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I Introduction

A Biological context

Proteins are the major components of cells taking place in biological processes.
The functions of a protein are encoded in its amino-acid sequence determining,
in part, its equilibrium structure. This equilibrium structure is altered through
the life of the protein as it binds and reacts with other proteins. These con-
formational changes make it possible a lot of various cellular processes e.g. the
family of myosins which perform large motions and are involved in muscle con-
tractions [1, 2], the family of kinesins involved in the cell division [3, 4] or HCV
helicase, a virus moving along DNA or RNA, unwinding them and replacing the
genetic code by its own one [5].

Other causes of conformational change are mutations. Although only occasion-
ally occurring on a coding part of the DNA, they can completely break down
the resulting protein depriving the cell from its expected correct protein type.
Mutations can be deleterious e.g. cancers for humans or can be advantageous
e.g. the high mutation rate of the HIV virus making it resistant to drugs [6, 7].
All these features make it important the role of the structure and its changes.
Structural biology has become a major field in Biology focusing on structural
changes, their origins and their effects on the function of proteins. Not only ex-
perimentally but also theoretically this topic is of interest. Many works have fo-
cused on theoretical coarse-grained models to study the effect of conformational
changes or to study the conformational changes originated from perturbations
[8].

B Theoretical context

1 Background

The elastic network model (ENM) is a coarse-grained method consisting in
modelling interactions via harmonic potentials. The coarse-graining is either
at the atomic level by considering all atoms as beads or at the residue level
by considering only the alpha-carbon of each residue. Then, according to some
rules, beads are connected by Hookean springs with a certain spring constant.
The basic method is to connect a pair of beads if their distance is smaller than a
certain cut-off distance [.. The natural length is set as the equilibrium distance
and the spring constant is typically the same for all connections. The elastic
energy potential between two nodes is:

Uig(t) = h(dss (1) — %)

where k is the stiffness constant, d;; is the distance between the two nodes and
d?j their initial separation.

This model does not require any energy minimisation prior the analysis since the
initial structure is taken as the minimum energy state. Although quite simple,
it is able to reproduce, identify and simulate some realistic functional motions.
The cyclic motion of the motor HCV helicase has been reproduced using an

IThis coarse-graining has been chosen in the remaining of this thesis.



ENM [9]. It has also been applied to analyse the behaviours of molecular ma-
chines [10] and to test the response to external forces [11].

Currently, two broad categories of ENM are used: the Gaussian Network Model
(GNM) [12, 13] and the Anisotropic Network Model (ANM) [14]. The former
one assumes residues are subjected to Gaussian isotropic fluctuations while the
ANM includes the anisotropy in the fluctuations.

At the equilibrium, assuming small fluctuations, the model can be linearised.
Any motion can be described by a combination of independent fundamental
ones. That is the Normal Mode Analysis (NMA). It consists in characterising
any motion through the frequency and the direction along each degree of free-
dom (called mode). This is done by solving the eigenvalue problem involving
the (linearised) Hessian matrix of potentials. The eigenvalue is related to the
frequency while the eigenvector represents the displacement vector (see follow-
ing section).

Coupled together, ENM and NMA have given quite accurate results in terms
of reproducing fluctuations [12, 14]. It has also been shown from systematic
studies [15] or from study analysing motor-protein motions [16], that the tran-
sition motions between two conformations is often mostly explained by a single
slow mode. To be able to explain a transition motion mostly by a single fun-
damental one is very interesting because we can theoretically visualise, analyse
and determine this fundamental motion. In addition, the NMA being relied on
the diagonalisation of a matrix, it is faster than classical molecular dynamics
simulations. Then, it is a tool of choice when looking at such concerns.

The combination ENM-NMA has then drawn a lot of attention and a lot of
studies have introduced the heterogeneity in the network by making the spring
constants dependent on the distance and/or on the sequence specificity in order
to best fit the biological protein [17, 18, 19, 20, 21, 22]. Indeed, we can fairly
think that assuming homogeneity is a strong hypothesis since we may expect a
stronger interaction between two residues as their distance is reduced as well as
we may expect different affinities between different types of residues (based on
the amino acid structure, the polarity, ...). In addition, the cut-off distance is
problematic. It has to be chosen according to the protein, not too small to have
a network connected enough but not too large otherwise the motions of interest
are totally inhibited. A certain value would be suitable for a certain protein but
not for another one. The focus on this parameter is the interest of many studies
[23, 21, 22, 24]. The aim is to remove it using heterogeneous spring constants.
Currently, the community expects to find a model which can be applied to all
proteins in a systematic way and with a good accuracy. Despite many efforts,
the basic GNM and ANM are still be widely used due to their ease of use and the
poor loss of accuracy compared to more elaborated and complicated network.
For reviews about the elastic network model and the normal mode analysis, see
[25, 26, 27, 28, 29, 30, 31].

2 Aim of this work

The study of the effects of mutations was our primary goal. Among all alterna-
tives to the classical ENMs, one has attracted our attention. Several years ago,
using solution NMR dataset of 1500 proteins, distance and sequence specific



models have been determined [22]. Such models are interesting because each
pair of amino acids has its own spring constant which is also distance-dependent.
We may hope that such spring constants, extracted from a statistical analysis
on realistic protein structures in solution, contain a lot of additional valuable
information. In particular, it would enable the study on the effect of mutations
at a small cost. However, our study on mutations has not given any satisfying
results and it appeared that the network is less sensitive to the introduction of
this heterogeneity than we expected it.

It turned out that the robustness of networks to the heterogeneity of spring
constants becomes our new target. We aim to determine to which extent the
tuning of spring constants can improve the modelling and what is the value
of the improvement. Most of studies introducing new heterogeneous networks
show improvements at the protein level by looking at the overall correlation
between experimental and theoretical fluctuations of residues (see below in ma-
terials and methods section). However, they do not discuss how valuable are
these improvements. The overall correlation can be biased by a small set of
residues which greatly influences it. It is especially true for residues which are
connected with only a few other residues. Improvement of the estimation of
fluctuations of such residue by stiffening their links could result in a damping
in the estimation of fluctuations of the other residues. The improvement being
more important for these poorly-connected residues than the decline for the
other ones, the overall correlation is still improved overlooking this problem.
Secondly, how useful are the new information brought by the heterogeneity is
generally not discussed. In heterogeneous models, the spring constant values
follow a coherent distribution (e.g. values decrease as the distance increases) or
determined using experimental data but nothing shows that the improvements
come from the cohesiveness of the distribution.

Our aim is then to study sequence-specific models and some other heteroge-
neous models in a qualitative way to understand whether the improvements are
biased or not. In particular, we are interested in understanding to what ex-
tent networks are sensitive or not to the tuning of their spring constants and in
determining if there really is a meaning to try to improve modelling in this way.

IT Materials and methods

A Elastic network model
1 Introduction and limitations

The elastic network model is a model of proteins where interactions between
residues or atoms, represented by beads, are approximated by harmonic poten-
tials. From a protein structure which has been determined experimentally, the
network is built by coarse-graining the structure taking only the alpha-carbons
and by setting a Hookean spring to each pair of residues for which the dis-
tance is smaller than a certain cut-off distance [.. The equilibrium distance is
taken as the natural length and the spring constant is the same for all links in
the classical ENMs. The equilibrium positions correspond to the conformation
with minimal energy by construction of the network avoiding the need of energy



minimisation. The total potential energy for the residue 7 is written as follow:
X
Ui(t) = ikz Lo <1, (dij(t) — dy;)?
j=1

where k is the spring constant, d;; the distance between residues ¢ and j at time
t and d?j the distance at the equilibrium.
The resulting force (R; = (z, yi, 2i))

N R — R,
Fy=—kY T < (dij(t) - dgj)%

= i3 (t)
is absolutely not linear in respect to the displacement of the pair. However,
assuming small fluctuations (R; ~ RY,Vi € [1, N]), we can get the linearised
equation?:

Fi= k) L gy [0 =~ #)(dei = Aay)

+(u7 — ) (Ays — Ay;) + (27 — 27)(Az — Azy)] (1)

which can be packed into a matrix form in a very convenient way. It should be
highlighted that results deduced from an analysis based on this equation, which
is the case for the normal mode analysis, is valid only within the hypothesis of
small fluctuations around the equilibrium position.

2 Improving the ENM

The ENM considers all interactions as being the same: harmonic potential with
the same spring constant. That is a strong hypothesis because in actual pro-
teins, we do not expect that two residues interact the same way disregarding
their type and the distance separating them. For example, alanine and glycine
are two hydrophobic amino acids. In water, when the protein folds, these amino
acids are pushed in the interior of the protein maintaining the two amino acids
at close proximity. It is called the hydrophobic force which is a weak force. The
electrostatic interactions between two amino acids having opposite charges are
attractive while they are repulsive for two amino acids having the same charges.
Two consecutive amino acids belonging to the backbone are covalently bonded
i.e. the interactions are much more stiff. The strength of a covalent bond in wa-
ter is much larger than for electrostatic attraction between two charged atoms
[32].

An additional problem of the ENM is the cut-off distance because it is arbitrary.
Its choice depends on the protein: if too small, the protein suffers from too much
free rotations; if too large, the fluctuations can be totally damped because the
network is too strongly connected. A certain cut-off distance can be suitable for
some proteins but not suitable for some others.

Many studies have tried to fit the spring constants to better modelled proteins
as well as to remove the cut-off distance to make a unique model applicable

2more details of calculation are available in the relaxation trajectory theory section



to all proteins. The immediate way is to tune the spring constants using a
function which decreases when the distance increases [17, 18, 19, 20, 21]. It is
based on the intuitive fact that long-range interactions are softer than short-
range ones. The cut-off distance being removed, all residues are connected to
all others. These methods do not include a special processing for the backbone
which is covalently maintained although some of them use different distribu-
tions for short-range interactions and for long-range interactions. Moreover, the
choice of the distribution does not rely to physical nor biological properties.
The inversely squared decreasing function, the exponential decreasing function,
etc have been proposed but without justifying them in a biological or physical
point of view except the one discussed above.

Some other studies have tried to modify the spring constants according to the
types of amino acids, either by inferring them from a large set of experimental
data [22] or by directly including all the different bond forces (hydrogen bonds,
Van der walls force, etc) [23, 33]. The potential remains harmonic but divided
into several categories representing the types of force. However, these models
are somehow still cut-off dependent and do not always take into account the
distance. In the same aim, inclusion of Lennard-Jones potential for native con-
tacts has been proposed [34, 35].

In a different spirit, the non-linearity of the ENM has been considered to extend
the validity of the ENM to large conformational motions [36, 37].

B Normal mode analysis
1 An eigenvalue problem

The normal mode analysis (NMA) holds on the linearisation of the system near
the equilibrium.

Let consider a protein composed of N residues. We are working in a 3N-
dimensional space for which the basis (x;)i=1,... 3~ is the 3-dimensional coor-
dinates of each residue i.e. (x1,...,X3n8) = (1,91, 21, -, TN, YN, 2N ). We note
V' the total energy of the system which is a sum of elastic potentials and we
note F; the force along the i*"* dimension. The latter is obtained by deriving
the potential according to the coordinate y;:

O(V(x1,..-, X3N))

F,=—
oxi

Assuming that fluctuations are small around the equilibrium, we can linearise
near the equilibrium position (xY, ..., x3,) using Taylor’s theorem:

P (32V(x?,---,x§1v)

2
dx1 + ...+
Ox10X; X Ox3NOX;

PV, .. xS
(3 X3N)dX3N)
Doing the same for all dimensions, we obtain in a matrix form:
F=—-HAyx (2)

where H is the matrix of second derivatives of the potential called the Hessian,
F = (Fl, ---;FSN) and AX = (Xm, ---;dXBN)-



The matrix H is symmetric with real positive coefficients and then can be di-
agonalised
F=—-HAx=-)\Ax

with A the eigenvalue and Ay the eigenvector. There are 3N positive eigenvalues
called modes and linked to frequencies of fundamental motions (eigenvectors).
Six of them are zero-eigenvalues corresponding to the free rotations and the free
translations.

By the second law of Newton:
F=mAx

then,
mAx = —AAyx

Ax(t) = kcos <\/§t + (b) \%4

where k£ and ¢ are constants and V' is the normalised eigenvector.

which has for solution

Let R; = (x4,v:,2;) be the position of the residue 4. Its fluctuations around its
equilibrium position R? is a linear combination of eigenvectors (ij) j=1,...3N:

3N
AR;(t) = Ri(t) — R =) " a;Ax;(it)
j=1

where the a; are some constants and A;(4,.) is the i coordinate of the j"

eigenvector.
3N Iy
AR;(t) = z; k; cos (\/ Ejt + ¢j> V;(3)
]:

Finally,
where the constants a; have been included in the k;.

The normal mode analysis consists in resolving the eigenvalue problem. That
would give us the direction and the frequency of each mode characterising any
motion carried out by the residues of the given protein.

Remark: The diagonalisation of the Hessian matrix can be done easily with
computers in a reasonable time (faster than molecular dynamics simulations)
which is one of the reason of the popularity of the normal mode analysis.

We assume the equipartition of energy along each normal mode. Then, for
each mode j having —\; for eigenvalue and Ax; for eigenvector, the mechanical
energy Iy, ; is:

Em,j = kBT (3)



The mechanical energy is the sum of the potential energy U; and the kinetic
energy F ;.
The kinetic energy is calculated as:

1 . 1 . Aj
&JZJMAmWZQ@M$f<V%H¢JHWW

As for the potential energy, we have to integrate the force F; according to x;:

A )2
Uj = */Fjdxg' :)\j/AdeXj :)\j( ;(J)

1 Aj
@:2@%m¥<J£HWO|WW

The equation (3) becomes

and then

Lo
§kj Aj =kgT
and we get the pre-factor k; for each mode j:

kpT
k2 =2
J /\j

2 The B-factor and the Pearson Correlation Coefficient

The B-factor is a measure of fluctuations of an atom around its equilibrium
position. Theoretically, it is estimated as follows:

872
Bi = — 3 ((AR:)?)

SN-6, 1
B
((ARy)?) = Z IIV( )12
j=1
where the sum over j represents the sum over the modes, V;(4) is the vector of
the three coordinates corresponding to the residue i of the j*" eigenvector. The
eigenvectors are orthogonal.

The dimension of eigenvalues \; is [M].[T]~2, the eigenvectors are dimensionless
and the term kg7 being an energy has the dimension of [M].[L]?.[T]~2. Then
the unit of B-factors is A”. The B-factor resumes to:

1 2]{5 T3N 6
B, = 6m°kp ZHV i)?

The Pearson correlation coefficient (PCC) is a well-known coefficient to compute
the correlation between experiment and theory. It is defined as follows:

N
_ B{*" — B)(B"* - B
< Bewp _ B Bthe B > z;( )( i )

|Be=» — BI||| B — B|| N _
Z Bemp )2 Z(Bthe — B)?

Ty ‘=

1=1



where B®*P = (B{"?);_; N are experimental B-factors, B¢ = (B!"¢),_;
are theoretical B-factors. The experimental B-factors have been rescaled such as
the average B is the same for experimental B-factors and theoretical B-factors:

R R T
B:N;BSLP:NZB;%P

i=1

The PCC tells us how experimental B-factors and theoretical B-factors are cor-
related and thus a measure of accuracy of the theoretical model. The closer
the PCC to 1, the more reliable the model (at least for the given experimental
data). Figure 1 shows an example of B-factor patterns for adenylate kinase.

Adenylate Kinase (1aky)

100 | .
oL 80 ]
5 | ,

5 3
i
o |
40 t |
o0l ) /
80 _ 120 160 200
Residue

Figure 1: B-factor patterns of adenylate kinase (pdb id: laky). The red curve
represents the theoretical B-factors obtained with an ANM16 and the black
curve represents the experimental B-factors. The PCC is 0.61.

3 The overlap

The overlap between an experimental transition motion from an initial structure
to a final structure and the theoretical estimated transition gives the contribu-
tion of each mode.

It is calculated as the scalar product between the eigenvector and the structural
difference in the two structures :

Oi — ‘ <'Ui76i > |
o [[165]]

where v; is the eigenvector associated to the mode ¢ and J; is the difference
between Y; in the initial structure and x; in the final structure.

Mathematically, we make the orthogonal projection along each mode to check
its contribution to the motion. The closer to 1 the overlap, the more the mode
1 contribute to the transition. Figure 2 shows an example of overlap curve for

€[0,1]

10



the transition of HIV-1 protease from its free structure to a structure adopted
after a complex with the inhibitor AHAQ001.

HIV-1 Protease (1hhp to 1ajx)

Figure 2: Overlaps of the transition of HIV-1 protease from its free structure
(pdb id: 1hhp) to its inhibitor-complexed structure (pdb id: lajx). The red
curve is the overlap and the black curve is the (squared-)cumulative overlap.
The NMA has been carried out for the free structure. Only the first 100 modes
over the 297 ones are displayed.

4 The inter-residue variance

This measure introduced recently [22] estimates the fluctuations of the inter-
residue distances.

It can be estimated experimentally using the different structures available in
NMR pdb files:

vwxp

—Tij)

MH:

k:l

where M is the number of structures in the NMR pdb file, rf’ ; 1s the distance
between residue 7 and residue j in the structure k and 7; ; is the average distance
between ¢ and j over all structures.

As for the theoretical one, it is calculated using eigenvalues and eigenvectors:

61, ai,'
Vi'f?e—z [Z T ke xa 1 g—xlj

=1

where (X17X27X37X47X57X6) = ($i,yi7zi7$j7yj72j) and

3n—6
) = AKET ST — Vi ()i
(Xrs X1) B ;; " w () Ve (x1)

11



In the following, we will discuss the rescaled error:

Vithe _ yreap
ij — Vig
B, i =
i = /. €eP

(2]
C Relaxation trajectory theory

1 Under the assumption of linearity

Theoretically, under the assumption of small fluctuations, the relaxation trajec-
tory can be computed using normal modes. We need the non harmonic form of
the equation on the motion of residues in the over-damped limit.

The total energy of the system is:

NN
U=3>> ayldiy—dy)?
i=1 j>i
with a;; = 1 if there is a link between ¢ and j and 0 otherwise.

In the over-damped limit, the temporal displacement along x; is defined as

dt T 8961

where I is the mobility having dimension [T].[M]~!.

Then,
dx a T —x
i Adss — O
dt *krjz:;am(dm dij) dij

If we assume the fluctuations around the equilibrium position are small i.e.
Ax; = x; — a:? << 1 and so on, then we can linearise this equation:

Ti — Xy CU? - CU?
di; &,
0 0 0 0 0 0 0 0
0 0 i i Yi —Y; Yi —Y;
dij — dij ~ dij -+ do AIE1 do Al‘j -+ do Ayz do ij
ij i 1) v
L0 50 L0 50
7 7 7 J 0
+ dgj AZZ‘ d(i)j AZj — dij (4)
o (=)A= A + (4 — ) (By: — Ayy) + (0 — DAz — Azy)
) (%] d%

following the Taylor’s theorem.

12



We obtain the linearised equation:

dAz; - (a7 — 29)? (7 — 29) () — 1))
i = —kI‘Zaij (dOJ(sz - Al‘j) + de I (Ayl - ij)
j=1 ] v

(7 — 29)(= — 2)

00 (Azi — Azj)) (5)

The three terms in parenthesis correspond to three terms in the Hessian matrix
H in (2).
Doing the same calculations for the y-axis and the z-axis, we obtain for AR; =
(Az;, Ay, Az;):
dAR;
dt

N
=-I'Y H;AR;
j=1
In the limits of the linearisation, the direction along AR; — AR is approximated
by the direction along AR;.

Considering AR = (ARy,...,ARy), the matrix form of the set of equations
is:

dAR
dt
for which the solution is a sum of exponential decaying according to the eigen-
values:

= -T'HAR

3N—6

AR(t) = Y ke "V, (6)
a=1

where k, are the constants, A\, are the 3N — 6 eigenvalues, the 6 others being
zero-eigenvalues and V,, are the corresponding eigenvectors.

In the linearisation limit, any motion is a linear combination of exponentials
decreasing according to each eigenvalue along the fundamental motion repre-
sented by the eigenvector. At the end of the motion, only the lowest modes
remain. This is particularly the moment where we can expect that the lineari-
sation holds and then where the relaxation may match the equation (6).

2 Without the assumption of linearity

As for the relaxation without the hypothesis of linearity, we need to use dynam-
ical simulations. It consists in implementing the non-linearised forces acting
on each residue. The Euler method has been adopted to numerically solved
the equations. At the beginning, in order to deform the current conformation,
uniform random forces f = (f1,..., fn) are applied on each residue such as
Ifll2 = Fin; where Fjp; (in force unit) is the total magnitude. The forces are
applied until a certain time Tj,; (in time unit) after which they are cut and the
system goes back to the equilibrium. The relaxation is observed through the
distances between three labelled residues. The three labels are chosen according
to an automatic way [38]. The first two labels correspond to the pair for which
the distance change after applying the slowest mode is the maximal then the
last label is chosen as the residue for which the distance change between it and
the label 1 is maximal after applying the second slowest mode.

13



3 Validity of the linearity

The mechanical coordinate ® is a measure of the deviation of the current struc-
ture to the equilibrium one within the linear approximation [39]. It exponen-
tially decreases along each eigenvalue with time. It is defined as the following
equation:
dd FdU (t)
dt dt

@(t):/;oo\/—l‘d[ilit)dt

This equation is solved numerically using the trapezoidal rule.

(7)

where I' is the mobility.
From equation (7):

At the final stage, only the slowest mode remains and ® has the form:
O(t) = Aexp(—MT't)
where A is a constant and \; the eigenvalue of the slowest mode.

Then,

From (7), we get

dd rdt
therefore 10 (®)
=-\o
d® !
Integrating from ¢ to +o0,
1
U(®) = 5A1<I>2

Then, when only the slowest mode remains, the elastic potential U is quadrati-
cally dependent on ®.

This criteria is interesting in the sense that it allows to compare the profile
of the elastic energy for a relaxation trajectory (where linearisation is not as-
sumed) with the profile of the elastic energy given by the normal mode analysis
(where linearisation is assumed). Particularly, it determines in which extent the
normal mode analysis and its linear approximation holds for a given network.

D Large data analysis on crystallographic structures

In the following sections, a study on a large dataset of proteins are presented.

The set of proteins has been determined in the following way: from the protein
data bank, we have selected crystallographic protein structures for which the
resolution is under 2.0A. From this set, proteins having either a missing atom
or a missing residue or an atom with zero occupancy are discarded. Equally,
are discarded proteins having non-conventional residue-types (such as “MSE”

14



or “UKN”). Ligands, DNA and RNA are not taken into account in the analysis.
Because the experimental B-factors are determined for the crystal asymmetric
unit, all chains contained in the pdb file are selected for the analysis. Proteins
for which at least one residue has less than 3 connections and proteins showing
more than 6 zero-eigenvalues are removed.

In the results, the B-factor value is discussed according to the relative de-
gree. The degree of a residue is the number of connections it has with the
other residues belonging to the same protein. The relative degree is the degree
rescaled by the maximal degree within the protein the residue belongs to.

Also are discussed the polarity and the secondary structure. The secondary
structure in which residues belong to is stated in the pdb file. As for the polar-
ity, it is set according to the residue type regarding the following classification:
- Hydrophobic: ALA, ILE, LEU, MET, PHE, VAL, PRO and GLY

- Polar: GLN, ASN, HIS, SER, THR, TYR, CYS and TRP

- Charged: ASP, GLU, ARG and LYS

E Analysis of solution NMR structures

As compared to crystallographic structures, NMR structures are not well suited
for the elastic network model. A lot of them contain intrinsic disordered regions
or proteins for which tails fluctuate so much that they break the normal mode
analysis down or give non-physical results and bias statistical analysis. The
analysis has to get rid of such structures. Furthermore, there is no B-factor in
NMR structures and there is no convention to fill this entry. That means all
pdb files do not provide the same experimental measure of fluctuations.

Knowing that, the set of NMR structures has been determined using the follow-
ing way: all solution NMR protein pdb files have been taken. We first discarded
the proteins with the same criteria (except resolution) as for the crystallographic
dataset, the normal mode analysis being carried out for the first model of the
pdb file using ANM10. In addition, we also discarded pdb files having less
than 50 models or less than 20 residues. At this stage, the experimental fluc-
tuations are computed using the mean square deviations of each model to the
mean model [40, 41, 22]. In order to remove proteins having intrinsic disordered
regions, all proteins showing a root mean square displacements of experimen-

[1 N
tal fluctuations over all residues larger than 2A ( N > MSD; > 2A> were
i=1

removed from the data set. It leads to 132 structures.

F Experimental methods

The experimental methods used to determine protein structures are important
because each of them has its own drawbacks and we have to be aware of that
when interpreting the theoretical results based on these protein structures.

We have used structure data coming from X-ray crystallography and from NMR,
spectroscopy. The former method consists in packing the protein into a crystal
and passing beams through this crystal. The protein structure and its features
are determined using the diffraction pattern. The drawback of this method is
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that the atomic fluctuations may be damped by the packing into the crystal
leading to smaller experimental B-factors than what they are in the reality.
That would affect essentially the flexible parts. This effect of the crystal on the
atomic fluctuations has already been discussed [42] and some studies [20] have
tried to take it into account in their modelling. But they model the protein into
the crystal and not in their natural environment which is out of aim.

The latter method, NMR spectroscopy, places the protein into a magnetic field
and look at its resonance pattern by radio waves. This method allows to deter-
mine protein structures in solution and then takes into account all fluctuations
due to the solvent when reproducing the structure. However, it does not allow
to consider large proteins, only small proteins or domains of large proteins can
be probed by this method.

The construction of the spring constant matrix of sequence specific models in
[22] has been done using NMR data. Although it contains all information re-
lated to the protein in solution, it has been determined using only small proteins
which can be a little bit limited: we do not expect the effect of the solvent to
be the same for small proteins as for large ones.

Furthermore, in our comparative study, we have used mainly X-ray crystallo-
graphic data. The reason is that we have made our study on a set of popular
proteins which are large proteins. Also, often, pdb files determined by NMR,
spectroscopy do not include the B-factor values and we cannot compare the
theory to the experiments. We have still carried out a NMR study based on
the experimental mean square fluctuations (MSF) calculated from the different
models available in pdb files of NMR structures.

G Experimental materials

Follow are the experimental protein structures used for our in-depth studies:
Kinesin KIF1A (pdb id: 1i5s and 1i61) [43], Human kinesin motor domain (pdb
id: 1bg2 and 1mkj) [44, 45], Aspartate aminotransferase (pdb id: 9aat, lama and
livr) [46, 47, 48], Factor H binding protein (pdb id: 2kc0) [49], Maltodextrin
binding protein (pdb id: 1jw4, lanf and lomp) [50, 51, 52], B1-Type ACP
domain (pdb id: 6h0q) [53], Adenylate kinase (pdb id: laky, 2ak3 and 4ake)
[54, 55, 56], Myosin V (pdb id: 1w7j and 1oe9) [57, 58], Annexin V (pdb id: lavr
and lavh) [59], Ubiquitin (pdb id: 1xqq) [60], Type IV pilin PILE1 (pdb id:
6i20) [61], HCV Helicase (pdb id: 1lhei) [62], HIV-1 protease (pdb id: 1hhp and
lajx) [63, 64], Enolase (pdb id: 5enl and 3enl) [65, 66], Thymidylate synthase
(pdb id: 2tsc and 3tms) [67, 68], Scallop myosin (pdb id: 1kk8 and 1kk7) [69],
F1-ATPase (pdb id: 1h8h and 1h8e) [70, 71], Penicillin binding protein (pdb
id: 1vqq, 4dki and 3zg0) [72, 73, 74], A1-Typr ACP domain (pdb id: 6h0j) [53],
VAT-N (pdb id: 1czd) [75], Acyl carrier protein (pdb id: 5y08), SPH protein
(pdb id: 6g7g) [76], Hydrolase (pdb id: 6qeb) [77].

16



IIT Sequence specific models

A  Models

This section is dedicated to the comparisons of sequence-specific models re-
cently suggested to the classical ones through two main aspects: individual
residue fluctuations and collective motions. The aim is to determine where the
improvements are located in the protein. Although the authors of these new
networks have made a systematic analysis over a large set of proteins, the ob-
served improvement is seen at a protein level and it is still not explained at a
residue level. Then we expect some deterministic and systematic improvements
specifically localised coming from the local structure, polarity or anything else.
A short discussion on our analysis about mutations, which were our original
aim, is also available.

Three sequence-specific models have been published in 2013 [22]: two of them
have a cut-off distance, 10A and 13A respectively. The spring constants are
solely sequence-dependent and do not dependent on the distance. Their spring
constants range from 0.226 to 2.348. The spring constant of the links forming
the backbone are artificially set to 10. They will be designated as sANM10 and
SANM13 respectively. The last model is presented as cut-off free but still spring
constants are set to 0 if the distance is larger than 16.5A. This model is both
sequence and distance-specific although the distance dependence is not continue
but discrete. Its spring constant values range from 0.001 for long-range distance
pairs to 13.043. The links of the backbone are artificially set to 43.52. It will
be designated as sdANM. In the remain of this thesis, "the sequence-specific
models” will refer to these three models.

As for the classical model with a cut-off distance ., it will be designated as
ANMI...

Before starting any comparison, we have to clarify something important. Often
in the literature, the introduction of a new heterogeneous model comes with a
comparison with classical ANMs. However, generally, when introducing such a
model, in addition to change the homogeneity of the ANMs, the connectivity of
the theoretical network is also changed. That is a problem because the conclu-
sions hold on the positive effect of the heterogeneity while the method compare
the new model with an ANM having a “very-often used” cut-off distance. The
results actually test the effect of both the heterogeneity and the change in the
connectivity.

We have to keep in mind that to test the effect of the heterogeneity, we have to
compare it to the homogeneous model with the corresponding connectivity (i.e.
cut-off distance). SANM10 and sSANM13 are only sequence-specific and have an
explicit cut-off distance, they will be compared to ANM10 and ANM13. As for
sdANM, it is both distance and sequence-specific and does not consider inter-
actions larger than 16.5A, we will then compare it to ANMI6.

We have also to keep in mind that we can conclude a heterogeneous parameter-
free model performs better than the ANMs if it performs better than any of the
ANMs disregarding its cut-off distance.
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B Individual fluctuations

1 Study at the residue level

The results of this section was published in [78].

Each residue fluctuates around its equilibrium position. These fluctuations can
be determined both experimentally and theoretically for each residue (see Mate-
rials and methods section). By testing their correlation, we obtain a criteria of
accuracy: the Pearson correlation coefficient. Using this criteria as well as the
B-factor patterns, we compare both kinds of model and try to determine where
the sequence-specific models perform better. We have carried out an analysis
on around 40 proteins. Following our results, two groups emerge: the first one
where the ANMs and sANMs perform equally and the second one where an im-
provement or a decline is observed. We have selected 6 proteins of each group
to display their results in this section (see Table 1) while the results on the full
set of proteins are available in Table 11 in Appendix.

As for the first group, comparing with the same cut-off distance, the correlation
is very robust. The largest difference, holding for Human kinesin motor domain
and for factor H binding protein between ANM16 and sdANM, is 0.04. The
patterns themselves are also quite robust (see Figure 3 A and B), maltodextrin
binding protein (resp. factor H binding protein) displays the same pattern for
both ANMI10 (resp. ANM13) and sANMIO0 (resp. sANMI13). However, for
Human kinesin motor domain, sdANM shows a different pattern as compared
to ANM16. Several parts are better estimated by sdANM and some others by
ANM16 but as an average criteria, the correlation does not show a large differ-
ence (0.69 for ANM16 and 0.65 for s;ANM). Two of these parts correspond to
unstructured regions and the last one corresponds to the end of a beta-sheet.
For the three of them, they are poorly connected in the network as compared
to other parts. Interestingly, for this protein, the B-factor pattern of sdANM
matches well the one of ANMI10.

As for the second group, there are quite large differences: improvements of
sdANM over ANMI16 of 0.15 for adenylate kinase and myosin V, declines of
sdANM of 0.1 (resp. 0.14) for annexin V (resp. ubiquitin), etc. The B-factor
patterns of myosin V show a large peak for both ANM16 and sdANM (see Fig-
ure 4A). It corresponds to a set of a few residues which form an unstructured
region connecting two beta-strands and are poorly connected in the network.
The improvement is almost solely due to this part. For the other cut-off dis-
tances, the ANMs and the sSANMSs perform similarly. Adenylate kinase also has
such unstructured flexible regions where for some, sdANM performs better and
for some others, ANM16 performs better (see Figure 4B). Ubiquitin shows a
large drop (0.14) in sdANM. That is due to the over-estimation of the end-tail
in sdANM while fluctuations are damped in ANM16 (see Figure 4C). Similarly
in annexin V, a part of the tail is over-estimated by both models but more by
SANMI0 (see Figure 4D).

The case of HCV helicase is interesting. It can perform a large motion involving
two of its domains which is well modelled by the ANMS [9]. However, with
a larger cut-off distance, this motion is inhibited. The PCC of HCV helicase,
indeed, decreases for classical ANMs as the cut-off distance increases while in
sdANM, the PCC is enhanced compared to both sSANMs and to classical ANMs
(see Table 1). The correlation obtained for ANMS is 0.79 (not shown) which is
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very close to the one obtained for siANM (0.74).

It is worth to note that not only the fluctuations in the tails can be over-
estimated but also in some regions in the protein which can not be removed
by hand to carry out the analysis. These over-estimations appear on flexible
parts which are poorly connected. These parts prevent us to draw coherent and
systematic conclusions for how and where the sequence specific models perform
better. This problem known in the classical ANMs is not solved in the new
sequence-specific models and it is even enhanced because of the softening of
long-range interactions. In the other side, this softening brought benefits to
HCYV helicase for which sd ANM has been able to reproduce the thermal fluctu-
ations of ANMS, the network working the best for this protein.

In the next subsection, we have tried a more systematic way by applying the
models to a large set of proteins in order to have consistent arguments to relate
these over-estimations to flexible parts.

ANM10 ANM13 ANM16 SANM10 SANM13 SdANM
Group 1|
Kinesin KIF1A (1i5s) 0.49 0.48 0.51 0.49 0.48 0.51
Human Kinesin Motor Domain (1bg2) | 0.68 0.71 0.69 0.67 0.71 0.65
Aspartate Aminotransferase (9aat) 0.67 0.66 0.62 0.67 0.62 0.65
Factor H Binding Protein (2kc0) |~ 0.69 0.69 0.71 0.71 072 0.75
Maltodextrin Binding Protein (1jw4) 0.55 0.61 0.70 0.56 0.61 0.67
B1-Type ACP Domain (6h0q) =~ 0.69 0.78 0.83 0.71 0.76 0.86
Group 2 |
Adenylate Kinase (1aky) | — 0.61 0.56 0.61 0.68 0.62 0.76
Myosin V (1w7)) | 0.77 0.77 0.68 0.79 0.79 0.83
Annexin V (1avr) 0.49 0.61 0.58 0.39 0.54 0.47
Ubiquitin (1xqq) | 0.74 0.73 0.80 0.70 0.69 0.66
Type IV Pilin PILE1 (6i20) ~ 0.87 0.88 0.85 0.87 0.87 0.94
HCV Helicase (1hei) |  0.63 0.59 0.54 0.72 0.64 0.74

Table 1: Table of Pearson correlation coefficients between experimental and
theoretical atom fluctuations for a selection of 12 proteins divided into two
groups. The first group is composed of proteins for which no changes have been
observed in the correlation between the two kinds of model when comparing
with the same cut-off distance. The second group gathers the other proteins.
A larger table is available in Appendix in table 11. Red colour is related to
classical ANM while blue colour is related to sequence-specific models.

2 Systematic study on crystallographic structures

For the systematic study, the protein selection process is described in the mate-
rials and methods section. It leads to 2040 structures for ANM16/sdANM, 2038
structures for ANM13/sANM13 and 2009 structures for ANM10/sANMIO.
Our aim is to look at the estimation of the B-factor according to the “flexi-
bility” of the residue defined as the relative degree (see materials and methods
section). All models mainly over-estimate residues having a small relative degree
and then a large flexibility (see Figure 5). There is no major differences between
sANMs and their corresponding ANMs. The over-estimations of flexible parts
are further enhanced by siANM compared to ANM16 and the highly connected
parts are much more under-estimated. The reason could be that in sdANM, the
long-range interactions have been softened while the short-range interactions
have been stiffened. Globally, it makes the estimations of fluctuations worse.
We also looked at the averaged estimation errors of the B-factor according to
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Figure 3: B-factor patterns for some proteins of the first group. Visual repre-

sentations have been obtained with VMD.
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Figure 4: B-factor patterns for some proteins of the second group. Visual
representations have been obtained with VMD.

individual residue features which are polarity and secondary structure. This is
a way to try to determine if a particular feature enhances or not the estimations
when considering the sequence specificity. The error is systematically increased
for sequence specific models as compared to their classical ANM counterpart
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(see Table 2). Although for SANM10 and sANM13, this increase in the error
is not so large, sdANM shows the largest errors and in particular its values are
closer to the ones given by ANM10 or sSANM10 than the ones given by ANM16.
The long-range interactions which have been softened in siANM seem to decline
the modelling and to make it somehow resemble a modelling of ANM10. This
remark is further supported by the averaged PCC (0.51 for ANM10, 0.52 for
sdANM and 0.55 for ANM16) though the values are still similar for the three
models.

A 1o . i : T
- SANM10 o
il ANM10
100
10F

2
=
o Tt
i
(<]
Q
E 0.1
o

0.01

0.001

0.0001

0 0.2 04 0.6 0.8 1
Relative dearee
B 1000 T T T
SANM13 .
ANM13

2
®
[
=
L
o
©
e
m

0.001

0.0001 L - L <

0.2 04 0.6 0.8 1
Relative dearee

C 1000 T T

B-factor ratio

0.2

0.4 0.6 0.8 1
Relative dearee

Figure 5: B-factor ratio of the theory over the experiment according to the
relative degree (i.e. the degree rescaled by the maximal degree of the protein
into which the residue belongs). A: blue points are obtained with sSANM10 while
red points are obtained with ANM10. B: blue=sANM13 and red=ANM13. C:
blue=sdANM and red=ANM16.
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ANM10 ANM13 ANM16 SANM10 SANM13 SAANM

Average PCC 0.51 0.53 0.55 0.50 0.51 0.52
Polarity
Hydrophobic 8.3 7.0 6.2 9.1 8.7 9.5
Polar 9.0 7.3 65 9.1 7.8 96
Charged 9.5 8.2 7.3 95 8.2 105
Secondary Structure
Alpha Helix 7.2 6.3 57 {725/ 7.0 7.6
Beta Sheet 6.3 5.4 4.8 6.7 6.3 7.2
Unstructured 11.9 9.7 8.4 12.5 10.9 13.5

Table 2: Summary table of results obtained over 2040 X-ray crystallographic
protein structures for s_ANM and ANM16, 2038 structures for sSANM13 and
ANM13 and 2009 structures for sSANM10 and ANM10. For the polarities and
the secondary structures, the averaged B-factor estimation errors are computed.

3 Analysis of solution NMR structures

Because the sequence specific models have been determined for solution NMR
structures, we carried out a study over 132 proteins. The average PCC is indeed
improved whatever the cut-off distance we compare. However, the addition of
only the sequence does not bring a consequent improvement (see the polarity
and secondary structure details in ANM10-sANM10 and in ANM13-sANM13
in Table 3); the errors are reduced, at most, by 0.05A. As for the sdANM,
which includes also a dependence on the distance, there is a real improvement
compared to ANM16 (generally, the error is reduced by more than 0.1A) ex-
cept for unstructured regions. For these latter regions, the error is quite large,
whatever the model. Even for NMR structures, unstructured regions are still
over-estimated by the ENM.

ANM10 ANM13 ANM16 SANM10 SANM13 SAANM

Average PCC 0.64 0.61 0.60 0.67 0.64 0.72
Polarity

Hydrophobic 0.68 0.73 0.79 0.64 0.69 0.61

Polar 0.70 0.72 0.75 0.68 0.72 0.61

Charged 0.76 0.79 0.80 0.74 0.76 0.66
Secondary Structure

Alpha Helix 0.36 0.44 0.47 0.31 0.39 0.23

Beta Sheet 0.23 0.27 0.31 0.18 0.23 0.15

Unstructured 1.21 1.20 1.24 1.20 1.21 1.17

Table 3: Summary table of results obtained over 132 solution NMR structure
proteins. For the polarities and the secondary structures, the averaged MSF
estimation errors are computed.

4 Discussion

We have looked at the thermal fluctuations of individual residues in order to
understand and to explain the improvement seen at the protein scale by the
newly sequence-specific models. It emerged that unstructured regions, which
are known to be badly modelled and to trigger what is called the tip-effect
[79, 80], are still miss-predicted by the sequence-specific models. The prediction
on these parts are either improved or worsened in a non-systematic way which
degrades the value of the overall improvement in the PCC.
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As for the structured regions, the addition of the sequence only (SANM10 and
sANM13) does not bring a large benefit to the modelling. Indeed, as com-
pared to their ANM counter-part, the errors are slightly decreased for NMR
proteins (Table 3) while they are even larger for crystallographic structures
(Table 2). When considering also the distance dependence (sdANM), it turns
out differently whether considering X-ray crystallographic structures or solu-
tion NMR structures. For the former ones, the errors are larger while for the
latter ones, they are consistently smaller. The new models, determined using
a NMR dataset, do not seem suitable for crystallographic proteins. A possible
reason may come from the crystal packing hampering the fluctuations while the
sdANM has very soft long-range interactions due to free fluctuations in solution
NMR experiments.

We cannot make a direct comparison of error values between X-ray crystal-
lographic data and solution NMR data since the experimental fluctuations are
measured differently.

C Collective aspects
1 Transitions

The overlaps between the experimental motion between two known states and
its theoretical estimation allow to explain the transition as a decomposition of
fundamental motions. Each mode has an overlap between 0 and 1. The closer
to 1, the largest the contribution of the mode to the transition motion. It has
been shown that, often, information resides in a single mode [15, 16]. This is a
strong result since a single fundamental motion (which can be computationally
calculated and observed) can explain the transition motion between the two
structures. It is then of importance to have a single mode with a large overlap.
We have looked at the maximal overlap for the transition of some proteins for
all models (see Table 4). sSANMs predict similar maximal overlap to their cor-
responding ANMs, the largest difference being of 0.15 in thymidylate Synthase
between sSANM10 and ANM10. As for sdANM, the maximal overlap is often
larger than the one given by ANM16 (e.g. for myosin V, HIV-1 protease, aspar-
tate aminotransferase, maltodextrin binding protein, etc). Due to its softened
interactions, the model is more prone to show large motions. Also, it is inter-
esting to note that, again, the results of sdANM are more closely related to the
ones of ANM10 than to the ones of ANMI16.

To look deeper into the transition, we have looked at the overlap curves for some
examples. The ones for HIV-1 protease for the transition from its free structure
(pdb id: 1hhp) to a complex structure with an inhibitor (pdb id: lajx) and
for scallop myosin from its actin-detached conformation (pdb id: 1kk8) to its
near rigor conformation (pdb id: 1kk7), are displayed in Figure 6. In classical
models, the modes have swapped according to the cut-off distance. It is still
true in the sequence specific models.

That is quite typical to what we have found for the other proteins (not shown):
either the dominant mode is swapped because of the cut-off distance or there
is not such a dominant mode. Only the case of maltodextrin binding protein
retained our attention. The dominant mode has swapped in sd ANM compared
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to ANM16 (see Figure 7). The fundamental motion associated to the dominant
mode remains the same (see Figure 8, left side). The magnitude of the two
eigenvectors are almost the same excepted at one residue (see Figure 8). This
residue is located in a region bridging two beta-strands and it is the least con-
nected residue in the theoretical network. This residue contributes to increase
the frequency of the dominant mode in ANM16 by inhibiting the overall motion.
Mathematically, the coefficient is increased when rescaling the eigenvector. The
individual magnitudes are then decreased. It makes the slowest mode swap with
the neighbour mode.

ANM10 ANM13  ANM16

Myosin V
1w7jto 1oe9 063 0.56 0.54 0.63 0.53 0.63
1oe9to 1w7j| 055 0.63 0.62 0.57 0.61 0.56
HIV-1 Protease
1hhp to 1ajx 0.7 0.67 0.67 0.59 0.77 0.77
1ajx to 1hhp 0.44 0.34 0.31 0.47 0.46 0.50
Aspartate Aminotransferase
Qaatto lama & 0.57 0.55 0.64 0.64 0.56 0.61
1ama to 9aat  0.55 0.66 0.57 0.60 0.73 0.73
Enolase
3enl to 5enl|  0.23 0.21 0.21 0.22 0.19 0.18
5enlto 3en/| 0.23 0.22 0.23 0.24 0.19 0.20
Maltodextrin Binding Protein
1anfto 1jw4 ~ 0.90 0.88 0.80 0.89 0.87 0.87
1jwd to 1anf| 078 0.74 0.79 0.84 0.71 0.71
Adenylate Kinase
laky to 2ak3 ~ 0.38 0.38 0.36 0.38 0.38 0.38
2ak3to 1aky | 027 0.31 0.31 0.30 0.33 0.33
Annexin V
lavrto 1avh 041 0.33 0.33 0.40 0.33 0.43
1avhto 1avr| 0.33 0.33 0.33 0.35 0.37 0.39
Thymidylate Synthase
2tsc to 3tms 0.44 0.29 0.24 0.28 0.27 0.37
3tms to 2tsc | 0.46 0.37 0.28 0.57 0.34 0.41
Scallop Myosin
1kk8 to 1kk7 &~ 0.85 0.76 0.75 0.85 0.75 0.82
1kk7 to 1kk8 =~ 0.70 0.72 0.74 0.70 0.73 0.75
F1-ATPase
1h8h to 1h8e 0.55 0.51 0.49 0.55 0.47 0.49
1h8e to 1h8h 054 0.54 0.53 0.50 0.53 0.51
Kinesin Motor Domain
1mkjto 1bg2 | 030 0.26 0.24 0.28 0.26 0.42
1bg2to 1mkj ~ 0.23 0.26 0.18 0.29 0.18 0.25
Penicillin Binding Protein
1vqq to 4dki | 0.33 0.33 0.37 0.33 0.34 0.32
4dkito 1Tvqq | 033 0.31 0.30 0.32 0.33 0.32
KIF1A Motor Domain
1i6i to 1i5s = 0.35 0.37 0.24 0.22 0.31 0.27
1i5s to 1i6i 0.28 0.28 0.20 0.24 0.27 0.33

Table 4: Table of the largest overlap value corresponding to the motion con-
tributing the most to the transition for all models and for different proteins.
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HIV-1 protease (1hhp to 1ajx)
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Figure 6: Top panel: Overlaps of the transition of HIV-1 Protease from its
free structure (pdb id: 1hhp) to its inhibitor-complexed structure (pdb id:
lajx). Bottom panel: Overlaps of the transition of scallop myosin from its
actin-detached conformation (pdb id: 1kk8) to its near rigor conformation (pdb
id: 1kk7). The NMA has been carried out for the first structure. Only the first

50 modes are displayed.

Maltodextrin Binding Protein (1anf to 1omp)

TANM16
SAANM

08 r

02r

Figure 7: Overlaps of the transition of maltodextrin binding protein from its
structure adopted when complexed with maltose (pdb id: lanf) to its free struc-
ture (pdb id: lomp). Only the first 50 modes are displayed.

2 Inter-residues interactions

Another collective aspect is the inter-residue interaction variations. They have
been used to show an improvement of sSANMs and sdANM over classical ANMs
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Figure 8: Left: A visual representation of maltodextrin binding protein (pdb
id: lanf) with the eigenvector corresponding to the dominant mode (mode 8 for
ANMI16, red vectors and mode 7 for sdANM, blue vectors). Right: Magnitude

of the eigenvector corresponding to the dominant mode along each residue.

[22]. In this paragraph, we investigate where these improvements are located
through three examples, one for each cut-off distance (see Figure 9). The ex-
perimental data used to compute the inter-residue variance is available only
for NMR structures. We compare directly the ANM with its corresponding se-
quence specific version by calculating and plotting the difference of the variance
error between them (ANM minus its sequence-specific variant) for each residue.
A negative value means that ANM performs better than sSANM and a positive
value means the reverse.

Ubiquitin shows differences between ANM16 and sAANM at the tail where the
B-factors are over-estimated (See Figure 9A). The introduction of the sequence
specificity brings a decline on these parts for the estimations of inter-residue
fluctuations. That is coherent with what happens for individual fluctuations.
In sSANM10 and sANM13, the spring constants of the backbone are artificially
set to 10 in order to stiffen it. However, it just accentuates even more the error
in the fluctuations (see Figure 9 B and C, the diagonal in the heat maps of
SPH protein and of factor H binding protein). SPH protein shows a decline
in the SANM13 for some pairs of residues corresponding to intereactions be-
tween two beads in two different unstructured and flexible regions within the
protein where the individual fluctuations are under-estimated. Similarly, factor
H binding protein shows an improvement of SANM10 over ANM10 for pairs of
residues located in two different regions for which the individual fluctuations
are over-estimated.

In our three examples, excepted flexible parts, there is no striking differences
between the classical ANM and its sequence specific version in the other parts.
Besides they perform very similarly, the only differences between the two kinds
of model are located on badly modelled parts of the proteins.

3 Discussion

These studies on the overlaps and on the inter-residue interactions support the
study on the B-factors in the way that the sequence specificity does not bring
a valuable improvement in the modelling. Worse, it can bring a decline due to
its soft large range interactions (see ubiquitin in Figure 9A).
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Figure 9: Heat maps show the difference between the inter-residue variance
error in ANM minus its corresponding sequence specific version. The more
red, the better ANM over SANM. The more blue, the better sSANM over ANM.
Visual representations show the links having the larger difference seen in the
heat maps. The colour code is the same as for heat maps and only links with a
difference larger than 15 for A. or 0.5 for B. and C. are displayed. The B-factor
patterns are displayed for comparison. A. ANM16 and sd ANM are compared for
ubiquitin. B. ANM13 and SANM13 are compared for SPH protein. C. ANM10
and sANM10 are compared for factor H binding protein.

As compared to the B-factor where the residues are considered individually,
the inter-residue variance considers pairwise distances. It contains additional
information about the direction of fluctuations. However, the problems are
similar. Indeed, the study on inter-residue fluctuations shows the same problems
located at the same places in the protein (i.e. flexible parts) as the study on the
B-factors and shows that it is even worse than expected: not only the individual
fluctuations are not enhanced but the error in the fluctuations between two
flexible parts in the protein can be increased.

D Relaxation trajectories

As determined in the materials and methods section, within the hypothesis of
linearity, the over-damped temporal displacement of residues is easily calculated
and is a sum of decreasing exponential functions. In the same time, the dynam-
ical simulations allow to look at the relaxation without supposing the linearity.
It gives two important pieces of information: how the molecule relaxes and in
which extent the hypothesis of linearity is valid. The latter one is answered
by a comparison between the two methods. Generally, the linearity holds at
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the vicinity of the equilibrium state (because small fluctuations are de facto
assumed) then the dynamical simulation relaxation would match the relaxation
governed by the slowest modes.

The dynamical simulation relaxations are followed via the distances between
three residues chosen as labels.

Three motor proteins are considered in this section: HCV helicase (Figure 10),
F1-ATPase (Figure 12) and myosin V (Figure 14). The three of them show large
motions and are then well-suited for such analysis. The chosen labels and other
details about deformations are stated in appendix. Since the deformed state is
random, 100 trajectories are studied for each model for each protein.

In preceding works [38, 39, 9], it has been found that, often for motor pro-
teins, with classical ANMs, the trajectories relax until reaching a deterministic
pathway from which trajectories cannot escape and are slowly brought to the
equilibrium state. This deterministic pathway corresponds to the relaxation
along the slowest mode where linearisation holds.

HCV helicase performs a large motion involving two domains which has been
shown to be well modelled by ANMS but inhibited by ANM with a larger cut-off
distance. In the B-factor section, we have seen that the correlation coefficient
given by sdANM is quite similar to the one given by ANMS letting suggest
that the motion of interest could be retrieved by sdANM despite of its high
connectivity. Unfortunately, the relaxation trajectories do not confirm this fact
and suggest the opposite (Figure 11). As expected for ANM, the well-defined
pathway is present (Figure 11 B and C). In sd ANM, this pathway has been bro-
ken down and the trajectories relax in a purely random way to the equilibrium
state. That raises two draw-backs: first, the motion of interest is inhibited and
second, the linear approximation (and hence the normal mode analysis) holds
only when the conformation is very close to the equilibrium position. That is
confirmed by the elastic potential energy according to the mechanical coordi-
nate (Figure 11A).

For F{-ATPase, it has been shown that the linear approximation holds only
very closely to the equilibrium state [39] when using ANM10, despite having a
kind of valley where trajectories are deterministically driven to the equilibrium.
The corresponding sequence specific model, sSANM10, shows poor difference and
does not show any improvement (Figure 13). Especially, the potential energy
within the linear assumption does not match better the one of the dynamical
simulations. Neither sSANM10 nor sSANM13 nor sd ANM gives better results (see
Figures 36 to 38 in the appendix).

For myosin V, the range of validity of the NMA in ANM10 is much larger than
for F1-ATPase [39]. The range is similar for other cutoff distances 13A and 16A
(Figures 15B and 43). Again, the addition of the sequence specificity does not
bring any enhancement. The performance is rather similar.

Transitions can also be studied with relaxation trajectories. Either the sequence
specificity does not bring a valuable difference or the difference deserves it. For
HIV-1 protease, from the complexed structure (pdb id: lajx), all models go
back to the free structure (pdb id: 1hhp) without being trapped by a meta-
stable state. The pattern of relaxation is quasi-similar for all models excepted
ANM16 (Figure 16B). As for the relaxation of the elastic potential energy, there
is no improvement in the range where the normal mode analysis holds (Figure
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16A). Nevertheless, we can note that, again, sd ANM resembles more ANM10
than ANM16.

For adenylate kinase, only two models are able to go back to the initial structure
(Figure 16D): ANM10 and ANM16. The sequence specific models totally failed
and ANM13 is trapped in a metastable state very close to the initial structure.
It is even clearer on the elastic energy profile (Figure 16C).

These results are interesting because even though the correlation or the overlap
are increased, it does not mean that the model is better upon the linear ap-
proximation or that this assumption is true on a larger range of deformations.
That is something which has to be kept in mind when evaluating a model us-
ing B-factors and the Pearson correlation coefficient in order to make molecular
dynamics simulations. What is evaluated by the normal mode analysis is valid
only in the linear assumption and it is not guaranteed to work in dynamical
simulations where the dynamics are not linear at all.

LYS589

HV Helicase (1hei)

Figure 10: Visual representation of HCV helicase (pdb id: 1hei) with the three
labels used.

E Mutations

By using the sequence-specific models, our main goal was to study the effects of
mutations. With what we have observed in the preceding subsections, this goal
becomes a little bit hopeless. Indeed, if we do not find any difference between
the sequence-specific models and the classical ANMs, then it is unlikely we find
them if we change the type of residues. We will still have a short look at it and
confirm what said above.

In a first step, we wanted to study the effect of a single mutation. For that,
we have used a brute-force way where we tried all possible mutations for each
residue of a single protein. There are 20 types of residue, so each residue can
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Figure 11: Comparison between ANMS8 and sdANM for HCV helicase. A: the
elastic potential energy along the mechanical coordinate for 100 simulations
(red for ANMS, blue for siANM) and for the slowest mode (black), B: distance
between labels 1 and 3 along the distance between labels 1 and 2 for the 100
simulations, C: distance between labels 2 and 3 along the distance between
labels 1 and 2.

Figure 12: Visual representation of Fi-ATPase (pdb id: 1h8h) with the three
labels used.

carry out 19 different mutations. We have chosen the protein HIV-1 protease
(pdb id: 1hhp). HIV-1 protease is a dimer of 198 residues. Here, we studied
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Figure 13: Comparison between ANM10 and sANM10 for F1-ATPase. A: the
elastic potential energy along the mechanical coordinate for 100 simulations (red
for ANM10, blue for sSANM10) and for the slowest mode (black), B: distance
between labels 1 and 3 along the distance between labels 1 and 2 for the 100
simulations, C: distance between labels 2 and 3 along the distance between
labels 1 and 2.

Figure 14: Visual representation of myosin V (pdb id: 1w7j) with the three
labels used.

only the monomer (99 residues). We have calculated the overlaps for the tran-
sition 1hhp to lajx for each mutant (see Figure 17) as well as the root mean
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square difference (RMSD) between the b-factors of the mutant and the ones of
the wild-type (see Figure 18).

As for the overlaps, only the first 5 first non-zero modes are displayed. Excepted
for some cases, the overlap values remain robust (Figure 17, top-panel). Only
one case retained our attention, the mutant 1830 (Figure 17, bottom-panel). In
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this case, the dominant mode has been replaced by the following mode although
the two have still similar overlap values. leucine 97 has mutated to a glycine
residue. We have not investigated more this case as it is not so interesting.
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Figure 17: Overlap value for the 5 first non-zero modes for each possible single-
mutation mutant for the protein HIV-1 protease (pdb id: 1hhp). The top-panel
shows all mutants while the bottom-panel is focused on the last ones.
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Figure 18: RMSD between the B-factors of the mutant and the ones of the
wild-type.

However, as for the RMSD of the B-factors, there is a little change, the maximum
being around 1.2.

Interestingly, we can visualise which residue is prone to a lot of change due to a
mutation in the protein and which one is prone to induce an overall change in
the protein in terms of individual fluctuations (B-factors).

For the latter, for each residue i, we have calculated the average RMSD between
B-factors of the wild-type and the ones of the mutant, induced by a mutation

on this residue i:
19

! > RMSD(WT,Mj)

Ii =
19 —

where WT means Wild-Type, M} means the mutant with the k" mutation on
residue ¢ and the RMSD between B-factors is

N
RMSD(WT, Mj) = % Z(BWT(j) = B (4))°

with N being the number of residues.

For the former, we have calculated the RMSD over all possible mutants be-
tween the B-factor in the wild-type and the one in the mutant:

1
T i) — (2))2
S; = o ;(BWT( ) — B, (i)

where Ny is the number of possible mutants (for 1hhp, 99 x 19) and M; is the

4" mutant.

For each residue, we obtained two numbers and we have visualised HIV-1 pro-
tease, 1hhp, with residues coloured according to these numbers. According to
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I; in Figure 19 and according to S; in Figure 20.

Figure 19 tells us that mutations inducing the most overall changes are located
in the isolated loop and at the extremities. In both parts, residues are less con-
nected than the others in the theoretical network. Figure 20 tells us that the
residues the most prone to change after a mutation where-ever in the protein
are also located in the isolated loop and at the extremities. If we combine both
Figures 19 and 20, we can see that mutations on flexible parts induce the larger
changes in the protein but these changes are undergone by these same flexible
parts.

Even if the sdANM is not suited enough to link a theoretical study on mu-
tations to experimental works, it is still interesting to see that the flexible parts
again emerge from our study. Here, the mutation is modelled as changing the
stiffness constant of springs related to a single residue (the one which has mu-
tated), then we look at the deviation of the obtained mutant to the wild-type.
Finally, it is like comparing two models as we did it in the preceding subsections.
Thus, the problem of flexible parts is not surprising. Using single-mutations,
we can directly see where are the most sensitive parts and that supports what
have been found above. The poor sensitivity against single-mutations is not
incoherent since deleterious mutations are pretty rare in cells. And if we think
the tuning of spring constants as mutations, it is also coherent that the overall
protein is robust against it. Proteins had to adopt robust shapes across the
evolution to be stable enough otherwise they would not be able to carry out its
current functions. This robustness is theoretically reflected in the network con-
nectivity. However, some mutations have been shown to be deleterious because
the structure of the protein is disrupted and cannot works correctly. Then, we
can again suspect flexible parts to be prone to deleterious mutations.

Figure 19: A Visual representation of HIV-1 protease 1hhp where each residue
is coloured according to the average RMSD induced by a mutation on it.
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Figure 20: A Visual representation of HIV-1 protease 1hhp where residues are
coloured according to the root mean square deviation of the B-factor deviation
from the wild-type B-factor across all possible single-mutation mutants.

F Discussion

In this study, we tried to understand how the addition of the sequence speci-
ficity to the modelling improves the accuracy of the model. In particular, we
have investigated individual proteins and looked at the individual features of
their residues. Because in preceding studies the improvements were seen at a
protein scale using a correlation coefficient, the origin of these improvements
were not clear. It appears that the new sequence specific models are closer to
classical models than we expected it. Whatever the measuring method we use
(B-factor, overlaps, etc), the results are quite robust against the addition of the
sequence specificity. When there is a difference, it involves some poorly con-
nected residues which bias the overall interpretation we could make if looking
only at protein-scale measures. Indeed, the estimations of individual fluctua-
tions of such residues are incoherently enhanced or inhibited and are still badly
modelled. Although it can improve the correlation coefficient, the improvement
is not qualitative and especially not systematic. We looked at the averaged es-
timation error of individual fluctuations according to some individual features
and have not found any systematic improvement of sequence-specific models
for any of the considered feature. However, the flexible parts are very often
over-estimated whatever the model. Then, this is already a major drawback of
classical ANMs which are not resolved in sequence specific models, it is even
further enhanced by sdANM due to the softening of long-range interactions.

As explained in materials and methods, the X-ray crystallography method in-
hibits the fluctuations of residues located in flexible part like the surface. Al-
though mainly used in this study and widely available on the Protein Data Bank,
X-ray crystallography structures suffer from the drawback of over-estimation
and are not the best suitable structures to look at the individual fluctuations.
However, it is not enough to explain the over-estimations since they have been
also observed in NMR structures like ubiquitin (pdb id: 1xqq). In our examples,
both the amplitude and the number of over-estimations are globally smaller for
NMR structures than for X-ray crystallographic structures but it should be
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noted that NMR can be used only for small proteins. Then, because NMR
structures are generally smaller, a cut-off distance of at least 10A is already
enough to damp the flexible parts where it is not for large proteins.

IV Parameter-free heterogeneous networks

In the preceding section, we have seen that the addition of the sequence speci-
ficity in the network has not brought valuable improvements. That leads us to
think that the tuning of spring constants may be not as well as we would expect
it. However, several studies have developed parameter-free models where the
spring constants are determined according to a decreasing function of the dis-
tance of the pair [21, 22, 17, 19]. The model is parameter free in the sense that
the cut-off is either imposed [22] or totally removed by putting a spring to every
pair of residues with a fitted constant [21]. Besides the improvement shown is
generally not very large (~ 0.1 of enhancement for the average PCC), the new
model is compared to ANM having a cut-off distance that the community “often
uses”. At first view, it makes sense since the ANM with large cut-off distances
are discarded in the community®. However, when comparing a heterogeneous
all-connected model or a heterogeneous model with a large cut-off distance to
the ANM10 or to the ANM13*, we intrinsically test both the effect of the hetero-
geneity and of the connectivity. Indeed, the network structure itself is changed
and the improvement or any differences observed can be due to the connectivity
instead of the heterogeneity. Then, we cannot draw conclusion for the effect of
the heterogeneity from such a study. Saying that, it finally makes no sense to
discard heterogeneous ANM with large cut-off distances or “all-connected” be-
cause they are “never used” by the community. If the new heterogeneous model
works as large-cut-off-distance or all-connected homogeneous ANMs, then the
conclusion is not that the heterogeneity improves the modelling but increasing
the cut-off distance improves the modelling. That is exactly what is shown
for the sequence-specific models in Table 2. What happens if we take cut-off
distances even larger than 16A ? Should we expect improvements of the corre-
lations 7

Indeed, fluctuations in the flexible parts are over-estimated by the previous con-
sidered models. Then, when increasing the connectivity of the network, these
parts are stiffened which increases the overall correlation (see Figure 21, myosin
V and scallop myosin). For proteins which do not have such over-estimated
parts, the network becomes too connected and the motions, even the small in-
dividual fluctuations, are damped (see Figure 21, maltodextrin binding protein
and HCV helicase). In particular, the transition could not be studied.

That is something important because parameter-free networks have such a high
connectivity and potentially the same draw-back. As in the sANMs and the
sdANM, the difference may reside on flexible parts.

A  Models

We will compare some well known parameter-free models to the classical homo-
geneous ANM with and without a cut-off distance. The parameter-free homo-

3for reasons we will see below
4which are homogeneous since all springs have the same constant
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Figure 21: The Pearson correlation coefficient plotted according to the cut-off
distance for four proteins: HCV helicase (lhei), maltodextrin binding protein
(1jw4), scallop myosin (1kk8) and myosin V (1wTj).

geneous model will be called ANM-AC?.
There are three major free parameter distance dependent models:

- the first is called dANM, the spring constants are inversely proportional to
the square of the distance [21]:

o 1
k‘(%ﬂ) = 2
,J

where d; ; is the distance between residues 7 and j in the equilibrium structure.

- the second is called ExpANM, the spring constants decay exponentially as

the distance is large [17]:
d2 .
N ©,7
k(i,j) = exp <_02 )

where c is a coefficient shown to have the best agreement for ¢ = 3A [17] or for
c="TA [19]. In the doubt, we will take both.

- the last one is called hANM, the spring constants follow an inverse of a power
6 [19]:

1
k(i,j) = (205.5 X d; j — 571.2) 14, ;<4 + 305.9.103dT]1dw>4
.7

5AC for All Connected
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Typically, the short range interactions are stiffened.

B B-factor patterns

We first look at some representative protein examples. The aim is to determine
where the improvement are located and especially to determine whether the
improvements are coherent or biased by flexible parts. A part of the results are
available in Table 5 and the full part in Table 12 in appendix.

As for the overall correlation, for some proteins, it is improved by parameter-
free heterogeneous models, for some proteins not. Sometimes, dANM performs
better than ANM16 while hANM performs worse (e.g. ubiquitin), sometimes, it
is the reverse (e.g. HCV helicase) and so on. The heterogeneous networks work
completely differently although it is the same kind of heterogeneity i.e. a de-
creasing dependency on the distance. If the adding of this distance-dependency
were valuable, then all these models would work at least similarly and improve
or decline the ANM16 (or other ANMs) for the same proteins.

As for individual proteins, ubiquitin is improved by dANM (0.80 for ANM16
against 0.89 for AANM) but also by ANM-AC (0.88) suggesting an improve-
ment due to the connectivity. Indeed, the tail becomes damped by both dANM
and ANM-AC (see Figure 22A). ExpANMY7 and hANM still over-estimate it
(even more than ANM16). Interestingly, the “ranking” of models at the tail
(hANM>ExpANM7>ANM16>dANM>ANM-AC) is the inverse of the one on
the rest of the protein (ANM-AC>dANM>ANMI16>ExpANM7>hANM). In
particular, the B-factor pattern curves corresponding to ANM-AC and dANM
tend to be flat. That suggests a loose of accuracy in enough-connected parts
in ANM-AC and in dANM compensated by the damping of the tail. The case
of myosin V is similar to the one of ubiquitin (see Figure 22B). The poorly
connected part is not located at the tail but within the protein. As for mal-
todextrin binding protein and Factor H binding protein, both are badly modelled
by ANM-AC but none of the heterogeneous parameter-free model shows a large
improvement to ANM16 (see Table 6). The B-factor patterns of maltodextrin
are globally similar (Figure 22C). The ones of factor H differ a little bit for over-
estimated part essentially (Figure 22D). dANM performs better on them at the
expense of some other parts. The improvement of dANM on flexible parts is
then, although not fully, compensated by the decline in some other parts com-
pared to ANM16. HCV helicase is the typical example for which the strong
connectivity inhibits its motions. The cut-off distance of 8A has been shown to
be the best for this protein (PCC is 0.79); above this value, the network is too
strongly connected. Heterogeneous networks still inhibit the correlation com-
pared to ANMS and do not seem able to recover a similar behaviour to ANMS8
for HCV helicase.

Again, flexible parts look suspicious and seem to play the largest role in the
improvements seen in the overall correlation for parameter-free heterogeneous
models. In particular, the improvements do not come from the coherent and
physical property-based tuning of spring constants. Ubiquitin is a great example
of that. dANM having a spring constant distribution narrower than the other
heterogeneous networks, it can damp more efficiently the flexible parts. But in-
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evitably, it has consequences on the other parts. The improvement resumes to
the damping on the flexible part disregarding the physical meaning brought by
spring constants. ANM-AC which is able to damp efficiently the flexible parts,
work as well although the spring constants have not any physical meaning.

ANM10 ANM16  ANM-AC dANM ExpANM3 ExpANM7 hANM

Ubiquitin (1xqq) 0.74 0.80 0.88 0.89 0.63 0.78 0.75

Myosin V (1w7j) | 0.77 0.68 0.81 0.71 0.82 0.81 0.81

Maltodextrin Binding Protein (1jw4) ~ 0.55 0.70 0.46 0.67 0.65 0.68 0.70
Factor H Binding Protein (2kc0) ~ 0.69 0.71 0.62 0.75 0.74 0.71 0.73
HCV Helicase (1hei) ‘ 0.63 0.54 0.23 0.44 0.69 0.61 0.62

Table 5: Pearson correlation coefficient for 5 proteins obtained with classical
homogeneous ANM and with heterogeneous ANM.
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Figure 22: B-factor patterns for some proteins. The red curve is obtained with
ANMI16, the violet one with dANM, the green one with ExpANM?7, the orange
one with hANM and the dark red one with ANM-AC. The black curve represents
the experimental B-factors.

C Statistical analysis

To enforce the observations of the preceding subsection, we analyse the B-factors
over a lot of protein structures. For the parameter-free models, we have taken
the same structures accepted by the algorithm for ANM16 since we mainly make
comparisons with this model.

As for the averaged Pearson correlation coefficient, the statistical data indicates
an improvement of dANM, ExpANM7 and hANM compared to ANM-AC (see
Table 6). Then, ANM-AC does not seem robust against spring constant tuning
and its performances can be improved. This is quite different from what we have

40



observed for cut-off dependent ANMs. However, the heterogeneous models do
not show a great improvement compared to ANM16 (0.01 for ExpANM7 and
hANM, 0.03 for dANM).

The most surprising things come from the B-factor ratio (predicted B-factor over
experimental B-factor) of the proteins of the systematic study (Figure 23). All
distributions are distributed around 1 (1 being the ideal case) with a more or less
wide dispersion. As expected, ANM-AC reduces the over-estimation of poorly
connected parts and globally the dispersion is smaller as compared to ANM16
(Figure 23A). As drawbacks, flexible parts are more readily under-estimated
and highly connected parts are slightly over-estimated. What is surprising and
not observed in the overall correlation, is the quasi-identical results given by
dANM (Figure 23B). The flexible parts are slightly less damped but globally,
the features of the distribution are the same as compared to ANM-AC.

Also striking is the similarity between ExpANM7, hANM and ANMI16. Ex-
PANMYT performs exactly the same way as ANM16 (Figure 23C). The distribu-
tion of B-factors of hANM is slightly narrower than the one of ANM16 but the
shape is the same (Figure 23D).

Several things emerge from this statistical analysis. First, the averaged correla-
tion coefficient is not improved so much by heterogeneous models as compared
to ANM16, at least, not as we would expect it from a model for which spring
constants have been coherently tuned. As suspected, for AANM, which is the
model performing the best in regard of the correlation, it is a matter of flexible
parts which biases the correlation. As for proof, it has the same features and
then drawbacks as the ANM-AC: gain of accuracy in flexible parts, loss of ac-
curacy in non-flexible parts. The other heterogeneous models do not show any
striking differences.

Last observation is that adding heterogeneity in ANM-AC changes the results.
In that sense, ANM-AC is sensitive to the tuning of spring constants. However,
the heterogeneous models, although having an all-connected network, seem to
behave like a cut-off dependent homogeneous model.

ANM10 ANM16 ANM-AC dANM  ExpANM3  ExpANM7 — hANM
Average PCC ‘ 0.51 0.55 0.49 0.58 0.48 0.56 0.56

Table 6: Summary table of results obtained over 2040 X-ray crystallographic
protein structures for each model.

D Little value brought by the heterogeneity

In the preceding subsection, we have observed that the heterogeneous parameter-
free models do not work as the homogeneous version. In that sense, the ANM-
AC is not robust against spring constant tuning. On the other hand, these
heterogeneous models, although parameter-free, seem to behave like a homoge-
neous ANM with a certain cut-off distance. It seems the parameter-free models
have an imposed cut-off distance because of the very small values of long-range
interactions. The function determining the values of spring constants (the in-
verse square function for dANM, the decreasing exponential for ExpANMs; etc)
depends solely on the distance of the pair like the Heaviside function used for
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Figure 23: B-factor ratio (predicted B-factor over experimental B-factor)
for parameter-free homogeneous (ANM-AC) and heterogeneous (dANM, Ex-
pANMT7 and hANM) models alongside the ANM16 according to the relative
degree defined in the preceding subsection for ANM16. Note that for parameter-
free models, the relative degree is the same for all residues. For every graph:
Red points represent ANM16 and the y-axis is log-scaled. A: blue points rep-
resent ANM-AC, B: violet points represent dANM, C: green points represent
ExpANMYT7, D: orange points represent hANM. Because the two models dis-
played on the same graph overlap, the right graphics are the same as the ones
but the order of plotting has been shifted.

the homogeneous ANM (what we call “cut-off”). From a certain distance, this
function gives values small enough that the resulting link has a weak effect. This
distance is the same for all proteins since the function is protein-independent.
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Then a kind of cut-off distance is imposed in the heterogeneous parameter-free
models which makes the analysis similar to the ones with a classical ANM with
the same cut-off distance.

That could be the reason why we observed robustness when adding the sequence
specificity but not when considering all-connected heterogeneous networks. The
heterogeneity is such that it makes the model works as having a cut-off distance.
It would then be more judicious to compare the parameter-free heterogeneous
models with homogeneous cut-off dependent ANM rather than to the ANM-AC.
For dANM and ExpANM?7, imposing a cut-off distance at 50A and at 16A re-
spectively, they fit almost perfectly the models without cut-off distance (see
Figure 24 A and B, left panel) highlighting the very poor effect of the links
for which the distance is larger than this imposed cut-off distance. The ANM
with the same cut-off (Figure 24 right panel) shows quite well agreement to
the parameter-free version of AANM, ExpANM?7 and hANM. The ANM is still
slightly less efficient but it is interesting to see that the homogeneous model
without any logical way of setting the spring constants can perform almost as
well as heterogeneous models for which the spring constants have been chosen
coherently.

The hANM is a little bit different from the two other cases. We have not found
a cut-off distance for which the cut-off dependent hANM and the cut-off depen-
dent ANM matches perfectly the parameter-free hANM. The cut-off 20A gives
good enough approximations (Figure 24C).

These cut-off distances have been chosen intuitively. We tried to determine
them in a coherent way using the sequence-specific model examples. For these
models, the range of spring constant values has a dispersion of five orders of
magnitude (from 0.001 to 43.52). So, we determined former cut-off distances
such as the range of spring constant values has a five-order of magnitude disper-
sion. However, it does not lead to satisfying results, the cut-off distances being
too large.

E A short discussion on the NMR case

It is also interesting to see what happens for NMR structures. For that, we take
the same 132 solution NMR protein structures selected in the preceding section.
The averaged errors are larger for AANM and ExpANMY7 than for ANM10 for
almost all chemical properties and structures (see Table 7). As for hANM, there
are some slight improvements.

The distance-dependent models are typically all connected. However, proteins
which can be determined by NMR are generally small. In our dataset, the
mean number of residues is 107 which is quite small. That means, a too much
connected network could inhibit the individual fluctuations. This is what we
see for ANM-AC and in a smaller extend for the distance-dependent models for
which some long-range interactions are softer than in the ANM-AC.

F Maximal overlap

Another possible drawback of a strong connectivity is the inhibition of motions
of the protein. For that, we can look at the overlaps, in particular, the maximum
one for a given transition. The maximum overlap is clearly decreased for all pro-
tein transitions using ANM-AC (Table 8). As for the heterogeneous networks,
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Figure 24: Left panel: B-factor ratio (predicted B-factor over experimental B-
factor) for parameter-free heterogeneous dANM, ExpANM7 and hANM models
alongside their version with a cut-off distance (50A for AANM, 16A for Ex-
pANM7 and 20A for hANM). Right panel: the cut-off version is replaced by
the corresponding ANM. The relative degrees of ANM16 have been conserved
to have a comparison. The y-axis is log-scaled.

they show similar results to ANMs with a cut-off distance except dANM which
shows slightly smaller values. For the latter model, it is confirmed by a study
made several years ago [21] done over 170 proteins. In this study, dANM shows
globally smaller max overlaps than ANM13. Indeed, the percentage of overlaps
larger than 0.6 has dropped from 40% in ANM13 to 20% in dANM while the
percentage of overlaps smaller than 0.3 has increased from 34% in ANM13 to
49% in dANM. That shows a tendency of the overlaps to drop in dANM.

These results support what has been found above: the heterogeneous parameter-
free models behave similarly to cut-off dependent homogeneous models.

G The limits of linearity

Finally, it is interesting to have a look at relaxation patterns which give us
valuable information about the validity of the linear assumption (Figure 25).
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ANM10  ANM-AC dANM  ExpANM7 — hANM

Average PCC 0.64 0.50 0.63 0.67 0.63
Polarity
Hydrophobic 0.68 1.01 0.90 0.71 0.65
Polar  0.70 0.91 0.81 0.69 0.64
Charged  0.76 0.94 0.87 0.75 0.68
Secondary Structure
Alpha Helix 0.36 0.63 0.55 0.42 0.34
Beta Sheet 0.23 0.52 0.42 0.29 0.23
Unstructured 1.21 1.44 1.33 1.15 1.10

Table 7: Summary table of results obtained over 132 solution NMR structure
proteins. For the polarities and the secondary structures, the averaged MSF
estimation errors are computed.

Myosin V was chosen as an example which is a motor protein for which the
linearity is valid for large motions. If the ExpANM7 and hANM reproduce well
the relaxations found for ANM16 (although not improved), dANM fails to do
it. Again, the strong connectivity of dANM plays tricks on it and reduces the
range on which the linear approximation can be applied. The large motions of
myosin V cannot be retrieved by dANM although the correlation of individual
fluctuations is better than ANM16. That is a quite strong drawback because
although it is supposed to be better under the assumption of linearity, it is valid
only at very close to the equilibrium conformation.

H Discussion

The Pearson correlation coefficient is a tool to estimate the accuracy of a model.
However, it is a tool at the protein-level disregarding the details of the protein.
The heterogeneous parameter-free models give better correlation than ANM
with widely used cut-off distances. However, looking at the residue-level, the
improvements suffer from the same biases as the ones observed for sequence-
specific models: the flexible parts. But more than that, the information which
has been added (the distance dependence) is not reflected in the B-factor pat-
terns. Indeed, the improvement consists in stiffening the flexible parts at the
expenses of the non-flexible ones. This is what happened for ubiquitin: the
patterns shown by ANM-AC and dANM are almost flat reflecting no coherence
in the prediction of residue fluctuations except the one of damping the poorly
connected residues. Despite this flat pattern, the correlation is better because
the flexible part is damped. This is even more striking when looking at the
individual B-factor prediction over more than 2,000 proteins. Either there is
almost no difference as compared to ANM16 or the flexible parts are damped
at the expenses of non-flexible ones. Even more, we can find cut-off distances
for which the results of the homogeneous models match well the results of het-
erogeneous parameter-free models. That is a drawback of these latter models
in two ways: first, it means that the tuning of the spring constants has a very
poor effect and second, some of them resemble homogeneous ANM having a
large cut-off distance, larger than the ones often used within the community,
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ANM10  ANM16  ANM-AC dANM  ExpANM3  ExpANM7 — hANM

Myosin V
1w7jto 1oe9 | 063 0.54 0.16 0.47 0.61 0.60 0.64
1oe9to 1w7j| 055 0.62 0.16 0.47 0.55 0.60 0.61
HIV-1 Protease
1hhp to 1ajx | 0.71 0.67 0.20 0.44 0.55 0.67 0.71
1ajxto thhp | 044 0.31 0.25 0.26 0.51 0.46 0.42
Aspartate Aminotransferase
Qaatto 1ama | 0.57 0.64 0.15 0.36 0.51 0.51 0.51
1amato 9aat| 0.55 0.57 0.26 0.38 0.76 0.67 0.63
Enolase
3enl to 5enl| 0.23 0.21 0.10 0.18 0.22 0.22 0.24
5enlto 3enl| 0.23 0.23 0.10 0.18 0.24 0.22 0.27

Maltodextrin Binding Protein

1anf to 1jw4 0.90 0.80 0.34 0.70 0.87 0.89 0.79

1jw4 to 1anf| 078 0.79 0.33 0.72 0.79 0.74 0.87
Adenylate Kinase

laky to 2ak3| 0.38 0.36 0.28 0.31 0.32 0.40 0.37

2ak3 to 1aky 0.27 0.31 0.14 0.22 0.31 0.31 0.29
Annexin V

lavrto 1avh| 0.41 0.33 0.24 0.27 0.40 0.33 0.33

1avh to 1avr 0.33 0.33 0.12 0.27 0.48 0.38 0.41

Thymidylate Synthase

2tscto 3tms | 0.44 0.24 0.30 0.21 0.40 0.30 0.37
3tmsto 2tsc| 0.46 0.28 0.28 0.20 0.63 0.39 0.40
Scallop Myosin
1kk8 to 1kk7 |~ 0.85 0.75 0.37 0.56 0.86 0.80 0.73
1kk7 to 1kk8 =~ 0.70 0.74 0.38 0.53 0.74 0.73 0.72
F1-ATPase
1h8h to 1h8e | 0.55 0.49 0.38 0.66 0.52 0.51 0.50
1h8eto 1h8h |  0.54 0.53 0.35 0.63 0.57 053 0.50
Kinesin Motor Domain
1mkjto 1bg2 | 0.30 0.24 0.14 0.26 0.27 0.25 0.35
1bg2to 1mkj ~ 0.23 0.18 0.15 0.19 0.21 0.18 0.21
Penicillin Binding Protein
1vqq to 4dki |~ 0.33 0.37 0.14 0.24 0.32 0.37 0.39
4dkito 1Tvqq =~ 0-33 0.30 0.16 0.24 0.32 0.36 0.37
KIF1A Motor Domain
1i6i to 1i5s | 0.35 0.24 0.15 0.29 0.24 0.37 0.25
1i5s to 1i6i | 0.28 0.20 0.16 0.29 0.29 0.28 0.28

Table 8: Maximum overlap for parameter-free models alongside with classical
ANMs with a cut-off distance.

and then have drawbacks that the community wants to avoid. Among these
drawbacks, there are especially the inhibitions of motions and the narrowing of
the range of validity of the linear assumption.

The distance dependence of spring constants, associated to an all-connected net-
work essentially imposed a kind of cut-off distance and decrease the connectivity.

V Randomisation of spring constants

A Method

In the two preceding sections, we have seen that the modelling is quite poorly
sensitive to the addition of valuable biologically and chemically related infor-
mation through the value of spring constants. As an extreme and brute-force
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Figure 25: Relaxation trajectories for myosin V (pdb id: 1w7j) with ANMI16,
dANM, ExpANM7 and hANM. The labels are the same as the one used above.
For ANM16: F;,; = 50 and T;,; = 1000 while F;,; = 25 and Tj,; = 1000 for
the other models.

way to test to which extent it is true, we randomised the spring constant val-
ues. The network connectivity is determined using a cut-off distance then all
spring constant values are chosen randomly using the uniform distribution be-
tween 0.001 and 1 (2/(][0.001, 1])). This range is large enough to allow a lot of
diverse values but not too large to make consider a link as vanishing. There is
no other rule followed by the distribution. It means that the random network
generated by this method is not biologically or physically relevant (other than
the shape) and can have very stiff long-range interactions while having very soft
short-range interactions. The obtained random networks will be compared to
the corresponding homogeneous ANM with the same cut-off distance.
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There are two aims for this study. The first one is to determine to which extent
the network is not sensitive to the changes in the spring constant values. The
second one is to determine the features the best performing networks could have.
Indeed, producing thousands of random network for the same protein with the
same connectivity, some networks would perform better than some others. We
want to know why and where they perform better.

B Sensitivity to randomisation

Because this randomisation does not follow any rules and generally lead to non-
coherent situations, we do not expect an accurate value when averaging the
Pearson correlation coefficient over thousands of random networks. A priori, it
is easier to construct bad models than good ones when randomly determined.
Results obtained over either 10,000 or 100,000 random networks are displayed in
part in Table 9 and in full part in Table 13 in the Appendix. They astonishingly
resemble the ones for the classical ANM. Even when these last ones perform very
well, the randomisation is able to reproduce such a good performance in average
(see ubiquitin, pdb id: 1xqq) although the PCC is always slightly smaller.

In parenthesis, is displayed the root mean square deviation (RMSD) of the PCCs
across the random networks i.e.

1 M M
RMSD = | ———— ) ) (PCC; — PCC;)?
ST(M — i) i=1 >0

i=1

where M is the number of random networks.

Most cases show a RMSD value of around 0.10 meaning that taking two of
the random networks, in average, the difference in their PCCs is around 0.10
which highlights a kind of poor sensitivity of the theoretical network to spring
constant values. We may note that this difference may reside solely on flexi-
ble parts or even to one or two residues which are badly modelled. For some
cases, the RMSD is quite large (of the order of 0.3) highlighting a sensibility
to spring constant values for the protein and the cut-off considered. Essentially
small proteins show such large RMSD (for examples: Al-Type ACP domain,
VAT-N, factor H binding protein). Interestingly, the sensitivity of spring con-
stants is not specifically related to the protein but rather to the network itself.
Indeed, considering the same protein, changing the connectivity of the network
can drastically increase or decrease the sensitivity. For example, the RMSD for
Random10 of VAT-N is 0.06 and increases to 0.21 for Random16; the RMSD
for Random10 of factor H binding protein is 0.16 and decreases to 0.05 for
Random16. To have a visualisation of the dispersion, we have plotted the dis-
tribution of the PCC over the 100,000 random networks for the NMR protein
structures using the Random16 model. The distributions are almost Gaussian.
Some are quite thin (for examples, 2kc0, 6qeb, ...) and some others are slightly
wider (6h0j, 1cz4, ...). Generally, the left-tail is wider than the right-tail. That
makes sense since it is easier to decrease the accuracy rather than to increase it
when choosing the spring constants randomly without any coherent rules.

These results suggest that the connectivity itself of the network contributes for
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most of the accuracy, then the tuning of spring constants ”deviates” the ac-
curacy toward the improvement or the decline within a limited range. These
results raise an interesting question: Is there a limit to the improvement by
coherently choosing spring constants?
To try to answer this question, in the next subsection, we have investigated the
1% of networks giving the best PCCs.

ANM10 ANM13  ANM16  Randomi10  Random13 Random16

(RMSD) (RMSD) (RMSD)

Myosin V (1w7)) 0.77 0.77 0.68 0.74 (0.07) 0.73 (0.07) 0.64 (0.09)

Adenylate Kinase (1aky) 061 0.56 0.61 0.58 (0.12) 0.54 (0.1) 0.60 (0.08)
Scallop Myosin (1kk7)| 0.14 0.31 0.38 0.14 (0.05) 0.28(0.09)  0.36 (0.04)

Human Kinesin Motor Domain (1mkj) | 0.41 0.69 0.70 0.39 (0.09) 0.68(0.01)  0.69(0.02)
HCV Helicase (1hei)| 0.63 0.59 0.54 0.61 (0.04) 0.58(0.02)  0.53(0.02)

Ubiquitin (1xqq) = 0.74 0.73 0.80 0.71(0.18) 0.72 (0.18) 0.78 (0.14)

Type IV Pilin PILE1 (6i20) | 0.87 0.88 0.85 0.84 (0.15) 0.86(0.12)  0.84 (0.09)
A1-Type ACP Domain (6h0j) 0.80 0.58 0.57 0.76 (0.29) 0.56 (0.26) 0.55 (0.19)
VAT-N (1cz4) | 037 0.32 0.60 0.36 (0.06) 0.32(0.05)  0.59 (0.21)

Factor H Binding Protein (2kc0) | — 0.69 0.69 0.71 0.66 (0.16) 0.68 (0.08)  0.69 (0.05)

Table 9: Table of Pearson correlation coefficient for selected proteins. The table
of the full set of proteins is available in appendix (Table 13). For the random
models, the PCC has been averaged over either 10,000 or 100,000 networks. The
RMSD through the networks is calculated in parenthesis.

Distribution of the PCC over 100,000 networks - ANM16

0.05 -

0.2

Figure 26: Distribution of the Pearson correlation coefficient over 100,000 net-
works for the 9 NMR protein structures we have considered in this study.

C Heterogeneity of the best networks

In this subsection, we have investigated some cases in depth. In particular, we
have looked at the top 1% of networks which gives the best correlations. We
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would like to know where are the improvements and how coherent are the dis-
tributions of spring constants on this top 1%.

The first example is ubiquitin. It has a tail for which fluctuations are over-
estimated by the ANMs. The top 1% networks have PCCs ranging from 0.846
to 0.874 for Random16 which is much larger than for ANM16 (0.80). The heat
map of spring constants averaged over the top 1% shows that the large majority
of links has roughly the same spring constant (white color in the heat map in
Figure 27A). The links having larger or smaller spring constants involve the last
5 residues i.e. the tail. The B-factor pattern is improved almost only at this
location (Figure 27A) which is even more improved by the best network (the
one with the maximum correlation). The distribution of spring constants do
not have any physical coherence, it just stiffens or weakens some links involving
the tail and improves its modelling.

The heat map of the top 1% of adenylate kinase for Random10 seems quite
homogeneous (Figure 27B). Only two links, each located at one tail, are sig-
nificantly heterogeneous. The B-factor pattern of the top 1%, as well as the
one of the best network, shows improvement essentially at the tails. Otherwise,
there are some small improvements for flexible parts but the top 1% performs
mainly like ANM10. Again, the distribution of spring constants of the top 1%
best networks does not follow any logic but specifically improves the modelling
of tails. The correlations of the top 1% ranges from 0.647 to 0.704.

The average correlation for HIV-1 protease over 100,000 networks having a
connectivity determined by a cut-off distance of 13A is 0.18 (against 0.20 for
ANM13). The top 1% has correlations ranging from 0.285 to 0.336. As for the
two preceding cases, the heterogeneity is mainly at both tails and at the flexible
part representing the flap (Figure 27C). Interestingly, the B-factor patterns of
the top 1% and the best network are not as good as expected compared to the
improvement in term of Pearson correlation coefficient. Indeed, the stiffness of
spring constants in the flap-structure and one of the tails are weakened resulting
in larger over-estimations which are compensated by the stiffening of the second
tail. Despite the improvement of the correlation, the B-factors themselves are
not improved so much.

As for the other proteins, the situation is generally similar: the average spring
constants of links of the top 1% are mainly the same except for some links in-
volving either the tails or some flexible parts inducing some improvements in the
parts concerned. However, the B-factor pattern is not always as much improved
as the correlation is and situations like the one of HIV-1 protease arise.

An additional situation emerged from the analysis: the situation where all spring
constants have different values without any coherent tendency. That is especially
true for large proteins with a large cut-off like maltodextrin binding protein for
random networks with cut-off distance 50A (Figure 28A) or scallop myosin for
random networks where everything is connected (Figure 28B).

D Discussion

In this section, we randomised the spring constants. The randomisation is such
that the spring constants are not coherently distributed. Their value is just
uniformly chosen between 0.001 and 1. This ensures that all links have a large
enough spring constant value in order to be not negligible. Under 0.001, we
consider that the link would be negligible and these values are not taken into
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Figure 27: Left: Heat map of the values of spring constants averaged over
the 1% networks showing the best correlations. Middle: visual representation
of the protein where links with spring constant values showing a difference of
more than 25% compared to the averaged one are displayed. Right: B-factor
patterns of ANM, the top 1% where the averaged spring constant values have

been used, the best networks and the experiments. A: Ubiquitin (pdb id: 1xqq).
B: Adenylate kinase (pdb id: laky). C: HIV-1 Protease (pdb id: 1hhp).

account because we wanted to test the robustness of defined networks® and then
wanted to discard the cases where some links would vanish due to a too small
spring constant value. So what we did is to test the robustness of particular
networks for which the connectivity has been determined by a cut-off distance
and all their links are randomly set. Note that, if we use a larger upper bound
than 1, we should increase the lower bound as well since the negligibility is rel-
ative to the size of the range.

Averaging the correlation between experiment and theory over 10,000 or 100,000
networks, we found results very close to the homogeneous ANM (Tables 9 and
13 in appendix). Mathematically, it is not trivial. The expected value of the

b
uniform distribution U([a, b]) is a4 and all spring constants follow the ex-

actly same distribution so the resulting network obtained by the averaging over
N random networks converges toward the homogeneous ANM as N increases.
However, nothing guarantees that the average of Pearson correlation coefficients
converges toward the one of the homogeneous ANM. Indeed, although the forces
are linear”, the diagonalisation process is not, and the eigenvalues of a sum of

6defined by the cut-off distance
"They have been linearised to carry out the NMA
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Figure 28: Heat map of the values of spring constants averaged over the 1%
networks showing the best correlations. A: Maltodextrin binding protein (pdb
id: 1jw4). B: Scallop myosin (pdb id: 1kkT).

matrices do not correspond to the sums of eigenvalues of the matrices. The av-
erage correlation itself is not a measure of robustness of the network. We then
calculated the RMSD of the correlations across the random networks. Most of
the networks we studied show a quite small RMSD (less than 0.1) leading to a
thin normal distribution of the correlation (Figure 26). That suggests a poor
sensitivity of these networks against spring constant values.

Secondly, we investigated, over the random networks, the ones giving the best
correlations. We wanted to determine which trend these networks have and if
the same trend is found for many cases. As for the sequence specific models
and parameter-free models, the differences are mainly located at the tails and
flexible parts. Averaging the spring constants over the top 1% of networks, we
see that most of links have the same spring constants which means that these
links do not influence the correlation and does not account for the improvement
otherwise a tendency would emerge. A tendency emerges for some links involv-
ing residues located at the tails or on flexible parts: either they are stiffened or
weakened compared to the other links. For some cases, that leads to a better
modelling of these parts essentially. For some other cases, it is a little bit more
complex: some of these parts are better modelled but some other are worse
modelled (see HIV-1 Protease in Figure 27C). That would suggest that the im-
provement of a part A and of the overall correlation requires the worsening of
a part B. We should not forget that these tendencies has been observed for an
average over many random networks (1,000 for HIV-1 Protease) and not only
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for one single network. It means that the improvement of part A and the wors-
ening of part B are systematic when the networks show a better correlation for
a specific protein with a particular cut-off distance.

On the other side, the investigation of the top 1% of some proteins does not
show any tendency for any link (Figure 28). Most links seem to play a role
in improving the overall correlation otherwise their value would be around the
expected value of the uniform distribution. However, more investigations are
needed to determine the coherence (if there is) of their value in the improvement
of the network.

Mathematically, the current randomisation can be viewed as a perturbation
from the homogeneous ANM. In particular, due to the linearity of the force in
respect to the spring constant, the Hessian matrix can be decomposed such as:

Hrandom = HANM + P

where H,qndom is the Hessian of the randomised matrix, H 4 s is the Hessian of
the ANM and P the matrix of perturbations associated. A field of mathematics,
eigenvalue perturbation theory, studies the eigenvalues of such matrices. In
particular, we can give boundaries to the eigenvalues of H,qndom in respect of
those of Hanp and P. First, using the Wielandt-Hoffman theorem [81, 82]:

N
S~ Ni(Hrandom) = Ni(Hanar))? < tr(PPT)

i=1
where \;(H) is the i*" eigenvalue of H.

An alternative is the weyl’s inequality [83]:
Vk € [17nﬂ7>\n(P) < /\k(Hrandom) - /\k(HANM) < /\1(P)
where eigenvalues are re-ordered in descending order.

The last equality requires to know the eigenvalues of the matrix of pertur-
bations. Although they can be computationally determined, it is intractable
theoretically.

The former inequality, although more interesting, does not help us so much.
The matrix P being symmetric, the matrix product PPT reduces to the matrix
product of P with itself. Then the trace of such a product corresponds to the
sum of all squared elements of the matrix P i.e.

N N
Z()‘i(Hrandom) - )\i(HANM))Q < Z pij (8)
=1 ij=1

What we know about the elements of P is that the more links the network has,
the more filled the matrix P is. However, it does not guarantee that smaller
networks would have a smaller bound in equation (8) since an element p; ; is
itself a sum of elastic-force-derivative-like terms which can be either positive or
negative. These terms depend on the inverse squared of the distance between
two residues.
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From the side of random network theory, works are mainly focused on ran-
domising the setting of the connectivity itself rather than the weights of a de-
fined network. That would be also a nice future work to randomise the links
themselves.

VI Interface

To carry out all simulations above, we have implemented ourselves the code
and developed a user-friendly interface easy to use (see Figure 29). It is divided
into two tabs: the first one is dedicated to the normal mode analysis while the
second one carries out relaxation trajectories.

Normal mode analysis/Relaxation trajectory Software - *
Normal mode analysis | Relaxation trajectory
wrodels [T Eigenvalues
L Anm () Eigenvectors
() B-Factors
[_] Transition
() saNm10 () daNm
() sanNm13 () ExpANMT7
() sdANM () hanm

[ start || Exit |

Figure 29: Interface of our software.

A Normal mode analysis

First, the pdb ID of the protein has to be entered in the appropriate box. The
algorithm first check the current folder then, if it has not found the file, goes
to the protein data bank website. All alpha-carbons are extracted disregarding
the number of chains. Then, the file has to be pre-processed by hand in the
desired way before. Files other than pdb files are not compatible.

Then we can choose the models:

- ANM is classical model for which the cut-off distance as well as the spring
constant can be chosen

- sSANM10, sSANM13 and sdANM are the sequence specific models
- dANM, ExpANM7 and hANM being the distance heterogeneous models de-

scribed in section III
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It is possible to choose several models at the same time, the code being able
to independently carry out the normal mode analysis for each model and gives
model-specific outputs.

As for the outputs:

- Eigenvalues: output the eigenvalues in the ascending order. The six first
ones should be 0.

- Eigenvectors: output the eigenvectors, each line corresponds to one eigen-
vector.

- B-Factors: output the B-factors and the Pearson correlation coefficient in
two separate files. In the B-factors file, each line corresponds to one residue,
the first column is the index of residues, the second column is the sequence
number of the residue, the third column is the theoretical B-factor calculated
as explained in the materials and methods section and the fourth column is the
experimental B-factor extracted from the pdb file.

- Transition: output the overlaps and the cumulative overlap of the transitions
between the main pdb id and another one in separate files. A second structure
has to be provided following the same rules as stated above. There are two
ways of doing: either the NMA is carried out before taking the common set of
residues and proceeding to the alignment or the inverse. The overlaps are cal-
culated for the two transitions: ”pdb_id1-to-pdb_id2” means that the overlaps
are calculated using the spectrum of pdb_idl. The alignment is automatically
done.

Table 10 summarises the outputs and how are generated their names. ”pdb_id”
should be replaced by the provided pdb id and ”"model” by the chosen model.
Several outputs can be chosen at the same time.

The simulation starts when clicking the button ”Start”, a window will pop-
up and the simulation can be stopped by clicking ”Cancel” which will kill the
software process. An example of use is illustrated in Figure 30.

Box name Job Output file names
Eigenvalues Outputs the eigenvalues pdb_id-eigenvalues-model.txt
Eigenvectors Outputs the eigenvectors in lines pdb_id-eigenvectors-model.txt
B-Factors Outputs B-factors + Pearson correlation | pdb_id-BFactors-model.txt
coefficient pdb_id-PearsonCorrelationCoefficient-model.txt
Outputs the overlaps + the cumulative pdb_id1-to-pdb_id2-overlaps-model.txt
overlap for the two transitions pdb_id1-to-pdb_id2-cumuloverlaps-model.txt

Transition pdb_id2-to-pdb_id1-overlaps-model.txt

pdb_id2-to-pdb_id1-cumuloverlaps-model.txt

Table 10: Summary of the outputs and their file names for the normal mode
analysis.
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Normal mode analysis/Relaxation trajectory Software - =

Normal mode analysis | Relaxation trajectory

Protein pdb ID | | 1ajx Outputs
Models (% Eigenvalues
v ANM — =
5] || Eigenvectors
[ B-factors
[ Transition
Second structure pdb ID | | 1hhp
(L) sanmio () danm ®) Normal mode analysis then alignement
- . Alignement then Normal mode analysis
() sanmi3 () ExpaNM7
(¥ sdanm [ hanm

[ start |[ Exit |

Figure 30: Example of use for the normal mode analysis. The pdb id of HIV-
1 protease lajx is provided, we want to use the normal mode analysis with
both ANM16 and sdANM to output the eigenvalues of lajx and to study the
transition from and to 1hhp via overlaps. The pdb files of 1ajx and 1hhp have
to be in the folder as well as the "sd ANM.txt” file for sd ANM.

B Relaxation trajectory

As for the second tab, the software carries out dynamics simulations. The se-
lections of the protein and of the models are the same as for the first tab.

The dynamical simulation consists, here, in deforming the initial structure and
to look at how it goes back to the equilibrium. For the deformations, there
are two possibilities which can be coupled. The first one is to randomly apply
deformations. The initial force refers to the total magnitude. We apply uni-
form random forces to each residue which are rescaled such as the sum over all
residues equals the total magnitude. The initial time refers to the time at which
random forces are cut and the system starts to go back to the equilibrium. The
user can choose to apply these forces either to all residues or to only a part of
them in which case, the user has to provide a pdb-like file where the selected
residues are recorded.

The second possibility is to choose a second structure which plays the role of
the deformed state. We, then, look at the transition to the main structure.
The providing of the time step is not mandatory and is set to the inverse of the
largest eigenvalue if not chosen by the user.

Three residues are taken as labels to follow the relaxation process. We can
choose them manually by providing the sequence number of the residue and the
chain letter to which the residue belongs to. If the box remains unchecked, the
labels are automatically chosen® [38].

As for the outputs, it is possible to run several simulations using the same pa-
rameters. It is particularly useful in the case of random deformations to obtain
valuable statistical data. These simulations can be run in parallel by setting a

8The method is explained in the appendix about relaxation trajectories.
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number of desired threads. When a simulation ends in a thread, another one is
started until reaching the number of simulations.

The distances between labels, their normalised distances and the mechanical
coordinates are outputted for each simulation. The rate of recording can be
changed via the interface. When choosing to run multiple simulations, a file
compiling the distances between labels over all simulations is outputted. The
size of this file is reduced by discarding cases where the distances have not
changed during a time step, they are removed. Details of the content for these
files are available in the next section.

Finally, a pdb movie can be selected as an output. It is readable by VMD. The
positions of residues are recorded at a rate chosen by the user.

An illustration of use is available in Figure 31.

Normal mode analysis/Relaxation trajectory Software - >
Normal mode analysis | Relaxation trajectory
wij Inputs. outputs
Models (¥ Random deformations .
- 500 = Total number of trajectories: | |5 | 5
oo [ |4 :
) All residues
Group of residues 10 B
() Transition B
- — () PDB Movie
. - [ |
() sanNm13 () ExpANM7 =
[ sdanm [ hanm .
o - Time step
(®) Automatic () Manual | 0.0001 |7
(¥ Labels
Label 1: || 122 ‘A ( (Exi
- [ | start || Exit |
53]l
o [ofer] s

Figure 31: Example of use for the relaxation trajectories. The dynamical simu-
lation will be carried out for myosin V (pdb id: 1w7j) for the models ANM10,
sANM10 and hANM. The deformations are random and we have chosen our-
selves the three labels. Simulations will run for each model one after the other.
For each model, 5 simulations will run with 4 threads running in parallel.

C Details of output files

There are three main output text files for each simulation. In the following,
"model” refers to the model chosen and ”i” refers to the i*" simulation.

- pdb_id-Relaxation-model-i.txt (or pdb_id_ini-to-pdb_id_final-Relaxation-model-
i.txt if an initial structure is used). This file contains the distances between the
three labels starting from the deformed state. The first column is the time, then
the distances 1-2, 1-3 and 2-3. The three last columns are the normalised shift
d(t) — d°

d° )

of the current distances from the equilibrium ones (
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- pdb_id-Relaxation-model-Compiled Trajectories.txt compiles the above relax-
ation file for all simulations ¢ in one file. Two blank lines separate two simula-
tions. In this file, if, for one simulation, the distances at time ¢ 4+ dt have not
changed as compared to the ones at time t, then they are discarded. It allows
to reduce the file size in order to be more easily readable by rendering software
like Gnuplot.

- pdb_id-MechanicalCoordinate-model-%d.txt contains the elastic potential en-
ergy according to the mechanical coordinate. The first column is the mechanical
coordinate @, the second is the elastic potential energy U and the last one is
the potential energy along the slowest mode (first non-zero mode).

In addition to these three files, two other informative files are outputted. A
file which displays the labels used in the simulations (convenient if the labels
are automatically chosen) and a log file summarising the simulation parameters.

VII Future directions: Molecular dynamics sim-
ulations

An even more helpful way of getting insights about the motions and conforma-
tional changes, is to couple the ANM to molecular dynamics simulation (MD
simulations). In such simulations, after coarse-graining (or not) the protein of
interest, each residue or atom follows the Newton’s equation of motion which
allows to track spatially and timely the structural changes. Brownian dynamics
simulations are such MD simulations based on the Brownian motion and the
Langevin equation.

The Brownian motion originated from the observations of Robert Brown in 1827
on the chaotic motions of pollen particles in water [84]. Then, in 1905, Einstein
described theoretically the Brownian motion linking it to the diffusion equation
[85]. A few years latter, Langevin gave a different but equivalent theoretical
description of the Brownian motion using a stochastic equation now known as
the Langevin equation [86]. By this article, he also laid the foundation of the
Langevin dynamics and a fortiori of the Brownian dynamics.

The Brownian dynamics itself is beyond the ENM and can be applied to any kind
of network and is not limited to proteins modelled with harmonic potentials.
The Brownian dynamics is the overdamped limit of the Langevin dynamics.
Each residue follows an equation of its motion having two parts: a determin-
istic one representing forces between atoms and a stochastic one allowing the
diffusion. Many biological aspects can be included in the deterministic part
such as the exclusion volume effect consisting in avoiding the overlapping of two
residues.

Typically, for a residue i in a protein having N residues, its Langevin equation
is determined as follow:

Starting from the Newton law,
Fy(t.r) + Fit,r) + F{(t,r) =0 9)

where = (11, ..., 7n) is the vector of positions of residues.
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The forces acting on the bead i are :

- The (viscous friction) hydrodynamic force
Fi = —ev;

where € is the drag coefficient

-F} being the sum of all deterministic forces:

- Harmonic forces (in the case of the ENM)
o N
U=35)_ aijldi — djy)?
j=1

with a;; = 1 if there is a link between ¢ and j and 0 otherwise.

- Lennard-Jones Potential force to model the Van der Walls force and the
exclusion volume between two residues [87, 88|

12 6

i g ag

( is the depth of the potential well, o is the distance at which the potential

- The stochastic force F!: it represents the collisions of the bead with the
molecules of solvent. It is modelled as a Brownian motion of mean 0 ({F?) = 0)
2KpBTe

due to the isotropy and a second moment (F:(t), Fi(t + dt)) = counter-

acting the dissipative forces [89]. Kp is the Boltzmann constant and T the
temperature of the system.

By rearranging the equation (9), we obtain the Langevin equation on the posi-

tion of the residue 7 :
1 . 2KgT
dr; = =Fi(t,r)dt + |/ =—2=aw; (10)
€ €

where dWW; is a Gaussian process of mean 0 and variance dt.

In addition or in replacement of harmonic forces, any kind of forces can be
used like rigid rods [90, 91], attractive-repulsive forces [92], bending forces [93],
etc.

An interesting aspect of such simulations is that reactions and bindings can be
included. It is then possible to probe the effect of a binding or a reaction to the
conformation of proteins. Now, simulation techniques have been developed for
the Brownian dynamics with reactions [94, 95, 96].

However, such details and freedoms of modelling come with drawbacks. The

main one being the time consumption. Indeed, the time step should be smaller
than a typical motion order and the equations have to be updated every time
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step. In particular, when considering reactions and bindings, the system has
to reach the steady state before being able to collect valuable statistical data.
Many studies have proposed techniques to reduce this time by jumping from
event to event [97, 98, 99]. However, such methods are may be not suited if
we are interested in the variation of the conformations of proteins since they
overlook them. Another way would be to coarse-grain even more to reduce the
number of residues in the system in the expense of some degree of accuracy.

VIII Conclusion

The first study of this thesis has focused on three recent sequence-specific mod-
els. They have been compared to the classical ANM where spring constants
are homogeneous. The addition of the sequence-specificity has not brought any
valuable improvement into the modelling. Although some proteins are better
modelled by the sequence-specific models, the improvement does not reflect any
kind of chemical properties. Furthermore, such improvements are not system-
atic. This weak sensitivity is unexpected since the spring constants have been
determined using a NMR data set via statistical tools. Thus, a lot of information
has been added when inferring the spring constants: polarity, neighbourhood,
effects of the solvent, etc. However, the connectivity itself seems to drive the
performance or, at least, mostly.

Observing the insensitivity to the spring constant fitting in the first study, the
second one focused on some distance-dependent models which showed improve-
ments in the Pearson correlation coefficient. The particularity of these models
is that the cut-off distance is removed and the spring constants are fit accord-
ingly. In that sense, these networks are fully connected i.e. all residues are
connected with all others. These distance-dependent models definitely improve
the homogeneous version of the full-connected network. However, the fitting
is such that the long-rang interactions are very weak and poorly affect the
modelling. This, inevitably, imposes a kind of cut-off distance. Indeed, the
correlation coefficients are greatly influenced by the same flexible parts as in
the first study. Then comparing these parameter-free heterogeneous models to
non-parameter-free homogeneous models, we observed weak sensitivity. Again,
this is unexpected since the fitting of spring constants relies on an intuitive
argument which is the short-range interactions are stronger than long-range in-
teractions. The addition of the distance in the modelling is not reflected in the
improvement seen at the protein level.

The two first studies, both, support the same conclusion: the ANM is insensitive
to the fitting of its spring constants and additions of chemical- or physical-related
properties, other than the structure itself, do not bring any valuable information
to the modelling. Then, we focused our last study on random fitting of spring
constants. Particularly, the spring constant values are incoherently randomised
while the connectivity remains the same. In average, performances are similar
to the ones of a classical ANM and the distribution of PCCs around the average
one is generally not wide highlighting a true robustness against the fitting of
spring constants. The investigations of the networks with the best performances
reveal interesting information for proteins for which the performances of the pre-
ceding networks are biased by flexible parts. The large PCC is solely due to the
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better modelling of flexible parts. Indeed, only spring constants of links related
to these parts are systematically stronger or weaker than the mean value. Then,
enhancements do not reflect any kind of physical or chemical properties. This
last study shows in a large extent the robustness of the ANM against the fitting
of its spring constant and it highlights the non coherence of the improvements
when they are.

Our three studies show that fitting the spring constants in order to improve the
modelling is a not a good direction. The properties intended to be included
in the model are not reflected in the performances preventing from any kind of
valuable study on these properties (e.g. a study on the effect of mutations). The
major drawback of the ANM is the inability to correctly predict the fluctuations
of flexible parts. This is still true for all versions of the ANM excepted for those
which completely damp the fluctuations. This drawback for ANM has been
already reported [79, 80, 100], it is called the tip effect. Many studies focused
on suppressing this effect by bond angle restrictions [79, 80] or by taking into
account the crystal packing for crystallographic proteins [20]. The strategy of
both of them consists in the stiffening of the flexible parts. It is in agreement
with our randomisation study.

A future direction of this work would be to look at the design of the model
itself. It is determined in an empirical manner where the only physical fea-
ture is the relative positions of residues. Otherwise, the choice of connections
is not related to any chemical or physical arguments. Its simplicity already
gives useful and accurate results but it would be difficult to valuably include
chemical details in the modelling if the network itself is not related to any chem-
ical background. Then, including physical and chemical details at the level of
the setting of the connectivity of the network should be the next steps toward
the improvement of the ANM. More or less in this spirit, some studies has al-
ready focused on considering several type of interactions by making the spring
constants interaction-type dependent [23, 33]. However, these models include
additional parameters making a systematic study even harder. Up to date, it is
missing.
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A B-factor and PCC studies

A.1 For sequence specific models

Table 11 shows the Pearson correlation coefficient for the full set of proteins
used as individual study for sequence specific models.

ANM10 ANM13 ANM16 SANM10 SANM13 SdANM
Adenylate Kinase |
1aky 0.61 0.56 0.61 0.68 0.64 0.76
4ake ‘ 0.70 0.65 0.64 0.73 0.70 0.74
2ak3 0.36 0.28 0.44 0.25 0.28 0.53
|
|
Myosin V
wrj| 0.77 0.77 0.68 0.79 0.79 0.83
10€9 053 0.58 0.62 0.53 0.57 0.57
|
Maltodextrin Binding Protein
1jw4 ‘ 0.55 0.61 0.70 0.56 0.62 0.67
fomp 0.57 0.61 0.68 0.57 0.60 0.61
tanf | 0.54 0.55 0.56 0.50 0.51 0.49
Scallop Myosin |
1kk8 0.40 0.51 0.60 0.40 0.50 0.46
1kK7 | 0.14 0.31 0.38 0.16 0.31 0.30
HIV-1 Protease
1hhp 0.03 0.20 0.28 0.04 0.34 0.26
1ajx 0.66 0.57 0.55 0.63 0.54 0.48
F1-ATPase
1h8h (chain E) 0.49 0.52 0.53 0.46 0.49 0.41
1h8e (chain E) 0.30 0.31 0.33 0.28 0.30 0.27
Kinesin KIF1A
1i6i 0.50 0.39 0.19 0.51 0.34 0.19
1i5s 0.49 0.48 0.51 0.49 0.48 0.51
Human Kinesin Motor Domain
1mkj 0.41 0.69 0.70 0.41 0.69 0.67
1bg2 0.68 0.71 0.69 0.67 0.71 0.65
Aspartate Aminotransferase
Qaat 0.67 0.66 0.62 0.67 0.62 0.65
Tivr 0.30 0.28 0.30 0.29 0.27 0.31
Annexin V
1avr 0.49 0.61 0.58 0.39 0.54 0.47
1avh 0.25 0.26 0.19 0.29 0.29 0.28
Penicilin Binding Protein
1vqq 0.75 0.74 0.71 0.74 0.71 0.73
3290 0.77 0.76 0.68 0.79 0.75 0.79
4dki 0.61 0.64 0.65 0.62 0.64 0.69
Enolase
5enl 0.59 0.57 0.60 0.54 0.54 0.66
3enl 0.54 0.52 0.54 0.51 0.51 0.64
Solution NMR Protein
Ubiquitin (1xqq) 0.74 0.73 0.80 0.70 0.69 0.66
Acyl Carrier Protein (5y08) 0.68 0.70 0.62 0.70 0.72 0.70
Type IV Pilin PILE1 (6i20) 0.87 0.88 0.85 0.87 0.87 0.94
SPH Protein (697g) 0.41 0.60 0.64 0.46 0.61 0.54
Hydrolase (6qeb) 0.81 0.69 0.70 0.80 0.69 0.67
A1-Type ACP Domain (6h0j) 0.80 0.58 0.57 0.86 0.69 0.80
B1-Type ACP Domain (6h0q) 0.69 0.78 0.83 0.71 0.76 0.86
VAT-N (1cz4) 0.37 0.32 0.60 0.37 0.32 0.48
Factor H Binding Protein (2kc0) 0.69 0.69 0.71 0.71 0.72 0.75

Table 11: Table of Pearson correlation coefficients. Carried out for some popular
proteins with the 6 models we have considered, red being related to classical
ANM and blue being related to sequence-specific models.
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A.2 Heterogeneous parameter-free models

Table 12 shows the Pearson correlation coefficient for the full set of proteins
used as individual study for parameter-free heterogeneous models.

ANM10  ANM16 ~ ANM-AC dANM ExpANM3 ~ ExpANM7 ~ hANM

Adenylate Kinase
1aky 0.61 0.61 0.62 0.65 0.76 0.70 0.73
4ake | 0.70 0.64 0.50 0.55 0.76 0.68 0.69
2ak3| 0.36 0.44 0.40 0.67 0.48 0.49 0.54
Myosin V
1wzj| 0.77 0.68 0.81 0.71 0.82 0.81 0.81
1oe9 0.53 0.62 0.61 0.68 0.58 0.59 0.61

Maltodextrin Binding Protein

1jw4| 055 0.70 0.46 0.67 0.65 0.68 0.70
fomp| 057 0.68 0.49 0.66 0.61 0.67 0.67
janf| 054 0.56 0.65 0.71 0.50 0.57 0.56

Scallop Myosin
1kk8 |~ 0.40 0.60 0.61 0.66 0.30 0.54 0.55
1kk7 | 0.14 0.38 0.45 0.56 0.1 0.38 0.40

HIV-1 Protease

1hhp| 0.03 0.60 0.35 0.28 0.04 0.23 0.22

1ajx| 0.66 0.55 0.59 0.58 0.56 0.61 0.59
F1-ATPase

1h8h (chain E) | 049 0.53 0.55 0.53 0.43 0.51 0.50

1h8e (chain E) |  0.30 0.33 0.36 0.37 0.25 0.32 0.31
Kinesin KIF1A

1i6i| 0.50 0.19 0.59 0.66 0.19 0.29 0.38

1i5s| 0.49 0.51 0.56 0.63 0.21 0.50 0.52

Human Kinesin Motor Domain
1mkj | 0.41 0.70 0.71 0.77 0.62 0.71 0.71
1bg2| 0.68 0.69 0.69 0.74 0.60 0.74 0.74

Aspartate Aminotransferase

9aat 0.67 0.62 0.50 0.60 0.68 0.68 0.68

1jivr| 0.30 0.30 0.44 0.49 0.33 0.29 0.36
Annexin V

1avr 0.49 0.58 0.34 0.59 0.32 0.29 0.56

javh 025 0.19 0.34 0.56 0.25 0.19 0.28

Penicillin Binding Protein

fvgq| 075 0.71 0.30 0.63 0.71 0.75 0.75
3290 0.77 0.68 0.52 0.71 0.76 0.78 0.79
4dki| 061 0.65 0.55 0.64 0.64 0.66 0.67

Enolase
5enl| 059 0.60 0.58 0.69 0.64 0.65 0.68
3enl| 054 0.54 0.49 0.60 0.64 0.60 0.64

Solution NMR Protein
Ubiquitin (1xqq) | 0.74 0.80 0.88 0.89 0.63 0.78 0.75
Acyl Carrier Protein (5y08) | 0.68 0.62 0.38 0.51 0.50 0.72 0.79
Type IV Pilin PILET (6i20) | 0.87 0.85 0.60 0.76 0.93 0.88 0.91
SPH Protein (6g7g) | 0.41 0.64 0.66 0.62 0.36 0.61 0.59
Hydrolase (6qeb)  ~ 0.81 0.70 0.95 0.94 0.62 0.72 0.74
A1-Type ACP Domain (6h0j) | 0.80 0.57 0.53 0.60 0.77 0.66 0.78
B1-Type ACP Domain (6h0q)| 0.69 0.83 0.57 0.79 0.72 0.86 0.89
VAT-N (1cz4)| 037 0.60 0.49 0.68 0.37 0.51 0.53
Factor H Binding Protein (2kc0) | 0.69 0.71 0.62 0.75 0.74 0.71 0.73

Table 12: Pearson correlation coefficient for distance-dependent models along-
side with classical ANMs with a cut-off distance.
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A.3 For the randomised spring constant models

Table 13 shows the averaged Pearson correlation coefficient among 10,000 or
100,000 random networks for the full set of proteins.

ANM10  ANM13  ANM16 Random10 Randomi13 Random16 Nb
(RMSD) (RMSD) (RMSD)  Networks
Adenylate Kinase

1aky 0.61 0.56 0.61 0.58 (0.12) 0.54 (0.1) 0.60 (0.08) 100,000

4ake 0.70 0.65 0.64 0.70 (0.04) 0.65 (0.04 0.64 (0.03) 100,000

2ak3 0.36 0.28 0.44 0.45 (0.01) 0.45 (0.08) 0.43 (0.1) 100,000
Myosin V

1w7j 0.77 0.77 0.68 0.74 (0.07) 0.73 (0.07) 0.64 (0.08) 10,000

10e9 0.53 0.58 0.62 0.53 (0.01) 0.57 (0.01) 0.61(0.01) 10,000

Maltodextrin Binding Protein

1jw4| 055 0.61 0.70 0.52(0.03)  058(0.04)  0.68(0.02) 10,000
fomp| 057 0.61 0.68 0.54(0.04)  059(0.03)  0.66(0.02) 10,000
1anf| 054 0.55 0.56 0.51(0.06)  0.53(0.05)  0.54(0.05) 10,000
Scallop Myosin
1kkg|  0.40 0.51 0.60 0.37(0.08)  050(0.04)  0.59(0.02) 10,000
1kk7| 0.14 0.31 0.38 0.14(0.05)  0.28(0.09)  0.36(0.04) 10,000

HIV-1 Protease

1hhp|  0.03 0.20 0.60 0.03(0.03)  0.18(0.23)  0.27(0.13) 100,000

1ajx| 066 0.57 0.55 0.61(0.14) 0.54 (0.1) 0.54 (0.08) 100,000
F1-ATPase

1h8h (chain E)|  0.49 0.52 0.53 0.47(0.03)  051(0.01)  0.52(0.01) 10,000

1h8e (chain E) 0.30 0.31 0.33 0.28 (0.03) 0.31 (0.01) 0.33 (0.02) 10,000
Kinesin KIF1A

1i6i| 050 0.39 0.19 0.49(0.06)  0.34(0.07)  0.19(0.01) 10,000

1i5s|  0.49 0.48 0.51 0.48(0.03)  0.46(0.03)  0.50(0.02) 10,000

Human Kinesin Motor Domain

1mkj 0.41 0.69 0.70 0.39 (0.1) 0.68 (0.01) 0.69 (0.02) 10,000

1bg2 0.68 0.71 0.69 0.66 (0.08) 0.69 (0.04) 0.68 (0.03) 10,000
Annexin V

javr| 049 0.61 0.58 045(0.12)  059(0.03) 057 (0.02) 10,000

1avh 0.25 0.26 0.19 0.25(0.02)  0.26 (0.02) 0.19 (0.02) 10,000

Penicillin Binding Protein

1vqq 0.75 0.74 0.71 0.74 (0.02) 0.73 (0.01) 0.70 (0.01) 10,000
3290 0.77 0.76 0.68 0.76 (0.04) 0.73 (0.02) 0.64 (0.05) 10,000
4dki 0.61 0.64 0.65 0.59 (0.07) 0.62 (0.02) 0.64 (0.01) 10,000

Enolase
Senl 0.59 0.57 0.60 0.57(0.03)  0.55(0.04) 0.59 (0.04) 10,000
3enl 0.54 0.52 0.54 0.53 (0.03) 0.50 (0.04) 0.53 (0.04) 10,000

Solution NMR Protein
Ubiquitin (1xqq) 0.74 0.73 0.80 0.71(0.18) 0.72 (0.18) 0.78 (0.14) 100,000
Acyl Carrier Protein (5y08) 0.68 0.70 0.62 0.66 (0.27) 0.69 (0.13) 0.62 (0.09) 100,000
Type IV Pilin PILE1 (6i20) 0.87 0.88 0.85 0.84 (0.15) 0.86 (0.12) 0.84 (0.09) 100,000
SPH Protein (6g7g) | 041 0.60 064  0.40(0.003) 059(0.12)  062(0.09) 100,000
Hydrolase (6qeb) | 081 069 0.70 078(0.16)  0.68(0.1) 0.8(0.09) 100,000
A1-Type ACP Domain (6h0j) 0.80 0.58 0.57 0.76 (0.29) 0.56 (0.26) 0.55 (0.19) 100,000
B1-Type ACP Domain (6h0q) 0.69 0.78 0.83 0.69 (0.09) 0.77 (0.15) 0.81(0.1) 100,000
VAT-N (1cz4) 0.37 0.32 0.60 0.36 (0.07) 0.32 (0.05) 0.59 (0.21) 100,000
Factor H Binding Protein (2kc0) 0.69 0.69 0.71 0.66 (0.16) 0.68 (0.08) 0.69 (0.05) 100,000

Table 13: Table of Pearson correlation coefficient for the full set of proteins. For
the random models, the PCC has been averaged over either 10,000 or 100,000
networks. The RMSD through the networks is calculated in parenthesis.
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B Relaxation trajectory studies

B.1 For the sequence specific models

1 Method

The three labels are chosen according to an automatic way [38]. For HCV heli-
case, the normal mode analysis has been carried out for ANMS. The two first
labels correspond to the pair for which the distance change after applying the
slowest mode is the maximal then the last label is chosen as the residue for
which the distance change between it and the label 1 is maximal after applying
the second slowest mode. The same three labels have been saved and used for
the other models (ANM10, sdANM, ...). For F;-ATPase and myosin V, the
procedure is the same but the labels have been determined for ANM10.

e HCV Helicase
- Label 1: Chain A Residue 257
- Label 2: Chain A Residue 402
- Label 3: Chain A Residue 589

e '1-ATPase
- Label 1: Chain E Residue 191
- Label 2: Chain E Residue 390
- Label 3: Chain E Residue 54

e Myosin V
- Label 1: Chain A Residue 122
- Label 2: Chain B Residue 22
- Label 3: Chain B Residue 135

As for the deformations, uniform random forces f = (fi,..., fn) are applied
on each residue such as || f||2 = Fj,; where Fj,,; (in force unit) is the total mag-
nitude. The forces are applied until a certain time T;,,; (in time unit) after which
they are cut and the system goes back to the equilibrium. The total magnitude
and the initial time at which the relaxation start depends on the protein and
the model:

e HCV helicase
- ANMS: F;,; =1, T},; = 5000
- ANM10: F;,; = 40, T;,; = 200
- ANM13: F;,; = 100, T;,; = 200
- ANM16: F;,; = 500, T;,; = 1000
- sANM10: Fj;,; = 20, T;,; = 1000
- sANM13: Fj,; = 200, T;,; = 1000
- sdANM: Fini = 5, Tim = 1000

e F'1-ATPase
- ANM10: F;,; = 10, T},; = 30000
- ANM13: F;,; = 50, T};,; = 100
- ANM16: F;,; = 500, T},; = 1000
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- SANM10: Fj,; = 20, Ty = 1000
- SANM13: Fj,; = 100, T;,; = 1000
- sdANM: F;,; = 10, T},; = 1000

e Myosin V

- ANM10: Fipi = 5, Typi = 1000
- ANM13: Fj,; = 10, T3, = 1000
- ANM16: Fj,; = 50, Ty, = 1000
- SANM10: Fim = 10, Tini = 1000
- SANM13: Fj,; = 10, Ty = 1000
- sdANM: F;,,; =5, Tini = 1000

2 Results

All results about the relaxation trajectories along the three label distances for

HCYV helicase, F1-ATPase and myosin V are displayed in Figures 32 to 42.
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Figure 32: 100 relaxation trajectories from random deformations for HCV heli-
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Figure 33: 100 relaxation trajectories from random deformations for HCV heli-
case with ANM13 (red) and sANM13 (blue).
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Figure 34: 100 relaxation trajectories from random deformations for HCV heli-
case with ANM16 (red) and sdANM (blue).
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Figure 35: Elastic energy relaxations corresponding to 100 relaxation trajecto-
ries starting from random deformations for HCV helicase (pdb id: 1lhei). The
black line corresponds to the energy relaxation of the lowest frequency mode.
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Figure 36: 100 relaxation trajectories from random deformations for F1-ATPase
with ANM10 (red) and sANM10 (blue).

69
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Figure 37: 100 relaxation trajectories from random deformations for F1-ATPase

with ANM13 (red) and sANM13 (blue).
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Figure 38: 100 relaxation trajectories from random deformations for F;-ATPase
with ANM16 (red) and sdANM (blue).
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Figure 39: Elastic energy relaxations corresponding to 100 relaxation trajec-
tories starting from random deformations for F1-ATPase (pdb id: 1h8h). The
black line corresponds to the energy relaxation of the lowest frequency mode.
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Figure 40: 100 relaxation trajectories from random deformations for myosin V
with ANM10 (red) and sSANM10 (blue).
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Figure 41: 100 relaxation trajectories from random deformations for myosin V
with ANM13 (red) and sANM13 (blue).
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Figure 42: 100 relaxation trajectories from random deformations for myosin V
with ANM16 (red) and sdANM (blue).
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Figure 43: Elastic energy relaxations corresponding to 100 relaxation trajecto-
ries starting from random deformations for myosin V (pdb id: 1w7j). The black
line corresponds to the energy relaxation of the lowest frequency mode.

B.2 For heterogeneous parameter-free models

Only myosin V was used for this study. The labels are the same as above:
- Label 1: Chain A Residue 122
- Label 2: Chain B Residue 22
- Label 3: Chain B Residue 135

As for the total magnitude and the initial time:
- ANM16: Fy; = 50, Ty = 1000
- dANM: F;,; = 25, T;,; = 1000
- ExpANMT: Fj,; = 25, T;, = 1000
- hANM: Fj,; = 25, Tini = 1000
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