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Abstract

We introduce the four-zero texture models on the neutrino Dirac mass
matrix and suggest a classification for those textures to investigate the
number of non-zero neutrino mass eigenvalues and the presence of CP vi-
olation in the neutrino sector. Four-zero texture model on the Dirac mass
matrix includes seven model parameters in the contex of type-I seesaw
mechanism. This number of model parameters is less than that of the
general description of the Majorana mass matrix with three right-handed
Majorana neutrinos; three neutrino mass eigenvalues, three mixing angles
and three CP violating phases. The efficient method is proposed to per-
form the numerical analysis for four-zero texture models. We show some
results of the numerical calculations as for correlations among model pa-
rameters, neutrino mass eigenvalues and CP violating phases. These cor-
relations can be explained by the relations arising from the elements of
the effective Majorana mass matrix with four-zero texture. The position
of a non-zero element on the effective Majorana mass matrix, which is as-
sociated with the classification for four-zero textures, fixes the constraints
among parameters. The Majorana mass matrix all of whose elements
are non-vanishing also produce other relations particularly in the case of
four-zero textures.
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1 Introduction

Neutrino is a kind of lepton, which dose not have electric charge. It is known
that neutrino has tiny but non-zero mass by the neutrino oscillation. However,
Standard Model(SM) can not explain their mass, since it includes only left-
handed neutrinos and can not construct their mass terms. Seesaw mechanism
has been suggested to describe their masses and to understand why they are so
tiny [12]. It extends SM by introducing heavy right-handed neutrinos and by
assuming that they are Majorana particles. We study the type-I seesaw model
with three right-handed neutrinos. This mechanism leads to effective Majorana
mass term for light active neutrinos. It is written with Dirac mass matrix and
Majorana mass matrix for right-handed neutrinos.

the Dirac mass matrix and the Majorana mass matrix are parametrized by
15 and 3 parameters respectively in the real diagonal basis for the Majorana
mass matrix and charged-lepton mass matrix. The effective mass matrix is
then expressed by 18 parameters. The general model still has much parameters
by comparing with the number of phenomenological parameters; three mass
eigenvalues, three mixing angles and three CP phases. In this paper, we focus
on the four-zero texture model for the Dirac mass matrix [16, 13, 14, 17]. We
put four zero-elements onto the Dirac mass matrix by hand. The other five
elements remain non-zero. The effective mass matrix of four-zero texture model
is parametrized with seven parameters, which are comparable to the number of
measurements.

There are 9C4 = 126 different configurations of Dirac mass matrix of four-
zero texture model. We develop an efficient method to explore all the config-
urations without examining each form independently. In the method, different
form of Dirac matrices related to each other by permutation of their rows and
columns are classified into several groups. Phenomenological constraints on the
parameters are also imposed according to this classification.

Some flavor symmetries restrict the forms of the Dirac mass matrix and
the Majorana mass matrix [13, 14, 15]. Flavor symmetry reduces the number
of model parameters. The position of zeros on the Dirac mass matrix can be
restricted by some flavor symmetries.

The paper is organized as follows. In section 2, we introduce the type-I see-
saw mechanism which explains the tiny but non-zero masses of neutrino. We
also mention the CP asymmetry in the neutrino sector via neutrino oscillation.
In section 3, we define the notation of our model by using the type-I seesaw
mechanism with three heavy right-handed Majorana neutrinos. We suggest two
specific models; four-zero texture model on Dirac mass matrix in subsection 3.2
and seesaw model with one massless neutrino in subsection 3.3. In section 4,
we study the four-zero texture model on Dirac mass matrix. The 126 different
patterns of zero-elements-configuration on the Dirac mass matrix are classified
into 7 classes. This classification serves for sorting which textures we have to
analyze. In section 5, we make numerical analysis. We first outline how to per-
form the numerical analysis and then explain the efficient method according to
the classification of textures. Some results of calculations are shown in subsec-
tion 5.3. In section 6, the hidden relations among the elements of the effective
Majorana mass are derived and the correlations found in the numerical analysis
are examined from a view point of the hidden relations. Section 7 is devoted to
the summary.
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2 Physics in the neutrino sector

2.1 Seesaw mechanism

Standard Model (SM) does not include any mass terms for neutrino. It needs
to modify the theory according to the existence of neutrino masses. The seesaw
mechanism is suggested as an attractive extension of SM to explain the neutrino
masses and also to understand why are they so tiny.

Since neutrino has no electric charge, it is possible that a neutrino and its
antiparticle are identical to each other. Such a fermion is called as Majorana
fermion. It has yet to be confirmed if neutrino is Majorana or not. Neutrino-
less double beta decay, for example, is expected to be an evidence of that. To
construct the seesaw mechanism, we assume that neutrino is a Majorana particle
and introduce heavy right-handed neutrinos, which are absent in SM.

The most general neutrino mass term is

Lm = −1

2
mL(νL)cνL −

1

2
mR(νR)cνR −mDνLνR + h.c., (1)

where mL and mR are the Majorana masses of left- and right-handed neutrinos
respectively, mD is Dirac mass. Eq.(1) can be rewritten to

Lm = −1

2
(ν)cmνν + h.c., (2)

where

ν ≡
(

νL
(νR)c

)
(3)

and

mν ≡
(
mL mD

mt
D m∗R

)
. (4)

mν is a 6 by 6 complex symmetric matrix. Let us take mL = 0 and use a
real-diagonalized right-handed Majorana mass matrix

mR = M = diag(M1,M2,M3). (5)

mν =

(
0 mD

mt
D M

)
. (6)

Eq.(6) is block-diagonalized by an Unitary matrix

U =

(
iI m†DM

−1

−iM−1mD I

)
. (7)

I is the 3 by 3 unit matrix I = diag(1, 1, 1).

UmνU
t '

(
−meff 0

0 M

)
. (8)

The basis is converted as

ν′ ≡ U∗ν =

(
−iνL
(νR)c

)
(9)
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We define the effective matrix as

meff ≡ −mDM
−1mt

D. (10)

Lm = −1

2
((νL)c, νR)

(
0 mD

mt
D M

)(
νL

(νR)c

)
+ h.c.

' −1

2
((ν′L)c, ν′R)

(
−meff 0

0 M

)(
ν′L

(ν′R)c

)
+ h.c.

=
1

2
(ν′L)cmeffν

′
L +

1

2
ν′RM(ν′R)c + h.c.

(11)

The first term on the last line of Eq.(11) correspond to the mass term of the
active neutrino. The second term is interpreted as the mass term of the sterile
neutrino which hardly interacts with other particles. Since its mass is much
larger than the weak scale, it is decoupled from the experimentally achievable
energy theory. We can thus detect only the active neutrino with tiny mass.

2.2 Mixing and CP phases

The effective mass matrix Eq.(10) is real-diagonalized by an Unitary matrix
and produces three neutrino mass eigenvalues under the condition that charged
leptons are in the diagonal basis.

V †PMNSmeff (VPMNS)∗ =

 m1 0 0
0 m2 0
0 0 m3

 . (12)

mi (i = 1 3) are the neutrino mass eigenvalues. The Unitary matrix VPMNS

which real-diagonalizes meff is called as Pontecorvo-Maki-Nakagawa-Sakata
matrix (PMNS matrix). A conventional parametrization for PMNS matrix is

VPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c13 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 1 0 0

0 ei
α21
2 0

0 0 ei
α31
2

 ,

(13)
where sij = sin θij , cij = cos θij . θ12, θ23 and θ31 are the neutrino mixing angles.
δ is a non-vanishing Dirac CP phase. If neutrino is a Majorana fermion, VPMNS

includes extra two Majorana CP phases α21, α31.
The flavor-basis and the mass-basis of neutrino is related to each other by

means of VPMNS .

VPMNS

 ν1

ν2

ν3

 =

 νe
νµ
ντ

 . (14)

2.3 CP asymmetry in the neutrino sector

Neutrino oscillation is a phenomenon by which a neutrino with specific flavor
changes to that with another flavor during the propagation. The probability
of measuring a particular flavor of a neutrino is expressed as a function of the
distance or of the time how long does it propagate.
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The probability that a neutrino generated with the flavor α at t = 0 is
detected later with the flavor β at t is

P (να −→ νβ) = |
∑
j

(VPMNS)βj exp{−i
∆m2

ji

2E
t}(VPMNS)∗αj |2. (15)

∆m2
ij are the neutrino mass squared differences

∆m2
ij ≡ m2

i −m2
j , (16)

where α, β = e, µ, τ and i, j = 1, 2, 3.
We define the CP asymmetry of neutrino oscillation from the flavor α to β as

the subtraction of transition probabilities between neutrino and anti-neutrino

ACPαβ ≡ P (να −→ νβ)− P (να −→ νβ). (17)

By calculating Eq.(17),

ACPαβ = −4
∑
i<j

Jαβ;ij sin(
∆m2

ij

2E
t). (18)

where
Jαβ;ij ≡ Im{UαiU∗βiUβjU∗αj}. (19)

The following relational expressions about Jαβ;ij hold because of the unitarity
of VPMNS .

Jeµ;ij = Jµτ ;ij = Jτe;ij , (20)

Jαβ;12 = Jαβ;23 = Jαβ;31, (21)

Jαβ;ij = −Jβα;ij , (22)

Jαβ;ij = −Jαβ;ji. (23)

By defining the Jarlskog invariant [23] as

J ≡ Jeµ;12, (24)

we obtain the CP asymmetry independent of specific flavors,

ACP ≡ ACPeµ = 16J sin(
∆n2

12

2E
t) sin(

∆n2
23

2E
t) sin(

∆n2
31

2E
t). (25)

Inserting the elements of VPMNS described in Eq.(13) into Eq.(24), J is ex-
pressed in terms of three mixing angles and the Dirac CP phase,

J = s12s23s13c12c23c
2
13 sin δ. (26)

Eq.(25) and Eq.(26) imply that, if any two mass eigenvalues are degenerate
and/or if at least one of mixing angles or Dirac CP phase equals to zero, CP
symmetry breaking in neutrino sector does not occur.

The Jarlskog invariant can also be expressed in terms of the effective mass
matrix and neutrino mass squared differences,

J =
Im((meffm†eff)eµ(meffm†eff)µτ (meffm†eff)τe)

∆m2
12∆m2

23∆m2
31

. (27)

We define a quantity ∆ as the product of Jarlskog invariant and neutrino mass
squared differences, i.e. it is the numerator of Eq.(27).

∆ ≡ Im((meffm†eff)eµ(meffm†eff)µτ (meffm†eff)τe)

= J∆m2
12∆m2

23∆m2
31

(28)
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3 Model

3.1 Model and parameters

The effective Majorana mass matrix meff of the seesaw model with three right-
handed Majorana neutrino was introduced in Eq.10 in terms of the real diagonal
right-handed Majorana mass matrix M and the Dirac mass matrix mD. We
shall use the diagonal basis in charged lepton sector. We name mDi (i = 1, 2, 3)
as the magnitudes of column vectors of mD

mD = U

 mD1 0 0
0 mD2 0
0 0 mD3

 , U =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 . (29)

U is a non-unitary matrix, which satisfies the following condition∑
α=e,µ,τ

|Uαi|2 = 1. (30)

The column vectors of U are normalized. Three of the 9 phases of U can be
rotated away by flavor-basis transformation. The most general U involves 6
independent moduli and 6 phases. We define a diagonal matrix X as follows

X =

 X1 0 0
0 X2 0
0 0 X3

 , Xi =
m2
Di

Mi
. (31)

Rewriting the meff in terms of U and X [22],

meff = −UXU t. (32)

We define Aij as a inner products of ui.

Aij ≡ u†i · uj , (33)

and an Hermite matrix A whose elements are Aij ,

A ≡ U†U =

 1 A12 A13

A21 1 A23

A31 A32 1

 . (34)

3.2 Four-zero texture model on Dirac mass matrix

A three by three complex matrix U whose column components are normalized
has 15 parameters. There is three degrees of freedom to redefine the phases
form charged leptons. By multiplying a appropriate diagonal matrix diag =
(eα, eβ , eγ), the number of parameters on U is reduced to 12. The matrix X
consists of three parameters. The general meff with three right-handed neutrinos
is therefore parametrized with 15 independent parameters. It still has many in
comparison to 7 experimental observables which include 3 mixing angles, a Dirac
CP violating phase, two mass squared differences, and |(meff)ee|.

To reduce the number of model parameters, we substitute 0s in the elements
of Dirac mass matrix U by hand. We set four of nine elements on Dirac mass
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matrix 0 and the other five non-zero. The configuration of the four-zero texture
in three by three matrix has 9C4 = 126 different patterns. We classify all of
them into some classes in section 4. We develop then an efficient method to
explore all the configurations without examining each form independently in
section 5.

Taking into account of the condition that the column vectors of U are nor-
malized as Eq.(30), 90 out of 126 four-zero textures on U can be expressed by
four parameters after the suitable flavor-basis transformation. For example, one
of the four-zero textures is written as

U =

 cos θ1e
iφ1 cos θ2e

iφ2 1
sin θ1 0 0

0 sin θ2 0

 , (35)

with two angles θ1, θ2 and two non-vanishing phases φ1, φ2. The meff has
seven parameters. Textures in which U has more than five 0 elements either do
not explain the CP asymmetry in neutrino oscillation or result in the minimal
seesaw model with two right handed neutrinos, which causes a zero neutrino
mass. The four-zeros in U is the most minimal texture to produce both the CP
asymmetry and three non-zero mass eigenvalues of neutrino.

36 textures on U are expressed with five parameters. 18 textures include
three angles θ1, θ2, θ3 and two phases φ1, φ2. An example is as follows.

U =

 sin θ1 cos θ2 cos θ3e
iφ1 0

sin θ1 sin θ2 sin θ3e
iφ2 0

cos θ1 0 0

 , (36)

The other 18 textures on U are include two angles θ1, θ2 and three phases φ1,
φ2, φ3. An example is as follows.

U =

 cos θ1 cos θ2e
iφ1 eiφ3

sin θ1 sin θ2e
iφ2 0

0 0 0

 , (37)

3.3 Seesaw model with one massless neutrino

One massless neutrino is still allowed consistent with experimental results. In
such case the analytical discussion can be easily to handle. The minimal model
with two heavy right-handed neutrinos produces automatically one massless
neutrino. We discuss the analysis by means of more general model with three
right-handed neutrinos.

detU = 0 (38)

is a necessary and sufficient condition for the existence of at least one 0 neutrino
mass eigenvalue. Three column components of a three by three matrix whose
determinant equals 0 are not independent each other. One of them is described
as the linear combination of the others. Let us suppose that U is a matrix whose
rank is 2 to explain two non-zero mass eigenvalues and three mixing angles.

U = (u1,u2, au1 + bu2), (39)
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where a and b are complex coefficients expressed in therms of the elements of
U .

a =
A13 −A12A23

1− |A12|2

b =
A23 −A21A13

1− |A12|2
(40)

Since u1 and u2 are linearly independent, |u†1 · u2| < 1 and 1 − |A12|2 6= 0 is
certified. U with rank 2 can be transformed to a triangular matrix T by an
Unitary matrix V using the Gram-Schmidt orthogonal normalization,

V †U =

 0 0 0
0 t22 t23

t31 t32 t33

 . (41)

Expressing V and T in therms of the elements of U ,

V ≡ (v1,v2,v3) = (
u∗2 × u∗1

1− |A12|2
,
u2 −A12u1

1− |A12|2
,u1), (42)

T ≡

 0 0 0
0 t22 t23

t31 t32 t33

 =

 0 0 0

0
√

1− |A12|2 A23−A21A13

1−|A12|2

1 A21 A13

 . (43)

t31 and t21 can be taken real, while t23, t32 and t33 remain complex. By multi-
plying T and its transposed matrix by the diagonal matrix X, it is reduced to
two by two complex symmetric matrix,

TXT t = −

 0 0 0
0 Z22 Z23

0 Z32 Z33

 ≡ −Z, (44)

where

Z22 ≡X2(1− |A12|2) +X3(1− |A13|)2e2iρ,

Z33 ≡X1 +X2A
2
12 +X3A

2
13,

Z23 ≡X2A12

√
1− |A12|2 +X3A13

√
1− |A13|2eiρ,

(45)

and
ρ ≡ arg(A23 −A21A13). (46)

Z is real-diagonalized by the matrix K with three parameters χ, σ1 and σ2,

K†ZK∗ =

 1 0 0
0 m2 0
0 0 m3

 , (47)

where

K ≡

 1 0 0
0 cosχ sinχe−iσ1

0 − sinχeiσ1 cosχ

 1 0 0
0 eiσ2 0
0 0 e−iσ2


=

 1 0 0
0 cosχeiσ2 sinχe−i(σ1+σ2)

0 − sinχei(σ1+σ2) cosχe−iσ2

 ,

(48)
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and

χ ≡1

2
tan−1(

2|Z∗22Z23 + Z∗23Z33|
|Z33|2 − |Z33|2

)

σ1 ≡ arg(Z∗22Z23 + Z∗23Z33)

σ2 ≡ arg{Z22 cos2 χ+ Z33 sin2 χe−2iσ1 − Z23 sin 2χe−iσ1}

(49)

The eigenvalues of Z are

m2 = Z22 cos2 χe−2iσ2 + Z33 sin2 χe−2i(σ1+σ2) − Z23 sin 2χe−i(σ1+2σ2) (50)

and

m3 = Z22 cos2 χe−2iσ2 + Z33 sin2 χe−2i(σ1+σ2) + Z23 sin 2χe−i(σ1+2σ2). (51)

The PMNS matrix corresponds with the product of V and K in the base of
diagonalized charged lepton mass matrix,

VPMNS = V K. (52)

V †PMNSmeffV
∗
PMNS = (V K)†(−UXU t)(V K)∗

=

 0 0 0
0 m2 0
0 0 m3

 .
(53)

4 Classification of four-zero textures

The configuration of the four-zero texture in three by three Dirac mass matrix
U has 9C4 = 126 different patterns. We classify them into seven classes by
imposing conditions in this section.

Let us introduce the matrices Q and P .

P,Q =

 1 0 0
0 1 0
0 0 1

 ,

 1 0 0
0 0 1
0 1 0

 ,

 0 1 0
1 0 0
0 0 1

 ,

 0 1 0
0 0 1
1 0 0

 ,

 0 0 1
1 0 0
0 1 0

 ,

 0 0 1
0 1 0
1 0 0

 .

(54)

We define that P is always multiplied on U from right side and Q from left
side. P and Q correspond to replacements of column and row components
respectively. We classify the configurations of Dirac mass matrix on condition
that any textures in a same class are related to each other by means of the
replacements of row and column components. If we only consider the position of
zero and non-zero elements on the Dirac mass matrix, the configuration between
a texture U and another texture U ′ in the same class is expressed as

U ′ = QUP. (55)

Taking the suitable P and Q, any two textures in the same class are related to
each other by Eq.(55). P replaces the column components of U multiplied from
the right side. Q replaces the row components of U multiplied from the left side.
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The texture Eq.(35) taken as an example in section 3.2 shall belong to the
class (I). All textures in the class (I) are ∗ ∗ ∗∗ 0 0

0 ∗ 0

 ,

 ∗ ∗ ∗∗ 0 0
0 0 ∗

 ,

 ∗ ∗ ∗0 ∗ 0
∗ 0 0

 ,

 ∗ ∗ ∗0 ∗ 0
0 0 ∗

 ,

 ∗ ∗ ∗0 0 ∗
∗ 0 0

 ,

 ∗ ∗ ∗0 0 ∗
0 ∗ 0


 0 ∗ 0
∗ ∗ ∗
∗ 0 0

 ,

 0 0 ∗
∗ ∗ ∗
∗ 0 0

 ,

 ∗ 0 0
∗ ∗ ∗
0 ∗ 0

 ,

 0 0 ∗
∗ ∗ ∗
0 ∗ 0

 ,

 ∗ 0 0
∗ ∗ ∗
0 0 ∗

 ,

 0 ∗ 0
∗ ∗ ∗
0 0 ∗


 ∗ 0 0

0 ∗ 0
∗ ∗ ∗

 ,

 ∗ 0 0
0 0 ∗
∗ ∗ ∗

 ,

 0 ∗ 0
∗ 0 0
∗ ∗ ∗

 ,

 0 ∗ 0
0 0 ∗
∗ ∗ ∗

 ,

 0 0 ∗
∗ 0 0
∗ ∗ ∗

 ,

 0 0 ∗
0 ∗ 0
∗ ∗ ∗

 ,

(56)

where ∗ stands for the non-zero element. The number of combinations multiply-
ing P and Q is 36. However, the class (I) has 18 textures because of overlaps. All
126 textures can be classified into seven independent classes (I)-(VII) without
exception. We define them briefly and give one representation as an example
texture for each class.

(I) There is only one row component in which all elements are non-zero, and
rank U = 3.  ∗ ∗ ∗∗ 0 0

0 ∗ 0

 .... 18 patterns (57)

(II) There is only one column component in which all elements are non-zero,
and rank U = 3.  ∗ ∗ 0

∗ 0 ∗
∗ 0 0

 .... 18 patterns (58)

(III) There are one row and column components in which two elements are
zero, and the common element on the both of such row and column is zero.
Besides, we require that rank U = 3. ∗ 0 0

∗ ∗ 0
0 ∗ ∗

 .... 36 patterns (59)

(IV) There is only one column component in which all elements are zero. ∗ ∗ 0
∗ ∗ 0
∗ 0 0

 .... 18 patterns (60)

(V) There is only one row component in which all elements are zero. ∗ ∗ ∗∗ ∗ 0
0 0 0

 .... 18 patterns (61)
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(VI) There is one row component and one column component in which all
elements are non-zero.  ∗ ∗ ∗∗ 0 0

∗ 0 0

 .... 9 patterns (62)

(VII) There are one row and column components in which two elements are
zero, and the common element on the both of such row and column is not zero. ∗ 0 0

0 ∗ ∗
0 ∗ ∗

 .... 9 patterns (63)

Textures of class (I), (II), (III), (VI) and (VII) are expressed four parameters;
two angles θ1, θ2 and two phases φ1, φ2. Textures of class (IV) are expressed five
parameters; three angles θ1, θ2, θ3 and two phases φ1, φ2 as shown in Eq.(36).
Textures of class (IV) are expressed five parameters; two angles θ1, θ2 and three
phases φ1, φ2, φ3 as shown in Eq.(37).

This classification is useful to investigate the number of non-zero neutrino
mass eigenvalues and the existence of CP breaking phase for each class. Class
(V), (VI), and (VII) lead to that ∆ = 0. We do not consider those three classes
in oder to explain the CP violation in the neutrino sector. A texture with
detU = 0 causes at least one zero mass eigenvalue of meff . Class (IV), (V), and
(VI), whose rank is 2, produce a zero mass eigenvalue for neutrino. Although
the existence of one massless neutrino is still allowed at present, this class (IV)
leads to the same effective Majorana mass matrix as that of the seesaw model
with two right handed neutrinos. Taking more general assumption that all three
mass eigenvalues are non-zero, we do not consider it. From the reasons above,
we adopt three classes (I), (II) and (III). All textures to be investigated in later
sections are parametrized in terms of two angles θ1, θ2 and two phases φ1, φ2.
We summarize the number of neutrino mass eigenvalues and the existence of
CP breaking phase for each classes in Table 1.

5 Numerical analysis

In this section, we perform the numerical analysis of four-zero texture. We have
adopted three classes as acceptable models. There are still 72 textures to be
analyzed. Classes (I), (II) and (III) are more classified into 3, 3 and 6 subclasses
respectively according to the replacement of column components. Each subclass
includes 6 textures. In section 5.1, we outline the method of numerical analysis.
In section 5.2, we define the sub-classification and explain how is it useful for
numerical calculation. In section 5.3, we show some concrete results of the
numerical calculation. We specially focus on the correlations among CP phases,
since they are predictable parameters of physics.

5.1 How to perform the numerical analysis

The meff of four-zero texture model is parametrized with three mass scales
Xi(i = 1 ∼ 3), two angles θ1, θ2 and two phases φ1, φ2 as shown in Eq.(32) and
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Table 1: The number of neutrino mass eigenvalues and the existence of CP
breaking phase for each class

class
represent
texture

Number of
different textures

Number of non-zero
mass eigenvalues

∆

(I)

 ∗ ∗ ∗∗ 0 0
0 ∗ 0

 18 3 non-0

(II)

 ∗ ∗ 0
∗ 0 ∗
∗ 0 0

 18 3 non-0

(III)

 ∗ 0 0
∗ ∗ 0
0 ∗ ∗

 36 3 non-0

(IV)

 ∗ ∗ 0
∗ ∗ 0
∗ 0 0

 18 2 non-0

(V)

 ∗ ∗ ∗∗ ∗ 0
0 0 0

 18 2 0

(VI)

 ∗ ∗ ∗∗ 0 0
∗ 0 0

 9 2 0

(VII)

 ∗ 0 0
0 ∗ ∗
0 ∗ ∗

 9 3 0

Eq.(35). The meff satisfies the following eigenvalue equation [22].

det(meffm
†
eff − λI) = 0. (64)

I is the three by three unit matrix and eigenvalues λ’s correspond to mass
squares. The meff is a complex symmetric matrix. We have to make an Hermite
matrix meffm

†
eff to solve its eigenvalue equation. Eq.(64) is identical to the

following three algebraic equations,

tr(meffm
†
eff) = m2

1 +m2
2 +m2

3, (65)

{tr(meffm
†
eff)}2 − tr{(meffm

†
eff)2}

2
= m2

1m
2
2 +m2

2m
2
3 +m2

3m
2
1, (66)

det(meffm
†
eff) = m2

1m
2
2m

2
3, (67)

where mi(i = 1 ∼ 3) are mass eigenvalues of neutrinos. The left-hand side of
Eqs.(65) -(67) are written in terms of model parameters: Xi , angles θ1, θ2 and
phases φ1, φ2. The numerical values of the right-hand side are fixed with the
neutrino mass squared differences for a given value of the lightest neutrino mass
and hierarchy (normal or inverted ) of neutrino mass spectrum. We randomly
generate a set of values for ∆m2

sol. and ∆m2
atm. within 3 standard deviations from

the mean of the experimental values in the Table 1 of Ref.[25]. We allocate the
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value of the lightest neutrino mass m1(m3) for normal (inverted) hierarchical
case from 0 eV to its upper bound 0.046 eV. Assigning the numerical values
for angles θ1, θ2 and phases φ1 and φ2 randomly from −π to π, since they
are not restricted, Eqs.(65) -(67) become then three equations as for three Xs.
We make a computer solve them and gather the real positive solutions of Xs
and accompanying allocated parameters; θ1, θ2, φ1, φ2, ∆m2

sol., ∆m2
atm. and

m1(m3).
meff is reconstructed in terms of the numerically determined parameters and

solved Xs. By using the obtained meff , we compute mixing angles θ12, θ23, θ13

and three CP phases δ, α21, α31. If all three mixing angles are within 3 standard
deviations from the mean of the experimental values in the Table 1 of Ref.[25],
we take such parameters as a possible model. CP phases and the correlations
among them can be predictions. We collect the set of the parameters which
produce the appropriate mixing angles by repeating this procedure. In principle,
the procedure explained above can be applied to all the textures in class (I),
(II) and (III). However, we do not have to repeat the procedure for all textures
in a class individually. By using some relations of parameters of two different
textures in a class, we can save labor to examine them.

5.2 Sub-classification

The configurations of all textures in a specific class are related to each other
by exchanging their column and rows. Taking the suitable P and Q, any two
textures in the same class are related to each other by Eq.(55). Let us define
X ′ as

X ′ = P tXP. (68)

The m′eff , which is constructed by U ′ in Eq.(55) and X ′ in Eq.(68) through the
definition Eq.(32) in stead of U and X, is expressed in terms of the original meff

and Q.

m′eff = −U ′X ′(U ′)t

= QmeffQ
T .

(69)

The m′eff satisfies the same constraints Eqs.(65)-(67). We introduce a unitary

matrix V which diagonalizes meffm
†
eff ,

V †(meffm
†
eff)V =

 m2
1 0 0

0 m2
2 0

0 0 m2
3

 , (70)

while the mixing matrix V ′ which diagonalizes m′eff(m′eff)† is

V ′ = QV. (71)

If we once do the analysis as for a texture U , we obtain another m′eff by arranging
the elements of meff . The other effective mass matrices in the same class are
calculated out without solving extra eigenvalue equations. Since it reduces
the processing loads of solving eigenvalue equations, the method is much more
efficient for numerical analysis.

Next, we investigate the classification of Eq.(57)-(58) in detail. In each class
of (I)-(III), we further classify the textures into subclasses. The 18 textures
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of the class (I) are classified into three subclasses called class (I)-A, (I)-B and
(I)-C. The Dirac matrices which belong to each subclass have a row with all
non-zero elements. In matrices of class (I)-A, all elements of the first row do
not vanish and in class (I)-B, all of the elements of the second row does not
vanish. In class (I)-C, all of them in the third row have non-zero values. Let
us define subclasses of Dirac matrices called as (I)-B and (I)-C. The matrices in
(I)-B are obtained by multiplying those in subclass (I)-A by

Q =

 0 0 1
1 0 0
0 1 0

 . (72)

In the same way, the matrices in (I)-C are obtained by multiplying those in
(I)-A by matrix

Q =

 0 1 0
0 0 1
1 0 0

 . (73)

We summarize all textures of (I)-A, (I)-B and (I)-C in Table 2. These sub-

(I)-A

 ∗ ∗ ∗∗ 0 0
0 ∗ 0

 ,

 ∗ ∗ ∗∗ 0 0
0 0 ∗

 ,

 ∗ ∗ ∗0 ∗ 0
∗ 0 0

, ∗ ∗ ∗0 ∗ 0
0 0 ∗

 ,

 ∗ ∗ ∗0 0 ∗
∗ 0 0

 ,

 ∗ ∗ ∗0 0 ∗
0 ∗ 0



(I)-B

 0 ∗ 0
∗ ∗ ∗
∗ 0 0

 ,

 0 0 ∗
∗ ∗ ∗
∗ 0 0

 ,

 ∗ 0 0
∗ ∗ ∗
0 ∗ 0

, 0 0 ∗
∗ ∗ ∗
0 ∗ 0

 ,

 ∗ 0 0
∗ ∗ ∗
0 0 ∗

 ,

 0 ∗ 0
∗ ∗ ∗
0 0 ∗



(I)-C

 ∗ 0 0
0 ∗ 0
∗ ∗ ∗

 ,

 ∗ 0 0
0 0 ∗
∗ ∗ ∗

 ,

 0 ∗ 0
∗ 0 0
∗ ∗ ∗

, 0 ∗ 0
0 0 ∗
∗ ∗ ∗

 ,

 0 0 ∗
∗ 0 0
∗ ∗ ∗

 ,

 0 0 ∗
0 ∗ 0
∗ ∗ ∗


Table 2: The subclasses of class (I)

classes can be related to each other by applying the permutation matrix Q on U .
By multiplying the permutation matrix P on a Dirac matrix U in each subclass,

U ′′ = UP, (74)

one can generate all six different matrices which belong to the same subclass.
Eq.(74) corresponds to the specific case of Eq.(55) such that Q is identical to the
unit matrix, and indicates the replacements of columns. The effective matrix
constructed from (U ′′, X ′) is the same as that from (U , X) and it is therefore
diagonalized by the same matrix V . If one finds real solutions of Eq.(64) for Xs
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and if obtained mixing angles are consistent with the experimental results from
neutrino oscillation, it is confirmed that the other 5 textures also have model
parameters satisfying with the constraints from mass eigenvalues and mixing
angles. On the other hand, if one texture does not give any correct mixing
angles, there is no hope that the others would realize the experimental results
either.

Any subclass has 6 textures related by Eq.(74). We carry out the same
manner of classification for class (II) as we have done for class (I). Class (III)
contains 36 textures, therefore it is categorized into 6 subclasses from (III)-A to
(III)-F. We arrange the subclasses in Table 3, by picking up one representation
for each subclass.

class (I) class (II) class (III)

A

 ∗ ∗ ∗∗ 0 0
0 ∗ 0

  ∗ ∗ 0
∗ 0 ∗
∗ 0 0

  ∗ 0 0
∗ ∗ 0
0 ∗ ∗


B

 0 ∗ 0
∗ ∗ ∗
∗ 0 0

  ∗ 0 0
∗ ∗ 0
∗ 0 ∗

  0 ∗ ∗
∗ 0 0
∗ ∗ 0


C

 ∗ 0 0
0 ∗ 0
∗ ∗ ∗

  ∗ 0 ∗
∗ 0 0
∗ ∗ 0

  ∗ ∗ 0
0 ∗ ∗
∗ 0 0


D

 ∗ ∗ 0
∗ 0 0
0 ∗ ∗


E

 ∗ 0 0
0 ∗ ∗
∗ ∗ 0


F

 0 ∗ ∗
∗ ∗ 0
∗ 0 0


Table 3: The classification of textures such that each subclass has six textures

Since all 6 textures in each subclass numerically produce the same meff , we
can consider these 6 textures as the same model to lead the mass eigenvalues,
mixing angles and CP phases. Therefore, it is sufficient to make analysis for
one texture out of six. There are only 12 textures to be investigated. In later
discussion, we use the name of subclass (I)-A to (III)-F as analyzable models.

5.3 Results

We study the results of numerical calculation. The correlations among model
parameters, among mass eigenvalues and among CP phases are shown as Figs.(1-
35) in section 5.3.1, as Figs.(36-43) in section 5.3.2 and as Figs.(48-83) in section
5.3.3 respectively. We select concrete results of numerical analysis for subclasses
summarized in Table 3 according to normal or inverted hierarchical cases. In
Table 4, we show the number of figures which correspond to each subclass.
The correlations among CP phases are explained in more detail because they
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can be predictions and some of them produces characteristic results, which are
comparable with the later discussion in section 6. Neither the cases with few
data nor the cases without strong correlations are not shown.

We also comment on the textures which are not consistent with the ex-
perimental data. We find that subclasses (I)-A, (III)-C and (III)-D in normal
hierarchy case are not consistent with them. The (2,3) and (3,2) elements of
the effective mass matrix built only by these textures are equal to zero, namely
(meff)µτ = (meff)τµ = 0. In inverted hierarchy case, only subclass (II)-B does
not lead to the experimental data. We note it in Table 4 which subclass does
not produce results. In section 6.2.4 and 6.2.5, we explain the reason why these
textures are not consistent with the experimental data in context with the zero-
texture on meff .

5.3.1 Correlations among model parameters

To show the characteristic results for model parameters θ1, θ2, φ1, φ2, X1,
X2 and X3, we select those of subclasses (I)-C(NH) as Figs.(1-5), (III)-A(NH)
as Figs.(6-10), (I)-B(IH),(I)-C(IH) as Figs.(11-15), (III)-B(IH) as Figs.(21-25),
(III)-E(IH) as Figs.(26-30) and (III)-F(IH) as Figs.(31-35). Correlations of θ1 vs
θ2, φ1 vs φ2, X1 vs X2, X1 vs X3 and X2 vs X3 are shown for each subclass.

For the correlation between two model angles θ1 and θ2, all subclasses show
that the similar distributions of plots symmetrically with respect to the lines
θ1 = 0 and θ2 = 0. The same pattern is found in all four quadrant in the
θ1 − θ2 plane. The plots are distributed elliptically in a quadrant. The shape
and spread of those differ depending on the subclasses. The Fig.11 shows the
most clear shape. There are four similar elliptical plots centered on the points
(θ1, θ2) = (π2 ,

π
2 ), (−π2 ,

π
2 ), (−π2 ,−

π
2 ) and (π2 ,−

π
2 ). The Fig.31 also show the

four similar elliptical plots on the θ1− θ2 plane. θ2 is distributed all round from
−π to π, while θ1 appears in the restricted range near θ1 = ±π2

For the correlation between two model phases φ1 and φ2, some subclasses
show the similar characteristic shapes. Fig.7, Fig.12, Fig.22 and Fig.27 shows
the similar net-like distribution. On the other hand, Fig.2, Fig.17 and Fig.32 do
not produce such a characteristic pattern of plots. There are no strong correla-
tion between φ1 and φ2 for those three subclasses. φ2 is distributed all around
from −π to π, while φ1 is restricted in a narrow range. Their distributions are
roughly symmetric with respect to the line φ1 = 0.

For the correlation among model mass-scale parameters X1, X2 and X3,
show that the most of plots gather in a narrow region and that there are two
or three straight lines through the region. This feature is found in all planes
of any two Xs independent of subclasses. For example, in Fig.10, which gives
the correlation between X2 and X3 of subclass (III)-A in NH, plots are found
in the region (0.03eV < X2 < 0.08eV, 0.03eV < X3 < 0.06eV ) and some plots
are also distributed near the two straight lines X2 = X3 and X3 = 0.03ev. The
gradients of straight lines depend on subclasses. Some of them are parallel to
Xi = 0(i = 1, 2, 3).

5.3.2 Correlations among mass eigenvalues

We select the results of subclasses (I)-C(NH) as Figs.(36-39), (III)-A(NH) as
Figs.(40-43) and (I)-B(IH) as Fig.(44-Fig.47). Correlations of m1 vs m2, m1 vs
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Correlations among
model parameters

Correlations among
mass eigenvalues

Correlations among
CP phases

NH IH NH IH NH IH
(I)-A (no result) (no result) (no result)

(I)-B

Fig.11
Fig.12
Fig.13
Fig.14
Fig.15

Fig.44
Fig.45
Fig.46
Fig.47

Fig.60
Fig.61
Fig.62
Fig.63

(I)-C

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5

Fig.16
Fig.17
Fig.18
Fig.19
Fig.20

Fig.36
Fig.37
Fig.38
Fig.39

Fig.64
Fig.65
Fig.66
Fig.67

(II)-A

Fig.52
Fig.53
Fig.54
Fig.55

(II)-B (no result) (no result) (no result)

(II)-C

Fig.56
Fig.57
Fig.58
Fig.59

(III)-A

Fig.6
Fig.7
Fig.8
Fig.9
Fig.10

Fig.40
Fig.41
Fig.42
Fig.43

Fig.48
Fig.49
Fig.50
Fig.51

Fig.68
Fig.69
Fig.70
Fig.71

(III)-B

Fig.21
Fig.22
Fig.23
Fig.24
Fig.25

Fig.72
Fig.73
Fig.74
Fig.75

(III)-C (no result) (no result) (no result)
(III)-D (no result) (no result) (no result)

(III)-E

Fig.26
Fig.27
Fig.28
Fig.29
Fig.30

Fig.76
Fig.77
Fig.78
Fig.79

(III)-F

Fig.31
Fig.32
Fig.33
Fig.34
Fig.35

Fig.80
Fig.81
Fig.82
Fig.83

Table 4: Figure numbers to which subclasses correspond
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Figure 1: θ1 vs θ2 (I)-C in NH
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Figure 2: φ1 vs φ2 (I)-C in NH

0.05 0.10 0.15
0.00

0.02

0.04

0.06

0.08

0.10

0.12

X1

X
2

Figure 3: X1 vs X2 (I)-C in NH
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Figure 4: X1 vs X3 (I)-C in NH
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Figure 5: X2 vs X3 (I)-C in NH
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Figure 6: θ1 vs θ2 (III)-A in NH
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Figure 7: φ1 vs φ2 (III)-A in NH
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Figure 8: X1 vs X2 (III)-A in NH
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Figure 9: X1 vs X3 (III)-A in NH
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Figure 10: X2 vs X3 (III)-A in NH
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Figure 11: θ1 vs θ2 (I)-B in IH
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Figure 12: φ1 vs φ2 (I)-B in IH

0.06 0.08 0.10 0.12
0.00

0.05

0.10

0.15

0.20

X1

X
2

Figure 13: X1 vs X2 (I)-B in IH
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Figure 14: X1 vs X3 (I)-B in IH
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Figure 15: X2 vs X3 (I)-B in IH
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Figure 16: θ1 vs θ2 (I)-C in IH
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Figure 17: φ1 vs φ2 (I)-C in IH
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Figure 18: X1 vs X2 (I)-C in IH
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Figure 19: X1 vs X3 (I)-C in IH
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Figure 20: X2 vs X3 (I)-C in IH
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Figure 21: θ1 vs (III)-B in IH
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Figure 22: φ1 vs (III)-B in IH

0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4

X1

X
2

Figure 23: X1 vs X2 (III)-B in IH
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Figure 24: X1 vs X3 (III)-B in IH

0.1 0.2 0.3 0.4
0.00

0.02

0.04

0.06

0.08

0.10

X2

X
3

Figure 25: X2 vs X3 (III)-B in IH
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Figure 26: θ1 vs θ2 (III)-E in IH
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Figure 27: φ1 vs φ2 (III)-E in IH
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Figure 28: X1 vs X2 (III)-E in IH
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Figure 29: X1 vs X3 (III)-E in IH
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Figure 30: X2 vs X3 (III)-E in IH
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Figure 31: θ1 vs θ2 (III)-F in IH
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Figure 32: φ1 vs φ2 (III)-F in IH
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Figure 33: X1 vs X2 (III)-F in IH
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Figure 34: X1 vs X3 (III)-F in IH
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m3, m2 vs m3 and the lightest neutrino mass m1(m3) vs |mee| are shown.
For the correlations among mass eigenvalues m1, m2 and m3, one find that

two of them are related to positive correlation. The plots on the (m1,m2) planes
in Fig.(36), Fig.(40) and Fig.(44) form a thin linear because of the small value
of ∆msol. independently of hierarchies.

The cases (I)-C in NH and (I)-B in IH, in Fig.(39) and Fig.(47) respectively,
show the clear correlation that |mee| is proportional to the lightest neutrino
mass m1(m2). On the contrary, the case (III)-A in NH, in Fig.(43), does not
show any strong correlation between m1 and |mee|.

5.3.3 Correlations among CP phases

We study the correlations among CP violating phases δ, α21, and α31. We select
the results of subclasses (III)-A(NH) as Figs.(48-50), (II)-A(NH) as Figs.(52-54),
(II)-C(NH) as Figs.(56-58), (I)-B(IH) as Figs.(60-63), (I)-C(IH) as Figs.(64-67),
(III)-A(IH) as Figs.(68-71), (III)-B(IH) as Figs.(72-75), (III)-E(IH) as Figs.(76-
79), and (III)-F(IH) as Figs.(80-83), We first show the Correlations among CP
phases for normal hierarchical case. For subclass (III)-A, whose correlation is
shown in Fig.(48), the dots of (δ, α21) are distributed in a belt on a diagonal
line from one corner to the opposite side. Some dots are also found near the
other corners. Fig.(52) shows the correlation for the subclass (II)-A. δ takes any
values form −π to π, while α21 appears near the value of 0 independent of δ. In
subclass (II)-C in Fig.(56), α21 is roughly proportional to −δ in a range where
both α21 and δ lie from -1 to 1. Strong correlation is not found outside the
range.

Then, we mention the inverted hierarchical case. There is also a character-
istic relation between the Dirac CP phase δ and one of the Majorama phases
α21 in subclasses (I)-B,(I)-C, (III)-A, (III)-B, (III)-E and (III)-F. Their Dirac CP
phase δ and the Majorama phase α21 are found in the restricted range. In these
cases, we do not find no point near δ = 0. The sign of the product of δ and α21

is determined by the subclasses. For (I)-C in Fig.(64), for (III)-A in Fig.(68)
and for (III)-E in Fig.(76), the plotted points (δ, α21) are predicted only in the
second and fourth quadrant. For (I)-B in Fig.(60), for (III)-B in Fig.(72) and
for (III)-F in Fig.(80), they are predicted only in the first and third quadrant.
The absolute value of α21 in (III)-B in Fig.(80) is bigger than those of the other
three subclasses.

We find a correlation between δ and α21 in some subclasses. On the other
hand, the other Majorana phase α31 seems to have no strong correlation neither
with δ nor with α21. We show the figures δ vs α31 for the sake of comparison
with α21.

6 Analyses with hidden relations among elements
of Majorana mass matrix

6.1 Constraints from vanishing elements on meff

In this section, we make a discussion as for textures on the effective mass matrix.
Constructing the effective mass matrices in terms of our four-zero texture model
on Dirac mass matrix, they are categorized into 4 cases from the view point of
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Figure 35: X2 vs X3 (III)-F in IH
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Figure 36: m1 vs m2 (I)-C in NH
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Figure 37: m1 vs m3 (I)-C in NH
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Figure 38: m2 vs m3 (I)-C in NH
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Figure 39: m1 vs |mee| (I)-C in NH
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Figure 40: m1 vs m2 (III)-A in NH
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Figure 41: m1 vs m3 (III)-A in NH
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Figure 42: m2 vs m3 (III)-A in NH
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Figure 43: m1 vs |mee| (III)-A in NH
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Figure 44: m1 vs m2 (I)-B in IH
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Figure 45: m1 vs m3 (I)-B in IH
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Figure 46: m2 vs m3 (I)-B in IH
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Figure 47: m3 vs |mee| (I)-B in IH

Figure 48: δ vs α21 (III)-A in NH Figure 49: δ vs α31 (III)-A in NH
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Figure 50: α21 vs α31 (III)-A in NH Figure 51: δ vs α21 vs α31 (III)-A in
NH
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Figure 53: δ vs α31 (II)-A in NH

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

α21

α
31

Figure 54: α21 vs α31 (II)-A in NH Figure 55: δ vs α21 vs α31 (II)-A in
NH
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Figure 56: δ vs α21 (II)-C in NH
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Figure 57: δ vs α31 (II)-C in NH
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Figure 58: α21 vs α31 (II)-C in NH Figure 59: δ vs α21 vs α31 (II)-C in
NH
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Figure 60: δ vs α21 (I)-B in IH
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Figure 61: δ vs α31 (I)-B in IH
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Figure 62: α21 vs α31 (I)-B in IH
Figure 63: δ vs α21 vs α31 (I)-B in IH
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Figure 64: δ vs α21 (I)-C in IH
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Figure 65: δ vs α31 (I)-C in IH
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Figure 66: α21 vs α31 (I)-C in IH
Figure 67: δ vs α21 vs α31 (I)-C in IH

Figure 68: δ vs α21 (III)-A in IH Figure 69: δ vs α31 (III)-A in IH

Figure 70: α21 vs α31 (III)-A in IH Figure 71: δ vs α21 vs α31 (III)-A in
IH

Figure 72: δ vs α21 (III)-B in IH Figure 73: δ vs α31 (III)-B in IH
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Figure 74: α21 vs α31 (III)-B in IH Figure 75: δ vs α21 vs α31 (III)-B in
IH

Figure 76: δ vs α21 (III)-E in IH Figure 77: δ vs α31 (III)-E in IH

Figure 78: α21 vs α31 (III)-E in IH Figure 79: δ vs α21 vs α31 (III)-E in
IH

Figure 80: δ vs α21 (III)-F in IH Figure 81: δ vs α31 (III)-F in IH
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zero-elements-configuration on meff . Three of them correspond to the zero-off-
diagonal elements of meff . The other case corresponds to the meff whose all
elements are non-zero.

(meff )eµ = (meff )µe = 0, (75)

(meff )eτ = (meff )τe = 0, (76)

(meff )µτ = (meff )τµ = 0, (77)

(meff )αβ 6= 0 (α, β = e, µ, τ). (78)

Regarding our four-zero textures on Dirac mass matrix, the textures in class
(I) and class (III) automatically produce zero-elements on meff , while the tex-
tures in class (II) lead to a meff whose all elements are non-zero. We summarize
it on the table below, which subclass of textures produces zeros on which el-
ements of meff . The textures without zero-elements in meff are also shown in
Table5.

Table 5: The textures on the effective mass matrix

(meff)eµ = 0 (meff)eτ = 0 (meff)µτ = 0 all elements are non-zero

meff

 ∗ 0 ∗
0 ∗ ∗
∗ ∗ ∗

  ∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗

  ∗ ∗ ∗∗ ∗ 0
∗ 0 ∗

  ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗


textures (I)-C (I)-B (I)-A (II)-A

(III)-B (III)-A (III)-C (II)-B
(III)-E (III)-F (III)-D (II)-C

Which off-diagonal element of meff is zero, determine the constraint among
mass eigenvalues, mixing angles and CP phases. Describing each off-diagonal
elements of meff in terms of m1,m2,m3,θ12,θ13,θ23,δ,α21, and α31,

(meff)eµ =
1

2
(−m1c

2
12e

iδ −m2s
2
12e

i(α21+δ) +m3e
i(α31−δ))s23 sin 2θ13

+
1

2
(−m1 +m2e

iα21)c13c23 sin 2θ12,

(79)

(meff)eτ =
1

2
(−m1c

2
12e

iδ −m2s
2
12e

i(α21+δ) +m3e
i(α31−δ))c23 sin 2θ13

+
1

2
(m1 −m2e

iα21)c13s23 sin 2θ12,

(80)

(meff)µτ =
1

2
{m1(c212s

2
13e

2iδ − s2
12) +m2(s2

12s
2
13e

i(α21+2δ) − c212e
iα21) +m3c

2
13e

iα31} sin 2θ23

+
1

2
(m1e

iδ −m2e
i(α21+δ))s13 cos 2θ23 sin 2θ12.

(81)

sij = sin θij , cij = cos θij (i, j = 1, 2, 3)
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If an element (meff)eµ is equal to 0, both Re(meff)eµ and Im(meff)eµ must
be 0. Let us then define functions f1 and f2 of three mass eigenvalues, three
CP phases, and mixing angles,

f1 = −m1c
2
12 cos δ +m2s

2
12 cos(α21 + δ)−m3 cos(α31 − δ)
m1 −m2 cosα21

, (82)

f2 =
m1c

2
12 sin δ +m2s

2
12 sin(α21 + δ)−m3 sin(α31 − δ)
m2 sinα21

, (83)

and a function of mixing angles,

Y1 =
sin 2θ12

2 sin θ13 tan θ23
. (84)

The condition that (meff )eµ = 0 is identical to that

f1 = Y1, (85)

f2 = Y1. (86)

After substituting the experimental values of mixing angles and mass squared
differences ∆m2

sol. and ∆m2
atm., f1 and f2 are regarded as functions of the light-

est neutrino mass and three CP phases, while the value of Y1 is determined.
Eq.(85) and Eq.(86) imply that there are two conditions for four variables m1

(m3), δ, α21, and α31.
As for the condition that (meff )eτ = 0, defining a function Y2 of mixing

angles

Y2 = − sin 2θ12 tan θ23

2 sin θ13
, (87)

two conditions among the lightest neutrino mass and CP phases are written as

f1 = Y2, (88)

f2 = Y2. (89)

We note that the same functions f1 and f2 defined in Eq.(82) and in Eq.(83)
appear in Eq.(88) and Eq.(89).

As for the condition that (meff )µτ = 0, it is written as

f3 = Y3, (90)

f4 = Y3. (91)

where

f3 =
m1(c212s

2
13 cos 2δ − s2

13) +m2(s2
12s

2
13 cos(α21 + 2δ)− c212 cosα21) +m3c

2
13 cosα31

m1 cos δ −m2 cos(α21 + δ)
,

(92)

f4 =
m1c

2
12s

2
13 sin 2δ +m2(s2

12s
2
13 sin(α21 + 2δ)− c212 sinα21) +m3c

2
13 sinα31

m1 sin δ −m2 sin(α21 + δ)
,

(93)
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and

Y3 = − sin 2θ12 sin θ13

tan 2θ23
. (94)

Also in the case of meff whose all elements are not zero, we can find con-
ditions among the lightest neutrino mass and three CP phases. Such meff is
made of a Dirac mass matrix with textures in class(II). By taking an example
from the subclass(II)-B, a Dirac mass matrix of the texture sin θ1 cos θ2 0 0

sin θ1 sin θ2 eiφ1 0
cos θ1 0 eiφ2

 (95)

produces the effective mass matrix

meff = −

 X1 sin2 θ1 cos2 θ2
1
2X1 sin2 θ1 sin 2θ2

1
2X1 sin 2θ1 cos θ2

1
2X1 sin2 θ1 sin 2θ2 X1 sin2 θ1 sin2 θ2 +X2e

2iφ1 1
2X1 sin 2θ1 sin θ2

1
2X1 sin 2θ1 cos θ2

1
2X1 sin 2θ1 sin θ2 X3e

2iφ2

 .

(96)
Let us consider a quantity independent of the phase redefinition for charged
lepton’s flavor basis,

(meff)ee(meff)µτ
(meff)eµ(meff)eτ

. (97)

If meff is given as Eq.(96), the product equals to 1.

(meff)ee(meff)µτ
(meff)eµ(meff)eτ

= 1 (98)

We generalize this condition to the all textures in class(II). Setting α as the row
component which has only one non-zero elements on the Dirac mass matrix in
a texture of class(II), and β and γ as the other row components which have two
non-zero elements, the generalization of Eq.(98) is

(meff)αα(meff)βγ
(meff)αβ(meff)αγ

= 1. (99)

(α, β, γ = e, µ, τ α 6= β 6= γ)

Eq.(99) is symmetric with respect to the exchange between β and γ. For the
case of the subclass (II)-A, α stands for τ . For the subclass (II)-B and (II)-C,
α stands for e and µ respectively. Rewriting the elements of meff in terms
of mass eigenvalues, mixing angles, and CP phases, we obtain two conditions
among them.

Re
( (meff)αα(meff)βγ

(meff)αβ(meff)αγ

)
= 1 (100)

Im
( (meff)αα(meff)βγ

(meff)αβ(meff)αγ

)
= 0 (101)

Eq.(99) is also rewritten as

Re{(meff)αα(meff)βγ} = Re{(meff)αβ(meff)αγ}, (102)

Im{(meff)αα(meff)βγ} = Im{(meff)αβ(meff)αγ}. (103)

Each condition, Eq.(102) or Eq.(103), is dependent on phase redefinition. How-
ever, two conditions all together are equivalent to Eq.(99).
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6.2 Explanations for the results of numerical analysis

In this subsection, we give detailed explanations for the correlations among CP
phases in section 5.3.3 from a view point of the conditions discussed in Sec.6.1.
The constraints obtained in Sec.6.1 describe the relations as for CP phases δ,
α21 and α31. We first show the relations among CP phases from (meff )eµ = 0
in IH case and from (meff )eτ = 0 in IH case, in Figs.(84)-(89), which lead to
a good explanation for the scatter plots in section 5.3.3 of the corresponding
four-zero texture. (meff )µτ = 0 in NH case and the subclass (II)-B in IH case
do not have allowed region under the constraints. It is shown in Figs.(90)-(95).
These two unfavorable cases correspond to the four-zero textures which produce
no scatter plots in section 5. We also mention the constraints from (meff )eτ = 0
in NH case. Although it seems that there is less obvious relation between them
in comparison with the former cases, it is not inconsistent with the results of
scatter plots. We show the obtained relations in Figs.(96)-(98) and clarify the
reason.

6.2.1 (meff )eµ = 0 in IH case

We first investigate the textures of subclasses (I)-C, (III)-B and (III)-E, which
produce 0 on (meff )eµ, in inverted hierarchical case. The results of numerical
analysis for these textures in IH case are shown in Fig.(64), Fig.(72), Fig.(80),
Fig.(65), Fig.(73) and Fig.(81). Let us compare these plotted points on the
two-dimensional planes (δ, α21) and (δ, α31) with constraints among δ, α21 and
α31 under the condition Eq.(85) and Eq.(86). In IH case, two mass eigenvalues
m1 and m2 are written as the functions of the lightest neutrino mass m3 by
using experimental values of the mass squared differences ∆m2

sol. and ∆m2
atm..

After substituting the values of three mixing angles and determining the value
of m3, f1 and f2 are functions of three CP phases, and Y1 has an unique value.
Eq.(85) and Eq.(86) imply two independent conditions for three CP phases δ,
α21 and α31.

For some given values ofm3, we draw two curved surfaces which are described
by Eq.(85) and Eq.(86) on a 3-dimensional space spanned by δ, α21 and α31.
We substitute values of m3 by dividing it into several intervals from 0 eV to
its upper bound 0.046 eV. The points on the nodal line of two curved surfaces
indicate the possible ranges of CP phases under the condition of the vanishing
element (meff)eµ = 0. We show three examples of such 3-dimensional plots on
(δ, α21, α31) space, by taking m3 as 0 eV, the half-value of its upper bound 0.023
eV and its upper bound 0.046 eV.

The yellow and blue curved surfaces in Figs.(84)-(86) are described by Eq.(85)
and Eq.(86) respectively. Two surfaces vary smoothly depending on the value
of the lightest neutrino mass m3. Focusing on (δ, α21) planes, it can be seen
that the features which we have discussed in Fig.(64), Fig.(72) and Fig.(80) are
reflected in Figs.(84)-(86). By contrast, they show that α31 ranges from −π to
π without strong dependence on δ nor α21. This result corresponds to Fig.(65),
Fig.(73) and Fig.(81).

6.2.2 (meff )eτ = 0 in IH case

We apply the discussion in Sec.6.2.1 to another element (meff)eτ of the effective
mass matrix. The results of numerical analysis for textures (I)-B, (III)-A and
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Figure 82: α21 vs α31 (III)-F in IH Figure 83: δ vs α21 vs α31 (III)-F in
IH

Figure 84: Contour
plots on (δ, α21, α31)
under the condition
(meff)eµ = 0 in IH,
where m3=0 eV

Figure 85: Contour
plots on (δ, α21, α31)
under the condition
(meff)eµ = 0 in IH,
where m3=0.023 [eV]

Figure 86: Contour
plots on (δ, α21, α31)
under the condition
(meff)eµ = 0 in IH,
where m3=0.046 eV
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(III)-F are shown in Fig.(60), Fig.(68), Fig.(76),Fig.(61), Fig.(69) and Fig.(77).
These textures produce that (meff)eτ equals 0. In this case, three CP phases and
the lightest neutrino mass follow the conditions Eq.(88) and Eq.(89). By impos-
ing the IH case and using the experimental values, we obtain two constraints for
three CP phases. Drawing two curved surfaces described by Eq.(88) and Eq.(89)
on (δ, α21, α31) space for several values of m3, we find nodal lines of them. We
show three examples in the cases of 0, the half-value of the upper bound and
the upper bound of m3. The yellow and blue curved surfaces in Figs.(87)-(89)
stand for Eq.(88) and Eq.(89) respectively. The allowed values on (δ, α21, α31)
space from two curved surfaces show the similar features as Figs.(84)-(86).

6.2.3 (meff )µτ = 0 in NH case

We have mentioned that subclasses (I)-A, (III)-C and (III)-D, which produce 0
on (meff)µτ , were not consistent with the experimental data in normal hierarchy
case. It can be explained by the conditions Eq.(90) and Eq.(91). In NH case, two
mass eigenvalues m2 and m3 are written as the functions of the lightest neutrino
massm1. By using the experimental values of mixing angles and determining the
value of m1, Eq.(90) and Eq.(91) can be regarded as two independent conditions
for three CP phases. We can draw them on (δ, α21, α31) space. The value of
m1 is taken similarly by several intervals from 0 eV to 0.046 eV. Two curved
surfaces vary smoothly depending on m1. As the value of m1 is increased, these
surfaces are approaching to each other. However, they do not intersect within
the upper limit of m1. We show three examples for m1 = 0, 0.023 and 0.046
eV. The yellow and blue curved surfaces in Figs.(90)-(92) stand for Eq.(90) and
Eq.(91) respectively. Therefore, the textures whose (meff)µτ is equal to zero do
not reproduce the experimentally measured mixing angles and mass eigenvalues
in NH case.

6.2.4 subclass (II)-B in IH case

let us explain the other case which do not lead to the experimental data, the
subclass (II)-B in IH case. The constraints among CP phases for the (II)-B are
Eq.(102) and Eq.(103) by setting α as e. The yellow and blue curved surfaces
in Fig.(93) to (95) stand for Eq.(102) and Eq.(103) respectively. Although two
curved surfaces vary smoothly depending on the lightest neutrino mass m3 from
0 eV to 0.046 eV, they never intersect for any intervals of m3. It implies that the
texture of (II)-B do not reproduce the experimentally measured mixing angles
and mass eigenvalues in IH case.

6.2.5 (meff )eτ = 0 in NH case

We also mention the result in Fig.(48) with constraints among δ, α21 and α31

under the condition Eq.(88) and Eq.(89). In this case, there is no inconsistency
between scatter plots from four-zero texture and 3D plots from one-zero effective
light neutrino mass matrix. However, we do not find obvious relation between
them in comparison with the former cases. The yellow and blue curved surfaces
in Figs.(96)-(98) are described by Eq.(88) and Eq.(89) respectively. The corre-
spondence between Fig.(48) and contour plots can be seen in a range of large
m1.
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Figure 87: Contour
plots on (δ, α21, α31)
under the condition
(meff)eτ = 0 in IH,
where m3=0 eV

Figure 88: Contour
plots on (δ, α21, α31)
under the condition
(meff)eτ = 0 in IH,
where m3=0.023 eV

Figure 89: Contour
plots on (δ, α21, α31)
under the condition
(meff)eτ = 0 in IH,
where m3=0.046 eV

Figure 90: Contour
plots on (δ, α21, α31)
under the condition
(meff)µτ = 0 in NH,
where m1=0 eV

Figure 91: Contour
plots on (δ, α21, α31)
under the condition
(meff)µτ = 0 in NH,
where m1=0.023 eV

Figure 92: Contour
plots on (δ, α21, α31)
under the condition
(meff)µτ = 0 in NH,
where m1=0.046 eV

Figure 93: Contour
plots on (δ, α21, α31) for
subclass (II)-B in IH,
where m3=0 eV

Figure 94: Contour
plots on (δ, α21, α31) for
subclass (II)-B in IH,
where m3=0.023 eV

Figure 95: Contour
plots on (δ, α21, α31) for
subclass (II)-B in IH,
where m3=0.046 eV
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From the viewpoint of (δ, α21) planes of Fig.(97) and Fig.(98), the nodal lines
of two surfaces do not completely overlap the range of plotted points in Fig.(48).
The reasons are as follows: The four-zero texture in Fig.(48) is one part of the
textures which produce (meff )eτ = 0. There is no one-to-one correspondence
between the results from Fig.(48) in numerical analysis and from Figs.(96)-(98).
Besides, only the central values of mixing angles and mass squared differences
are chosen to draw the 3-dimensional plots, while these values in the scattered
plots are taken within 3 standard deviations from the mean of the experimental
values.

Figure 96: Contour
plots on (δ, α21, α31)
under the condition
(meff)eτ = 0 in NH,
where m1=0 eV

Figure 97: Contour
plots on (δ, α21, α31)
under the condition
(meff)eτ = 0 in NH,
where m1=0.023 [eV]

Figure 98: Contour
plots on (δ, α21, α31)
under the condition
(meff)eτ = 0 in NH,
where m1=0.046 eV

7 Dscussions and Summary

We have introduced the type-(I) seesaw mechanism as an attractive extension for
the Standard Model to explain the mass of neutrinos. The effective mass matrix
for left-handed Majorana neutrinosmeff is expressed with nine phenomenological
parameters: two mass squared differences, the lightest neutrino mass, one Dirac
and two Majorana CP phases. In this paper, we have investigated the four-
zero texture model for the Dirac mass matrix. We have classified 9C4 = 126
different textures for Dirac neutrino mass matrix into seven classes according
to the configurations of zero or non-zero elements. This classification allows us
to distinguish which texture produces three massive neutrino eigenvalues and
which texture leads to a non-zero Jarlskog invariant. We have investigated three
classes (I), (II) and (III) which are able to explain the three non-zero masses and
CP violation in the neutrino sector. meffs in these classes include seven model
parameters (θ1, θ2, φ1, φ2, X1, X2, and X3).

We have outlined how to make numerical analysis for our model. The pro-
cedure of calculation can be efficiently done by defining the sub-classification.
Each sub-class consists of six textures which construct the same effective neu-
trino mass matrix neutrinos meff, so that these six textures are regarded as
the same model to study the mass eigenvalues, the mixing angles and the CP
phases. We have taken the model parameters which reproduce two mass squared
differences and three mixing angles within 3 standard deviations from the mean
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of experimental values. Since the number of model parameters is reduced to
seven, the correlation among CP violating phases can be predictions after as-
suming the neutrino mass hierarchy and after substituting an allocated value of
the lightest neutrino mass. The correlations among model parameters, among
mass eigenvalues and among CP phases are shown.

We have also made analysis from the view point of the effective Majorana
neutrino mass matrix meff. Some textures of the Dirac mass matrix produce
one zero-element on an off-diagonal part of the meff. One vanishing off-diagonal
element on meff corresponds to two constraints. The other textures, which
lead to nine non-vanishing elements of Majorana mass matrix, also produce two
constraints because of the four-zero textures on the Dirac mass matrix. We
found the hidden relations among CP violating phases after assuming the value
of the lightest neutrino mass. These hidden relations correspond to the four-
zero texture for the Dirac neutrino mass matrix. In particular, the subclasses
which do not produce any scattered plots in numerical analysis are explained by
means of 3D plot among CP violating phases. Such subclasses made no nodal
lines of surfaces described by the conditions.

8 Appendix

8.1 The general ∆ with full elements of the Dirac mass
matrix

We show the form of ∆ for the general Dirac mass matrix

U =

 ue1 ue2 ue3
uµ1 uµ2 uµ3

uτ1 uτ2 uτ3

 . (104)

The ∆ is described by the definition in Eq.(28) in terms of U in Eq.(104)
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and X in Eq.(31).

∆ =
∑
{α,β,γ}

∑
{p,q,r}

X4
pX

2
q (1− |Apq|2)|uαp|2Im(u∗βpuβqu

∗
γquγp)

+
∑
{α,β,γ}

∑
{p,q,r}

X4
pXqXr|uαp|2Im(Arqu

∗
βpuβqu

∗
τruγp +ApqArpu

∗
βruβpu

∗
γpuτq)

+
∑
{α,β,γ}

∑
{p,q,r}

X3
pX

3
q (1− |Apq|2)|uβp|2|uτq|2Im(Aqpu

∗
αquαp)

+
∑
{α,β,γ}

X2
1X

2
2X

2
3{Im(u∗α1uα2u

∗
β1uβ3u

∗
γ3uγ1)

+ Im(A21A13A32u
∗
α1uα2u

∗
β3uβ1u

∗
γ2uγ3)

+ |uα1|2|uβ1|2|uτ2|2Im(A12A32A13)}}

+
∑
{α,β,γ}

∑
{p,q,r}

X2
1X

2
2X

2
3{Im(ApqArqApru

∗
αpuαqu

∗
βruβqu

∗
γpuγr)

+ |Apq|2|uαp|2Im(u∗βquβru
∗
γruγq) + Im(A2

pqu
∗
αquαru

∗
βpuβru

∗
γpuγq)}

+
∑
{α,β,γ}

∑
{p,q,r}

X3
pX

2
qXr{|uαp|2Im(A2

pqArpu
∗
βruβqu

∗
γpuτq +A2

qpApru
∗
βquβpu

∗
τquτr

+ApqArqu
∗
βpuβqu

∗
γruγq +AqpAqru

∗
βquβru

∗
γquγp)

+ Im(AqpArqu
∗
αruαp(|uβp|2|uγq|2 + u∗βquβpu

∗
γpuγq)

+ApqAqru
∗
αpuαr(|uβq|2|uγp|2 + u∗βquβpu

∗
γpuγq)

+Arpu
∗
αquαp(|uβp|2u∗γruγq + u∗βruβpu

∗
γpuγq)

+Arp|Apq|2|uαp|2(u∗βquβpu
∗
γruγq + u∗βruβp|uγq|2)

+Apr|Apq|2|uαp|2(u∗βquβru
∗
γpuγq + |uβq|2u∗γpuγq)},

(105)

where α, β, γ denote the different flavors,

α, β, γ = e, µ, τ (α 6= β 6= γ). (106)

p, q, r denote the different numbers 1, 2 or 3,

p, q, r = 1, 2, 3 (p 6= q 6= r). (107)

We define the sums
∑
{α,β,γ} and

∑
{p,q,r} such that they take all possible

combinations of indexes (α, β, γ) and (p, q, r). For example,∑
{α,β,γ}

|uα1|2 = |ue1|2 + |uµ1|2 + |uτ1|2 (108)

∑
{α,β,γ}

uα1u
∗
β2 =ue1u

∗
µ2 + uµ1u

∗
e2 + ue1u

∗
τ2

+uτ1u
∗
e2 + uµ1u

∗
τ2 + uτ1u

∗
µ2

(109)

If we take X3 = 0, the discussion turns to the model with only two heavy
right-handed neutrinos. As a consequence, this model leads to that one of the
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lite neutrino mass eigenvalues corresponds to zero. The meff of such model
expressed in terms of six components of a three by two Dirac mass matrix and
two X1, X2.

meff = −

 ue1 ue2
uµ1 uµ2

uτ1 uτ2

( X1 0
0 X2

)(
ue1 uµ1 uτ1

ue2 uµ2 uτ2

)
(110)

∆ is

∆ =
∑
{α,β,γ}

{X4
1X

2
2 (1− |A12|2)|uα1|2Im(u∗β1uβ2u

∗
γ2uγ1)

+X4
2X

2
1 (1− |A12|2)|uα2|2Im(u∗β2uβ1u

∗
γ1uγ2)

+X3
1X

3
2 (1− |A12|2)|uβ1|2|uγ2|2Im(A21u

∗
α2uα1)}.

(111)

8.2 The meff and ∆ with concrete parametrization for
each class

In section 4, we have classified all four-zero textures into seven classes and
illustrate one representation of texture for each class in Eq.57-Eq.57. We quote
these seven representation with concrete parametrization again and also show
the accompanying meff and ∆ derived from each concrete texture.

(I) There is only one row component in which all elements are non-zero, and
rank U = 3.

U (I) =

 c1e
iφ1 c2e

iφ2 1
s1 0 0
0 s2 0

 (112)

The effective mass matrix is

m
(I)
eff = −

 X1c
2
1e

2iφ1 +X2c
2
2e

2iφ2 +X3
1
2X1 sin 2θ1e

iφ1 1
2X2 sin 2θ2e

iφ2

1
2X1 sin 2θ1e

iφ1 X1s
2
1 0

1
2X2 sin 2θ2e

iφ2 0 X2s
2
2


(113)

∆(I) =
1

4
X2

1X
2
2s

2
1 sin2 2θ2{X1X2(1− c21c22)c21 sin 2(φ1 − φ2)

+ (X1 +X3)X3c
2
1 sin 2φ1 −X2X3 sin 2φ2}

(114)

(II) There is only one column component in which all elements are non-zero,
and rank U = 3.

U (II) =

 s1c2 eiφ1 0
s1s2 0 eiφ2

c1 0 0

 (115)

The effective mass matrix is

m
(II)
eff = −

 X1s
2
1c

2
2 +X2e

2iφ1 1
2X1s

2
1 sin 2θ2

1
2X1 sin 2θ1c2

1
2X1s

2
1 sin 2θ2 X1s

2
1s

2
2 +X3e

2iφ2 1
2X1 sin 2θ1s2

1
2X1 sin 2θ1c2

1
2X1 sin 2θ1s2 X1c

2
1

 (116)
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∆(II) =
1

8
X3

1s
2
1c2 sin2 2θ1 sin 2θ2{X2

1X2(c1 + s1 −
1

2
c1s

2
2 sin 2θ1)(c1 − s1 +

1

2
s1s2 sin 2θ2 sin 2φ1)

+X2
1X3s2(c1 +

1

2
s1s2 sin 2θ2(1 + c1 + s1 −

1

2
c1s

2
2 sin 2θ1) sin 2φ2)

+X2
2X3 sin 2φ2 +X2X

2
3s2 sin 2φ1

+X1X2X3(−s2 sin 2(φ1 − φ2)

+ (c1 + c1s2 + s1s2 + s2
1c

2
2 +

1

2
s1s2 sin 2θ2 −

1

2
c1s

3
2 sin 2θ1) sin 2(φ1 + φ2)}
(117)

(III) There are one row and column components in which two elements are
zero, and the common element on the both of such row and column is zero.
Besides, we require that rank U = 3.

U (III) =

 c1 0 0
s1 c2e

iφ1 0
0 s2e

iφ2 1

 (118)

The effective mass matrix is

m
(III)
eff = −

 X1c
2
1

1
2X1 sin 2θ1 0

1
2X1 sin 2θ1 X1s

2
1 +X2c

2
2e

2iφ1 1
2X2 sin 2θ2e

i(φ1+φ2)

0 1
2X2 sin 2θ2e

i(φ1+φ2) X2s
2
2e

2iφ2 +X2


(119)

∆(III) =
1

16
X2

1X
2
2 sin2 2θ1 sin 2θ2{X1X2(s1 + s2 − s2

1s
4
2) sin 2φ1

+X1X3(s1 + s2) sin 2(φ1 + φ2) +X2X3s
2
2 sin 2φ2}

(120)

(IV) There is only one column component in which all elements are zero.

U (IV) =

 s1c2 c3e
iφ1 0

s1s2 s3e
iφ2 0

c1 0 0

 (121)

The effective mass matrix is

m
(IV)
eff = −

 X1s
2
1c

2
2 +X2c

2
3e

2iφ1 1
2 (X1s

2
1 sin 2θ2 +X2 sin 2θ3e

i(φ1+φ2)) 1
2X1 sin 2θ1c2

1
2 (X1s

2
1 sin 2θ2 +X2 sin 2θ3e

i(φ1+φ2)) X1s
2
1s

2
2 +X2s

2
3e

2iφ2 1
2X1 sin 2θ1s2

1
2X1 sin 2θ1c2

1
2X1 sin 2θ1s2 X1c

2
1


(122)

∆(IV) =
1

16
X3

1X
2
2 sin2 2θ1 sin 2θ2{1− s2

1(c22c
3
3 + s2

2s
2
3 +

1

2
sin 2θ2 sin 2θ3 cos (φ1 − φ2))}

× {2X1c3 sin (φ1 − φ2) +X2(c22 sin 2θ3 sin 2φ1 − sin 2θ2 cos 2θ3 sin (φ1 + φ2)− s2
2 sin 2θ3 sin 2φ2)}

(123)
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(V) There is only one row component in which all elements are zero.

U (V) =

 c1 c2e
iφ1 eiφ3

s1 s2e
iφ2 0

0 0 0

 (124)

The effective mass matrix is

m
(V)
eff = −

 X1c
2
1 +X2c

2
2e

2iφ1 +X2e
2iφ3 1

2X1 sin 2θ1 + 1
2X2 sin 2θ2e

i(φ1+φ2) 0
1
2X1 sin 2θ1 + 1

2X2 sin 2θ2e
i(φ1+φ2) X1s

2
1 +X2s

2
2e

2iφ2 0
0 0 0


(125)

∆(V) = 0 (126)

(VI) There is one row component and one column component in which all
elements are non-zero.

U (VI) =

 s1c2 eiφ1 eiφ2

s1s2 0 0
c1 0 0

 (127)

The effective mass matrix is

m
(VI)
eff = −

 X1s
2
1c

2
2 +X2e

2iφ1 +X3e
2iφ2 1

2X1s
2
1 sin 2θ2

1
2X1 sin 2θ1c2

1
2X1s

2
1 sin 2θ2 X1s

2
1s

2
2

1
2X1 sin 2θ1s2

1
2X1 sin 2θ1c2

1
2X1 sin 2θ1s2 X1c

2
1


(128)

∆(VI) = 0 (129)

(VII) There are one row and column components in which two elements are
zero, and the common element on the both of such row and column is not zero.

U (VII) =

 1 0 0
0 c1 c2e

iφ1

0 s1 s2e
iφ1

 (130)

The effective mass matrix is

m
(VII)
eff = −

 X1 0 0
0 X1c

2
1 +X3c

2
2e

2iφ1 1
2X2 sin 2θ1 +X3 sin 2θ2e

i(φ1+φ2)

0 1
2 (X2 sin 2θ1 +X3 sin 2θ2e

i(φ1+φ2)) X1s
2
1 +X3s

2
2e

2iφ2


(131)

∆(VII) = 0 (132)
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