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1. Introduction

The most frequent assumption made in the theoretical and empirical
analysis of financial markets is that the distribution of price changes or
price returns of financial assets is approximately normal”. Nor is this
view limited to financial economics: all areas that use econometric tools
make frequent use of the normality assumption. An alternative view
holds that the distribution of price changes or returns belongs to a fami-
ly of distributions designated as stable distributions®. Which view
best reflects reality is not without interest.

The fixed and floating exchange rate regimes provide a good starting

a) I am grateful to Professors J. Fukuchi, T. Kitaoka, S. Komura and K.
Maekawa for their comments and to S. Yoshimura for her research
assistance. Remaining errors are my own.

1) This assumption is called the normal hypothesis, Gaussian hypothesis
(Fama, 1963), or also the Gibrat law or hypothesis (Steindl, 1965). The
distribution that it refers to is the normal or Gaussian distribution.

2) This view or assumption is also known as Pareto-Levy law (Mandelbrot,
1960), stable Paretian hypothesis (Mandelbrot 1961), Pareto law (Steindl,
1965), stable law (Monrad and Stout, 1989) or the Mandelbrot hypothesis
(Fama, 1965b). The distributions that it refers are known as stable distribu-
tions, stable non-Gaussian distributions, sub-gaussian distributions, or stable
Paretian distributions.
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example of the economic implications of the two views. Which of the
following two regimes implies more risk to economic agents that pro-
duce goods for exportation or consume foreign goods? An exchange
rate regime that only allows fluctuations of 1% around a central rate
but requires realignments when certain unpredictable crises occur, or
an exchange rate regime that allows the free flotation of two curren-
cies? The unaware observer might answer that the first is less risky
than the second. However the answer is more subtle than that.
Careful observation of Figure 1 will give an idea of why this answer is
probably wrong, In this figure, the probability distribution of the rate
of variation (or return) implied by the first, fixed-rate, regime may be
represented by distribution «; and the implied by the second,
floating-rate, regime by distribution ap. The fixed-rate regime does in-
deed imply an higher probability, translated in practice by an higher
frequency, of very small changes than the floating-rate regime: on this
account it seems less risky. However, the fixed-rate regime also im-
plies an higher probability of very large changes: on this account it is
more risky. As will be referred later, the proposition that a certain
distribution has more weight in the tails than another is equivalent to

the proposition that the first distribution iz more risky than the sec-
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Fig. 1 Risk depends on the shape of the probability
distribution



ond. Thus we arrive to the counter-intuitive result that the fixed ex-
change rate regime may be considered more risky than the
floating-rate one (for risk averse agents).

This paper has several objectives. The first is to present in an
unified manner the existing statistical theory, main estimation methods,
and more important empirical results concerning stable distributions in
some economic fields, with a special emphasis to those related to finan-
cial economics. A lot of work exists in this area but there is not up to
now a survey that presents in a consistent way the results dispersed in
a large and growing literature. Thus we present the main properties
of stable functions in section 2, the several estimation methods in sec-
tion 3, and the main empirical findings in section 5.

A second objective is to show the importance of this topic to some
fields of economic theory and practice. Either because the relevance
of this topic is thought to be self evident and deserving no further com-
ment, or because it is thought to be of no consequence, there is up to
now no explicit elaboration on this subject. This is dealt with in sec-
tion 4 where the implications of stable distributions are analyzed for
the Efficient Market Hypothesis, risk theory and econometrics. We
also propose in this section a new test to the semi-strong form of the
Efficient Market Hypothesis.

The third objective is to add another piece of evidence: in section 6
the parameters that determine the shape of the distribution of the
returns of the Nikkei 225 price index are estimated using two different
methods and the results of the two methods are compared.

2. Definition and basic properties

Let two random variables U and V have the same distribution:
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U

e
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where d indicates that the distribution is the same.
Thus if

U 4 aV+b,

then U and V‘ differ only by the location and scale parameters.

Let X;, X3, ... and X be independent identically distributed (iid) ran-
dom variables with common distribution L. Let also S, be the sum of
n of those random variables: S,=X;+...+X,. Then if the distribution
L has non-zero variance and if for each » there exist scaling and

centering constants a@,>0 and b, such that
Sn d a, X+bn

then the distribution L is stable. If this condition holds with b,=0 for
all # then the distribution is said to be stable in the strict sense. If it
holds for values of b, other than zero then the distribution is said to be
stable in the broad sense.

Some of the basic properties of stable distributions are the
following®:

Property 1. (Existence of characteristic exponent) Every stable
distribution has norming constants of the form a,=n!/* with 0<a=2.
« is called characteristic exponent or characteristic index of the stable
distribution L.

Property 2. (Irrelevance of centering constant) If a distribution is

stable with exponent a1 the centering constant may be chosen so

3) For formal proofs for these properties see either Feller (1968), Gnedenko
and Kolmogorov (1948) or Levy (1925); later in the text, intuitive proofs and
justifications will be presented for some of these properties.



that the distribution is strictly stable.

Thus we are free to center the distribution L in an arbitrary way,
and can chose the most convenient centering, b,=0, when the need
arises.

Property 3. (Asymptotic law of Pareto) The tails of stable
distributions for values of a<2 follow the weak or asymptotic law of

Pareto, eg.:
limy s PrX=x)—(x/Z;) = (1)
and
limye PriX<—x)=(|x|/Zs) = (2)

where X is a random variable and Z; and Z, are constants defined as:

-z
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B, of which more will be said afterwards, is a parameter for skewness.
Property 4. (Stability or invariance under addition) If L is strictly
stable with exponent « then all linear combinations of any two or more
jiid random variables with distribution L will also have distribution L.
Property 5. (Limiting distributions) A distribution L possesses a
domain of attraction if and only if it is stable.
A distribution F of iid random variables is said to belong to the do-
main of attraction? of a distribution L if there exists norming con-

stants a, and b, such that

(Sn = bh) $Y

Ay

4) For more on domain of attraction see Stout (1989).
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where Y is a random variable with a distribution L, S, is the sum of n
of those iid random variables and > denotes convergence in distribu-
tion.

As Feller (1968) points, the importance of the normal distribution is
due largely to the central limit theorem. If X;, Xs, ... are iid with a
common distribution F having zero expectation and finite variance,
then according to the central limit theorem the distribution of S, is
asymptotically normal®,

However, if iid random variables do not have finite variance but their
sums follow a limiting distribution, then the limiting distribution must
be stable with 0<a<2. All stable distributions and no others may oc-
cur as such limits. For a stable distribution with characteristic expo-
nent 0<a<2 to be a limiting distribution of the sums of such random
variables the Doeblin-Gnedenko conditions give the necessary and suffi-
cient conditions:

i F(—x) Gy
limy o0 —l—F(x) - Ca

and for every constant k>0,

tim 1-Fx)+F(—x)
*>* 1—F (kx) +F (—kx)

- ke

where F(+) is the cumulative distribution function of the random
variable X (F(x) =Pr(X=x)) and C; and C; are constants. All ran-
dom variables that follow the asymptotic law of Pareto will satisfy the
Doeblin-Gnedenko conditions and thus belong to the domain of attrac-

5) As will become clear later, if F has zero expectation and unit variance, then
distribution of S, /n!/? is asymptotically normal with zero expectation and unit
variance.
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tion of a stable distribution, regardless of their having a stable distribu-
tion or not. For example, for any random variable X that is not stable

but is asymptotically Paretian:

; F(—x) (|—x|/Z)|7*_ Z§
litfhse T_F ) [ x/Zy) o

and

limen LoF@AFC=X) | G/Z) (| —x|/Z)= _,
O I=F o) +F (k0 (x/Za) ~o+ ([ =k [/25) <

The characteristic function of stable distributions is®:
¢ () =2 explixt)dF (x) =exp[idi—y|t|{1—ip{t/|t]) e e, £)}] (3)
with

ole = tan (an/2), if azl
—2logl|t|/n, if a=1

where « is the characteristic exponent, § is a measure of skewness
(=1<p<1), y(y=ce) is the scale (that is, the unit of measurement)
parameter and & is the location parameter, { belongs to the set of real
numbers and 7 is the imaginary unit?.

The characteristic exponent determines the leptokurtosis of a distribu-
tion, in other words, the thickness of the tails of that distribution.

Sj We adopt closely the definitions given by Zolotarev (1957, p. 441) and Me-
Culloch (1986). However, it should be noted that other parameterizations ex-
ist which are considered more convenient for analytical work (Zolotarev
(1966), Chambers, Mallows and Stuck (1976) and Feuerverger and McDun-
nough (1981)).

7) Laha (1989) and Kendal and Stuart (1977, ch. 4) present a complete treat-
ment of characteristic functions.
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The thicker these are the larger the probability of occurrence of
outliers. [If the tails of a certain distribution are thicker than the tails
of normal distribution, then the distribution is said to display excess
kurtosis, or to be leptokurtic. On the other hand, if the tails are thin-
ner, a case rarely found in practice, then the distribution is said to be
platykurtic. When «=2 the distribution is Gaussian, or mesokurtic.
As « moves away from 2 towards 0 the thickness of the tails or lep-
tokurtosis increases®. A consequence of this increasing leptokurtosis
is that finite variance exists only in the extreme case of a=2 and the
mean only when a>1. Figure 2 shows? the distribution function of 3
stable distributions with different a's: o <an<ws.

The symmetry of a distribution can be judged according to its f. £
is the limiting value of the ratio of the difference of the tail pro-

babilities to the sum of the tail probabilities:

&
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Fig. 2 Probability distributions with different charac-
teristic exponents: o) <op <oy

8) As Kendall and Stuart (1977) and Davidson and Mackinnon (1993) point
out the terms leptokurtic, mesokurtic and platokurtic were first used to
designate not the tails but the central part of the distribution; thus leptokurtic
distributions own their name not to their thick tails but to their relatively thin
central part. However, in almost all instances, it iz the tails that are referred
by these terms.

9 ) This Figure is based on Figure 1 of Fama and Roll (1968); the standardiza-
tion iz made using: u= (x—4)/c.



1-F{x)—F(—x)

I—Flz) o+ Fl—x) Then ayz,

f=limy .,
where F(+) is the cumulative distribution function of the random
variable X. As should have become apparent by now, in the above
equations 1 and 2, Z7 and Z3 are the probability contained respectively
in the right and left tails of a distribution. When =0 the distribution
is symmetric (Z;=Z,); when =0 the distribution is skewed to the
right!? in other words, the right tail is longer and thicker than the left
one (Z;>Zy), and the degree of right skewness increases as f ap-
proaches 1; and conversely when f=0. It should be noted that in equa-
tion (3) as « approaches 2 (and w(e, t) approaches 0), £ loses its ef-
fect and the distribution approaches the symmetrical normal distribu-
tion regardless of the value of f.

Using the characteristic function presented above, a more rigorous
presentation of property 3 may now be given'V, If » iid stable random
variables having equal values for the parameters «, 8, y and & are
summed, the expression for the logarithm of the characteristic function

of this sum is:
n logle (£) 1=1(dn)t— (yn) |#|*{1 =it/ |t ew (e, D}

where log[¢(#)] is the logarithm of the characteristic function of the in-

dividual random variables. As can be seen, the distribution of the

10) It is also said to be positively skewed. As pointed by McCulloch (1986)
there is some confusion in the literature, also characterized by Hall (1981) as
a “comedy of errors’: following Gnedenko and Kolmogorov (1948) the
characteristic function (3) is usually written with a positive sign for
{i t/|tDewla, t)}. Then when f=0 the distribution is negatively skewed
and it is positively skewed when f<0.

11) This passage is based on Fama (1963).
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sums is, except for location & and scale y, exactly the same as the
distribution for the individual random variables: « and # remain cons-
tant under addition. Even if the location and scale parameters are not
the same for each individual variable in the sum, the property of stabili-
ty under addition still holds. The expression for the logarithm of the

characteristic function of the sum of n such variables is:
E logley1=i(E apt—(E ) [t|={1=i Bt/ |t]) (e, )

where &; and y; are the location and scale parameters of each different
random variable. Thus the sum of random variables with stable
distributions having the same values for « and # but having different
values for y and 4, is still a random variable with stable distribution
having the same values for o and f# and whose location and scale
parameters are the sums of location and scale parameters of the

distribution of the individual random variables.

3. Estimation

To determine whether a random variable is normally distributed or
has a stable distribution other than the normal it suffices to estimate
the value of the characteristic exponent «. However, as explicit ex-
pressions for the densities of stable distributions are known for only
the Gaussian (a¢=2) and the Cauchy («¢=1, f=0), there is no general
sampling theory available. Thus usually it is necessary to use
numerical methods to estimate . Below we present some methods of

estimation that have been proposed.

3.1 Double log graphing
According to property 3 of stable distributions presented above,

when a<2 these distributions follow the weak or asymptotic law of



Pareto. Taking logarithms on both sides of expressions (1) and (2)

we have:
limyoe log PrX>x)——allog x—log Z;)
and
limy log Pr(X<—x)——allog|x|—log Z2)

The above expressions imply that, if Pr(X>x) and Pr(X< —x) are
plotted against |x| on double log paper, the two lines should become
asymptotically straight as |x| approaches infinity.

However, as pointed by Mandelbrot (1963c) this technique is weak
when the characteristic exponent is close to 2. If a=2, Pr(X=x%)
decreases faster than |x| increases, and the slope of log Pr(X>x)
against log|x| will approach —ee. For normal distributions the law of
Pareto does not hold even asymptotically. When « is between 1.5 and
2, although the law of Pareto holds asymptotically, the absolute value
of the slope in the middle of the double-log graph will be greater than
the true asymptotic slope, which is only reached at the extreme bottom
of the graph. For example, when a=1.5 the asymptotic slope is attain-
ed only when Pr(X>x) =0.015, and when &=1.9 only when Pr(X>x)
=0.0005 (Fama, 1965, Table 6). Thus to be able to observe the slope
of the graph start to converge to the distribution’s true « we need to
have a number of observations of more than #=1/Pr(X>x). For a
stable distribution with @=1.5 we need to have at least n=67, and
when a=1.9 the minimum is #=2000. And as the expected number
of extreme values which will exhibit the true asymptotic slope is
n Pr(X=>x), if «=1.9 and we have a sample size of #=4000 we can ex-
pect that the asymptotic slope will be observable only for the largest

two observations in each tail.
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Given what was said above, it is only natural that this technique was
applied only when very large cross-sectional and time series samples
were available. Examples of the actual use of this technique for
estimating o are Mandelbrot (1963a) for the daily returns of cotton
prices, Fama (1965b) for 30 different stocks, and Steindl (1965) for
the distribution of wealth in Sweden, for the distribution of US corpora-
tions according to assets, for the distribution of US firms according to
number of employees, and for the distribution of firms according to tur-
nover in the Federal Republic of Germany, from among several ex-
amples. Figure 3 presents an example of this technique for the
distribution of wealth in Sweden in 1959, using data from Steindl
(1965, p. 188).
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Fig. 3 Distribution of wealth in Sweden: percentage
of owners with property equal to or ex-
ceeding the amount of property shown in the
horizontal axis (thousands of swedish
crowns)



3.2 Range Analysis!?

According to Property 4 of stable distributions presented in section
2, the distribution of the sum of » stable iid random variables S, is also
stable with the same characteristic exponent as the original distribution
L. However, the process of summing causes the scale of the distribu-
tion to change. To keep the scale parameter of the distribution of the
sums the same as the scale parameter of the original distribution we
have to weight each random variable in the sum by a constant 1/a,

such that:
y n| (Mayt|*=y| t |~

Solving this expression for a, we get that a,==!/. Thus either the
summands are divided by nl/® or the scale of the distribution of the
unweighted sums is »!/ times the scale of the original distribution. It
follows that, for example, the interquartile range of the distribution S,
will be n'/* times that of the distribution L. Range analysis is based
on this property.

Let the difference between two symmetric percentiles define an in-
terpercentile range of a distribution and denote the interpercentile
range of S, of by R,. The interpercentile range of the distribution of
the sum of » stable iid random variables as a function of the same in-

terpercentile range of the distribution L is given by:
R”='ﬂ”" R1.
Solving for « we have that:

= log # )
log R,—log R,

12) This and the next subsection are based on Fama (1965h).
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Thus, for a given set of data we can easily have many different
estimates of o by applying the above formula for several values of n
and using different interpercentile ranges.

However, this procedure will produce biased estimates of « if the
sample price changes are correlated. For example, if there is positive
serial correlation in the first differences, the interpercentile range of
the distribution of the sums will be more than #!/* the interpercentile
range of the original distribution and the estimated « will be downward
biased. In a similar way, negative serial correlation will result in up-
ward biased estimates of o

Fama (1965b) used this technique to estimate the characteristic expo-
nent of 30 different stocks. The results obtained do not differ much
from those obtained with double log graphing. And as 21 out of 30 of
the estimated o’s had values of less than 2, Fama considered this to be

conclusive evidence in favor of the Mandelbrot hypothesis.

3.3 Sequential Variance

Although the population variance of a stable distribution with e<2 is
infinite, the sample variance will always be finite, Thus, as the size of
a sample drawn from a population with a stable distribution is increas-
ed the sample variance should increase. To see why, let X be a stable
iid random variable with characteristic, skewness, scale and location
parameters <2, f, v, and §, and define a new variable Y=X-4. Y
has exactly the same distribution as X except that the location
parameter is 0. Y2, however, has no negative tail, and its positive tail

is related to the tails of the distribution of Y:

Pr(Y2>y)=Pr(Y>yV2) +Pr(Y<—yl/2),

Since Property 3 of stable distributions applies to Y it follows that:



limye Pr(Y2>y) = (y12/Z1) o+ (yV/2/Z5) ~e= (Z, “+Z5 ) y—/2.

Thus Y? has a stable distribution with characteristic parameter
a'=a/2. For the distribution of sums of # stable iid random variables
to have the same distribution as the original random variable, the sums
must be weighted by n~Ve=yn-2/«_ In this way the distributions of Y2

and #n~2/® £ Y? are identical. The variance of a sample with size # is:
7
$#=n"~1 Ej Y?
This can be multiplied by n—2/«+2/« go that:
Se=p—1+2/a(p—20a ¥ VP
=1 T4

As we know that the distribution of n—2/« £;; Y7 is stable and indepen-
dent of #n, we have that the variance of two samples with sizes n; and

n2 will be related in the following way:
S3=5%(ny/my) ~1+2/a
Solving this equation for « we get:

: o 2(log na—log my)
2log S;—2log S;+log ny—log 4

o

The above equation can be used for different sample sizes to obtain
several estimates of . For example, Fama (1965b) using this method
estimated « for 30 different stocks by averaging 56 different estimates
for each stock.

This procedure has several problems: the estimates are very sensitive
to the values of n; and n; if the sample variance declines as the sam-
ple size increases the estimated « will be more than 2; and in general it

produces estimates, for a same time series, that are so erratic as to he
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of quite doubtful value. These problems make sequential variance an

inferior procedure to range-analysis.

3.4 The Fama-Roll method

Much of the empirical work concerning stable distributions that has
been done in the past 25 years has been based on the method
developed by Fama and Roll (1968, 1971).

Assume that a random variable X is symmetric (=0) with
parameters o, y=c* (¢=a,), and 4. It follows that the standardized
variable U= (X—4) /¢ is also stable with parameters o, y=e¢=1, and
d=0. The logarithm of the characteristic function for U is:

In ¢(f)=—|t

Except for the normal («=2) and Cauchy (e=1) distributions, ex-
pressions for the density and cumulative distribution functions are not
known. But by using series expansions presented in Bergstrom
(1952), Fama and Roll (1968) developed numerical approximations for
the cumulative distribution functions which they tabulated for several
values of the characteristic exponent.

To estimate « the following procedure is used: first, c=yl/2, the scale

parameter, is estimated using:
¢=(1/1.654) (x0.72—%0.28)

where xp72 and xp2s are the 72nd and 28th percentiles of the data
distribution. This estimator for ¢ is based on the fortuitous finding
that (xo72—%o.28) /¢ lies within 0.4% of 1.654 for all values of « in the
interval [1.0, 2.0] when g=0.

Then, an inter-percentile range z; (for a large value of f, with

0<f=<1) is calculated with the aid of the following expression:



3f= (.‘L’f—}:l ._Jr:) /28

where %y is the f(n41)th order statistic used to estimate the f th
percentile of the data distribution with size n. Which is the best value
for f cannot be determined analytically'® but Fama and Roll (1971) us-
ing Monte Carlo simulation conclude that generally values of f between
0.95 and 0.97 are the best for estimating «. Perhaps because f=0.95
is the value which reduces the sampling error of the inter-percentile
range, most empirical work uses this value.

Finally, this 2, is referred to a table of percentiles of standardized
symmetric stable distributions (Table 2 in Fama and Roll, 1968) to ob-
tain the value of « whose fth percentile hest matches 2.

To judge the stability of a distribution we can use the fact that if a
sample of observations is drawn from a stable distribution then every
non-overlapping sum of observations of that sample will have the same
characteristic exponent. On the other hand, if the distribution is not
stable but has finite second moments, the estimates of « should in-
crease towards 2 as the number of observations in each sum increases

(Fama, 1963).

3.5 The McCulloch method

The McCulloch (1986) method generalizes the Fama-Roll method,
providing consistent estimators for all four parameters. Its advantages
over the Fama-Roll method are that it relaxes the restrictions on «

(that can now be in the range [0.6, 2.0]) and § (that can be within its

13) If on one hand there is an incentive to choose large values of f because the
inter-percentile range increases and the characteristic of a distribution is bet-
ter seen in the extreme tails, on the other hand the sampling dispersion of the
inter-percentile range increases, a problem that will be more serious the
smaller the sample.
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full permissible range [—1, 1]), and that it eliminates the small asymp-
totic bias in the Fama-Roll estimators.
Define

X95—X. XostXos—2x
_Xo5—X05 and vy= 95 1 X.05 i)

v,
* Kgs—Xas X.95—X, 05

These indexes are independent of y and . Let b, and Dy be the cor-

responding sample values:

o _Ros—%Ros —Ros+Ros—2%5
Yo" R %25 and &y Ros—%os

The statistics b, and Dy are consistent estimators of v, and vy. The

parameters « and f may be consistently estimated by:
a=w1 (D D) and B=y (e, 0p),

functions that are tabulated in McCulloch (1986, Tables III and 1V).
Estimation of the scale parameter ¢ can be done by computing the

following consistent estimator &

X75—X
=205 X25

s (@, B)

where the function y;(&, ) is tabulated in McCulloch (1986, Table V).

Other estimation methods besides those presented above exist (for
example, Paulson, Holcomb and Leitch, 1975), but they are computa-
tionally more complex and do not seem to give more exact estimates,
For this reason they have seldom be used in practice and are not

presented here.



4. Implications for economic theory and practice

Whether an economic variable is distributed according to the normal
or according to a stable distribution other than the normal can have im-
plications in several fields of economic theory'?), We will see now
what are its implications for the Efficient Markets Hypothesis, risk

theory and econometrics.

4.1 Efficient Markets Hypothesis

According to the Efficient Markets Hypothesis, price changes bet-
ween two points in time reflect the influx of new information into the
market during that time period. If a piece of news that arrived to the
market during that time period did not cause an appropriate price
movement when the next transaction occurred (or immediately if the
market is so liquid that the time between transactions is very small)
but only after a certain number of transactions (or some time) had
elapsed, then that market would not be informationally efficient. By
appropriate we mean that it reflects the impact on the economic fun-
damentals of the fact that gave rise to the news.

Informational efficiency is not dependent on the shape of the distribu-
tion of the effect of new information on price changes or returns. A
market can be informationally efficient both when the effect of news
on prices is Gaussian or stable Paretian. It can also be inefficient
under both distributions.

If a market is informationally efficient, the distribution of the effect

that each individual bit of information has on price changes may be

14) It has been sugested also that the study of the distribution of economic
variables can be useful for governments when they are formulating their
economic policies, namely in their foreign exchange management policies
{Calderon-Rossell and Ben-Horim, 1982).
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stable with constant parameters & and f§ but with different values for &
and y. If the influence that each piece of information has on the price
is combined in a simple additive manner, then the price changes from
transaction to transaction will also be a stable distribution with the
same values for o and f. And since price changes for any interval of
time, be it one day or one year, are simple sums of the price changes
that occurred during that interval, then the price changes for any inter-
val will also have a stable distribution with parameters « and f.

Even if the distribution of the effects that information has on price
changes is not stable, as long as it is asymptotically Paretian, and if
those effects combine in a simple additive way and there are enough
pieces of information, then the distribution of price changes between
two transactions will also be stable. And if there are not enough
pieces of information between transactions to insure that limiting stable
distribution is achieved by the distribution of price changes that accom-
pany each transaction, then as long as there are enough pieces of infor-
mation during a day, a week or a month, then the price changes for
these intervals will exhibit stable distributions.

On the other hand, a market can also informationally inefficient
under the stable Paretian hypothesis. As Mandelbrot (1963b) has
shown, the distribution of price changes or returns can be asymptotical-
ly stable under various types of aggregation of information that are not
informationally efficient. Price changes between transactions may de-
pend on a subset of the information arrived to the market during the
time between transactions (for example, investors may pay attention
solely to the piece of news what they regard as the most important, or
with largest impact, and disregard the rest). Under this case, if the ef-
fects of individual pieces of information are asymptotically Paretian

with characteristic exponent e, the distribution of the largest effect will



also be asymptotically Paretian with the same characteristic exponent
a. It follows that the Doeblin-Gnedenko conditions will be satisfied
and that the distribution of price changes will be stable with the same
value of the characteristic exponent ¢, provided that are a sufficiently
large number of transactions in the interval of time considered (hour,
day, etc.). And if the Doeblin-Gnedenko conditions are satisfied for
that period, the price for longer intervals will be stable with the same
vale of a.

The question of whether an economic variable has a stable distribu-
tion because the process that generates news is itself a stable distribu-
tion or because the behavior of economic agents makes it so does not
seem to have an easy theoretical or empirical solution. Assume that,

for example, stock prices p; follow a simple random model:
Pt=pt-112%

where z, is an independently distributed random variable with E(z)
=(0. 2z can be either normally distributed (o=2) or have a stable
distribution (e<2), but in either case it is not evident whether this is
due to the process of stock trading or simply to the shadowing of the
underlying process that generates the news. An example will make
clear the distinction: stock prices depend on economic fundamentals
that are influenced by natural (floods, etc.) and social (wars,
discoveries, etc.) factors. The natural and social phenomena may have
a generating process that has a normal or a stable or other distribut-
ion. If the trading of stocks is neutral in relation to the underlying
distribution, z; will have the same distribution as the natural and social
processes. However, the process of stock trading may alter that
distribution. If as some argue (Shiller 1981, 1989) stock prices are

more volatile than the underlying fundamentals then that excess volatili-
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ty is due to the process of trading: if the mentioned natural and social
processes are normally distributed (e=2) the trade induced volatility
may make z have a stable distribution with «<2. In more formal

terms:
z=T (w)

where w; is the distribution of the natural and social phenomena assum-
ed to be iid with a=do/, T( ) a function that reflects the process of
stock trading and z is as before hut distributed with a=o" <o/,

Concerning natural phenomena, although some are found to be nor-
mally distributed many others are found to be stable (Monrad and
Stout, 1989). In what concerns social phenomena other than
economics no recent literature was found on the subject, but Zipf
(1941, 1949) presents evidence that most are distributed with fat
tails. Concerning economic variables (other than stock prices and ex-
change rates), while some of those surveyed by Steinld (1965) seem to
be best approximated by the normal, most do not seem so.

A possible test of the informational efficiency of the stock market
would be to compare the distributional characteristics of the natural
and social processes that might affect economic fundamentals, v, with
the distributional characteristics of stock prices changes, z!9.
However, as v, is not easily observable this test can be difficult to im-
plement. Another possibility is to assume that the information produc-
ing industry is both efficient and rational, giving proportionally more
coverage to events that have more impact on economic fundamentals,
in this way allowing stock market participants to have an undistorted
picture of what affects fundamentals. If thus the news are assumed to

15) This type of test would in fact be a test of the informational efficiency of
the stock market and the information industry.



have the same distributional characteristics as the phenomena that af-
fect fundamentals, we could test if those characteristics are similar to
the distributional characteristics of prices changes: if they are not it
would be apparent that stock trading was not being rational or effi-
cient. The same test would also allow us to form an idea of whether
stock trading was adding or subtracting instability to the volatility of
economic fundamentals. The problem of the difficulty of observation
of the distributional characteristics of news remains but it should not
be as hard to tackle as the observation of the distributional
characteristics of the underlying natural and social phenomena, as
psychologists have already developed reliable and valid means of analyz-
ing and scoring the content of texts (McClelland 1962, Hampton, Sum-
mer and Webber 1987).

4.2 Risk theory!®

The importance of the concept of risk in economic theory and its
relevance in such areas as choice of output level by a firm, saving and
investment behavior, and option pricing, just to mention a few, is so
evident that no further comment is needed here.

However, due to the traditional association of risk with variance
(that holds only under very strict conditions), the relationship between
risk and the shape of the distribution of a random variable seems to be
forgotten. It is the objective of this section to stress that choice under
uncertainty can he conceived as the choice of one out of several ran-
dom variables with different shapes, a point stressed already half a cen-
tury ago by Alchian (1950).

Following Knight (1921) it is usual to distinguish risk from uncertain-

16) This section borrows from Machina and Rothschild (1992) and Rothschild
and Stiglitz (1970, 1971),
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ty. A situation is said to involve uncertainty if an economic agent can-
not, or does not, assign a numerical probability to the different possible
occurrences. On the other hand, a situation where the randomness fac-
ing the agent can be expressed in terms of concrete numerical pro-
babilities is said to involve risk.

An agent facing a decision under risk can be thought of as facing a
choice of alternative univariate probability distributions (of returns, for
example). It is usual to assume that such an agent can rank all possi-
ble distributions that he faces, and that such ranking is complete, tran-
sitive and, in an appropriate sense, continuous, Let V(+) be a
real-valued preference function over the set of cumulative distribution
functions F(e). An wusual specification for V(s) 1is the

Riemann-Stieltjes integral:
V(F) ={U(x)dF (x) (4)

for a utility function U( ). Equation (4) is an expected utility model
of preferences over possible random states. The shape of U(-)
reflects the attitudes of the agent toward risk, and is assumed to be an
increasing and concave function of x. Thus, for a given shape of the
distribution, the agent will chose the one with higher expected value.
And when comparing distributions with a given expected value, he will
prefer the distribution which is more concentrated around the expected
value if he or she is risk averse. Thus, when facing a choice between
different stable distributions with the same expected value, a risk
averse agent will chose the one with thinner tails (x=2).

The usual measure of the riskiness of a random variable is the
variance, or alternatively, the standard deviation. The easiness of
their use and interpretation has led to the widespread use in finance of

mean-variance analysis and to the development of modern portfolio



theory by Markowitz (1952, 1959) and Tobin (1958), and the capital
asset pricing model of Sharpe (1965) and Litner (1966), based on it.

However the mean-variance approach has theoretical as well as em-
pirical weaknesses. The most important theoretical objection is that
an expected utility maximizer would evaluate all distributions only on
the basis of their means and variances if and only if his utility function
took the form U (x)=gx+bx? where b indicates the degree of risk
aversion. However the assumption that the utility function takes a
quadratic form is disputable because if the agent is risk averse (b<0)
his utility will decrease as x increases beyond a certain point (a/2h),
and because the agent will be more averse to constant additive risks in
high levels of x than in low levels (what is in contrast, for example,
with the empirical observation that those with greater wealth take
greater risks).

The traditional view held that when comparing two distributions with
the same mean, the following four definitions of risk are equivalent:

1. Y is equal to V plus noise If three random variables Y, V
and Z are related in the following way:

Y d V+Z

with E(Z|V)=0 for all V, and 4 indicates the same distribution, then
Y is more variable or riskier than V.
2. Every risk averter prefers V to Y If Y and V have the

same mean but any risk averter prefers V to Y in such a way that:
fU (x)dFy (x) =[U (x)dF, (x)

where Fy(+) and Fy(«) are the cumulative distribution functions of Y
and V, then it is reasonable to say that Y is more risky than V.
3. Y has more weight in the tails than V If the density func-
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tion of Y is obtained by transferring some mass or probability weight
from around the center of the density function of V towards its tails in
such a way as to leave the mean unchanged, then Y is more risky than
V.

4. Y has a greater variance than V If the variance of Y is
larger than the variance of V, then Y is more risky than V.

Rothschild and Stiglitz (1970) show that while the first three defini-
tions of risk are in fact equivalent, they are different from the fourth.
Thus, as the tails of a stable distribution get fatter (as « decreases
from 2 towards 0) risk increases. But although riskier distributions im-
ply higher variance, higher variance does not imply riskier distribu-
tions.

The empirical weakness is the observation that most variables in
economics and especially in finance seem to be distributed not accor-
ding to the normal but according to other stable distributions. As
stable distributions have not defined second and higher moments, the
sample variance and the standard deviation do not give an accurate
measure of dispersion. This, of course, does not mean that that con-
cepts such as diversification are meaningless in a securities market
where returns have stable distributions with «<2, Fama (1965a,
1971), using concepts of variability other than the variance, has shown
that it is possible to develop a model for portfolio analysis for such
markets!?,

As a result of problems that the use of the variance as a measure of

risk has, other measures of risk have been proposed. These include,

17) It can be argued that although the population variances are infinite, since
sample variances of returns are finite they can be used in Markowitz-type
portfolio analysis. However, as this model is highly sensitive to the estimates
of the variances that are used, the estimates thus produced are highly
unreliable,



among others, the mean absolute deviation and the interquartile

range.

4.3 Econometrics

The implications for statistical and econometric work of stable
distributions lies in the non-existence of finite variance. In practical
terms this means that the sample variance of a stable distribution will
show a extremely erratic behavior even for very large sample sizes.
Because of its very erratic behavior the sample variance is not a mean-
ingful measure of the variability of a stable distribution other than the
normal. Unfortunately stable distributions are not the only source of
potential trouble to econometricians: when there is any non-normality
in the data, even if it arises in a distribution with finite variance, it is
possible to find estimators that are more efficient than least square
estimators (Judge, Hill, Griffiths, Lutkepohl and Lee, 1988).

Thus an elementary precaution that should be taken any time OLS is
employed is to test the normality of the residuals. The literature on
testing for normality is vast and is beyond the scope of this work.
The interested reader is referred to, for example, White and Mac-
Donald (1980), where several well-known and easily computable
statistics for testing normality and a selected bibliography of this field
are presented. However, the Jarque-Bera test has recently gained
popularity. Bera and Jarque (1981) propose the following statistic
that, under the null hypothesis that residuals are normally distributed,

has an asymptotic xf, distribution and is given by:
A=(T=k/6)[S2+ (1/4) (K—3)2],

where T is the number of observations, k is the number of regressors

(zero for a non-regressed series), and S and K are respectively
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skewness and kurtosis.

If non-normality is found, further tests should be made to ascertain
whether it is due to a stable distribution!®, or to other distributions.
If it is judged that the later is the case, most econometric textbooks
argue that, since the OLS estimator remains unbiased minimum
variance from within the class of linear unbiased estimators and consis-
tent, and since the conventional tests are still asymptotically justified,
then least squares estimators can still be used under conditions of non-
normality. However, Koenker (1982) argues that these reasons are
not very compelling.

If a data set is judged to have a stable distribution, methods that
assume finite variance are liable to produce misleading results. Thus
when modeling data whose distribution is known to belong to this
class, it does not make much sense to use a regression technique that
has as its criterion the minimization of the sum of squared residuals
from the estimated regression line, since the expectation of that sum
will be infinite. In particular the OLS estimators which agsume normal
and homoskedastic residuals are inefficient and the confidence intervals
associated with these estimates are incorrect and can be very
misleading. In this case it makes more senge to use other methods of
linear regfession, such as the maximum likelihood (McCulloch, 1979). Also
superior to OLS in the presence of stable distributions are robust
regression methods, but since the distribution of estimators is generally
not well known hypothesis testing is difficult. Among the robust
regression methods superior to OLS we can refer absolute-value regres-
sion (Wagner 1959, 1962, Blattberg and Sargent, 1971, Dielman and
Pfaffenberger, 1982), which do not make use of second or higher order
moments statistics, and Trimmed Least Squares (Koenker and Bassett,

18) See for example the tests presented in sub-sections 3.4 and 3.5.



1978, 1982, and Ruppert and Carroll, 1980).
5. Stable distributions in economic literature

There is a vast and vigorous literature on using stable distributions
to model random economic phenomena. In economics, the justification
for the use of a stable non-normal instead of a normal distribution
depends heavily on data-based evidence, namely that the tails of the
distributions generating the data have a certain non-normal shape.
Unlike the physical sciences there is no strong theoretical reason to
some phenomena being distributed according to a stable instead of the
normal distribution (or vice-versa). If on one hand there is ample
evidence that economic phenomena are not normally distributed, on the
other hand tradition, convenience and mathematical elegance (to what
can be added the analytical intractability of stable distributions) have
made common the assumption that economic variables are normally
distributed. In what follows we present the results of a part of the
literature concerning stable distributions in four areas of economics: in-
come and wealth distribution, foreign exchange, currency futures and
stock prices. However, stable distributions are also useful in other

areas like population economics, urban and regional economics, etc.

5.1 Income and wealth distribution

This is an area of special significance to stable distribution theory
because it was work by V. Pareto in income distribution that lead to
the discovery of the empirical relationship, later denominated “Pareto’s

law"'19), presented above as Property 3 in Section 2. It was also work
19) It was, however, Levy (1924) who iniciated the general theory of stable
distributions by finding the Fourier transforms of all stictly stable distribu-

tions, General interest in stable distributions was later stimulated by work of
(R~ <)
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in this area by Mandelbrot (1960, 1961, 1962) that later rekindled
economists interest in this family of distributions.

Pareto found that the distribution of income is not strongly influenc-
ed either by the socio-economic structure of the society under analysis
or by the definition chosen for income, and that this observation is
truer the more one restricts attention to the higher range of values of
income. Socio-economic structure and definition of income can at
most influence the values taken by certain parameters of an apparently
universal distribution law. Pareto thought that «=1.5 was a good
general approximation that described well most distributions of inc-
ome. Later, stable distributions were found empirically to fit well the
upper portion of income distribution of populations of so different
socio-economic backgrounds and sizes as the “‘burghers” of certain
Renaissance city-states, numbering only a few hundred, and the tax-
payers in the USA, numbering about a hundred million (Mandelbrot,
1960).

As o increases and as the goodness of the fit of income distribution
extends from the upper tail to median incomes, it can be considered
that the distribution of income becomes more egalitarian. One famous
example pertains not to income but to wealth distribution: it was found
that in Sweden « increased from 1.5 to 1.7 between 1931 and 1959,
and that the range of the straight-line distribution®”, which included in-
comes above 200,000 Swedish crowns in 1931, had extended to the left
and that in 1959 the distribution of incomes above 100,000 Swedish

crowns (including over 70% of the wealth owning population) had

W. Doblin on domains of attraction in 1939. In the forties Zipf (1941, 1949)
presented many cases where the tails of of phenomena studied in the social
sciences are well fitted by stable distributions. In the sixties Mandelbrot rein-
troduced and developed their use in economics.

20) See sub-section 3.1 on double log graphing for explanation.



become a straight line (Steindl, 1965). Figure 3 presents the double
log graph of wealth distribution in Sweden in 1959.

5.2 Foreign exchange

Westerfield (1977) examined weekly foreign exchange rates, in-
cluding spot rates and one, two and three month forward rates, for five
currencies (those of the Netherlands, Switzerland, United Kingdom,
Germany and Canada) against the US dollar, encompassing both the
fixed exchange rate regime in the 1960’s and the early floating regime
of the 1970’s. After finding that the weekly returns of those exchange
rates were symmetric but highly leptokurtic, Westerfield compared the
distributions of the actual exchange rate returns with the theoretical
distributions of several stable distributions (for «=1.2, 1.3, ..., 2.0) us-
ing Chi-squared tests, and concluded that the normal distribution pro-
vided an inadequate description of the observed distributions when com-
pared with the stable distributions for all cases analyzed. This observa-
tion is confirmed by the values of the estimated characteristic exponent
presented in Table 3 (Westerfield, 1977, pp 191-192), were all the
estimated o's for all the spot and forward rates have values lower than
1.6 for the two exchange rate regimes. These results seem to be
stable as can be observed from the estimated values of « for the sums
of two, five and ten non-overlapping adjacent observations (presented
in Table 4, Westerfield, 1977, p. 194): although the estimated values of
« show a tendency to increase with the number of summands, that
tendency is weak.

Similar results for spot and forward exchange rates for other sample
periods and exchange rates are reported by: Farber, Roll and Solnik
(1977), who used weekly and monthly data for the period from 1957
to 1975 (divided in two subperiods by the end of March 1971) for the
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exchange rates of 17 different currencies against the US dollar, and
found that all had distributions with «<2, except for Brazil and Spain
during the floating rate period; Rana (1981); McFarland, Pettit and
Sung (1982), who used daily data for the period from 2 January 1975
to 29 June 1979 for the spot and forward of 7 different currencies
against the US dollar, and found that that all had distributions with
a=<1.5; and Calderon-Rossell and Ben-Horin (1982) who tested the
hypothesis that the distribution of the exchange rates of 14 different
currencies against the US dollar had characteristic exponents a=1,
a=1.5 and =2 (against the alternatives a1, o#1.5 and «#2) using
the Kolmogorov-Smirnov test for data from 1 July 1974 to 29 July
1977, could not reject the hypothesis that «=1.5 for 9 of the exchange
rates at the usual levels of significance; for the remaining 5 all three
hypothesis could be rejected, what in conjunction with the fact that
these distributions seemed to have a high degree of asymmetry led the
authors to hypothesize that they could belong to the stable (Paretian)
asymmetric family.

Coppes (1995) using daily data for the cross exchange rates of the
US dollar, Japanese yen, German mark and British pound during the
1980-1992 period found also that all series suffered from leptolurtosis
(however, he does not report testing for symmetry). But in contrast
with results obtained by Westerfield (1977), although the daily rates of
return were found to have stable distributions (with « between 1.50
and 1.60), the distributions of non-overlapping sums of adjacent ohser-
vations tended to the normal. Two exceptions were found to this
tendency: the characteristic exponent of the Japanese yen / British
pound rate showed a slow increase as more observations were ag-
gregated, while the characteristic exponent of the German mark /

British pound rate remained stable around 1.50. Coppes attributed



this later result to the Exchange Rate Mechanism of the European
Monetary System because, he argued, this mechanism limited the
changes of the German mark British pound exchange rate during a con-
giderable part of the observed period?!, what may have induced
dependence between daily price changes. To test the stability of the
characteristic exponent, Coppes used the procedure proposed by Hall,
Brorsen and Irwin (1989) of drawing randomly the daily rates of
return from the original series and only then summing, and obtained
results that show that the characteristic exponent of the distributions
of the rates of return of the Japanese ven / British pound and the Ger-
man mark / British pound exchange rates tend to two when eight daily
returns are summed. This result led him to conclude that there was in-
deed lack of independence of consecutive price changes in the mark /
pound exchange rate that might be attributable to the participation of
the British pound in the Exchange Rate Mechanism during a small
period in the sample under examination.

Against this interpretation DosSantos (1996) tested the independence
_of the daily returns of thirteen bilateral exchange rates using the
Ljung-Box (1978) Q-statistics. The results of this test showed that
the daily returns of all exchange rate series for the period from March
1, 1973 to July 30, 1993 suffered from autocorrelation, and thus of lack
of independence. Since there is lack of independence in the daily
returns of all exchange rate series, it follows that this cannot be the
reason for the stability of the characteristic exponent for the mark /
pound exchange rate found by Coppes, because this argument would

imply that the characteristic exponent of other exchange rates would

21) In fact, as it entered in early October 1990 and left it in middle September
1992, the British pound belonged to the Exchange Rate Mechanism for less
than 24 months out of the 156 months in Coppes data set, a mere 15% of the
total.
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also be stable under addition, what does not happen. This conclusion
is reinforced by the fact that the only exception to the referred lack of
independence of daily returns found for all exchange rates is precigely
the pound / mark exchange rate for the period when the pound belong-
ed to the Exchange Rate Mechanism (lack of independence was found
also for other subperiods when the pound did not participate in this
Mechanism).

A further result presented in DosSantos (1996) is that where exists
an explicit or implicit arrangement to link one currency to another, the
distribution of daily returns of that distribution seems to be stable.
This result was found for all exchange rates involving the German
mark against currencies belonging to the Exchange Rate Mechanism
and also for the US dollar / Canadian dollar rate. But where such an
arrangement does not exist, the characteristic exponent tends to two,
what may indicate that the distribution of those exchange rates are a
mixture of distributions with finite variance (perhaps a mixture of nor-
mals). The exchange rates of the US dollar against the European cur-
rencies and the Japanese yen, as well as the yen / mark exchange rate
where found to be in this case.

These results are in line with the view that holds as a misconception
the widespread idea that fixed exchange rate regimes such as the Bret-
ton Woods system and the Exchange Rate Mechanism of the European
Monetary System made possible a relatively inflation-free growth
because they brought a high degree of certainty into international tran-
sactions which fostered trade and capital flows among the nations in-
volved. As the distributions of exchange rate returns of currencies
that are pegged seem to have fatter tails than those that are not, then
fixed exchange regimes may imply more, not less, risk. A possible ex-

planation to this counter intuitive result may lay in the necessity of



realignments, or change of the fixed exchange rates, that arises from
time to time when different countries pursue diverse macroeconomic
policies. For example, between the inception of the Bretton Woods
system at the end of World War II and its collapse in August 15, 1971,
there were no less than 74 exchange rate changes involving a total of
45 countries; and from March 1979, when it started, to May 1993
there were 17 realignments in the Exchange Rate Mechanism of the
European Monetary System, not including the ejection of the British
pound and Italian lira in September 1992. As Fritz Machlup is said to
have once remarked, fixed-rate systems look like being actually jump-
ing-rate systems (Malabre, 1994). As the probability of large ab-
solute returns (jumps) increases in fixed exchange rate regimes, so in-
creases the associated exchange rate risk. Only a system that can ab-
solutely guaranty the inexistence of future realignments can be said to
reduce risk. In this light it is understandable that the European Union
seeks this guaranty by eliminating the national currencies for a single
currency and by imposing imperative limits on the values certain
macroeconomic variables can attain in the different countries of the

Union.

5.3 Currency Futures

Although there is a vast literature on the shape of the distribution of
spot and forward exchange rates?®, relatively few studies examine the
statistical properties of the distribution of futures price changes.

So (1987), using the McCulloch method, estimated « and g for the
distribution of daily returns of future prices for the British pound, Cana-
dian dollar, the Swiss franc, the German mark and the Japanese yen.

He found that the characteristic exponent for all contracts (March,

22) See the previous sub-section for references.
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June, September and December) for a certain currency have similar
values with a<2 and § around 0. He then proceeded to test whether
the observed stable distributions can be explained by the inverse rela-
tionship between maturity and variability proposed by Samuelson
(1965) and Mandelbrot (1966): since the characteristic exponent (for
a certain scale parameter) determines the probability of extreme
results, its decrease reveals an increasing probability of large and sud-
den changes. Thus So estimated o and £ for each of twelve months to
maturity for the several contracts and currencies and found that
generally o decreased with maturity. This result did not change after
correcting for the small variability found in the estimated scale

parameter, allowing to accept the Samuelson-Mandelbrot hypothesis.

5.4 Stock prices

The usual agsumption that the distribution of price changes is normal
or approximately so is due to Bachelier (1900) and Osbone (1959),
who used arguments based on the central-limit theorem to support
it. However, it is well established that the normal distribution fails to
represent the distribution of stock price returns properly. The first
works to argue that stable distributions might fit better stock price
returns than the normal distribution are Mandelbrot (1963a) and Fama
(1963). Fama (1965) who, using the first three methods presented in
Section 3, was the first to report actual estimates for the characteristic
exponent of 30 US stocks, concluded for their non-normality.

Teichmoeller (1971) applied the Fama-Roll method to 30
alphabetically chosen US stocks to the original series and to the sum of
non-overlapping sums of 2, 5 and 10 observations. These series were
corrected for stock dividends and stock splits, and only calendar day

returns were used (thus excluding the returns between Friday and



Monday). The estimated characteristic exponents were found to have
a mean, that slightly increased with the sums, in the 1.6 to 1.7 range.

However, Fielitz and Smith (1972) using the daily returns of 200 US
stocks, adjusted for stock splits, stock dividends and cash dividends,
compared for various class intervals the number of observations of the
empirical stock distributions with the number of observations expected
to occur under a Gaussian hypothesis. They concluded that the asym-
metric stable distributions are more appropriate than either the normal
or stable distributions and that the Fama-Roll method (1968, 1971)
should not be applied in this instance.

Leitch and Paulson (1975) report the estimates of the characteristic
exponent for 20 US stocks using the graphical, Fama and Roll and
another method that does not restrain the distribution to be symmetric
(Paulson, Holcomb, and Leitch, 1975). They conclude that the agree-
ment of estimates of the characteristic exponent are very good when us-
ing the three methods, when the restriction =0 is made in the third
method. Even when this restriction is not made, the effect of
skewness (including those cases when the estimated f's are very much
different from zero) on the estimates of « is not large (generally the
estimates of the Paulson, Holcomb, and Leitch (1975) method when
B#0 are even nearer of those of the Fama-Roll method than when the
restriction #=0 is made).

From the results above we might conclude that stock price returns
are better represented by stable distributions, either symmetric or
non-asymmetric, than by the normal distribution; and that asymmetry
does not seem to cause much of a problem when estimating the

characteristic exponent with the Fama-Roll method.
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6. Is the Nikkei 225 stable Paretian?

From the FOREX data base (made available by the Nikon Keizai
Shinposha) the daily values of the Nikkei 225 average were collected
for the period from October 31, 1978 to July 30, 1993, with a total of
4001 observations. This series is presented in Figure 4. From this
data the daily returns were computed. Figure 5 presents their evolu-

tion. Their mean, standard deviation, skewness, kurtosis, Ljung-Box
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225 between October 31, 1978 and July 30,
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Q-statistics Q(12) and Q(24)23 were computed and are presented in
Table 1.

The mean is approximately zero as expected. But the distribution
shows every sign of not being normal: it is skewed to the left)); it is
heavy tailed; and the p-value of the Jarque-Bera statistic is 0. There
is also evidence of autocorrelation, as the p-values of the estimated
Q-values are zero in both cases. A careful look at the histogram of
the daily returns in Figure 6 will confirm some of these results: the
distribution seems slightly skewed to the left (the left tail is fatter and
somewhat longer than the right tail), and to be fat tailed (it seems
more with distribution ey than with distribution e in Figure 1).

While in principle the Fama-Roll method should be applied only to

Table 1 Descriptive statistics

Mean 3.1E-04
Std. Deviation 1.9 E-03
Skewness —0.962
Kurtosis 6.461
Q(12) 31023
Q(24) 39755
Jarque-Bera 2613.24

23) The choice of the span is arbitrary: for large spans some power of the test
is lost, but for small values highly significant correlations at relatively high
lags is not captured: thus our choice of a relatively short span (12) and a
relatively large one (24).

24) To confirm the lack of symmetry of this distribution we also tested the null
hypothesis that half of the observations are below the mean using the statistic
s=[(n~/n) —0.5]v/n, where n~ is the number of observations below the mean
and n is the total number of observations, with s~N(0, 1); as n~=1819, we
have that s=—2.9, so the null can be rejected for the usual significance
levels.
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Fig. 6 Histogram of the rate of return of the Nikkei
225 between October 31, 1978 and July 30,
1993

Table 2 Estimates of « and f# for the sums several con-
secutive non-overlapping observations

F;I:KDR; . McCulloch method
Sums of & & 3
1 1.38 1.36 —0.24
2 1.37 1.36 —0.22
4 1.39 1.38 To050
5 1.36 1.36 —0.21
8 1.38 1.38 —0.22
10 1.33 1.37 —0.23
16 131 1.31 —0.26
20 1.32 131 —0.33

symmetrical distributions, we used it as well as the MeCulloch method
to estimate the characteristic exponent of the distribution of daily
returns of the Nikkei 225 presented in Table 2.

It can be noticed first that both methods yield very similar results for
e, what may suggest that some amount of skewness, as long as it is

not large, does not invalidate the results obtained with the Fama-Roll



method, as already noted in the previous section. Then we notice that
the estimates of « are quite stable for the diverse sums, in the range
between 1.3 and 1.4. The estimates for f obtained with the Mc-
Culloch method show that the distribution is in fact negatively skewed,

as expected.

7. Conclusions

This paper presented the existing theory, estimation methods and
principal empirical results concerning stable distributions in some
economic fields.

After analyzing the results reported in the previous sections it is ap-
parent that stable distributions seem to fit better several types of
economic data than the normal distribution, and that the evidence is
especially abundant and strong for foreign exchange and stock prices
time series. But, since there are no explicit expressions for the den-
sities of stable distributions (with the exception of the Cauchy and
Gaussian distributions) no attempt has been made to use them in
theoretical modeling of economic hehavior. As this situation does not
seem likely to be altered in the near future, the normal distribution of
economic variables will continue to be a standard assumption in most
economic areas.

However, as a certain number of observers has noted (Leamer, 1983,
Rosenberg, 1992), to be able to attain its objective of explaining
human behavior, and to be useful in advising policy, economics must
become more and more an empirically progressive discipline. This im-
plies that it has to conform its assumptions more realistically to the
observed facts and to go beyond generic predictions to achieve an in-
creasing number of specific predictions, and these predictions must be

made with more and more precision.
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