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The functional significance of fibroblast growth factor (FGF) signaling in bone formation has been demonstrated through genetic
loss-of-function and gain-of-function approaches. FGFs, comprising 22 family members, are classified into three subfamilies:
canonical, hormone-like, and intracellular. The former two subfamilies activate their signaling pathways through FGF receptors
(FGFRs). Currently, intracellular FGFs appear to be primarily involved in the nervous system. Canonical FGFs such as FGF2
play significant roles in bone formation, and precise spatiotemporal control of FGFs and FGFRs at the transcriptional and
posttranscriptional levels may allow for the functional diversity of FGFs during bone formation. Recently, several research
groups, including ours, have shown that FGF23, a member of the hormone-like FGF subfamily, is primarily expressed in
osteocytes/osteoblasts. This polypeptide decreases serum phosphate levels by inhibiting renal phosphate reabsorption and vitamin
Dj, activation, resulting in mineralization defects in the bone. Thus, FGFs are involved in the positive and negative regulation of
bone formation. In this review, we focus on the reciprocal roles of FGFs in bone formation in relation to their local versus systemic

effects.

1. Introduction

Bone is a connective tissue with a mineralized extracellular
matrix that provides support to the body and affects cal-
cium (Ca)/phosphate (inorganic phosphate; Pi) metabolism.
Osteoblasts are involved in bone formation via secretion
of the organic matrix “osteoid” and the subsequent facili-
tation of hydroxyapatite crystal formation. Large multinu-
cleated osteoclasts play an active role in bone resorption.
Bone formation and resorption, that is, bone metabolism,
are regulated by local versus systemic factors. The former
includes growth factors and receptor activator of nuclear
factor x-f3 ligand (RANKL) and its receptor RANK. Repre-
sentatives of the latter include parathyroid hormone (PTH),
la,25-dihydroxyvitamin D5 (1,25(0OH),D;), and calcitonin
[1]. Growing evidence suggests that additional interactions
between bone and extraskeletal organs affect, during develop-
ment, aging and pathogenesis. For example, undercarboxy-
lated osteocalcin secreted by osteoblasts acts on pancreatic
B-cells to promote insulin production, which is involved in

the regulation of energy metabolism [2]. Osteoblast lineage
cells compose hematopoietic [3, 4] and cancer stem cell
niches [5], thereby affecting the fates of their stem cells.
The adipocyte-derived hormone leptin acts on its specific
receptors in the hypothalamus, increases sympathetic activity
in bone, and exerts antiosteogenic effects [6]. Serotonin (5-
HT) secreted by enterochromaffin cells binds to its receptor 5-
HT,BR in preosteoblasts and inhibits their proliferation [7].
Further studies in this field are of significance with regard to
understanding the precise functions of bone.

Fibroblast growth factors (FGFs) are pleiotropic growth
factors that regulate cell proliferation, migration, and differ-
entiation in many organs including bone. Twenty-two family
members of FGFs (FGF1-23, wherein FGF15 is the mouse
ortholog of human FGF19) have been identified in mammals
so far. FGFs can be divided into three subfamilies: canonical,
hormone-like, and intracellular [8]. Numerous studies have
shown that canonical FGFs, such as FGF2, act in bone.
Hormone-like FGF family members are the most recently
identified FGFs, and the discovery of these, especially
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the clinical and experimental studies of FGF23, led us to
explore the additional roles of FGFs in bone. Not only FGF23
but also FGF2 is exclusively expressed in osteoblast lineage
cells and shares specific receptors (FGF receptors, FGFRs) to
transduce intracellular signals, although the effects of these
FGFs are variable. The intracellular FGFs, FGF11-14, have
been well studied in neurons but not in bone and, therefore,
are not discussed here. This review, therefore, provides new
insights into the roles of FGFs during bone formation and
compares canonical versus hormone-like FGFs.

2. The FGF and FGFR Family Members and
Their Signaling Pathways

Canonical FGFs, including FGF2, comprise the most com-
mon subfamily that transduces signals through FGFR tyro-
sine kinases. A heparin-binding domain is conserved among
most FGFs, and heparan sulfate (HS) is an integral com-
ponent for the acquisition of the binding affinity of FGFs
to FGFRs. Therefore, these polypeptides can be retained
in the extracellular matrix in the vicinity of their secret-
ing cells. Thus, canonical FGFs act as autocrine and/or
paracrine factors [10, 11]. The hormone-like subfamily mem-
bers, FGF15/19, FGF21, and FGF23, contain extra structural
features at the C-terminus and require the membrane pro-
teins aKlotho/ BKlotho as cofactors rather than HS to bind to
FGFRs [8, 12]. This hallmark difference may pertain to the
dynamic properties of the two subfamilies. Both canonical
and hormone-like FGFs show their biological activities by
activating four distinct FGFRs (also known as the existence
of splicing variants “b” and “c” of FGFR1-3) with different
binding affinities. For information on the binding affinity of
individual FGFs to FGFRs, refer to other reviews and papers
(see, e.g., [13]). Many studies have found that tyrosine phos-
phorylation of the intracellular domain of FGFRs activates
the Ras-mitogen-activated protein kinase (MAPK) pathways,
including extracellular signal-regulated kinase (ERK)1/2, p38,
and c-Jun N-terminal kinase (JNK), the phosphatidylinositol
3-kinase- (PI3K-) Akt pathway, and the phospholipase C
(PLC)y-protein kinase C (PKC) pathway (Figure 1) (see, e.g.,
[14]). Overall, the spatiotemporal dynamics of FGFs and
FGFRs may determine how the FGF family members exert
their proper activities in particular cells and tissues.

It is also worth noting that negative and positive mod-
ulators expressed in a wide range of cells and tissues play
precise roles in FGF signaling, and this may further com-
plicate the functional profiles of FGFs. The sprouty (SPRY)
family is a highly conserved group of negative feedback loop
modulators of growth factor-mediated MAPK activation that
was originally described in Drosophila [15]; thereafter, four
mammalian orthologs (SPRY1-4) have been identified. Either
FGF3 or FGF8 upregulates both mRNA and protein levels of
Spry4, while increased Spry4 inhibits both FGF3 and FGF8
signaling by interfering with the downstream activation of
FGFRI in zebrafish blastomeres [16]. Similar expression of
Fgf genes (Sef) encodes a conserved putative transmembrane
protein that has sequence similarity with the intracellular
domain of the interleukin-17 receptor. This modulator acts
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FIGURE 1: FGF/FGFR signaling and its feedback loops. Ligand-
dependent activation of FGFR tyrosine kinases induces ERK1/2,
p38 MAPK, and Akt phosphorylation and subsequent upregu-
lation of their downstream transcriptional factors such as early
growth response protein-1 (Egr-1), activating transcriptional factor-
(ATF-) 2, and mammalian target of rapamycin (mTOR). These
transcription factors regulate the expression of genes involved in
osteoblastogenesis. Canopyl acts as positive feedback factor for
FGF/FGFR signaling. Sef and Spry4 silence FGF/FGFR signaling.
pTKs: phosphorylated tyrosine kinases; PLCy: phospholipase C y;
PKC: protein kinase C; MEK: mitogen-activated protein kinase;
PI3 K: phosphoinositide 3-kinase.

as a feedback-induced antagonist of FGF8/Ras/Raf/MAPK
signaling in the development of zebrafish embryos [17]. In
contrast, Canopyl (CNPY1) was identified as a positive feed-
back regulator for FGF-induced signaling [18]. This positive
feedback loop between the polypeptide and FGF8/FGFRI is
involved in the cluster formation of dorsal forerunner cells
during gastrulation in zebrafish [19]; however, its underlying
mechanism in mammals remains to be elucidated.

3. Roles of Canonical FGFs on Bone Formation

In addition to our previous data on FGFRs [9], here we
show the expression profile of Fgfs in a well-established fetal
rat calvaria cell model (Figure 2). Among these, Fgf9 and
hormone-like Fgf23 are abundant and vary in expression
levels during osteoblast development. Table 1 summarizes the
primary roles of FGFs in bone formation in multiple models.
Human calvaria cell cultures describe, in detail, the roles
of FGF2 in osteoblastogenesis [20]. When treated at early
developmental stages, FGF2 inhibits alkaline phosphatase
(ALP) activity, collagen synthesis, and matrix mineralization
and increases cell proliferation; however, when treated at
late developmental stages, it has no obvious effects. Because
the in vivo effects of FGF2 on bone formation are apparent,
its potential therapeutic benefit in pediatric surgery and
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FIGURE 2: Expression profiling of Fgf genes in rat calvaria cell cultures. (a) Outline of osteoblast development. Rat calvaria cells from 21-day-
old fetal rats [9] were plated at 3,000 cells per cm? and grown in «MEM supplemented with 10% fetal calf serum plus 50 ug/mL ascorbic acid.
Cells proliferate, reach confluence at day 6, and subsequently initiate osteoid-like nodule formation. To determine matrix mineralization,
10 mM f3-glycerophosphate (SGP) is added to cultures for 2 days before culture termination. (b) Distinct gene expression patterns of Fgfs
during osteoblast development. Total RNA was routinely prepared as indicated time points, and cDNA synthesis and quantitative real-time
RT PCR (qPCR) were performed using standard protocols. Ribosomal protein L32 was used as internal control. Data represent means + S.D.
n = 3. Statistical significance of differences was analyzed with one-way or two-way analysis of variance (ANOVA) with repeated measures,
followed by Tukey’s multiple comparison test. “P < 0.05 and “* P < 0.01 versus day 3.

periodontal disease is under consideration [21, 22]. The
significant anabolic actions of FGF2 in bone have been
widely demonstrated in several animal models; see, for
example, growth plate and trabecular bone in growing rats
that received daily intravenous injections of FGF2 [23]. Local
injections of FGF2 over the calvaria increase new bone
formation in mice [24], and those into osteotomized sites

of the tibia accelerate surgical fracture repair in rabbits
[21]. FGF2 also has an ability to prevent trabecular bone
loss in the vertebrae of ovariectomized rats possibly by
increasing osteoadipogenic cell proliferation [25]. Fgf2-null
(Fgf2'~) mice exhibit a significant decrease of femoral
trabecular bone volume and bone formation rate [26]. This
can be explained by a downregulation of BMP-2 in Fgf2™/~



osteoblasts, resulting in a decrease in ALP activity and
nuclear accumulation of the master transcription factor of
osteoblastogenesis Runx2 [27]. Furthermore, an inverse cor-
relation between adipogenesis and osteogenesis is observed
in Fgf '~ mice, and FGF2 blocks adipocyte formation and
increases ALP-positive colony formation in bone marrow
cell cultures independent of FGF2 [28]. In FGF2, most
attention has been dedicated to the smallest 18-kDa variant
(LMW). In addition, genetic manipulation of LMW FGF2 in
skeletal tissues contributes to bone phenotypes in vivo [29].
However, there are several higher molecular weight (HMW)
variants of the polypeptide. Additional information on the
representative roles of the HMW variants in bone is shown
below.

Compared with FGF2, other canonical FGFs have not
been studied in detail (Table 1). Although FgfI expression was
not obvious in our model, its transcript appears to act in
the same manner as FGF2 [30]. Intravenous administration
of FGFI1 increases bone formation of femoral diaphysis in
normal rats [30] and tibial metaphysis in ovariectomized
rats [24]. However, Fgfl”/~ mice do not display any gross
phenotypic defects [31]. Because deficiency of FGFI in mice
exacerbated high-fat diet-induced diabetic phenotypes, such
as insulin resistance and defects in adipose remodeling in
gonadal white adipose tissue, FGFI, may directly and/or
indirectly act on bone. FGF4 is more specific to mesenchymal
cells, but its subcutaneous injections increase trabecular bone
mineral density in the mouse femur [32]. Much less is known
about the roles of FGF6 [33], FGF7 [34], and FGF8 [35]
in bone; the expression of Fgf7 but not of Fgf6 and Fgf8
is detected in our calvaria cell model, and FGF6 shows
catabolic effects on osteoblastic cells, but others have anabolic
function in vitro. Histological evidence for chondrogenesis
with the upregulation of the Sox9 and Col2al genes is seen
in cranial mesenchymal cells of transgenic mice overexpress-
ing FGF9, suggesting that FGF9 converts intramembranous
ossification to endochondral ossification [36]. FGF9 also
shows supportive effects on FGF2-dependent trabecular bone
formation [37]. Among Fgfs expressed in our model, Fgf9
is abundant during the late developmental stages, along
with Fgf23 levels (Figure 2). Notably, both mRNA levels are
upregulated by 1,25(OH), D5, while only Fgf9 levels are sup-
pressed by pretreatment of cycloheximide, a protein synthesis
inhibitor, as well as the transcriptional inhibitor actinomycin
D (Figure 3). Thus, 1,25(OH),D;-dependent expression of
Fgf9 but not Fgf23 may result from de novo protein synthesis.
Additional role(s) and the precise regulatory mechanism
of FGF9 in osteoblast functions remain to be elucidated.
Functional anomalies in FGF10 signals may be involved in
craniosynostosis [38], but there are no obvious effects of
FGFI0 in our rat (unpublished data) and mouse calvaria
cells [39]. Treatment of mouse calvaria cells with FGFI8
promotes proliferation and suppresses differentiation and

matrix mineralization [39]. In FgfI8/~ mouse embryos, cal-
varia cell proliferation and bone mineralization and kyphosis
are observed in the cervical and upper thoracic spine [40].
Together with the observation that treatment of mouse cal-
varia cells with FGF18 increases proliferation and decreases
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FIGUre 3: 1,25(0H),D; increases Fgf9 and Fgf23 gene expression
at late development stages in rat calvaria cell cultures. Rat calvaria
cells were obtained as shown in Figure 2. At day 11, nodule-forming
cells were stripped by collagenase and replated (subcultures). Four
days later, osteoblast subcultures were pretreated with or without
actinomycin D (ActD) or cycloheximide (CHX), followed by incu-
bation with 1nM 1,25(OH), D, for 6 h. See the above mentioned for
qPCR. Data represent means + S.D. n = 3. Statistical significance
of differences was analyzed with one-way or two-way analysis of
variance (ANOVA) with repeated measures, followed by Tukey’s
multiple comparison test. **P < 0.01 versus vehicle alone; P <
0.01 versus 1,25(OH), D, alone.

matrix mineralization [39], the effects of this polypep-
tide on bone formation appear to be similar to those of
FGF2.

4. Physiological and Pathological Importance
of FGFRs in Bone

The dynamics of FGFRs are also an important determinant
of FGF-mediated bone formation. Indeed, mutations in
FGFRI1 and FGFR2 account for the craniosynostosis and
chondrodysplasia syndromes in humans [41-44], suggest-
ing that both FGFRs are important for endochondral and
intramembranous bone formation. Because Fgfrl™/~ mice are
embryonic lethal shortly after gastrulation [45], osteochon-
drocyte lineage- and osteoblast-specific FGFR1 knockout
mice were generated under the control of the proal(II) col-
lagen (Col2) and proal(I) collagen (Coll) promoters, respec-
tively. Col2-mediated FGFRI inactivation delays chondrocyte
and osteoblast maturation, while Coll-dependent FGFRI
deficiency accelerates osteoblast differentiation with stim-
ulated mineral deposition and reduces osteoclast activity
[46]. Gain-of-function missense mutations in Fgfr2 (S252W
and P253R) cause craniosynostosis syndromes, including
Crouzon and Apert syndromes [47, 48]. Indeed, heterozy-
gous Fgfr2 (S252W) mutant mice show midline sutural
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bone defects and craniosynostosis with abnormal osteoblastic
proliferation and differentiation [49]. An in vitro study shows
that constitutively active FGFR2 (5252W) induces the ERK1/2
and PKC pathways causing osteoblastic differentiation in
the murine mesenchymal cell line C3H10T1/2 [50]. Three of
the Fgfr3 gain-of-function mutations have been reported to
cause chondrodysplasia and craniosynostosis. Achondropla-
sia, the most common form of human dwarfism, is associated
with the G380R mutation [51]. The P250R mutation causes
Muenke syndrome, a common syndrome of craniosynostosis
[52]. Crouzon syndrome and acanthosis nigricans, a skin
pigmentation disorder, result from the A391E mutation [53].
Unlike FGFRI and FGFR2 deficient mice, systemic Fgfr3 null
mice are viable and show progressive osteodysplasia with
expanded growth plate cartilage [54]. Taken together, because
FGF9, a preferred ligand for FGFR3, upregulates osteopontin
(Opn) in chicken chondrocytes [55], FGFR3 signaling may
affect chondrocytes rather than osteoblasts [54]. In contrast
to these three FGFRs, there are quite a few reports about
the relationship between FGFR4 and bone formation. Cool
et al. indicated that FGFR4 is expressed in preosteoblasts
and osteoblasts in neonatal mouse calvaria, suggesting that
FGFR4 is involved in osteogenesis [56], but its role in bone
remains unclear.

5. FGF23 and FGF19 Subfamily Members as
Hormone-Like Factors

FGF23 is the last member of the FGF family, and its signif-
icant roles in Pi and vitamin D metabolism are obvious in
genetically engineered mice [57-59] (also see review [60]).
FGF23 was originally discovered as the gene responsible
for autosomal dominant hypophosphatemic rickets [61] and
thereafter as a phosphaturic factor produced by mesenchymal
tumors in tumor-induced osteomalacia [62]. FGF23 is pre-
dominately expressed in osteoblasts/osteocytes [63-66]. Type
I transmembrane protein aKlotho acts as a coreceptor for
FGF23 to convert canonical FGFRs (FGFRIc, FGFR3c, and
FGFR4) into a specific receptor for FGF23 [67, 68]. Therefore,
organs expressing aKlotho, such as the kidney, parathyroid
glands, and choroid plexus, appear to be targets of FGF23
[69]. FGF23 decreases the expression of renal type II sodium-
phosphate cotransporters (Slc34al and Slc34a3) and 25-
hydroxyvitamin D; (25(OH)D;) la-hydroxylase, resulting in
a decrease in serum Pi and 1,25(OH),D; levels, respectively,
in mice and rats [70, 71]. Meanwhile, 1,25(OH),D; induces
Fgf23 expression in rat osteosarcoma ROS17/2.8 cells [72]
as well as our rat calvaria cells [73]. Together with the
result that intraperitoneal injections of 1,25(0OH),D; into
mice increase serum FGF23 levels, there seems to be a
feedback loop between FGF23 and 1,25(0OH), D5 [72]. FGF23
also decreases the expression of PTH [74], although this
is not simply regulated by the FGF23-aKlotho axis [75].
Transgenic mice expressing constitutively active PTHRI in
osteocytes exhibit increased serum FGF23 levels indepen-
dently of serum Ca and Pi levels and Fgf23 expression in
osteoblasts and osteocytes [76]. Comparison of Fgfrl/3/4
single and double knockout mice indicates that FGFRI and
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FGFR3/4 may be involved in renal Pi reabsorption [70]
and vitamin D metabolism [77], respectively. Additional
factors, for example, Pi [78], sympathetic activation [79],
and circulating aKlotho [80], may be involved in FGF23
expression/production; however, the regulation of FGF23
expression is still under investigation.

Both of ectopic (hepatic) overexpression and
osteoblast/osteocyte-specific overexpression of the Fgf23
transgene result in lower bone mineral density of the
femur with hypophosphatemia and high serum levels
of PTH [57, 58]. The lack of either FGF23 or aKlotho
causes aberrant Ca/Pi and vitamin D metabolism, thus
ensuring skeletal anomalies and ectopic calcification
[59, 81, 82]. Fgf23”/~/Opn™/~ double-knockout (DKO)
mice mimic hyperphosphatemia in Fgf23”/~ mice, but
the severe osteoidosis in Fgf23™/~ is markedly reduced
[83]. Fgf237/7/Slc34a1’~ DKO mice reverse hyper- to
hypophosphatemia in keeping with hypomineralization in
bone [84]. These observations suggest that skeletal anomalies
that involve FGF23 may result not only from serum Pi
levels but also from intrinsic anomalies in bone. FGF23
may act independently of the membrane protein aKlotho
(Figure 4). For example, overexpression of FGF23 in cultured
rat calvaria cells impairs osteoblast differentiation and
mineralized matrix formation but not mineralization, via
activation of FGFRI [9]. One plausible explanation is that the
existence of the soluble form (circulating «Klotho) shedding
from the extracellular domain of aKlotho [85, 86] may act as
a cofactor for FGF23. In fact, effects of FGF23 in MC3T3-El
cells (a mouse osteoblastic cell line) cultured with circulating
oKlotho [87] mimic the results observed in rat calvaria
cells [9]. In mouse chondrocytes, FGF23 activates FRS2a«,
FGFR substrate 2, and ERK1/2, resulting in a decrease
in chondrocyte proliferation in the presence of circulating
aKlotho [88]. In contrast, aKlotho is not required for FGF23
action in some cells. For instance, FGF23 can induce the
hypertrophy of neonatal rat ventricular cardiomyocytes,
in which aKlotho is not detected [89]. In addition, FGF23
decreases PTH secretion in thyroparathyroid organ cultures
from parathyroid-specific aKlotho-deficient mice [75]. It is
still unknown why FGF23 targets the kidney and parathyroid
glands, even in the presence of circulating aKlotho and/or
the ubiquitous expression of FGFRs.
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The roles of two other members of the hormone-like
FGF19 subfamily, FGF19 and FGF2l, in bone formation
remain to be elucidated. Fgfl9 transcripts are predominantly
expressed in the ileum, while Fgf2I mRNA is expressed in
the liver, pancreas, and white adipose tissue [90]. In skeletal
tissue under normal conditions, FGF19, but not FGF2l, is
also detectable at the protein level in human fetal growth
plate cartilage [91]. Interestingly, the treatment of mouse bone
marrow cells with FGF21 increases SKlotho and Fgf2l mRNA
expression, especially in the presence of rosiglitazone [92],
an agonist of the master regulator for adipogenesis, PPARy,
possibly affecting bone formation. Thus, genetic FGF21 loss
and gain of function in mice increase and decrease bone mass
[92], respectively, suggesting that FGF21/Klotho may act as
an inhibitor of bone formation.

6. Local and Systemic Effects of FGFs during
Bone Formation, Focusing on FGF2, FGF21,
and FGF23

As above, FGF2 and FGF23 may exhibit distinct activities
during different stages of osteoblast differentiation, such as
cell proliferation versus matrix (osteoid) mineralization. In
contrast to osteogenic cell proliferation, differentiation, and
associated matrix formation, the molecular mechanism(s)
underlying matrix mineralization remains to be fully eluci-
dated. Human FGF2 has multiple isoforms via an alternative
initiation of translation at CUG codons from a single FGF2
gene: LMW and high (HMW FGE2, 22-kDa, 22.5-kDa, 24-
kDa, and 34-kDa) molecular forms [93]. LMW FGF2—
exactly the same FGF2 as described above—is predominantly
expressed in osteoblast precursors and activates intracellular
signaling via FGFR in an autocrine/paracrine manner. While
recent evidence indicates that extracellular LMW FGF2 can
translocate to the nucleus after internalization [94], there
is little evidence for this process in bone to date. The
HMW FGF2 isoforms are not released from the cells and
localized to the nucleus and regulate gene expression to
exert specific effects. Transgenic mice overexpressing human
HMW FGF2 (22-kDa, 23-kDa, and 24-kDa) under the Coll
promoter (Col3.6) exhibit lower bone mineral density with
decreased bone formation and increased bone resorption
[95]. Interestingly, upregulation of Fgf23 expression and
hypophosphatemia are observed in these mice [95]. These
observations may lead to the development of an additional
framework for understanding the effects of the HMW FGF2
and FGF23 on bone mineralization.

It is well known that elevated serum FGF23 levels are the
most common predictor in patients with chronic kidney dis-
ease [96]. Serum FGF23 levels are positively correlated to aor-
tic arterial calcification in hemodialysis patients [97]. Recent
studies demonstrate that FGF23 exacerbates left ventricle
hypertrophy where aKlotho might not be expressed [89] and
elevated plasma FGF23 levels are associated with low body
mass index and dyslipidemia in dialysis patients [98]. Thus,
systemic actions of FGF23 may reach organs dependently and
independently of aKlotho. Although skeletal tissues do not
express Fgf2l under normal conditions, circulating FGF21

seems to suppress osteoblastogenesis and induce adipoge-
nesis [92]. Also, FGF2l itself enhances Fgf2I and BKlotho
expression in bone marrow-derived adipocytes, and increases
in FGF21 and BKlotho have a synergetic effect on its signaling
in local area [92]. Comprehensive analyses are needed to
determine the local versus systemic effects of FGF21 on bone.
Taken all together, FGFs expressed in bone are involved in
bone formation directly and indirectly, which indicates that
FGFs mediate the interrelationships between bone and other
organs under normal and/or clinical situations. The clinical
importance of FGF23/21 is now becoming clearer owing
to the recent findings in FGF research. However, precise
elucidation of FGF mechanisms is still required.

7. Conclusion

The skeleton is a multipotent organ that is fundamental for
the survival of vertebrates. Bone and mineral homeostasis
are strictly controlled by multiple mechanisms including
FGF/FGFR signaling. Canonical and hormone-like FGFs
regulate bone formation at different developmental stages
in different ways, and these members may compensate for
one another in bone and/or extraskeletal tissues. In order to
understand these mechanisms, the balance between local and
systemic regulation needs to be considered.
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