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Chapter 1

Introduction

1.1 Tracking Control Problem of Constrained Systems

A tracking control problem of multi-input multi-output systems under input and state con-
straints arises in various industrial fields (e.g., see [28, 35, 40, 52]). One typical way to
deal with such a problem is to use a linear time-invariant feedback control law which is de-
signed so that the input state constraints will never be violated for possible reference signals.
However, in this case, when the reference signal is small, the control performance would be
conservative, since only the small control signal is used. As for the control problem, various
control strategies that can achieve desirable tracking performance for a wide class of refer-
ence signals have been proposed, e.g., model predictive control [25], reference governor [9],
switching control [10] and gain-scheduled control (see [45, 46]). In the model predictive
control, an open-loop optimal control problem with constraints is resolved at each sampling
time. In this approach, the computational e ort required to solve the online optimization
problem tends to increase rapidly with increasing the dimensions and or the number of in-
puts of the controlled object. A similar problem occurs in the case of the reference governor.
In switching control, several controllers have been designed o -line, and the controllers are
switched online so that the control performance is improved. In the standard approach, the
switching 1s carried out discontinuously. To improve transient responses after switching,
the initial value compensation techniques are applied in [30, 28, 53]. In [45, 46], a design
method of a gain-scheduled control law for input constrained systems has been proposed. In
the approach, based on the information on the state of the plant, the scheduling parameter

of the controller is continuously updated online so that the control performance is improved.
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6 Chapter 1 Introduction

The method is computationally tractable since the scheduling parameter can be determined
by solving a convex optimization problem with respect to a single parameter. Further, it has
been shown in [47, 49] that the tracking control performance of [45, 46] can be improved
by simultaneously optimizing the value of the scheduling parameter and the controller state
at each sampling time. However, the control method of [47, 49] is only applicable to linear
time invariant systems. In practical control systems, the system usually include uncertain
parameters and hence needs to be modeled as a linear parameter-varying system. Therefore,
it 1s required to extend the tracking control method in [47, 49] so that the method can be

applied to linear parameter-varying systems.

1.2 Disturbance Attenuation Control Problem of Constrained
Systems

Recently, various control algorithms which ensure closed-loop stability and optimize distur-
bance attenuation performance under input state constraints have been developed. In par-
ticular, online optimization based control techniques have been proposed with the aim of
achieving higher control performance as compared with standard linear control law. For ex-
ample, a min-max optimization based model predictive control (MPC) approach has been
proposed in [36]. Also, a tube-based MPC approach has been developed in [26]. These
control algorithms are developed so that feasibility and stability are guaranteed in the pres-
ence of persistent bounded disturbances. On the other hand, several MPC algorithms for /,
disturbance attenuation have been proposed. In the MPC algorithm of Reference [31], the
feedback gain is recomputed online by solving an optimization problem with LMI[3] con-
straints derived from the bounded real lemma. However, feasibility and dissipativity have not
been discussed in [31]. In [5], an MPC algorithm which ensures dissipativity in the presence
of /> bounded disturbances has been proposed. In this method, the dissipation constraint is
introduced to ensure the dissipativity. The MPC algorithms in [31] and [5] could be regarded
as an extensions of the MPC algorithm in [16] to an /, disturbance attenuation problem.
From the experience of numerical examples, we have confirmed that the control method in
[5] tends to lead conservative results. This seem to be because the state feedback control law
with time-varying feedback gain is used and the open-loop control input sequence has not

been applied to the system in the method.



1.3 Thesis Outline

The reminder of this thesis is organized as follows.

In Chapter 2, we will explain definition and features of a linear matrix inequality (LMI)
which will be utilized as a tool for controller synthesis in this thesis.

In Chapter 3, we will present a tracking control law for a linear parameter-varying sys-
tem with input constraints. Firstly, a design condition of a controller parameterized by a
single scheduling parameter is introduced. The proposed controller includes an integrator to
achieve the zero steady-state error in the case where a step reference signal is applied. In
the proposed control algorithm, the scheduling parameter and the state of the controller are
determined on-line so that the tracking control performance is improved.

In Chapter 4, we will apply the control method in Chapter 3 to a torque control problem
of a permanent magnet synchronous motor under input voltage limitation. Firstly, a plant
model of a PMSM is derived as a linear parameter varying system in which the rotor speed
1s included as the varying parameter. Secondly, we show that setpoint tracking control is
achievable under the time variation of the rotor speed. Then, we show a method of con-
structing a control law that achieves convergence of the motor torque to a step reference
signal under input voltage limitation and time variation of the rotor speed.

In Chapter 5, we will extend the control method in Chapter 4 so that the motor torque
tracks a time-varying reference signal under input voltage limitation and the time variation
of the rotor speed. To this end, we develop a motor torque control law that consists of
the feedback control law in Chapter 4 and a reference governor. In the control law, the
modified reference signal is determined online simultaneously with the controller state and
the scheduling parameter. The e ectiveness of the method is shown by a numerical example
and an experimental result.

In Chapter 6, we will show a model predictive control law for constrained linear systems
in the presence of /, disturbances. In the proposed control method, the feedback gain and the
controller state are updated online so that the /, gain of the system is minimized. The method
in this chapter could be viewed as an extension of [5] so that the disturbance attenuation
performance is improved by introducing the controller state as a free move. We show that
both feasibility of the control algorithm and the dissipation inequality are guaranteed for all

times.



8 Chapter 1 Introduction

In Chapter 7, we will show a method for reducing computation time required to solve the
optimization problem in the control algorithm of Chapter 6. In this chapter, a control law
with a scheduling parameter is designed o -line, and the scheduling parameter and the con-
troller state is updated on-line so that the /,-gain of the system is minimized. The problem of
determining the scheduling parameter and the controller state is formulated as an optimiza-
tion problem with constraints described by linear matrix inequalities. Then the optimization
problem is reduced to a convex optimization problem with respect to a scalar variable.

Finally, in Chapter 8, we will summarize this thesis.



Chapter 2

Mathematical Preliminary

In this chapter, we explain definitions and features of linear matrix inequalities. A linear

matrix inequality 1s defined as follows.

Definition 1 Linear Matrix Inequality (LMI) [3]
Suppose that F(x) is a linear or a ne function in the variable x " and satisfies

F(x) F(x)!. Thefollowing inequality
F(x) 0 (2.1)

is called a Linear Matrix Inequality, and its standard form is described by

F(x) Fo x;F; 0 (22)
i1
where F; FT mm
Note that the LMI (2.1) is a convex constrainton x, namely, : x ":F(x) 0 isa
convex set. Moreover, multiple LMI conditions can be expressed as a single LMI condition,

namely,
Fo%) 0 ;7 1 &
F(x): block-diag[ FV(x) FOx] 0
This property will be utilized in Chapter 3 to design a compensator which satisfies multiple
design specifications. In [3], it is shown that wide variety of analysis conditions arising in
control theory can be expressed as the LMI condition.

Most of design and analysis problems in this thesis will be formulated as the following

convex optimization problem under the LMI constraint.

9



10 Chapter 2 Mathematical Preliminary

Convex Optimization Problem (COP):

minimize cfx subjectto F(x) 0

where ¢ " Various types of polynomial-time interior point algorithm have been devel-
oped for solving COP [3]. In this thesis, we will utilize the so-called Projective Method
which is implemented in the Robust Control Toolbox[1] for use with MATLAB. By using
this algorithm, a global optimal solution can be computed by less than some prespecified

accuracy within a polynomial-time.



Chapter 3

Constrained Tracking Control by

Gain-scheduled Feedback with State
Resets

In this chapter, a tracking control problem for a discrete-time linear parameter-varying sys-
tem with actuator saturation is addressed. Firstly, a design condition of a controller parame-
terized by a single scheduling parameter is introduced. The proposed controller includes an
integrator to achieve the zero steady-state error in the case where a step reference signal 1s
applied. Then a gain-scheduled control algorithm that guarantees closed-loop stability and
makes the tracking error converge to zero in the case of a step reference signal is proposed.
In the proposed control algorithm, the scheduling parameter and the state of the controller
are determined on-line so that the tracking control performance is improved. The scheduling
parameter and the state of the controller are computed simultaneously by solving a convex
optimization problem with a linear matrix inequality constraint. A numerical examples is

provided to illustrate e ectiveness of the proposed control algorithm.

3.1 Introduction

In this chapter, a tracking control problem of a discrete-time linear parameter-varying (LPV)
system with input saturation is addressed. Such a control problem arises in various industrial
fields (e.g., see [28, 35, 40, 52]). One typical way to deal with this problem is to use a linear
time-invariant feedback control law that is designed so that the control signal will never

violate the input constraint for the largest reference signal. However, in this case, when

11



12 Chapter 3 Constrained Tracking Control

the reference signal is small, the control performance would be conservative, since only the

small control signal is used.

As for the control problem, various control strategies that can achieve desirable tracking
performance for a wide class of reference signals have been proposed, e.g., model predic-
tive control [25], reference governor [9], switching control [10] and gain-scheduled control
(see [45, 46]). In the model predictive control, an open-loop optimal control problem with
constraints 1s resolved at each sampling time. In this approach, the computational e ort
required to solve the on-line optimization problem tends to increase rapidly with increas-
ing the dimensions and or the number of inputs of the controlled object. A similar problem
occurs in the case of the reference governor. In switching control, several controllers have
been designed o -line, and the controllers are switched on-line so that the control perfor-
mance is improved. In the standard approach, the switching is carried out discontinuously.
To improve transient responses after switching, the initial value compensation techniques
are applied in [30, 28, 53]. In [45, 46], a design method of a gain-scheduled control law for
input constrained systems has been proposed. In the approach, based on the information on
the state of the plant, the scheduling parameter of the controller is continuously updated on-
line so that the control performance is improved. The method is computationally tractable
since the scheduling parameter can be determined by solving a convex optimization prob-
lem with respect to a single parameter. The e ectiveness of the method has been evaluated

experimentally.

In this chapter, we further consider the tracking control problem of discrete-time systems
with input saturation within the framework of the gain-scheduled control. The controller in
this chapter has an integrator so that the plant output tracks the step reference signal. In the
proposed control approach, we attempt to enhance tracking control performance by resetting
the state of the controller at each sampling time until the tracking error becomes su ciently
small. In the control algorithm, the scheduling parameter and the state of the controller are
determined on-line by solving a convex optimization problem with a linear matrix inequality
(LMI) [3] constraint. It is shown that feasibility of the control algorithm and stability of the
control system are guaranteed. A numerical example is provided to illustrate e ectiveness

of the control method.

Notations: For a vector u ™ and a diagonal matrix 4 [a; an] 0, we define the
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saturation function as  4(u) : (4 (1) a, (Um))T, Where

asgn(u;)  u;  a;
a!(“}) I g[( I) 1 1

U; U a;
If4 I, wewill omitit. For a positive definitematrix 7 " ", a vector " and a positive
scalar ,wedefine P ): x ":(x )Pxx ) . For a matrix F ™ owe

define (F): x ":FOx 1i 1 m , where F® denotes the ith row of F. For
integers k; and k, such that &y k>, we define ITky k] : [k kv 1 »]. Let  be the set
of m m diagonal matrices whose diagonal element are either 1 or 0. There are 2™ elements

in . Suppose that each element of  1s labeledas E; j 1 2 2™ Also, we define
E: I E;

3.2 Problem Formulation and Preliminaries

In this section, we consider the system described by

xp(t ) A D)xp())  Bp( (1) (D) (3.1)
(1) Cpxp(1) (3.2)
where x, " 1is the plant state, # ™ is the control signal and " 1s the plant output.

For the system (3.1), (3.2), we make the following assumption.

Assumption 1 L is time-varying and satisfies () |, 3]t 0 i where _,and T
are known constants. In addition, the matrices Ap( ) and B,( ) are represented as A,( )

§L1 s( )Aps and By( ) iLl s( )Bps, where ; 0 i 0and fLI s L

We define a hyper-rectangle e, ;. Itis clear that

—i

In this section, we consider the following problem.

Problem 1 Consider the system (3.1), (3.2). Assume that (t) t 0. Design a control
law u(r) (x,(t) r(?)) that ensures closed-loop stability and achieves lim, " r@),

wherer(t) r t 0andrisa constant.
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3.3 Controller Design

In this section, we design a controller described by

xt ) x) e (33)
o KD O (3.4)
u(@®)  Fedxet) Fp0xp(t) MOr() (3.3)

where x. " 1s the integrator state. The design condition of the matrices Fc(f) Fp(¢) and
M(r) will be introduced in this section later. In the proposed control method, by suitably
resetting the controller state x., we attempt to improve tracking control performance. The
detail of the control algorithm will be explained in Section 3.4.

From eqs. (3.1)+(3.4), an augmented system is derived as

x(t 1) AC@)x(@) B( (D) (@) Er@) (3.6)
e)  Cx(t) D r(d) (3.7)

where x : [x; x.]" and

A() - Apép)? B(): BPO() E: ?
C z C, 0 D : 1

We also define the following matrices.

0 . By
BS . 0

Ays

4;: c, I

Note that 4( ) and B( ) can be expressed as A( ) iLl s( )As;and B( ) iLl & B
respectively.

We make following assumption.

Assumption 2 There exist matrices and () that satisfy

AC) B() () E (3.8)
0 C D (3.9
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> M(?)
Fl+ Xc +y u y
- - @q-)'1 — K@) —J:SH (3.1),(3.2)
Xp

Fp(®)

M

Figure 3.1: Control System

Eqgs. (3.8), (3.9) could be viewed as an extension of the regulator equation [8, 24] to a
class of LPV systems.

We define the following variables.

ue - u  ()r (3.10)
X F (3.11)

From (3.6)—(3.11), the error system can be derived as
(¢ 1) AC@) @ B[ (wlt) (@ (D)r@)] (3.12)

Remark 1 rin (3.11) represents the steady-state value of the state x when the plant output
tracks the step reference signal r. Similarly, ( )r in (3.10) represents the steady-state
value of the signal u. It should be noted that the solution matrix  to (3.8), (3.9) is constant.
This implies that the steady-state value of the state does not depend on the varying parameter
. Note that, in this case, the error system (3.12) can be derived. This property will enable

us to design a control law that achieves setpoint tracking under the time variation of .

Remark 2 In general, the steady-state value of the state of LPV systems changes depending
on varying parameters. Hence, setpoint tracking is usually achievable only in the case where

the varying parameter becomes constant.
We make the following assumption.

Assumption 3 The reference signal satisfies O( r 1
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The above assumption ensures that the tracking control is achievable under the input
limitation in the steady-state.
In the following, we introduce a polytopic model of a saturation function proposed in

Reference [12]. The following polytopic model will be used to design the feedback controller
(3.3)(3.9).

Lemmal [12] Letu ™. Suppose that ; 1forall j I[1 m], then
) coEu E; :j I[12"] (3.13)
where co denotes the convex hull.

From the above Lemma, it can easily be verified that, for ; 1, () can be expressed

as

om

(1) (Eu E;) (3.14)
j1

i & 1.

where 0 1

j

In the following, we introduce a theorem that is used to design the feedback control law
(3.3)(3.5). The control law designed based on the following theorem has a structure that
a high-gain control law and a low-gain control law are interpolated by a single scheduling
parameter. The scheduling parameter will be used to tune the trade o between the size of
the region of attraction and tracking performance. The control algorithm will be introduced

in Section 3.4.

Theorem 1 Consider the system (3.6) and (3.7). For given positive definite matrices R, S,
positive scalars , oand 1 suchthat 1, assume that there exist matrices Q; Y; Z; (i

0 1) that satisfy

1%‘
R <%
Sl EQ;; :'I 0
A:0; BEY; EiZ) 0 O
i I01] j I12" s I[1 2] (3.15)
§D 20 i 701 7 11 m] (3.16)

O O (3.17)
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where ; : 1 max ()P and the symbol  stands for symmetric block in matrix
inequalities. Further, for some constant [0 1], we suppose that (0) (P() 0
whereP( ): O()' O(): (1 )Oo  Oi Then, by applying the control law

ut) F()x() M(C O)() (3.18)

where F( ) - Y()O() YL Y(): ( )Y, Yrand M( ) : () F() to
the system (3.6) and (3.7), the relations () (P(C) 0) r 0 lim e O0hold
Further, J: 5 ('S (1) u()"Ru,(?) () holds, where ( ): (1 ), 1-

Proof) From (3.10), (3.11) and (3.18), we obtain ., F( ) . Hence, the closed-loop system
(3.12), (3.18) can be represented as

¢ 1) AC@®) @& B(() F() (@) (3.19)

where (F( ) ) : (F() ()y) ()r. Wedefine H( ) : Z()O()'! Z( ) :
(1 )YZ, Zyand : diag[ , m). If (H( ) ) and max )% 1 1
I[1 m], then H( )® ()% 1 1 I[1 m] . Hence, in this case, the relation
(F() ()r) ?ml G E(F(C) ()r) flJ,—(H( ) ( )r) holds from Lemma 1.
Therefore, the relation (F( ) ) ?..1 FE;F() E 7H( ) holds.
By using this relation, if (7) (H( ) ) and max ()Y 1 1 I[1 m], the

closed-loop system (3.19) can be rewritten as

¢« n (O OO (3:20)

where ()i 4y ) ) 40) BOEF() EH().
On the other hand, from (3.7) and (3.9), the signal e(7) can be expressed as

e(r) C (1) (3.21)

From (3.16), we have

()

Z )(0_} 0 7 I[1 m] (3.22)

Then, by substituting Z( )®  H( )?Q( ) for (3.22) and performing a congruence trans-
formation with block- diag[Q( ) ! 1] and substituting O( ) '  P( ), and applying Schur
complement [3], we have

Lacyracy ey 1 omom (3.23)
I
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Equation (3.23) implies that (P( ) 0) (H() ).

By carrying out the similar procedures used to derive (3.22) to (3.15), and substitut-
mgZ( ) H()O()and Y( ) F( )QO( ) for the resulting inequality, and performing
a congruence transformation with block-diag[OQ( ) ! I I], and multiplying the resulting in-
equality by ( (7)), and summing themup for s 1 L, we have

Rli(F g )
giz () 0 (324)
@) 0o P()!

Further, by multiplying the mequality (3.24) by ;(¢), and summing them up for ;

1 2™ we have

Rli(F % )
g1 2 () 0 (3.25)
(O @®» o P!

By applying Schur complement to (3.25), and multiplying the resulting inequality from

the left by ()T and from the right by (), and using (3.20) and (3.21), we have

1

O
where V( ): TP( ) . From (3.26), we can conclude thatif (0) (P( ) 0)then

Vi@ 1) V(@) (OFS (1) ue() Rue(r) (3.26)

i@ V() t 0 (327

Equation (3.27) implies that (7) (P() 0) t 0. On the other hand, it has been
shown that the nonlinearity (F( ) (7)) canberepresentedas (F( ) (7)) fml O EF()
EH() (0if (o (H( ) ) and max ()Y 1 I Il m]. From (3.23) and
(3.27), we can state that if the conditions in Theorem 1 hold, the relation (r) (H() ) t
0 holds. From (3.26), since (f) 0 (¢ ),e(r) 0 (t ) holds. Moreover, from
(3.26) and (3.27), J o OFS (1) u()"Ru,(2) ( ) holds. Q.E.D.

Based on Theorem 1, we design a gain F(1)  ¥;Q,! which makes the region (P(1) 0)
large and a gain F(0) Y,0,"' which achieves fast convergence of the state in (P(0) 0)
by suitably choosing the parameters , ;, Rand S. Then we construct the control law (3.18)

by interpolating the obtained gains.
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Remark 3 When the control law (3.18) is designed based on Theorem 1, the matrix P( )
needs to be determined so that the condition (0)  (P( ) 0)is satisfied for some constant
[0 1]. This can be achieved by solving the design problem with the constraint (0)
(P1  0). By applying Schur complement, this condition can be rewritten as the following
linear matrix inequality (LMI) condition.

X o (3:28)

Also, the conditions (3.15)—(3.17) are LMIs with respect to the variables Q; Y; Z; (i 0 1).
Hence, the design problem of the control law (3.18) that satisfies (3.15)—(3.17) and (3.28)

can be solved e ciently by a numerical optimization algorithm based on an interior point

method[3].

Remark 4 The size of the set (P, 0) mainly depends on the choice of the parameter .
By choosing a larger value as 1, the size of the set (P,  0) could be expanded in general.
However, the control law designed based on Theorem 1 can only ensure local stability. This
implies that, when the magnitude of the reference signal r is large, there may not exist a
solution that satisfies the conditions (3.15)—(3.17) and (3.28) even if a large value is chosen

as .

Remark 5 I[f4 As; s I[1 L), Theorem 1 is equivalent to Theorem 1 of Reference [47].

3.4 Control Algorithm

The control law (3.18) includes the scalar . The upper bound of the cost function J is given
as ( ) , and the function ( ) takes a smaller value when a smaller value is chosen as

Hence, it can be expected that the control performance is improved by minimizing at each
sampling time. Moreover, the state of the controller x. can be used as a tuning parameter to

improve the control performance. Thus, we utilize the following control algorithm.

Algorithm 1
Step 0: Sett 0 and i
Step 1: Measure xp(t) and (7).



20 Chapter 3 Constrained Tracking Control

Xeph X(2+1) E(P@(®)/xc,n,I17)

X oy

9 nr
xm( ‘%ﬁ(ﬂm,mnﬂ
Xp

0—41—x] \E(P(a(rﬂ)).ﬂ- %)

p+1) XD

Figure 3.2: Invariant Set

Step 2: If a = 0, set a(f) = 0 and go to Step 4.

Step 3: For given xp(1), solve Mil,e[o 1], z.cr @, S.1.

n *
l xp(0) l i ‘ >0 (3.29)

Then, set a(t) = a and x(t) = x.
Step 4. Apply u(f) = O(F(a())[xp(H)%. x(D]* + M(a(?), 0())r) to the plant (3.1), (3.2).
Step 5: Compute x(t + 1) by (3.3) and (3.4).
Step 6: t — t+ 1 and go to Step 1.

It should be noted that the value of the controller state x, is reset so that the scheduling

parameter « 1s minimized at Step 3 at each sampling time.

Remark 6 The optimization problem of Step 3 in Algorithm 1 is an LMI optimization prob-
lem with respect to a and x.. This optimization problem can be solved efficiently by a simple

bisection algorithm. This will be explained in Appendix.

Remark 7 Algorithm 1 is equivalent to the control algorithm in Reference [47] except for
the structure of the control law at Step 4.

As for feasibility of Algorithm 1 and closed-loop stability, the following result holds.

Theorem 2 Consider the system (3.1), (3.2). Assume that maxgee [T(0(H))Pr] < 1,V €
I[1,m], ¥t = 0. Moreover, assume that there exists X, such that [x,(0)", x.]* € E(P(1),n, I1r).

Then by applying Algorithm 1 to the system (3.1), (3.2), e(t) converges to zero as t — oo.
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Figure 3.3: Two-mass-spring System

Theorem 2 is a slightly modified version of Theorem 2 of Reference [47] and can be
readily proven by using the proof procedure of Reference [47]. Hence, we omit the detail of
the proof of Theorem 2 and outline the proof briefly. We assume that x(#)  (P( (7)) r)
holds at time 7 as shown in Fig.3.2. When the control signalu(7) (E(C (x0T x(0)]"
M( () (0)r) 1s applied to the system (3.1), (3.2), [x(?) r1TP( (6)[x(2) ] [x(t
1) rI*P( O))[x(t 1) r] holds from Theorem 1. Hence, for some positive scalar

1, x(r 1) (P( (D) r) holds. This implies that there exists (# 1) such

that x(r 1) (P( (r 1) ryand (r 1) (r). Hence, the scheduling parameter
(r) decreases monotonically and converges to zero. Note that the convergence speed of
the parameter (7) could be enhanced by resetting the integrator state x,. at each sampling
time(see Fig. 3.2). After (7) becomes zero, the constant high gain feedback control law with
the integral action is applied to the system. As the result, the tracking error e(7) converges to

ZET10.

3.5 Numerical Example
Consider the angular velocity control problem of a two-mass-spring system described by

J;n "rn Com .m K( m I) u (330)
J1 ar K(m 1) O (3.31)

The physical parameters are J,, J; 00lkgm?, ¢, 000INmsrad, K 50Nm rad.
We assume that the parameter ¢; is time-varying and satisfies 0 00I1Nms rad  ¢;(7)

0 INms rad ¢ 0. In addition, we assume that the limitation #  1Nm is imposed on
the control signal. We choose the state of the plantas x, [ ,, ‘w1 1]. We discretize the

above system using the Euler method with the sampling period 7 1 ms. In this numerical
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example, we design the controllers such that the controlled output ; converges to a

step reference signal » 10 rad. The solution to the equations (3.8), (3.9) are obtained as
0 [1 0 1 0 40]7. For this system, we designed a controller withE; 1 E, 0,
1, ; 260, o 3,R 10%andS diag[10 ®> 10 3 10 * 10 310 9].

The numerical simulations are performed in the following three cases.

Case I: Algorithm 1 (Gain-scheduled feedback with state resets) is used.
Case II: The control algorithm in [47] (Gain-scheduled feedback) is used.

Case III: The constant low-gain control law u(r) F(1)x(r) M(1) (¢)1s used.

Figures 3.4-3.7 show the responses of (7), (u(7)), (¢) and x.(7) in Case I. Figures 3.8—
3.11 show the responses of (7), (u(7)), (¢)and x.(7) in Case II. Figures 3.12-3.14 show the
responses of (7), (u(7)) and x.(¢) in Case III. In these numerical simulations, the reference
signalis #(r) 10rad, 7 0 and the initial state of the plant is x,(0) 0. It can be seen that
the scheduling parameter (7) in Case I and II converges to zero. Further, the plant output

() tracks the reference signal in all cases. It can be seen from Fig. 3.4 that the plant output
(r) in Case I converges to the reference signal more rapidly as compared with Cases II and
1.

3.6 Conclusions

In this chapter, we have proposed a tracking control law for discrete-time linear systems
with input saturation. The proposed controller has an integrator to achieve the zero steady-
state error in the case where a step reference signal is applied The controller includes a single
scheduling parameter, and the control performance and the size of the region of attraction can
be tuned by the parameter. In the proposed control algorithm, the scheduling parameter and
the state of the controller are determined on-line so that the tracking control performance is
improved. The problem of computing the scheduling parameter and the state of the controller
1s reduced to a convex optimization problem with an LMI constraint. It has been shown that
feasibility of the control algorithm and stability of the control system are guaranteed. Further,

the e ectiveness of the proposed method has been shown through two numerical examples.
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Chapter 4

Permanent Magnet Synchronous Motor
Torque Control by Gain-scheduled
Feedback with State Resets

In this chapter, we apply the control method in Chapter 3 to a torque control problem of a per-
manent magnet synchronous motor under input voltage limitation. Firstly, a plant model of
a PMSM is derived as a linear parameter varying system in which the rotor speed is included
as the varying parameter. Secondly, we show that setpoint tracking control is achievable
under the time variation of the rotor speed. Then, we show a method of constructing a con-
trol law that achieves convergence of the motor torque to a step reference signal under input
voltage limitation and time variation of the rotor speed. The proposed control law consists
of a gain-scheduled control law and a servo compensator. In the proposed control method,
the scheduling parameter and the controller state are optimally updated so that the transient

response 1s improved. The e ectiveness of the method is shown by a numerical example.

4.1 Introduction

The Permanent Magnet Synchronous Motor (PMSM) has been widely used in various indus-
tries due to its characteristics of high e ciency, high torque to inertia ratio, and fast dynamic
performance. The dynamics of the PMSM includes nonlinear coupling terms between the
d-axis subsystem and the g-axis subsystem. A standard approach to construct a control law
for a PMSM is to use a decentralized PI controller with a decoupling compensator used to

cancel the nonlinear coupling terms [23]. The controller of this type is very practical since

2F
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the controller design and its implementation on the computer are fairly easy. In general, a
larger control signal is required transiently to achieve higher tracking control performance,
which would cause control signal saturation. When the control signal is saturated, the de-
coupling compensator is no longer e ective. The design problem of the controller which
guarantees closed-loop stability under control signal saturation is a di cult problem due to

the nonlinear characteristics of the control system.

An anti-windup scheme is one way to deal with input saturation problems and has been
applied to a control problem of a PMSM in Reference [22]. It has been shown in Reference
[22] that closed-loop stability can be ensured under input voltage limitation by using an
appropriately designed anti-windup compensator. However, the control law of Reference
[22] is designed under the assumption that the rotor speed is constant. Hence, the closed-

loop performance would deteriorate when the rotor speed changes.

Recently, several control techniques based on an optimal control theory have been ap-
plied to the control problem of a PMSM. Model predictive control schemes [25] have been
applied to a torque control problem of a PMSM in References [13, 54] and a velocity control
problem in Reference [4]. Also, a nonlinear optimal control technique has been applied to a
torque control problem of a PMSM in Reference [41]. It has been shown in these literatures
that higher tracking control performance can be achieved under input voltage limitation as
compared with the standard decentralized PI control approach. However, in these literatures,
the controller is designed under the assumption that the rotor speed is constant. Hence, it
seems that further studies are required to examine tracking performance and stability of the

control system under the time variation of the rotor speed.

In Reference [47], a gain-scheduled servo control law for input constrained linear time-
invariant systems has been proposed. The controller in Reference [47] consists of a servo
compensator and a gain-scheduled controller. In the control method of Reference [47], the
scheduling parameter and the confroller state are updated at each sampling time so that the
tracking control performance is improved. It has been shown in Reference [49] that the
optimization problem to determine the scheduling parameter and the integrator state can be
solved e ciently by a simple bisection method. However, this method cannot be directly
applied to a control problem of a PMSM since the method is only applicable to linear time-

invariant systems.
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In this chapter, we develop a torque control method for a PMSM based on Reference [47].
Firstly, a plant model of a PMSM is derived as a linear parameter varying (LPV) system in
which the rotor speed is included as the varying parameter. Secondly, we show that setpoint
tracking control is achievable under the time variation of the rotor speed. Then, we show
a method of constructing a torque control law that achieves set point tracking under input
voltage limitation and time variation of the rotor speed. To derive the control law, we extend
the control law of Reference [47] so that the LPV system can be handled. The e ectiveness
of the proposed method is shown by a numerical example.

Notations: For a vector u " and a diagonal matrix 4 [a; an] 0, we define the

saturation function as  4(w) : (4 (1) a, (Um))T, where

a;SENnl u; U; a;
e e

U; U; d;
If4 I, wewill omitit. Forapositive definitematrix P " ", a vector " and a positive
scalar ,wedefine ° ): x ":(x )Pxx ) . For a matrix F TR W

define (F): x ":FOx 1i 1 m , where F® denotes the ith row of F. For
integers k; and k, such that &y &, we define Ilk; k] : [k ki 1 k»]. Let  be the set
of m m diagonal matrices whose diagonal element are either 1 or 0. There are 2™ elements
in . Suppose that each element of  1s labeledas E; j 1 2 2™ Also, we define

E: I E

4.2 Problem Formulation and Preliminaries

The PMSM is composed of a permanent magnet rotor and stator windings. The PMSM stator
has three coils spatially separated by 120 degree each other. A rotating magnetic field is
generated by the three-phase current, and the magnetic torque is generated by the interaction
of the rotating magnetic field and the flux of the permanent magnet[54]. In the control system
design for PMSMs, the d-g rotating frame is commonly used, since AC signals appear as DC
ones in the d-g rotating frame. Fig. 4.1 shows the relationship between the d-q rotating frame
and the u- - reference frame. In this figure, is the angular position of the rotor, and p is
the number of pole pairs. The dynamics of a PMSM in the d-g rotating frame is described
by the following di erential equations [4, 32].

dig

1
= L_( Rig Lgp iy ) 4.1)
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di 1

?f L_( pLs I-a' Riq q pr mg) (42)

d 1

I j(Te B ) (4.3)
3

T, Ep melg (4.4)

where iy i,[A] are stator currents in the d-¢ frame, and 4 ,[V] represent stator voltages in
the same frame. [rad s] is the rotor speed. 7,[Nm] is the electric magnetic torque. L;[H]
is the stator phase winding inductance. ,,[Wb] denotes the flux of the permanent magnet.
J[kgm?] is the rotor moment of inertia. B [N rad s] is the viscous coe cient. R[ ] denotes
the stator resistance.
In this chapter, we consider the torque control problem of a PMSM. Hence, we choose
T, as the controlled output. Also, the dynamical system described by (4.1), (4.2) is
used for control system design. More specifically, the following discretized model of the

dynamical system (4.1), (4.2) with the Euler method is used as the plant model for control

system design.
xpt 1) Ap( D)xp(0) Bp(() h( (D) (4.5)
(1) Cpxp(h) (4.6)
where T[s] is the sampling period, x, : [iz i,]" is the plant state, : [, ,]" is the
control input and
R 1
: Z: £ : 5 9
4Ly« 4 T . L% By 1, 5 LL
. 3p me . 0
£y 0 % h( ): 2 g

2
q

usually imposed on the input voltage [41]. To satisfy the constraint, we compute the input

In PMSMs, the norm constraint described by 3 V2 ., where Vi, @ Vg 3is

voltage by

@O #u@) (4.7)

where u 2 is a new control signal, Also, V and max are defined by V- maxd and
max . Vmax 2, Tespectively.

For the system (4.5), (4.6), we make the following assumption.
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Figure 4.1: Relationship between the d-q rotating frame and the u-v-w reference frame

Assumption 4 w satisfies w(t) € [w,w],¥t > 0, where w and w are constants such that

w < w.

Note that, in this case, the matrix 4,(w) can be represented as 4,(w) = Y2 Bs(w)4 s
where 4y = Ap(w), Apr = Ap(w), B1.B22>0and B + B> = 1.

In this chapter, we consider the following problem.

Problem 2 Consider the system (4.5)—(4.7). Assume that w(f) € [w,w],¥t > 0. Design
a control law u(t) = K(xp(?),w(t),r(t)) that ensures closed-loop stability and achieves

limy_, y(£) = r(f), where v(f) = r,Nt > 0 and r is a constant.
In this chapter, we compute the signal u(7) by

u(f) = o) + h(w(@), (4.8)

where 0 € R? is a new control signal. The system (4.5)—(4.8) is expressed as

%t +1) = A (w®)x,(0)
+Bp[(DHU() + h(w(D))) — h(w(D)]- (4.9)

4.3 Controller Design

In this chapter, we design a controller described by
x.(t+ 1) x:(1) + e(), (4.10)

e() = r®-y@. (4.11)
0o(t) = Fe(0)xc() + Fp()xp(r) + M(0)r(2), (4.12)
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where x, is the integrator state. The design condition of the matrices F.(f) F,(?) and
M(r) will be introduced in this section later. In the proposed control method, by suitably
resetting the controller state x., we attempt to improve tracking control performance. The
detail of the control algorithm will be explained in Section 4.4.

From eqs. (4.9)—(4.11), an augmented system is derived as

x 1) AC @))x@)

B[ #((1) h( () h( )] Er(@) (4.13)
o)  Cx()) D o) (4.14)
where x : [x; x.]" and
_ A,( ) 0O _ B, ) 0
A() ¢, 1 B¢ E
C C, 0 D: I

We also define the following matrices.

Aps O

12
g, F °

7

Note that 4( ) can be expressed as A( ) 2 o )4,
The following result holds.

Lemma 2 There exist matrices and ( ) that satisfy

A ) B() E (4.15)
0 C D (4.16)

Proof) The solution to (4.15), (4.16) are given as

Lo SR (4.17)
3P m 2R - -
(6) ) 3P mg c1pLs

where ¢; and ¢; are arbitrary constants. Q.E.D.

Remark 8 Egs. (4.15), (4.16) could be viewed as an extension of the regulator equation
[8, 24] to a class of LPV systems.
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We define the following variables.

e T O (4.18)
¥ P (4.19)

From (4.13)—(4.19), the error system can be derived as

@ ) AC @) @O Bl 7)) ( O
h(C (@) CC @@ A )] (4.20)

Remark 9 rin (4.19) represents the steady-state value of the state x when the plant output

tracks the step reference signal r. Similarly, ( )r in (4.18) represents the steady-state
value of the signal ~. It should be noted that the solution matrix  to (4.15), (4.16) is
constant. This is a crucial property of the PMSM dynamics. This implies that the steady-
state value of the state does not depend on the varying parameter . Note that, thanks to
this property, the error system (4.20) can be derived. Further, this property will enable us
to design a control law that achieves setpoint tracking under the time variation of the rotor

speed

Remark 10 In general, the steady-state value of the state of LPV systems changes depending
on varying parameters. Hence, setpoint tracking is usually achievable only in the case where

the varying parameter becomes constant.
We make the following assumption.

Assumption 5 The reference signal satisfies P( r hP( )  pax I "T1T§F LZ

The above assumption ensures that the tracking control is achievable under the input
limitation in the steady-state.

In the following, we introduce a polytopic model of a saturation function proposed in
Reference [12]. The following polytopic model will be used to design the feedback controller
(4.10)~(4.12).

Lemma3 [12] Let u ™. Suppose that ; 1forall j I[1 m], then
4@) coEu E; :j I[1 2" 4.21)

where co denotes the convex hull.
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From the above Lemma, it can easily be verified that, for 4  diag[a; an] 0and
; aj, 4(u)canbe expressed as
" N
ot
2?’1
In the following, we introduce a theorem that is used to design the feedback control law

where 0

(4.10)—(4.12). The control law designed based on the following theorem has a structure that
a high-gain control law and a low-gain control law are interpolated by a single scheduling
parameter. The scheduling parameter will be used to tune the trade o between the size of
the region of attraction and tracking performance. The control algorithm will be introduced

in Section 4.4.

Theorem 3 Consider the system (4.13) and (4.14). Suppose that r satisfiesmax [ — 07
h( H® max | 1 2. For given positive definite matrices R, S, positive scalars , o and

1 such that 1, assume that there exist matrices Q; Y; Z; (i 0 1) that satisfy

%
R °Y;
4;0: BE;Y; E;Z) 0 0
i I01] j I[14] s I[1 2] (4.23)
§:> 20 i Io1] 7 112 (4.24)
Oy O (4.25)
where | @ g max [ ( YOr  h( )P and the symbol  stands for symmetric
block in matrix inequalities. Further, for some constant [0 1], we suppose that (0)

(P() O)ywhereP(): O()'O(): (1 )0, O Then, by applying the control
law
@ F()x@® M(C  (0))r@) (4.26)

where F( ): Y()O()LY(): (I )Y, YiandM(  ): () F() tothe
system (4.13) and (4.14), the relations () (P() 0 ¢t 0 lim e 0 hold
Further, J: 5 ('S (1) “()'R(2) () holds, where ( ): (1 ) o 1.
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Proof) From (4.18), (4.19) and (4.26), we obtain *,  F( ) . Hence, the closed-loop system
(4.20), (4.26) can be represented as

(¢ 1) AC @) () B wF() @) (4.27)
where p(F( ) ) :  #(F() () hC ) (C)  h()). We define H( ) :
Z(Ho()' z(): (A )z Zyand : diagl ; o] If (H( ) ) and
max [ 4 ()% A )® max [ I[1 2], then H( )® ()P h( H®
max | I[1 2] [ 7] Hence, in this case, therelation (F( )  ( )r h( )?)

j,‘-l GEFC) () k() EJ,—(H( ) () h()) holds from Lemma 3. Therefore,
the relation #F( ) ) j1 FEF() EjH( ) holds.
By using this relation, if (/) (H( ) )andmax [ — ()% h( )P g 1
I[1 2], the closed-loop system (4.27) can be rewritten as

D (6 OO (4.28)

where (  ): jfl i jC) ) AC) BEF() EJ-H( ¥
On the other hand, from (4.14) and (4.16), the signal e(7) can be expressed as

e(r) C (1) (4.29)
From (4.24), we have

o( )
703 0 7 I 2] (4.30)

Then, by substituting Z( )®  H( )?Q( ) for (4.30) and performing a congruence trans-
formation with block- diag[Q( ) ! 1] and substituting O( ) '  P( ), and applying Schur

complement [3], we have

HOOTHO® Ly 1 o) @31)

"--m|

Equation (4.31) implies that (P( ) 0) H() ).
By carrying out the similar procedures used to derive (4.30) to (4.23), and substitut-
mgZ( ) H()O( )and Y( ) F( )O( ) for the resulting inequality, and performing
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a congruence transformation with block-diag[O( ) ! I I], and multiplying the resulting in-
equality by ( (7)), and summing themup for s 1 2, we have

1P2( )
R SIFz( ) ()M 0 (4.32)
;@) 0 P()!
Further, by multiplying the mequality (4.32) by (¢), and summing them up for ;

1 4, we have

Rfi%ﬁ )
gz = (N 0 (433)
(@® @ o P)!
By applying Schur complement to (4.33), and multiplying the resulting inequality from

the left by ()T and from the right by (¢), and using (4.28) and (4.29), we have

Vi@ 1) V((@®)

% OFS () “JOR () (4.34)

where V( ): TP( ) . From (4.34), we can conclude thatif (0) (P( ) 0)then

i@ V() Y (4.35)

Equation (4.35) implies that (7) (P() 0) 1« 0. On the other hand, it has been
shown that the nonlinearity (F( ) (7)) canberepresentedas (F( ) (7)) j O EF()
EH() ()if (1) (H() )andmax [ o 9% A( )® max [ I[1 2]. From
(4.31) and (4.35), we can state that if the conditions in Theorem 3 hold, the relation (7)
(H() ) t O0Oholds. From (4.34), since (r) 0 (z ), e(t) 0(z ) holds.
Moreover, from (4.34) and (4.35),J ., , (OTS (t) “()TR"(7) ( ) holds. Q.E.D.
Based on Theorem 3, we design a gain (1) Y70, ' which makes the region (P(1) 0)
large and a gain F(0) Y,0,"' which achieves fast convergence of the state in (P(0) 0)
by suitably choosing the parameters o ;, Rand S. Then we construct the control law (4.26)

by interpolating the obtained gains.

Remark 11 When the control law (4.26) is designed based on Theorem 3, the matrix P( )

needs to be determined so that the condition (0)  (P( ) 0)is satisfied for some constant
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[0 1]. This can be achieved by solving the design problem with the constraint (0)
(P1  0). By applying Schur complement, this condition can be rewritten as the following

linear matrix inequality (LMI) condition.

(0) Z 3 0 (4.36)

Also, the conditions (4.23)—(4.25) are LMIs with respect to the variables Q; Y; Z; (i 0 1).
Hence, the design problem of the control law (4.26) that satisfies (4.23)—(4.25) and (4.36)
can be solved e ciently by a numerical optimization algorithm based on an interior point

method|3].

Remark 12 The size of the set (P;  0) mainly depends on the choice of the parameter .
By choosing a larger value as |, the size of the set (P,  0) could be expanded in general.
However, the control law designed based on Theorem 3 can only ensure local stability. This
implies that, when the magnitude of the reference signal r is large, there may not exist a
solution that satisfies the conditions (4.23)—(4.25) and (4.36) even if a large value is chosen

as 1.

Remark 13 If4 Ay, s I[1 2landh( ) O [ 71, Theorem 3 is equivalent to
Theorem 1 of Reference [47].

4.4 Control Algorithm

The control law (4.26) includes the scalar . The upper bound of the cost function J is given
as ( ) , and the function ( ) takes a smaller value when a smaller value is chosen as

Hence, it can be expected that the control performance is improved by minimizing at each
sampling time. Moreover, the state of the controller x. can be used as a tuning parameter to

improve the control performance. Thus, we utilize the following control algorithm.

Algorithm 2

Step 0: Sett 0 and L.

Step 1: Measure x,(t) and ().

Step 2:If  0,set (f) 0andgo to Step 4.
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Step 3: For given xp(1), solvemin 547z, ,s.t.

Y0 -y O (4.37)

Then, set (1) and x.(f) x,.
Step4: dpply (1) AF( O)xp(@®)" x(O]F M( (@) (@)r(r) h( (1)) to the plant (4.5),
(4.6).
Step 5: Compute x.(t 1) by (4.10) and (4.11).
Step6:t t 1andgoto Step 1.

It should be noted that the value of the controller state x. is reset so that the scheduling

parameter is minimized at Step 3 at each sampling time.

Remark 14 The optimization problem of Step 3 in Algorithm 2 is an LMI optimization prob-
lem with respect to  and x.. It has been shown in Reference [49] that the optimization

problem can be solved e ciently by a simple bisection algorithm.

Remark 15 Algorithm 2 is equivalent to the control algorithm in Reference [47] except for

the structure of the control law at Step 4.
As for feasibility of Algorithm 2 and closed-loop stability, the following result holds.

Theorem 4 Consider the system (4.5), (4.6). Assume that (t) satisfies ( ()7 h( (£)?
mx | I[12] ¢ 0. Moreover, assume that there exists X, such that [x,(0)" xc]*
(P(1) r). Then by applying Algorithm 1 to the system (4.5), (4.6), e(f) converges to

zero ast

Theorem 4 is a slightly modified version of Theorem 2 of Reference [47] and can be
readily proven by using the proof procedure of Reference [47]. Hence, we omit the detail of
the proof of Theorem 4 and outline the proof briefly. We assume that x(#)  (P( (7)) r)
holds at time ¢ as shown in Fig.4.2. When the control signal (7) 7(F(C @O)xp()' xc(0)]*
M( (O @Oy h( (1)) isapplied to the system (4.5), (4.6), [x(r) 7]*P( (O)[x(®) 7]
[x(t 1) 7]*P( ))[x(r 1) r]holds from Theorem 3. Hence, for some positive scalar

1, x(r 1) (P( (1) r) holds. This implies that there exists (¢ 1) such
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Figure 4.2: Graphical interpretation of the optimization problem at Step 3 in Algorithm 1. In
this figure, the controller state x, is reset so that a(7 + 1) 1s minimized at time 7 + 1. As the
result, the state at time 7 + 1 1s moved from x(7 + 1) to x(z + 1).

that x(z + 1) € EP(a(t + 1)),n,11r) and a(f + 1) < a(r). Hence, the scheduling parameter
a(r) decreases monotonically and converges to zero. Note that the convergence speed of
the parameter a(7) could be enhanced by resetting the integrator state x. at each sampling
time(see Fig. 4.2). After a(r) becomes zero, the constant high gain feedback control law with
the integral action is applied to the system. As the result, the tracking error e(f) converges to

ZET0.

4.5 Comparison with an existing method

A standard approach to construct a control law for a PMSM is to use a decentralized PI
controller with a decoupling compensator used to cancel the nonlinear coupling terms of the

PMS dynamics [23]. In this approach, firstly, the decoupling compensator defined by

-

1s applied to the system (4.5), (4.6) to cancel the nonlinear coupling terms. Then the follow-

g — Lypwi,

Vg + PLswig + Wpdyg (4.38)

ing decentralized PI controller is used to achieve the setpoint tracking.

x(+1) = x()+e) (4.39)
e(t) = r(®)—y@ (4.40)
3, = Kpe(?) + Krxe(f) (4.41)
ba(t) = Krig(t) (4.42)

o) = Opu()) (4.43)
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where Kp K; and K are feedback gains. When the equality ()  u(7) holds, the closed-
loop system (4.5), (4.6), (4.38)—(4.43) 1s divided into two linear time-invariant systems. The
feedback gains of the controller can be designed by solving two independent state-feedback
controller design problems. In addition, the implementation of the control algorithm on the
computer is fairly easy. Hence, the above control law is very practical. However, when the
signal (7) is saturated, the decoupling compensator (4.38) is no longer e ective. As the
result, the closed-loop stability with the control law (4.38)—(4.43) might not be guaranteed
under such a situation. The analysis of the closed-loop system is di cult problem due to the

nonlinear characteristics of the feedback system.

4.6 Numerical Example

The values of the physical parameters are J;, 235 10 *kgm’> B 11 10 *Nrads,

Ly 7 10°H,R 298 , ,, O0125Wb, V3 100V (s 4082V)andp 2.

The sampling period is chosen as 7; 0 1 ms. For this plant, we designed the control law

(4.26) with S diag[01 01 001], R 10 31, diag[3746 1038], ; 60 o 02,
I, 1Nm, 100rads,” 100rads,c; Oande, O.

Case I: Algorithm 2 is applied.

Case II: Decentralized PI control with the nonlinear decoupling feedback compensa-
tion in Section 4.5 1s applied. The feedback gains are chosen as K 1115 K
1882 K  3202.

Figs. 4.3—4.8 show the results of the numerical simulation for the reference signal »(¢)
02Nm, s 0. Asthe dynamical model of the PMSM to carried out the numerical simulation,
we have used the discretized model of (4.1)-(4.4). The discretization was done using the
Euler method with the sampling period 7; 0 1 ms. The initial values of i;, i, and ~ were
set to zero. In both cases, the maximum values of ; and , are smaller than ., 4082 V.
Further, in both cases, the controlled output converges to the reference signal even though
the rotor speed  increases. In Case II, the controlled output tracks the reference signal with
the 12 5% overshoot, and the settling time 1s 1.6 ms. In Case I, the controlled output tracks

the reference signal without producing the overshoot, and the settling time 1s 0.5 ms.
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Figs. 4.9-4.14 show the results of the numerical simulation for the reference signal
#(f) 1 Nm, ¢+ 0. The initial values of 75, i, and ~ were set to zero. Note that, in this
numerical simulation, the signal , 1s in the saturation region transiently. In Case II, the
controlled output tracks the reference signal with the 30% overshoot, and the settling time
1s 2.2ms. The larger overshoot might occur since the decoupling compensator (4.38) is no
longer e ective and the integrator windup occurs while the signal , 1s saturated. In Case
I, the controlled output tracks the reference signal without producing the overshoot, and the
settling time is 0.7 ms. In the proposed method, the integrator state x. isreset until becomes
zero. Hence, the integrator state x. does not accumulate while the resets are carried out. It
seems that this enables to produce the response without the overshoot.

Figs. 4.15-4.20 show the results of the numerical simulation for the reference signal
r(t) 1 Nm,7 0. In this numerical simulation, the initial values of was set to 70 rad s.
The initial values of i; and i, were set to zero. It can be seen from these figures that the plant
output 1in Case I converges to the reference signal rapidly without producing the overshoot.

All the numerical simulations were performed with the digital computer (Intel Xeon
3.6GHz, 4GB RAM), using MATLAB. The maximum computation time required to solve
the optimization problem in Algorithm 2 was 0.36 ms. The computation time could be

reduced by using a compiled language.

4.7 Conclusions

In this chapter, we have proposed a torque control method for a PMSM under input voltage
limitation. In the proposed control method, the scheduling parameter and the controller state
are updated at each sampling time so that the tracking control performance is improved. It
has been shown that, by using the proposed control method, the setpoint tracking is achiev-
able under the variation of the rotor speed and the input voltage limitation. The control
method in this chapter is only applicable to the case where the reference signal is a step
signal. Hence, it is required to extend the control method so that the time-varying reference
signal can be handled. This extension could be done by introducing a target recalculation

mechanism to the proposed control method. We will study this problem in Chapter 5.
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Chapter S

Torque Control of a PMSM Using a
Reference Governor with Integrator
Resets

In this chapter, we extend the control method in Chapter 4 so that the motor torque tracks a
time-varying reference signal under input voltage limitation and the time variation of the ro-
tor speed. To this end, we introduce a reference governor to ensure feasibility of the control
algorithm. The proposed control law consists of a gain-scheduled control law and the refer-
ence governor. In the proposed control method, in addition to the scheduling parameter and
the controller state, the modified reference signal is determined online so that the transient
response is improved. The e ectiveness of the method is shown by a numerical example and

an experimental result.

5.1 Introduction

The Permanent Magnet Synchronous Motor (PMSM) has been widely used in various indus-
tries due to its characteristics of high e ciency, high torque to inertia ratio, and fast dynamic
performance. The dynamics of the PMSM includes nonlinear coupling terms between the
d-axis subsystem and the g-axis subsystem. A standard approach to construct a control law
for a PMSM is to use a decentralized PI controller with a decoupling compensator used to
cancel the nonlinear coupling terms [23]. The controller of this type is very practical since
the controller design and its implementation on the computer are fairly easy. In general, a

larger control signal is required transiently to achieve higher tracking control performance,
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which would cause control signal saturation. When the control signal is saturated, the de-
coupling compensator is no longer e ective. The design problem of the controller which
guarantees closed-loop stability under control signal saturation is a di cult problem due to

the nonlinear characteristics of the control system.

Recently, several control techniques based on an optimal control theory have been ap-
plied to the control problem of a PMSM. Model predictive control schemes have been ap-
plied to a torque control problem of a PMSM in [13, 54]. Also, a nonlinear optimal control
technique has been applied to a torque control problem of a PMSM in Reference [41]. It has
been shown 1n these literatures that higher tracking control performance can be achieved un-
der input voltage limitation as compared with the standard decentralized PI control approach.
However, in these literatures, the controller is designed under the assumption that the rotor
speed 1s constant. Hence, it seems that further studies are required to examine tracking per-
formance and stability of the control system under the time variation of the rotor speed. For
this problem, in Chapter 4, we have proposed a torque control method that ensures the motor
torque converges to a step reference signal under input voltage limitation and time variation
of the rotor speed. In Chapter 4, a plant model of a PMSM is derived as a linear parameter
varying (LPV) system in which the rotor speed is included as the varying parameter. Then,
we have derived an LMI-based design condition of a feedback controller. However, when the
reference signal is time-varying, feasibility and stability of the control algorithm in Chapter

4 are not guaranteed.

In this chapter, we extend the control method in Chapter 4 so that the motor torque tracks
a time-varying reference signal under input voltage limitation and the time variation of the
rotor speed. Such a control law is typically required in traction control of an electric vehicle.
To this end, we develop a motor torque control law that consists of the feedback control
law of [50] and a reference governor [51]. In the proposed control method, in addition to
the scheduling parameter and the controller state, the modified reference signal is determined
online so that the transient response is improved. In the proposed control method, the control
signal is computed by solving a convex optimization problem at each sampling time. The

e ectiveness of the method is shown by a numerical example and an experimental result.

Notations: For a vector u ™ and a diagonal matrix 4 [a; an] 0, we define the
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saturation function as  4(u) : (4 (1) a, (Um))T, Where

a;SEnl u; U da;
ai(”i) : 1 gl( I.) 1 1

U; ; a;
If4 I, wewill omitit. Forapositive definitematrix P " ", a vector " and a positive
scalar ,wedefine P ): x ":(x )Pk ) . For a matrix F 75 e

define (F): x ":FOx 1i 1 m , where F® denotes the ith row of F. For
integers k; and k, such that &y k>, we define Ilky k] : [k ki 1 k>]. Let  be the set
of m m diagonal matrices whose diagonal element are either 1 or 0. There are 2™ elements
in . Suppose that each element of  is labeledas E; j 1 2 2™ Also, we define
E;: I E;

5.2 Problem Formulation and Preliminaries

The PMSM is composed of a permanent magnet rotor and stator windings. The PMSM stator
has three coils spatially separated by 120 degree each other. A rotating magnetic field is
generated by the three-phase current, and the magnetic torque is generated by the interaction
of the rotating magnetic field and the flux of the permanent magnet[54]. In the control system
design for PMSMs, the d-g rotating frame is commonly used, since AC signals appear as DC
ones in the d-q rotating frame. Fig. 5.1 shows the relationship between the d-q rotating frame
and the u- - reference frame. In this figure, 1s the angular position of the rotor, and p is
the number of pole pairs. The dynamics of a PMSM in the d-g rotating frame is described
by the following state equation [32].

xpt 1) Ap( D)xp(1) Bp((D) h( (1) (5.1)
(1) Cpxy(1) (5.2)
where x, : [ig i5]" is the plant state, : [ ; ,]” is the control input and
R
_ . ., P I
A,( ) I T » L% B, : LSI
0
Qs f 2= Ry
P 2 ( ) p =

T 1s the sampling period. i, i, are stator currents in the d-g frame, and ; , represent

stator voltages in the same frame. 1is the rotor speed. is the electric magnetic torque. L;
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Figure 5.1: Relationship between the d-¢q rotating frame and the u-v-w reference frame

is the stator phase winding inductance. ¢ denotes the flux of the permanent magnet. J; 1s
the rotor moment of inertia. B, is the viscous coefficient. R denotes the stator resistance.

In PMSMs, the norm constraint described by v} + v < Vi, Where Vi = Vac/ V3 is
usually imposed on the input voltage [41]. To satisfy the constraint, we compute the input

voltage by
o(f) = Op(u(?)). (53)

where # € R? is a new control signal, Also, V and Umax are defined by V = Umaxd and
b = Wt XD respectively.
For the system (5.1), (5.2), we make the following assumption.

Assumption 6 w satisfies w(t) € [w, W], VYt > 0, where w is a positive constant and w = —@.

Note that, m this case, the matrix 4,(w) can be represented as 4,(w) = >2 Bs(w)4 s>
where 4,; = 4,(w), 4pp = Ap(w), B1.5> = 0and By + B, = 1.

In this chapter, we consider the following problem.

Problem 3 Consider the system (5.1)—(5.3). Assume that w(f) € [w,w],¥t > 0. Design a
control law u(t) = K(xp(t), w(1), r(t)) that minimizes the tracking error =(t) = r(t) — y(t) at
each sampling time and achieves lim,_,, y(f) = r(f) if r(t) = r,Nt > Ty, wherer is a reference

signal and r is a constant.

In this chapter, we compute the signal u(7) by

u(f) = i) + h(w(@), (5.4)
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where © 2 is a new control signal. The system (5.1)—(5.4) is expressed as

5 1) Ap( O)x(0)
BI( 7@ h( 0) (@) (5.5)

5.3 Controller Design

In this chapter, we design a controller described by

x(t 1) x(r) e (5.6)
e (0 @ (5.7)
() FeOx(t) FpOxp() M) (1) (5.8)
where x, is the integrator state, 1s the modified reference signal. The design

condition of the matrices F(f) F,(t) and M(z) will be introduced in this section later. In the
proposed control method, by suitably resetting the controller state x., we attempt to improve
tracking control performance. The detail of the control algorithm will be explained in Section
54.

From eqs. (5.5)—(5.7), an augmented system is derived as

x(t 1) AC @0)x(@)
Bl #(C(® h( @) h( )] E @ (5.9)
ey Cx() D () (5.10)

where x : [x; x.]" and

_ Ap() 0 ) B, _ 0
A( ): c, I Bz 0 E: I
(: Cp 0 o i

We also define the following matrices.

dps 0 s 12

G T

A

Note that 4( ) can be expressed as A( ) = ¢ o0 )
The following result holds.
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Lemma 4 There exist and ( ) that satisfy

AC) B() E (5.11)
0 C D (5.12)

Proof) The solution matrices to (5.11), (5.12) are given by

c L
11 ( clRp 5
R
Pom P
— cp L
6’2 Pm lp ]

where ¢; ¢, are arbitrary constants. (Q.E.D.)

Remark 16 Egs. (5.11), (5.12) could be viewed as an extension of the regulator equation to
a class of LPV systems.

We define the variables ", : = () g - . We make the following assumption.

Assumption 7 The reference signal r satisfies r(t) r t Oand O (@) hP()

The above assumption ensures that the tracking control is achievable under the input
limitation in the steady-state.

In the following, we introduce a theorem that is used to design the feedback control law
(5.6)(5.8). The control law designed based on the following theorem has a structure that
a high-gain control law and a low-gain control law are interpolated by a single scheduling
parameter. The scheduling parameter will be used to tune the trade o between the size of
the region of attraction and tracking performance. The control algorithm will be mntroduced

in Section 5.4.

Theorem 5 Consider the system (5.9) and (5.10). Suppose that (&) is a step reference signal
such that rand OC) KO ) i [ 711 12 For given positive
definite matrices R, S, positive scalars , oand 1 suchthat 1, assume that there exist
matrices Q; Y; Z; (i 0 1) that satisfy
O;
R! 2,

Sl ZQ;' .
4;0; BE;Y; E;Z) 0 O
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i I[01] 7 I[14] s I1 2] (5.14)
gb 30 I01] 1 1012 (5.15)
O O (5.16)

where | : g max [ 4 ( YO ()  h( )P and the symbol  stands for symmetric

block in matrix inequalities. Further, for some constant [0 1], we suppose that (0)

(P() O)ywhereP( ): O()' O(): (I )O, O Then, by applying the control

law

(0 F()x( M( () @) (3.17)

where F( ) : Y()O()L¥Y(): (1 Yo YiandM( ): () F() to
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the system (5.9) and (5.10), the relations (f) (P() 0 t 0 lim, e Ohold
Further, J: ., ('S (1) "“()™R,(2) () holds, where ( ): (1 ), 1.

Based on Theorem 5, we design a gain F(1)  ¥; 0, which makes theregion (P(1) 0)
large and a gain F(0) Y,0,"' which achieves fast convergence of the state in (P(0) 0)
by suitably choosing the parameters , ;, RandS. Then we construct the control law (5.17)

by interpolating the obtained gains.

5.4 Control Algorithm

The control law (5.17) includes the scalar . The upper bound of the cost function J is given

as () , and the function ( ) takes a smaller value when a smaller value is chosen as
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Hence, it can be expected that the control performance is improved by minimizing at each
sampling time. Moreover, the state of the controller x. can be used as a tuning parameter to

improve the control performance. Thus, we utilize the following control algorithm.

Algorithm 3

Step 0: Sett 0 and L.

Step 1: Measure xp(t) and r(t).

Step 2:If  0,set (f) 0andgo to Step 4.

Step 3: Set © 1 and solvemin- 3. (r(f) ) 3, subject to

(1) <oy O (5.18)

Xe¢
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w |rad/s|

time  [ms]

Figure 5.8: [rad s]
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time  [ms]
Figure 5.9: ,[V]
()P h()?
I 12 [
Then,set (f) 1 () ~,x/(tf) xcandgo to Step 5.
Step 4: Set ~  r(t), solve min- o1y z, , subjectto (5.18). Then, set (t) =~ () r(2),

x(f) x..

Step 5: Apply (1) A(F( O x@OF M( @) (@) () h( ) to the plant
(5:1),(5.2).

Step 6: Compute x.(t 1) by (5.6) and (5.7).

Step7:t t 1andgoto Step 1.
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Figure 5.10: PMSM
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The above algorithm can be considered an extension of the method in [51] to an LPV
system. In the above control algorithm, the reference signal is modified at Step 3 so that
the feasibility of the control algorithm is ensured. It should be noted that the value of the
controller state x, is reset so that the value of ~ (#(1) ") 3 is minimized. The optimization

problem at Step 3 corresponds to the reference governor.

The optimization problems at Steps 3 and 4 in Algorithm 3 are convex optimization

problems with LMI constraints.



60 Chapter 5 PMSM with Reference Governor

1 1 1 1 1
0 05 1 1.5 2 25 3
time[s]

Figure 5.12: [rad s]

1 1 1 1 1
0 0.5 1 1.5 2 25 3
time[s]

Figure 5.13: ,[V]

5.5 Numerical Example

The values of the physical parameters are J;, 235 10 *kgm’> B 11 10 *Nrads,
Ly 7 10°H R 298 , ., 0I25Wb, n, 100 Vand p 2. For this
plant, we designed the control law (5.17) with §  diag[01 01 001], R 10 °I,

diag[3746 1038], ; 60 o, 02, I, 1Nm, 100 rads, ~ 100 rad s,
¢ ¢ 0. The sampling period is set to 7, 0 1 ms. Figs. 2 and 3 show the numerical
simulation results for two di erent reference signals. The initial values of iz, i; and ~ were
set to zero. In Figs. 2 (a) and 3 (a), the solid lines show the plant output and the dashed lines
show the reference signals. It can be seen from these figures that, in both cases, the plant

output tracks the reference signal even though the rotor speed changes under the input
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voltage limitation.

5.6 Experiment

Fig. 4 (a) shows the experimental setup. The values of the physical parameters are J;

20 10°kgm* B 30 10*Nrads,L; 025 10°*H, R 025 , ,, 00185
Wb, max 24 Vand p 4. For this plant, we designed the control law (5.17) with
S diag[0101001,R 10°I, ; 60 , 02, I, 1Nm, 100 rad s,
— 100rads,c; ¢ 0. In these experiments, SH7216 (32bit microprocessor) is used
to calculate the control signal at each sampling time. The sampling period is setto 7, 01
ms. Figs. 4 (b)—4 (d) show the experimental result. The nitial values of 75, i, and ~ were
set to zero. In Fig. 4 (b), the solid line shows the plant output and the dashed line shows the
reference signal. It can be seen from these figures that, the plant output tracks the reference

signal even though the rotor speed changes under the input voltage limitation.

5.7 Conclusions

In this chapter, we have proposed a torque control method for a PMSM under input voltage
limitation. The proposed controller consists of a gain-scheduled feedback controller and a
reference governor. In the proposed control algorithm, when the tracking error is large, the
reference governor generates a modified reference signal that can be tracked under the input
limitation. The main feature of the proposed method is that the controller state is reset at
each sampling time so that the tracking control performance is improved. The e ectiveness

of the method has been shown by a numerical example and an experimental result.






Chapter 6

Online Optimization of /» Gain
Performance for Constrained Linear
Systems by Model Predictive Control
with State Resets

In the preceding chapters, we have studied tracking control methods for input constrained
systems and their application to torque control of a PMSM. In this chapter, we consider
disturbance attenuation problem of constrained control systems. In particular, we address
a model predictive control problem for constrained linear systems in the presence of 7, dis-
turbances. In the proposed control method, the feedback gain and the controller state are
updated online so that the /, gain of the system is minimized. The problem of determining
the feedback gain and the controller state 1s formulated as a convex optimization problem
with linear matrix inequality constraints. We show that both feasibility of the control algo-

rithm and the dissipation inequality are guaranteed for all times.

6.1 Introduction

Model predictive control(MPC) is an e ective means to deal with constrained control problems[25].
In the standard MPC approach, in order to improve transient response, a control signal is
computed by solving a finite horizon optimal control problem at each sampling time. Re-
cently, various types of MPC algorithms which are robust against disturbances have been
developed. For example, a min-max optimization based MPC approach has been proposed

in Reference [36]. Also, a tube-based MPC approach has been developed in Reference [26].
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These control algorithms are developed so that feasibility and stability are guaranteed in the
presence of persistent bounded disturbances. On the other hand, several MPC algorithms for
I, disturbance attenuation have been proposed. In the MPC algorithm of Reference [31], the
feedback gain is recomputed online by solving an optimization problem with LMI[3] con-
straints derived from the bounded real lemma. However, feasibility and dissipativity have not
been discussed in Reference [31]. In Reference [5], an MPC algorithm which ensures dissi-
pativity in the presence of /, bounded disturbances has been proposed. In this method, the
dissipation constraint is introduced to ensure the dissipativity. The MPC algorithms in Ref-
erences [31] and [5] could be regarded as an extensions of the MPC algorithm in Reference

[16] to an /, disturbance attenuation problem.

The use of the state reset to improve control performance has been studied in the control
engineering community since 1950s [6, 2]. In this approach, the controller state is usually
reset to zero when its input equals zero. In Reference [48], it has been shown that the tracking
control performance of MPC can be improved by resetting the controller state so that the
cost function is minimized. In Reference [34], an analysis condition of L, performance of
a system with state resets has been derived. Also, in the literature, a design condition of a

feedback controller and a reset condition has been developed based on the analysis condition.

In this chapter, we propose an MPC algorithm which optimizes /, gain performance
under input constraints. In the proposed control method, both the feedback gain and the
controller state are recomputed at each sampling time so that the /, gain is minimized. It
will be shown that the feasibility and the dissipativity are guaranteed for all times. To ensure
the dissipativity, we introduce a modified version of the dissipation constraint of Reference
[5]. We modify the dissipation constraint of Reference [5] so that the dissipativity still holds
even when the state reset occurs. In the proposed control approach, the feedback gain and
the controller state are computed by solving an LMI optimization problem[3]. A numerical

example is provided to illustrate e ectiveness of the proposed method.

Notations: For a vector " we denote its Euclidean normas , : ( )!2 Fora
signal (k) defined on [0 ), we defineits L normas 1, : ( ., (k) (k)'% Fora
positive definite matrix P """ wedenote (P ): x ":x Px . For a matrix

H m 1 we denote the ith row of H as H®. For integers k; and k, such that k;,  k,, we
define I[kl kg] P [k] }\’1 1 kg]
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6.2 Problem Formulation and Preliminaries

Let us consider the system described by

x(t 1) Ax(f) Buu(f) B, (7) (6.1)

=(1) Cx(t) Duu(t) D, (1) (6.2)

where x " 1s a state vector, u ™ is an input vector and z ? 1s an output vector.
P is a disturbance that satisfies ; Bi ¢ 2 . We assume that the

Ly}
above system consists of a plant and dynamics of a controller. Further, we assume that the

structure of the state xis x  [x, x.] , where x, "r 1s the plant state and x, " 1s the
controller state.

The following constraint is assumed to be imposed on the control signal and the state.

() () (6.3)

where P By s M oand s are constant matrices. n, is the number of
constraints. Note that (6.3) 1s an element-wise inequality. For example, in the case of m 1
u(f) 1 can be rewritten in the form of (6.3)with , 0, , [1 1] and [11].

2

The purpose of this chapter is to design a control algorithm in which the feedback gain

and the controller state of the following control law

u(®)  F(0)x(7) (6.4)

are updated at each sampling time so that the /, gain from to z of the system (6.1), (6.2)
and (6.4) 1s minimized under the constraint (6.3).

We initially introduce the following theorem.

Theorem 6 Consider the system (6.1), (6.2). For given positive scalars , assume that

there exist matrices Q Y and a positive constant ~ that satisfy

0
0 I
CO DY D, I 0 (65)
40 BY B, 0 O
@ 0 [ Il n (6.6)

Yo dr
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where the symbol stands for symmetric block in matrix inequalities. Further, we suppose

that x(0) (P ), where P: Q '. Then, by applying the feedback control law
u(t) Fx(r) (6.7)

where F YQ ! to the system (6.1), (6.2), the relations x(f) (P ) t  0and
L) J1(1) t 0 hold. In addition, the following inequality holds.

Z I (6.8)
where

Proof) The closed-loop system (6.1), (6.2) and (6.7) can be rewritten as

Xt 1) x(f) B, () (6.9)
z(7) x(0) Dy (0 (6.10)

where : 4 B F, : C D,F.
By performing a congruence transformation with block-diag [Q ! I I I] on (6.5), and
substituting O ' P for the resulting inequality, we obtain

P
0 I
By "I 0 (6.11)
B, 0 P!

Then, by applying Schur complement to (6.11), we have

2o 1

P B g ~ B

B D, 0 (6.12)

A

By multiplying (6.12) from the left by [x(r) (©) ] and from the right by [x(r) (7)) |
and using (6.9), (6.10), we obtain

| =

Vix@t D) V@) @5 <=0 (6.13)

where V(x) : x Px. From(6.13)and x(0) (P ), we have

1

V(x(n) V(x(0)) @) 3 t 0 (6.14)
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Eq.(6.14) implies that x(r) (P ) t 0.
Furthermore, from Eq.(6.13), we obtain

t t

@3 @) 3 V(x(0) (6.15)
i0 i0
Therefore, we can conclude that Eq.(6.8) holds.
By performing a congruence transformation with
block-diag[Q 1] ! on (6.6), we have
P
0 Op @ 0 1 I[1 ng (6.16)

By applying Schur complement [3] to (6.16), we have

(9 IR (P 9R)
02
P I Il n] (6.17)

Hence, ,x(7) Ju(f) t 0 holds since the relation x(r) (P ) t 0 holds.
Q.E.D.

6.3 Main Results

In this section, we show a control algorithm in which the feedback gain F is updated online
so that the /, gain is minimized. In the proposed control algorithm, the controller state x,

1s also used as a tuning parameter to improve control performance.

Algorithm 4

Step 0: Set¢ 0.

Step 1: Measure x,(7). Attime z 0, go to Step 2. Otherwise, go to Step 3
Step 2: Solve minygp:, ", s.t. (6.5), (6.6) and

xp(7) 0 0 (6.18)

SetP(0) O '.Y(0) 7Y x(0) =x,x0) [x,(00 x.].p0) x(0) P(0)x(0)and go to
Step 5.
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Step 3: Solve minyp;, ~, s.t. (6.5), (6.6), (6.18) and

(1)

x;((r) 0 0 (6.19)
where (1): p(0) p( 1) x(f) Pt Dx(?). SetP@r) O Y(®) Y, xA(t) X and
x(t) [x,(r) x.] . If the above optimization problem is infeasible, set P(r) P(t 1),
Y(r) Yt 1)andx(r) x(7).

Step 4: Update p(f) by p(r) p(t 1) [x(t) Pt 1)x(r) x(r) P()x(0)].
Step 5: Apply u(r) F(0)x(r) with F(r) Y(r)P(¢) to the plant (6.1), (6.2).
Step6: ¢+ + 1andgotoStepl.

It should be noted that the controller state x. is reset at Step 2 and Step 3 so that " is
minimized when the optimization problem is feasible. The optimization problems at Step 2
and Step 3 are LMI optimization problems with respect to the variables O Y and x.. Hence,
the problems are convex optimization problems.

As for Algorithm 4, the following results hold.

Theorem 7 Consider the system (6.1), (6.2). Assume that there exist Q Y x. which satisfy
the constraints at Step 2 at time't 0. Then, by applying Algorithm 4 to the system (6.1),
(6.2), the feasibility of the algorithm holds for all time. Further, the following inequality
holds.

Z 1 ( ) (6.20)

where  : max (1) ()

Proof of Theorem 7) Firstly, we show that the feasibility holds for all time. From the
assumption, x(0) (P(0) ) holds. Hence, at time # 0, the parameters P(0) and Y(0)
are determined by solving the optimization problem at Step 2. Then, the control signal is
calculated at Step 5 and applied to the plant. At time 7 1, if the optimization problem at
Step 3 is feasible, P(1), Y(1) and x. are obtained by solving the optimization problem. On
the other hand, if the optimization problem is infeasible, P(1), Y(1) and x. are chosen as

P(1) P(0), Y(1) Y(0)and x. x.(7). Hence, it is possible to determine the parameters
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at time r 1. The same arguments hold for # 2 3 . Hence, we can conclude that
Algorithm 4 is feasible for all time.
Then we show that the inequality (6.20) holds. It follows from (6.13) that the following

inequality holds at each sampling time.

x(t 1) P(x(t 1) x(r) P()x(r)
2 1 _ 2
03 = @ (1) 3 (6.21)

Hence, from eq. (6.21), we have
x(t 1) P(Ox(r 1)

@ PG Dx@) x(@) POXD)]

x(0) P(0)x(0)

L2 63 (622)

P

Let us consider the second term of the left-hand side of the inequality (6.22). From the

equality p(f) p(t 1) [x(t) Pt 1)x(r) x(f) P(¢)x(z)] at Step 4, the following relation
holds.

p(0) pi 1)

t1

[x() PG Dx() x() P@X@)] (6.23)

Tl
Firstly, we suppose that the optimization problem at Step 3 is feasible at time 7. Then, from
(6.19), we have

p0) pz 1) x(&) Pt L)x(r)
(7)) POX) 0 (6.24)

From (6.23) and (6.24), the following inequality holds.

[xG) PG Dx() () P@HI@] 0 (6.25)

il
It should be noted that the above inequality holds at all times when the optimization problem

at Step 3 is feasible. Then, we suppose that the optimization problem at Step 3 is infeasible
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at time 7. In this case, the equality
x(f) Pt Dx(r) x(r) P(H)x(x) O (6.26)

holds, since P(f) and x(r) are chosen as P(r) P(t 1)and x(r) x(¢) at that time. Hence,
from the above discussion, we can conclude that the inequality (6.25) holds for all time.

Hence, from (6.22), (6.25)and x(r 1) P(f)x(r 1) 0, we have

t

1 > ;
@ D3 @3 x(0) P0)x(0) (6.27)
i1
The above inequality holds for ¢ . Hence, we can conclude that the inequality (6.20)

holds. Q.E.D.

Remark 17 In this remark, we provide comments on the convergence property of the state x
when Algorithm 4 is carried out. It has been shown in Theorem 7 that the inequality (6.20)
holds. This implies that z(t) 0, (¢ ) holds. Hence, if the matrix C D1 F is full column
rank, the state x also converges to zero since the equality z (C DF)x D, holds. It
would be di  cult to make C D\ F be a full column rank matrix in general since the matrix
F is time-varying. However, in the case of D1 0, it would be possible to make the matrix

C D\ F be a constant full column rank matrix by adding extra outputs to z.

Remark 18 4 moving horizon H control problem for constrained linear systems has been
studied in Reference [5]. In the method of Reference [5], the state-feedback gain is updated
online by solving an LMI optimization problem. It has been shown in Reference [5] that the
dissipation inequality holds when the dissipation constraint introduced in Reference [5] is
added to the optimization problem. Algorithm 4 has been developed based on the idea of
Reference [5]. The relationship between the proposed method and the method in Reference
[5] is explained as follows.

The inequality (6.19) corresponds to the dissipation constraint of Reference [5]. More
specifically, the inequality (6.19) is equivalent to the dissipation constraint of Refer-
ence [5] when x is replaced with x(t). It should be noted that, by this modification, the

dissipation inequality still holds even when the resets of the controller state occur:
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In the method of Reference [5], the Lyapunov matrix Q and the feedback gain matrix Y
(which correspond to Q( ) and Y( ) in this chapter) are updated online by solving an
LMI optimization problem. In contrast, in the proposed method, the decision variables
for online computation are ~ and x. only. This enables us to solve the optimization

very e ciently.

Remark 19 In Reference [20], we have proposed a gain-scheduled control law with state
resets for attenuating |, disturbances. In this approach, a control law with a scheduling
parameter is designed o ine based on a parameter dependent Lyapunov function, and the
scheduling parameter and the controller state are updated online so that the disturbance per-
formance is improved. The control method of Reference [20] requires smaller computation
time as compared with the proposed method. However, the control performance achieved by
Reference [20] depends on the choice of the feedback gain designed o ine. Hence, careful
consideration is required in designing the feedback gain. Also, the structure of the feedback

gain is restrictive as compared with that of the proposed control law.

Remark 20 The proposed control method can be extended to observer-based output feed-

back control by applying a similar procedure as in Reference [37].

Remark 21 The proposed control method could be applied to systems with a hierarchical
structure[33, 15]. For example, in Reference [33], a disturbance attenuation control prob-
lem for a ship by means of an active mass damper has been studied. In the literature, a
position tracking controller for a movable mass is designed at the first stage. At the second
stage, a disturbance attenuation controller is designed in which the reference signal for the
position control system of the movable mass is used as the control input. This control prob-
lem could be handled within the proposed control framework by regarding the state of the
position tracking controller for a movable mass and the position reference signal as x. and
u, respectively. Also, the constraints on the movable area of the mass and the actual control
signal calculated by the position servo controller could be rewritten in the form of (6.3). It

should be noted that the actual control signal is not always equivalent to the signal u.

Remark 22 In this remark, we explain the relationship between the proposed method and

the existing MPC methods that can be used in the presence of disturbances. In References
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Figure 6.2: /, gain (solid: Case 1, dash-dot: Case 2, dashed: Case 3)

[36, 26], MPC algorithms that ensure feasibility and stability in the presence of persistent
bounded disturbances have been developed. Also, in References [21], an MPC algorithm
that rejects the e ects of deterministic disturbances has been proposed. In these methods,
an open-loop optimal control sequence is determined at each sampling time so as to opti-
mize disturbance attenuation performance. On the other hand, in References [31, 5, 14, 7],
several MPC algorithms that optimize the I, performance in the presence of I, bounded dis-
turbances. Unlike the MPC methods in References [36, 26, 21], the variable-gain feedback
control law described by u(f)  F(t)x(t) is used in these literatures. As far as we know, the
MPC methods for attenuating I, bounded disturbances adopt the control law of this struc-
ture. This structural constraint on the controller might limit the control performance. In this
chapter, though the control law with the same structure is basically adopted, the controller
state x,. is utilized as the extra degree of freedom to improve control performance. The con-

trol performance could be further improved by incorporating the open-loop optimal control



3

!
A}
01t \l: Case 3

0 5 10 15 20 25 30 35 40 45 50
t

Figure 6.3: Control input « (solid: Case 1, dash-dot: Case 2, dashed: Case 3)

o & kb o

0 5 10 15 20 25 30 35 40 45 50
T

Figure 6.4: State x. (Case 1)

sequence into the control algorithm as in References [36, 26, 21]. The development of such

control method is a future research topic.

Remark 23 When the value of the disturbance can be measured or estimated at each sam-
pling time, it would possible to reduce the value of online. In this case, since the constraint
(6.6) is relaxed when the value of decreases, the control performance could be further

improved.

6.4 Numerical Example

Consider the system (6.1) with the matrices

09 1
4 0 08 B

o =
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andC [10] Dy 0O D, 0. Weassume thatx [x, x| , where x, x, . Also,
we assume that the constraint « 1 is imposed on the control signal. In the following

numerical simulations, we apply the disturbance given by

® 30 11 ¢ 19
0  otherwise

to the system. Also, the initial state of the plant is x,(0)  100. We have applied the

(6.28)

following three types of control laws to the above system.

Case 1: Algorithm 4
Case 2: Algorithm 4 without state resets

Case 3: State-feedback control with a constant feedback gain

The control law in Case 1 is the proposed control law. The control law in Case 2 corresponds

to that in Reference [5]. The control law in Case 3 is designed by solving minyp subject
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to (6.5), (6.6) and x(0) (P ) with x,(0) 0. In all cases, we have chosen 30 and

8100.

Figs. 6.1-6.5 show the simulation results. The solid line shows the simulation result in
Case 1. The dash-dot line shows the simulation result in Case 2. The dashed line shows the
simulation result in Case 3. Fig. 6.1 shows that the magnitude of the controlled output z in
Case 1 is e ectively suppressed as compared with the other cases. Fig. 6.2 shows the value
ofthe /; gain 1in Case 1 is smaller as compared with the other cases. Figs. 6.4 and 6.5 show
that the response of x. in Case 1 is significantly di erent from those of the other cases as the
result of the state resets.

The control algorithms were implemented on the digital computer (Intel Xeon 3.3GHz,
8GB RAM), using MATLAB. The optimization problem in Algorithm 4 was solved by the
interior point method implemented on Robust Control Toolbox. The maximum computation

time required to solve the optimization problem was 18 ms (see Fig. 6.6).

6.5 Conclusions

In this chapter, we have proposed a control law for constrained linear systems in the presence
I, disturbance. In the proposed approach, the feedback gain and the controller state are
updated online so that the /; gain is minimized under the input constraint. The problem of
determining the feedback gain and the controller state 1s formulated as an LMI optimization
problem. It has been shown that the system with the proposed control algorithm is finite-
gain /, stable. To implement the proposed control algorithm, the LMI optimization problem
needs to be solved at each sampling time. Hence, the development of an e cient numerical
optimization algorithm to solve the optimization problem is a future research topic. Also, the

application of the proposed method to practical control problems is a future research topic.






Chapter 7

Online Optimization of Disturbance
Attenuation Performance of Input
Constrained Systems by Gain-scheduled
Control with State Resets

In Chapter 6, we have proposed a /;-disturbance attenuation control method for constrained
control systems. To carry out the control algorithm, we need to solve an LMI optimiza-
tion problem at each sampling time. In this chapter, we show a method for reducing the
computation time required to solve the optimization problem. In this chapter, a control law
with a scheduling parameter is designed o -line, and the scheduling parameter and the con-
troller state is updated on-line so that the /,-gain of the system is minimized. The problem of
determining the scheduling parameter and the controller state is formulated as an optimiza-
tion problem with constraints described by linear matrix inequalities. Then the optimization
problem is reduced to a convex optimization problem with respect to a scalar variable. We
show that both feasibility of the control algorithm and dissipation inequality are guaranteed

for all times.

7.1 Introduction

In Chapter 6, we have proposed a /;-disturbance attenuation control method for constrained
control systems. The control method is based on the mode predictive control. In the control
method in Chapter 6, the feedback gain and the value of the controller state are updated on-

line so that the />-disturbance attenuation performance is improved. To carry out the control

77
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algorithm, we need to solve an LMI optimization problem at each sampling time. Since the
LMI optimization problem is a convex optimization problem, it can be solved e ciently by
an interior point method. However, as shown in the numerical example in Chapter 6, it takes
around 10ms to compute the control signal even when the control algorithm is applied to the
simple second order example.

In this chapter, we show a method for reducing the computation time required to solve the
optimization problem in Chapter 6. In this chapter, a control law with a scheduling parameter
1s designed o -line, and the scheduling parameter and the controller state is updated on-line
so that the />-gain of the system is minimized. The problem of determining the scheduling
parameter and the controller state is formulated as an optimization problem with constraints
described by linear matrix inequalities. Then the optimization problem is reduced to a convex
optimization problem with respect to a scalar variable. Further, we show a method for solving
the optimization problem based on the bisection method. We show that both feasibility of the
control algorithm and dissipation inequality are guaranteed for all times. The e ectiveness
of the method is shown through a numerical example.

Notations: For a vector u ™ we define the multivariable saturation function as () :
( () ()T, where
) sen(u;)  u;

u; u; 1
For a vector " we denote its Euclideannormas ,: (7 )! 2. Forasignal (k)defined
on[0 ), wedefineits , normas 5 : ( ,, (k)7 (k))! % For a positive definite matrix
P "" wedenote (P ): x ":x'Px . Foramatrix H ™", we denote the
ithrow of H as H®. Furthermore, we define (H): x ": H?x 117 1 m . For
integers k; and k, such that &y &k, we define IThk; k) @ [k &y 1 »]. Let  be the
set of m m diagonal matrices whose diagonal elements are either 1 or 0. We suppose that

each element of  islabeledasE; j 12 2™ and denote E,: I E;

7.2 Problem Formulation and Preliminaries

Let us consider the system described by
x(t 1) Ax(t) By (w(t)) B, (?) (7.1)
z(1) Cx() D1 (u(®) D () (7.2)
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where x " 1s a state vector, u ™ 1s an input vector and z ? 1s an output vector.
P is a disturbance that satisfies : Py . We assume that the
above system consists of a plant and dynamics of a controller. Further, we assume that the

structure of the state xis x  [x] x7

17, where x,, "r 1s the plant state and x, *isthe
controller state.

The purpose of this chapter is to design a feedback control law

u®)  F(0)x(7) (7.3)

that minimizes the /,-gain from to z of the system (7.1)-(7.3) at each sampling time and
achieves large region of attraction.

In the following, we show a design method of a control law which has a structure that
a high-gain control law and a low-gain control law are interpolated by a single scheduling
parameter. Then, in Section 7.3, we propose a control algorithm for the obtained control law
and show that the system is finite /,-gain stable.

We introduce the following lemma.

Lemmas5 [11] Let u ™. Suppose that ; 1 j [l m], then (u) can be repre-

sented as  (u) ?ml J(Eju Ej ), whereO ;1 7, ; L

We initially introduce the following theorem which is used to design a feedback con-

troller with a scheduling parameter.

Theorem 8 Consider the system (7.1), (7.2). For given positive scalars , i@ 01
such that "y "1, assume that there exist matrices Q; Y; Z; (i 0 1) that satisfy

O;
0 I
co. DY, Ez)D,d  °
40, B(EY, E,Z)B, 0 0,
i I01] 7 I[1 2™ (7.4)
Z% L0 i Io1] I Il m (7.5)
Qo O (7.6)

where the symbol  stands for symmetric block in matrix inequalities. Further, for some

constant [0 1], we suppose that x(0) (P() Ywhere P( ) : O()!'O():
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(1 )00 Qi Then, by applying the feedback control law

u(®)  F()x(h) (7.7)

where F( ) Y()O( ) YandY( ): (1 )Yy, Y, tothesystem(7.1), (7.2), therelations
x(®) (P() ) t 0 and the following inequality holds.

zp () (7.8)
where (): "()?* "(): (I Yo v

Proof) From Lemma 5, while x (H( )), the saturation nonlinearity (F( )x) can be
represented as  (F( )x) ;“-ml GEF() EJ.H( Yx,where H( ) Z()O( ) ' Z( ):
(1 )Z, Z,. Hence, while x(7) (H( )), the closed-loop system (7.1), (7.2) and (7.7)

can be rewritten as

x(r 1) ( @O)x(@®) B, () (7.9)
z(1) ( M)x@® Dy () (7.10)

where ( (9): ?ml M ;i ABEF()EHC), (0): iml OB E
C DiEF() EH().
From (7.5), we can show that H( YPTH( )® L P( ) [ I[1 m]. This implies that

(P( ) ) (HC)).
Also, from (7.4), we can show that

Ve D) Va0 O3 <50 (7.11)
where V(x) : xTP( )x. From (7.11) and x(0) (P( ) ), wehave V(x(r)) V(x(0))
(3 @3 t 0. This implies that x(r)  (P( ) ) t 0. Hence, we can

conclude that the relation x(7) (H( )) t 0 holds. Furthermore, from Eq.(7.11), we
obtain ;, z(@); () [, ()3 V(x(0)) . Therefore, we can conclude that Eq.(7.8)
holds. Q.E.D.
In this chapter, based on Theorem 8, we design a gain F(1) Y;0,' which makes
(P(1) ) large and a gain F(0)  Y,0," which achieves small /,-gain (0)in (P(0)
). Then we construct the control law (7.7) by interpolating the obtained gains.
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Figure 7.1: Invariant set

7.3 Main Results

In this section, we show a control algorithm in which the parameter of the control law
1s actively changed online so that the disturbance attenuation performance is enhanced. In
addition to ., the controller state x. can be used as a tuning parameter to improve control
performance. Hence, in this section, we show a control algorithm that enhance disturbance
attenuation performance by suitably determining and x, online. The function ( ) takes
a smaller value when a smaller value is chosen as . Hence, it can be expected that the
disturbance attenuation performance is improved when the smaller value is chosen as  at
each sampling time. Also, from Theorem 8, for a constant | a set of initial state in which the
l,-gain performance is guaranteed under the control law (7.7) 1s given by (P( ) ). With

these in mind, we propose the following gain-scheduling control algorithm.
Algorithm 5

Step 0: Setr 0.

Step 1: Measure x,(z). If # 0, go to Step 2. Otherwise, go to Step 3.

Step 2: Solve min- g1yz, ~, S.t.

%0 oy O (7.12)

C

Set (1) ",x[() Xcandx(r) [x,(0" xI]", p(0) x(0)"P( (0))x(0) and go to
Step 5.
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Step 3: Solve min- g3z ~,s.t. (7.12) and

®)

50 ey O (1.13)
where (1) : p(0) pGt 1) x(OTP( ¢ 1)x(). Set () ~.x(f) % and
x(1)  [xp()T xT]T. If the above optimization problem is infeasible, set (r)  (r 1)
and 5¢)  x(0).

Step 4: Update p() by p(t) p(t 1) [x(®O'P( ¢ D)x@) O'P( 0)x(@)]-
Step 5: Apply u(f) F( (£))x(¢) to the plant (7.1), (7.2).
Step6: ¢+ ¢ 1andgotoStep 1.

In the above algorithm, the constraint (7.13) 1s omitted at time 7 0. Also, Step 3 is
skipped at time ¢ 0. It should be noted that the controller state x, is reset at Step 2 so that
the scheduling parameter is minimized when the optimization problem is feasible. The
optimization problem at Step 2 1s an LMI optimization problem with respect to the variables
" and x.. Hence, the problem is a convex optimization problem. A method for solving the
optimization problem is explained in Remark 25.

As for Algorithm 3, the following results hold.

Theorem 9 Consider the system (7.1), (7.2). Assume that there exist matrices Q; Y; Z;
which satisfy the matrix inequality conditions (7.4)—(7.6). Further, assume that x(0)

(P(1) ). Then, by applying Algorithm 5 to the system (7.1), (7.2), the feasibility of the
algorithm holds for all time. Further, the following inequality holds.

zy, M 5 ) (7.14)

Proof of Theorem 9) Firstly, we show that the feasibility holds for all time. From the
assumption, x(0) (P( (0)) ) holds. At time r 0, the parameters (0) and x. are
determined by solving the optimization problem at Step 2, and the control signal is calculated
at Step 4 and applied to the plant. At time ¢ 1, if the optimization problem at Step 2 is
feasible, the parameters (1) and x, are obtained by solving the optimization problem. On the

other hand, if the optimization problem is infeasible, (1) and x, are chosen as (1) (0)
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and x,  x.(1). Hence, it is possible to determine the parameters at time # 1. The same
arguments hold forr 2 3 . Hence, we can conclude that Algorithm 5 1s feasible for all

time.
Then we show that the inequality (7.14) holds. It follows from (7.11) that the following

inequality holds at each sampling time.

xt DIPC O)x(t 1) X(O)TP( (0)F(0)
03 s (1)} (115)
Hence, from eq. (7.15), we have
x(t DIP( (O)x(t 1)
| [x@'P( G D)x@) XHTP( (ND)]
%(0)"P( (0)x(0)
t 1 500 N 2
L “CG) z(i) 3 (@) > (7.16)
Let us consider the second term of the left-hand side of the inequality (7.16). From the

equality p(f) p(t 1) [x®OTP( (t+ 1)x(r) x(OTP( (9)x(¢)] at Step 3, the relation
p0) p 1) PUx()TP( G 1)x(7) X@)TP( (i))x()] holds. Firstly, we suppose
that the optimization problem at Step 2 is feasible at time 7. Then, from (7.13), we have
p0) p 1) x(OTP( (¢t D)x(d) x@TP( (1))x(r) 0. Hence, the following inequality
holds.

[xOTP( ¢ D)xG) *DTP( @)FD] 0 (7.17)

il
It should be noted that the above inequality holds at all times when the optimization problem
at Step 3 is feasible. Then, we suppose that the optimization problem at Step 2 is infeasible
at time . In this case, the equality x()TP( (tr 1)x(t) x@)TP( ()x(r) 0 holds, since (7)
1schosenas ()  (¢r 1) atthat time. Hence, from the above discussion, we can conclude

that the inequality (7.17) holds for all time.

Hence, from (7.16), (7.17)and x(t 1)"P( ())x(r 1) 0,wehave ;; =@ 2(0) 0]

%(0)TP( (0))x(0). This inequality holds for 7 . Also, the relation "( ) 7 [0 1]
holds. Hence, we can conclude that the inequality (7.14) holds. Q.E.D.

Remark 24 4 moving horizon H control problem for constrained linear systems has been

studied in [5]. In the method of [5], the state-feedback gain is updated on-line by solving

[ SR
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an LMI optimization problem. It has been shown in [5] that the dissipation inequality holds
when the dissipation constraint introduced in [5] is added to the optimization problem. Algo-
rithm 5 has been developed based on the idea of [5]. The relationship between the proposed
method and the method in [5] is explained as follows.

The inequality (7.13) corresponds to the dissipation constraint of [5]. More specif-
ically, the inequality (7.13) is equivalent to the dissipation constraint of [5] when x
is replaced with x(t). It should be noted that, by this modification, the dissipation

inequality still holds even when the resets of the controller state occur.

In the method of [5], the Lyapunov matrix Q and the feedback-gain matrix Y (which
correspond to Q( ) and Y( ) in this chapter) are updated on-line by solving an LMI
optimization problem. In contrast, in the proposed method, the decision variables for
on-line computation are ~ and x. only. This enables us to solve the optimization very

e ciently.

Remark 25 In this remark, we explain a method for solving the optimization problems at

Step 2 in Algorithm 5. It is clear that the optimization problem at Step 2 is equivalent to

5 % ()T
mm st - 0 7.18
nit o) (7.18)
where . min  (t). A method for solving the above optimization problem has been

studied in [49]. The above optimization problem can be reduced to a convex optimization
problem with respect to a scalar parameter. A simple method for solving the optimization

problem based on the bisection method will be shown in Appendix.

7.4 Numerical Example

Consider the system (7.1) with the matrices

09 1
4 0 08 B

o =

1 B

andC [10] Dy 0 D, 0. For this system, we solved a feasibility problem with
LMI constraints in Theorem 8 with *; 2000 ", 72 30 8100 and obtained

Qo Q1 Yo and Yl.
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Figure 7.3: Control input (u) (solid: proposed, dashed: constant gain feedback)

Figs. 7.2-7.5 show the simulation results for x,(0) 100 and

30 11 ¢ 19

() 0  otherwise (-13)

The solid line shows the simulation result with the proposed control law. The dashed line
shows the simulation result with the constant gain feedback control law u(r)  F(1)x(z). It
can be seen from these figures that the controlled output = converges to zero in both cases.
However, it can be seen that, when the proposed control law is utilized, z(7) converges to zero
quickly as compared to the case of the constant gain feedback control law.

The control algorithms were implemented on the digital computer (Intel Xeon 3.3GHz,
8GB RAM), using MATLAB. The optimization problem in Algorithm 5 was solved by the
bisection method explained in Remark 25. The maximum computation time required to solve

the optimization problem was 0.35 ms (see Fig. 7.6).
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proposed
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t

Figure 7.4: Controller state x. (solid: proposed, dashed: constant gain feedback)
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Figure 7.5: Scheduling parameter

7.5 Conclusions

In this chapter, we have proposed a gain-scheduled control law for input constrained discrete-
time systems in the presence /,-disturbance. In the proposed approach, the scheduling pa-
rameter and the controller state are updated online so that the /,-gain is minimized. The
problem of determining the scheduling parameter and the controller state 1s formulated as
an LMI optimization problem and is reduced to a convex optimization problem with a single
variable. It has been shown that the system with the proposed control algorithm is finite-gain

[, stable.
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Figure 7.6: CPU time [s sample]
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Chapter 8

Conclusions

In this dissertation, we have studied online optimization-based control methods for enhanc-
ing tracking and disturbance attenuation performance of constrained systems. The conclu-
sions are summarized as follows.

In Chapter 3, a tracking control for a class of linear parameter varying systems with
input constraints has been proposed. The proposed controller includes a single scheduling
parameter, and the control performance and the size of the region of attraction can be tuned
by the parameter. In the proposed control algorithm, the scheduling parameter and the state
of the controller are determined on-line so that the tracking control performance is improved.
It has been shown that the problem of computing the scheduling parameter and the state of
the controller is reduced to a convex optimization problem with an LMI constraint. Further, it
has been shown that both feasibility of the control algorithm and convergence of the tracking
error are guaranteed when the reference signal 1s constant.

In Chapter 4, we have applied the control method in Chapter 3 to a torque control problem
for a permanent magnet synchronous motor under input voltage limitation. The value of the
system matrix of the PMSM changes depending on the variation of the rotor speed. Hence,
it was required to design a control law that robustly achieves zero tracking error under the
variation of the rotor speed and the input voltage limitation. It has been shown that, by using
the proposed control method, the setpoint tracking is achievable under the variation of the
rotor speed and the input voltage limitation.

In Chapter 5, the control method in Chapter 4 has been extended so that the output torque
of the PMSM tracks time-varying reference signal under input voltage limitation. To this

end, we have combined the controller in Chapter 4 with a reference governor. In the pro-

89



90 Chapter 7 Conclusions

posed control algorithm, when the tracking error is large, the reference governor generates
a modified reference signal that can be tracked under the input voltage limitation. The main
feature of the proposed method is that the controller state is reset at each sampling time so
that the tracking control performance is improved. The e ectiveness of the method has been
shown by a numerical example and an experimental result.

In Chapter 6, we have studied a disturbance attenuation problem for constrained control
systems. In the proposed approach, the feedback gain and the controller state are updated
online so that the /, gain is minimized under input and state constraints. The problem of
determining the feedback gain and the controller state is formulated as an LMI optimization
problem. It has been shown that the system with the proposed control algorithm i1s finite
gain /, stable. To carry out the control algorithm, the LMI optimization problem needs to be
solved at each sampling time.

In Chapter 7, we have shown a method for reducing computation time required to carry
out the control algorithm in Chapter 6. The control law of this chapter has been designed
so that the scheduling parameter and the controller state are updated online so that the /,-
gain 1s minimized. The problem of determining the scheduling parameter and the controller
state has been formulated as an LMI optimization problem and has been reduced to a convex
optimization problem with a single variable. It has been shown that the system with the

proposed control algorithm 1s finite-gain /, stable.
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Appendix A

A Method for Solving the Optimization
Problem

In this section, we show an algorithm for solving the optimization problem at Step 3 in
Algorithm 1 e ciently. In the following, firstly, we transform the optimization problem at
Step 3 to a convex optimization problem with a scalar decision variable. Then, we propose
an algorithm for solving the transformed optimization problem.

By applying the Schur complement to (3.29), we obtain
x »PCYE ) 0 (A.1)
where ¥ : [x; %7]". The condition (A.1) can be rewritten as
XPH)x 278 TP(HYx T TP r 0 (A.2)

We partition the matrices P(") and  as follows.

o PC) PO 1
PO mey PO :

where P;(7) et Po() "p e Py(7) e Me » ™ and Hg: My
Then the inequality (A.2) can be rewritten as
Fe )i %ZPs(F NOxe L) 0 (A3)
where
NC) @ 2x,P() FI(CIP(T) 2RO
L() 5P (T)xp 27°(C TPICT)
TPV T TPC)
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Figure A.1: Apin(@)

It is clear that there exist @ and x, that satisfy (3.29) if and only if there exist @ and x, that
satisfy (A.3). Also, it should be noted that the set of @ and x, that satisfy (3.29) is convex
since the condition (3.29) is an LML

For any fixed a, there exists x, such that A(x.,@) < 0 if and only if the mequality
A(xI, @) < 0 holds, where x! := arg minA(x., @). In the following, based on this fact, we
show a method to compute the minimum value of & that satisfies A(x}, @) < 0. By solving
the equality dA/dx. = 2P3(a)x. + N(a)T = 0, X can be obtained as

= —%P3(&)‘1N(&)T. (A.4)

It should be noted that x? 1s a function of a.

Then we define the following function.
Mgl = A, 8)=A (—%Pg(&)‘lN(&)T, &) (A.S)
Hence, the optimal solution to the optimization problem at Step 3 in Algorithm 1 can be
obtained by solving the following equality.
Agin(a) =0 (A.6)

Further, by substituting @ computed by solving (A.6) for (A.4), x. can be obtamned as x, =
—-1/2P5(a) ' N(a)*.

From the definition of the function Ap,(@), the equality Ap(@) = 0 has a unique solu-
tion on the interval [0, a(f — 1)]. Moreover, Amin(@) takes a negative value at @ = a(r — 1)
(see Fig. A.1). Based on these facts, we show an algorithm for solving the equality (A.6) as

follows.

Algorithm 6
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Step1: Set pmin 0, max (t 1),i 1and ipax.
Step 2: Ifi  imax, Set max and breatk.
Step 3: Compute ™ ( min =~ max) 2-

Step 4: If (") O, thenset . Otherwise, set . . Thenseti i 1
and go to Step 2.

Finiai 1 is an integer. The relative error of the above algorithm is 2 ==_ Hence, we
can obtain =~ with high accuracy by choosing a su ciently large value as 7,,,. When the
optimization problem at Step 3 in Algorithm 1 is solved by Algorithm 6, the closed-loop
stability is assured in the case where the parameter i, 1s chosen so that the solution that
satisfies  (7) (r 1) for all time. It can be expected that such a solution is obtained
by choosing a su ciently large value as 7,,,,. In the above algorithm, it is not required to
compute the gradient and or the hessian. Hence, it is quite easy to implement as a computer

program as compared with the interior point method.



