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Abstract  This paper revealed the spatial variation in abundance and body size of larval fishes 16 

in the Seto Inland Sea, Japan, in January 2014 and 2015. Fish larvae were collected by a 1.3-m 17 

diameter ring net towed at the surface and the 10-m depths at 21 stations. The most dominant 18 

species was the sandlance Ammodytes japonicus, constituting 82% of total larval fish caught. 19 

Body size of A. japonicus was greater (around 9 mm total length in 2014) in eastern areas than 20 

in western areas (around 5 mm total length). This trend was also observed in rockfishes 21 

(Sebastiscus marmoratus and Sebastes inermis species complex), suggesting a common 22 

phenomenon in this region. Because water temperature was lower in eastern areas, it is likely 23 

that the longitudinal differences in larval body sizes are attributable to earlier spawning in 24 

eastern areas caused by different temperature conditions. 25 

 26 

Keywords: oceanographic condition; timing of hatching; larval growth; spawning season 27 

  28 
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Introduction 29 

 30 

Species-specific recruitment mechanisms are one of the most important issues for sustainable 31 

fisheries. In the Seto Inland Sea, western Japan, Japanese anchovy Engraulis japonicus and the 32 

sandlance Ammodytes japonicus constituted 53% of the total catch in 2014 (Annual statistic of 33 

fishery and aquaculture production, Ministry of Agriculture, Forestry and Fisheries). Larvae 34 

and juveniles of these two species are targeted by commercial fisheries. Therefore, the levels of 35 

recruitment of these two species govern the fishery status in this region. Ammodytes japonicus 36 

are demersal spawners and demonstrate site fidelity to sandy substrate. These sandy spawning 37 

areas are additionally used for estivation during a high temperature period around summer [1,2]. 38 

As the available sandy ground has been reduced artificially, the stock status of this species has 39 

declined. To ensure continuous and sufficient recruitment, knowledge of the recruitment 40 

process coupled with conservation of sandy ground is essential. The sandlance is the most 41 

dominant species in larval and juvenile fishes collected in Ise Bay in the winter [3], indicating 42 

the importance of this species in the larval fish assemblages of some regions. 43 

The Seto Inland Sea is a highly productive [4,5] and shallow (average depth = 38 m) semi-44 

closed body of water connecting the Pacific Ocean with two channels. Although water current 45 

is very fast in this water, environmental factors such as temperature and dissolved oxygen are 46 

highly variable between subareas [4]. For example, the minimum water temperature is lower in 47 

eastern areas (<9 °C; approximately 34.5°N, 134.5°E) than in western areas (around 11 °C; 48 

33.7°N, 132.5°E) [6]. Such variation suggests that organisms inhabiting each subarea have 49 

different biological characteristics such as growth and spawning season. 50 

The present study aimed to elucidate the body size variation of fish larvae between eastern 51 

and western areas in the winter, and to discuss the relevance of the variation in environmental 52 

conditions such as water temperature in the Seto Inland Sea. As the larval distribution and body 53 
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size may vary not only horizontally but also vertically within the water column [7], larval 54 

collections were conducted at two depth layers of surface and 10 m at each collection site in the 55 

Seto Inland Sea. 56 

 57 

Materials and methods 58 

 59 

Study site and larval collection 60 

 61 

Twenty-one stations were established in the Seto Inland Sea to cover a 300-km wide area from 62 

west to east (33°57′ to 34°39′ N, 132°34′ to 134°52′ E; Fig. 1, ESM Table S1). Station numbers 63 

were assigned along longitudes from west to east. Bottom depths ranged from 11 to 59 m at all 64 

stations. Daytime larval collections were conducted at each station by the training and research 65 

vessel Toyoshiomaru (256 tons) from January 20–23 2014 (16 stations) and January 26–30 66 

2015 (21 stations) (Table S1). A ring net with a 1.3-m diameter mouth, 4.5-m length, and 2 mm 67 

mesh in the anterior two-third and 0.335 mm mesh in the posterior one-third, was towed for 5 68 

min at a speed over the water of 2 knots at the surface and at 10-m depths. In 2014, towing at 69 

10 m was operated only at 7 stations out of 16 stations. Samples were sorted onboard 70 

immediately after collection and larval fish were preserved in 10% formalin, 99% ethanol, or 71 

by freezing with seawater. 72 

To monitor environmental conditions, water temperature (°C), salinity, and dissolved 73 

oxygen (DO, ml l-1) were measured at the surface and at 10 m at each station using a 74 

conductivity-temperature-depth (CTD) sensor (SBE-9plus, SeaBird), although no data were 75 

available for DO in 2014 owing to equipment malfunctions. 76 

 77 

Measurements 78 
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 79 

Larval fish were sorted in the laboratory by species according to Okiyama [8] and other 80 

literatures for flatfish [9,10]. Although juvenile/adult Sebastes inermis were classified into 3 81 

species [11], the larvae were regarded as S. inermis species complex because of the difficulty 82 

in visual identification of larval species. Total length (TL) was measured to the nearest 0.1 mm 83 

using a digital caliper under microscope. Larvae that were broken or inadequate for 84 

measurement were omitted. When the number of larvae per sample exceeded 60 (62–344), as 85 

observed only for A. japonicus, 44–113 larvae were subsampled and measured. The shrinkage 86 

of larval sandlance by the preservatives was determined by measuring TL onboard immediately 87 

after collection and again after more than one month of preservation. Shrinkage was 10% (n = 88 

47) and 8% (n = 9) by 99% ethanol and 10% formalin, respectively. Similarly, the shrinkage of 89 

other larvae were determined using rockfish (S. inermis species complex and Sebastiscus 90 

marmoratus) as 6% (n = 6) and 3% (n = 5) by ethanol and formalin, respectively. The TL at 91 

collection was calculated using these shrinkage rates. No shrinkage was assumed for frozen 92 

samples. Effects of collection dates on TL of each species were assumed to be negligible (see 93 

Discussion section). 94 

 95 

Data analyses 96 

 97 

The number of collected individuals per 5 min tow was regarded as catch per unit effort (CPUE), 98 

and was averaged among collection depths for each of 5 major species groups (A. japonicus, S. 99 

marmoratus, S. inermis species complex, Hexagrammos otakii, and Hexagrammos agrammus) 100 

each year in order to determine the horizontal pattern of larval abundance. Detailed data are 101 

presented in Table S1. To reveal the effects of location (longitude), collection depths, and 102 

environmental factors on larval abundance, generalized linear models (GLMs) were constructed 103 
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for the CPUE of each species, using R software (www.r-project.org). Explanatory variables 104 

were collection depths (categorical data as surface and 10-m depth), longitude represented in 105 

decimal number (e.g. 133°30′ E was converted to 133.5), year, and water temperature. Salinity 106 

was not included because of collinearity with water temperature and longitude (tolerance: 107 

longitude = 0.26, water temperature = 0.29, and salinity = 0.17). Because over-dispersion was 108 

observed for GLM with Poisson errors, a negative binomial distribution with log-link function 109 

was assumed for GLMs. The final model was determined through a stepwise model selection 110 

based on the Akaike information criterion. 111 

To reveal factors affecting larval body sizes, GLMs with gaussian family and identity 112 

function (equivalent to simple linear models) were constructed for TL of each species following 113 

stepwise model selection. Initial explanatory variables were the same with GLMs for CPUE 114 

(depth, longitude, year, and water temperature). 115 

 116 

Results 117 

 118 

Abundance 119 

 120 

In 2014, 1,455 individuals from 9 taxonomic groups and 6 families were collected by 23 net-121 

tows, consisting of 16 and 7 tows at surface and 10-m depths, respectively (Table 1). In 2015, 122 

1,015 larvae belonging to 10 taxonomic groups of 7 families were collected by 42 net-tows (21 123 

tows at both surface and 10-m depth). The most dominant species was the sandlance A. 124 

japonicus, which constituted 89% and 70% of larvae collected in 2014 and 2015, respectively. 125 

Rockfishes S. marmoratus and S. inermis species complex and greenlings H. otakii and H. 126 

agrammus were also abundant (Table 1). 127 

Water temperature ranged from 8.8 to 12.6 °C in 2014 and 8.8 to 12.1°C in 2015. The 128 
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temperature was lower at eastern stations each year, and increased from stations 17 to 21 in 129 

2015 (Fig. 2). No clear difference in water temperature between the surface and 10-m depth 130 

was observed, except for station 12 in 2015. Salinity was also lower at eastern stations, ranging 131 

from 31.9 to 33.3 in 2014 and 31.3 to 33.0 in 2015 (Fig. 2). DO was almost constant, ranging 132 

from 4.5 to 6.9 ml l-1 in 2015 (no data in 2014). No significant difference was observed between 133 

surface and 10-m depth layers for water temperature (paired t-test; t = 0.06, p = 0.96 in 2014; t 134 

= 1.20, p = 0.24 in 2015), salinity (t = 1.20, p = 0.25 in 2014; t = 0.80, p = 0.43 in 2015), and 135 

DO (t = 2.02, p = 0.06 in 2015). 136 

Larvae of Hexagrammos spp. were found mostly at the surface, whereas more larvae of S. 137 

inermis species complex were found at 10-m depth than at the surface (Table 1). CPUE was 138 

significantly greater for surface tows for H. otakii (GLM, p < 0.01; Table 2), and at 10-m depth 139 

tows for both S. marmoratus (p < 0.001) and S. inermis species complex (p < 0.001). Collection 140 

depth was not adopted as an explanatory variable in the model for the CPUE of A. japonicus. 141 

The CPUE of A. japonicus was greater in eastern areas especially in 2014 (Fig. 3). Negative 142 

relationship between its CPUE and water temperature was observed (p < 0.05; Table 2), 143 

indicating that the CPUE was greater at lower temperature. Significant effect of longitude on 144 

the number of collected individuals was observed only for S. marmoratus (p < 0.05; Table 2). 145 

Although the CPUE of S. marmoratus was suggested to be greater at higher water temperature 146 

by the GLM, the effect of longitude was larger than that of water temperature. The CPUE of 147 

other species was not affected by longitude nor water temperature except for H. otakii. CPUEs 148 

of A. japonicus and Hexagrammos spp. were greater in 2014 than in 2015, while that of S. 149 

marmoratus was greater in 2015 than in 2014. 150 

 151 

Body size 152 

 153 
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The TL of A. japonicus was larger at eastern stations than at western stations (Fig. 4). Average 154 

TL ± standard deviation (SD) of this species was 4.7 ± 1.6 mm (n = 97) at Stations 1–7, 8.4 ± 155 

1.6 mm (n = 178) at Stations 8–12, and 9.4 ± 1.2 mm (n = 216) at Stations 13–17 in 2014. 156 

Similarly, it was 5.2 ± 1.1 mm (n = 188) at Stations 1–7, 6.7 ± 1.3 mm (n = 92) at Stations 8–157 

12, and 9.4 ± 1.8 mm (n = 328) at Stations 13–21 in 2015. The TLs of S. marmoratus and S. 158 

inermis species complex also varied with longitudes, while no significant effect of longitude 159 

was observed for H. otakii and H. agrammus (Table 3). The TLs of A. japonicus and S. 160 

marmoratus were larger at lower temperatures while those of S. inermis species complex and 161 

H. otakii were smaller at lower temperatures. However, the effect of water temperature on the 162 

TL of S. inermis species complex was smaller than that of longitude. 163 

Significant effects of collection depth on the body size of larvae were observed for A. 164 

japonicus, S. marmoratus, and H. otakii; larvae of S. marmoratus were smaller at the surface 165 

layers than at the 10 m depths while those of A. japonicus and H. otakii were larger at the 166 

surface layers. Significant effects of year on the TLs of larvae were detected except for S. 167 

marmoratus (Table 3). Larvae of A. japonicus were smaller in 2015 while those of other species 168 

were larger in 2015 than in 2014. 169 

 170 

Discussion 171 

 172 

This study revealed that the body size of larvae of some species varies longitudinally within the 173 

study area in the Seto Inland Sea. The effect of sampling dates on the body sizes of larvae was 174 

not tested. Samplings in the eastern areas (Stations 13–21) were operated on the third and fourth 175 

days (except for Station 14 on the second day) during both cruises in 2014 and 2015, indicating 176 

that the growth from the first day to the fourth day (3 days) might be included in the result of 177 

larval size variation between areas. However, longitudinal difference in body sizes, e.g., 4.2–178 
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4.7 mm difference in average size of A. japonicus between Stations 1–7 and 13–21, was 179 

considerably greater: growth rates of A. japonicus were 0.15–0.23 mm d-1 during 30 d after 180 

hatching under laboratory condition [12, 13], indicating that >4 mm difference of in average 181 

size of larvae is comparable to >18 days difference in hatching dates. Similarly, growth rates of 182 

S. marmoratus were around 0.1 mm d-1 within 10 d after hatching under laboratory condition 183 

[14,15], indicating that the sampling dates can be negligible in these surveys. 184 

The larval sizes of A. japonicus, S. marmoratus, and S. inermis species complex were larger 185 

in eastern areas with lower temperatures than in western areas. The lower-temperature surface 186 

layers in eastern areas have typically been observed in this area from November to March (6th 187 

Regional Coast Guard Headquarters, unpublished data). Therefore, the winter variation in larval 188 

size could be related to water temperature. 189 

The mechanisms driving larval size variation in winter are unclear. One possible 190 

explanation is that lower temperatures in eastern areas induce an earlier spawning in winter. For 191 

example, A. japonicus start their vitellogenesis when water temperature falls to 20 °C, and 192 

subsequent progress of vitellogenesis is most rapid under 14 °C but final maturation completes 193 

around 11°C [16]. In the period from October 2013 to March 2014, bottom water temperature 194 

of 20 °C was observed in late November around Station 2 (west; Ehime Prefecture, pers. 195 

comm.) and early November around Station 15 (east; Kagawa Prefecture, pers. comm.). 196 

Thereafter, water temperature descended to 14 °C in early January around Station 2 and early 197 

December around Station 15, and reached to 11 °C in early February around Station 2 and early 198 

January around Station 15. Thus, the timing of the water temperature drops to the certain value 199 

differs approximately one month between these stations. Therefore, spawning of A. japonicus 200 

would begin one month earlier in eastern areas (including around Station 15) than western areas 201 

(including around Station 2). In contrast, higher temperature leads to higher growth rates, as 202 

observed in A. japonicus [17]. If the larvae with small sizes in western areas continued to expose 203 
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themselves to higher water temperature than that in eastern areas subsequently, the larvae in 204 

western areas would grow up with higher rates, resulting in mitigating the body size difference 205 

later. 206 

For rockfishes such as S. marmoratus, a similar explanation might be applicable for the 207 

difference in larval body sizes between eastern and western areas. The reproductive pattern in 208 

this species largely differs from that of A. japonicus: S. marmoratus spawn larvae directly into 209 

the water column, and one female releases one to several batches [18]. The parturition period 210 

of S. marmoratus continues from December to April [14], but survival of larvae reduces 211 

associated with the timing of parturition [19], indicating the importance of early cohorts in S. 212 

marmoratus at each area. Mature females of S. marmoratus release larvae with 4 mm TL during 213 

the early night [20], and larvae grow up to 7.2 and 12.3 mm TL on 22 and 35 days after 214 

parturition, respectively [21]. The collected larvae of S. marmoratus were <7 mm TL at western 215 

stations in 2014 (Fig. 4), while larvae >11 mm were observed at eastern stations in 2014. Thus, 216 

the parturition would start around 10 days earlier in eastern areas, leading to larger larval sizes 217 

than western areas. Further examination on the mechanisms causing longitudinal difference in 218 

larval sizes of rockfishes is necessary. The reason why the larval sizes of Hexagrammos species 219 

did not differ between areas is also unknown. The larvae of H. otakii around 15 mm TL, as 220 

collected in 2015, were born within 30 days, inferred from the laboratory observation [22]. This 221 

indicates the short spawning period of this species [23] led to small differences in body size 222 

between collection sites. 223 

Another possible explanation for the longitudinal variation in larval size of A. japonicus is 224 

the passive eastward transport of larvae. Nakata [24] revealed that strong westerly wind causes 225 

eastward transport of larval A. japonicus within a relatively small scale (from St. 15 to St. 19 226 

in this study). Such wind-induced transport of larvae from spawning sites to other areas might 227 

play a role in reducing adult predation on larvae [25]. If a principal spawning ground is located 228 
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in a western area, the earlier cohorts with larger body sizes might be transferred to eastern areas 229 

and might result in the difference in body size between areas. However, the larval transport 230 

within a greater scale, from 133° to 134 °E in longitude, is unlikely because it has not been 231 

suggested by the model simulation (Yamamoto H. et al., unpublished data). Longitudinal 232 

gradients in both temperature and salinity (Fig. 2) indicate the low mixture of waters between 233 

eastern (around 133° E) and western (around 134° E) areas. 234 

Because Ammodytes species exhibit strong site fidelity and small-scale movement after 235 

settlement [26–28], longitudinal segregation might occur in A. japonicus populations in the Seto 236 

Inland Sea. Further studies are necessary to determine whether the A. japonicus population is 237 

composed of more than two subpopulations with different spawning seasons and other 238 

biological traits. 239 

Larval abundance was not necessarily higher in eastern areas. Greater catch and abundant 240 

distribution in eastern areas have been well recognized for A. japonicus [29], resulting from 241 

heavier sand removal in western areas in the past. However, longitude was not necessarily the 242 

most important variable affecting the number of collected larvae of even A. japonicus. Spatial 243 

relationships in habitats between adults and larvae of each species or larval connectivity 244 

between areas are issues that should be investigated in future. Furthermore, higher temperature 245 

and higher salinity in western areas were observed in the present study (Fig. 2), indicating the 246 

formation of the thermohaline front. Around the thermohaline front, a high concentration of 247 

larvae such as Hexagrammos species and prey organisms often took place [30–32]. Such 248 

hydrographic structure should be considered as a potential factor affecting larval assemblages. 249 

The CPUE of larvae, which was greater at the surface in Hexagrammos species, but greater 250 

at 10-m depths in S. marmoratus and S. inermis species complex, could reflect species’ depth 251 

preference in the water column during daytime. It differs from the past study showing the 252 

vertical distribution of S. marmoratus larvae which were the most abundant at surface layer 253 
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compared to 25 and 50 m layers [33]. Depth preference of rockfish larvae should be investigated 254 

further. Collection depth was irrelevant to the CPUE of A. japonicus, but this differs from the 255 

past observation that A. japonicus larvae prefer depths of 5–15 m during daytime [34]. Similarly, 256 

congeneric A. hexapterus shows abundant distribution around 15–45 m than 0–15 m throughout 257 

the day [7]. The strong current in the study area and vertical disturbance in winter might account 258 

for these differences. Actually, the congeneric A. marinus larvae were abundant in surface 259 

waters during the day at in areas without vertical environmental gradients, whereas the larvae 260 

were abundant at midwater with high food availability in a stratified water column [35]. 261 

In conclusion, winter longitudinal differences in the abundance and body size of larvae 262 

were observed in some species, such as A. japonicus and S. marmoratus, but not in all species. 263 

It is suggested that differences in water temperature between areas (lower in eastern areas in 264 

winter) affect longitudinal variation. Future studies are necessary to elucidate the mechanisms 265 

underlying the variation in larval sizes, and to understand how this variation influences 266 

recruitment dynamics. 267 
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Figure captions 374 

 375 

Fig. 1. Map of the study site and location of sampling stations in the Seto Inland Sea. Numerals 376 

indicate station numbers assigned along longitudes. 377 

 378 

Fig. 2. Water temperature and salinity, measured by a CTD sensor at surface and 10-m depths 379 

at each station each year. Open triangles and circles denote water temperature at the 380 

surface and 10-m depth, respectively. Solid triangles and circles denote salinity at the 381 

surface and 10-m depth, respectively. 382 

 383 

Fig. 3. Geographical pattern in catch per unit effort (CPUE) of larvae of 5 major species groups. 384 

CPUE is defined as the number of collected individuals per 5 min tow of a 1.3-m mouth 385 

ring net. The CPUE at surface and 10-m depths were averaged. Scales are standard for 4 386 

of the species groups (S. marmoratus, S. inermis species complex, H. otakii, and H. 387 

agrammus). 388 

 389 

Fig. 4. Total length of collected larvae of 5 major species groups at each station in 2014 and 390 

2015. Open triangles and circles denote larvae collected at surface and 10-m depths, 391 

respectively. Details of the number of individuals are shown in Table S1. 392 

 393 



(Fig. 1)

34°30’

133° 134°E

34°N
1

2

3

4
5

6
7

8

9

10
11

12

13

14

15
16

17

18

19

20
21Japan



30

31

32

33

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

30

31

32

33

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2014

2015

Station

W
a

te
r 

te
m

p
e

ra
tu

re
 (
°C

)
(Fig. 2)

( western) (eastern →)

S
a
li
n

it
y



(a) Ammodytes japonicus

(b) Sebasticus marmoratus

(c) Sebastes inermis species complex

2014                     2015

(d) Hexagrammos otakii

(e) Hexagrammos agrammus

(Fig. 3)

10

50

100

0

200

5

10

20

1

0



4

8

12

4

8

12

4

8

12

16

4

8

12

16

0

10

20

0

10

20

0

10

20

0

10

20

0

10

20

0

10

20

2014                         2015
T
o

ta
l 
le

n
g

th
 (

m
m

)

Station

(a) Ammodytes japonicus

(b) Sebasticus marmoratus

(c) Sebastes inermis species complex

(d) Hexagrammos otakii

(e) Hexagrammos agrammus

(Fig. 4)

1           5             10            15 1           5            10            15            20



1 

 

Table 1  

List of species collected in January 2014 and 2015 

Family Species 

2014  2015 

Ns* N10* 
TL range 

(mm) 
 Ns* N10* 

TL range 

(mm) 

Ammodytidae Ammodytes japonicus 866 430 2.6-13.1  455 251 3.1-16.6 

Scorpaenidae Sebastiscus marmoratus 5 19 2.5-11.2  74 121 2.3-21.1 

 
Sebastes inermis species 

complex 
7 45 3.7-8.5  11 51 3.3-18.1 

 Sebastes pachycephalus 1 3 6.2-9.8  0 5 6.7-16.1 

 Sebastes oblongus 0 0   0 1 9.4 

 Unidentified Sebastes 2 0 No data  0 0  

Hexagrammidae Hexagrammos otakii 48 1 6.0-11.4  22 4 8.0-14.9 

 Hexagrammos agrammus 26 0 6.3-11.4  5 0 8.4-11.6 

Lateolabracidae Lateolabrax japonicus 0 1 9.0  0 4 6.0-11.6 

Pleuronectidae 
Pseudopleuronectes 

yokohamae 
0 0   3 3 3.0-6.8 

 Platichthys bicoloratus 0 0   0 5 6.9-7.8 

 Pleuronichthys lighti 0 1 20.6  0 0  

A total of 1,455 individuals of larvae were collected in 2014 and 1,015 individuals were 

collected in 2015. The number of tows was 16 for surface and 7 for 10-m depth at 16 stations 

in 2014, while it was 21 for both surface and 10-m depths at 21 stations in 2015 

* Ns, number of collected larvae at surface layers; N10, number of collected larvae at 10-m 

depth layers. 
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Table 2  

Generalized linear models (family = negative binomial, link = log) for the catch per unit effort 

(CPUE) of individuals of each species 

Analysis of Deviance  Summary 

Error source 
LR 

Chisq* 
df p  Variable Estimate SE p 

Ammodytes japonicus       

  Error   62   Intercept 7.85 1.97 <0.001 

WT 4.42 1 0.036  WT -0.37 0.18 0.036 

Year 7.93 1 0.005  Year 2015 -1.17 0.44 0.008 

Sebastiscus marmoratus       

  Error  60   Intercept -124.69 53.08 0.019 

Layer 10.85 1 <0.001  Layer (10-m) 1.28 0.38 <0.001 

WT 2.53 1 0.11  WT 0.37 0.24 0.12 

Longitude 7.27 1 0.007  Longitude 0.90 0.38 0.019 

Year 9.93 1 0.002  Year 2015 1.40 0.44 0.001 

Sebastes inermis species complex      

  Error  63   Intercept -0.72 0.34 0.035 

Layer 18.86 1 <0.001  Layer (10-m) 1.95 0.46 <0.001 

Hexagrammos otakii        

  Error  61   Intercept 12.86 3.60 <0.001 

Layer 8.34 1 0.004  Layer (10-m) -2.43 0.82 0.003 

WT 7.88 1 0.005  WT -1.09 0.33 <0.001 

Year 5.11 1 0.024  Year 2015 -1.91 0.74 0.010 

Hexagrammos agrammus       

 Error  62   Intercept 0.49 0.53 0.36 

Layer 12.00 1 <0.001  Layer (10-m) -19.58 2682.3 0.99 

Year 5.83 1 0.016  Year 2015 -1.92 0.81 0.018 

Initial explanatory variables were collection depths (layer), longitude, water temperature 

(WT), and year. Effects of layer and year were tested on the basis of surface layer and year 

2014, respectively. 

Analysis of deviance was operated by Type II Wald chi-square test. 

All explanatory variables were selected based on Akaike information criterion. 

*Likelihood ratio Chi square  
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Table 3  

Generalized linear models (family = gaussian, link = identity) for total length of collected larvae 

of each species 

Analysis of Deviance  Summary 

Error source 
Sum of 

square 
df p  Variable Estimate SE p 

Ammodytes japonicus       

  Error 2817.3 1094   Intercept -381.15 23.13 <0.001 

Layer 42.57 1 <0.001  Layer (10-m) -0.45 0.11 <0.001 

WT 5.26 1 0.15  WT -0.12 0.084 0.15 

Year 29.44 1 <0.001  Year 2015 -0.37 0.11 <0.001 

Longitude 785.53 1 <0.001  Longitude 2.93 0.17 <0.001 

Sebastiscus marmoratus       

  Error 1175.0 214   Intercept -211.32 37.97 <0.001 

Layer 31.03 1 0.018  Layer (10-m) 0.91 0.38 0.018 

WT 100.66 1 <0.001  WT -0.90 0.21 <0.001 

Longitude 211.46 1 <0.001  Longitude 1.69 0.27 <0.001 

Sebastes inermis species complex      

  Error 223.68 108   Intercept -1066.6 58.16 <0.001 

WT 212.46 1 <0.001  WT 2.60 0.26 <0.001 

Year 98.38 1 <0.001  Year 2015 1.92 0.28 <0.001 

Longitude 725.86 1 <0.001  Longitude 7.83 0.42 <0.001 

Hexagrammos otakii        

  Error 129.48 68   Intercept 2.43 2.26 0.29 

Layer 5.49 1 0.094  Layer (10-m) -1.13 0.67 0.094 

WT 10.93 1 0.019  WT 0.52 0.22 0.019 

Year 124.48 1 <0.001  Year 2015 3.32 0.41 <0.001 

Hexagrammos agrammus       

Error 37.16 26   Intercept 8.42 0.25 <0.001 

Year 8.57 1 0.021  Year 2015 1.44 0.59 0.021 

Initial explanatory variables were collection depths (layer), longitude, water temperature 

(WT), and year. Effects of layer and year were tested on the basis of surface layer and year 

2014, respectively. 

Analysis of deviance was operated by Type II test. 

All explanatory variables were selected based on Akaike information criterion. 


