広島大学学術情報リポジトリ Hiroshima University Institutional Repository

Title	A Characterization of Subpluriharmonicity for a Function of Several Complex Variables
Author(s)	Abe, Makoto; Sugiyama, Shun
Citation	Bulletin of the Graduate School of Integrated Arts and Sciences, Hiroshima University. II, Studies in environmental sciences , 14 : 1 - 5
Issue Date	2019-12-31
DOI	
Self DOI	10.15027/48890
URL	https://ir.lib.hiroshima-u.ac.jp/00048890
Right	掲載された論文,研究ノート,要旨などの出版権・著作権は広島 大学大学院総合科学研究科に帰属する。 Copyright (c) 2019 Graduate School of Integrated Arts and Sciences, Hiroshima University, All rights reserved.
Relation	

A Characterization of Subpluriharmonicity for a Function of Several Complex Variables

ABE Makoto¹⁾ and SUGIYAMA Shun²⁾

¹⁾ School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
 ²⁾ Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

Abstract

We give a characterization of a subpluriharmonic function of several complex variables in the sense of Fujita (J. Math. Kyoto Univ., 30:637–649, 1990) by using polynomial functions of degree at most two.

Mathematics Subject Classification (2010): 31C10, 32U05, 31B05. Keywords and phrases: subpluriharmonic function, subharmonic function, polynomial function.

1. Introduction

Let *D* be an open set of \mathbb{C}^n and let $u: D \to [-\infty, +\infty)$ be an upper semicontinuous function. According to Fujita [2], we say that *u* is subpluriharmonic if for every relatively compact domain *G* in *D* and for every real-valued pluriharmonic function *h* defined near \overline{G} , the inequality $u \leq h$ on ∂G implies the inequality $u \leq h$ on \overline{G} . If n = 1, then an upper semicontinuous function $u: D \to [-\infty, +\infty)$, where *D* is an open set of $\mathbb{C} = \mathbb{R}^2$, is subpluriharmonic if and only if *u* is subharmonic.

By Yasuoka [9, Theorem 1], an upper semicontinuous function $u: D \to [-\infty, +\infty)$, where *D* is an open set of \mathbb{C} , is subharmonic if and only if for every open disk *B* relatively compact in *D* and for every polynomial P(z) of a complex variable *z* of degree at most two, the inequality $u(z) \leq \Re(P(z))$ on ∂B implies the inequality $u(z) \leq \Re(P(z))$ on \overline{B} .

In this paper, we generalize this fact to several

complex variables. That is to say, we prove that an upper semicontinuous function $u: D \to [-\infty, +\infty)$, where *D* is an open set of \mathbb{C}^n , is subpluriharmonic if and only if for every open ball *B* relatively compact in *D* and for every polynomial $P(z_1, z_2, ..., z_n)$ of *n* complex variables $z_1, z_2, ..., z_n$ of degree at most two, the inequality $u(z) \leq \Re(P(z))$ on ∂B implies the inequality $u(z) \leq \Re(P(z))$ on \overline{B} , where $z = (z_1, z_2, ..., z_n)$ (see Theorem 3.2).

2. Preliminaries

Let $N \in \mathbb{N}$ and let **F** denote either the real numbers \mathbb{R} or the complex numbers \mathbb{C} . We denote by $\|\cdot\|$ the Euclidean norm on \mathbf{F}^N , that is,

$$\|x\| \coloneqq \left(\sum_{\nu=1}^N |x_\nu|^2\right)^{1/2}$$

for every $x = (x_1, x_2, ..., x_N) \in \mathbf{F}^N$. For every $c \in \mathbf{F}^N$ and for every $r \in (0, +\infty]$, the set

$$\mathbf{B}(c,r) \coloneqq \{ x \in \mathbf{F}^N \mid ||x - c|| < r \}$$

is said to be the *open ball* of *radius* r with *center* c in \mathbf{F}^N . For every point $c \in \mathbf{F}^N$ and for every subset E of \mathbf{F}^N , the number

dist
$$(c, E)$$
 := inf { $||x - c|| | x \in E$ }

is said to be the *distance* from c to E.

We denote by $z_1, z_2, ..., z_n$ the complex coordiates of \mathbb{C}^n . Let $N \in \mathbb{N}$ and let D be an open set of \mathbb{C}^n . A \mathcal{C}^2 function $u: D \to \mathbb{R}$ is said to be *pluriharmonic* if

$$\frac{\partial^2 u}{\partial z_{\mu} \partial \bar{z_{\nu}}} = 0$$

on D for every $\mu, \nu = 1, 2, ..., n$ (see, for instance, Fritzsche-Grauert [1, p. 318]). An upper semicontinuous function $u: D \to [-\infty, +\infty)$ is said to be subpluriharmonic if for every relatively compact open set G of D and for every pluriharmonic function h defined near \overline{G} , the inequality $u \leq h$ on ∂G implies the inequality $u \leq h$ on \overline{G} (cf. Fujita [2, 3]). As is noted in Fujita [2, p. 638] (see also Fujita [3, Proposition 2]), the subpluriharmonic functions on D exactly coincide with the (n-1) plurisubharmonic functions on D in the sense of Hunt-Murray [5, Definition 2.3].

By the second statement of Słodkowski [6, Lemma 4.4], we have the following proposition (see also Sugiyama [8, Proposition 2.1]).

Proposition 2.1 (Słodkowski). Let *D* be an open set of \mathbb{C}^n and let $u: D \to [-\infty, +\infty)$ be an upper semicontinuous function. If *u* is not subpluriharmonic on *D*, then there exist $c \in D$, $r \in$ $(0, \operatorname{dist}(c, \partial D))$, K > 0, and a function *f* holomorphic near $\overline{\mathbf{B}(c, r)}$ such that $u(c) = \Re(f(c))$ and

 $u \le \Re(f) - K \|z - c\|^2$

3. Results on Subpluriharmonic Functions

on $\overline{\mathbf{B}(c,r)}$.

We denote by $\mathbb{C}[z_1, z_2, ..., z_n]$ the algebra of polynomial functions of *n* complex variables $z_1, z_2, ..., z_n$ with coefficients in \mathbb{C} . We have the following lemma which refines Proposition 2.1.

Lemma 3.1. Let *D* be an open set of \mathbb{C}^n and let $u: D \to [-\infty, +\infty)$ be an upper semicontinuous function. If *u* is not subpluriharmonic on *D*, then there exist $c \in D$, $r \in (0, \text{dist}(c, \partial D))$, K > 0, and $P \in \mathbb{C}[z_1, z_2, ..., z_n]$ with deg $P \leq 2$ such that $u(c) = \Re(P(c))$ and

$$\label{eq:user_eq} u \leq \Re(P) - K \|z - c\|^2$$
 on $\overline{\mathbf{B}(c,r)}.$

Proof. By Proposition 2.1, there exist $c \in D$, $R \in (0, \text{dist}(c, \partial D))$, L > 0, and a function f holomorphic near $\overline{\mathbf{B}(c, R)}$ such that $u(c) = \Re(f(c))$ and

$$u \le \Re(f) - L \|z - c\|^2$$

on $\overline{\mathbf{B}(c,R)}$. Let

$$f(z) = \sum_{\alpha} a_{\alpha} (z - c)^{\alpha}$$

be the Taylor expansion of f(z) near $\overline{\mathbf{B}(c,R)}$, where $z = (z_1, z_2, ..., z_n)$ (see, for instance, Fritzsche-Grauert [1, p. 24]). Let

$$P(z) := \sum_{|\alpha| \le 2} a_{\alpha} (z - c)^{\alpha}$$

for every $z \in \mathbb{C}^n$ and let

$$Q(z) := \sum_{|\alpha| \ge 3} a_{\alpha} (z - c)^{\alpha}$$

for every $z \in \overline{\mathbf{B}(c,R)}$. Then, we have $P \in \mathbb{C}[z_1, z_2, ..., z_n]$, deg $P \leq 2$, f = P + Q on $\overline{\mathbf{B}(c,R)}$ and there exists M > 0 such that

$$|Q(z)| \le M ||z - c||^3$$

on $\mathbf{B}(\overline{c,R})$. Take an arbitrary $K \in (0,L)$. For any $r \in (0, \min\{R, (L-K)/M\}]$, we have

$$\begin{split} \Re(P) - K \|z - c\|^2 \\ &= \Re(f) - \Re(Q) - K \|z - c\|^2 \\ &\geq u + L \|z - c\|^2 - M \|z - c\|^3 - K \|z - c\|^2 \\ &= u + (L - K - M \|z - c\|) \|z - c\|^2 \\ &\geq u \end{split}$$

on $\overline{\mathbf{B}(c,r)}$. On the other hand, we have that $\Re(P(c)) = \Re(f(c)) = u(c)$.

We have the following theorem, which generalizes Yasuoka [9, Theorem 1] to several complex

variables and also refines the first statement of Słodkowski [6, Lemma 4.4].

Theorem 3.2. Let *D* be an open set of \mathbb{C}^n and let $u: D \to [-\infty, +\infty)$ be an upper semicontinuous function. Then, the following two conditions are equivalent.

- (1) u is subpluriharmonic.
- (2) For every $c \in D$, there exists $R \in (0, \operatorname{dist}(c, \partial D))$ such that for every $r \in (0, R]$ and for every $P \in \mathbb{C}[z_1, z_2, \dots, z_n]$ with deg $P \leq 2$, the inequality $u \leq \Re(P)$ on $\partial \mathbf{B}(c, r)$ implies the inequality $u \leq \Re(P)$ on $\overline{\mathbf{B}(c, r)}$.

Proof. (1) \rightarrow (2). Since the real part of a holomorphic function is pluriharmonic, the assertion follows.

(2) \rightarrow (1). Suppose that u is not subpluriharmonic. Take an arbitrary R > 0. Then, by Lemma 3.1, there exist $c \in D$, $r \in (0, \min\{R, \operatorname{dist}(c, \partial D)\})$, K > 0, and $Q \in \mathbb{C}[z_1, z_2, \dots, z_n]$ with deg $Q \leq 2$ such that $u(c) = \Re(Q(c))$ and

$$u \le \Re(Q) - K \|z - c\|^2$$

on $\overline{\mathbf{B}(c,r)}$. Then,

 $P := Q - Kr^2 \in \mathbb{C}[z_1, z_2, \dots, z_n],$

deg $P \le 2$, and $u \le \Re(Q) - Kr^2 = \Re(P)$ on $\partial \mathbf{B}(c,r)$ while $u(c) > \Re(P(c))$, which is a contradiction.

Corollary 3.3 (cf. Yasuoka [9, Theorem 1]). Let *D* be an open set of \mathbb{C} and let $u: D \to [-\infty, +\infty)$ be an upper semicontinuous function. Then, the following two conditions are equivalent.

- (1) u is subharmonic.
- (2) For every c∈D, there exists R∈
 (0,dist(c,∂D)) such that for every r∈(0,R] and for every P∈ C[z] with deg P ≤ 2, the inequality u ≤ ℜ(P) on ∂B(c,r) implies the inequality u ≤ ℜ(P) on B(c,r).

Remark 3.4. For a related characterization of pseudoconvexity of a domain in \mathbb{C}^n or over \mathbb{C}^n by

using polynomial functions of degree at most two, see Sugiyama [7, Theorem 3.1] as well as Yasuoka [9, Theorem 2].

Remark 3.5. As Example 3.6 below shows, we cannot replace condition (2) in Theorem 3.2 by the following condition (2)'.

(2)' For every $c \in D$, there exists $R \in (0, \operatorname{dist}(c, \partial D))$ such that for every $r \in (0, R]$ and for every $P \in \mathbb{C}[z_1, z_2, \dots, z_n]$ with $\operatorname{deg} P \leq 1$, the inequality $u \leq \Re(P)$ on $\partial \mathbf{B}(c, r)$ implies the inequality $u \leq \Re(P)$ on $\overline{\mathbf{B}(c, r)}$.

Example 3.6. Let $n \in \mathbb{N}$ and let

$$u(z) := x_1^2 - 2y_1^2 - \sum_{\nu=2}^n |z_{\nu}|^2$$

for every $z \in D = \mathbb{C}^n$, where $z_1 = x_1 + iy_1$. Then, *u* is not subpluriharmonic while *u* satisfies condition (2)' in Remark 3.5.

Proof. By Fujita [2, Proposition 5], a C^2 function is subpluriharmonic if and only if its complex Hessian matrix has at least one nonnegative eigenvalue at any point. Since

$$\left(\frac{\partial^2 u}{\partial z_{\mu} \partial \overline{z_{\nu}}}\right) = \begin{pmatrix} -\frac{1}{2} & & \mathbf{O} \\ & -1 & & \\ & & \ddots & \\ \mathbf{O} & & -1 \end{pmatrix},$$

the function u is not subpluriharmonic on \mathbb{C}^n . Let *G* be an arbitrary relatively compact open set of \mathbb{C}^n . Let

$$P(z) := \sum_{\nu=1}^{n} c_{\nu} z_{\nu} + d$$

where $c_1, c_2, ..., c_n, d \in \mathbb{C}$, and assume that $u \leq \Re(P)$ on ∂G . Let

$$\mu: \mathbb{C}^n \to \mathbb{C}^n, \quad z \mapsto \left(x_1 + \mathrm{i} \cdot \frac{y_1}{\sqrt{2}}, z_2, \dots, z_n \right),$$

which is an \mathbb{R} -linear isomorphism of \mathbb{C}^n . Since

$$\begin{pmatrix} \frac{\partial^2 (u \circ \mu)}{\partial z_{\mu} \partial \overline{z_{\nu}}} \end{pmatrix} = \begin{pmatrix} 0 & & O \\ & -1 & & O \\ & & \ddots & \\ O & & -1 \end{pmatrix},$$

the function $u \circ \mu$ is subpluriharmonic on \mathbb{C}^n . On the other hand, the function

$$(\Re(P) \circ \mu)(z) = \Re\left\{ \left(a_1 + \mathbf{i} \cdot \frac{b_1}{\sqrt{2}} \right) \cdot z_1 + \sum_{\nu=2}^n c_\nu z_\nu + d \right\}$$

where $c_1 = a_1 + ib_1$, is pluriharmonic on \mathbb{C}^n . Since $u \circ \mu \leq \Re(P) \circ \mu$ on $\mu^{-1}(\partial G) = \partial(\mu^{-1}(G))$, we have that $u \circ \mu \leq \Re(P) \circ \mu$ on $\overline{\mu^{-1}(G)} = \mu^{-1}(\overline{G})$. Thus, we obtain the inequality $u \leq \Re(P)$ on \overline{G} and, therefore, u satisfies condition (2)' in Remark 4.3.

4. Corresponding Facts for Subharmonic Functions

We denote by $x_1, x_2, ..., x_N$ the real coordinates of \mathbb{R}^N . Let D be an open set of \mathbb{R}^N . A C^2 function $u: D \to \mathbb{R}$ is said to be *harmonic* if $\Delta h = 0$ on D. An upper semicontinuous function $u: D \to$ $[-\infty, +\infty)$ is said to be *subharmonic* if for every relatively compact open set G of D and for every harmonic function h defined near \overline{G} , the inequality $u \le h$ on ∂G implies the inequality $u \le h$ on \overline{G} (cf. Hörmander [4, p. 141]). Our definition of subharmonic functions does not exclude the function $u \equiv -\infty$.

We denote by $\mathbb{R}[x_1, x_2, ..., x_n]$ the algebra of polynomial functions of *n* real variables $x_1, x_2, ..., x_n$ with coefficients in \mathbb{R} . By Hörmander [4, p. 147], we have the following lemma.

Lemma 4.1 (Hörmander). Let *D* be an open set of \mathbb{R}^N and let $u: D \to [-\infty, +\infty)$ be an upper semicontinuous function. If *u* is not subharmonic, then there exist $c \in D$, $R \in (0, \text{dist}(c, \partial D))$, and $P \in \mathbb{R}[x_1, x_2, ..., x_N]$ with deg $P \leq 2$ such that u(c) = P(c), $\Delta P < 0$, and $u \leq P$ on $\overline{\mathbf{B}(c, R)}$.

We have the following characterization of the subharmonic functions of several real variables, which resembles Theorem 3.2.

Theorem 4.2. Let *D* be an open set of \mathbb{R}^N and let $u: D \to [-\infty, +\infty)$ be an upper semicontinuous function. Then, the following two conditions are equivalent.

- (1) u is subharmonic.
- (2) For every $c \in D$, there exists $R \in (0, \operatorname{dist}(c, \partial D))$ such that for every $r \in (0, R]$ and for every $P \in \mathbb{R}[x_1, x_2, \dots, x_N]$ with deg $P \leq 2$ which is harmonic on \mathbb{R}^N , the inequality $u \leq P$ on $\partial \mathbf{B}(c, r)$ implies the inequality $u \leq P$ on $\overline{\mathbf{B}(c, r)}$.

Proof. $(1) \rightarrow (2)$. The assertion is clear.

(2) \rightarrow (1). Suppose that *u* is not subharmonic. Take an arbitrary R > 0. Then, by Lemma 4.1, there exist $c \in D$,

$r \in (0, \min\{R, \operatorname{dist}(c, \partial D)\}),$

and $Q \in \mathbb{R}[x_1, x_2, ..., x_N]$ with deg $Q \leq 2$ such that u(c) = Q(c), $\Delta Q < 0$, and $u \leq Q$ on $\overline{\mathbf{B}(c, r)}$. Then, $\Delta Q = -2NK$ on \mathbb{R}^N for some constant K > 0. Let

 $P := Q + K(||x - c||^2 - r^2).$

Then, $P \in \mathbb{R}[x_1, x_2, ..., x_N]$, deg $P \le 2$, $\Delta P = 0$ on \mathbb{R}^n , and $P = Q \ge u$ on $\partial \mathbf{B}(c, r)$ although

 $P(c) = Q(c) - Kr^{2} = u(c) - Kr^{2} < u(c),$ which is a contradiction.

Remark 4.3. As Example 4.4 below shows, if $N \ge 2$, then we cannot replace condition (2) by the following condition (2)' in Theorem 4.2.

(2)' For every $c \in D$, there exists $R \in (0, \operatorname{dist}(c, \partial D))$ such that for every $r \in (0, R]$ and for every $P \in \mathbb{R}[x_1, x_2, \dots, x_N]$ with deg $P \leq 1$, the inequality $u \leq P$ on $\partial \mathbf{B}(c, r)$ implies the inequality $u \leq P$ on $\mathbf{B}(c, r)$.

Example 4.4. Let $N \ge 2$ and let $u(x) := x_1^2 - 2x_2^2$ for every $x = (x_1, x_2, ..., x_N) \in D = \mathbb{R}^N$. Then, *u* is not subharmonic while *u* satisfies condition (2)' in Remark 4.3.

Proof. Since $\Delta u = -2$ on \mathbb{R}^N , the function u is not subharmonic on \mathbb{R}^N (see, for instance, Hörmander [4, p. 146]). Take an arbitrary relatively compact open set G of \mathbb{R}^N and arbitrary $a_1, a_2, ..., a_N, b \in \mathbb{R}$. Let

$$P(x) \coloneqq \sum_{k=1}^{N} a_k x_k + b$$

and assume that $u \leq P$ on ∂G . Let

$$\mu: \mathbb{R}^N \to \mathbb{R}^N, \quad x \mapsto \left(x_1, \frac{x_2}{\sqrt{2}}, x_3, \dots, x_N\right)$$

which is an \mathbb{R} -linear isomorphism of \mathbb{R}^N . Since $(u \circ \mu)(x) = x_1^2 - x_2^2$, the function $u \circ \mu$ is harmonic on \mathbb{R}^N and therefore is subharmonic on \mathbb{R}^N . Since the function

$$(P \circ \mu)(x) = a_1 x_1 + \frac{a_2}{\sqrt{2}} \cdot x_2 + \sum_{k=3}^N a_k x_k + b$$

is harmonic on \mathbb{R}^N and satisfies $u \circ \mu \leq P \circ \mu$ on $\mu^{-1}(\partial G) = \partial(\mu^{-1}(G))$, we have that $u \circ \mu \leq P \circ \mu$ on $\overline{\mu^{-1}(G)} = \mu^{-1}(\overline{G})$. It follows that $u \leq P$ on \overline{G} and therefore condition (2)' in Remark 4.3 is satisfied.

Acknowledgment. The first author is partially supported by JSPS KAKENHI Grant Number JP17K05301.

References

- K. Fritzsche and H. Grauert. From holomorphic functions to complex manifolds, Grad. Texts in Math., vol. 213. Springer, New York, 2002.
- [2] O. Fujita. Domaines pseudoconvexes d'ordre general et fonctions pseudoconvexes d'ordre general. J. Math. Kyoto Univ., 30:637–649, 1990.
- [3] O. Fujita. On the equivalence of the qplurisubharmonic functions and the pseudoconvex functions of general order. 人間 文化研究科年報 (Annual Reports of Graduate School of Human Culture, Nara Women's Univ.), 7:77-81, 1991.
- [4] L. Hörmander. Notions of convexity. Birkhäuser, Boston, 2007.
- [5] L. R. Hunt and J. J. Murray. qplurisubharmonic functions and a generalized Dirichlet problem. Michigan Math. J., 25:299– 316, 1978.
- [6] Z. Słodkowski. Local maximum property and *q*-plurisubharmonic functions in uniform algebras. J. Math. Anal. Appl., 115:105–130, 1986.
- S. Sugiyama. Polynomials and pseudoconvexity for Riemann domains over Cⁿ. Toyama Math. J., 38:101–114, 2016.
- [8] S. Sugiyama. Generalized Cartan-Behnke-Stein's theorem and *q*-pseudoconvexity in a Stein manifold. Tohoku Math. J. (2) (to appear).
- [9] T. Yasuoka. Polynomials and pseudoconvexity. Math. Sem. Notes Kobe Univ., 11:139–148, 1983.