博士論文 (Doctoral Thesis)

Screening, isolation and characterization of large bacteriophages for use in biocontrol of a wide-range of pathogenic bacteria

広範囲の病原菌を対象とした生物防除に有用な大型バクテ リオファージのスクリーニング、単離および特徴付け

Alaa Eldin Mohamed Saad Meslhi

広島大学大学院先端物質科学研究科 分子生命機能科学専攻

Department of Molecular Biotechnology Graduate School of Advanced Sciences of Matter Hiroshima University

March 2020

目 次 (Table of Contents)

1. 主論文 (Main Thesis)

Screening, isolation and characterization of large bacteriophages for use in biocontrol of a wide-range of pathogenic bacteria

広範囲の病原菌を対象とした生物防除に有用な大型バクテリオファージのス クリーニング、単離および特徴付け

Alaa Eldin Mohamed Saad Meslhi

- 2. 公表論文 (Articles)
 - Systemic method to isolate large bacteriophages for use in biocontrol of a widerange of pathogenic bacteria.
 <u>Alaaeldin Mohamed Saad</u>, Ahmed Mahrous Soliman, Takeru Kawasaki, Makoto Fujie, Hirofumi Nariya, Tadashi Shimamoto and Takashi Yamada. Journal of Bioscience and Bioengineering, **127** (1), 73-78 (2019).
 - (2) Full genome sequence of a polyvalent bacteriophage infecting strains of *Shigella*, *Salmonella*, and *Escherichia* <u>Alaaeldin Mohamed Saad</u>, Ahmed Askora, Ahmed Mahrous Soliman, Hirofumi Nariya, Takeru Kawasaki, Makoto fujie, Tadashi Shimamoto and Takashi Yamada. Archives of Virology, **163** (11), 3207-3210 (2018).

CONTENTS

CHAPTER I.	Page
GENERAL INTRODUCTION	1
1.1. General characteristics of pathogenic <i>Enterobacteriaceae</i>	2
1.2. Bacteriophages characteristics	3
1.2.1. Bacteriophages as biocontrol agents	3
1.2.2. Bacteriophage obstacles	4
1.2.3. Jumbo phages	5
1.3. Method for jumbo phages isolation	6
1.4. Genomic characterization of phages	7
1.5. Tail fibers and their roles in host range difference	8
1.6 The scope of this study	10

CHAPTER II

Systemic method to isolate large bacteriophages for use in biocontrol of a wide-range of pathogenic bacteria.

2.1.	SUMM	(ARY 1	1
2.2.	INTRO	DUCTION1	2
2.3.	MATE	RIALS AND METHODS1	3
	2.3.1.	Bacterial strains, bacteriophages and culture conditions1	3
	2.3.2.	Selective detection of large phages1	4
	1.3.3.	Host range assays1	6
	1.3.4.	Electron microscopy for initial phage characterization1	6
	1.3.5.	Pulsed-field gel electrophoresis for genomic analysis1	6
	1.3.6.	Isolation and characterization of genomic DNA from phage particles1	6
2.4.	RESUL	L TS 1	7
	2.4.1. Is	solation of <i>Escherichia</i> large phages1	7
	2.4.2. E	lectron microscopy observation1	9
	2.4.3. G	enomic analysis by PFGE2	0
	2.4.4. D	Digestion by restriction enzymes2	0

2.4.5. Host range of the phages	20
2.5. DISCUSSION	25

CHAPTER III

Full genome sequence of a polyvalent bacteriophage infecting strains	
of Shigella, Salmonella, and Escherichia	
3.1. SUMMARY	27
3.2. INTRODUCTION	27
3.3. MATERIALS AND METHODS	29
3.3.1. Isolation and expansion of phage EcS1	29
3.3.2. Host range determination	30
3.3.3. Morphological characteristics of phage EcS1	30
3.3.4. Phage genome isolation, sequencing, annotation and analysis	30
3.3.5. Phylogenetic analysis of tail fibers gene products	31
3.4. RESULTS	
3.4.1. Host range of EcS1 phage	32
3.4.2. EcS1 morphological characteristics	32
3.4.3. Genomic analysis of EcS1 phage	32
3.4.4. Evolutionary changes in EcS1 tail fibers proteins	33
3.4.5. Alignment of asiA genes (another evidence of genetic difference between Ecs	S1 and
Serratia phages	33
3.5. DISCUSSION	60

CHAPTER IV

GENERAL DISCUSSION AND CONCLUSION	62
REFERENCES	68
ACKNOWLEDGEMENTS	84

CHAPTER I GENERAL INTRODUCTION

The continuous decline in the effectiveness of antibiotics and increased rates of bacterial resistance represents a public health challenge universally (Lin *et al.*, 2017). It has been suggested that by 2050, around 10 million people could die per year due to antimicrobial resistance (O'neill, 2014). Focus must be turned towards alternative approaches for treating infections. One of the most promising strategy is the use of bacterial viruses, the natural predators of bacteria known as bacteriophages or phages (Ghosn *et al.*, 2019). Bacteriophages represent the major biological organisms on the earth with an estimated 10^{31} bacteriophages (Hendrix *et al.*, 1999; Keen, 2015). They are capable of killing bacteria as effectively as antibiotics and are far more flexible in their capabilities (Drulis-Kawa *et al.*, 2012), as they can overcome almost all disadvantages of antibiotics.

Bacteriophages can be classified according to their genome sizes into small and large phages. To date reported sizes of all isolated and characterized phages were varied between 3,300 base of ssRNA viruses of *Escherichia coli* (small phages) to almost 500 kbp of dsDNA genome phage G of *Bacillus megaterium* (jumbo phages) (Hatfull and Hendrix, 2011; Yuan and Gao, 2017). Interestingly, jumbo phages with genome sizes more than 200 kbp are characterized by their wider host range (Bhunchoth *et al.*, 2015), sustainability and long-lasting lytic infection (Yamada *et al.*, 2010).

Unfortunately, there was no specific method to isolate large phages. As almost all of large phages have been isolated by chance (Yuan and Gao, 2017) by using classical methods for screening of bacteriophages. My first goal in this study is to develop a specific method for selective screening of large phages. To investigate the host range of isolated large phages, we prepared several hosts including Gram positive and Gram negative bacteria with focus on members of the *Enterobacteriaceae*. As gastrointestinal infections caused by pathogenic strains of *Enterobacteriaceae* are considered as serious economic and public health problem worldwide (Logan and Weinstein, 2017). They are leading causes of death among human beings especially young children because of severe diarrhea (Humphrey *et al.*, 2015). Moreover, they were reported in the list of global priority pathogens (Tacconelli *et al.*, 2018).

The second purpose of my research is to genetically characterize the isolated large phages completely to confirm their ideality in biocontrol applications (Shende *et al.*, 2017) and to understand evolutionary changes in large phage genome.

This thesis specifically focuses on screening, isolation and characterization of large bacteriophages for use in biocontrol of pathogenic bacteria especially the most common pathogenic strains of *Enterobacteriaceae*.

1.1. General characteristics of pathogenic Enterobacteriaceae

Enterobacteriaceae is a family of Gram-negative, non-spore-forming bacteria and is one of the most popular groups of bacteria known to man. This family includes a number of important foodborne pathogens such as *Salmonella*, pathogenic *Escherichia coli*, *Shigella* spp., *Yersinia enterocolitica* and *Cronobacter* spp. Other members of the family are regarded as opportunistic pathogens (e.g., *Klebsiella* spp, *Serratia* spp. and *Citrobacter* spp.). Pathogenic strains of *Enterobacteriaceae* use the intestinal tract as main reservoir for causing foodborne intestinal diseases and are known as the most common cause of intestinal upset. They are responsible for a variety of human illnesses, including urinary tract infections, gastroenteritis, septicemia, and pneumonia. Members of the *Enterobacteriaceae* are ubiquitous in nature. Although strains of some species are commensals, others are critical human and animal pathogens, and some are pathogenic to other creatures such as plants and insects. Their wide distribution indicates the higher possibility of food chain contamination (Bridier, 2019).

In addition to their etiology as foodborne diseases, some of the family members are associated with food spoilage and contribute to significant economic losses for agriculture and food industries. Bacterial food-borne diseases represent a growing public health concern for the entire world, including both developed and developing countries (Fung *et al.*, 2018). According to the estimates of World Health Organization (WHO), about 2.2 million deaths around the world each year are caused by food-borne or water-based diarrhea (Johnson *et al.*, 2011). For example; nontyphoidal *Salmonella* serotypes are responsible for around 1.4 million cases and 270,000 cases are caused by pathogenic *Escherichia coli* (Mead *et al.*, 1999). According to Global burden of disease (GBD) study of 2015; foodborne diarrheal illness was estimated as the sixth leading cause of global disability-adjusted life years (DALYs) (Vos *et al.*, 2016).

Antimicrobials have saved many of human lives and also have been used routinely to maintain animal health and productivity (Silbergeld *et al.*, 2008). However, the majority (73%) of

these antimicrobials are used in animals raised for food (Van Boeckel *et al.*, 2017) which give growing evidence that the majority of emerging infectious diseases have been associated with drug-resistant pathogens of zoonotic origins (Jones *et al.*, 2008). Infections with antibioticresistant bacteria are more serious with highly public health concern due to increased morbidity and mortality with more social and economic costs (Cosgrove, 2006). The continuous increase of multi drug resistant strains (Ansari *et al.*, 2015) and the restrictions of antibiotics usage in many countries (Barton, 2000) entail the development of effective and safe alternatives to these synthetic antimicrobials. Bacteriophages are a promising alternative to antibiotics (Drulis-Kawa, 2012).

1.2. Bacteriophages characteristics:

Bacteriophages are viruses those can infect and replicate within bacteria. Phages are widely distributed in nature and they are harmless to humans, animals and plants. Each bacteriophage is between 24-200 nm in size. Bacteriophages are completely parasitic and depend on the presence of bacterial host to reproduce. They infect specific groups of bacteria. Bacteriophages were officially discovered 100 years ago by d'Hérelle (1917). This discovery initiated a new branch of science in which, phages were utilized as biocontrol agents for the most of pathogenic bacteria (Summers, 1999). The research in phage therapy have been enthusiastic within just eastern Europe and the Soviet Union (Abedon et al., 2011), while this interest decreased for the rest of the world due to the discovery of Penicillin by Alexander Fleming in 1929. From this time, almost all the world started imprudent usage of antibiotics which led to the development of antimicrobial resistance and its serious consequences (Landers et al., 2012). Bacteriophages are promising alternative to antibiotics (Drulis-Kawa, 2012) especially in our recent era (Wittebole et. al., 2014; Bao et. al., 2015), for several reasons: (i) high specificity to target their host only leaving the remaining microbiota untouched unlike other antimicrobials that can cause damage to beneficial microbiota (Campbell, 2003); (ii) self-replicating, meaning that low dosages will multiply as long as there is still a host present (Johnson et al., 2008); (iii) low inherent toxicity, as they consist mostly of nucleic acids and proteins; (iv) phage isolation is relatively simple, fast and inexpensive; (v) they have proved to have prolonged shelf life. Most of these phage characteristics enable them to be used as efficient antimicrobial agents (Endersen et al., 2014).

1.2.1. Bacteriophages as biocontrol agents:

Recently, phage therapy is extensively used only on three countries, Georgia, Russia and Poland. For example, "Intestiphage" is phage cocktail targets around 20 different pathogenic

enteric bacteria that is available to the public in Georgia and Russia. Another cocktail is "Pyophage" that is employed routinely in the treatment of various wound infections and targeting *Streptococcus, Staphylococcus, Proteus, Pseudomonas* and *E. coli*. Unfortunately, there has been little transfer of phage therapy expertise from Georgia and Russia to other world countries, due to very rare primary publication in journals with English language.

Bacteriophages can also be added to variable types of food products. The most advantage of bacteriophages application on foods is the controlled selectivity and absence of impact on the food organoleptic and physiochemical properties (Pérez Pulido et al., 2015). Nowadays, there are several phage products already approved to be used in foods as food preservatives to control specific food-borne pathogens such as; "ListShieldTM" (Intralytix, Inc., Baltimore, MD, USA), a cocktail of six phages targeting L. monocytogenes, that was first approved by the United States Food and Drug Administration (FDA) and Food Safety and Inspection Service (FSIS) for applications in foods in 2006. Also "ListexTM P100" a single phage targeting *L. monocytogenes*, was approved as GRAS status by FDA in 2006. The Intralytix company has also commercialized other phage preparations (SalmoFreshTM and SalmoLyseTM) for controlling *S. enterica* (Woolston et al., 2013). In addition, a cocktail of three phages (ECP-100) targeting E. coli O157:H7 "EcoShieldTM", was also approved by FDA and FSIS for food application in 2011. These phage products are allowed to use in foods as preservatives to control specific food-borne pathogens. In addition to direct food applications of phages, they can be used to prevent cross contamination of pathogens in food-contact materials as well as food processing facilities (Sulakvelidze, 2013). Furthermore, phages can be used to sanitize human hands and utensils. Therefore, phage applications would also be useful for extension of food preservation periods and food safety.

1.2.2. Bacteriophage obstacles:

The most important factors of phages usage as effective biocontrol agents are their host range and lasting infection (Ross *et al.*, 2016). As the most of bacteriophages are highly specific for their hosts with little or no interaction other than their host strain even within the same species (Welkos *et al.*, 1974). This characteristic may be limiting the ability of phage products to control bacterial infections. As for phage therapy, good candidate is a phage that can infect wide range of pathogenic bacteria. To assure the broad host range of phage formulations against target bacteria, numerous types of phages are represented into mixtures called "phage cocktails". Recently number of phage types increasing in the phage cocktails because insufficient outcomes have been obtained

from evaluating single phage preparations (Skurnik and Strauch, 2006). Unfortunately, there are many limitations of phage cocktail application in spite of sustainable demand of continuous levels of medical and commercial formulations. A cocktail containing many phages might have severe effects on beneficial bacteria. Moreover, formulations containing too many phages will result in higher developing and manufacturing costs (Chan *et al.*, 2013). So, the ideal solution for this drawback is using jumbo phages (Hendrix, 2009).

1.2.3. Jumbo phages:

Jumbo phages are tailed phages characterized by large genome size over 200 kbp and most of them are related to family *Myoviridae* (Hendrix, 2009). The most characteristic features of jumbo phages are their large phage particles mainly big capsids (Fig. 1.1) that can package larger genomes in comparison with smaller phages. The advantage of large genome size is to help jumbo phages to acquire many extra genes. As, the most of jumbo phages have multiple genes for expressing DNA polymerase and RNA polymerase (RNAP) (Hertveldt et al., 2005; Thomas et al., 2007) and it is reported that expression of jumbo phage genes independent from their host RNAPs and may be only dependent on their own RNAPs (Ceyssens et al., 2014; Leskinen et al., 2016). Furthermore, jumbo phages have extra proteins, like endolysin, chitinase, glycoside hydrolase and many other similar proteins for the lysis of the host cell wall to facilitate the ability of phage infection (Yuan and Gao, 2016). Moreover, almost all jumbo phages have many tRNA genes thought to correspond to abundant codons in phage genes mainly for structural proteins and to enhance the efficiency of phage specific genes translation (Kiljunen et al., 2005). It is thought that jumbo phages that own additional proteins may reduce their dependence on specific hosts (O'Donnell et al., 2013). As a result of all of these jumbo phages' genome characteristics, it is thought that jumbo phages would have broad host ranges due to reduced dependence on their host bacterium (Yuan and Gao, 2017). Moreover, the previously mentioned characteristics of jumbo phage genomes attracted scientists for more genomic analysis to provide deep investigation of the phage-host interaction and greater understanding of the origin and the evolution of the jumbo phages (Yuan and Gao, 2017). Although, some research groups discovered jumbo phages against highly pathogenic bacteria, they didn't make more exploration for this advantage and directed their inclinations for more genomic analysis (Abbasifar et al., 2014; Burkal'tseva et al., 2002; Kim et al., 2013 and Simoliunas et al., 2012). While other groups took more advanced step in the characterization from the point of biocontrol through discovering the wide host range of their jumbo phages (Bhunchoth *et al.*, 2015; Kim *et al.*, 2012 and Miller *et al.*, 2003a). Also, the genomic information of some of the jumbo phages revealed the reason for their stability and ability for long-lasting lytic infection (Yamada *et al.*, 2010).

Fig. 1.1. Electron micrographs of jumbo phage ϕ RSL1 that infect to the phytopathogen *Ralstonia* solanacerum (Yamada *et al.*, 2010). The ϕ RSL1 particle has an icosahedral head of 150 nm in diameter and a contractile tail of 138 nm in length and 22.5 nm in diameter.

1.3. Method for jumbo phages isolation:

In spite of the amazing characteristics of jumbo phages, they are rare in isolation (very few systemic reviews currently available on jumbo phages) (Hendrix, 2009; Van Etten *et al.*, 2010; Yuan and Gao 2017), only around 100 ones have been isolated since the first discovery of phages at the beginning of last century (Yuan and Gao 2017). Although jumbo phages have high frequency and abundance in our environment, there is no approved method for isolation of jumbo phages until now. Most of the jumbo phages were isolated by chance using the standard method for bacteriophage propagation. For example, *Bacillus megaterium* phage G was accidentally found during preparation of another bacteriophage (Donelli, 1968). Recently, it is obvious that the inaccessibility to jumbo phages detection is attributed to the highly dependence on the classical

procedures of phage isolation (Serwer *et al.*, 2007; Yuan and Gao 2017). Jumbo phages are hardly making plaques in the 0.4-0.7% agarose gel due to their large virions which hinder their diffusion in top agar medium (Carlson, 2005). Also, liquid enrichment cultures are usually ineffective for detection of oversized phages due to absence of visible lysis in liquid culture (Carlson, 2005). Moreover, most of the jumbo phages are lost during filtration for removing bacteria due to their large size, i. e. jumbo phages might hardly pass through the filter pores (Williamson *et al.*, 2005; Yuan and Gao 2017). Proper modifications of classical methods and developing specific methods for large phage isolation will pave the way for interesting discoveries in the field of molecular biotechnology and biocontrol applications.

1.4. Genomic characterization of phages:

Bacteriophages are highly diverse and infect essentially all bacteria on earth (Catalao *et al.*, 2013). Even if they are isolated from a single habitat, their diversity is huge (Jurczac-Kurek *et al.*, 2016). Phages affect bacteria into two ways, as they can control bacterial population numbers, and on the other hand contribute to move genes from one bacterium to another. Complete genomic characterization of phages is mightily essential to understand phages' evolutionary history including relationships, biodiversity and biogeography of each phage to its close members (Hambly *et al.*, 2001). Moreover, phage genomes encode not only proteins that have been useful for biotechnology but also for biocontrol applications including food additives, biotherapy of infections caused by antibiotic-resistant bacterial strains, DNA delivery vehicles and many more relevant technologies (Harada *et al.*, 2018). That's why deep understanding of phage genetics must be exploited to generate a broad application spectrum like novel nanotechnologies, bacterial detection strategies and biological control of pathogenic bacteria on an industrial scale (Petty *et al.*, 2007).

There is no evidence to date that bacteriophages exhibit any harmful effects on humans or even on animals (Abedon *et al.*, 2011). However, guaranty measures in the use of bacteriophages for biocontrol applications must be taken through whole-genome sequencing to ensure the safety of that genome and it is free from genes encoding bacterial virulence factors and or resistance genes of bacteria. In my work, full genome sequencing and characterization was carried out for a novel lytic phage (EcS1) that can infect to broad range of pathogenic bacterial strains.

1.5. Tail fibers and their roles in host range difference:

The first step in phage infection is adsorption of the phage to the host cell (Chatterjee and Rothenberg 2012). It was revealed that the tail structures are the key determinants for phage specificity to certain host and infection process (Hu *et al.*, 2015 and González-García *et al.*, 2015). Phages diffuse randomly until they encounter a bacterial cell. Then, they will continue to diffuse on the cell surface until they bind to a receptor that initiates the infection process. Nonspecific phages fall off from the cell surface (Fig 1. 2) and continue their free motion (Le *et al.*, 2013).

1) In unattached state, the six long tail fibers of phage T4 extend and retract. 2) An extended long tail fiber initiates a trial to contact with the bacterial cell surface. 3) Then the transient binding of extended long tail fibers allows phage T4 to move on the cell surface to find an optimal site for irreversible adsorption. 4) Binding of any tail fibers (two or three of the long tail fibers) to their cellular receptor changes the baseplate conformation and consequently releases the short tail fibers, which irreversibly bind to the host receptor. 5) Irreversible binding causes the baseplate for triggering contraction of the tail 6) Ejection of the phage DNA into the cell.

Almost all tailed phages use tail fibers/tail spikes with receptor-binding proteins (RBPs) emerging from the base plate to interact with receptors on the bacterial cell surface (such as lipopolysaccharide, teichoic acids and porins). The initial reversible attachment is followed by irreversible adsorption and ejection of the phage genome into the specific host cytoplasm. On the other hand, only reversible attachment occurs in case of non-specific host (Fig 1. 3).

A)

B)

Fig 1. 3. (A) Reversible binding of EcS1 phage long tail fibers to *Serratia marcescens* outer membrane vesicles OMVs (B) Irreversible binding of EcS1 to *E. coli* OMVs (Current study).

Interestingly, under selective pressure, tail fiber genes seem to evolve faster than other phage genes, giving it the advantage to gain new specificities to infect different hosts as well as to enter other ecological niches (Casjens, 2005). Morphologies of tailed phages are unique and different from the morphogenesis of other viruses. However, many tailed phages show high similarity to one another when observed with an electron microscope, in fact they have very different genomes (Leiman *et al.*, 2010). Thus, nucleotide sequence information (preferably whole genome sequence) is required to understand the relationships among the members of any set of phages being compared. Annotation and BLAST analyses were performed for whole genome of the newly

isolated phage EcS1. Further homology analyses were done for two tail fiber protein genes to understand the relationship between genetic evolution in tail fibers gene products of the isolated phage and its broad host range.

1.6.The scope of this study:

The outbreak of multidrug-resistant pathogenic bacteria (mainly *Enterobacteriaceae*) made the novel control strategies necessary. Phages have regained attention for their specific lytic activity against pathogenic bacterium, especially jumbo phages those are characterized by sustainability and long-lasting infection. However, almost all methods for screening phages were traditional and methods for screening and isolating large phages have not been reported.

The main purpose of this study is to develop a new systemic method to isolate large phages and to evaluate their host ranges followed by complete genetic characterization to confirm their novelty and evolutionary relationship to other bacteriophages. Furthermore, full genome sequencing ensures the absence of any harmful genes such as bacterial virulence genes and/or antibiotic resistance genes. Moreover, it is important to study tail fibers proteins of isolated phages because they are responsible for the first step in host-recognition and binding. Characterization of receptor binding proteins (RBPs) is essential to investigate how polyvalent phages can recognize and bind wide range of hosts utilizing its specific tail fibers proteins.

Chapter II

Systemic method to isolate large bacteriophages for use in biocontrol of a wide-range of pathogenic bacteria

2.1. SUMMARY

Large phages with a genome around 200 kbp or more have attracted great interests for biocontrol because they can infect wide host ranges of bacteria and maintain long-lasting infection. However, there is no standard method for selective isolation of large phages. I developed in this study a systemic method to isolate large phages and succeeded in isolating 11 large phages, named Escherichia phage E1~E11. By electron microscopic observations, they were characterized as typical *Myoviridae* phages with big capsids and long contractile tails. Genome sizes of the isolated phages were determined by Pulsed-field gel electrophoresis and found to be in two groups, those around 200 kbp for E1, E2, E5, E6, E7, E9 and E10 phages, and others of approximately 450 kbp for E3, E4, E8 and E11 phages. The isolated large phages showed wide host ranges: for example, E9 was effective against Shigella sonnei SH05001, Shigella bydii SH00007, Shigella flexneri SH00006, Salmonella enterica serovar Enteritidis SAL01078 and Escherichia coli C3000 (K-12 derivative), as well as its original host E. coli BL-21. For initial screening of these jumbo phages non-pathogenic E. coli strains were used as hosts. Therefore, this method opens a way to isolate large phages infecting wide ranges of pathogenic bacteria in a typical laboratory with standard laboratory strains as the hosts. The isolated large phages will be good candidates for biocontrol of various pathogens.

2.2. Introduction:

Bacteriophages (abbreviated as phages) have been used for clinical applications to kill pathogenic bacteria since their first discovery at the beginning of the 20th century (Twort, 1915 and d'Herelle, 1917). The most important factors of phages as effective biocontrol agents for practical use are their host ranges and ability to execute lasting infection (Ross *et al.*, 2016). Most bacteriophages have specific host ranges, usually limited to strains of the same bacterial species (Ross *et al.*, 2016 and Welkos *et al.*, 1974). This is a big disadvantage of phages compared with antibiotics. Therefore, good candidates for phage therapy can infect a broad range of pathogenic bacteria. To assure a broad host range of phages formulations against target bacteria, different types of phages are mixed as so called 'phage cocktails'. Unfortunately, there are many limitations of phage cocktail application associated with sustainable and continuous supply of medical and commercial formulations. Also, formulations containing too many phages can result in high manufacturing and development costs (Chan *et al.*, 2013).

"Jumbo phages" are tailed phages characterized by a large genome (>200 kbp) and most of them are members of the family *Myoviridae* (Hendrix, 2009). Most jumbo phages have multiple genes for expressing functional DNA polymerases (DNAPs) and RNA polymerases (RNAPs) (Hertveldt *et al.*, 2005; Thomas *et al.*, 2007). It was reported that the expression of jumbo phage genes is independent of the host RNAP and may be driven solely by the phage own RNAPs (Ceyssens *et al.*, 2014; Leskinen *et al.*, 2016). Moreover, jumbo phages have genes for multiple enzymes involved in host cell lysis, such as endolysin, chitinase, glycoside hydrolase and lyases, that facilitate expanded infection (Yuan and Gao, 2017). Many other genes encoded by jumbo phages may function to reduce their dependence on bacterial hosts and to activate selfestablishment (O'Donnell *et al.*, 2013). Because of these special characteristics of jumbo phages, it is thought that most have a broad host range because of their reduced dependence on their host bacterium (Yuan and Gao, 2017). In addition to this, some jumbo phages were reported to execute sustainable, long-lasting infection (Yamada *et al.*, 2010; Fujiwara *et al.*, 2011).

Despite the amazing characteristics of jumbo phages, only100 jumbo phages have been isolated and reported since the first discovery of phage at the beginning of the last century. However, they may be more frequent and abundant in our environment, with a high impact on microbial ecology. Most jumbo phages have been isolated by chance by normal methods for bacteriophage propagation. An example is bacteriophage G, which was accidentally found during

preparation of another bacteriophage (Donelli, 1968). The inaccessibility of jumbo phages is attributable to our dependence on the classical procedures for phage detection and isolation (Yuan and Gao, 2017; Serwer *et al.*, 2007). For example, using high concentrations (0.6~0.8%) of top agar in plate assays hinders the diffusion of jumbo phages and hence limits detection of their plaques (Carlson, 2005). Removal of bacterial contamination by filtration through a membrane filter with fine pores (~0.2 μ m) could eliminate most jumbo phages coexisting in the sample (Williamson *et al.*, 2005). Unfortunately, there is still no standard method for isolation of jumbo phages. The aim of this study was to develop an effective method for selective isolation of large phages such as jumbo phages (with a genome larger than 200 kbp) and phages with a genome around 200 kbp including T4-like phages.

2.3. MATERIALS AND METHODS

2.3.1. Bacterial strains, bacteriophages and culture conditions

Bacterial strains used in this work are listed in Table 2.1. They included three strains of Gram-positive bacteria from two genera (*Bacillus* and *Staphylococcus*) and 16 strains of Gram-negative bacteria from nine genera (*Acinetobacter*, *Escherichia*, *Klebsiella*, *Proteus*, *Providencia*, *Pseudomonas*, *Salmonella*, *Shigella* and *Vibrio*). Bacteria were cultivated in LB medium containing 1% hipolypepton, 0.5% yeast extract and 1% sodium chloride (Sambrook and Russel, 2001) at appropriate temperatures for each strain (37°C for overnight). For animal pathogenic bacterial strains, all experiments were performed in biosafety level 2 laboratories.

For phage propagation and to collect sufficient phage particles, for each phage, a total of 2L of bacterial culture was grown. When OD₆₀₀ of the cultures reached 0.1 U, the phage was added at a multiplicity of infection (moi) of 0.01–0.05. After further incubation for 16–18 h, (culture lysis), the remnant cells and debris were removed by centrifugation with a R12A2 rotor in a Hitachi himac CR21E centrifuge (Hitachi Koki Co. Ltd., Tokyo, Japan), at 5000 ×g for 10 min at 4 °C. The supernatant was passed through a 0.45 μ m membrane filter followed by precipitation of the phage particles. The pellet collected by centrifugation in a Hitachi himac CR21E centrifuge at 15,000 ×g for 1 hour at 4 °C was dissolved in SM buffer (50 mM Tris–HCl at pH 7.5 containing 100 mM NaCl, 10 mM MgSO4). Phage preparations were stored at 4 °C until use.

Table 2.1. Bacterial strains used to identify the host range of the isolated phages:

nose (Ductor an species)							
Acinetobacter baumannii 395	Salmonella enterica serovar Enteritidis SAL01078						
Escherichia coli BL21	Shigella sonnei SH05001						
E. coli C3000 (C strain)	Shigella boydii SH00007						
E. coli K12	Shigella flexneri SH00006						
<i>E. coli</i> O157:H7	Serratia marcescens D601						
Enterohaemorrhagic E. coli EHEC 03064	Serratia marcescens (ATCC 13880)						
E. coli 7	Vibrio cholerae O139 MDO6						
Klebsiella pneumoniae 63	Vibrio cholera P1418O1 E1						
Proteus mirabilis 59	Vibrio fluvialis AQ0005						
Providencia stuartii 50	Vibrio parahaemolyticus ACA339						
Pseudomonas aeruginosa 16	Bacillus subtilis 168						
Pseudomonas aeruginosa PAO1	Staphylococcus aureus ATCC 6538						
Salmonella enterica serovar Paratyphi B SAL 04100	Staphylococcus epidermidis ATCC 35984						

Host (Bacterial species)

2.3.2. Selective detection of large phages:

To facilitate detection of jumbo or large phages, standard plaque assays were modified as follows: Bacterial cultures (*E. coli* strains BL-21, XL-1-Blue, DH5 α or Mach-1) were prepared in 4.5 ml LB broth adjusted to OD_{600 nm} = 0.25. A 100 µl phage sample was mixed with 250 µl bacterial culture and stood for 10 min at room temperature to allow adsorption. With 4.5 ml of molten LB top agar (0.35%), the mixture was poured onto an LB agar plate (1.5% agar). The plates were incubated for 24 h at 23°C (or 18°C if strain Mach-1 was the host). Small plaques that appeared on the plates were selectively picked for further purification and enrichment. Single plaque purification was repeated three times to confirm the plaque was derived from only one kind of phage. Enriched phage preparation was obtained from plate lysates. The scheme of this systemic detection and isolation of large phages is summarized in Fig. 2.1.

Fig. 2.1. Systemic detection and isolation of large phages. After treating with chloroform (without filtration), relatively large phage particles were separated by differential centrifugation. Plaque assays using low concentrations of top agar (0.35%) allow large phage particles to diffuse easily. Plaque assays are conducted at lower temperatures to delay host growth, resulting in larger plaque formation by phages. Smaller plaques are picked, as large phages always form very small plaques.

2.3.3. Host range assays

The host range of phages was determined initially by spot tests and then standard plaqueforming assays (Kutter, 2009). Test strains were mainly chosen from pathogenic bacteria (Table 2.1). Overnight cultures of bacterial strains prepared in LB medium were sub cultured in 500 µl LB broth and adjusted to $OD_{600} = 1$. An aliquot (100 µl) of each bacterial subculture was mixed with 3 ml of molten LB top agar (0.35%), poured onto the surface of an LB agar plate (1.5% agar) and left to dry for 10 min. Then, 1 µl of each phage preparation (with titer ~10⁸ plaque forming units/ml) was spotted onto the bacterial overlay (Kutter, 2009), left for 15 min to dry, and then incubated at 30°C for 24 h. When a lysis zone appeared, efficiency of plating (EOP) was determined for each strain as the host (Kutter, 2009).

2.3.4. Electron microscopy for initial phage characterization

High titers of phages were obtained from liquid cultures of *E. coli* BL21 as the host. Phage particles were purified by sucrose gradient (20–40%) centrifugation at 40,000 × g for 1 h. Then, the concentrated phages were subjected to electron microscopic observation according to Ackermann (Ackermann, 2009). Briefly, phage particles were spotted onto a copper grid coated with formvar-carbon, left to adsorb for 2 min, stained with 1% Na-phosphotungstate, and observed under a Hitachi H600A electron microscope.

2.3.5. Pulsed-field gel electrophoresis for genomic analysis

The phage genome size was determined by pulsed-field gel electrophoresis (PFGE), as described by Higashiyama and Yamada (1991). Briefly, after purification of phage particles by sucrose gradient (20–40%) centrifugation at 40,000 × g for 1 h, phage particles were embedded in 1.7% low-melting-point agarose (InCert agarose; FMC Corp., Philadelphia, PA, USA). Phage-containing plugs were treated with proteinase K (1 mg/ml; Merck Ltd., Tokyo, Japan) and 1% sarkosyl at 55°C for 2 h, and subjected to PFGE by a using a CHEF Mapper electrophoresis apparatus (Bio-Rad, Hercules, CA, USA).

2.3.6. Isolation and characterization of genomic DNA from phage particles

Standard techniques for DNA isolation and digestion with restriction enzymes and other nucleases, including nuclease S1 were followed according to Sambrook and Russell (2001). Phage DNA was isolated from the purified phage particles using phenol-chloroform method. In brief, high-titre lysates of purified phage particles were incubated with Proteinase K (20 mg/mL) and 10% N-lauroylsarcosinate-Na for 2 h at 55°C. To the solution 500 µL of phenol: chloroform:

isoamyl alcohol (25:24:1) was added and centrifuged at 12,000 x g for 10 min (repeated twice). The aqueous phase was extracted into a new tube and an equal volume of 100% isopropanol was added and allowed DNA to precipitate. The precipitated DNA was washed with 70% ethanol and the purified phages DNA was visualized on 1% agarose gels.

For comparison of DNA fragment patterns, all isolated Escherichia phages DNAs (eleven genomic DNAs) were digested with *Eco*RV and genomic DNAs of E3, E4, E8, and E11 were digested with *Hae*III according to the instructions of the manufacturer (Roche). Restriction fragments were separated by electrophoresis (1.5h, 50V) on 1.0% agarose (Sigma, USA) gel stained with ethidium bromide. DNA molecular weight marker (Lambda-*Sty*I fragments) was used for size determination of DNA fragments.

2.4. RESULTS

2.4.1. Isolation of *Escherichia* large phages

From our experience in isolation and characterization of jumbo phages infecting *Ralastonia* solanacaerum (Yamada, 2010; Bhunchoth, 2015), I chose five conditions to select large phages infecting pathogenic enteric bacteria: (i) Contaminating microbial cells were killed by chloroform without membrane filtration. (ii) Relatively large phage particles were selectively precipitated by differential centrifugation. (iii) Plaque assays used a low concentration of top agar (0.35%). (iv) Small plaques were selectively picked since large phages always form very small plaques. (v) Plaque assays were conducted at lower temperatures to delay host growth. The last step was important to make minute plaques clearly visible. The effectiveness of this method is shown in Fig. 2.2 compared with a standard method (with 0.7% top agar and incubated at 37°C).

By using these approaches as described in Materials and Methods and Fig. 2.1, I started isolation of large phages from sewage samples collected from a large wastewater treatment plant in Higashi-Hiroshima. Eleven candidate phages (E1~E11) were finally obtained, which stably formed very small plaques (<0.1 mm on 0.35% top agar). *E. coli* BL21 was the ideal host strain for screening E1~E11 phages. Around 30 ± 5 plaques appeared on the first assay plates and the level of small plaques was about 16%. For comparison, no such small plaques were obtained by a conventional method with filtration and plaque assays with 0.7% top agar.

Fig. 2.2. Comparison of phage plaques formed by the new method (schematically shown in Fig. 2.1) compared with those by a standard method. (A) Relatively large clear plaques are visible for phage E8 with *Escherichia coli* BL21 as the host by the new method but plaques are very obscure by a standard method (the same phage and host with 0.7% top agar and incubated at 37°C). (B) However, the fragility of top agar at 0.1% hindering plaque handling and phage purification.


```
18
```

2.4.2. Electron microscopy observation

Electron microscopic observation of Escherichia phages E1~E11 revealed characteristic features of the family *Myoviridae* (Fig. 2.3). There are two types of particles: (i) T4 like particles characterized by a prolate head, a contractile tail, and long tail fibers (E1, E2, E5, E7, E9 and E10); (ii) large particles characterized by an icosahedral head (diameter 110 \pm 5.5 nm) and a long contractile tail (length 145 \pm 7.25 nm) (E3, E4, E6, E8 and E11).

Fig. 2.3. Morphology of eleven Escherichia phages (E1~E11) stained with 1% Na-phospho tungstate and examined by transmission electron microscopy. All phages are members of the family *Myoviridae*. Six phages (E1, E2, E5, E7, E9, and E10) are typical Caudovirales phages characterized by a prolate head and contractile tail. The remaining five phages (E3, E4, E6, E8, and E11) showed large particles characterized by an icosahedral head and long contractile tail without visible tail fibers. A contracted tail is shown in each inlet.

2.4.3. Genomic analysis by PFGE

To determine genomic DNA sizes of the phages, I performed in-gel PFGE with purified phage particles. Fig. 2.4 shows the DNA separation patterns of these phages. The genomes of phages E1, E2, E5, E6, E7, E9 and E10 were around 200 kbp in size. While genome sizes of E3, E4, E8 and E11 were about 450 kbp. These sizes in PFGE were not affected by S1 nuclease digestion (Bhunchoth et al., 2015), indicating linear DNA forms of these genomes.

2.4.4. Digestion by restriction enzymes

*Eco*RV digestion patterns of genomic DNAs of Escherichia phages E1~E11 are shown in Fig. 2.5A, where E1, E2, E6, E7, and E10 showed digested banding patterns, whereas E3, E4, E5, E8, E9, and E11 DNAs were not digested. Although large fragments for E1, E2, and E6 DNAs were not well separated, the digested fragmentation patterns were different from each other among the ~200-kbp genome phages. As for ~450-kbp genome phages, all E3, E4, E8, and E11 DNAs were digested with *Hae*III (Fig. 2.5B), giving banding patterns similar to each other among E3, E4, and E8 with some differences. E11 DNA gave a unique banding pattern. Other restriction enzymes we tried, failed to digest these large DNA genomes, suggesting some modification of the genomic DNA. Although exact genomic size for these phages could not be determined, 11 phages isolated in this study were large (putative jumbo) phages by the criterion of genome size ~200 kbp.

2.4.5. Host range of the phages

Host ranges of phages E1~E11 were determined with various bacterial strains (Table 2.2). E9 phage has a wide host range, infecting *Shigella sonnei* SH05001, *Salmonella enterica* serovar Enteritidis SAL01078 and *E. coli* C3000 (K-12 derivative), as well as its original host *E. coli* BL21. The most of other Escherichia phages could lyse multiple bacterial hosts, including *S. sonnei* SH05001, *Shigella boydii* SH00007, *Shigella flexneri* SH00006, *E. coli* C3000 and *E. coli* BL21. These results indicate that the large phages isolated using *E. coli* laboratory strains as hosts have a wide host range including important pathogens. This is the first demonstration that large phages infecting wide ranges of pathogenic bacteria can be screened in normal laboratories using nonpathogenic bacterial strains as the hosts.

Fig. 2.4. Pulsed-field gel electrophoresis (CHEF) separation patterns of the genomic DNAs of 11 Escherichia phages (E1~E11). The genomic size of seven phages (E1, E2, E5, E6, E7, E9, and E10) is around 200 kbp, whereas that of the other four phages (E3, E4, E8 and E11) is around 450 kbp. For comparison, the genomic DNA of host *E. coli* cells (strain BL21) separated under the same condition is shown on the right side. M, lambda DNA ladder for size markers.

Fig. 2.5A. Restriction enzyme digestion patterns of genomic DNA of Escherichia phages. Eleven genomic DNAs were digested with *Eco*RV. M, molecular marker (Lambda-*Sty*I fragments).

Fig. 2.5B. Restriction enzyme digestion patterns of genomic DNAs of E3, E4, E8, and E11. Genomic DNAs were digested with *Hae*III. M, molecular marker (Lambda-*Sty*I fragments).

Table 2.2. Host range of *Escherichia* phages on Gram negative and Gram-positive bacterial strains

Host (Bacterial species)	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11
Acinetobacter baumannii 395	-	-	-	-	-	-	-	-	-	-	-
Escherichia coli BL21	+	+	+	+	+	+	+	+	+	+	+
E. coli C3000 (C strain)	+	+	-	-	+	+	+	+	+	-	-
E. coli K12	+	+	-	-	-	-	+	-	-	-	-
<i>E. coli</i> O157:H7	-	-	-	-	-	-	-	-	-	-	-
Enterohaemorrhagic E. coli	-	-	-	-	-	-	-	-	-	-	-
EHEC 03064											
E. coli 7	-	-	-	-	-	-	-	-	-	-	-
Klebsiella pneumoniae 63	-	-	-	-	-	-	-	-	-	-	-
Proteus mirabilis 59	-	-	-	-	-	-	-	-	-	-	-
Providencia stuartii 50	-	-	-	-	-	-	-	-	-	-	-
Pseudomonas aeruginosa 16	-	-	-	-	-	-	-	-	-	-	-
Pseudomonas aeruginosa PAO1	-	-	-	-	-	-	-	-	-	-	-
Salmonella enterica	-	-	+	+	-	-	-	-	-	-	-
serovar Paratyphi B SAL 04100											
Salmonella enterica serovar	-	-	-	+	-	-	-	-	+	-	-
Enteritidis SAL01078											
Shigella sonnei SH05001	+	+	-	-	+	+	+	-	+	+	+
Shigella boydii SH00007	+	+	-	-	-	-	+	-	+	-	+
Shigella flexneri SH00006	+	-	-	-	-	-	+	-	+	+	+
Serratia marcescens D601	-	-	+	+	-	-	-	+	-	-	-
Serratia marcescens (ATCC	-	-	-	-	-	-	-	-	-	-	-
13880)											
Vibrio cholerae O139 MDO6	-	-	-	-	-	-	-	-	-	-	-
Vibrio cholera P1418O1 E1	-	-	-	-	-	-	-	-	-	-	-
Vibrio fluvialis AQ0005	-	-	-	-	-	-	-	-	-	-	-
Vibrio parahaemolyticus	-	-	-	-	-	-	-	-	-	-	-
ACA339											
Bacillus subtilis 168	-	-	-	-	-	-	-	-	-	-	-
Staphylococcus aureus ATCC	-	-	-	-	-	-	-	-	-	-	-
6538											
<i>Staphylococcus epidermidis</i> ATCC 35984	-	-	-	-	-	-	-	-	-	-	-

Sensitivity: +, sensitive (EOP>10⁻² PUF/plate); -, resistant (EOP<10⁻⁶ PFU/plate). An EOP of 1 was equivalent to 408, 374, 280, 265, 355, 334, 369, 240, 530, 439, and 382 PFU per plate for E1 ~ E11 with *Escherichia coli* BL21 as the host, respectively.

2.5. DISCUSSION

In this work, I could selectively obtain many large phages by making several modifications to the classical methods for detection and isolation of bacteriophages. The modifications included: (i) Initial selection by differential centrifugation of samples to precipitate relatively large particles, and (ii) killing of contaminating bacteria with chloroform without filtration. This allowed us to remove small phages but retain large phage particles without contamination from small bacterial cells. (iii) Plaque assays using low concentrations of top agar (0.35%) and (iv) selective picking of smaller plaques, as large phages always form very small plaques. In the standard method applying top agar of $\sim 0.7\%$, large phage particles cannot form visible plaques because of limited diffusion. Lowering the top agar concentration means that phage particles can diffuse more easily. However, even in this condition, plaques of large phages are usually small. (v) Only after plaque assays were conducted at lower temperatures to delay host growth, larger plaque formation was possible for these phages. With E. coli strains as the host, my preliminary tests of plaque formation by lambda phage gave the largest plaques at 23°C. Vigorous growth of the host strain at higher temperatures (e.g., 37°C for E. coli) leads to rapid spread of cells over the plate surface inactivating the host cells. Small plaques of large phages might be caused by other factors such as small burst size, low activity of lytic enzymes etc, but by using this systemic method, large phages easily missing from ordinary screening can be efficiently detected and isolated as shown in Fig. 2.2. However, even by using this method, some large phages may not be obtained because of their sensitivity to chloroform (Kęsik-Szeloch et al., 2013; Roszniowski et al., 2017). For such phages, some further refinements including extended differential centrifugation without chloroform treatment should be given to the method.

I used laboratory strains of *E. coli* as the hosts and obtained large phages (including T4-like phages) that showed wide-host ranges, including important pathogens such as strains of *Shigella* and *Salmonella*. Phages are usually species-specific and even strain-specific (Ross *et al.*, 2016). Even though, some polyvalent phages infecting strains of either different genera or species have been reported, predominantly among phages of *Enterobacteria* (Hamdi et al., 2017; Doore *et al.*, 2018) and *Staphylococcus* (Haddad *et al.*, 2014). For example, Shigella phage SH7 was reported to infect strains of *E. coli*, *Salmonella* Paratyphi, and *Shigella dysenteriae* in addition to its original host *Shigella flexeri* (Hamdi *et al.*, 2017). In respect of host strains ranging over three different genera including *Escherichia*, *Shigella*, and *Salmonella*, phage E9 found in this work is

similar to SH7. Phage E4 found in this work also showed a unique host range covering three genera such as *Escherichia*, *Salmonella*, and *Serratia*. Such a rare case of wide host range was also reported for bacteriophage χ (Iino and Mitani, 1967). These phages may be useful for effective biocontrol of pathogenic enteric bacteria used solely or in phage cocktails.

Handling of usual pathogenic bacterial strains in biosafety level 2 or 3 laboratories requires special experimental facilities, skills, and care. However, the screening method adapted here for large phages actually used only biosafety level 1 hosts. This is a big advantage of this method. It is thought that large phages with many adaptive genes generally have wide host ranges (Bhunchoth *et al.*, 2015; Chowdhury and Sawer, 1976; Miller *et al.*, 2003a; Kim *et al.*, 2012), so that large phages will be good candidates for various biocontrol purposes. Long-lasting phage effects also increase the potential value of large phages (Fujiwara *et al.*, 2011). I hope this method will open a new door to extend jumbo phage isolation and their use in biocontrol of a wide range of pathogenic bacteria.

CHAPTER III

Full genome sequence of a polyvalent bacteriophage infecting strains of *Shigella*, *Salmonella*, and *Escherichia*

3.1. SUMMARY

Escherichia phage EcS1 is a large, lytic myovirus isolated from sewage samples in Japan. The whole genome of EcS1 was found to be 175,437 bp in length with a mean G+C content of 37.8%. A total of 295 genes were identified along the genome and contained structural, functional, and hypothetical genes. BLAST analysis of the EcS1 genomic sequence revealed the highest identity (79%; query cover of 73–74%) to three T4-related phages that infect *Serratia* sp. ATCC 39006. Host range experiments revealed that EcS1 has lytic effects on three pathogenic strains of *Shigella* spp. and a pathogenic strain of *Salmonella enterica* as well as on *E. coli* strains. However, two strains of *Serratia marcescens* showed resistance to this phage. Phylogenetic trees for phage tail fiber protein sequences revealed that EcS1 is closely related to *Enterobacteriaceae*-infecting phages. Thus, EcS1 is a novel phage that infects several pathogenic strains of the family *Enterobacteriaceae*.

3.2. INTRODUCTION

Foodborne illness is a common public health problem all over the world. Bacterial organisms represent 66% of all food borne diseases etiology (Addis and Sisay, 2015). The bacterial family *Enterobacteriaceae* includes many important foodborne pathogens. Moreover, multidrug resistant strains of *Enterobacteriaceae* represent 71.5% of all infections with drug resistant strains (Picot-Guéraud *et al.*, 2015). Non-typhoidal Salmonella (NTS) are a leading cause of bacterial food-borne disease outbreaks and human gastroenteritis in both developed and developing countries (Aarestrup *et al.*, 2007). They are responsible for considerable fatality rate of 20–25% globally, particularly in immune-compromised people (Hohmann, 2001; Evans *et al.*, 2004). *S.*

enterica serovar Enteritidis (*S*. Enteritidis) emerged as the most prevalent serovar of (NTS) in many countries (Herikstad *et al.*, 2002; Schroeder *et al.*, 2005). Notably, *Shigella* was the second leading cause of enteric deaths globally in 2015, and, among the four *Shigella* subgroups, *S. sonnei* and *S. flexneri* are the leading causes of dysentery worldwide (Starling, 2017). *Shigella* spp. are reported to be increasingly resistant to various antimicrobial drugs (Nikfar *et al.*, 2017), which necessitates the development of effective alternative choices for the control of these multidrug-resistant (MDR) strains. Phage therapy research to utilize bacteriophages for killing pathogenic bacteria has recently gained high interest due to the continued increase in MDR bacterial strains (Ansari *et al.*, 2015). Bacteriophages could be an ideal alternative to antibiotics because they are ubiquitous in nature, self-replicating, host-specific, and able to overcome MDR strains, and they have potential for not only treating but also preventing bacterial infections (Bao *et al.*, 2015).

Each isolated phage is new, and can be named by its owner, the sense of ownership in their discovery is a big motivation to explore the secrets of obtained phage by isolating genomic DNA, determining its sequence, annotating gene predictions, and comparing the sequence to that of other known viruses (Hatfull *et al.*, 2006). Moreover, phages are genetically diverse, and their genomes are mosaic, driven by horizontal gene transfer with other phages and host genomes (Pedulla *et al.*, 2003). As a consequence, phage evolution is complex and their genomes are composed of genes with distinct and varied evolutionary histories (Lawrence *et al.*, 2002). It is highly important, chosen phages to be approved and released for use need to be well characterized, sequenced and the attendant phage biology understood (Merril *et al.*, 2006).

Bacteriophage sequencing is highly essential for phages to be considered as biocontrol tools in the food industry and in the medical field by regulatory agencies such as the Food and Drug Administration (FDA). As detecting any of the following: genes that encode virulence factors, antimicrobial resistance, toxins, or transducing elements by genetic screening would immediately disqualify a phage for therapeutic use (Skurnik et al., 2007). Genome sequencing presents one of the most complete technique to study phage encoded proteins, however, the main bottleneck for functional overall genomics, including phage genomics, is the low number of available genomes and described genes (open reading frames or ORFs). Many of phage predicted proteins represent "hypothetical proteins" with none described function. This shows how low we know about genome and demonstrates the need of much more studies concerning genome

sequencing (Oliveira *et al.*, 2012). Regarding to genetics, phages with broad host ranges are usually isolated from natural microbial communities that enhance genetic exchanges (Eisen, 2000). Among all phage genes, tail fiber genes appear to evolve faster than other, presumably because it seems advantageous to gain new specificities to infect different hosts and to enter other ecological niches (Casjens, 2005; Haggård-Ljungquist *et al.*, 1992). The bacteriophage tail is essential molecular machine used for infection to recognize the host and ensure efficient genome delivery to the cell cytoplasm, as tail fibers/tail spikes in the phage tail facilitate the initial binding of the phage to the bacterial host and have roles in host specificity determination (Vinga *et al.*, 2012). It is well known that *Myoviridae* phages have the most complex tail structures with the greatest number of proteins involved in the tail assembly and function (Leiman *et al.*, 2010).

The main aim of this study is to make complete genetic characterization of the novel polyvalent bacteriophage EcS1 infecting strains of *Shigella*, *Salmonella*, and *Escherichia*. It is also to confirm phage EcS1 novelty and safety for biocontrol applications with identification of evolutionary changes of its tail fiber proteins.

3.3. MATERIALS AND METHODS

3.3.1. Isolation and expansion of phage EcS1:

Escherichia phage EcS1 was isolated from sewage samples collected from a sewage treatment plant in Higashi-Hiroshima, Japan, as previously described (Saad *et al.*, 2019); briefly a 400 ml portion of the sewage sample was centrifuged at 5,000 × *g* for 10 min at room temperature to remove most particulates, including unwanted debris and microbial cells. After recentrifugation of the supernatant at 15,000 × *g* for 1 h at 4°C, all the pellets were suspended by vortexing in 5 ml of SM buffer (50 mM Tris-HCl [pH 7.5], 100 mM NaCl, 10 mM MgSO4, and 0.01% gelatin). To selectively remove small phages, this centrifugation-resuspension cycle was repeated three times. An equal volume of chloroform was added to the final suspension to kill any residual contaminating bacteria. A plaque assay was done as follows: Bacterial culture of *E. coli* BL21 strain was prepared in 4.5 ml LB broth adjusted to OD_{600 nm} = 0.25. A 100 µl phage sample was mixed with 250 µl bacterial culture and stood for 10 min at room temperature to allow adsorption. With 4.5 ml of molten LB top agar (0.35%), the mixture was poured onto an LB agar plate (1.5% agar). The plates were incubated for 24 h at 23°C. Small plaques that appeared on the plates were

selectively picked for further purification and enrichment. Single plaque purification was repeated three times to confirm the plaque was derived from only one kind of phage. Enriched phage preparation was obtained from plate lysates.

3.3.2. Host range determination:

The host range of phage EcS1 against test strains [mainly chosen from pathogenic bacteria (Table 3.1)], was determined initially by spot tests and then standard plaque-forming assays (Kutter, 2009). Briefly; overnight cultures of bacterial strains prepared in LB medium were sub cultured in 500 µl LB broth and adjusted to OD600 = 1. An aliquot (100 µl) of each bacterial subculture was mixed with 3 ml of molten LB top agar (0.35%), poured onto the surface of an LB agar plate (1.5% agar) and left to dry for 10 min. Then, 1 µl of each phage preparation (with titer ~10⁸ plaque forming units/ml) was spotted onto the bacterial overlay, left for 15 min to dry, and then incubated at 30°C for 24 h. When a lysis zone appeared, efficiency of plating (EOP) was determined for each strain as the host (Kutter, 2009). In detail, preparing cultures of positive bacterial strains in the host-range spot-test assay, and also for the host strain (*E. coli* BL21). Adding a series of 10-fold dilutions of phage EcS1 to each tested bacterial strain, going down to a predicted titer of 100 phage per ml. Spotting the last 6 dilutions of phage EcS1 and duplicating plates for each set check the plates and plaques can be counted for the next day.

3.3.3. Morphological characteristics of phage EcS1:

High titer of phage EcS1 was obtained from liquid culture of *E. coli* BL21 as a host. Phage particles were purified by sucrose gradient (20–40%) centrifugation at 40,000 × g for 1 h. Then, the concentrated phages were subjected to electron microscopic observation according to Ackermann (Ackermann, 2009). Briefly, phage particles were spotted onto a copper grid coated with formvar-carbon, left to adsorb for 2 min, stained with 1% Na-phosphotungstate, and observed under a Hitachi H600A electron microscope.

3.3.4. Phage genome isolation, sequencing, annotation and analyses

Phage DNA was isolated from the purified phage particles using phenol-chloroform method. In brief, high-titer lysates of purified phage particles were incubated with Proteinase K (20 mg/mL) and 10% N-lauroylsarcosinate-Na for 2 h at 55°C. To the solution 500 μ L of phenol: chloroform: isoamyl alcohol (25:24:1) was added and centrifuged at 12,000 x g for 10 min (repeated twice). The aqueous phase was extracted into a new tube and an equal volume of 100% isopropanol was added and allowed DNA to precipitate. The precipitated DNA was washed with 70% ethanol. The whole genome sequencing of Phage EcS1 was performed using an Illumina Miseq System (Fasmac System Science Co., Ltd. ,Kanagawa, Japan). The high-quality sequenced reads were de novo assembled using SPAdes Genome Assembler software, version 3.7.1 with sequence depth of 214. The complete genome sequence was submitted to DDBJ website and accession number was generated (LC371242). Functional annotation of the EcS1 genome and identification of open reading frames (ORFs) were performed using PHAST at http://phast.wishartlab.com/ (Zhou et al., 2011). The transfer-RNA (tRNA) sequences were predicted using tRNAscan-SE (version 1.3.1). The predicted genes of EcS1 were investigated for homologs on the NCBI using the BLAST program (https://blast.ncbi.nlm.nih.gov/) by applying an E-value cutoff le-⁵. BLASTn analysis was performed to the whole EcS1 genome to detect any similarity to previously isolated phages on the NCBI. Followed by dot plot analyses using the MAFFT version 7 program (https://mafft.cbrc.jp/alignment/server/) for comparison of the genomic nucleotide sequences between EcS1 and Serratia myoviruses, including CH14 (accession no. MF036690), CBH8 (MF036691) and T4 (AF15810). A search by BLASTp was also done for all gene sequences of EcS1 phage.

3.3.5. Phylogenetic analysis of tail fibers gene products:

Amino acid sequences of tail fiber proteins (Gp198 and Gp270) were chosen by tail fiber gene products of BlastP for phylogenetic analysis. As Gp198 formed from 445 amino acids and putative for extra phage tail fibers and Gp270 formed from 977 amino acids and putative for long tail fiber distal subunit. Two phylogenetic trees were constructed using version 7.0 of Molecular Evolutionary Genetic Analysis (MEGA) (Kumar et al., 2016). The sequences were aligned with other similar phage sequences according to BlastP analyses. Phylogenetic trees were inferred using the Maximum—Likelihood method. The trees rooted and the bootstrapping supported scores using 1000 replicates. Protein alignments between EcS1 and Serrattia phages for AsiA (encoded from *asiA* gene) were conducted using the Clustal Omega program (Sievers *et al.*, 2011).
3.4. RESULTS

3.4.1. Host range of EcS1 phage:

A novel lytic phage was isolated from sewage samples collected from a sewage treatment plant in Higashi-hiroshima, Japan using the non-pathogenic host strain *E. coli* BL21. After several rounds of purification, the phage was obtained and designated as "Escherichia phage EcS1". The host range of phage EcS1 was then tested on 19 bacterial strains by spot test and efficiency of plating (EOP) of diluted phage lysate. Of the 19 strains tested, phage EcS1 was able to infect a wide range of pathogenic bacterial strains, including *Shigella sonnei* SH05001, *Shigella boydii* SH00007, *S. flexneri* SH00006, and *Salmonella enterica* serovar Enteritidis (SAL 01078) (Table 1). The lytic nature of EcS1 was judged from its clear plaques stably formed with every sensitive host strain and EOP>10⁻²pfu/plate was considered as sensitive.

3.4.2. EcS1 morphological characteristics:

The morphological characteristics of EcS1 were examined under a Hitachi H600A electron microscope. It was revealed that EcS1 particles have a prolate head (111 ± 5.5 nm long and 81 ± 4 nm wide, n = 10) and a long tail of 110 ± 5.5 nm in length, n = 10 (Fig. 1). These morphological characteristics as well as the following genomic information indicate that this phage belongs to the group of T4-like phages (genus *T4virus*) in the family *Myoviridae*.

3.4.3. Genomic analysis of EcS1 phage:

The final assembled size of the EcS1 genome was 175,437 bp in length with a mean G+C content of 38.2%. A total of 295 genes were identified along the EcS1 genome (Table 2). Of these genes, 117 had predicted known functions which encoded functional proteins required for DNA replication, repair, recombination, processing, transcription, nucleotide metabolism, host and/or phage interaction, homing endonuclease and lysis; 46 genes of those with predicted functions were identified as structural genes that encoded proteins such as phage capsid and scaffold, phage collar, tail, sheath and phage tail fibers; the remaining 178 genes lacked known functions as hypothetical proteins (Fig. 3.1) (Table. 3.3). A search by BLASTp of all gene sequences revealed that 242 shared highest identities with Serratia phages CHI14 and/or X20 while 53 gene products with highest identity to gene products of phages other than Serratia phages (Table 3.3). Within the EcS1 genome, there were 18 tRNA sequences detected by tRNAscan-SE (version 1.3.1) (Table 3.4). BLASTn analyses revealed that the sequence of phage EcS1 was most similar to three myophages ϕ X20 (accession no. MF036692), ϕ CHI14

(MF036690), and ϕ CBH8 (MF036691), that infect *Serratia* sp. ATCC 39006 with a query cover of 73–74%. The highest identity between these sequences was 79%. In addition to those three phages; EcS1 also had 76% identity and a query coverage of 5% to T4 (GenBank accession number AF158101) (Fig. 3.2). Moreover, phage EcS1 had 12% query cover and 76% identity to Enterobacteria phage vB_EcoM_VR5 (accession number KP007359) and had 8% query cover and 75% identity to Shigella phage SP18 (accession number GQ981382) that isolated from *S. sonnei* KCTC 2518 (Kim et al., 2010a). And also, with 7% query cover and 74% identity with *Salmonella* phage (accession number JX181825).

3.4.4. Evolutionary changes in EcS1 tail fibers proteins:

The relationship between phage EcS1 and other members of enterobacteria phages was revealed by two phylogenetic trees (Fig. 3.3) based on the amino acid sequences of tail fiber proteins (Gp198 and Gp270). The constructed tree using phage tail fiber protein (Gp 198; 445 aa) showed that phage EcS1 formed 99% bootstrap value cluster with Klebsiella phage PMBT1 SCO64804. Moreover, the cluster was also closely related to Shigella phage Sf16, Escherichia phage vB_EcoM_AYO145A, and Salmonella phage BPS17W1 (Fig. 3.3A). On the other hand, the tree for long tail fiber distal subunit (Gp270; 977 aa) formed a 55% bootstrap value cluster with *Yersinia* phage vB YenM TG1, which was part of larger cluster that included *Citrobacter* phage CF1 and Salmonella phages vBSenMs 16 and Salmonella phages STML-198 (Fig. 3.3B).

There were other 4 functional gene products showing relative identity to other phages rather than Serratia phages as following; as (Gp12) that predicted to encode modifier of suppressor tRNAs with 96% coverage and 73% identity to Citrobacter phage Merlin, (Gp 194) encode head vertex protein have 99% coverage and 70% identity to Edwardsiella phage Pei20, (Gp 199) encoding hoc large outer capsid protein showed 98% coverage and 57% identity to Enterobacteria phage RB16, (Gp 252) that encode I-TevI homing endonuclease with 96% coverage and 65% identity to Yersinea phage phiR1.

3.4.5. Alignment of asiA genes (another evidence of genetic difference between EcS1 and Serratia phages):

For more declaration of the novelty of my phage EcS1; Alignment of the primary sequence of conserved asiA gene in EcS1 phage and other wild types of Serratia phages CH14, CBH8 and X20 revealed the presence of mutations in both C-terminal and N-terminal domains of phage EcS1 gene (Fig. 3.4).

Table 3.1: Host range of EcS1.

Host (Bacterial species)	EcS1
Acinetobacter baumannii 395 (carbapenem-resistant clinical isolate)	-
Escherichia coli BL21 (B strain)	+
E. coli C3000 (C strain)	+
E. coli K12	-
<i>E. coli</i> O157:H7	-
Enterohaemorrhagic E. coli EHEC 03064	-
E. coli 7 (carbapenem-resistant clinical isolate)	-
Klebsiella pneumoniae 63 (carbapenem-resistant clinical isolate)	-
Proteus mirabilis 59 (clinical isolate)	-
Providencia stuartii 50 (carbapenem-resistant clinical isolate)	-
Pseudomonas aeruginosa 16 (carbapenem-resistant clinical isolate)	-
Pseudomonas aeruginosa PAO1	-
Salmonella enterica serovar Paratyphi B SAL 04100	-
Salmonella enterica serovar Enteritidis SAL01078	+
Shigella sonnei SH05001	+
Shigella boydii SH00007	+
Shigella flexneri SH00006	+
Serratia marsencens D601	-
Serratia marcescens (ATCC 13880)	-

Sensitivity: +, sensitive (EOP>10⁻² PUF/plate); -, resistant (EOP<10⁻⁶ PFU/plate). An EOP of 1 was equivalent to 2.12 x 10⁹PFU/ml with *Escherichia coli* BL21 as the host, respectively.

Fig. 3.1. Electron micrograph of a phage EcS1 particle stained with 2% phosphotugstate. Bar=100 nm.

Table 3.2: Predicted genes of EcS1

Gene	Position	GC (%)	Length of protein	MW (kDa)	Amino acid sequence identity/similarity to best homologs (% amino acid identity)	BLAST score (E-Value)	Accession no
g001	1 ← 2169	36	722	668	Protector from phage-induced early lysis [Serratia phage X20] Protector from prophage-induced early lysis [Serratia phage CHI14]	0.0 0.0	ARW57974 ARW57424
g002	2180 ← 2383	35	67	62	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	4e-28 1e-27	ARW57976 ARW57425
g003	2370←2702	34	110	102	Hypothetical protein [Serratia phage CHI14] Hypothetical protein CPT_Merlin3 [Citrobacter phage Merlin]	6e-55 0.031	ARW57426 YP_009203717
g004	2769←2921	45	50	46	Hypothetical protein [Serratia phage CHI14] Hypothetical protein CPT_Merlin3 [Citrobacter phage Merlin]	2e-20 3e-11	ARW57427 YP_009203718
g005	2967←4805	37	612	566	DNA topoisomerase II large subunit [Serratia phage CHI14] DNA topoisomerase subunit [Serratia phage X20]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW57428 ARW57979
g006	4863←5087	35	74	69	Hypothetical protein PM2_004 [Pectobacterium bacteriophage PM2] LEAFY-like protein 1 [Fragaria x ananassa]	3e-04 4.3	YP_009211425 AHI62726
g007	5087←5335	40	82	76	gp39.1 hypothetical protein [Enterobacter phage CC31] Hypothetical protein [Serratia phage X20]	2e-37 2e-34	YP_004009866 ARW57980
g008 g009	5332←5448 5414←5608	35 37	38 64	36 59	Hypothetical protein FmdB family regulatory protein [Citrobacter phage Merlin] Hypothetical protein CPT_Moon11 [Citrobacter phage Moon]	1e-15 4e-15	YP_009203725 YP_009146444
g010	5614←6051	36	145	134	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	1e-45 1e-32	ARW57983 ARW57432
g011	6051←6422	38	123	114	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	4e-32 5e-32	ARW57975 ARW57433
g012	6422←6619	35	65	122	Modifier of suppressor tRNAs [Citrobacter phage Merlin] Modifier of suppressor tRNA [Citrobacter phage Moon]	1e-24 1e-21	YP_009203727 YP_009146446
g013	6688←7086	38	132	123	Hypothetical protein [Serratia phage CHI14] NADPH dehydrogenase [Hyphopichia burtonii NRRL Y-1933]	6e-41 7.4	ARW57435 XP_020073963
g014	7097←7780	41	227	211	Exonuclease A [Serratia phage X20] Exonuclease A [Serratia phage CHI14]	2e-159 7e-158	ARW57986 ARW57437
g015	7773←8012	35	79	73	Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Serratia phage X20]	2e-26 5e-26	ARW57438 ARW57987
g016	8020←9345	38	441	408	DNA helicase [Serratia phage X20] DNA helicase [Serratia phage CHI14]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW57988 ARW57439
g017	9345←9641	35	98	91	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	1e-44 8e-43	ARW57989 ARW57440
g018	9641←10351	37	236	218	Putative antisigma factor [Serratia phage CHI14] Anti-sigma factor, putative [Serratia phage X20]	5e-138 1e-137	ARW57441 ARW57990
g019	10396←10992	36	198	184	ADP-rybosylase [Serratia phage CHI14] ADP-rybosylase [Serratia phage X20]	5e-64 4e-63	ARW57442 ARW57991
g020	11051←11233	41	60	56	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	2e-11 7e-11	ARW57992 ARW57443
g021	11233←11733	37	166	153	Hypothetical protein [Klebsiella phage KPV15]	1e-12 8e-12	APD20401 YP_009288697

					Hypothetical protein kpv477_021 [Klebsiella phage vB_KpnM_KpV477]		
g022	11693←11908	36	71	66	Hypothetical protein [Serratia phage CHI14] Hypothetical protein CPT_Merlin23 [Citrobacter phage Merlin]	2e-08 8e-08	ARW57445 YP_009203737
g023	11865←12224	40	119	110	Hypothetical protein EpBp7_0113 [Enterobacteria phage Bp7] Hypothetical protein VR20_025 [Escherichia phage vB_EcoM_VR20]	7e-10 8e-10	YP_007004154 YP_009207204
g024	12297←12533	35	78	73	Small outer capsid protein [Salmonella phage STP4-a] Capsid and scaffold protein [Salmonella phage STML-198]	5e-18 1e-17	YP_009126230 YP_009148016
g025	12568←13089	37	173	160	gp56 dCTPase [Escherichia phage JS98] dCTPase [Escherichia phage QL01]	2e-89 7e-89	YP_001595154 YP_009202758
g026	13129←13428	34	99	92	Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Serratia phage X20]	1e-38 1e-38	ARW57450 ARW57999
g027	13428←14450	38	340	308	DNA primase [Serratia phage CHI14] DNA primase [Serratia phage X20]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW57452 ARW58001
g028	14497←14964	39	155	143	Hypothetical protein CPT_Moon37 [Citrobacter phage Moon] Hypothetical protein [Escherichia phage ST0]	7e-60 8e-60	YP_009146470 ASD53796
g029 g030	14981←15412 15409←15651	34 36	143 80	132 75	Hypothetical protein Conserved hypothetical protein [Edwardsiella phage PEi20] gp61.4 hypothetical protein [Escherichia phage vB_EcoM_VR7]	1e-09 4e-06	YP_009190191 YP_004063718
g031	15648←15971	40	106	99	Hypothetical protein [Serratia phage X20] Spackle periplasmic protein [Serratia phage CHI14]	3e-41 1e-39	ARW58003 ARW57454
g032	15996←17360	40	454	420	DNA primase-helicase subunit [Serratia phage X20] Putative DNA primase/helicase [Serratia phage CHI14]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW58004 ARW57455
g033	17437←17661	36	74	69	Head vertex assembly chaperone [Serratia phage CHI14] Head vertex assembly chaperone [Pectobacterium bacteriophage PM2]	7e-43 1e-29	ARW57456 YP_009211460
g034	17777←18952	39	391	362	RecA-like recombination protein [Serratia phage CHI14] RecA-like recombination protein [Escherichia phage	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW57457 YP_009207222
g035	19037←19579	33	180	167	vB_EcoM_VR20] Hypothetical protein [Serratia phage CHI14] Hypothetical protein PM2_041 [Pectobacterium bacteriophage PM2]	6e-95 2e-78	ARW57459 YP_009211462
g036	19567←20478	36	303	281	Hypothetical protein [Serratia phage CHI14] Hypothetical protein EpJS98_gp038 [Escherichia phage JS98]	0.0 1e-126	ARW57460 YP_001595167
g037	20478←21176	39	232	215	Putative thymidylate synthase [Serratia phage CHI14] Hypothetical protein QL01_42 [Escherichia phage QL01]	8e-154 1e-127	ARW57461 YP_009202773
g038	21173←21517	36	114	106	Hypothetical protein [Serratia phage CHI14] Hypothetical protein fHeYen901_50 [Yersinia phage fHe-Yen9-01]	2e-67 2e-15	ARW57462 ARB05823
g039	21514←22689	38	389	361	Conserved hypothetical protein [Edwardsiella phage PEi20] Hypothetical protein [Serratia phage CHI14]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	YP_009190202 ARW57463
g040	22739←23098	37	119	111	Hypothetical protein fHeYen901_54 [Yersinia phage fHe-Yen9-01] Capsule biosynthesis protein [Serratia phage CH114]	1e-80 3e-60	ARB05827 ARW57465
g041	23098←24777	37	559	517	Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Serratia phage X20]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW57466 ARW58015
g042	24816←24959	34	47	44	Hypothetical protein [Serratia phage CHI14] Hypothetical protein YenMTG1_055 [Yersinia phage vB_YenM_TG1]	6e-17 2e-12	ARW57467 YP_009200316
g043	24959←25585	42	208	193	D-arabinose 5-phosphate isomerase [Serratia phage CHI14] Conserved hypothetical protein [Edwardsiella phage PEi20]	4e-122 5e-119	ARW57468 YP 009190207

g044	25585←26001	35	138	128	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CH114]	9e-62 1e-61	ARW58018 ARW57469
g045	26050←28761	39	903	836	DNA polymerase [Serratia phage CHI14] DNA polymerase [Shigella phage Shf125875]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW57470 YP_009100595
g046	28837←29199	35	120	111	Translational repressor protein [Serratia phage CHI14] Endoribonuclease translational repressor of early genes [Klebsiella	1e-77 8e-75	ARW57471 APD20422
g047	29202←29780	33	192	178	phage KPV15] Clamp loader small subunit [Serratia phage CHI14] Clamp loader subunit, DNA polymerase accessory protein	4e-102 4e-101	ARW57472 YP_009211476
g048	29771←30730	35	319	295	[Pectobacterium bacteriophage PM2] Clamp loader small subunit [Enterobacteria phage vB_EcoM_VR5] Hypothetical protein WG01_53 [Escherichia phage WG01]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	YP_009205746 YP_009323252
g049	30788←31477	36	229	213	Sliding clamp protein [Serratia phage CHI14] Sliding clamp protein [Serratia phage X20]	7e-149 3e-147	ARW57474 ARW58023
g050	31523←31909	39	128	119	RNA polymerase binding protein [Serratia phage X20] RNA polymerase binding protein [Serratia phage CHI14]	8e-59 6e-57	ARW58024 ARW57475
g051	32110←33792	37	560	518	Recombination endonuclease subunit [Pectobacterium bacteriophage PM2]	0.0	YP_009211481
					Recombination endonuclease subunit [Edwardsiella phage PEi20]	0.0	YP_009190217
g052	33789←34004	35	71	66	Hypothetical protein QL01_57 [Escherichia phage QL01]	1e-20	YP_009202788
g053	34001←35020	37	339	314	Recombination endonuclease subunit [Serratia phage CBH8] Recombination endonuclease subunit [Serratia phage CHI14]	0.0 0.0	ARW57753 ARW57478
g054	35083←35343	38	86	80	46.1 gene product [Enterobacteria phage IME08] Hypothetical protein kpv477_055 [Klebsiella phage	4e-29 4e-16	YP_003734205 YP_009288731
g055	35324←35509	35	61	57	VB_KpnM_KpV4//] Hypothetical protein [Serratia phage CHI14] Prohead core protein protease [Citrobacter phage Moon]	1e-29 2.0	ARW57481 YP_009146494
g056	35494←35619	44	41	38	Hypothetical protein CC31p054 [Enterobacter phage CC31] Conserved hypothetical protein [Edwardsiella phage PEi20]	2e-14 1e-13	YP_004009912 YP_009190221
g057	35669←36022	39	117	109	Hypothetical protein [Serratia phage CH114] Hypothetical protein CGG41_053 [Salmonella phage	7e-63 3e-37	ARW57483 YP_009286419
g058	36025←36177	35	50	47	vB_SnwM_CGG4-1] Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Serratia phage X20]	1e-25 5e-25	ARW57484 ARW58031
g059	36236←36769	37	177	164	Sigma factor for late transcription [Serratia phage X20] Sigma factor for late transcription [Serratia phage CHI14]	7e-115 1e-114	ARW58032 ARW57485
g060	36836←37102	35	88	81	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	1e-37 8e-37	ARW58033 ARW57486
g061	37099←37356	35	85	79	Hypothetical protein		
g062	37353←37583	40	76	71	Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Serratia phage X20]	8e-35 2e-34	ARW57487 ARW58034
g063	37576←37824	32	82	76	Hypothetical protein CPT_Merlin69 [Citrobacter phage Merlin] Conserved hypothetical protein [Edwardsiella phage PEi20]	3e-15 3e-13	YP_009203783 YP_009190228
g064	38063←38371	36	102	95	Hypothetical protein PM2_071 [Pectobacterium bacteriophage PM2] Hypothetical protein CC31p062 [Enterobacter phage CC31]	2e-17 2e-14	YP_009211492 YP_004009920
g065	38368←38700	40	110	102	Hypothetical protein [Serratia phage X20] Conserved hypothetical protein [Edwardsiella phage PEi20]	8e-56 8e-56	ARW58035 YP_009190230
g066	38762←38995	30	77	72	Hypothetical protein JS09_0111 [Escherichia phage vB_EcoM_JS09]	8e-08 8e-06	YP_009037434 YP_009225191
g067	39003←39263	37	86	80	Hypothetical protein APCEc01_231 [Escherichia phage APCEc01] Hypothetical protein, partial [Streptococcus pyogenes] Hypothetical protein [Serratia phage X20]	3e-31 3e-27	WP_085577434 ARW58036

39329←39640	41	103	96	Glutaredoxin [Serratia phage CHI14] Glutaredoxin [Serratia phage X20]	1e-61 4e-61	ARW57490 ARW58037
39621←39893	37	90	83	Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Serratia phage X20]	6e-41 1e-39	ARW57491 ARW58038
39895←40137	34	80	75	Hypothetical protein [Serratia phage CHI14]	1e-17	ARW57492
40146←40262	37	38	36	Hypothetical protein [Serratia phage X20]	0.003	ARW58040
40263←40736	38	157	145	Anaerobic NTP reductase small subunit [Serratia phage CHI14] Anaerobic NTP reductase small subunit [Serratia phage X20]	5e-96 2e-95	ARW57493 ARW58041
40723←42546	38	607	563	Anaerobic NTP reductase large subunit [Serratia phage CHI14] Anaerobic NTP reductase large subunit [Serratia phage X20]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW57494 ARW58042
42543←43016	38	157	146	Recombinase endonuclease VII [Serratia phage X20] Recombinase endonuclease VII [Serratia phage CHI14]	2e-106 2e-105	ARW58043 ARW57495
43047←43349	34	100	93	Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Serratia phage X20]	2e-23 1e-20	ARW57496 ARW58044
43336←43785	35	149	138	Inhibitor of host Lon protease [Serratia phage CHI14] Protease inhibitor [Serratia phage X20]	5e-67 2e-64	ARW57497 ARW58045
43766←43921	40	51	47	Hypothetical protein JS09_096 [Escherichia phage vB_EcoM_JS09] Hypothetical protein [Escherichia phage ST0]	4e-13 4e-13	YP_009037419 ASD53741
43906←44208	34	100	92	Hypothetical protein CPT_Moon81 [Citrobacter phage Moon] Hypothetical protein [Serratia phage X20]	1e-42 4e-42	YP_009146514 ARW58046
44201←44395	37	64	59	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	3e-37 2e-36	ARW58047 ARW57499
44396←44548	39	50	47	Hypothetical protein [Serratia phage CHI14] Hypothetical protein PKO111_076 [Klebsiella phage PKO111]	2e-24 1e-15	ARW57500 YP_009289477
44545←44841	36	98	91	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	8e-38 3e-37	ARW58049 ARW57501
44831←45001	31	56	52	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	4e-23 6e-23	ARW58050 ARW57502
44998←45273	39	91	85	Thioredoxin [Serratia phage X20] Thioredoxin [Serratia phage CHI14]	4e-57 7e-55	ARW58052 ARW57504
45236←45541	36	101	93	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	3e-57 3e-33	ARW58053 ARW57505
45519←45677	32	52	48	Hypothetical protein CGG41_076 [Salmonella phage vB_SnwM_CGG4-1] Secreted glycosyl hydrolase [Salmonella phage STP4-a]	1e-08 2e-08	YP_009286442 YP_009126288
45674←45961	35	95	88	Conserved hypothetical protein [Edwardsiella phage PEi20] Hypothetical protein PG7_077 [Enterobacter phage PG7]	2e-17 9e-17	YP_009190244 YP_009005341
45961←46467	36	168	156	Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Serratia phage X20]	9e-86 2e-84	ARW57507 ARW58055
46595←46816	34	43	39	Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Serratia phage X20]	2e-12 2e-12	ARW57508 ARW58056
46806←47219	33	73	68	Hypothetical protein [Serratia phage CHI14]	6e-27	ARW57508
47216←47452	35	137	127	Hypothetical protein [Serratia phage X20] NrdC.7 conserved hypothetical, predicted membrane protein	8e-27 6e-27	ARW58056 NP_861784
				[Enterobacteria phage RB69] Hypothetical protein PhAPEC2 80 [Escherichia phage	6e-26	 YP_009056672
47445←48491	36	348	316	vB_EcoM_PhAPEC2] Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	4e-96 8e-95	ARW58058.1 ARW57510.1
	39329-39640 39621-39893 39895-40137 40146-40262 40263-40736 40723-42546 42543-43016 43047-43349 43336-43785 43766-43921 43906-44208 44201-44395 44396-44548 44545-44841 44831-45001 44998-45273 45519-45677 45674-45961 45961-46467 45961-46467 46595-46816 46806-47219 47216-47452	39329←39640 41 39621←39893 37 39895←40137 34 40146←40262 37 40263←40736 38 40723←42546 38 42543←43016 38 43047←43349 34 43336←43785 35 43766←43921 40 43906←44208 34 44201←44395 37 44396←44548 39 44545←44841 36 44831←45001 31 44998←45273 39 45519←45677 32 45674←45961 36 45961←46467 36 45961←46467 36 46806←47219 33 47216←47452 35 47445←48491 36	39329-39640 41 103 39621-39893 37 90 39895-40137 34 80 40146-40262 37 38 40263-40736 38 157 40723-42546 38 607 42543-43016 38 157 43047-43349 34 100 43336-43785 35 149 43766-43921 40 51 43906-44208 34 100 44201-44395 37 64 44396-44548 39 50 44431-45001 31 56 44998-45273 39 91 45236-45541 36 101 45519-45677 32 52 45674-45961 35 95 45691-46467 36 168 46595-46816 34 43 466806-47219 33 73 47216-47452 35 137	39329-39640 41 103 96 3962139893 37 90 83 3989540137 34 80 75 4014640262 37 38 36 4026340736 38 157 145 4072342546 38 607 563 4254343016 38 157 146 4304743349 34 100 93 4333643785 35 149 138 4376643921 40 51 47 4390644208 34 100 92 4420144395 37 64 59 4439644548 39 50 47 4454544841 36 98 91 44454544841 36 98 91 44454544841 36 101 93 4551945677 32 52 48 4567445961 36 168 156 4559546816 34	39329396404110396Ciltaredoxin [Sernatia phage CH114] Gitaredoxin [Sernatia phage CH114] Hypothetical protein [Sernatia phage X20]3962139893379083Hypothetical protein [Sernatia phage CH114] Hypothetical protein [Sernatia phage CH114]4014640262373836Hypothetical protein [Sernatia phage CH114] Anacrobic NTP reductase small subunit [Sernatia phage CH114] Anacrobic NTP reductase phage SU0]40723423633410093Hypothetical protein [Sernatia phage CH114] Protesse inhibitor [Sernatia phage CH114] Protesse inhibitor [Sernatia phage X20]43364378535149138Inhibitor of host Lon protease [Sernatia phage CH114] Protesse inhibitor [Sernatia phage X10]43906442083410092Hypothetical protein [Sernatia phage X114] Protesse inhibitor [Sernatia phage X114] Protesse inhibitor [Sernatia phage X114]4420144395376459Hypothetical protein [Sernatia phage X114] Hypothetical protein [Sernatia phage X114]4439644548395047Hypothetical protein [Sernatia phage X114] Hypothetical protein [Sernatia phage X114]443964454136 <t< td=""><td>393293940 41 103 96 Glutaredoxin [Serratia phage CIII]4] (Seratia phage CX0] 1e-61 3962139893 37 90 83 Hypothetical protein [Serratia phage CX1]4] 1e-61 3968940137 34 80 75 Hypothetical protein [Serratia phage CX1]4] 1e-17 4014640262 37 38 36 Hypothetical protein [Serratia phage CX1]4] 1e-17 4014640262 37 38 36 Hypothetical protein [Serratia phage CX1]4 0.00 4026340736 38 157 145 Anaceobic NTP reductase targe subunit [Serratia phage CX1]4 0.0 4026340736 38 157 146 Recombinase endouclease VII [Serratia phage CX1]4 0.0 4254343016 38 157 146 Recombinase endouclease VII [Seratia phage CX1]4 2e-106 4304743349 34 100 93 Hypothetical protein [Seratia phage X20] 2e-106 4336644208 34 100 92 Hypothetical protein [Seratia phage X20] 2e-41 440144208 34 100<</td></t<>	393293940 41 103 96 Glutaredoxin [Serratia phage CIII]4] (Seratia phage CX0] 1e-61 3962139893 37 90 83 Hypothetical protein [Serratia phage CX1]4] 1e-61 3968940137 34 80 75 Hypothetical protein [Serratia phage CX1]4] 1e-17 4014640262 37 38 36 Hypothetical protein [Serratia phage CX1]4] 1e-17 4014640262 37 38 36 Hypothetical protein [Serratia phage CX1]4 0.00 4026340736 38 157 145 Anaceobic NTP reductase targe subunit [Serratia phage CX1]4 0.0 4026340736 38 157 146 Recombinase endouclease VII [Serratia phage CX1]4 0.0 4254343016 38 157 146 Recombinase endouclease VII [Seratia phage CX1]4 2e-106 4304743349 34 100 93 Hypothetical protein [Seratia phage X20] 2e-106 4336644208 34 100 92 Hypothetical protein [Seratia phage X20] 2e-41 440144208 34 100<

g092	48594←49370	39	258	239	Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Serratia phage X20]	2e-158 2e-155	ARW57511 ARW58059
g093	49429←49635	38	68	63	Hypothetical protein CGG41_084 [Salmonella phage VB_SnwM_CGG4-1]	3e-08 6e-08	YP_009286450 YP_007501127.
					Hypothetical protein [Salmonella phage vB_SenMS16]		1
g094	49635←49994	38	119	111	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	7e-29 8e-29	ARW58061 ARW57513
g095	49994←50167	35	57	53	Hypothetical protein		
g096	50160←50642	42	160	149	Hypothetical protein [Serratia phage X20]	1e-102	ARW58063
-					Hypothetical protein [Serratia phage CHI14]	8e-99	ARW57515
g097	50734←51225	38	163	151	Hypothetical protein [Serratia phage CHI14]	5e-87	ARW57516
					Hypothetical protein [Serratia phage X20]	3e-85	ARW58064
g098	51222←51446	37	74	68	Hypothetical protein [Serratia phage X20]	6e-20	ARW58065
					Hypothetical protein [Serratia phage CHI14]	1e-19	ARW57517
g099	51448←51654	39	68	63	Hypothetical protein [Serratia phage X20]	7e-36	ARW58066
g100	51714←52007	33	97	90	Hypothetical protein		
g101	52014←52991	39	325	301	Hypothetical protein [Serratia phage X20]	0.0	ARW58067
					Hypothetical protein [Serratia phage CHI14]	0.0	ARW57518
g102	53063←53491	34	142	131	Conserved hypothetical protein [Edwardsiella phage PEi26]	6e-62	BAQ23049
0					Conserved hypothetical protein [Edwardsiella phage PEi20]	1e-61	YP_009190256
g103	53615←53836	32	73	68	Hypothetical protein [Serratia phage X20]	7e-32	ARW58068
8100	00010 00000	02	, 0	00	Hypothetical protein [Serratia phage CHI14]	1e-31	ARW57519
- 104	52949. 540(0	20	()	(0)	How the strend processing [Competing theory CIIII 4]	2-26	A D.W.57520
g104	53848←54069	39	64	60	Hypothetical protein [Serratia phage CH114] Hypothetical protein CPT_Moon102 [Citrobacter phage Moon]	2e-36 1e-26	ARW57520 YP_009146535
							_
g105	54047←55060	40	337	312	Hypothetical protein PM2_105 [Pectobacterium bacteriophage PM2] Thioredoxin [Serratia phage X20]	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	YP_009211526 ARW58069
g106	55057←55479	35	121	112	Hypothetical protein [Serratia phage CHI14]	7e-60	ARW57522
-					Hypothetical protein [Serratia phage X20]	4e-59	ARW58070
g107	55469←55708	34	79	74	Hypothetical protein [Serratia phage CHI14]	2e-24	ARW57523
					Hypothetical protein [Serratia phage X20]	2e-22	ARW58071
g108	55701←56222	36	173	161	Hypothetical protein [Serratia phage X20]	7e-64	ARW58072
					Hypothetical protein [Serratia phage CHI14]	3e-63	ARW57524
g109	56261←56749	35	162	150	Hypothetical protein [Serratia phage X20]	1e-60	ARW58073
					Hypothetical protein [Serratia phage CHI14]	4e-57	ARW57525
σ110	56739-56966	34	75	70	Hypothetical protein CPT Merlin105 [Citrobacter phage Merlin]	2e-06	VP 009203819
giio	50757 50700	54	15	70	Hypothetical protein CPT Moon107 [Citrobacter phage Moon]	2e-06	YP 009146540
							-
g111	56975←57238	33	87	81	Hypothetical protein [Serratia phage X20]	3e-25	ARW58075
					Hypothetical protein [Serratia phage CH114]	4e-20	ARW5/52/
g112	57228←57410	31	60	56	Hypothetical protein		
g113	57412←57705	42	97	90	Putative C4-type zinc finger protein [Serratia phage X20]	6e-52	ARW58077
					Hypothetical protein PM2_112 [Pectobacterium bacteriophage PM2]	1e-42	YP_009211533
o114	57733←58200	38	155	144	Hypothetical protein [Serratia phage X20]	1e-37	ARW58079
8	01100 00200	20	100		Hypothetical protein [Serratia phage CHI14]	8e-36	ARW57531
g115	58303←58683	38	126	117	Hypothetical protein [Serratia phage X20]	9e-61	ARW58080
					Hypothetical protein [Serratia phage CH114]	1e-59	AKW5/532
g116	58673←58963	36	96	89	Lysis inhibition regulator membrane protein [Serratia phage CHI14]	9e-54	ARW57533
e					Lysis inhibitor regulator [Serratia phage X20]	4e-53	ARW58081
~117	59072, 50105	20	70	((Concerned hymothesised motion [Edwardshills where DE'20]	6. 24	VD 000100270
gii/	287/2←27182	39	/0	00	Conserved nypoineucal protein [Edwardstella phage PE120] Hypothetical protein [Serratia phage CH114]	0e-24 6e-20	1P_009190270 ARW57534
					Hypothetical protein [berraita phage Chilin]	00-20	· IIC II 5 / 557
g118	59232←59576	39	114	106	Hypothetical protein CPT_Moon115 [Citrobacter phage Moon]	5e-48	YP_009146548
					Hypothetical protein CPT_Merlin114 [Citrobacter phage Merlin]	6e-46	YP_009203828

g119	59635←59757	35	40	37	Hypothetical protein		
g120	59759←59929	32	56	52	Hypothetical protein [Serratia phage CHI14] Hypothetical protein AB185_26225 [Klebsiella oxytoca]	6e-14 5e-04	ARW57536 AKL38916
g121	59913←60506	40	197	182	Thymidine kinase [Serratia phage CHI14] Thymidine kinase [Serratia phage X20]	6e-122 1e-121	ARW57537 ARW58085
g122	60506←60718	37	70	65	Hypothetical protein CPT_Merlin118 [Citrobacter phage Merlin] Hypothetical protein CGG41_102 [Salmonella phage	8e-32 1e-31	YP_009203832 YP_009286469
g123	60718←60918	40	66	61	Hypothetical protein [Serratia phage X20] Putative keratin [Serratia phage CHI14]	7e-09 7e-09	ARW58086 ARW57538
α124	60915-61094	35	50	55	Hypothetical protein		
g125	61094←61240	35	48	45	Hypothetical protein		
g126	61267←61476	29	69	74	Hypothetical protein phAPEC8_0048 [Escherichia phage phAPEC8] Hypothetical protein ESCO5_00044 [Escherichia phage ESCO5]	2e-29 8e-29	YP_007348416 AOT23420
g127	61448←61939	36	163	151	Hypothetical protein [Serratia phage CHI14] Hypothetical protein SHP1_051 [Salmonella phage SHP1]	3e-94 3e-64	ARW57539 ASJ79373
g128	61939←62289	38	117	108	Valyl-tRNA synthetase modifier [Serratia phage CHI14] Valyl-tRNA synthetase modifier [Pectobacterium bacteriophage	5e-62 6e-35	ARW57540 YP_009211545
g129	62289←62837	38	182	168	PM2] Hypothetical protein [Serratia phage CHI14] Conserved hypothetical protein [Edwardsiella phage PEi20]	2e-114 4e-99	ARW57541 YP_009190277
g130	62848←63306	38	152	141	Site-specific RNA endonuclease [Serratia phage CHI14] Site-specific RNA endonuclease [Pectobacterium bacteriophage	6e-84 3e-70	ARW57542 YP_009211547
g131	63362←63634	37	90	84	PM2] Hypothetical protein YenMTG1_120 [Yersinia phage vB_YenM_TG1] Phage protein [Yersinia phage phiR1-RT]	4e-36 4e-36	YP_009200381 YP_007235949
g132	63627←63863	36	78	72	Hypothetical protein [Serratia phage CHI14] Hypothetical protein kpv477_122 [Klebsiella phage vB_KpnM_KpV477]	2e-31 1e-21	ARW57544 YP_009288798
g133	63845←64183	34	112	104	Hypothetical protein CC31p127 [Enterobacter phage CC31] Hypothetical protein PKO111_044 [Klebsiella phage PKO111]	1e-38 6e-23	YP_004009985 YP_009289445
g134	64180←64701	38	173	160	Hypothetical protein [Serratia phage CHI14] Hypothetical protein CPT_Merlin132 [Citrobacter phage Merlin]	5e-50 2e-45	ARW57546 YP_009203846
g135 g136	64952←65401 65416←65829	39 36	149 137	138 127	Hypothetical protein Endonuclease V, N-glycosylase UV repair enzyme [Edwardsiella	2e-78	YP_009190283
					pnage PE120] Endonuclease V, N-glycosylase UV repair enzyme [Enterobacter phage CC31]	1e-73	YP_004009988
g137	65885←66172	38	95	88	Hypothetical protein [Serratia phage CHI14] Hypothetical protein PM2_132 [Pectobacterium bacteriophage PM2]	4e-59 1e-34	ARW57548 YP_009211553
g138	66169←66657	40	162	150	Lysozyme murein hydrolase [Serratia phage CHI14] Lysozyme murein hydrolase [Enterobacter phage CC31]	6e-102 3e-95	ARW57549 YP_004009990
g139	66696←67169	44	157	145	NTP pyrophosphohydrolases including oxidative damage repair enzymes [Cronobacter phage Pet-CM3-4]	7e-76 3e-74	SCN45809 YP_009005393
g140	67162←67401	33	79	73	Nudix hydrolase [Enterobacter phage PG7] Hypothetical protein PG7_130 [Enterobacter phage PG7] Hypothetical protein CC31p134 [Enterobacter phage CC31]	1e-11 1e-11	YP_009005394 YP_004009992
g141	67401←67706	36	101	94	Conserved hypothetical protein [Edwardsiella phage PEi26] Hypothetical protein CC31p135 [Enterobacter phage CC31]	5e-30 1e-29	BAQ23082 YP_004009993
g142	67703←68041	35	112	104	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	4e-36 1e-35	ARW58100 ARW57552
g143	68038←68544	35	168	156	Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Serratia phage CBH8]	4e-57 4e-57	ARW57553 ARW57828

g144 g145	68651←68989 68989←69360	30	112 123	114	Hypothetical protein Hypothetical protein [Serratia phage CHI14]	0.72	ARW57557
g146	69360←70172	33	270	250	Hypothetical protein [Serratia phage CHI14] 3-hydroxyacyl-CoA dehydrogenase [Ruminococcus sp. CAG:379]	8e-127 1.4	ARW57558 CDD54212
g147	70212←70817	42	201	187	Hypothetical protein [Serratia phage CH114] Hypothetical protein CPT_Merlin150 [Citrobacter phage Merlin]	2e-115 1e-85	ARW57559 YP_009203864
g148	70875←71075	33	66	62	Hypothetical protein BN80_132 [Yersinia phage phiR1-RT] Hypothetical protein [Salmonella phage vB_SenMS16]	7e-28 2e-19	YP_007235965 YP_007501160
g149	71189←71794	39	201	187	Hypothetical protein [Serratia phage CH114] Hypothetical protein EpJS98_gp135 [Escherichia phage JS98]	1e-103 8e-66	ARW57561 YP_001595264
g150	72355←72525	33	56	52	DUF1837 domain-containing protein [Lactococcus garvieae]	6.8	WP_017371069
g151	72759←72983	32	74	69	Hypothetical protein PG7_148 [Enterobacter phage PG7] Hypothetical protein [Cronobacter phage Pet-CM3-4]	7e-36 5e-28	YP_009005412 SCN45824
g152	72990←73436	38	148	137	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	6e-89 6e-88	ARW58112 ARW57563
g153	73528←73782	40	84	78	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CH114]	5e-20 5e-20	ARW58114 ARW57565
g154	73776←74114	36	112	104	Hypothetical protein kpv477_146 [Klebsiella phage vB_KpnM_KpV477] Hypothetical protein RB510RF141 [Enterobacteria phage RB51]	0.034 0.18	YP_009288822 YP_002854094. 1
g155	74134←74304	29	56	52	Hypothetical protein kpv477_140 [Klebsiella phage vB_KpnM_KpV477] Putative vertex head subunit [Klebsiella phage PKO111]	3e-06 1e-05	YP_009288816 YP_009289437
g156	74459←74743	36	94	88	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	4e-35 8e-23	ARW58115 ARW57566
g157	75423←75668	31	81	75	Hypothetical protein [Serratia phage CH114] Conserved hypothetical protein [Edwardsiella phage PEi20]	1e-31 1e-10	ARW57567 YP_009190310
g158	76530←77015	32	161	149	Hypothetical protein kpv477_148 [Klebsiella phage vB_KpnM_KpV477] PHG31p119pc [Aeromonas virus 31]	2e-51	YP_009288824
g159	77395←77586	39	63	58	Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Edwardsiella phage PEi20]	8e-26 7e-08	ARW57569 YP_009190315
g160	77579←77788	34	69	64	Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Serratia phage X20]	2e-28 9e-27	ARW57570 ARW58118
g161	77769←77960	35	63	59	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	1e-29 7e-29	ARW58119 ARW57571
g162	78022←78234	39	70	65	Hypothetical protein WG01_147 [Escherichia phage WG01] Hypothetical protein CPT_Merlin166 [Citrobacter phage Merlin]	1e-23 9e-12	YP_009323346 YP_009203880
g163	78231←78686	41	151	141	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	4e-105 2e-104	ARW58121 ARW57573
g164	78686←78934	36	82	76	Chaperone for long tail fiber formation [Serratia phage X20] 57A chaperone for long tail fiber formation [Salmonella phage vB_SnwM_CGG4-1]	3e-25 7e-07	ARW58122 YP_009286495
g165	78934←79623	36	229	212	dNMP kinase [Serratia phage X20] dNMP kinase [Serratia phage CHI14]	8e-141 2e-139	ARW58123 ARW57574
g166	79625←80212	40	195	181	Tail completion and sheath stabilizer protein [Serratia phage CHI14] gp3 tail completion and sheath stabilizer protein [Enterobacteria phage JS10]	2e-133 1e-105	ARW57575 YP_002922490

g167	80307←81137	35	276	256	DNA end protector protein [Serratia phage CHI14] DNA end protector protein [Serratia phage X20]	0.0 0.0	ARW57576 ARW58126
g168	81137←81586	36	149	138	Head completion protein [Serratia phage CHI14] Head completion protein [Klebsiella phage PKO111]	7e-88 1e-70	ARW57577 YP_009289410
g169	81635→82210	37	191	178	Baseplate wedge subunit [Serratia phage CHI14] Baseplate wedge subunit [Citrobacter phage Merlin]	2e-113 1e-92	ARW57578 YP_009203887
g170	82210→83937	38	575	535	Baseplate hub + tail lysozyme [Serratia phage CHI14] Baseplate hub + tail lysozyme [Serratia phage X20]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW57579 ARW58129
g171	84003→84452	39	149	139	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	6e-70 2e-68	ARW58130 ARW57580
g172	84452→84745	39	97	90	Hypothetical protein CGG41_137 [Salmonella phage vB_SnwM_CGG4-1] Hypothetical protein [Serratia phage X20]	1e-56 1e-56	YP_009286504 ARW58131
g173	84745→86700	37	651	604	Baseplate wedge subunit [Serratia phage X20] Baseplate wedge subunit [Serratia phage CHI14]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW58133 ARW57581
g174	86697→89786	36	1029	955	Baseplate wedge initiator [Serratia phage CHI14] Baseplate wedge initiator [Serratia phage X20]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW57582 ARW58134
g175	89786→90790	39	334	311	Baseplate wedge subunit [Serratia phage X20] Baseplate wedge subunit [Serratia phage CH114]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW58135 ARW57583
g176	90853→91722	37	289	269	Baseplate wedge tail fiber connector [Serratia phage CHI14] Baseplate wedge tail finer connector [Serratia phage X20]	4e-156 3e-155	ARW57584 ARW58136
g177	91722→93548	36	608	565	Baseplate wedge subunit and tail pin [Serratia phage X20] Baseplate wedge subunit and tail pin [Serratia phage CHI14]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW58137 ARW57585
g178	93548→94231	37	227	211	Baseplate wedge subunit and tail pin [Serratia phage X20] Baseplate wedge subunit and tail pin [Serratia phage CHI14]	5e-103 7e-103	ARW58138 ARW57586
g179	94231→95775	40	514	478	Short tail fiber protein [Serratia phage X20] Short tail fiber protein [Serratia phage CHI14]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW58139 ARW57587
g180	95785→97608	38	607	564	Fibritin neck whisker protein [Serratia phage CHI14] Fibritin neck whisker protein [Serratia phage X20]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW57588 ARW58140
g181	97673→98614	39	313	292	Neck protein [Serratia phage CHI14] Neck protein [Serratia phage X20]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW57589 ARW58141
g182	98617→99393	34	258	240	Neck protein [Serratia phage X20] Neck protein [Serratia phage CH114]	1e-164 3e-164	ARW58142 ARW57590
g183	99438→100271	38	277	257	Tail sheath stabilizer and completion protein [Serratia phage CHI14] Tail sheath stabiliser and completion protein [Serratia phage X20]	4e-176 4e-175	ARW57591 ARW58143
g184	100268→100765	36	165	154	Terminase DNA packaging enzyme small subunit [Serratia phage CHI14]	1e-102	ARW57592
					gp16 terminase DNA packaging enzyme, small subunit [Enterobacter phage CC31]	3e-95	YP_004010026
g185	100749→102584	38	611	568	Terminase DNA packaging enzyme large subunit [Serratia phage CHI14] Terminus DNA packaging enzyme, large subunit [Serratia phage X20]	0.0 0.0	ARW57593 ARW58145
g186	102620→104602	41	660	613	Hypothetical protein [Serratia phage CHI14] Tail sheath protein [Enterobacteria phage vB_EcoM_VR5]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW57594 YP_009205860
g187	104714→105205	41	163	152	Tail tube protein [Serratia phage CHI14] Tail tube protein [Edwardsiella phage PEi20]	8e-116 9e-112	ARW57596 YP_009190345
g188	105322→106890	37	522	485	Portal vertex protein of head [Serratia phage X20]	0.0	ARW58149

					Portal vertex protein of head [Serratia phage CHI14]	0.0	ARW57597
g189	106890→107165	40	91	85	Prohead core protein [Serratia phage CHI14] Prohead core protein [Serratia phage X20]	3e-19 4e-19	ARW57598 ARW58150
g190	107166→107591	40	141	131	Prohead core protein [Serratia phage CHI14] Prohead core protein [Salmonella phage vB_SenMS16]	9e-80 7e-64	ARW57599 YP_007501201
g191	107591→108235	43	214	199	Prohead assembly (scaffolding) protein and protease [Serratia phage	5e-141	ARW57600
					CHI14] Prohead assembly (scaffolding) protein [Salmonella phage STML- 198]	3e-133	YP_009148153
g192	108268→109074	39	268	249	Prohead core scaffold protein [Serratia phage CHI14] Prohead core scaffold protein [Serratia phage X20]	3e-142 3e-141	ARW57601 ARW58154
g193	109096→110655	45	519	482	Major capsid protein [Serratia phage CHI14] Major capsid protein [Citrobacter phage Moon]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW57602 YP_009146626
g194	110756→112036	38	426	402	Head vertex protein [Edwardsiella phage PEi20] Head vertex protein [Enterobacter phage PG7]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	YP_009190352 YP_009005456
g195	12074←113078	38	334	309	RNA ligase 2 [Serratia phage X20] RNA ligase 2 [Serratia phage CHI14]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW58158 ARW57605
g196	113177←113449	34	90	83	Hypothetical protein [Serratia phage X20] Hypothetical protein CPT_Moon197 [Citrobacter phage Moon]	7e-49 2e-17	ARW58159 YP_009146630
g197	113451←113702	34	83	77	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	7e-34 5e-32	ARW58160 ARW57607
g198	113787→115124	39	445	412	Phage tail fibers [Klebsiella phage PMBT1] Whisker protein [Enterobacter phage phiEap-3]	3e-86 2e-83	SCO64804 ALA45334
g199	115134→115631	38	165	153	Hoc large outer capsid protein [Enterobacteria phage RB16] Protein of unknown function [Enterobacteria phage RB43]	7e-48 7e-48	YP_003858524 CCL97698
g200	115662←116375	36	237	220	Inhibitor of prohead protease [Serratia phage X20] Inhibitor of prohead protease [Serratia phage CH114]	3e-109 3e-107	ARW58162 ARW57609
g201	116428→117927	35	499	464	RNA-DNA and DNA-DNA helicase [Serratia phage X20] Helicase [Enterobacteria phage vB_EcoM_VR5]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW58163 YP_009205877
g202	117924→118151	38	75	70	RNA-DNA and DNA-DNA helicase [Serratia phage CHI14] Putative split helicase [Enterobacter phage PG7]	4e-31 1e-25	ARW57611 YP_009005466
g203	118213←118377	40	54	50	Hypothetical protein [Serratia phage CH114] Hypothetical protein [Salmonella phage vB_SenMS16]	4e-30 2e-23	ARW57612 YP_007501220
g204	118410←118625	35	71	66	UvsY1 hypothetical protein [Enterobacteria phage RB51] Hypothetical protein [Clostridioides difficile]	1e-19 1e-19	YP_002854140 WP_074146452
g205	118625←119059	38	144	133	Recombination repair and ssDNA binding protein [Serratia phage CHI14] UvsY gene product [Enterobacteria phage IME08]	9e-96 7e-70	ARW57613 YP_003734328
g206	119117←119470	37	112	104	Baseplate wedge subunit [Serratia phage CHI14] Putative baseplate wedge subunit [Escherichia coli]	2e-70 1e-57	ARW57614 WP_016039599
g207	119515←120144	36	209	194	Baseplate hub subunit [Serratia phage CHI14] Putative baseplate hub subunit [Klebsiella phage vB_KpnM_KpV477]	7e-123 1e-77	ARW57615 YP_009288876
g208	120195→120947	32	250	232	Baseplate hub assembly catalyst [Serratia phage X20] Baseplate hub assembly catalyst [Serratia phage CH114]	6e-147 9e-147	ARW58169 ARW57616
g209	120944→122152	36	402	373	Baseplate hub subunit [Serratia phage CHI14] Baseplate hub subunit [Serratia phage CBH8]	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	ARW57617 ARW57892
g210	122199→122606	34	135	126	Baseplate hub distal subunit [Serratia phage X20]	7e-66	ARW58171

					Baseplate hub distal subunit [Serratia phage CHI14]	1e-62	ARW57618
g211	122587→124353	38	588	547	Base plate hub subunit, tail length determinator [Serratia phage CHI14] Baseplate hub subunit tail length determinator [Serratia phage X20]	8e-178 1e-148	ARW57619 ARW58172
g212	124362→125420	37	352	327	Baseplate tail tube cap [Serratia phage X20] Baseplate tail tube cap [Serratia phage CHI14]	0.0 0.0	ARW58173 ARW57620
g213	125420→126385	41	321	299	Baseplate subunit [Serratia phage CHI14] Baseplate subunit [Serratia phage X20]	0.0 0.0	ARW57621 ARW58174
g214	126418←126729	33	1103	96	Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Serratia phage X20]	6e-47 2e-46	ARW57622 ARW58175
g215	126787←128850	37	687	635	RNA polymerase ADP-ribosylase [Serratia phage X20] RNA polymerase ADP-ribosylase [Serratia phage CHI14]	0.0 0.0	ARW58176 ARW57623
g216	128914←129108	34	64	60	Hypothetical protein [Serratia phage X20] Hypothetical protein HX01_0245 [Escherichia phage HX01]	1e-33 2e-23	ARW58177 YP_006907287
g217	129105←130619	38	504	465	DNA ligase [Serratia phage X20] DNA ligase [Serratia phage CHI14]	0.0 0.0	ARW58178 ARW57625
g218	130839←131678	36	279	258	Hypothetical protein JD18_193 [Klebsiella phage JD18] Hypothetical protein kpv477_212 [Klebsiella phage vB_KpnM_KpV477]	1e-94 4e-93	YP_009190774 YP_009288888
g219	131653←131829	38	58	54	Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Serratia phage X20]	2e-13 1e-12	ARW57628 ARW58181
g220	131822←132019	38	65	60	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	2e-25 1e-24	ARW58182 ARW57629
g221	131994←132137	38	47	44	Hypothetical protein [Serratia phage X20] Hypothetical protein JD18_195 [Klebsiella phage JD18]	8e-21 6e-08	ARW58183 YP_009190776
g222	132197←132364	36	55	51	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	1e-25 2e-25	ARW58184 ARW57630
g223	132364←132813	39	149	138	Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Serratia phage X20]	8e-46 2e-43	ARW57631 ARW58185
g224	132854←133249	35	131	121	Hypothetical protein CC31p208 [Enterobacter phage CC31] Hypothetical protein PG7_223 [Enterobacter phage PG7]	3e-64 2e-62	YP_004010066 YP_009005487
g225	133280←133783	37	176	154	Conserved hypothetical protein [Edwardsiella phage PEi20] Conserved hypothetical protein [Edwardsiella phage PEi26]	4e-14 4e-14	YP_009190382 BAQ23176
g226	133818←134171	36	117	108	Hypothetical protein CPT_Melville_208 [Salmonella phage Melville] Hypothetical protein [Clostridioides difficile]	2e-51 1e-49	ATN93171 WP_074146635
g227	134233←134427	38	64	59	Hypothetical protein CC31p211 [Enterobacter phage CC31] Hypothetical protein [Cronobacter phage Pet-CM3-4]	4e-05 1e-04	YP_004010069 SCN45904
g228	134476←134655	44	59	58	Gp30.9 conserved hypothetical protein [Yersinia phage phiR1-RT] Hypothetical protein fHeYen901_229 [Yersinia phage fHe-Yen9-01]	2e-20 4e-20	YP_007236043 ARB06002
g229	134977←135225	40	82	77	Lysis inhibition accessory protein rapid lysis phenotype [Serratia phage CHI14] MULTISPECIES: hypothetical protein [Bacteria]	2e-50 1e-35	ARW57637 WP_015969374
g230	135339←135668	36	238	109	Head assembly cochaperone with GroEL [Salmonella phage STP4-a] Head assembly chaperone protein [Salmonella phage STML-198]	2e-49 1e-48	YP_009126151 YP_009147934
g231	135725←136048	38	107	99	Hypothetical protein [Serratia phage CHI14] Conserved hypothetical protein [Edwardsiella phage PEi20]	3e-70 5e-52	ARW57639 YP_009190388
g232	136049←136600	39	183	170	DCMP deaminase [Serratia phage CBH8] DCMP deaminase [Serratia phage CHI14]	8e-104 8e-103	ARW57915 ARW57640

g233	136600←136935	36	111	103	Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Serratia phage X20]	3e-48 1e-46	ARW57641 ARW58195
g234	136916←137926	41	336	311	Phospho-2-dehydro-deoxyheptonate aldolase [Serratia phage X20] Phospho-2-dehydro-3-deoxyheptonate aldolase [Serratia phage CHI14]	3e-174 1e-165	ARW58196 ARW57642
g235	137926←138156	39	76	71	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	2e-34 1e-33	ARW58197 ARW57643
g236	138158←138619	33	153	142	Conserved hypothetical protein [Edwardsiella phage PEi26] Conserved hypothetical protein [Edwardsiella phage PEi20]	3e-06 4e-06	BAQ23187 YP_009190393
g237	138616←138819	34	67	62	Hypothetical protein SP18_gp234 [Shigella phage SP18] Hypothetical protein VR5_222 [Enterobacteria phage vB_EcoM_VR5]	9e-08 1e-07	YP_003934857 YP_009205916
g238	138819←139718	41	299	277	Polynucleotide kinase [Serratia phage CHI14] Polynucleotide kinase [Serratia phage X20]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW57645 ARW58199
g239	139715←139927	38	70	65	Hypothetical protein [Serratia phage CHI14] Hypothetical protein vBEcoMUFV13_g221 [Escherichia phage vB_EcoM-UFV13]	4e-18 6e-09	ARW57646 YP_009290486
g240	140096←140335	43	60	56	Hypothetical protein fHeYen901_242 [Yersinia phage fHe-Yen9-01]	0.007	ARB06015
g241 g242	140322←140501 140498←140995	34 36	79 59	73 55	No significant similarity found Hypothetical protein QL01_227 [Escherichia phage QL01] Hypothetical protein MX01_220 [Escherichia phage MX01]	2e-06 2e-06	YP_009202958 YP_009324117
g243	141198←141494	39	72	66	Outer membrane lipoprotein [Serratia phage CHI14] Outer membrane lipoprotein Rz1 [Serratia phage X20]	5e-40 3e-39	ARW57648 ARW58202
g244	141491←141823	36	110	102	I-spanin [Citrobacter phage Merlin] putative membrane protein [Serratia phage X20]	5e-27 2e-26	YP_009203963 ARW58203
g245	141835←142341	37	168	156	Inhibitor of host transcription [Salmonella phage vB_SenMS16] Hypothetical protein [Salmonella phage STML-198]	3e-75 3e-75	YP_007501255 YP_009147948
g246	142400←143572	38	390	362	RNA ligase 1 and tail fiber attachment [Serratia phage CHI14] RNA ligase 1 and tail fiber attachment catalyst [Serratia phage X20]	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	ARW57651 ARW58205
g247	143569←143982	33	137	127	Endonuclease II [Serratia phage CHI14] Hypothetical protein WG01_232 [Escherichia phage WG01]	5e-87 5e-75	ARW57652 YP_009323431
g248	144011←145189	39	392	363	Aerobic NDP reductase, small subunit [Serratia phage CHI14] Aerobic NTP reductase, small subunit [Serratia phage X20]	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	ARW57653 ARW58207
g249	145186←145359	33	57	53	Hypothetical protein [Isosphaera pallida]	7.7	WP_013566058
g250	145352←145555	31	67	62	Hypothetical protein [Serratia phage CHI14] Hypothetical protein PM2_251 [Pectobacterium bacteriophage PM2]	2e-34 1e-13	ARW57654 YP_009211672
g251	145594←147855	40	753	697	Aerobic NDP reductase, large subunit [Serratia phage X20] Aerobic NDP reductase, large subunit [Serratia phage CHI14]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW58208 ARW57655
g252	147908←148666	32	252	234	I-TevI homing endonuclease [Yersinia phage phiR1-RT] Endonuclease I-Tevi [Klebsiella phage PKO111]	6e-98 3e-86	YP_007236067 YP_009289561
g253	148633→149496	40	287	266	dTMP thymidylate synthase [Serratia phage X20] dTMP thymidylate synthase [Serratia phage CHI14]	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	ARW58210 ARW57657
g254	149496←149867	37	123	92	Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Serratia phage X20]	9e-57 1e-56	ARW57658 ARW58211
g255	149848←150189	37	113	105	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	5e-63 6e-63	ARW58212 ARW57659
g256	150170←150778	39	202	188	Dihydrofolate reductase [Serratia phage CHI14]	6e-93	ARW57660

					Dihydrofolate reductase [Serratia phage X20]	6e-91	ARW58213
g257	150775←151011	33	78	72	Hypothetical protein [Edwardsiella phage PEi26]	0.40	BAQ23206
g258	151008←151211	34	67	62	Hypothetical protein [Serratia phage CHI14] Hypothetical protein PG7_256 [Enterobacter phage PG7]	9e-09 5e-06	ARW57661 YP_009005520
g259	151302←151580	40	92	85	Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Serratia phage X20]	4e-25 1e-24	ARW57662 ARW58215
g260	151636←151974	35	112	104	Hypothetical protein [Serratia phage CHI14] Hypothetical protein [Serratia phage X20]	2e-16 3e-16	ARW57663 ARW58216
g261	151977←152207	32	76	71	Hypothetical protein CGG41_228 [Salmonella phage vB_SnwM_CGG4-1]	1e-24	YP_009286594
g262	152305←153210	40	301	279	Single-stranded DNA binding protein [Serratia phage X20]	9e-15 3e-170	ARW58220
g263	153296←153949	33	217	201	Loader of DNA helicase [Serratia phage X20]	7e-146	ARW57667 ARW58221
g264	153946←154254	38	102	95	Loader of DNA nelicase [Serratia phage CH114] Late promoter transcription accessory protein [Serratia phage CH114]	4e-61	ARW57668 ARW57670
g265	154229←154519	35	96	89	dsDNA binding protein, late transcription [Serratia phage CHI14]	7e-60 8e-47	ARW58222 ARW57671
g266	154528←155469	35	313	290	Ribonuclease [Serratia phage CH114] Ribonuclease [Serratia phage X20]	0.0 0.0	ARW57672 ARW58224
g267	155570←159346	39	1258	1165	Long tail fiber proximal subunit [Serratia phage CHI14] Long tail fiber proximal subunit [Serratia phage CBH8]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW57673 ARW57948
g268	159355→160503	38	382	355	Hinge connector of long tail fiber, proximal connector [Serratia phage CBH8] Hinge connector of long tail fiber, proximal connector [Serratia phage CH114]	0.0 0.0	ARW57949 ARW57674
g269	160565→161212	37	215	199	Tail connector protein [Yersinia phage vB_YenM_TG1] Tail fiber protein p36 (protein Gp36) [Yersinia phage phiR1-RT]	1e-137 1e-134	YP_009200510 YP_007236082
g270	161245→164178	37	977	908	Long tail fiber distal subunit [Yersinia phage vB_YenM_TG1] gp37 large distal tail fiber subunit [Enterobacteria phage RB16]	5e-101 3e-44	YP_009200511 YP_003858559
g271	164210→164710	37	166	155	Distal long tail fiber assembly catalyst [Edwardsiella phage PEi26] Distal long tail fiber assembly catalyst [Serratia phage CHI14]	3e-44 2e-42	BAQ23225 ARW57677
g272	164853→165371	40	172	161	Distal long tail fiber assembly catalyst [Cronobacter phage vB_CsaM_leB] Distal long tail fiber assembly catalyst [Cronobacter phage vB_CsaM_leN]	6e-61 8e-61	AOG16396 AOG16682
g273	165404→166063	36	219	204	Holin lysis mediator [Serratia phage CHI14] Holin lysis mediator [Serratia phage X20]	7e-139 1e-137	ARW57679 ARW58231
g274	166090→166362	34	90	83	Anti-sigma 70 protein [Serratia phage CHI14] Anti-sigma 70 protein [Serratia phage X20]	7e-52 9e-52	ARW57680 ARW58232
g275	166414←166752	37	112	104	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	1e-39 4e-38	ARW58233 ARW57681
g276 g277	166749←167027 167024←167290	33 35	92 88	102 82	Hypothetical protein Hypothetical protein S13_134 [Cronobacter phage S13]	0.014	YP_009196518
g278	167280←167405	25	41	39	Hypothetical protein [Serratia phage CHI14] Hypothetical protein EpJS98_gp248 [Escherichia phage JS98]	4e-15 1e-07	ARW57682 YP_001595377
g279	167398←167685	34	95	88	Hypothetical protein CPT_Merlin287 [Citrobacter phage Merlin] Hypothetical protein CPT_Moon281 [Citrobacter phage Moon]	2e-35 4e-34	YP_009204001 YP_009146714

g280	167685←168026	38	113	105	Hypothetical protein RB32ORF251c [Enterobacteria phage RB32] Hypothetical protein HY03_0227 [Escherichia phage HY03]	1e-48 2e-48	YP_803193 YP_009284203
g281	168023←168382	35	119	110	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	6e-54 3e-53	ARW58237 ARW57686
g282	168397←169032	38	211	195	Transcriptional regulator of middle promoters [Serratia phage X20] Transcriptional regulator of middle promoters [Serratia phage CHI14]	3e-137 6e-137	ARW58238 ARW57687
o283	169147←169410	32	87	81	Hypothetical protein		
g284	169482←170135	38	217	201	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	2e-99 9e-98	ARW58239 ARW57688
g285	170307←171680	37	457	423	Topoisomerase II medium subunit [Serratia phage CHI14] DNA topoisomerase II, medium subunit [Serratia phage X20]	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	ARW57690 ARW58240
g286	171719←171844	37	42	40	Conserved hypothetical protein [Edwardsiella phage PEi20] Conserved hypothetical protein [Edwardsiella phage PEi26]	1e-06 2e-06	YP_009190448 BAQ23240
o287	171816←171974	35	52	49	Hypothetical protein		
g288	171977←172114	38	45	42	Acridine resistance [Shigella phage SHSML-52-1] Hypothetical protein ECTP3_00414 [Escherichia coli O157 typing phage 3]	2.6 3.1	YP_009289025 AKE45292
g289	172108←172251	43	47	44	Hypothetical protein [Edwardsiella phage PEi20] Hypothetical protein [Edwardsiella phage PEi26]	4e-07 6e-07	YP_009190449 BAQ23241
g290	172286←172747	40	153	142	Nucleoid disruption protein [Serratia phage CHI14] Nucleoid disruption protein [Serratia phage X20]	9e-87 3e-86	ARW57692 ARW58244
g291	172890←173078	39	62	58	Hypothetical protein [Cronobacter phage Pet-CM3-4] Conserved hypothetical protein [Edwardsiella phage PEi20]	5e-07 9e-05	SCN45968 YP_009190451
g292	173240←173812	43	190	176	Endonuclease IV [Serratia phage CHI14] Endonuclease IV [Serratia phage X20]	1e-104 8e-104	ARW57695 ARW58247
g293	173802←174131	34	113	104	Hypothetical protein PG7_293 [Enterobacter phage PG7] Hypothetical protein VR26_289 [Escherichia phage vB_EcoM_VR26]	1e-15 8e-15	YP_009005557 YP_009214126
g294	174174←174368	36	64	60	Hypothetical protein [Serratia phage X20] Hypothetical protein [Serratia phage CHI14]	5e-23 8e-23	ARW58249 ARW57697
g295	174412←175413	38	333	309	Protector from prophage-induced early lysis [Serratia phage CHI14] Protector from prophage-induced early lysis [Serratia phage X20]	$\begin{array}{c} 0.0\\ 0.0\end{array}$	ARW57698 ARW58250

Fig. 3.1. Genome map of Escherichia phage EcS1. Colored arrows indicate the directions and categories of the genes. The gene names and numbers above individual genes are according to the T4 standard [Miller et al., 2003b] (GenBank accession no. AF15810 and NCBI accession no. NC_000866).

Functions numbering of EcS1 gene products according to (Miller et al., 2003b):

Gene	Function of gene product
rIIA	Membrane-associated protein; affect host membrane ATPase
39	DNA topoisomerase subunit; DNA-dependent ATPase; membrane-associated
	protein
motB	FmdB family regulator protein
cef	Processing of T4 tRNAs
dexA	Exonuclease A
dda	DNA helicase; DNA-dependent ATPase
asiA	Protein that binds to host σ 70, inhibits interaction with -35 regions of classical
	promoters, and facilitates interaction with T4 MotA protein
modA	Adenylribosylating enzyme
SOC	Small outer capsid protein
56	dCTPase; dUTPase; dCDPase; dUDPase
61	Primase; requires interaction with gp41 helicase for priming at unique sequence
61 = 58	Primase; requires interaction with gp41 helicase for priming at unique sequence
20	Portal vertex protein of the head
uvsX	RecA-like recombination protein; DNA-ATPase
td	Putative thymidelate synthase
43	DNA polymerase; 3'-to-5' exonuclease
regA	Translational repressor of several early genes
62	Clamp-loader subunit
44	Clamp-loader subunit
45	Processivity enhancing sliding clamp of DNA polymerase; and mobile enhancer
	of late promoters
rpbA	RNAP-binding protein
46	Recombination protein and nuclease subunit
47	Recombination protein and nuclease subunit
55	σ factor recognizing late T4 promoters
nrdH	Anaerobic nucleotide reductase subunit
nrdG	Anaerobic nucleotide reductase subunit
nrdD	Anaerobic ribonucleotide reductase subunit
49	Recombination endonuclease VII
pin	Inhibitor of host Lon protease
nrdC	I hioredoxin, glutaredoxin
zfp	Zinc finger protein
rl	Membrane protein
tk	I hymidine kinase
VS N B	Niodifier of valyi-tRINA synthetase
regB	Site-specific RNase
aenv	Endonuclease V; /V-glycosidase
e m JF	Soluble lysozyme; endolysin
nuae 57 A	Nualx nyarolase
\mathcal{I}/A	Chaperone of long and short tall liber assembly

1	dNMP kinase
3	Head-proximal tip of tail tube
2	Protein protecting DNA ends
$\frac{2}{4}$	Head completion protein
53	Base plate wedge component
5	Base plate lysozyme: hub component
6	Base plate wedge component
7	Base plate wedge component
8	Base plate wedge component
9	Base plate wedge component, tail fiber socket, trigger for tail sheath contraction
10	Base plate wedge component, tail pin
11	Base plate wedge component, tail pin, interface with short tail fibers, gp12
12	Short tail fibers
wac	Whiskers, facilitate long tail fiber attachment
13	Head completion
14	Head completion
15	Proximal tail sheath stabilizer, connector to gp3 and/or gp19
16	Terminase subunit, binds dsDNA
17	Terminase subunit with nuclease and ATPase activity; binds single-stranded
	DNA, gp16 and gp20
19	Tail tube monomer
20	Portal vertex protein of the head
67	Prohead core protein; precursor to internal peptides
68	Prohead core protein
21	Prohead core protein and protease
22	Prohead core protein; precursor to internal peptides
23	Precursor of major head subunit
24	Precursor of head vertex subunit
rnlB	Second RNA ligase
37	Phage tail fibers
hoc	Large outer capsid protein
inh	Minor capsid protein; inhibitor of gp21 protease
uvsW	RNA-DNA- and DNA-helicase; DNA-dependent ATPase
uvs Y	ssDNA binding, recombination and repair protein; helper of UvsX, inhibitor of
25	
23	Base plate wedge subunit
20 51	Base plate hub subunit
31 27	Base plate hub assembly catalyst
2/	Dase plate hub subunit
20	Base plate distal nuo suounit Dese plate hybrideterminent of tail length
29 18	Base plate hub; determinant of tall length Dasa plate; tail tuba associated
40 51	Dase plate, tail tube associated Dase plate: tail tube initiator
J4 alt	Adenosylribosyltransferase
ин 30	DNA ligase
50	DINA ligase

rIII Unknown

31	Cochaperonin for Groel
cd	dCMP deaminase
p2A	Phospho-2-dehydro-deoxyheptonate aldolase
Pset	Deoxy ribonucleotide 3'phosphatase, 5' polynucleotide kinase
Rz1	Outer membrane lipoprotein
alc	RNA polymerase and DNA binding protein
rnlA	RNA ligase, catalyst of tail fiber attachment
denA	Endonuclease II
nrdB	Ribonucleotide reductase B subunit
nrdA	Ribonucleotide reductase alfa subunit
I-TevI	Intron-homing endonuclease
Td	Thymidylate synthetase
Frd	Dihydrofolate reductase
32	ssDNA-binding protein
59	Loader of gene 41 DNA helicase
33	Late promoter transcription accessory protein
dsbA	dsDNA binding protein
Rnh	RNase H
34	Proximal tail fiber subunit
35	Tail fiber hinge
36	Small distal tail fiber subunit
37	Large distal tail fiber subunit
38	Assembly catalyst of distal tail fiber
motA	Activator of middle promoters
52	DNA topoisomerase subunit
ac	Membrane protein
denB	Endonuclease IV, single strand specific endonuclease
rIIB	Membrane-associated protein

Table 3.3. 53 gene products with highest identity to gene products of phages other than Serratia phages.

Gene product	Length of protein in amino acids	Amino acid sequence identity/similarity to best homologs (% amino acid identity)	Query coverage %	Identity %	BLAST score (E-Value)	Accession no
Gp006	74	Hypothetical protein PM2_004 [Pectobacterium	71	38	3e-04	YP_009211425
		bacteriophage PM2] LEAFY-like protein 1 [Fragaria x ananassa]	58	37	4.3	AHI62726
Gp008	38	Hypothetical protein				
Gp012	65	Modifier of suppressor tRNAs [Citrobacter phage Merlin]	96	73	1e-24	YP_009203727
		Modifier of suppressor tRNA [Citrobacter phage Moon]	96	70	1e-21	YP_009146446
Gp021	166	Hypothetical protein [Klebsiella phage KPV15] Hypothetical protein kpv477_021 [Klebsiella phage vB_KpnM_KpV477]	85 85	29 28	1e-12 8e-12	APD20401 YP_009288697
Gp029	143	Hypothetical protein				
Gp030	80	Conserved hypothetical protein [Edwardsiella phage PEi20]	86	42	1e-09	YP_009190191
		gp61.4 hypothetical protein [Escherichia phage vB EcoM VR7]	90	35	4e-06	YP_004063718
Gp052	71	Hypothetical protein QL01_57 [Escherichia	100	51	1e-20	YP_009202788
		46.1 gene product [Enterobacteria phage IME08]	100	50	3e-20	
Gp061 Gp063	85 82	Hypothetical protein Hypothetical protein CPT_Merlin69 [Citrobacter	100	45	3e-15	YP_009203783
		phage Merlin] Conserved hypothetical protein [Edwardsiella	100	43	3e-13	YP_009190228
Gp064	102	phage PEi20] Hypothetical protein PM2_071 [Pectobacterium	94	41	2e-17	YP_009211492
		bacteriophage PM2] Hypothetical protein CC31p062 [Enterobacter phage CC31]	90	40	2e-14	YP_004009920
Gp066	77	Hypothetical protein JS09_0111 [Escherichia phage vB_EcoM_JS09]	90	40	8e-08	YP_009037434
		Hypothetical protein APCEc01_231 [Escherichia phage APCEc01]	88	35	8e-06	YP_009225191
Gp067	86	Hypothetical protein JS09_096 [Escherichia phage vB EcoM JS09]	90	40	4e-13	YP_009037419
		Hypothetical protein [Escherichia phage ST0]	88	35	4e-13	ASD53741
Gp085	52	Hypothetical protein CGG41_076 [Salmonella phage vB_SnwM_CGG4-1]	78	63	1e-08	YP_009286442
		Secreted glycosyl hydrolase [Salmonella phage STP4-a]	78	63	2e-08	YP_009126288
Gp086	95	Conserved hypothetical protein [Edwardsiella	96	45	2e-17	YP_009190244
		Hypothetical protein PG7_077 [Enterobacter phage PG7]	96	41	9e-17	YP_009005341
Gp089	73	NrdC.7 conserved hypothetical, predicted	88	45	6e-27	NP_861784.1
		hypothetical protein vBEcoMNBG1_088 [Escherichia phage vB_EcoM_NBG1]	88	45	7e-27	AWM11822.1
Gp093	68	Hypothetical protein CGG41_084 [Salmonella phage vB_SnwM_CGG4-1]	86	47	3e-08	YP_009286450
Gp100	97	Hypothetical protein [Salmonella phage vB_SenMS16] Hypothetical protein	92	46	6e-08	YP_007501127.1

Gp112	60	Hypothetical protein				
Gp119 Gp122	40 70	Hypothetical protein Hypothetical protein CPT Merlin118	97	76	8e-37	VP 009203832
00122	70	[Citrobacter phage Merlin])1	70	00-52	YP_009286469
		Hypothetical protein CGG41_102 [Salmonella	95	76	1e-31	
Gp124	59	Hypothetical protein				
Gp125	48	Hypothetical protein				
Gp126	169	Hypothetical protein phAPEC8_0048 [Escherichia phage phAPEC8]	100	69	2e-29	YP_007348416
		Hypothetical protein ESCO5_00044 [Escherichia phage ESCO5]	100	67	8e-29	AOT23420
Gp133	112	Hypothetical protein CC31p127 [Enterobacter phage CC31]	100	56	1e-38	YP_004009985
		Hypothetical protein PKO111_044 [Klebsiella phage PKO111]	100	54	6e-23	YP_009289445
Gp135	149	Hypothetical protein				
Gp141	101	Conserved hypothetical protein [Edwardsiella phage PEi26]	96	53	5e-30	BAQ23082
		Hypothetical protein CC31p135 [Enterobacter phage CC31]	98	50	1e-29	YP_004009993
Gp144	112	Hypothetical protein				
Gp148	66	Hypothetical protein BN80_132 [Yersinia phage phiR1-RT]	84	93	7e-28	YP_007235965
		Hypothetical protein [Salmonella phage	100	59	2e-19	YP_007501160
Gp150	56	DUF1837 domain-containing protein [Lactococcus garvieae]	67	34	6.8	WP_017371069
Gp151	74	Hypothetical protein PG7_148 [Enterobacter	100	78	7e-36	YP_009005412
		phage PG7] Hypothetical protein [Cronobacter phage Pet- CM3-4]	87	75	5e-28	SCN45824
Gp154	112	Hypothetical protein kpv477_146 [Klebsiella	75	32	0.034	YP_009288822
		phage VB_KpnM_KpV4//] Hypothetical protein RB510RF141 [Enterobacteria phage RB51]	47	34	0.18	YP_002854094.1
Gp155	56	Hypothetical protein kpv477 140 [Klebsiella	98	55	3e-06	YP 009288816
1		phage vB_KpnM_KpV477]	08	55	1. 05	- VD 000280427
		PKO111]	98	55	16-03	1P_009289437
Gp158	161	Hypothetical protein kpv477 148 [Klebsiella	92	54	2e-51	YP 009288824
1		phage vB_KpnM_KpV477]	0.5	45	2 20	
		PHG31p119nc [Aeromonas virus 31]	95	45	2e-39	YP_238848
Gp162	70	Hypothetical protein WG01_147 [Escherichia phage WG01]	97	74	1e-23	YP_009323346
		Hypothetical protein CPT_Merlin166 [Citrobacter phage Merlin]	92	48	9e-12	YP_009203880
Gp194	426	Head vertex protein [Edwardsiella phage PEi20]	99	70	0.0	YP_009190352
-		Head vertex protein [Enterobacter phage PG7]	99	70	0.0	YP_009005456
Gp198	445	Phage tail fibers [Klebsiella phage PMBT1]	100	49	3e-86	SCO64804
		Whisker protein [Enterobacter phage phiEap-3]	100	48	2e-83	ALA45334
Gp199	165	Hoc large outer capsid protein [Enterobacteria	98	57	7e-48	YP_003858524
		phage RB16] Protein of unknown function [Enterobacteria phage RB43]	98	56	7e-48	CCL97698
Gp204	71	UvsY1 hypothetical protein [Enterobacteria	87	77	1e-19	YP 002854140
1		phage RB51]	07	77	1. 10	
		Hypothetical protein [Clostridioides difficile]	87	11	1e-19	WP_074146452

Gp225	176	Conserved hypothetical protein [Edwardsiella	52	43	4e-14	YP_009190382
		Conserved hypothetical protein [Edwardsiella phage PEi26]	52	43	4e-14	BAQ23176
Gp227	64	Hypothetical protein CC31p211 [Enterobacter	93	34	4e-05	YP_004010069
		Hypothetical protein [Cronobacter phage Pet- CM3-4]	93	34	1e-04	SCN45904
Gp237	67	Hypothetical protein SP18_gp234 [Shigella phage SP18]	100	41	9e-08	YP_003934857
		Hypothetical protein VR5_222 [Enterobacteria phage vB_EcoM_VR5]	94	43	1e-07	YP_009205916
Gp240	60	Hypothetical protein fHeYen901_242 [Yersinia phage fHe-Yen9-01]			0.007	ARB06015
Gp249	57	Hypothetical protein [Isosphaera pallida]	49	50	7.7	WP_013566058
Gp252	252	I-TevI homing endonuclease [Yersinia phage	96	65	6e-98	YP_007236067
		Endonuclease I-Tevi [Klebsiella phage PKO111]	93	57	3e-86	YP_009289561
Gp257	78	Hypothetical protein [Edwardsiella phage PEi26]	37	31	0.40	BAQ23206
Gp270	977	Long tail fiber distal subunit [Yersinia phage	55	49	5e-101	YP_009200511
		gp37 large distal tail fiber subunit [Enterobacteria phage RB16]	62	29	3e-44	YP_003858559
Gp276	92	Hypothetical protein	52	45	0.014	ND 000107510
Gp277	88	phage S13]	55	45	0.014	YP_009196518
Gp283 Gp286	87 42	Hypothetical protein Conserved hypothetical protein [Edwardsiella			1e-06	YP 009190448
-1		phage PEi20]			2- 00	BA 022240
		phage PEi26]			28-00	BAQ23240
Gp287	52	Hypothetical protein	0.5	4.5	2.6	ND 00000005
Gp288	45	Acridine resistance [Shigella phage SHSML-52- 1]	95	45	2.6	YP_009289025
		Hypothetical protein ECTP3_00414 [Escherichia coli O157 typing phage 3]	95	45	3.1	AKE45292
Gp289	47	Hypothetical protein [Edwardsiella phage PEi20] Hypothetical protein [Edwardsiella phage PEi26]	97 89	52 57	4e-07	YP_009190449 BA023241
		Typothetical protein [Edwardsteina pilage i El20]	07	51	00-07	D/1Q23271

tRNA	Position in EcS1 genome	Codon	Product
1	Complement(7212372195)	ACA	Thr
2	Complement(7220372284)	TTA	Leu
3	Complement(7229272364)	AGA	Arg
4	Complement(7254172624)	TGC	Cys
5	Complement(7480574876)	GGA	Gly
6	Complement(7488174951)	TGG	Trp
7	Complement(7510675177)	TTC	Phe
8	Complement(7526675338)	ATC	Lle
9	Complement(7534875421)	CCA	Pro
10	Complement(7569775787)	TCA	Ser
11	Complement(7579575867)	CAC	His
12	Complement(7597176043)	CAA	Gln
13	Complement(7604976121)	ATG	Met
14	Complement(7625276325)	AAC	Asn
15	Complement(7647976552)	AAA	Lys
16	Complement(7703477106)	GAC	Asp
17	Complement(7711677187)	GAA	Glu
18	Complement(7719977284)	TAC	Tyr

Table 3.4: tRNAs, their positions, direction, recognized codons and products:

EcS1

Fig. 3.2. Dot plot comparison of the genomic nucleotide sequences between EcS1 and *Serratia* myoviruses, including CHI14 (accession no. MF036690) and CBH8 (MF036691). The T4 sequence (AF15810) is also included. Nucleotide positions are shown along the genomic sequence. Dot plot analyses were performed using the MAFFT version 7 program (http://mafft.cbrc.jp/alignment/server/) with a threshold score 39 (E=8.4e-11).

Fig. 3.3. Phylogenetic trees for the amino acid sequences of tail fiber proteins ORF198 (445 aa) (A) and ORF270 (977 aa) (B) showing the relationships between EcS1 and other known myoviruses. The values at the nodes indicate the bootstrap support scores as calculated using 1000 replicates. Numbers in parentheses are the accession numbers of the amino acid sequence in the databases.

Fig. 3.4: Alignment of the primary sequence of conserved asiA gene in phage EcS1 and other wild types of Serratia phages CH14, CBH8 and X20 reveal presence of mutations in EcS1 phage genome. Identical residues are indicated with asterisks and similar ones with dots.

3.5. Discussion:

Whole genome sequencing of phage EcS1 revealed its advantageous features for biocontrol application, including potential high lytic activities and safety for animals. As for lytic activities, all genes involved in the host lysis by holin-endolysin pathways were found in the phage EcS1 genome. Gp138 and gp243 correspond to lysozyme murein hydrolase (lysin) and outer membrane lipoprotein (holin) respectively and might play major roles to lyse the host cell at the end of the phage life cycle, releasing progeny phage virions (Catalao *et al.*, 2013). Moreover, gp244 correspond to I-spanin protein which is essential for the final step in host lysis by crippling the outer membrane after lysin-holin system have permeabilized the inner membrane (Summer et al., 2007). As for safety of EcS1, any lysogenic genes were not detected and there were no known harmful genes identified in the genome of phage EcS1.

In addition to this, complete genetic characterization confirmed the novelty of phage EcS1. Although from the whole genomic sequence, EcS1 was more similar to Serratia phage than E. coli, Shigella and/or other Enterobacteriacae phages, the tail fibers proteins were completely different between EcS1 and Serratia phages. The tail fiber proteins play a key role in the first step of host recognition and are supposed to evolve rapidly more than other genes in most phages to gain novel abilities to infect variable hosts and to enter different ecological niches (Casjens, 2005). The phylogenetic trees of (Gp198) and (Gp270) beside the host range data indicate that EcS1 is rather related to Enterobacteriacae phages. It is not surprising because Hamdi et al. (2017) revealed that the major differences among phages infecting *Enterobacteriaceae* are in their tail fiber proteins. Moreover, Su et al. (2017) indicated the role of tail fibers genes in differentiation between phages. The extended host range of EcS1 may be related to the acquisition of novel tail fiber genes such as Gp198 that is located outside of the cluster for other tail fiber genes. Phage EcS1 could not show lytic effects on the tested Serratia strain (Serratia marsensens D601). Because EcS1 Gp274 corresponding to anti-sigma 70 protein (asiA) have several changes in amino acid sequence compared to Serratia phage asiA (Fig. 3.4), this may explain resistance of Serratia cells to EcS1. One mechanism for phage to overcome abortive infection mediated by a type III toxin-antitoxin system of the host is mutations in phage asiA gene demonstrated for Serratia phages (Chen et al., 2017). All these data, in addition to, phylogenetic analyses of tail fibers proteins (Fig.3.3) indicate that phage EcS1 is a novel lytic member of the genus *T4virus* that can infect *Shigella* and Salmonella strains in addition to its E. coli host.

The example of EcS1 suggests that there are many similar phages but with different host ranges, which can be isolated in the same way as EcS1 with non-pathogenic *E. coli* as a host. Those phages will serve as promising candidates for biocontrol agents against various pathogenic bacteria (Santos *et al.*, 2010).

CHAPTER IV GENERAL DISCUSSION AND CONCLUSION

Bacteriophages are the most attractive alternative to control bacterial pathogens since they are the most abundant microorganisms on the planet and have no any side effect to eukaryotes especially to human beings. Already, they have great applications for use as biocontrol agents in many fields of life such as phage therapy (Lin et al., 2017), as preservatives in food products (Pulido et al., 2015) and in agricultural system (Addy et al., 2012; Ahmad et al., 2014). The exploitation of bacteriophages has consequently become an interesting tool to combat the emergence of multi-drug resistant bacteria. Easiness of application and their low cost made phages as constant part of integrated disease management (Obradovic et al., 2005). As host range is the trojan horse for phage therapy; the specificity of phage towards definite host is one of its multiple advantages due to harmless effect to non-pathogenic bacteria (beneficial microbes). However, this same specificity limits the ability of the phage use to a strict set of potential pathogens (Kim *et al.*, 2010b; Nilsson, 2014; Mapes et al., 2016). Ongoing efforts have been developed to overcome phage selectivity. For example: mixing multiple phage species into a cocktail to treat several different bacteria (Gill and Hyman 2010; Lu and Koeris, 2011; Chan and Abedon, 2012). Unfortunately, phage cocktails are laborious, wasting time and costs (Loc-Carrillo and Abedon, 2011). It is also well known that even small number of phages with broad host range could be more useful than large number of phages with narrow host range (Ross et al., 2016; Kutter et al., 2010). Moreover, phage-host specificity is almost associated with bacterial phage resistance which can occur at any stage of phage infection (Hyman and Abedon, 2010). Jumbo phages are promising solution for bacteriophages drawbacks.

Jumbo phages are large and tailed phages with genome size more than 200 kbp. The large genome size of jumbo phages enables them to contain many genes responsible for their genome replication and nucleotide metabolism those do not exist in small-genome phages (Mesyanzhinov *et al.*, 2002; Kiljunen, 2005; Thomas 2007). Investigating the expression of phage genes by transcriptomic analysis during jumbo phage infection showed that they may be dependent only on their own RNAPs and independent from the host RNAPs (Ceyssens *et al.*, 2014) Moreover, jumbo phages have more cell-wall lysis proteins, such as endolysin, glycoside hydrolase, and chitinase. Many of these proteins were helpful for facilitating phage infection ability (Gill *et al.*, 2012; Yuan and Gao, 2016). Furthermore, almost all jumbo phages have tRNA in their genomes as in the case

of phage G, Yersinia phage Φ R1-37, and others (Kiljunen *et al.*, 2005). The tRNAs in jumbo phage genomes enhance the translation efficiency of phage-specific genes. These additional proteins encoded by jumbo phages may subrogate for the function of the host proteins that are essential for the life cycle of the smaller-genome phages (Kiljunen *et al.*, 2005). All of these notable genomic features reduce the dependence of jumbo phages on their bacterial hosts (O'Donnell *et al.*, 2013) which in turn could broaden the phage host range (Yuan and Gao 2017).

In spite of the unrivaled characteristics of jumbo phages, only 93 of them have been isolated since the discovery of bacteriophages within the last 100 years (Yuan and Gao 2017). The possible causes for the scarce isolation of large phages are using of the classical procedures for bacteriophage screening, propagation and classical processing of environmental samples (Serwer *et al.*, 2007). Nearly all jumbo phages have been isolated using the fairly standard procedures for phage isolation. For example, the largest phage G was discovered by accident during preparation of another phage (Serwer *et al.*, 2007). That is why developing of specific smart method to screen for jumbo phages is urgent need.

The recently used classical method for phage isolation is fairly simple process and could be accomplished by researchers in a very similar manner to that used by the earliest phage biologists (d'Hérelle, and Smith 1926). Briefly, the basic method is to primarily obtain an environmental sample that can be raw fecal matter (Jensen *et al.*, 2015), sewage samples (Lin *et al.*, 2010), water samples (Uchiyama *et al.*, 2008), soil samples (Anand *et al.*, 2015) and any ecological materials likely to contain or have been in contact with the targeted host bacteria, followed by adding buffer or broth media to the samples and then they are filtered to remove the bacteria and any other solid material. Then the filtrate is supposed to either spot or plaque testing for screening the existing phages. This procedure was approved as standard method of screening for coliphage in water samples according to International Organization for Standardization 2000.

The main goal of this PhD dissertation was to enhance utilization of large phages to control wide range of pathogenic bacteria, followed by comprehensive investigation for the virological and genetic characteristics of successfully isolated phages.

I started my work by developing systemic, smart and specific method for detection and isolation of large phages for use in biocontrol of a wide-range of pathogenic bacteria by making various modifications to the classical methods. My previous results and those of others inspired me for the following modifications. (i) Initial selection by differential centrifugation of samples to

precipitate relatively large particles. Centrifugation at 15000 x g for 1 hour three times was enough to separate large phage particles. This result was obtained after several trials of different centrifugation conditions for ϕ RSL1 previously isolated in our laboratory (Yamada et al., 2010). The established differential centrifugation was also close to that used by Attai et al. (2018) to isolate jumbo phage that infect Agrobacterium tumefaciens. (ii) Get rid of contaminating bacteria by killing with chloroform without filtration. One of the major causes to lose jumbo phages is using filters to remove bacteria. As big-sized phages are unable to pass through the pores of the filter (Yuan and Gao 2017). (iii) Plaque assays using low concentrations of top agar (0.35%) and picking smaller plaques because large phages always form very small plaques. In the top agar of around 0.7% usually used in the standard method, large phage particles cannot form visible plaques because of limited diffusion. The high dependence of plaque size on the concentration of a supporting agar gel was clearly clarified by Serwer et al. (2007), lowering the top agar concentration means large phage particles can diffuse more easily. (iv) Plaque assays were conducted at lower temperatures around 25 °C to delay host growth consequently resulting in increased size of plaques related to large phages. As phage replication is known to depend mainly on the physiological state of the host (Chibani-Chennoufi et al., 2004; Denes and Wiedmann, 2014). Vigorous growth of the host strain at higher temperatures (e.g., 37°C for E. coli) leads to rapid spread of cells over the plate surface and soon induce inactive states of the cells. With E. coli strains as the host, my preliminary tests of plaque formation by lambda phage gave the largest plaques at 23°C. This result is in the line with the previous conclusion of Fister et al. (2016); that phage P100 replication was dependent upon the growth of L. monocytogenes, and efficacy was higher when bacterial growth was reduced by certain environmental conditions as low temperature.

In spite of all of these modifications, my developed method may show little drawbacks related to chloroform application. As some of large phages may not be obtained because of their sensitivity to chloroform (Kęsik-Szeloch *et al.*, 2013; Roszniowski *et al.*, 2017). However, for such phages, further refinement including extended differential centrifugation without chloroform treatment should be given to the method.

By using my method, I succeeded to isolate eleven large phages (E1-E11). The genome sizes of E3, E4, E8 and E11 were around 450 kbp. While the genomes of phages E1, E2, E5, E6, E7, E9 and E10 were about 200 kbp. Although phages are usually host specific and even strain specific (Weinbauer, 2004; Hyman and Abedon, 2010, Ross *et al.*, 2016), the obtained large

phages showed wide-host ranges, infecting different genera including important pathogens such as *Shigella* and *Salmonella*. Especially E9 phage could cover variable host strains ranging over three different genera including *Escherichia*, *Shigella*, and *Salmonella* as the host. Similar case of wide host range was previously identified for Shigella phage SH7 (Hamdi *et al.*, 2017), which was reported to infect strains of *E. coli*, *Salmonella* Paratyphi, and *Shigella dysenteriae* in addition to its original host *Shigella flexeri*. Moreover, Phage E4 also showed a unique host range covering three genera such as *Escherichia*, *Salmonella*, and *Serratia*. Phage SFP10 could infect strains of *Salmonella enterica* and *Escherichia coli* (Park *et al.*, 2012). The wide host ranges of almost all phages obtained in this work support the idea that jumbo or large phages could have broad host ranges (Miller *et al.*, 2003a; Hendrix, 2009; Yoshikawa *et al.*, 2018; Yuan and Gao 2017; Sharma *et al.*, 2019; Matsui *et al.*, 2017). It is thought that large phages with many adaptive genes generally could have wide host range (Bhunchoth *et al.*, 2015; Kim *et al.*, 2012).

I used laboratory strains of *E. coli* BL21 as the initial host to obtain large phages. Usual pathogenic bacterial strains should be handled in biosafety level 2 or 3 laboratories and require special experimental facilities, skills, and care. The use of a nonpathogenic host in the production process would override the risk of accident administering a pathogen (Bielke *et al.*, 2007a; Santos *et al.*, 2010). Furthermore, it would greatly simplify the process of purification, increase the safety of phage preparations with a consequent reduction in preparation costs, leading to easy and faster approval of phage products (Bielke *et al.*, 2007b). Large phages can maintain their long-lasting effects (Fujiwara *et al.*, 2011) and it was also observed that the nonpathogenic host could keep the lytic spectrum (Santos *et al.*, 2010). I hope this method will open a new door to enhance jumbo phage isolation and their use in biocontrol of a wide range of pathogenic bacteria.

I developed the new method and succeeded to isolate interesting large and jumbo phages with broad host ranges, then I determined the whole genome sequence of E9 (designated as Escherichia phage EcS1) for whole genome characterization.

Escherichia phage EcS1 is a novel lytic phage infecting a wide range of bacterial strains, including *Shigella sonnei* SH05001, *Shigella boydii* SH00007, *Shigella flexneri* SH00006, and *Salmonella enterica* serovar Enteritidis (SAL 01078). Shotgun sequencing of the EcS1 phage genome was performed at Fasmac System Science Co., Ltd. (Kanagawa, Japan) using an Illumina Miseq System. I determined the full genome sequence not only to clarify the novelty and genetic characteristics of phage EcS1 but also to confirm absence of perilous genes (from biocontrol

applicable point of view) such as integrase genes of the lysogenic type phage, antibiotic resistant genes, genes encoding toxins or any genes for other bacterial virulence factors (Vandenheuvel *et al.*, 2015; Principi *et al.*, 2019).

The size of completely assembled EcS1 genome was 175,437 bp in length. Primarily, this size as well as the morphological characteristics indicate that this phage belongs to the T4-like phages (Miller et al., 2003b), genus *T4virus* in the family *Myoviridae*. A total of 295 genes were identified along the EcS1 genome. Of these genes, 117 had predicted known functions (structural and functional products) and the other 178 lacked known functions (hypothetical proteins). Interestingly, all genes involved in phage lytic activity (holin-endolysin pathways) were annotated. For example, lysozyme murein hydrolase (lysin) and outer membrane lipoprotein (holin) corresponding to gp138 and gp243 respectively. As phage utilize holin to create a lesion in the cytoplasmic membrane of the host cell wall through which the murein hydrolase passes to gain access to the murein layer (Young, 1992). Moreover, a gene encoding I-spanin (gp244), was also detected in my phage genome. This gene has been recently reported as a third functional class of lysis proteins and required for outer membrane disruption (Cahill and Young, 2019). Presence of complete lytic system indicate the strong lytic activity of phage EcS1 (Berry *et al.* 2008; Berry *et al.* 2013; Catalao *et al.*, 2013).

I also detected 18 tRNA sequences within the EcS1 genome this is another evidence to ensure optimum lytic activity of EcS1 (Wilson, 1973; Bailly-Bechet *et al.*, 2007). The benefits of having tRNA genes are not only associated with better growth in the host (larger burst size and shorter latency) but also the ability to infect more hosts (broader host range), than less or no-tRNA coding phages (Delesalle *et al.*, 2016; Howard-Varona *et al.*, 2017).

Fortunately, there were no genes associated with lysogeny such as integrase gene or any other virulence or genes encoding pathogenicity identified in the genome of EcS1 phage. Together with the strong lytic system this clearly indicates that EcS1 is a prominent candidate to be used safely in biocontrol against wide range of pathogenic bacteria such as phage therapy or food preservative (Merabishvili *et al.*, 2014).

Comparative genomic analysis of EcS1 revealed that, though EcS1 showed the highest similarity to Serratia phages (ϕ X20, ϕ CHI14 and ϕ CBH8), some of its predicted proteins, especially the tail fiber proteins (Gp198 and Gp270), were similar to those of Enterobacteriaceae phages. As previously reported, the tail fiber proteins especially receptor binding proteins (RBPs)

of Enterobacteriaceae infecting phages showed high genetic diversity due to the gene recombination at their C-terminal regions (Hooton et al., 2011; Moreno Switt et al., 2013; Li et al., 2016; Peng and Yuan, 2018). Phylogenetic study for Gp198 (predicted phage tail fiber protein) revealed high similarity to the corresponding gene of Klebsiella phage PMBT1 SCO64804 which have lytic effect to the pathogenic Klebsiella pneumoniae strain 182 (Koberg et al., 2017). Moreover, it was also closely related to Shigella phage Sf16, Escherichia phage vB EcoM AYO145A, and Salmonella phage BPS17W1. On the other hand phylogenetic analysis of Gp270 (long tail fiber distal subunit) showed high similarity to Yersinia phage vB YenM TG1 (Leon-Velarde et al., 2016) which was part of a larger cluster that included Citrobacter phage CF1 and Salmonella phages vBSenMs 16 and STML-198. These results may explain why EcS1 infected strains of Shigella, Salmonella, and Escherichia but not strains of Serratia despite the high similarity of the EcS1 genome to those of Serratia phages. All of these data demonstrate that phage EcS1 is a novel lytic member of the genus T4virus that can infect Shigella and Salmonella strains in addition to its E. coli host. However, further functional analysis of Gp198 and Gp270 proteins and the interaction between EcS1 and its hosts might give deep explanation to the roles of these two proteins in phage host range determination.

In conclusion, firstly, I believe my newly developed method will open the door to extend jumbo or large phage isolation and their use in biocontrol of a wide range of pathogenic bacteria. Secondly, complete genetic characterization of Phage EcS1 not only explained its divergent host specificity against pathogenic strains of *Shigella, Salmonella* and *E. coli* but also ensures its safety in biocontrol applications.
REFERENCES:

- Aarestrup, F. M., Hendriksen, R. S., Lockett, J., Gay, K., Teates, K., McDermott, P. F., White, D. G., Hasman, H., Sørensen G., Bangtrakulnonth, A., Pornreongwong, S., Pulsrikarn, C., Angulo, F. J., and Gerner-Smidt, P. (2007). International spread of multidrug-resistant *Salmonella* Schwarzengrund in food products. Emerging Infectious Diseases. 13: 726–31.
- Abbasifar, R., Griffiths, M. W., Sabour, P. M., Ackermann, H. W., Vandersteegen, K., Lavigne, R., Noben, J-P., Villa, A. A., Abbasifar, A., Nash, J. H. E., and Kropinski, A.
 M. (2014). Supersize me: *Cronobacter sakazakii* phage GAP32. Virology. 460, 138–146.
- Abedon, S. T., Kuhl, S. J., Blasdel, B. G., and Kutter, E. M. (2011). Phage treatment of human infections. Bacteriophage. 1(2): 66–85.
- Ackermann, H.-W. (2009). Basic phage electron microscopy. Methods in Molecular Biology. 501, pp. 113-126.
- Addy, H. S., Askora, A., Kawasaki, T., Fujie, M., and Yamada, T. (2012). Loss of virulence of the phytopathogen *Ralstonia solanacearum* through infection by φRSM filamentous Phages. Phytopathology. 102, 469–477.
- Addis, M., and Sisay, D. (2015). A review on major food-borne bacterial illnesses. Journal of Tropical Diseases. 3:176.
- Ahmad, A. A., Askora, A., Kawasaki, T., Fujie, M., and Yamada, T. (2014). The filamentous phage XacF1 causes loss of virulence in *Xanthomonas axonopodis* pv. *citri*, the causative agent of citrus canker disease. Frontiers in Microbiology. 5: 321.
- Anand, T., Vaid, R. K., Bera, B. C., Barua, S., Riyesh, T., Virmani, N., Yadav, N., and Malik,
 P. (2015). Isolation and characterization of a bacteriophage with broad host range, displaying potential in preventing bovine diarrhoea. Virus Genes. 51, 315–321.
- Ansari, S., Nepal, H. P., Gautam, R., Shrestha, S., Neopane, P., Gurung, G., and Chapagain,
 M. L. (2015). Community acquired multi-drug resistant clinical isolates of *Escherichia* coli in a tertiary care center of Nepal. Antimicrobial Resistance and Infection Control. 4:15.
- Attai, H., Boon, M., Phillips, K., Noben, J-P., Lavigne, R., and Brown, P.J.B. (2018). Larger than life: Isolation and genomic characterization of a jumbo phage that Infects the bacterial plant pathogen, *Agrobacterium tumefaciens*. Frontiers in Microbiology. 9:1861.

- **Bailly-Bechet, M., Vergassola, M., and Rocha, E. (2007).** Causes for the intriguing presence of tRNAs in phages. Genome research. 17 (10), 1486–1495.
- Bao, H., Zhang, P., Zhang, H., Zhou, Y., Zhang, L., and Wang, R. (2015) Bio-control of Salmonella Enteritidis in foods using bacteriophages. Viruses. 7:4836–4853.
- **Barton, M.D. (2000)** Antibiotic use in animals feed and its impact on human health. Nutrition Research Reviews. 13, 279–299.
- Berry, J., Summer, E.J., Struck, D.K., and Young, R., (2008). The final step in the phage infection cycle: the Rz and Rz1 lysis proteins link the inner and outer membranes. Molecular Microbiology. 70, 341.
- Berry, J. D., Rajaure, M., and Young, R., (2013). Spanin function requires subunit homodimerization through intermolecular disulfide bonds. Molecular Microbiology. 88, 35.
- Bhunchoth, A., Phironrit, N., Leksomboon, C., Chatchawankanphanich, O., Kotera, S., Narulita E., Kawasaki, T., Fujie, M., and Yamada, T. (2015). Isolation of *Ralstonia* solanacearum-infecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents. Journal of Applied Microbiology 118, 1023– 1033.
- Bielke, L. R., Higgins, S. Donoghue, A. M., Donoghue, D. J., and Hargis, B. M. (2007b). Salmonella host range of bacteriophages that infect multiple genera. Poultry Science. 86: 2536-2540.
- Bielke, L. R., Higgins, S. E., Donoghue, A. M., Donoghue, D. J., Hargis, B. M., and Tellez, G. (2007a). Use of wide-host-range bacteriophages to reduce *Salmonella* on poultry products. International Journal of Poultry Science. 6: 754-757.
- Bridier, A. (2019). Foodborne bacterial pathogens; methods and protocols. Methods in Molecular Biology. Book.
- Burkal'tseva, M. V., Krylov, V. N., Pleteneva E. A., Shaburova, O. V., Krylov S. V., Volkart G., Sykilinda, N. N., Kurochkina, L. P., and Mesyanzhinov, V. V. (2002).
 Phenogenetic characterization of a group of giant φ KZ-like bacteriophages of *Pseudomonas aeruginosa*. Genetika. 38, 1470–1479.
- Cahill, J., and Young, R. (2019). Phage Lysis: Multiple Genes for Multiple Barriers. Adv Virus Res;103: 33–70

Campbell A. (2003). The future of bacteriophage biology. Nature Reviews Genetics. 4 (6):471-7.

- **Carlson, K. (2005).** Working with Bacteriophages: common techniques and methodological approaches. In: Kutter E, Sulakvelidze A, et al., editors. Bacteriophages, Biology and Applications. Florida: CRC Press. pp. 437–494.
- **Casjens, S. R. (2005).** Comparative genomics and evolution of the tailed-bacteriophages. Current Opinion in Microbiology. 8, 451–458.
- Catalao, M. J., Gil, F., Moniz-Pereira, J., Sao-Jose, C., and Pimentel, M. (2013). Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiology Review. 37, 554–571.
- Ceyssens, P. J., Minakhin, L., Van den Bossche, A., Yakunina, M., Klimuk, E., Blasdel, B.,
 De Smet, J., Noben, J. P., Bläsi, U., Severinov, K., and Lavigne, R. (2014).
 Development of giant bacteriophage φKZ is independent of the host transcription apparatus.
 Journal of Virology. 88 (18): 10501-10.
- Chan, B. K., Abedon, S. T., and Loc-Carrillo C. (2013). Phage cocktails and the future of phage therapy. Future Microbiology. 8 769–783.
- Chan, B. K., and Abedon, S. T. (2012). Phage therapy pharmacology: phage cocktails. Advances in Applied Microbiology. 78, 1–23.
- Chatterjee, S., and Rothenberg, E. (2012). Interaction of bacteriophage λ with its *E. coli* receptor, LamB. Viruses. 4: 3162-3178.
- Chen, B., Akusobi, C., Fang, X., and Salmond, G. P. C. (2017): Environmental T4-Family bacteriophages evolve to escape abortive infection via multiple routes in a bacterial host employing "Altruistic Suicide" through type III Toxin-Antitoxin systems. Frontiers in Microbiology. (8). 1006.
- Chibani-Chennoufi, S., Bruttin, A., Dillmann, M.-L., and Brüssow, H. (2004). Phage-host interaction: an ecological perspective. Journal of Bacteriology. 186, 3677–3686.
- **Chowdhury, K., and Sawer, S. (1976).** S1 nuclease converts relaxed circular closed duplex DNA to open linear DNA of unit length. FEBS Letters. 68, pp. 68-70.
- Cosgrove, S. E. (2006). The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clinical Infectious Diseases. 42 (2): S82–S89.

- **d'Hérelles, F. (1917).** "Sur un microbe invisible antagoniste des bacilles dysentériques" (PDF). Comptes rendus Academie des Sciences Paris. 165: 373–5.
- d'Hérelle, F., and Smith, G. H. (1926). The bacteriophage and its behavior [English translation]. Baltimore: The Williams & Wilkins Co.
- Delesalle, V. A., Tanke, N. T., Vill, A. C., and Krukonis, G. P. (2016). Testing hypotheses for the presence of tRNA genes in mycobacteriophage genomes. Bacteriophage. 6 (3), e1219441.
- **Denes, T., and Wiedmann, M. (2014).** Environmental responses and phage susceptibility in foodborne pathogens: implications for improving applications in food safety. Current Opinion in Biotechnology. 26, 45–49.
- **Donelli, G. (1968).** Isolamento di un batteriofago di eccezionali dimensioni attivo su *B. megatherium.* Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat., 44. pp. 95-97
- Doore, S. M., Schrad, J. R., Dean, W. F., Dover, J., and Parent K.N. (2018). Shigella phages isolated during a dysentery outbreak reveal uncommon structures and broad species diversity. Journal of Virology. 92, p. 02117-17.
- Drulis-Kawa, Z., Majkowska-Skrobek, G., Maciejewska, B., Delattre, A.-S., and Lavigne, R. (2012). Learning from bacteriophages-advantages and limitations of phage and phageencoded protein applications. Current Protein and Peptide Science. 13: 699–722.
- Eisen, J. A. (2000). Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Current Opinion in Genetics and Development. 10, 606–611.
- Endersen, L., O'Mahony, J., Hill, C., Ross, R. P., McAuliffe, O., and Coffey, A. (2014). Phage therapy in the food Industry. Annual Review of Food Science and Technology. 5: 327–349.
- Evans, J. A., Adusei, A., Timmann, C., May, J., Mack, D., Agbenyega, T., Horstmann, R. D., and Frimpong, E. (2004). High mortality of infant bacteraemia clinically indistinguishable from severe malaria. Quarterly Journal of Medicine. 97: 591–7.
- Fister, S., Robben, C., Witte, A. K., Schoder, D., Wagner, M., and Rossmanith, P. (2016). Influence of Environmental Factors on Phage-Bacteria Interaction and on the Efficacy and Infectivity of Phage P100. Frontiers in Microbiology. 7, 1152.
- Fujiwara, A., Fujisawa, M., Hamasaki, R., Kawasaki, T., Fujie, M., and Yamada, T. (2011). Biocontrol of *Ralstonia solanacearum*by treatment with lytic bacteriophages. Applied Environmental Microbiology. 77. pp. 4155-4162.

- Fung, F., Wang, H. S., and Menon, S. (2018). Food safety in the 21st century. Biomedical Journal. 41, 88–95.
- Ghosh, C., Sarkar, P., Issa, R., and Haldar, J. (2019). Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance. Trends in Microbiology. 27, (4). 323-338.
- Gill, J. J., and Hyman, P. (2010). Phage choice, isolation, and preparation for phage therapy. Curr. Pharm. Biotechnol. 11, 2–14.
- Gill, J. J., Berry, J. D., Russell, W. K., Lessor, L., Escobar-Garcia, D. A., Hernandez, D., Kane, A., Keene. J., Maddox, M., Martin, R., Mohan, S., Thorn, A. M., Russell, D. H., and Young, R. (2012). The Caulobacter crescentus phage phiCbK: genomics of a canonical phage. BMC Genomics. 13:542.
- González-García, V. A., Pulido-Cid, M., Garcia-Doval, C., Bocanegra, R., van Raaij, M. J., Martín-Benito, J., Cuervo, A., and Carrascosa, J. L. (2015). Conformational changes leading to T7 DNA delivery upon interaction with the bacterial receptor. The Journal of Biological Biochemistry. 290(16):10038-44.
- Haddad, I.E. Abdallah, N.B. Plante, P. L. Dumaresq, J. Katsarava, R. Labrie,
 S. Corbeil, J. St-Gelais, D., and Moineau, S. (2014). Improving the safety of *Staphylococcus aureus* polyvalent phages by their production on a *Staphulococcus xylosus* strain. PLoS One, 9, p. e102600.
- Haggård-Ljungquist, E., Halling, C. and Calendar, R. (1992). DNA sequences of the tail fiber genes of bacteriophage P2: evidence for horizontal transfer of tail fiber genes among unrelated bacteriophages. Journal of Bacteriology. 174, 1462–1477.
- Hambly, E., Tetart, F., Desplats, C., Wilson, W. H., Krisch, H. M., and Mann, N. H. (2001)."A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2," PNAS. 98, (20), pp. 11411–11416.
- Hamdi, S., Rousseau, G. M., Labrie, S. J., Tremblay, D. M., Kourda, R. S., Slama, K. B., and Moineau, S. (2017): Characterization of two polyvalent phages infecting *Enterobacteriaceae*. Scientific Reports. 7-40349.
- Harada, L. K., Silva, E.C., Campos, W.F., Del Fiol, F.S., Vila, M., Dąbrowska, K., Krylov,
 V.N., and Balcão, V.M. (2018). Biotechnological applications of bacteriophages: state of the art Microbiological Research. 212–213, pp. 38-58

- Hatfull, G. F., Pedulla, M. L., JacobsSera, D., Cichon, P. M., Foley, A., Ford, M. E., Gonda, R. M., Houtz, J. M., Hryckowian, A. J., Kelchner, V. A., Namburi, S., Pajcini, K. V., Popovich, M. G., Schleicher, D. T., Simanek, B. Z., Smith, A. L., Zdanowicz, G. M., Kumar, V., Peebles, C. L., Jacobs, W. R. Jr., Lawrence, J. G., and Hendrix, R.W. (2006). Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genetics. 2: e92.
- Hatfull, G. F., and Hendrix, R. W. (2011). Bacteriophages and their genomes. Current Opinion in Virology. 1(4): 298-303.
- Hendrix R. W. (2009). Jumbo Bacteriophages. Volume 328 of the series Current Topics in Microbiology and Immunology. pp 229-240.
- Hendrix, R. W., Margaret, C. M., Neil Burns, S. R., Ford, M. E., and Hatfull, G. F. (1999). Evolutionary relationships among diverse bacteriophages and prophages: All the world's a phage. Proceedings of the National Academy of Sciences. 96 (5): 2192-2197.
- Herikstad, H., Motarjemi, Y., and Tauxe, R. V. (2002). *Salmonella* surveillance: a global survey of public health serotyping. Epidemiology and Infection. 129:1-8.
- Hertveldt K., Lavigne R., Pleteneva E., Sernova N., Kurochkina L., Korchevskii R., Robben, J., Mesyanzhinov, V. Krylov, V.N. and Volckaert, G. (2005). Genome comparison of Pseudomonas aeruginosa large phages. Journal of Molecular Biology. 354, 536–545.
- Higashiyama, T., and Yamada, T. (1991). Electrophoretic karyotyping and chromosomal gene mapping of *Chlorella*. Nucleic Acids Research. 19, pp. 6191-6195
- Hohmann, E. L. (2001). Nontyphoidal salmonellosis. Clinical Infectious Diseases. 32:263–9.
- Hooton, S. P., Timms, A. R., Rowsell, J., Wilson, R., and Connerton, I. F. (2011). Salmonella Typhimurium-specific bacteriophage PhiSH19 and the origins of species specificity in the Vi01-like phage family. Virology Journal. 8, 498.
- Howard-Varona, C., Hargreaves, K. R., Abedon, S. T., and Sullivan, M. B. (2017). Lysogeny in nature: mechanisms, impact and ecology of temperate phages. The ISME journal, 11(7), 1511–1520.
- Hu, B., Margolin, W., Molineux, I. J. and Liu, J. (2015). Structural remodeling of bacteriophage T4 and host membranes during infection initiation. PNAS. 112, E4919–E4928.

- Humphrey, J. H., Prendergast, A. J., and Mbuya, M. N. N. (2015). The sanitation hygiene infant nutrition efficacy (SHINE) trial: rationale, design, and methods. Clinical Infectious Diseases. 61 (7): S685–S702.
- Hyman, P., and Abedon, S. T. (2010). Bacteriophage host range and bacterial resistance. Advances in Applied Microbiology. 70, 217–248.
- **Iino, T. and Mitani, M. (1967).** Infection of Serratia marcescens by bacteriophage chi. Journal of Virology. 1(2): 445–447.
- International Organization for Standardization (2000). Water Quality Detection and Enumeration of Bacteriophages, Part 2: Enumeration of Somatic Coliphages. ISO10705-2:2000(E). Geneva: International Organization for Standardization. Journal of Virology. 1, pp. 445-447.
- Jensen, K. C., Hair, B. B., Wienclaw, T. M., Murdock, M. H., Hatch, J. B., Trent, A. T., White, T. D., Haskell, K. J., and Berges, B. K. (2015). Isolation and Host Range of Bacteriophage with Lytic Activity against Methicillin-Resistant *Staphylococcus aureus* and Potential Use as a Fomite Decontaminant. PLoS One. 10(7): e0131714.
- Johnson, L. R., Hannah Gould, L., Dunn, J. R., Berkelman, R., and Mahon, B. E. for the FoodNet Travel Working Group (2011). Salmonella Infections Associated with International Travel: A Foodborne Diseases Active Surveillance Network (FoodNet) Study. Foodborne Pathogens and Disease. 8 (9).
- Johnson R. P., Gyles C. L., Huff W. E., Ojha S., Huff G. R., Rath N. C., and Donoghue A. M. (2008). Bacteriophages for prophylaxis and therapy in cattle, poultry and pigs. Animal Health Research Reviews. 9 (2): 201-15.
- Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A. Balk, D. Gittleman, J. L. and Daszak, P. (2008). Global trends in emerging infectious diseases. Nature. 451, 990–993.
- Jurczak-Kurek, A., Gąsior, T., Nejman-Faleńczyk, B., Bloch, S., Dydecka, A., Topka, G., Necel, A., Jakubowska-Deredas, M., Narajczyk, M., Richert, M., Mieszkowska, A., Wróbel, B., Węgrzyn, G., and Węgrzyn, A. (2016). Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage. Scientific Reports. 6:34338.

- Keen, E. C. (2015). A century of phage research: bacteriophages and the shaping of modern biology. Bioessays. 37, 6–9.
- Kęsik-Szeloch, A., Drulis-Kawa, Z., Weber-Dąbrowska, B., Kassner, J., Majkowska-Skrobek, G., Augustyniak, D., Lusiak Szelachowska, M., Zaczek, M., Górski, A., and Kropinski. A.M. (2013). Characterising the biology of novel lytic bacteriophages infecting multidrug resistant *Klebsiella pneumoniae*. Virology Journal. 10, p. 100
- Kiljunen, S., Hakala, K., Pinta, E., Huttunen, S., Pluta, P., Gador, A., Lönnberg, H., and Skurnik, M. (2005). Yersiniophage phi R1-37 is a tailed bacteriophage having a 270 kb DNA genome with thymidine replaced by deoxyuridine. Microbiology-SGM. 151, 4093– 4102.
- Kim, J. H., Son, J. S., Choi, Y. J., Choresca, C. H., Shin, S. P., Han, J. E., Jun, J.W., and Park, S.C. (2012). Complete genome sequence and characterization of a broad-host range T4-like bacteriophage phiAS5 infecting *Aeromonas salmonicida* subsp. *Salmonicida*. Veterinary Microbiology. 157, pp. 164-171
- Kim, J.H., Gomez, D.K., Nakai, T., and Park, S.C. (2010). Isolation and identification of bacteriophages infecting ayu *Plecoglossus altivelis* altivelis specific *Flavobacterium psychrophilum*. Veterinary Microbiology. 140 (1–2), pp. 109-115
- Kim, K. H., Chang, H. W., Nam, Y. D., Roh, S. W. and Bae, J. W. (2010): Phenotypic characterization and genomic analysis of the *Shigella sonnei* bacteriophage SP18. Journal of Microbiology. 48 (2): 213-22.
- Kim, M. S., Hong S. S., Park K., and Myung H. (2013). Genomic analysis of bacteriophage PBECO4 infecting *Escherichia coli* O157:H7. Archive of Virology. 158, 2399–2403.
- Koberg, S., Brinks, E., Fiedler, G., Hüsing, C., Cho, G. S., Hoeppner, M. P., Heller, K. J., Neve, H., and Franz, C. M. (2017). Genome Sequence of *Klebsiella pneumoniae* Bacteriophage PMBT1 Isolated from Raw Sewage. Genome Announcement. 5(8): e00914-16.
- Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 33(7):1870–1874.
- Kutter, E. (2009). Phage host range and efficiency of plating. Methods in Molecular Biology. 501, pp. 141-149.

- Kutter, E., De Vo,s D., Gvasalia, G., Alavidze, Z., Gogokhia, L., Kuhl, S., and Abedon, S. T. (2010). Phage therapy in clinical practice: treatment of human infections. Current Pharmaceutical Biotechnology. 11: 69–86.
- Landers, T. F., Cohen, B., Wittum, T. E., and Larson, E. L. (2012). A review of antibiotic use in food animals: perspective, policy, and potential. Public health reports. 127(1), 4–22.
- Lawrence, J. G., Hatfull, G. F., and Hendrix, R. W. (2002). Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. Journal of Bacteriology. 184, 4891– 4905.
- Le, S., He, X., Tan, Y., Huang, G., Zhang, L., Lux, R., Shi, W., and Hu, F. (2013) Mapping the Tail Fiber as the Receptor Binding Protein Responsible for Differential Host Specificity of Pseudomonas aeruginosa Bacteriophages PaP1 and JG004. PLoS ONE. 8(7): e68562.
- Leiman, P. G., Arisaka, F., van Raaij, M. J., Kostyuchenko, V. A., Aksyuk, A. A., Kanamaru, S., and Rossmann, M. G. (2010). Morphogenesis of the T4 tail and tail fibers. Virology Journal. 3; 7:355.
- Leiman, P. G., and Shneider, M. M. (2012) Contractile Tail Machines of Bacteriophages. In: Rossmann M., Rao V. (eds) Viral Molecular Machines. Advances in Experimental Medicine and Biology, vol 726. Springer, Boston, MA. 93-114.
- Leon-Velarde, C. G., Happonen, L., Pajunen, M., Leskinen, K., Kropinski, A. M., Mattinen, L., Rajtor, M., Zur, J., Smith, D., Chen, S., Nawaz, A., Johnson, R. P., Odumeru, J. A., Griffiths, M. W., and Skurnik, M. (2016). *Yersinia enterocolitica*-Specific Infection by Bacteriophages TG1 and \$\phiR1-RT\$ Is Dependent on Temperature-Regulated Expression of the Phage Host Receptor OmpF. Applied and Environmental Microbiology. 82(17):5340-5353.
- Leskinen, K., Blasdel, B. G., Lavigne, R., and Skurnik, M. (2016). RNA-Sequencing reveals the progression of phage-host interactions between phi R1-37 and *Yersinia enterocolitica*. Viruses-Basel. 8:111.
- Li, E., Wei, X., Ma, Y., Yin, Z., Li, H., Lin, W., Wang, X., Li, C., Shen, Z., Zhao, R., Yang, H., Jiang, A., Yang, W., Yuan, J., and Zhao, X. (2016). Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant *Enterobacter aerogenes*. Scientific Reports. 6:28338.

- Lin, D. M., Koskella, B., and Lin, H. C. (2017). Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World Journal of Gastrointestinal Pharmacology and Therapeutics. 8(3):162–173.
- Lin, N. T., Chiou, P. Y., Chang, K. C., Chen, L. K., and Lai, M. J. (2010). Isolation and characterization of \u00f6AB2: a novel bacteriophage of *Acinetobacter baumannii*. Research in Microbiology. 161, 308–314.
- Loc-Carrillo, C., and Abedon, S. T. (2011). Pros and cons of phage therapy. Bacteriophage. 1(2): 111–114.
- Logan, L. K., and Weinstein, R. A. (2017). The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. The Journal of Infectious Diseases. 15,215. S28-S36.
- Lu, T. K., and Koeris, M. S. (2011). The next generation of bacteriophage therapy. Current Opinion in Microbiology. 14, 524–531.
- Mapes, A. C., Trautner, B. W., Liao, K. S., and Ramig, R. F. (2016). Development of expanded host range phage active on biofilms of multi-drug resistant *Pseudomonas aeruginosa*. Bacteriophage. 6(1): e1096995.
- Matsui, T., Yoshikawa, G., Mihara, T., Chatchawankanphanich, O., Kawasaki, T., Nakano,
 M., Fujie, M., Ogata, H., and Yamada, T. (2017). Replications of Two Closely Related
 Groups of Jumbo Phages Show Different Level of Dependence on Host-encoded RNA
 Polymerase. Frontiers in Microbiology. 8:1010.
- Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., Griffin, P. M., and Tauxe, R. V. (1999). Food-related illness and death in the United States. Emerging infectious diseases. 5(5), 607–625.
- Merabishvili, M., Vandenheuvel, D., Kropinski, A. M., Mast, J., De Vos, D., Verbeken, G., Noben, J. P., Lavigne, R., Vaneechoutte, M., and Pirnay, J. P. (2014). Characterization of newly isolated lytic bacteriophages active against *Acinetobacter baumannii*. PLoS One. 9 (8): e104853.
- Merril, C. R., Scholl, D., and Adhya, S. (2006) Phage therapy. In: Calendar R (ed). The bacteriophages. 2nd edn. New York: Oxford University Press. pp 725–741.
- Mesyanzhinov, V. V., Robben, J., Grymonprez, B., Kostyuchenko, V. A., Bourkaltseva, M. V., Sykilinda, N. N., Krylov, V. N., and Volckaert, G. (2002). The genome of

bacteriophage phi KZ of *Pseudomonas aeruginosa*. Journal of Molecular Biology. 317, 1– 19.

- Miller, E. S., Heidelberg, J. F., Eisen, J. A., Nelson, W. C., Durkin, A. S., Ciecko, A., Feldblyum, T. V., White, O., Paulsen, I. T., Nierman, W. C., Lee, J., Szczypinski, B., and Fraser, C. M. (2003a). Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage. Journal of Bacteriology. 185(17):5220-33.
- Miller, E. S., Kutter, E., Mosig, G., Arisaka, F., Kunisawa, T., and Rüger, W. (2003b). Bacteriophage T4 genome. Microbiology and molecular biology reviews: MMBR, 67(1), 86–156.
- Moreno Switt, A. I., Orsi, R. H., den Bakker, H. C., Vongkamjan, K., Altier, C., and Wiedmann, M. (2013). Genomic characterization provides new insight into Salmonella phage diversity. BMC genomics. 14, 481.
- Nikfar, R., Shamsizadeh, A., Darbor, M., Khaghani, S., and Moghaddam, M. (2017). A study of prevalence of *Shigella* species and antimicrobial resistance patterns in paediatric medical center, Ahvaz, Iran. Iranian Journal of Microbiology. 9(5):277–282
- Nilsson, A. S. (2014). Phage therapy-constraints and possibilities. Upsala Journal of Medical Sciences. 119, 192–198.
- Nobrega, F.L., Vlot, M., Jonge, P.A., Dreesens, L. L., Beaumont, H. J. E., Lavigne, R., Dutilh,
 B. E., and Brouns, S. J. J. (2018). Targeting mechanisms of tailed bacteriophages. Nature Reviews in Microbiology. 16, 760–773.
- **O'neill, J. (2014).** Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance.
- **O**, **neill**, **j**. (2016). The review on antimicrobial resistance. Tackling drug-resistant infections globally: final report and recommendations. UK. 2016.
- O'Donnell, M., Langston, L., and Stillman, B. (2013). Principles and concepts of DNA replication in Bacteria, Archaea, and Eukarya. Cold Spring Harbor Perspective in Biology. 5: a010108.
- Obradovic, A., Jones, J. B., Momol, M. T., Olson, S. M., Jackson, L. E., Balogh, B., Guven, K., and Iriarte, F. B. (2005). Integration of biological control agents and systemic acquir ed resistance inducers against bacterial spot on tomato. Plant Disease. 89:712-716.

- Oliveira, H., Azeredo, J., Lavigne, R., and Kluskens, L. D. (2012). Bacteriophage endolysins as a response to emerging foodborne pathogens. Trends in Food Science and Technology. 28: 103-115.
- Park, M., Lee, J.H., Shin, H., Kim, M., Choi, J., Kang, D.H., Heu, S., and Ryu, S. (2012). Characterization and comparative genomic analysis of a novel bacteriophage, SFP10, simultaneously inhibiting both *Salmonella enterica* and *Escherichia coli* O157:H7. Applied Environmental Microbiology. 78:58–69.
- Pedulla, M. L., Ford, M.E., Houtz, J.M., Karthikeyan, T., Wadsworth, C., and Lewis, J.A., Jacobs-sera, D., Falbo, J., Gross, G., Pannunzio, N. R., Brucker, W., Kumar, V., Kandasamy, J., Keenan, L., Bardarov, S.Kriakov, J., Lawrence, J. G., Jacobs, W. R., Hendrix, R. W., and Hatfull, G. F. (2003). Origins of highly mosaic mycobacteriophage genomes. Cell. 113, 171–182.
- Peng, Q., and Yuan, Y. (2018). Characterization of a newly isolated phage infecting pathogenic *Escherichia coli* and analysis of its mosaic structural genes. Scientific Reports. 8, 8086.
- Pérez Pulido, R., Grande Burgos, M., J., Gálvez, A., and Lucas López, R. (2015). Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria. Critical Reviews in Biotechnology. 36(5): 851–861.
- Petty, N. K., Evans, T. J., Fineran, P. C., and Salmond, G. P. C. (2007). "Biotechnological exploitation of bacteriophage research. Trends in Biotechnology. 25 (1), pp. 7–15.
- Picot-Gueraud, R., Batailler, P., Caspar, Y., Hennebique, A., and Mallaret, M. R. (2015). Bacteremia caused by multidrug-resistant bacteria in a French university hospital center: 3 years of collection. American Journal of Infection Control. 43, pp. 960-964.
- Principi, N., Silvestri, E., and Esposito, S. (2019) Advantages and limitations of bacteriophages for the treatment of bacterial infections. Frontiers in Pharmacology. 10:513.
- Ross, A., Ward, S. and Hyman, P. (2016). More Is Better: Selecting for broad host range bacteriophages. Frontiers in Microbiology. 7:1352.
- Roszniowski, B., Latka, A., Maciejewska, B., Vandenheuvel, D., Olszak, T., Briers, Y., Holt, G.S., Valvano, M.A., Lavigne, R., Smith, D.L., and Drulis-Kawa, V. (2017). The temperate *Burkholderia* phage AP3 of the *Peduovirinae* shows efficient antimicrobial

activity against *B. cenocepacia* of the IIIA lineage. Applied Microbiology and Biotechnology. 101, pp. 1203-1216

- Sambrook, J., and Russel, D. (2001). Molecular cloning: A laboratory manual (3rd ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- Santos, S. B., Fernandes, E., Carvalho, C. M., Sillankorva, S., Krylov, V. N., Pleteneva, E. A., Shaburova, O.V., Nicolau, A., Ferreira E. C., and Azeredo, J. (2010). Selection and characterization of a multivalent Salmonella phage and its production in a nonpathogenic *Escherichia coli* strain. Applied Environmental Microbiology. 76:7338–7342.
- Schroeder, C. M., Naugle, A. L., Schlosser, W. D., Hogue, A. T., Angulo, F. J., Rose, J. S., Ebel, E. D., Disney, W. T., Holt, K. G., and Goldman, D. P. (2005). Estimate of illnesses from *Salmonella* Enteritidis in eggs, United States, 2000. Emerging Infectious Diseases Journal.11:113-115.
- Serwer, P., Hayes, S. J., Thomas, J. A., and Hardies, S. C. (2007). Propagating the missing bacteriophages: a large bacteriophage in a new class. Virology journal. 4, 21.
- Sharma, R., Pielstick, B. A., Bell, K. A., Nieman, T. B., Stubbs, O. A., Yeates, E. L., Baltrus,
 D. A., and Grose, J. H. (2019). A Novel, Highly Related Jumbo Family of Bacteriophages
 That Were Isolated Against Erwinia. Frontiers in Microbiology. 10:1533.
- Shende, R. K., Hirpurkar, S. D., Sannat, C., Rawat, N., and Pandey, V. (2017). Isolation and characterization of bacteriophages with lytic activity against common bacterial pathogens. *Vet World*. 10(8):973-978.
- Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., et al. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology.7:539.
- Silbergeld, E. K., Graham, J., and Price, L. B., (2008). Industrial food animal production, antimicrobial resistance, and human health. Annual Review of Public Health. 29, 151–169.
- Simoliunas, E., Kaliniene, L., Truncaite, L., Klausa, V., Zajanckauskaite, A., and Meskys R. (2012). Genome of *Klebsiella* sp.-Infecting Bacteriophage vB_KleM_RaK2. Journal of Virology. 86, 5406–5406.

- Skurnik, M., and Strauch, E., (2006). Phage therapy: facts and fiction. International Journal of Medical Microbiology. 296 (1), 5–14.
- Skurnik, M., Pajunen, M., and Kiljunen, S. (2007). Biotechnological challenges of phage therapy. Biotechnology Letters. 29: 995—1003.
- Starling, S. (2017). Shigella sonnei has the edge. Nat Rev Microbiol 15:450-451.
- Su, J., Sun, H., Liu, J., Guo, Z., Fan, G, Gu, G., and Wang, G. (2017): Complete genome sequence of a novel lytic bacteriophage isolated from *Ralstonia solanacearum*. Archives of Virology. 162: 3919-3923.
- **Sulakvelidze, A. (2013).** Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens. Journal of the Science of Food and Agriculture. 93, 3137–3146.
- Summer, E. J., Berry, J., Tran, T. A., Niu, L. Struck, D. K., and Young, R. (2007). Rz/Rz1 lysis gene equivalents in phages of Gram-negative hosts. Journal of Molecular Biology. 373. 1098-1112
- Summers, W. C. (1999). Felix d'Herelle and the origins of molecular biology. Yale University Press 1999; New Haven, Conn.
- Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., et al. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infectious Diseases. 18, 318–327.
- Thomas, J. A., Hardies, S. C., Rolando, M., Hayes, S. J., Lieman, K., Carroll, C. A., Weintraub, S. T., and Serwer, P. (2007). Complete genomic sequence and mass spectrometric analysis of highly diverse, atypical Bacillus thuringiensis phage 0305phi8-36. Virology. 368(2):405-21.
- Twort, F. W. (1915). An investigation on the nature of ultra-microscopic viruses. Lancet. 186, pp. 1241-1243.
- Uchiyama, J., Rashel, M., Maeda, Y., Takemura, I., Sugihara, S., Akechi, K., Muraoka, A., Wakiguchi, H., and Matsuzaki, S. (2008). Isolation and characterization of a novel Enterococcus faecalis bacteriophage \$\$\phiEF24C\$ as a therapeutic candidate. FEMS Microbiology Letters. 278, 200–206.

- Van Boeckel, T. P., Glennon, E. E., Chen, D., Gilbert, M., Robinson, T. P., Grenfell, B. T., Levin, S. A., Bonhoeffer, S., and Laxminarayan, R. (2017). Reducing antimicrobial use in food animals. Science. 357(6358):1350-1352.
- Van Etten, J. L., Lane, L. C., and Dunigan, D. D. (2010). DNA viruses: the really big ones (Giruses). Annual Review of Microbiology. 64, 83–99.
- Vandenheuvel, D., Lavigne, R., and Brüssow, H. (2015). Bacteriophage therapy: advances in formulation strategies and human clinical trials. Annual Review of Virology. 2, 599–618.
- Vinga, I., Baptista, C., Auzat, I., Petipas, I., Lurz, R., Tavares, P., and São-José C (2012). Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection. Molecular Microbiology. 83:289–303
- Vos, T., Abajobir, A.A., Abate, K.H. Abbafati, C. Abbas, K.M., Abd-Allah, F. et al. (2017). Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 390, pp. 1211-1259.
- Weinbauer, M. G. (2004). Ecology of prokaryotic viruses. FEMS Microbiology Reviews. 28, 127–181.
- Welkos, S., Schreiber, M., and Bae, H. (1974). Identification of *Salmonella* with the O-1 bacteriophage. Applied Microbiology. 28. pp. 618-622.
- Williamson, K. E., Radosevich, M., and Wommack, K. E. (2005). Abundance and diversity of viruses in six Delaware soils. Applied Environmental Microbiology. 71:3119–3125
- Wilson, J. H. (1973). Function of the bacteriophage T4 transfer RNA's. Journal of molecular biology. 74 (4), 755-757.
- Wittebole, X., Roock, S. D., and Opa S. M. (2014). A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence. 5(1): 226–235.
- Woolston, J., Parks, A. R., Abuladze, T., Anderson, B., Li, M., Carter, C., Hanna, L. F., Heyse, S., Charbonneau, D., and Sulakvelidze, A. (2013). Bacteriophages lytic for *Salmonella* rapidly reduce *Salmonella* contamination on glass and stainless steel surfaces. Bacteriophage. 3(3): e25697.

- Yamada, T., Satoh, S., Ishikawa, H., Fujiwara, A., Kawasaki T., Fujie M., Ogata, H. (2010). A jumbo phage infecting the phytopathogen *Ralstonia solanacearum* defines a new lineage of the *Myoviridae* family. Virology. 398, 135–147.
- Yoshikawa, G., Askora, A., Blanc-Mathieu, R., Kawasaki, T., Li, Y., Nakano, M., Ogata, H., and Yamada, T. (2018). *Xanthomonas citri* jumbo phage XacN1 exhibits a wide host range and high complement of tRNA genes. Scientific Reports. 8:4486.
- Young, R. (1992). Bacteriophage lysis: mechanism and regulation. Microbiological reviews. 56(3), 430–481.
- Yuan, Y. and Gao, M. (2017). Jumbo bacteriophages: an overview, Frontiers in Microbiology. 8, p. 403.
- Yuan, Y., and Gao, M., (2016a). Proteomic analysis of a novel bacillus jumbo phage revealing glycoside hydrolase as structural component. Frontiers in Microbiol. 7:745.
- Zhou, Y., Liang, Y., Lynch, K. H., Dennis, J. J., and Wishart, D. S. (2011). PHAST: a fast phage search tool. Nucleic Acids Research. 39: W347–W352.

ACKNOWLEDGEMENTS

First of all, I think all my sincere thanks would not fulfill the pot for my research advisor **Professor Dr. Takashi Yamada** for his unlimited help and support not only during my research and graduate career but also throughout all my life aspects. He provided me with lots of insights, the best research ideas, detailed informations in our field and treated me like his son. Really, I consider him not only my sensei but also my second father. Thanks again and again Prof. Dr. Takashi Yamada.

I also would like to thank **Associate professor Dr. Makoto Fujie** and **Dr. Takeru Kawasaki** for their invaluable guidance, assistance and discussion to improve my scientific skills and finishing my thesis. I also appreciate to my lab colleagues and all members of Graduate School of Advanced Sciences of Matter (Adsm), Hiroshima University for their kindness and friendship during my study.

I also have to thank **Dr. Ahmed Askora**, Professor of Microbiology, Faculty of Science, Zagazig University and also **Professor Tadashi Shimamoto**, his lab members and my dear friend Dr. Ahmed Mahrous Soliman of Graduate School of Biosphere for their help and cooperation.

My sincere thanks to **all staff members of Zoonoses Department**, Faculty of Veterinary Medicine, Zagazig University- Egypt, for their continuous support and help.

I would like to acknowledge my gratefulness to the **Ministry of Higher Education**, **Egypt** for granting me the scholarship for this study.

I would like to thank **my parents**, my uncle **Prof. Dr. Alaa Elmorshdy**, my family, my friends, my brother, my sisters, **my dear wife** and **my little baby Mona** for inspiring me and continuous help and support.

Finally, all praise and glory belong to **Almighty Allah**, the sustainer of the universe for all my life and guidance to finish my research and study successfully.

Alaaeldín Saad, 2020