1 17 0 0 0

(1: selected variable, 0: non-selected variable. )
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it seems that the dimension p has a role in increasing the sample size. However,
from the results in Lemma 2 and Lemma 3, the probabilities of selecting j∗ by
the consistent criteria in this paper always approach 1 by diverging n, but do
not always approach 1 by diverging only p. Moreover, increasing p leads to fast
convergence of the probability of selecting the true subset under assumption A3′,
but this is not always the case under assumption A3. This difference depends on
the assumption about Σ∗ and κ4 since ξtr(Σ∗)

−1 = o(1) holds under assumption
A3′ not A3. This may also be verified from our simulations. Hence, to ensure
fast convergence of the probability of selecting the true subset, a small sample
size may be sufficient under assumption A3′ when p is large. As per subsection
2.2, assumption A3′ holds when (9) is supported. Since the sphericity condition
limp→∞ tr(Σ2

∗)/tr(Σ∗)
2 = 0 is equivalent to limp→∞ λmax(Σ∗)/tr(Σ∗) = 0, note

that this condition implies that the maximum eigenvalue of Σ∗ is not particu-
larly large in the sense that λmax(Σ∗) = o(p) under assumption A2. However,
in general λmax(Σ∗) tends to be very large for high-dimensional cases. Thus,
it may not be suitable to assume the sphericity condition for high-dimensional
cases. Aoshima and Yata (2018; 2019) considered methods to translate statistics
under the strongly spiked model lim infp→∞ λmax(Σ∗)

2/tr(Σ2
∗) > 0 into those

under the non-strongly spiked model limp→∞ λmax(Σ∗)
2/tr(Σ2

∗) = 0. By apply-
ing their idea to criteria for multivariate linear regression used in this paper, fast
convergence of the probability of selecting the true subset can be ensured even
under assumption A3, and, again, this should be explored in future research.

Appendix

A. Proof of equation (8). Let j ∈ J−. From properties of projection ma-
trices, for any ℓ ∈ j∗ ∩ jc, we have the following equation:

(In − Pωℓ
)xℓ1

{
= 0n (ℓ1 ∈ j∗ ∩ {ℓ}c)
̸= 0n (ℓ1 ∈ j∗ ∩ {ℓ}) .

Using the above equation, Θ′
∗X

′
∗(In − Pωℓ

)X∗Θ∗ can be expressed as follows:

Θ′
∗X

′
∗(In − Pωℓ

)X∗Θ∗ =

∑
ℓ∈j∗

θℓx
′
ℓ

 (In − Pωℓ
)

∑
ℓ∈j∗

xℓθ
′
ℓ


= θℓx

′
ℓ(In − Pωℓ

)xℓθ
′
ℓ

= x′
ℓ(In − Pωℓ

)xℓθℓθ
′
ℓ.

Since we have

X ′
∗(In − Pj)X∗ −X ′

∗(In − Pωℓ
)X∗ = X ′

∗(Pωℓ
− Pj)X∗,

and X ′
∗(Pωℓ

− Pj)X∗ is positive-semidefinite, the following equation can be
derived:

λmax(∆j) ≥ λmax(Θ
′
∗X

′
∗(In − Pωℓ

)X∗Θ∗) = x′
ℓ(In − Pωℓ

)xℓθ
′
ℓθℓ.

Hence, equation (8) can be derived from assumption A4. □



Consistent variable selection criteria in multivariate linear regression even when p > n 23

B. Proof of Lemma 1. We need a lemma to prove Lemma 1. To derive the
upper bounds of probabilities, we use the variances of (n− k)−1tr(W ), tr(Uj),
and tr(Vj,h). The results for the variances are as follows (the proof is given in
Appendix H):

Lemma B.1. Let A be an n×n symmetric matrix and B be a p×n matrix.
Then, the following results hold:

(i) E[tr(E ′
∗AE∗)] = tr(A)tr(Σ∗).

(ii) E[tr(BE∗)
2] = tr(Σ∗BB′).

(iii) E[tr(E ′
∗AE∗)

2] =
(∑n

i=1{(A)ii}2
)
κ4+tr(A)2tr(Σ∗)

2+2tr(A2)tr(Σ2
∗),

where κ4 = E[||ε||4]−tr(Σ∗)
2−2tr(Σ2

∗), which is defined in assumption
A3.

Let j ⊋ h. Since In −Pω and Pj −Ph are symmetric idempotent matrices,
we can identify that

n∑
i=1

{(In − Pω)ii}2 ≤
n∑

i=1

(In − Pω)ii = tr(In − Pω) = n− k,

n∑
i=1

{(Pj − Ph)ii}2 ≤
n∑

i=1

(Pj − Ph)ii = tr(Pj − Ph) = kj − kh.

From the above equations and Lemma B.1, we can evaluate the expectations
and variances of (n− k)−1tr(W ), tr(Uj), and tr(Vj,h) as follows:

E[(n− k)−1tr(W )] = tr(Σ∗), V ar[(n− k)−1tr(W )] ≤ 3(n− k)−1ξ2,

E[tr(Uj)
2] = tr(Σ∗∆j),

E[tr(Vj,h)] = (kj − kh)tr(Σ∗), V ar[tr(Vj,h)] ≤ 3(kj − kh)ξ
2.

Then, we obtain the results of Lemma 1 by using Chebyshev’s inequality. First,
we derive the results of (i), (ii), and (iii) as follows:

P
(
(n− k)−1tr(W ) ≥ r1

)
= P

(
(n− k)−1tr(W )− tr(Σ∗) ≥ r1 − tr(Σ∗)

)
≤ P

(
|(n− k)−1tr(W )− tr(Σ∗)| ≥ r1 − tr(Σ∗)

)
≤ V ar[(n− k)−1tr(W )]{r1 − tr(Σ∗)}−2 = O

(
ξ2n−1{r1 − tr(Σ∗)}−2

)
,

P
(
(n− k)−1tr(W

)
≤ r2)

= P
(
(n− k)−1tr(W )− tr(Σ∗) ≤ r2 − tr(Σ∗)

)
≤ P

(
|(n− k)−1tr(W )− tr(Σ∗)| ≥ tr(Σ∗)− r2

)
≤ V ar[(n− k)−1tr(W )]{tr(Σ∗)− r2}−2 = O

(
ξ2n−1{tr(Σ∗)− r2}−2

)
,

P (tr(Uj) ≤ r3)

≤ P (|tr(Uj)| ≥ |r3|)
≤ E[tr(Uj)

2]|r3|−2 = O
(
tr(Σ∗∆j)|r3|−2

)
,
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P (tr(Vj,h) ≥ (kj − kh)r4)

= P (tr(Vj,h)− (kj − kh)tr(Σ∗) ≥ (kj − kh){r4 − tr(Σ∗)})
≤ V ar[tr(Vj,h)](kj − kh)

−2{r4 − tr(Σ∗)}−2 = O
(
ξ2{r4 − tr(Σ∗)}−2

)
.

Next, we obtain result (iv). When n is sufficiently large or both n and p are
sufficiently large, we have

−r5 + r6 < 0, (r5 − r6)
−1

= O(r−1
5 ).

Hence, result (iii) can be derived as follows:

P
(
tr(Vj,h)− (kj − kj̃)tr(Σ∗) + r5 ≤ r6

)
≤ P (|tr(Vj,h)− (kj − kh)tr(Σ∗)| ≥ r5 − r6)

≤ V ar[tr(Vj,h)] (r5 − r6)
−2

= O(ξ2r−2
5 ).

□

C. Proof of Lemma 2. First, we obtain the order of PS . For j ∈ J+∩{j∗}c,
let W = E ′

∗(In − Pω)E∗ and Vj,j∗ = E ′
∗(Pj − Pj∗)E∗ defined by (12). It is

straightforward that the equation (In −Pω)X∗ = (Pj −Pj∗)X∗ = On,k∗ holds.
Then, we have

tr{Y ′(In − Pω)Y } = tr(W ), tr{Y ′(Pj − Pj∗)Y } = tr(Vj,j∗).

Using the above equations, SGCp(j|α)− SGCp(j∗|α) is calculated as

SGCp(j|α)− SGCp(j∗|α) = −(n− k)
tr{Y ′(Pj − Pj∗)Y }

tr(W )
+ (kj − k∗)α

= −(n− k)
tr(Vj,j∗)

tr(W )
+ (kj − k∗)α. (C.1)

Let ES be an event defined by

ES = {(n− k)−1tr(W ) ≥ τStr(Σ∗)}. (C.2)

Then, by using (C.1) and (C.2), we have

PS = P
(
∪j∈J+∩{j∗}c

{
tr(Vj,j∗) ≥ (n− k)−1tr(W )(kj − k∗)α

})
= P

({
∪j∈J+∩{j∗}c

{
tr(Vj,j∗) ≥ (n− k)−1tr(W )(kj − k∗)α

}}
∩ (ES ∪ Ec

S)
)

≤ P
(
∪j∈J+∩{j∗}c {tr(Vj,j∗) ≥ (kj − k∗)tr(Σ∗)ατS}

)
+ P (Ec

S)

≤
∑

j∈J+∩{j∗}c

P (tr(Vj,j∗) ≥ (kj − k∗)tr(Σ∗)ατS) + P (Ec
S). (C.3)

From (i) and (iii) of Lemma 1, the orders of two terms in (C.3) are as follows:∑
j∈J+∩{j∗}c

P (tr(Vj,j∗) ≥ (kj − k∗)tr(Σ∗)ατS)

= O
(
ξ2tr(Σ∗)

−2(ατS − 1)−2
)
,

P (Ec
S) = O

(
ξ2tr(Σ∗)

−2n−1(1− τS)
−2
)
.
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From the above equations and (C.3), we have

PS = O
(
ξ2tr(Σ∗)

−2 max
{
(ατS − 1)−2, n−1(1− τS)

−2
})

. (C.4)

Next, we obtain the order of PS . For j ∈ J−, let

j+ = j ∪ j∗, ES,j = {SGCp(j+|α)− SGCp(j∗|α) ≥ 0}.

Using j+ and ES,j , we have

PS = P
(
∪j∈J− {SGCp(j|α)− SGCp(j+|α) + SGCp(j+|α)− SGCp(j∗|α) ≤ 0}

)
= P

(
∪j∈J− {SGCp(j|α)− SGCp(j+|α) + SGCp(j+|α)− SGCp(j∗|α) ≤ 0}

∩ (ES,j ∪ Ec
S,j)
)

≤ P
(
∪j∈J− {SGCp(j|α)− SGCp(j+|α) ≤ 0}

)
+ P (∪j∈J−E

c
S,j). (C.5)

Since j+ ∈ J+ is the same as (C.4), the order of P (∪j∈J−E
c
S,j) is calculated as

P (∪j∈J−E
c
S,j) = O

(
ξ2tr(Σ∗)

−2 max
{
(ατS − 1)−2, n−1(1− τS)

−2
})

. (C.6)

Notice that

tr{Y ′(Pj+ − Pj)Y } = tr(Vj+,j) + 2tr(Uj) + δ2j ,

where δ2j and Uj = Θ′
∗X

′
∗(In −Pj)E∗ are defined by (7) and (12), respectively.

From this, SGCp(j|α)− SGCp(j+|α) is calculated as

SGCp(j|α)− SGCp(j+|α)

= (n− k)
tr{Y ′(Pj+ − Pj)Y }

tr(W )
− (kj+ − kj)α

= (n− k)tr(W )−1
{
tr(Vj+,j) + 2tr(Uj) + δ2j

}
− (kj+ − kj)α, . (C.7)

Let E1 and E2,j be events defined by

E1 =

{
(n− k)−1tr(W ) ≤ 3

2
tr(Σ∗)

}
, E2,j =

{
tr(Uj) ≥ −1

4
δ2j

}
. (C.8)

Then, by using (C.7) and (C.8), we have

P
(
∪j∈J− {SGCp(j|α)− SGCp(j+|α) ≤ 0}

)
= P

(
∪j∈J−

{
tr(Vj+,j) + 2tr(Uj) + δ2j ≤ (n− k)−1tr(W )(kj+ − kj)α

})
= P

(
∪j∈J−

{
tr(Vj+,j) + 2tr(Uj) + δ2j ≤ (n− k)−1tr(W )(kj+ − kj)α

}
∩ (E1 ∪ Ec

1)
)

≤ P

 ⋃
j∈J−

{
tr(Vj+,j) + 2tr(Uj) + δ2j ≤ 3

2
(kj+ − kj)tr(Σ∗)α

}
+ P (Ec

1)
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= P

 ⋃
j∈J−

{
tr(Vj+,j) + 2tr(Uj) + δ2j ≤ 3

2
(kj+ − kj)tr(Σ∗)α

}
∩ (E2,j ∪ Ec

2,j)


+ P (Ec

1)

≤
∑
j∈J−

P

(
tr(Vj+,j) +

1

2
δ2j ≤ 3

2
(kj+ − kj)tr(Σ∗)α

)
+ P (Ec

1) +
∑
j∈J−

P (Ec
2,j). (C.9)

Notice that

tr(Σ∗)

np

(
3

2
α− 1

)
→ 0, tr(Σ∗∆j) ≤ λmax(Σ∗)δ

2
j .

Hence, by using (8) and (i), (ii), and (iii) of Lemma 1, the orders of three terms
in (C.9) can be derived as follows:∑

j∈J−

P

(
tr(Vj+,j) +

1

2
δ2j ≤ 3

2
(kj+ − kj)tr(Σ∗)α

)

=
∑
j∈J−

P

(
tr(Vj+,j)− (kj+ − kj)tr(Σ∗) +

1

2
δ2j ≤ (kj+ − kj)tr(Σ∗)

(
3

2
α− 1

))

≤
∑
j∈J−

P

(
tr(Vj+,j)− (kj+ − kj)tr(Σ∗)

np
+

1

2
δ̃ ≤ (kj+ − kj)

tr(Σ∗)

np

(
3

2
α− 1

))
= O(ξ2n−2p−2), (C.10)

P (Ec
1) = O(ξ2tr(Σ∗)

−2n−1), (C.11)∑
j∈J−

P (Ec
2,j) =

∑
j∈J−

O(tr(Σ∗∆j)δ
−4
j ) = O(λmax(Σ∗)n

−1p−1), (C.12)

where δ̃ is a positive constant satisfying 0 < δ̃ < minj∈J− infn>k,p≥1(np)
−1δ2j .

From (C.5), (C.6), (C.9), (C.10), (C.11), and (C.12), we have

PS = O
(
ξ2tr(Σ∗)

−2 max
{
(ατS − 1)−2, n−1(1− τS)

−2
})

+O
(
max

{
ξ2n−2p−2, ξ2tr(Σ∗)

−2n−1, λmax(Σ∗)n
−1p−1

})
. (C.13)

Therefore, (C.4) and (C.13) complete the proof of Lemma 2. □

D. Proof of Theorem 1. First, we obtain the consistency conditions under
assumptions A1, A2, A3, and A4. Note that under assumptions A2 and A3, the
following equations hold:

ξ

tr(Σ∗)
= O(1),

ξ

p
= O(1),

λmax(Σ∗)

p
= O(1).
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Let us take τS = 1/2 in Lemma 2. By using Lemma 2 and the above equations,
the orders of PS and PS are as follows:

PS = O
(
max

{
(α/2− 1)−2, n−1

})
,

PS = O
(
max

{
(α/2− 1)−2, n−1

})
+O(n−1).

The above equations and (13) give the consistency conditions in (14).
Next, we obtain the consistency conditions under assumptions A1, A2, A3′,

and A4. Let us take τS = 1− n−1/2 in Lemma 2. Then, using (13), we have

(ατS − 1)−2 = (α− 1)−2

{
1− α√

n(α− 1)

}−2

= O
(
(α− 1)−2

)
,

n−1(1− τS)
−2 = 1.

Note that under assumptions A2 and A3′, the following equations hold:

ξ

tr(Σ∗)
= o(1),

ξ

p
= o(1),

λmax(Σ∗)

p
= o(1).

Hence, the orders of PS and PS are as follows:

PS = o
(
(α− 1)−2

)
+ o(1), PS = o

(
(α− 1)−2

)
+ o(1).

The above equations and (13) give the consistency conditions in (15). □

E. Proof of Theorem 2. First, we show the inconsistency under condition
C1. Let W and Vj,j∗ be defined by (12) and let E3 = {(n − k)−1tr(W ) ≤
(1 + n−1/4)tr(Σ∗)}. For any j ∈ J+ ∩ {j∗}c, we have

P (ĵS = j∗)

= P
(
∩h∈J∩{j∗}c {SGCp(h|α) > SGCp(j∗|α)}

)
≤ P (SGCp(j|α) > SGCp(j∗|α))
= P

(
tr(Vj,j∗) < α(kj − k∗)(n− k)−1tr(W )

)
≤ P

(
tr(Vj,j∗)− (kj − k∗)tr(Σ∗) < (kj − k∗)tr(Σ∗){(1 + n−1/4)α− 1}

)
+ P (Ec

3). (E.1)

Moreover, when n is sufficiently large or n and p are sufficiently large, we have

P
(
tr(Vj,j∗)− (kj − k∗)tr(Σ∗) < (kj − k∗)tr(Σ∗){(1 + n−1/4)α− 1}

)
≤ P

(
|tr(Vj,j∗)− (kj − k∗)tr(Σ∗)| ≥ (kj − k∗)tr(Σ∗){1− (1 + n−1/4)α}

)
≤ V ar[tr(Vj,j∗)]

(kj − k∗)2tr(Σ∗)2{1− (1 + n−1/4)α}2

≤ κ4I(κ4 > 0) + 2tr(Σ2
∗)

(kj − k∗)tr(Σ∗)2{1− (1 + n−1/4)α}2
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= (kj − k∗)
−1(1− α)−2

(
1− n−1/4α

1− α

)−2{
κ4I(κ4 > 0) + 2tr(Σ2

∗)

tr(Σ∗)2

}
. (E.2)

Further, by using (i) in Lemma 1, the order of P (Ec
3) is as follows:

P (Ec
3) = O(ξ2tr(Σ∗)

−2n−1/2). (E.3)

From (E.1), (E.2), and (E.3), condition C1 gives the following inequality:

lim
n→∞,p/n→c

P (ĵS = j∗)

≤ (kj − k∗)
−1

{
lim

n→∞,p/n→c

κ4I(κ4 > 0) + 2tr(Σ2
∗)

(1− α)2tr(Σ∗)2

}
< 1.

Next, we show the inconsistency under condition C2. For j ⊊ j∗, let E4 =
{(n − k)−1tr(W ) ≥ (1 − n−1/4)tr(Σ∗)} and E5,j = {tr(Uj) ≤ n−1/4δ2j }, where
Uj is defined by (12). Then ,we have

P (ĵS = j∗)

≤ P (SGCp(j|α) > SGCp(j∗|α))
= P

(
tr(Vj∗,j) + 2tr(Uj) + δ2j > α(k∗ − kj)(n− k)−1tr(W )

)
≤ P

(
tr(Vj∗,j) > (k∗ − kj)tr(Σ∗)(1− n−1/4)α− (1 + 2n−1/4)δ2j

)
+ P (Ec

4) + P (Ec
5,j). (E.4)

From condition (C2), it is straightforward to identify that

lim
n→∞,p/n→c

(k∗ − kj)tr(Σ∗){(1− n−1/4)α− 1}
(1 + 2n−1/4)δ2j

> 1.

Hence, when n is sufficiently large or n and p are sufficiently large, we have

P
(
tr(Vj,j∗) > (k∗ − kj)tr(Σ∗)(1− n−1/4)α− (1 + 2n−1/4)δ2j

)
≤ V ar[tr(Vj,j∗)]

[(k∗ − kj)tr(Σ∗){(1− n−1/4)α− 1} − (1 + 2n−1/4)δ2j ]
2
= O(n−2). (E.5)

Further, by using (i) and (ii) in Lemma 1, the orders of P (Ec
4) and P (Ec

5,j) are
as follows:

P (Ec
4) = O(ξ2tr(Σ∗)

−2n−1/2), P (Ec
5,j) = O(λmax(Σ∗)p

−1n−1/2). (E.6)

Equations (E.4), (E.5), and (E.6) give limn→∞,p/n→c P (ĵS = j∗) = 0.
Finally, when we replace assumption A3 with assumption A3′, the results

in this case can be derived from (E.1), (E.2), and (E.3) because of ξtr(Σ∗)
−1 =

o(1). □
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F. Proof of Lemma 3. For j ∈ J+ ∩ {j∗}c, using (19), we have

RGCp(j|α, λ)−RGCp(j∗|α, λ)
= −tr{Y ′(Pj − Pj∗)Y S−1

λ }+ (kj − k∗)pα

≥ −tr(Vj,j∗)λmax(S
−1
λ ) + (kj − k∗)pα

≥ −λ(n− k)
tr(Vj,j∗)

tr(W )
+ (kj − k∗)pα

= λ{SGCp(j|α)− SGCp(j∗|α)}+ (kj − k∗)(p− λ)α, (F.1)

where Vj,j∗ and W are given by (12). Moreover, for j ∈ J−, using (19), we have

RGCp(j|α, λ)−RGCp(j+|α, λ)
= tr{Y ′(Pj+ − Pj)Y S−1

λ } − (kj+ − kj)pα

≥ λmin(S
−1
λ )tr{Y ′(Pj+ − Pj)Y } − (kj+ − kj)pα

≥ (1 + λ−1)−1(n− k)tr(W )−1tr{Y ′(Pj+ − Pj)Y } − (kj+ − kj)pα

= (1 + λ−1)−1{SGCp(j|α)− SGCp(j+|α)}+ (kj+ − kj){(1 + λ−1)−1 − p}α,
(F.2)

where j+ = j ∪ j∗. From (F.1) and (F.2), we can replace RGCp(j|α, λ) −
RGCp(j∗|α, λ) andRGCp(j|α, λ)−RGCp(j+|α, λ) with SGCp(j|α)−SGCp(j∗|α)
and SGCp(j|α) − SGCp(j+|α), respectively. Therefore, in the same way as the
proof of Lemma 2, the results of Lemma 3 can be derived. □

G. Proof of Theorem 4. For j ∈ J+ ∩ {j∗}c, using (19), we have

RGCp(j|α, λ)−RGCp(j∗|α, λ)
≤ −tr(Vj,j∗)λmin(S

−1
λ ) + (kj − k∗)pα

≤ −(1 + λ−1)−1(n− k)tr(W )−1tr(Vj,j∗) + (kj − k∗)pα

= (1 + λ−1)−1{SGCp(j|α)− SGCp(j∗|α)}+ (kj − k∗){p− (1 + λ−1)−1}α.
(G.1)

For j ⊊ j∗, using (19), we have

RGCp(j|α, λ)−RGCp(j∗|α, λ)
≤ λmax(S

−1
λ )tr{Y ′(Pj∗ − Pj)Y } − (k∗ − kj)pα

≤ λ(n− k)tr(W )−1tr{Y ′(Pj∗ − Pj)Y } − (k∗ − kj)pα

= λ{SGCp(j|α)− SGCp(j∗|α)} − (k∗ − kj)(λ− pα). (G.2)

By using (G.1) and (G.2), in the same way as the proof of Theorem 2, the results
of Theorem 4 can be derived. □
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H. Proof of Lemma B.1. First, we calculate the expectation E[tr(E ′
∗AE∗)]

to prove (i). It is straightforward that

E[tr(E ′
∗AE∗)] =

n∑
i,j

(A)ijE[ε′iεj ] =

n∑
i=1

(A)iiE[ε′iεi] = tr(A)tr(Σ∗),

where the summation
∑n

i,j is defined by
∑n

i=1

∑n
j=1.

Next, we calculate the expectation E[tr(BE∗)
2] in (ii). Let bi be the i-th

column vector of B. Then, we have

E[tr(BE∗)
2] =

n∑
i,j

b′iE[εiε
′
j ]bj =

n∑
i=1

b′iE[εiε
′
i]bi = tr(Σ∗BB′).

Finally, we calculate the expectation E[tr(E ′
∗AE∗)

2] in (ii). The expectation
E[tr(E ′

∗AE∗)
2] can be expressed as follows:

E[tr(E ′
∗AE∗)

2] =

n∑
i,j,k,ℓ

(A)ij(A)kℓE[(ε′iεj)(ε
′
kεℓ)]

=

n∑
i=1

{(A)ii}2E[(ε′iεi)
2] +

n∑
i̸=j

(A)ii(A)jjE[(ε′iεi)(ε
′
jεj)]

+ 2

n∑
i̸=j

{(A)ij}2E[(ε′iεj)
2]

=

(
n∑

i=1

{(A)ii}2
)
E[||ε||4] +

 n∑
i ̸=j

(A)ii(A)jj

 tr(Σ∗)
2

+ 2

 n∑
i ̸=j

{(A)ij}2
 tr(Σ2

∗),

where the summation
∑n

i ̸=j is defined by
∑n

j=1

∑n
i:i ̸=j . Hence, given that

n∑
i ̸=j

(A)ii(A)jj = tr(A)2 −
n∑

i=1

{(A)ii}2,
n∑

i ̸=j

{(A)ij}2 = tr(A2)−
n∑

i=1

{(A)ii}2,

we can calculate E[tr(E ′
∗AE∗)

2] as follows:

E[tr(E ′
∗AE∗)

2] =

(
n∑

i=1

{(A)ii}2
)
κ4 + tr(A)2tr(Σ∗)

2 + 2tr(A2)tr(Σ2
∗).

□
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