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Ligand-Free Copper-Catalyzed Cyano- and Alkynylstannylation of 
Arynes 
Hiroto Yoshida,* Teruhiko Kubo, Hitoshi Kuriki, Itaru Osaka, Ken Takaki and Yousuke Ooyama 

This paper is dedicated to Professor Tamejiro Hiyama on the occasion of his 70th birthday. 

Abstract: A carbon–carbon triple bond of arynes was found to 
undergo cyanostannylation with a tin cyanide under CuCN catalysis 
to afford diverse ortho-cyanoarylstannanes in high yield.  The copper 
catalyst was also effective for alkynylstannylation of arynes, and the 
resulting alkynylstannylated products were demonstrated to be 
convertible into biologically active compounds and a dye for dye-
sensitized solar cell.   

Much attention has been riveted on the development of metal-
catalyzed addition reactions of cyano-containing s-bonds across 
unsaturated carbon–carbon bonds, because these attractive 
reactions allow a versatile cyano functional group and another 
valuable functionality including boron,[1] carbon,[2] nitrogen,[3] 
oxygen,[4] silicon,[5] sulfur,[6] germanium[7] or bromine[8] to be 
installed synchronously into carbon frameworks in regio- and 
stereoselective manners.  In view of the remarkable synthetic 
utility of organostannanes,[9] whose carbon–tin bonds are facilely 
convertible into carbon–carbon and carbon–heteroatom bonds, 
the catalytic cyanostannylation of unsaturated carbon–carbon 
bonds with tin cyanides, which have been mainly used as 
nucleophilic cyanating reagents or catalysts with carbon 
electrophiles,[10] is certainly of high synthetic value, however, this 
transformation has thus far remained untapped except for the 
platinum-catalyzed trans-addition to acetylenedicarboxylates.[11]  
We report herein that the unprecedented cyanostannylation of a 
transient carbon–carbon triple bond of arynes[12,13] smoothly 
occurs under copper catalysis,[14,15] and that the copper catalyst 
is also effective for alkynylstannylation of arynes.[16]   

The cyanostannylation has proven to proceed successfully 
by treating a THF solution of tributyltin cyanide (1a) and benzyne, 
generated from 2-(trimethylsilyl)phenyl triflate (2a)[17] and a 
fluoride ion (KF/18-crown-6), with copper(I) cyanide (5 mol %) to 
give tributyl(2-cyanophenyl)stannane (3aa) in 72% yield (Figure 
1).  The striking feature of the present reaction is that no 
additional ligand is necessary for the smooth transformation: 
widely available CuCN efficiently promoted the 
cyanostannylation of such symmetrical arynes as 2,3-
naphthalyne (from 2b) and 4,5-dialkylbenzynes (from 2c or 2d).  
The reaction of 3-bromobenzyne (from 2e) or 3-
methoxybenzyne (from 2f) took place with perfect 
regioselectivity to afford the cyanostannylated products (3ae and 
3af) bearing the cyano group at the meta position to the 

substituents,[18] where the reactive C–Br bond remained intact in 
the former case.  On the other hand, a mixture of regioisomers 
(3ag and 3’ag) was formed from 2g or 2’g in almost the same 
yield and regioselectivity, verifying the cyanostannylation 
included the formation of a common intermediate, 4-
methylbenzyne.   

 
Figure 1. CuCN-catalyzed cyanostannylation of arynes.  Conditions: 1a (0.30 
mmol), 2 (0.36 mmol), CuCN (0.015 mmol), KF (0.72 mmol), 18-crown-6 (0.36 
mmol), THF (3 mL), 65 °C.  Regioisomeric ratio was determined by 1H NMR. 

The CuCN catalytic system has turned out to be also 
effective for the alkynylstannylation of arynes (Figure 2).[19]  Thus 
treatment of tributyl(hexyn-1-yl)stannane (1b) with 2a under 
similar conditions to those of the cyanostannylation provided a 
77% yield of alkynylstannylated product 3ba, and symmetrical 
arynes (from 2b–2d) were convertible into the respective 
products (3bb–3bd) in good yields.  It should be noted that the 
regioselectivity with 3-bromobenzyne (from 2e) and 3-
methoxybenzyne (from 2f) could totally be regulated to furnish 
meta-alkynylated products 3be and 3bf,[18] being in marked 
contrast to the result with the previous iminophosphine–
palladium-catalyzed alkynylstannylation.[16]  In addition, 
preferential addition of the alkynyl group to the b-position was 
observed with 1,2-naphthalyne (from 2h),[20] and the 
intermediacy of arynes was also confirmed by the reaction of 4-
methylbenzyne (from 2g) or 4-methoxybenzyne (from 2i), in 
which a regioisomeric mixture was generated in almost equal 
ratio.  Other alkynylstannanes with alkyl (3ca and 3da), aryl 
(3ea), alkenyl (3fa) or propargyl ether (3ga) moiety could 
participate in the reaction (Figure 3), and furthermore high 
functional group compatibility was demonstrated by use of 
alkynylstannanes having a C–Cl bond (3ha and 3ia), ester (3ja), 
hydroxy (3ka) or acetal (3la) moiety.  Although the reaction 
mixture inevitably contains a fluoride ion for aryne generation, a 
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C(sp)–Si bond of 3ma was found to be tolerable throughout the 
reaction.   

 
Figure 2. CuCN-catalyzed alkynylstannylation with hexynylstannane.  
Conditions: 1b (0.30 mmol), 2 (0.36 mmol), CuCN (0.015 mmol), KF (0.72 
mmol), 18-crown-6 (0.36 mmol), THF (3 mL), 65 °C.  Regioisomeric ratio was 
determined by 1H or 119Sn NMR. 

 
Figure 3. CuCN-catalyzed alkynylstannylation with various alkynylstannane.  
Conditions: 1 (0.30 mmol), 2a (0.36 mmol), CuCN (0.015 mmol), KF (0.72 
mmol), 18-crown-6 (0.36 mmol), THF (3 mL), 65 °C. 

Synthetic versatility of the alkynylstannylation products has 
been exemplified by transforming 3ba into tertiary benzylic 
alcohol 4, which was reported to be convertible into 

 

Scheme 1. Transformation into antidepressant phthalanes. 

dihydroisobenzofuran 5 of antidepressant activity,[21,22] via tin–
lithium exchange followed by capture with 3-pentanone (Scheme 
1).  Similar treatment of 3ea was unexpectedly accompanied by 
cyclization, resulting in the direct production of another potential 
antidepressant agent 6.[22]  Moreover, we have also 
demonstrated that the regioselective alkynylstannylation using 
1n and a chloro-substituted aryne (from 2j) can be applied to 
generation of a donor–acceptor diarylalkyne dye (7) for a dye-
sensitized solar cell (DSSC)[23] by the Stille coupling–
formylation–Knoevenagel condensation sequence (Scheme 2).  
A DSSC based on 7 showed an h (solar energy-to-electricity 
conversion yield) value of 1.5% with JSC (short-circuit 
photocurrent density) of 5.2 mA cm-2, VOC (open-circuit 
photovoltage) of 512 mV and ff (fill factor) of 0.56.   

 

Scheme 2. Transformation into a dye for a DSSC. 
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The present cyano(or alkynyl)stannylation may be triggered 
by formation of a potassium cyanocuprate(I) (8a) and tributyltin 
fluoride via action of a fluoride ion on an organostannane (step A, 
Scheme 3).  Positive interaction between 1a and a fluoride ion, 
which may imply the formation of tributyltin fluoride and/or 
cyano(fluoro)stannate, was observed in the 119Sn NMR spectrum, 
in which the peak of 1a disappeared completely [Eq. (a) of 
Scheme 4].[24]  The crucial effect of a fluoride ion on the 
activation of an organostannane was also confirmed by a 
stoichiometric reaction of 1a with CuCN in the absence of a 
fluoride ion, where 1a totally remained unchanged [Eq. (b)].  
Although we could not obtain direct evidence for the existence of 
8a, potassium dicyanocuprate(I) and dipotassium 
tricyanocuprate(I), being supposed to be involved in the catalytic 
cycle, have been demonstrated to exert the catalysis toward  

 

Scheme 3. A plausible catalytic cycle. 

 

Scheme 4. Mechanistic studies. 

 

Scheme 5. Cyanostannylation catalyzed by cyanocuprates. 

the cyanostannylation (Scheme 5).  In step B, the resulting 8a of 
high nucleophilicity should be added across an aryne[18] to give 
an arylcuprate(I) (8b), which is finally transformed into a product 
(3) through capture with a tin fluoride (step C).  As depicted in 
Equation (c), a tin fluoride indeed serves as a tin electrophile for 
capturing an aryl(cyano)cuprate(I), and besides a tin cyanide 
(1a) has also proven to be the tin electrophile [Eq. (d)] in the 
cyanostannylation (step D), whereas a similar pathway is not 
operative in the alkynylstannylation [Eq. (e)].   

In conclusion, we have developed the first cyanostannylation 
of arynes by use of widely available CuCN as a catalyst, where 
no additional supporting ligand is needed for the smooth 
transformation.  Under the copper catalysis, arynes were also 
facilely inserted into a C(sp)–Sn bond of alkynylstannanes, and 
the resulting alkynylstannylation products were demonstrated to 
be convertible into biologically active molecules and a DSSC 
dye.  Further studies on the copper catalysis toward the 
carbostannylation using other unsaturated C–C bonds or 
organostannanes are in progress.   

Supporting Information Summary 

Synthesis of aryne precursors and alkynylstannanes, detailed 
experimental procedure, characterization of the products, and 1H 
and 13C NMR spectra of the products are available. 
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Cyano- and alkynylstannylation of arynes facilely took place with a ligand-free copper catalyst to provide the respective 
carbostannylation products, which were transformable into antidepressant agents and a dye for a dye-sensitized solar cell. 
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