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We study scaling behavior of a chiral order parameter in the low density region, performing a

simulation of two-flavor QCD with improved Wilson quarks. The scaling behavior of the chiral

order parameter defined by a Ward-Takahashi identity agrees with the scaling function of the

three-dimensional O(4) spin model at zero chemical potential. We extend the scaling study to

finite density QCD. Applying the reweighting method and calculating derivatives of the chiral

order parameter with respect to the chemical potential, the scaling properties of the chiral phase

transition are discussed in the low density region. We moreover calculate the curvature of the

phase boundary of the chiral phase transition in the temperature and chemical potential plane

assuming the O(4) scaling relation.
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1. Introduction

Many interesting properties of finite temperature and density QCD have been uncovered by
lattice simulations. However, there are still many open problems even at low density. The nature
of the chiral phase transition in the chiral limit of 2-flavor QCD is one of them. The standard
expectation, assuming the UA(1) symmetry remains violated also in the high temperature phase, is
that the chiral phase transition in 2-flavor QCD is of second order in the chiral limitmq = 0 and
crossover formq 6= 0, and it changes to first order when the chemical potentialµq is sufficiently
large. In this case, the scaling property around the second order transition is universal to that of
the 3-dimensional O(4) spin model. We illustrate the conjecture in Fig.1 for 2-flavor QCD with
mq = 0 andmq 6= 0. Because the QCD action has the chiral symmetry in the chiral limit even at
µq 6= 0, we expect the same critical properties in the low density region [1].

The O(4) scaling behavior in QCD was first reported for the case of Wilson-type quark actions
at µq = 0. Both with the standard Wilson quark action [2] and with the clover-improved Wilson
quark action [3], a subtracted chiral condensate is shown to follow the scaling behavior with the
critical exponents and scaling function of the O(4) spin model in a rather wide range of the param-
eter space. Studies using improved staggered quark actions have also shown that, adopting several
definitions for the renormalized chiral condensate, the chiral scaling is consistent with O(4) and
O(2) with very light u,d quark masses and the physical strange mass [4] although the universality
is not guaranteed due to the explicit violation of locality due to the forth-root trick. On the other
hand, it was recently argued that the UA(1) symmetry may be effectively recovered in the high
temperature phase [5]. This suggests that the chiral condensate does not follow the O(4) scaling.
Hence, it is worth revisiting the scaling study both at zero and finite densities.

In this report, we study the scaling behavior near the chiral phase transition in the low density
region of 2-flavor QCD. To avoid theoretical uncertainties with the forth-root trick, we adopt im-
proved Wilson quarks. General argument of the O(4) scaling atµq 6= 0 is given in Sec.2. Numerical
results of the scaling tests are presented in Sec.3 and4. A conclusion is given in Sec.5.

2. Scaling behavior of chiral order parameter at finite density

The order parameter in the O(4) spin model is given by the magnetizationM. In the vicinity
of the second order transition point,M satisfies the following scaling relation:

M/h1/δ = f (t/h1/y), (2.1)

whereh is the external magnetic field,t is the reduced temperature,t = (T −Tc|h=0)/Tc|h=0, and
f (x) is the scaling function. In the O(4) spin model, the critical exponents are 1/y ≡ 1/(βδ ) =
0.546 and 1/δ = 0.2073(4) [6]. In 2-flavor QCD, the scaling variables,M, t andh, may be identi-
fied [1] as

M = 〈ψ̄ψ〉, t = β −βct +
c
2

(µq

T

)2
, h= 2mqa, (2.2)

respectively, whereβct is the critical point ofβ = 6/g2 at µq = 0 in the chiral limit,a is the lattice
spacing, andc is the curvature of the critical line in the(β ,µq/T) plane,c ≡ −d2βct/d(µq/T)2,
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Figure 1: Speculated phase structure of 2-flavor
QCD at finite temperature and density. The red line
is the second order transition line formq = 0 and the
blue lines are the first order transition lines.

β K T/Tpc Conf. mPS/mV

1.50 0.150290 0.82(3) 2500 0.678(2)
1.60 0.150030 0.86(3) 2500 0.663(2)
1.70 0.148086 0.94(3) 2500 0.659(2)
1.75 0.146763 1.00(4) 2500 0.662(3)
1.80 0.145127 1.07(4) 2500 0.657(5)
1.85 0.143502 1.18(4) 500 0.652(4)
1.90 0.141849 1.32(5) 500 0.648(4)
1.95 0.140472 1.48(5) 500 0.657(4)
1.50 0.143480 0.76(4) 2550 0.820(1)
1.60 0.143749 0.80(4) 2600 0.809(1)
1.70 0.142871 0.84(4) 2600 0.804(1)
1.80 0.141139 0.93(5) 2600 0.800(2)
1.85 0.140070 0.99(5) 600 0.794(2)
1.90 0.138817 1.08(5) 600 0.796(2)
1.95 0.137716 1.20(6) 600 0.802(2)

Table 1: Simulation parameters.

sinceβct(µq) = βct(0)− c(µq/T)2/2 on the critical curve(t = 0). Here,h does not have aµq-
dependent term at low density. Because the critical line is expected to run along themq = 0 axis in
the low density region of the(mq,µq/T) plane,h= 0 atmq = 0.

We compare the scaling functions of 2-flavor QCD and the O(4) spin model in the vicinity
of µq = 0. Although a direct simulation of lattice QCD is difficult atµq 6= 0 due to the complex
weight problem, the reweighting method is applicable at smallµq. In this note, we study the scaling
property of the second derivative of the chiral order parameter,

d2M
d(µq/T)2

∣∣∣∣
µq=0

= c
dM
dt

∣∣∣∣
µq=0

,
dM/dt

h1/δ−1/y

∣∣∣∣
µq=0

=
d f(x)

dx

∣∣∣∣
x=t/h1/y

. (2.3)

Assuming these scaling relations, the coefficientc corresponds to the curvature of the critical line
at µq = 0 in the chiral limit.

Here, a careful treatment is required because the chiral symmetry is explicitly broken with
Wilson quarks at finitea. In Ref. [2, 3], it was shown that the O(4) scaling of Eq. (2.1) is well
satisfied when one defines the quark massmqa and the chiral order parameter〈ψ̄ψ〉 by Ward-
Takahashi identities [7]. mqa can be defined by

2mqa=−mPS〈Ā4(t)P̄(0)〉
/
〈P̄(t)P̄(0)〉, (2.4)

whereP andAµ are the pseudo-scalar and axial-vector meson operators, respectively,mPS is the
pseudo-scalar meson mass, and the bar means the spatial average. Similarly,〈ψ̄ψ〉 is given by

〈ψ̄ψ〉=
2mqa

N3
s Nt

∑
x,x′

〈P(x)P(x′)〉=
2mqa(2K)2

N3
s Nt

〈
tr
(
D−1γ5D−1γ5

)〉
. (2.5)

Here,D is the quark matrix,K is the hopping parameter, andN3
s ×Nt is the number of sites. The

quark mass and the chiral condensate satisfy the Ward-Takahashi identity in the continuum limit:
〈∂µAµ(x)P(x′)〉 − 2mqa〈P(x)P(x′)〉 = δ (x− x′)〈ψ̄ψ〉. We adopt these definitions of quark mass
and chiral order parameter in this study.
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3. Chiral order parameter at finite density

We perform simulations of 2-flavor QCD at finite temperature andµq = 0 on a 163×4 lattice
and combined them with configurations obtained in Refs. [8, 9]. The RG-improved gauge action
and the 2-flavor clover-improved Wilson quark action are adopted. The measurements are done
every 10 trajectories and 500 – 2600 configurations are used for the analysis at each simulation
point. The simulation parameters are summarized in Table1. The quark massmqa is computed
performing zero temperature simulations on a 163 × 24 lattice at each simulation point listed in
Table1. The number of configurations used for the measurement is 378 – 589. The pseudo-scalar
to vector meson mass ratio atT = 0 is aboutmPS/mV ≈ 0.65 or 0.80, as shown in Table1.

We use the random noise method to calculate〈ψ̄ψ〉. As we have emphasized in Ref. [9], it is
important to apply the noise method only for the space index and to solve the inverse exactly for
the spin and color indices without applying the noise method to obtain reliable results. We choose
100 – 150 as the number of noise vectors for each color and spin indices.

3.1 Reweighting method for the chiral order parameter

We use the reweighting method to calculate〈ψ̄ψ〉 at finiteµq,

(2K)2〈tr(D−1γ5D−1γ5
)〉

β ,µq
= (2K)2 1

Z

∫
DU tr(D−1γ5D−1γ5)(detD)Nf e−Sg

=
(2K)2

〈
tr
(
D−1γ5D−1γ5

)
(µq)eNf(lndetD(µq)−lndetD(0))

〉
β ,0〈

eNf(lndetD(µq)−lndetD(0))
〉

β ,0
, (3.1)

whereNf = 2. Because the reweighting method is applicable only for smallµq, we evaluate
lndetM(µq) and tr(D−1γ5D−1γ5) by a Taylor expansion up toO(µ2

q), as proposed on Ref. [10],

Nf(lndetD(µq)− lndetD(0)) = µqaQ1+
(µqa)2

2
Q2+O(µ3

q),

(2K)2tr
(
D−1γ5D−1γ5

)
(µq) = (2K)2tr

(
D−1γ5D−1γ5

)
(0)+µqaC1+

(µqa)2

2
C2+O(µ3

q). (3.2)

whereQn andCn are defined by

Qn = Nf
∂ n lndetD
∂ (µqa)n , Cn = (2K)2 ∂ ntr

(
D−1γ5D−1γ5

)
∂ (µqa)n . (3.3)

These derivative operators can be calculated by the random noise method.
We plot the results of the chiral condensate in Fig.2 for µq/T < 1, constructing the form of

M/h1/δ = f (t/h1/y) with the identification of Eq. (2.2). The large symbols are the data atµq = 0.
The results at finiteµq are lines with their error bars connected with the sides of the symbols. The
critical exponents of the O(4) spin model are used. The black line is the scaling function obtained
by the O(4) spin model in Ref. [6]. We adjust four fit parameters in this analysis. One is the
critical valueβct at µq = 0, the second is the curvature of the phase boundary in the(β ,µq/T)
planec, and the others are used for adjusting the scales of the horizontal and vertical-axes to the
scaling function of the O(4) spin model. We determine the four parameters such that the square of
the deviation between the simulation data and the scaling curve is minimized. The best value of
βct and the curvature areβct = 1.510 andc= 0.0290. This scaling plot indicates that the scaling
function of 2-flavor QCD is consistent with that of the O(4) spin model, numerically.
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Figure 2: O(4) scaling plot of the chiral order pa-
rameter in 2-flavor QCD.
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Figure 3: O(4) scaling plot of the second deriva-
tive of the chiral order parameter by method 1.

3.2 Derivatives of the chiral order parameter atµq = 0

We calculate the second derivative of〈ψ̄ψ〉 performing numerical simulations of 2-flavor QCD
(Nf = 2) at µq = 0 and compare it with the O(4) scaling function Eq. (2.3). We then determine the
curvature of the criticalβ in the chiral limit, assuming the O(4) scaling behavior is satisfied.

Method 1: Fitting the data by the reweighting method at finiteµq We fit the data of the chiral
order parameter at finiteµq by

〈ψ̄ψ〉(µq) = x+y(µq/T)2, (3.4)

wherex andy are the fit parameters. The first derivative is zero due to the symmetry:µq →−µq.
We identify the parameters as follows,

x= 〈ψ̄ψ〉(0), y=
1
2

d2〈ψ̄ψ〉
d(µq/T)2(0). (3.5)

We then obtain the second derivative and plot it in Fig.3 with the form of Eq. (2.3) adopting
βct = 1.510. The corresponding scaling functionsd f/dx are shown by the colored lines forc =

0.02,0.03,0.04 and 0.05, from the bottom [6]. The fit range is adopted to beµq/T < 1. The results
change with the choice of fit range, hence the systematic errors seem to be large in comparison to
the statistic errors. Considering the size of systematic errors, clear deviation between the simulation
result and the expected scaling function is not observed.

Method 2: Computing the derivative operators Moreover, the derivative of the chiral order
parameter is computed by the calculation of the following operators,

A1 = 〈Q1〉 , A2 = 〈Q2〉+
〈
Q2

1

〉
, F0 = 〈C0〉 ,

F1 = 〈C1〉+ 〈C0Q1〉 , F2 = 〈C2〉+2〈C1Q1〉+ 〈C0Q2〉+
〈
C0Q

2
1

〉
. (3.6)
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Figure 4: O(4) scaling plot of the second deriva-
tive of the chiral order parameter by method 2.
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Figure 5: The second derivative of the critical
curve in the(β ,µq/T) planec.

Then, the derivatives of the chiral condensate are given by

〈ψ̄ψ〉
∣∣∣∣
µq=0

=
2mqa

N3
s Nt

F0,
∂ 〈ψ̄ψ〉

∂ (µq/T)

∣∣∣∣
µq=0

=
2mqa

N3
s N2

t
(F1−F0A1) = 0,

∂ 2〈ψ̄ψ〉
∂ (µq/T)2

∣∣∣∣
µq=0

=
2mqa

N3
s N3

t

(
F2−2F1A1−F0A2+2F0A

2
1

)
=

2mqa

N3
s N3

t
(F2−F0A2) , (3.7)

where we used the properties thatAn andFn are zero for oddn’s at µq = 0.
The results of the second derivative are plotted in Fig.4 with the form of Eq. (2.3). The scaling

functionsd f/dx are also denoted similarly to Fig.3 The difference between the results by method
1 and method 2 would be the systematic error, which is larger than the statistic error. Although the
uncontrollable systematical error is large, the simulation results roughly show the expected scaling
behavior.

4. Curvature of the critical line in the chiral limit

Next, we estimate the second derivative of the criticalβ with respect toµq in the chiral limit,
i.e.c≡−d2βct/d(µq/T)2, by three following methods, assuming the O(4) scaling behavior:

1

h1/δ−1/y

d2M
d(µq/T)2

∣∣∣∣
µq=0

= c
d f(x)

dx

∣∣∣∣
x=t/h1/y

. (4.1)

Figure5 is a summary plot of the results ofc. The magenta line is the result by the global fit of the
scaling plot in Sec.3.1, i.e. c= 0.0290. The symbols are the ratio of(d2M/d(µq/T)2)h−1/δ+1/y

to d f(x)/dx, which givesc. The average ofc obtained by the reweighting method (method 1) is
c = 0.0273(42), shown by a blue line in Fig.5, and the average of the results from the second
derivatives by the operator method (method 2) isc= 0.0257(43), drawn by a black line.

The curvature of the critical temperatureTc(µq) at µq = 0 can be calculated byc and the
beta function as(1/Tc)(d2Tc/d(µq/T)2) = c[a(dβ/da)]−1. This requiresa(dβ/da) at βct in the
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chiral limit. The beta functiona(dβ/da) for our lattice action was estimated in Ref. [11] for the
pseudo-scalar-to-vector mass ratiomPS/mV ≥ 0.65. Adoptinga(dβ/da) ≈ −0.5 at mPS/mV =

0.65, we obtain−(1/Tc)(d2Tc/d(µq/T)2) ≈ 0.05–0.06. This value is similar to that obtained
using improved staggered quark actions in Refs. [1] and [12], but is much smaller than that of an
experimental estimate for the chemical freeze out.

5. Summary

We discussed the scaling property of the chiral order parameter in the low density region of
2-flavor QCD. The chiral order parameter and its second derivative were computed performing a
simulation with improved Wilson-type quarks. We then compared the results with the O(4) scaling
function. The scaling behavior turned out to be roughly consistent with the O(4) universal scaling.
Assuming the O(4) scaling, we estimated the curvature of the phase boundary in the(β ,µq/T)
plane. However, to confirm the scaling property of 2-flavor QCD, a systematic study varying
lattice volume and spacing is needed.
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