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oAsIs is a member of the CREB/ATF family of transcription factors and modulates cell- or 
tissue-specific unfolded protein response signalling. Here we show that this modulation has 
a critical role in the differentiation of neural precursor cells into astrocytes. Cerebral cortices 
of mice specifically deficient in oAsIs (Oasis − / − ) contain fewer astrocytes and more neural 
precursor cells than those of wild-type mice during embryonic development. Furthermore, 
astrocyte differentiation is delayed in primary cultured Oasis − / −  neural precursor cells. The 
transcription factor Gcm1, which is necessary for astrocyte differentiation in Drosophila, is 
revealed to be a target of oAsIs. Introduction of Gcm1 into Oasis − / −  neural precursor cells 
improves the delayed differentiation of neural precursor cells into astrocytes by accelerating 
demethylation of the Gfap promoter. Gcm1 expression is temporally controlled by the unfolded 
protein response through interactions between oAsIs family members during astrocyte 
differentiation. Taken together, our findings demonstrate a novel mechanism by which oAsIs 
and its associated family members are modulated by the unfolded protein response to finely 
control astrocyte differentiation. 
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To manage the burden of protein synthesis, cells augment 
the folding capacity of the endoplasmic reticulum (ER) in 
response to the accumulation of unfolded proteins. This is 

called the unfolded protein response (UPR)1,2. In mammalian cells, 
the three major transducers of the UPR are PKR-like endoplasmic 
reticulum kinase3, inositol-requiring 1 (refs 4,5), and activating tran-
scription factor 6 (ATF6)6,7. Additionally, novel types of ER stress 
transducers that are structurally included in the CREB/ATF family 
and share a region of high sequence similarity with ATF6 have been 
identified8,9. These proteins have a transmembrane domain, which 
allows them to associate with the ER, a transcription-activation  
domain and a basic leucine zipper (bZIP) domain. These ER stress 
transducers include OASIS10–12, BBF2H713,14, CREBH15,16, CREB4 
(refs 17–19), and Luman20, and are collectively referred to as OASIS 
family members. These molecules have unique cell- or tissue- 
specific expression patterns, indicating that OASIS family mem-
bers may be associated with a distinct physiological response that is 
dependent on the cell or tissue.

Oasis was originally identified as a gene that is specifically 
induced in long-term cultured astrocytes. Under normal condi-
tions, OASIS is expressed at the ER membrane. In response to ER 
stress, OASIS is cleaved at the transmembrane region, and proc-
essed fragments of OASIS (the OASIS amino-terminus) contain-
ing the bZIP domain are translocated into the nucleus to promote 
transcription of target genes10–12. In vivo, OASIS is preferentially 
expressed in osteoblasts of bone tissues and astrocytes in the cen-
tral nervous system (CNS). Oasis-deficient (Oasis − / − ) mice exhibit 
severe osteopaenia caused by a decrease in the levels of type I col-
lagen, a major component of the bone matrix and an OASIS target 
gene in osteoblasts21. In the CNS, OASIS is significantly induced in 
astrocytes after brain injury10. OASIS is also upregulated in reac-
tive astrocytes after neuronal degeneration induced by kainic acid. 
The number of glial fibrillary acidic protein (GFAP)-positive reac-
tive astrocytes was decreased in the hippocampi of Oasis − / −  mice 
compared with those of wild-type (WT) mice22, indicating that the 
number of mature reactive astrocytes is decreased in Oasis − / −  mice 
after brain injury. Although these findings suggest that OASIS is 
involved in the proliferation and differentiation of astrocytes, the 
functional details of OASIS in astrocytes remain unclear.

The glial cell missing (gcm) gene was identified in Drosophila 
through the study of loss-of-function mutants23–25. Mutation in the 
gcm gene causes presumptive glial cells to differentiate into neurons, 
whereas ectopic expression of gcm makes all CNS cells differentiate 
into glial cells. Thus, gcm functions as a binary switch between glial 
and neuronal fates26. Two gcm homologues (Gcm1 and Gcm2) have 
been identified in mice27. Gcm1 and Gcm2 encode transcription 
factors with a unique DNA-binding domain called the GCM-motif 
within their N-terminal regions allowing these factors to bind to 
GCM-binding sites28 and regulate the expression of several genes29. 
The introduction of Gcm1 into cultured brain cells derived from 
mice resulted in the induction of an astrocyte lineage30. Recent 
work showed that mammalian Gcm1 and Gcm2 are involved in 
the genetic regulation of Hes5 transcription by accelerating DNA 
demethylation followed by induction of neural stem cells in the 
early embryonic stage31. However, the roles of Gcm in the differ-
entiation of neural precursor cells (NPCs) into glial cell lineage in 
mammals are still unknown. Here we show that the UPR signalling 
mediated by OASIS and its associated family members, regulate the 
expression of Gcm1 and subsequently, differentiation of NPCs into 
astrocytes, via the demethylation of the Gfap promoter.

Results
Oasis − / −  mice exhibit decrease in the number of astrocytes. OASIS 
is structurally similar to an ER stress sensor ATF6, and contains a 
transmembrane domain, a transcription-activation domain and a 
bZIP domain at its N-terminus (Fig. 1a). To examine the expression 

of OASIS in the embryonic CNS, we performed in situ hybridization 
using mouse cerebral cortices. Although signals for Oasis messenger 
RNA were hardly observed in the cerebral cortices of embryonic  
day (E) 14.5 mice, strong signals were detected at E16.5 and E18.5 
(Fig. 1b). Western blotting showed that both full-length and  
N-terminal OASIS (an active form) were expressed at E16.5 and 
the amounts of these proteins were increased at E18.5 (Fig. 1c), 
the findings of which are consistent with the findings regarding 
expression of Oasis mRNA. These data indicate that OASIS is 
expressed in the cerebral cortices of mouse embryos in the late 
stages of embryonic development. It is well known that astrocytes 
are largely differentiated from NPCs, around birth32. We noticed 
that upregulation of OASIS was synchronized with the initiation 
of differentiation of NPCs into astrocytes, and we hypothesized 
that OASIS may be involved in the regulation of astrocyte 
differentiation. To verify this hypothesis, we first investigated the 
expression of astrocyte and NPC markers in the embryonic stages by 
immunohistochemistry using cerebral cortices of WT and Oasis − / −  
mice. The numbers of cells positive for GFAP, an astrocyte marker, 
were significantly higher in the cerebral cortices of WT mice than 
in those of Oasis − / −  mice from E16.5 (Fig. 1d). By contrast, those 
of nestin, an NPC marker, were higher in the cerebral cortices of 
Oasis − / −  mice than in those of WT mice at E16.5 and E18.5 (Fig. 1e).  
The double staining of GFAP and OASIS (Fig. 1f), or GFAP and 
nestin (Fig. 1g), showed that GFAP and OASIS were co-expressed 
in the same cells, but not GFAP and nestin (Fig. 1f,g). To examine 
the expression levels of each marker, we carried out western blotting 
(Fig. 1h). In the embryonic stages, the expression levels of GFAP 
and S100β were markedly lower, and those of nestin and brain lipid-
binding protein, NPC and radial glial cell markers, respectively, 
were higher in the cerebral cortices of Oasis − / −  mice (Fig. 1h,i; 
Supplementary Fig. 1). These results suggest that differentiation of 
astrocytes from NPCs may be disturbed in the cerebral cortices of 
Oasis − / −  mice in the embryonic stages.

Differentiation of NPCs is inhibited in Oasis − / −  NPCs. Next, we 
investigated the expression of astrocyte and NPC markers using 
primary cultured NPCs prepared from E14.5 mice telencephalons.  
To promote differentiation of NPCs into astrocytes, the activation 
of Stat3 mediated by the stimulation of cytokines such as leukaemia 
inhibitory factor (LIF) is needed32–36. The bone morphogenetic pro-
tein (BMP) family is another group of astrocyte-inducing cytokines, 
members of which activate Smads32,35,37. Therefore, we treated 
NPCs with LIF and BMP2 (on day 0). During the differentiation of 
WT NPCs into astrocytes, the expression level of Gfap was increased, 
and conversely, that of Nestin was decreased (Fig. 2a). In Oasis − / −  
cells, the induction of Gfap expression and the reduction of Nestin 
expression were significantly impaired (Fig. 2a). The expression lev-
els of these proteins coincided with those of their mRNAs (Fig. 2b). 
These results are consistent with in vivo findings that astrocyte dif-
ferentiation is disturbed in Oasis − / −  mice. Interestingly, when the 
culture was continued for a long time, the expression levels of these 
genes were not different between WT and Oasis − / −  cells (data not 
shown). Thus, we concluded that the differentiation of NPCs into 
astrocytes was delayed in Oasis − / −  cells, but was not completely 
inhibited. The expression of neuronal nuclear antigen (NeuN),  
a neuronal marker, and glutathione S-transferase-pi (GSTπ), an  
oligodendrocyte marker, were not affected in Oasis − / −  mice (Sup-
plementary Fig. S2), indicating that differentiation of NPCs into 
neurons or oligodendrocytes was intact in Oasis − / −  mice.

Demethylation of Gfap promoter is inhibited in Oasis − / −  NPCs.  
It is well known that the activation of Stat3 and Smads, and  
epigenetic regulation of the methylation status of the Gfap pro-
moter are essential for differentiation of NPCs into astrocytes.  
Phosphorylated-Stat3 and Smads bind to demethylated sites in the 
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Gfap promoter to form a Stat3-Smads-p300 complex and promote 
transcription of Gfap32,35,37,38. We examined levels of phosphory-
lated Stat3 and Smads and the methylation status of the Gfap pro-
moter in Oasis − / −  mice. Although the levels of phosphorylated Stat3 

and Smads were not changed (Fig. 2c,d), the amount of demethyla-
tion of the Gfap promoter was significantly decreased in Oasis − / −  
NPCs (about 45% demethylated) compared with WT NPCs (about 
65% demethylated) (Fig. 2e,f). Furthermore, the binding of Stat3 
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Figure 1 | Cerebral cortices of Oasis − / −  mice. (a) Predicted peptide features of mouse oAsIs and ATF6. (b) In situ hybridization of Oasis mRnA in the 
cerebral cortices of embryonic day (E) 14.5, E16.5 and E18.5 mice. Oasis expression was induced in the cerebral cortices of E16.5 and E18.5 mice. scale bar, 
150 µm. (c) Western blotting of oAsIs in the cerebral cortices of E14.5, E16.5 and E18.5 mice. Both full-length oAsIs and its n-terminus were detected at 
E16.5 and were increased at E18.5. (d,e) Immunohistochemical analysis of (d) GFAP and (e) nestin in the cerebral cortices of E14.5, E16.5 and E18.5 WT 
and Oasis − / −  mice. In Oasis − / −  mice, the number of GFAP-positive cells was lower and that of nestin-positive cells was higher at E16.5 and E18.5 mice. 
scale bars, 100 µm. (f,g) Double staining of GFAP (green) and oAsIs (red) (f), GFAP (green) and nestin (red) (g) in the cerebral cortices of E18.5  
WT mice. scale bars, 50 µm. (h) Western blotting of GFAP and nestin in the cerebral cortices of WT and Oasis − / −  mice. (i) Quantitative analysis of 
protein expression levels in (h). All bars represent the mean values  ± s.d. of three experiments. significant difference was determined by unpaired 
student’s-t-test. *P < 0.05, **P < 0.01, ***P < 0.001, between indicated pairs.
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and Smads to the Gfap promoter was significantly inhibited in 
Oasis − / −  NPCs (Fig. 2g,h). These findings suggest that the delayed 
astrocyte differentiation in Oasis − / −  cells is caused by inhibition of 
demethylation of the Gfap promoter.

The target of OASIS in NPCs is Gcm1. Previously, it was reported 
that OASIS could activate the transcription of Gcm1 in trophob-
lasts39. The Gcm1 Drosophila orthologue, gcm, has been reported to 
control neuronal and glial fates23–25. Further, a recent study showed 
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Figure 2 | Demethylation of Gfap promoter is inhibited in primary cultured Oasis − / −  NPCs. (a) RT–PCR analysis of Gfap and Nestin in primary cultured 
nPCs treated with LIF and BmP2 for the indicated times. The upregulation of Gfap and the downregulation of Nestin were inhibited in Oasis − / −  cells. 
(b) Western blotting of GFAP and nestin in primary cultured WT and Oasis − / −  nPCs treated with LIF and BmP2 for the indicated times. (c,d) Western 
blotting of phosphorylated (P)-stat3 and P-smad1/5/8 in the cerebral cortices of WT and Oasis − / −  mice (c) and primary cultured nPCs treated with LIF 
and BmP2 for the indicated times (d). The phosphorylation of these proteins was not affected by Oasis deficiency. (e) Bisulfite sequencing results for the 
CpG site within the stat3 recognition sequence and other CpG sites around this sequence of the Gfap promoter in nPCs treated with LIF and BmP2 for 
4 days. (•) and () indicate methylated and demethylated CpG sites, respectively. Experiments were performed using 11 independent samples. (f) The 
percentages of methylated sites in the Gfap promoter. (g) The top panel shows a schematic representation of the Gfap promoter and the annealing sites of 
the primer set used in the ChIP assays. The bottom panel shows the results of PCR amplification of the Gfap promoter region containing the stat3-binding 
site ( − 1,398 to  − 1,600) after immunoprecipitation by indicated antibodies. Primary cultured nPCs treated with LIF and BmP2 for 4 days were used for 
ChIP assays. (h) Quantitative analysis of PCR amplification after immunoprecipitation by anti-P-stat3 and anti-P-smad1/5/8 antibodies in (g). All bars 
represent the mean values  ± s.d. of 3 (a), 11 (f) and 4 (h) experiments. significant difference was determined by unpaired student’s-t-test. *P < 0.05, 
**P < 0.01, ***P < 0.001, between indicated pairs.
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that Gcm1 is involved in the demethylation of promoter regions in 
specific genes31. Gcm1 might be one of the direct target genes of 
OASIS in NPCs, and it is possible that OASIS is involved in the reg-
ulation of astrocyte differentiation through the expression of Gcm1 
followed by the demethylation of the Gfap promoter. Therefore, we 
examined the expression levels of Gcm1 during astrocyte differen-
tiation using primary cultured NPCs. Gcm1 was transiently upreg-
ulated during the differentiation of NPCs into astrocytes, and the 
expression pattern was similar to that of OASIS (Fig. 3a,b). How-
ever, Gcm1 was dramatically downregulated to about 50% of the 
WT level on day 4 in Oasis − / −  cells. We infected primary cultured 
Oasis − / −  NPCs with adenovirus expressing the OASIS N-terminus. 
Gcm1 expression was markedly upregulated by overexpression of 
the OASIS N-terminus (Fig. 3c). As OASIS is cleaved in response to 
ER stress, Gcm1 could be induced in NPCs exposed to ER stress, if 
Gcm1 is a direct target of OASIS in NPCs. Indeed, the expression 
level of Gcm1 was upregulated in WT NPCs under the ER stress 
condition. By contrast, the upregulation of Gcm1 was significantly 
inhibited in Oasis − / −  NPCs (Fig. 3d). In the cerebral cortices of 

Oasis − / −  mice, Gcm1 expression was downregulated (Supple-
mentary Fig. S3); the findings were consistent with the findings in  
primary cultured NPCs.

To determine whether OASIS acts on the Gcm1 promoter and 
activates transcription of Gcm1 in NPCs, we performed promoter 
assays using a reporter gene carrying a 2.0-kb promoter region of 
Gcm1 (Gcm1-Luc) (Fig. 3e). In NPCs transfected with a Gcm1-
Luc construct, reporter activities were dramatically induced by 
expression of the OASIS N-terminus (Fig. 3f). The Gcm1 promoter 
includes a cAMP-responsive element (CRE) ( + 1,585 to  + 1,592 bp) 
that OASIS can bind to10. We next performed a promoter assay 
using the reporter constructs ∆CRE, which lacks the CRE-binding 
site, and mut CRE, which has a mutated CRE-binding site (Fig. 3e). 
In NPCs transfected with these constructs, reporter activities were 
markedly reduced, despite expression of the OASIS N-terminus 
(Fig. 3f). Furthermore, we performed chromatin immunoprecipita-
tion (ChIP) assays and detected a high level of OASIS binding to 
the endogenous Gcm1 promoter in primary cultured NPCs trans-
fected with the OASIS N-terminus (Fig. 3g). These results indicate 
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that OASIS directly acts on the CRE sequence within the Gcm1  
promoter and facilitates its transcription in NPCs.

Mild ER stress and activation of UPR. As shown in Fig. 3a, the lev-
els of full-length OASIS and its N-terminus were increased during 
astrocyte differentiation. The OASIS N-terminus is produced by the 
cleavage of full-length OASIS in response to ER stress. It is possible 
that ER stress occurs during differentiation of NPCs into astrocytes. 
Therefore, we examined the expression of ER stress-related genes 
during astrocyte differentiation. Bip, p58IPK and Erdj4 were slightly 
upregulated from day 2 to 6 during differentiation of WT and 
Oasis − / −  NPCs into astrocytes (Fig. 4a; Supplementary Fig. S4),  
indicating that all of signalling pathways from the major three sen-
sors including PKR-like endoplasmic reticulum kinase, ATF6 and 
inositol-requiring 1, are activated during astrocyte differentiation. 
Furthermore, the transient upregulation of these genes was syn-
chronized with the expression of the OASIS N-terminus (Fig. 5d), 
indicating that mild ER stress is transiently induced and that OASIS 
is activated by this mild ER stress during astrocyte differentia-
tion. Although it is unknown, the roles of each pathway of major 
ER stress sensors. Next, we examined the roles of mild ER stress in 
cell fates including differentiation and cell death. To determine the 
level of ER stress during astrocyte differentiation, we quantified the 
expression levels of Erdj4 in NPCs exposed to several doses of dithi-
othreitol (DTT) or tunicamycin (Tm) (Fig. 4b,c). Consequently, we 
found that the level of ER stress in NPCs exposed to 125 µM DTT 
or 90 ng ml − 1 Tm for 48 h was equal to that during astrocyte dif-
ferentiation (Fig. 4b,c). This level of ER stress did not induce cell 
death (Fig. 4d–f), but activated UPR signalling pathways including 
the OASIS-Gcm1 pathway and promoted astrocyte differentiation 
after treatment with LIF and BMP2 (Fig. 4g). These results indicate 
that mild ER stress to a lesser extent than the levels that induce cell 
death is necessary for astrocyte differentiation.

Gcm1 expression modulation by OASIS family members. ER 
stress-related CREB/ATF family members have the potential to 
bind to a CRE-binding site in promoter region and promote its 
transcription13,16,40. Thus, we checked the effects of CREB/ATF 
family members, including OASIS family members, on a Gcm1-Luc 
reporter. Consequently, we found that CREB4 (Fig. 5a) promotes 
Gcm1 reporter activities (Fig. 5b; Supplementary Fig. S5). Further-
more, we detected the binding of CREB4 to endogenous Gcm1 
promoter (Fig. 5c). Thus, not only OASIS but also CREB4 could 
activate the transcription of Gcm1. Two previous reports showed 
that CREB4 does not bind to the CRE sequence (TGACGTCA)18,19. 
Thus far, CREB/ATF family members are known to bind to the sev-
eral sequences such as TGACCTCA, TGAGGTCA, TGCCGTCA 
and TGAAGTCA41–44. AGAGGTCA sequence in the Gcm1 pro-
moter region is not identical to TGACGTCA, which is the most 
common sequence as CREB/ATF family binding sequence. There-
fore, it is possible that the manners of binding of OASIS and CREB4 
are different from those of the other CREB/ATF family members. 
CREB/ATF family members are well known to form homodimers 
or heterodimers to promote transcription16,45. Thus, we examined 
the synergistic effects of CREB/ATF family members on Gcm1 pro-
moter activities. In NPCs transfected with a Gcm1-Luc construct, 
reporter activities were dramatically induced by co-expression of 
OASIS and CREB4 (Fig. 5b), and at the same time, the binding of 
OASIS to Gcm1 promoter was also significantly increased (Fig. 5c). 
Conversely, co-expression of OASIS and Luman, which is also an 
OASIS family member, resulted in significant downregulation of 
reporter activities and decreased binding of OASIS to the Gcm1 
promoter (Fig. 5b,c).

We next investigated endogenous expression of and direct inter-
actions among OASIS family members during astrocyte differentia-
tion. Both full-length OASIS and CREB4 and their N-termini were 

upregulated from day 2 to 6 after treatment of NPCs with LIF and 
BMP2 (Fig. 5d,e). Further, robust binding of OASIS N-terminus 
and CREB4 N-terminus was detected on day 4 (Fig. 5f). By con-
trast, binding of OASIS N-terminus and Luman N-terminus was 
observed on day 10 (Fig. 5f), suggesting that OASIS and CREB4 
form a heterodimer in the early stage of astrocyte differentiation, 
and that Luman binds to OASIS in the late stage of astrocyte dif-
ferentiation. Taken together, we concluded that an OASIS-CREB4 
heterodimer activates transcription of Gcm1 during astrocyte differ-
entiation. Conversely, Luman inhibits the formation of the OASIS-
CREB4 heterodimer by binding to OASIS and downregulate the 
transcription of Gcm1, followed by terminating differentiation of 
astrocytes.

OASIS family members and Gcm1 promote astrocyte differentia-
tion. To examine whether OASIS family members and Gcm1 could 
rescue the delay in astrocyte differentiation observed in Oasis − / −  
NPCs, we introduced these molecules into primary cultured 
Oasis − / −  NPCs. The expression levels of Gcm1 were upregulated 
by the introduction of the OASIS N-terminus, or co-expression of  
OASIS and CREB4 N-termini. However, introduction of the 
Luman N-terminus did not affect the expression of Gcm1 (Fig. 6a).  
Immunocytochemical analysis showed that the number of GFAP-
positive cells was increased in NPCs treated with LIF and BMP2 for 
4 days (Fig. 6b). Conversely, these cells were decreased in Oasis − / −  
NPCs or Oasis − / −  NPCs expressing the empty vector (Fig. 6c,d). 
The decrease in the number of GFAP-positive Oasis − / −  cells was 
restored to those of WT cells by introduction of OASIS N-terminus  
(Fig. 6e,j), CREB4 N-terminus (Fig. 6f,j) or Gcm1 (Fig. 6g,j). The 
co-expression of OASIS N-terminus and CREB4 N-terminus in 
Oasis − / −  NPCs resulted in a greater improvement of the delay in 
astrocyte differentiation than did expression of OASIS N-termi-
nus or CREB4 N-terminus alone (Fig. 6 h,j). The overexpression of 
Luman N-terminus in Oasis − / −  NPCs could not restore the delay 
(Fig. 6i,j). These data indicate that OASIS-CREB4 heterodimeriza-
tion followed by the induction of Gcm1 is necessary for accelerat-
ing astrocyte differentiation, and conversely, that Luman does not  
accelerate the differentiation of NPCs into astrocytes.

Gcm1 is involved in demethylation of Gfap promoter. As shown 
in Fig. 2, demethylation of Gfap promoter was inhibited in Oasis − / −  
NPCs. To examine the mechanisms responsible for the impaired 
methylation status of the Gfap promoter in Oasis − / −  NPCs, we per-
formed bisulfite sequencing using the Gfap promoter (Fig. 7a,b). In 
NPCs cultured for 4 days, demethylation in the control was sup-
pressed by transfection with a Gcm1-specific short interfering RNA 
(siRNA) (Fig. 7a,b). In Oasis − / −  NPCs, demethylation of Gfap pro-
moter was also inhibited. The introduction of OASIS N-terminus 
or Gcm1 into Oasis − / −  NPCs resulted in restoration of the Gfap 
demethylation status (Fig. 7a,b).

We further examined whether demethylation of Gfap promoter 
by OASIS-Gcm1 signalling induces binding of the Stat3-Smads-p300 
complex to the promoter by performing ChIP assays using primary 
cultured NPCs (Fig. 7c,d). The binding of Stat3 and Smads to the 
endogenous Gfap promoter was inhibited in NPCs transfected with 
the Gcm1-specific siRNA (Fig. 7c,d). In Oasis − / −  NPCs, binding of 
Stat3 and Smads was also inhibited. The introduction of the OASIS 
N-terminus or Gcm1 into Oasis − / −  NPCs restored the binding of 
Stat3 and Smads to the Gfap promoter to the levels seen in WT cells 
(Fig. 7c,d). These data suggest that the activation of OASIS-Gcm1 
signalling accelerates demethylation of the Gfap promoter followed 
by binding of Stat3-Smads-p300 complex.

Discussion
It has been reported that the epigenetic regulation of the methylation 
status of the Gfap promoter is essential for accelerating differentiation  
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of NPCs into astrocytes, and that the impairment of demeth-
ylation of the Gfap promoter disturbs astrocyte differentiation38.  
However, the regulatory mechanisms underlying demethylation of 
the Gfap promoter have remained unclear. In this study, we found that 
Gcm1, a direct target of OASIS, regulates the methylation status of 
the Gfap promoter followed by accelerating astrocyte differentiation. 
Interestingly, Gcm1 expression was fine-tuned by the dynamic inter-
action among OASIS family members that are activated by ER stress, 
during astrocyte differentiation. Thus, the spatio-temporal control of 
Gcm1 expression could contribute to production of functional and 
mature astrocytes. In this context, this report is the first to show that 
UPR signalling is linked to astrocyte differentiation. It is well known 
that not only epigenetic regulation but also the activation of Stat3 and 
Smads is essential for differentiation of NPCs into astrocytes32,35,37. 
However, the activation of these transcription factors was not affected 
in Oasis − / −  mice (Fig. 2c,d). These findings strongly suggest that 

OASIS-Gcm1 signalling specially acts to regulate demethylation of 
the Gfap promoter, during astrocyte differentiation.

We found that Gcm1 is a target gene of OASIS in the CNS. This 
conclusion is supported by the fact that (1) Gcm1 is significantly 
downregulated in the cerebral cortices and primary cultured NPCs 
of Oasis − / −  mice; (2) a CRE-binding site that OASIS can bind to 
exist in the Gcm1 promoter region; (3) overexpression of the OASIS 
N-terminus upregulated Gcm1 promoter activities; (4) Gcm1 pro-
moter activities were drastically decreased by mutation or deletion 
of the CRE-binding site; and (5) OASIS directly binds to the Gcm1 
promoter. Gcm homologues have been shown to be involved as mas-
ter regulators in key steps of differentiation processes39. In addition  
to astrocyte differentiation, Gcm1 is also essential for the differen-
tiation of trophoblasts into syncytiotrophoblasts39. The promoter 
region of Gcm1 contains several CRE-binding sites containing the 
OASIS-binding site, we showed in this study. The effects of various 

bZIP domain

292 520

195

OASIS

CREB4
1

1

293

Luminal
domain

Cytoplasmic
domain

Transcription
activation domain

55

60

162
Luman

1 25962

Transmembrane domain

AGAGGTCA 
CRE-binding site

+1555 +1681

Primer
forward

Primer
reverse

Exon1

Input

IP:

IP:Rabbit IgG

OASIS
-N

GFP
CREB4-

N

OASIS
-N

+C
REB4-

N

OASIS
 -N

+L
um

an
-N

OASIS

OASIS

OASIS

OASIS

CREB4

Expression

IP:Histone H3

0 (Day)

β-Actin

β-Actin

Full

N

Full

N

CREB4

Luman

Full

N
OASIS

OASIS
-N

+L
um

an
-N

*

OASIS
-N

+C
REB4-

N

*

CREB4-
N

OASIS
-N

GFP
0

4

8

12

16

20

R
el

at
iv

e 
ac

tiv
ity

25

*

ATF4

Xbp1-u

Xbp1-s

*

Mr
(kDa)

80

58

58

46

46

46

46

394374353

370272256

379239223

108642

OASIS-N/β-Actin protein
CREB4-N/β-Actin protein
Luman-N/β-Actin protein

F
ol

d 
in

du
ct

io
n

0

0.1

0.2

0.3

0.4

0 2 8 10
(Day)

64

Input

0

Full

N

Full

N
Luman

CREB4

IB: β-Actin

46

46

46

58

104

IP:OASIS

0 (Day)

IB:Luman

IB:CREB4

N

N

Mr
(kDa)

46

46

46

104

Figure 5 | OASIS and CREB4 form a heterodimer and promote Gcm1 expression. (a) Predicted peptide features of mouse oAsIs, CREB4 and Luman.  
(b) Reporter assays in nPCs. Expression vectors for the n-terminus of mouse oAsIs, CREB4, Luman and GFP were co-transfected with Gcm1-Luc. GFP 
was used as a control. (c) The top panel shows a schematic representation of the Gcm1 promoter and the annealing sites of the primer set used in the  
ChIP assays. The bottom panel shows the results of PCR amplification of the Gcm1 promoter region containing the CRE-binding site ( + 1,555 to  + 1,681) 
after immunoprecipitation with indicated antibodies. nPCs were transfected with the expression vectors for the n-terminus of mouse oAsIs, CREB4, 
Luman and GFP. GFP was used as a control. (d) Western blotting (oAsIs, CREB4, Luman and ATF4) and RT–PCR (Xbp1) analysis in nPCs treated with  
LIF and BmP2 for the indicated times. Both full-length oAsIs and CREB4 and their n-termini were upregulated from day 2 to 6 after treatment of nPCs 
with LIF and BmP2, synchronizing with the transient upregulation of ATF4 and spliced form of Xbp1 (Xbp1-s). Luman n-terminus was upregulated after 
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CREB/ATF transcription factors on the Gcm1 promoter should be 
precisely analysed to elucidate the detailed mechanisms underlying 
cell differentiation regulated by Gcm1.

The mammalian homologues of gcm are Gcm1 and Gcm2. These 
molecules show little homology and have no common functional 
domains except for the GCM-motif28. Previous data have shown 
that both have the potential to accelerate demethylation of the Hes5 
promoter by direct binding to the GCM-binding site in the pro-
moter followed by acquiring the stem cell properties, but Gcm2 is 
a more crucial factor than Gcm1 for the demethylation of the Hes5 
promoter because of the lower expression of Hes5 in Gcm2 − / −  mice 
than in Gcm1 − / −  mice31. In our data, expression of Gcm2 was not 
changed in Oasis − / −  mice (data not shown), indicating that Gcm2 
is not associated with the impaired differentiation of astrocytes 

observed in Oasis − / −  mice. The expression of Gcm1 was signifi-
cantly upregulated in the late stage of mouse embryonic develop-
ment (Supplementary Fig. S3), whereas that of Gcm2 was transiently 
upregulated in the early stage31. Therefore, we presume that Gcm2 is 
mainly involved in the demethylation of Hes5 promoter in the early 
stage of mouse embryonic development, and conversely, that Gcm1 
mainly has a role in the demethylation of the Gfap promoter in the 
late stage. The distinct expression patterns and target promoters for 
demethylation between Gcm1 and Gcm2 may determine glial and 
neuronal cell lineages, respectively.

We showed that OASIS, CREB4 and Luman activate the UPR sig-
nalling in response to mild ER stress, during astrocyte differentiation. 
Previous studies have shown that UPR signalling activated by mild 
ER stress is crucial for the differentiation of secretory cells including 
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Figure 6 | OASIS family members and Gcm1 rescue the delay in astrocyte differentiation in Oasis − / −  NPCs. (a) Western blotting of Gcm1 in  
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osteoblasts21,46–48, chondrocytes14 and plasma cells49. During the 
differentiation of progenitor cells into these mature secretory cells, 
secretory materials are gradually produced, and abundant nascent 
proteins are delivered to the ER. Such an event may serve as a trig-
ger for mild ER stress. Astrocytes also synthesize and secrete various 
neurotrophic factors and cytokines. During differentiation of NPCs 
into mature astrocytes, UPR signalling in response to the mild ER 
stress caused by production of abundant secretory proteins could 
be activated. Indeed, we found that ER stress-related genes were 
transiently upregulated during astrocyte differentiation. However, 
it remains unclear what extent of ER stress is needed for cell differ-
entiation or how such mild ER stress activates only UPR signalling, 
but does not cause ER stress-induced apoptosis.

The cerebral cortices of Oasis − / −  mice contained few astrocytes 
in the embryonic stages, but interestingly, the numbers of astrocytes 
completely recovered to those in WT mice in adulthood (data not 
shown). We showed that transfection of NPCs with the CREB4  
N-terminus activated the transcription of Gcm1. Although the detailed 
underlying mechanisms are unknown, it is possible that CREB4 has 
the functional complement to promote astrocyte differentiation in 
Oasis − / −  mice in adulthood. It has been reported that one of the  
aetiologies of psychiatric diseases such as schizophrenia and Rett  

syndrome is disturbance of the neuronal network caused by a 
decrease in the number of astrocytes in embryonic and infant 
stages50,51. Although the numbers of astrocytes in the cerebral corti-
ces of Oasis − / −  mice are normal in adulthood at first glance, a func-
tional disturbance of the CNS may occur in adult Oasis − / −  mice 
like in the CNS of such human diseases. It is necessary to perform 
advanced studies such as precise histological analysis and behav-
ioural tests to clarify the association between OASIS and neuronal 
diseases.

Methods
Mice. C57BL/6 mice or Oasis − / −  mice were used in this study. The Oasis − / −  mice 
were previously established in our laboratory21. In all studies comparing WT and 
Oasis − / −  mice, sex-matched littermates derived from the mating of Oasis + /– mice 
were used. The experimental procedures and housing conditions for animals were 
approved by the Committee of Animal Experimentation, Hiroshima University.

Cell culture, plasmids, transfection and adenovirus. Primary cultured NPCs 
were cultured as previously described52. Briefly, the telencephalons of E14.5 WT 
and Oasis − / −  mice were triturated in Hank’s balanced salt solution (Invitrogen)  
by mild pipetting with 1 ml pipette tips (Gilson, Greiner Bio-one). Dissociated  
cells were cultured in 1.27 g l − 1 NaHCO3, 25 mg l − 1 insulin (Sigma), 100 mg l − 1 
apo-transferrin (Sigma), 16 mg l − 1 putrescin (Sigma), 30 nM sodium selenite  
(Sigma), 20 nM progesterone (Sigma) in D-MEM-F12 (Gibco), containing 
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Figure 7 | Gcm1 is involved in demethylation of the Gfap promoter. (a) Bisulfite sequencing results for the Gfap promoter in primary cultured nPCs 
treated with LIF and BmP2 for four days. (•) and () indicate methylated and unmethylated CpG sites, respectively. Experiments were performed 
using 11 independent samples. mock indicates empty vector. (b) The percentages of methylated sites in the Gfap promoter. (c) The top panel shows a 
schematic representation of the Gfap promoter and the annealing sites of the primer set used in the ChIP assays. The bottom panel shows the results 
of PCR amplification of the Gfap promoter region containing the stat3-binding site ( − 1,398 to  − 1,600) after immunoprecipitation with the indicated 
antibodies. Primary cultured nPCs treated with LIF and BmP2 for 4 days were used for ChIP assays. (d) Quantitative analysis of PCR amplification after 
immunoprecipitation by anti-P-stat3 (top panel) and anti-P-smad1/5/8 (bottom panel) antibodies in (c). All bars represent the mean values  ± s.d. of 11 
(b) and 4 (d) experiments. significant difference between two samples was determined by unpaired student’s t-test. *P < 0.05, between indicated pairs. 
multiple comparisons were made using one-way AnoVA followed by Tukey’s post hoc test. *P < 0.05, among the samples named  + mock,  + oAsIs-n 
and  + Gcm1 (b) and Oasis − / − ,  + mock,  + oAsIs-n and  + Gcm1 (d).
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The density of each band was quantified using Photoshop Elements 2.0 (Adobe 
Systems).

Immunofluorescence. Cells were fixed in 4% PFA and then permeabilized in 0.5% 
Triton-X 100. The following antibodies and dilutions were used: anti-GFAP (Sigma; 
1:500), and anti-nestin (Abcam; 1:250). Cells were visualized under a fluorescence 
microscope or a confocal microscope (FV1000D, Olympus). The number of  
positive cells was measured in five fields per well.

TUNEL assay. Primary cultured NPCs prepared from E14.5 WT and Oasis − / −  
mice were fixed in 4% PFA and then permeabilized in 0.1% sodium citrate and 
0.1% Triton-X 100. TdT-mediated dUTP nick end labeling (TUNEL) staining was 
performed using the Cell Death Detection kit, Fluorescein (Roche), according to 
the manufacturer’s protocol. Cells were visualized under a fluorescence micro-
scope. The number of positive cells was measured in five fields per well.

Immunoprecipitation assay. Cells were washed with PBS and lysed with 1 ml of 
1% CHAPSO (Sigma) buffer. Cell lysates were centrifuged at 15,000g at 4 °C for 
15 min and supernatants collected and then incubated with anti-OASIS antibody 
overnight. Then, samples were incubated with protein G–Sepharose beads (GE 
Healthcare Life Sciences) for an additional 2 h at 4 °C. Beads were washed with TNE 
buffer, containing 10 mM Tris, 1 mM EDTA and 150 mM NaCl. Subsequently, sam-
ples were subjected to western blotting with anti-CREB4 or anti-Luman antibody.

Luciferase assay. Primary cultured NPCs prepared from E14.5 WT and Oasis − / −  
mice were cultured for 4 days and transfected with 0.2 µg of a pGL3 basic reporter 
plasmid carrying the firefly luciferase gene (Promega) and 0.02 µg of the reference 
plasmid pRL-SV40 carrying the Renilla luciferase gene under the control of the 
SV40 enhancer and promoter (Promega), together with 0.2 µg of an effector protein 
expression plasmid, using Lipofectamine 2000 reagent. UPRE-LUC reporter was 
kind gift from Ron Prywes (Columbia University)53. After 24 h, luciferase activities 
were measured using the Dual-Luciferase Reporter Assay System (Promega) and a 
luminometer (Berthold Technologies), according to the manufacturer’s protocol. 
Relative activity was defined as the ratio of firefly luciferase activity to that of 
Renilla luciferase.

Chromatin immunoprecipitation assay. The chromatin immunoprecipitation  
assay was performed as previously described10. The primers used for the mouse 
Gcm1 promoter were: 5′-GAAAAATTATTAACATGTGTGAATGCAT-3′ (for-
ward) and 5′-CTCAAAAGAGGGTGGTGGGGGGCTTA-3′ (reverse) yielding  
a 127-bp product. Those used for the mouse Gfap promoter were: 5′-CCTTCCC 
TATGGTGGGACTCATTAGGAG-3′ (forward) and 5′-CATGCTTGGGCTTC 
TGGTGTCTACTCCAG-3′ (reverse) yielding a 209-bp product. The following 
antibodies were used: anti-OASIS21, anti-CREB4 (generated by immunizing mice 
against mouse recombinant CREB4: amino acids 1–162), anti-histone H3 (Santa 
Cruz Biotechnology), and rabbit IgG (Sigma).

Bisulfite sequencing. Procedures were performed as previously described52. 
Sodium bisulfite treatment of genomic DNA was performed using a Methylamp 
DNA Modification kit (Epigentek), according to the manufacturer’s protocol. The 
region in the Gfap promoter containing the Stat-binding site of the bisulfite-treated 
genomic DNA was amplified by PCR using the following primers: 5′-GGGATTT 
ATTAGGAGAATTTTAGAAGTAG-3′ (forward) and 5′-TCTACCCATACTTAAA 
CTTCTAATATCTAC-3′ (reverse). The PCR products were cloned into pCR–Blunt 
II-TOPO vector (Invitrogen) and at least 11 randomly selected clones were 
sequenced.

Statistical analysis. Statistical comparisons were made using the unpaired Student’s-
t-test (between two samples) and One-way ANOVA followed by Tukey’s post hoc test 
(among multiple samples). The statistical significance of a difference between each 
sample was determined on the basis of a P-value  < 0.05. P-values of  < 0.05, 0.01 or 
0.001 are described as *P < 0.05, **P < 0.01, or ***P < 0.001, respectively. 
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