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Abstract 
The economic value of ecosystem services of vegetated habitats such as 

seagrass and macroalgal beds have been estimated to be one of the highest among 

those of the world’s ecosystems. Most of the economic value of ecosystem 

services of vegetated habitats is composed of supporting services (e.g. nutrient 

cycling). Provisioning services (e.g. production of fisheries resources) has not 

been included in the estimated value although vegetated habitats have been 

recognized as important nursery for a variety of fish species. Estimation of fish 

production (nursery function) of vegetated habitats based on quantitative 

samplings is an urgent issue for the future conservation and management of the 

vegetated habitats. About 100 species of genus Sebastes are distributed in the 

North Pacific and are important fisheries resources in each area. They have strong 

association with substrates such as seagrass, macroalgae and rocky reef during the 

juvenile period for a few months. In order to evaluate how the vegetated habitats 

contribute as fish nursery, production and growth-survival mechanisms of a 

substrate-associated fish, the black rockfish Sebastes cheni (Scorpaenidae), were 

examined in a macroalgal bed (Sargassum spp.) in the central Seto Inland Sea, 

Japan. Sebastes cheni is one of the three species (S. inermis, S. ventricosus and S. 

cheni) that were recently reclassified from single species (S. inermis) by Kai & 

Nakabo (2008). Ecological information has been rarely accumulated although they 

are popular species for coastal fishing. Monthly survey was conducted to examine 

seasonal changes in a fish community structure in the macroalgal bed. The timing 

of first daily ring deposition (extrusion mark) and daily periodicity of ring 

formation on otoliths were validated by the use of laboratory-cultured S. cheni 

larvae and juveniles. Otolith microstructures were applied for estimation of their 

mortality rate, analysis of growth-related survival mechanism and estimation of 

annual S. cheni juvenile production and its economic value in the macroalgal bed. 

Effect of seasonal change in habitat complexity of the macroalgal bed on 

cohort-specific mortality rate of post-settlement (20-60 mm in total length: TL) 

juvenile S. cheni was examined. Relationship between the cohort-specific 
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mortality rate and growth-related survival mechanisms of the juvenile was 

analyzed. Seasonal changes in fish assemblages based on the quantitative fish 

samplings revealed that juvenile S. cheni dominated the fish community in the 

macroalgal bed from March to May. Otolith daily ring was confirmed to be 

deposited on both sagitta and lapillus at the birth. Annual juvenile production and 

its economic value of were estimated to be 13,080-18,360 g ha-1 yr-1 and 

654,000-918,000 JPY ha-1 yr-1 based on the field survey in 2007 and 2008. 

Cohort-specific mortality rate of the post-settlement juvenile was significantly 

higher in the later cohorts that underwent low habitat complexity due to decrease 

in macroalgal coverage in the later season although cohort-specific growth rate 

was significantly higher in the later cohorts due to higher temperature. Strong 

selection for fast-growing juveniles occurred in a cohort with high mortality that 

underwent low habitat complexity. In the present Ph D thesis, based on the field 

survey and laboratory experiments, I evaluated annual production and its 

economic value of juvenile S. cheni which dominates the fish community of 

macroalgal bed in temperate coastal waters of the North Pacific. The variability in 

habitat complexity affected survival and production mechanisms of juvenile S. 

cheni. The earlier cohorts with low mortality rate were suggested to have highly 

contributed to S. cheni production in this habitat. The total economic value of the 

ecosystem services of vegetated habitats is suggested to be higher by at least 

40-58 % than that estimated in the previous study when the fish production 

estimated in the present study is included. 
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General introduction 
Ecosystem services (the benefits human populations directly or indirectly 

derive from ecosystem functions) of vegetated habitats such as seagrass and 

macroalgal beds were estimated one of the most valuable among world’s 

ecosystem (19,004 USD ha-1 yr-1; Costanza et al. 1997). The estimated value of 

vegetated habitats was mostly composed by supporting services such as nutrient 

cycling, while provisioning services (e.g. food production) was not included in the 

value (Costanza et al. 1997). Lack of precise information on production and 

nursery function based on quantitative investigations on vegetated habitats (Beck 

et al. 2001) has been a source of difficulty in evaluation of comprehensive 

ecosystem services although these habitats have been recognized as important 

nursery for a variety of marine organisms (Fuse 1962a, b; Kikuchi 1974). 

Vegetated habitats have been drastically decreasing in coastal areas of the world 

for the last several decades (Hemminga and Duarte 2000). Quantitative 

evaluations of fish production and nursery function of vegetated habitats would are 

indispensable for worldwide recovery from the human disturbance and future 

conservation and management of coastal habitats (Hemminga and Duarte 2000; 

Duarte 2002). 

 Many fish species utilize vegetated habitats as elementary habitat in their 

early lives (Gillanders 2006). During early life period, fishes experience highest 

mortality due to a variety of biological and physical sources such as predation, 

starvation, transportation (Houde 1987). Predation is considered as one of the most 

important sources of mortality because it prevails all early life stages from egg 

through juvenile (Houde 1987). Previous studies in vegetated habitats have tested 

whether habitat complexity reduce vulnerability (Rooker et al. 1998; Anderson 

2001; Johnson 2006b; Shoji et al. 2007). However, most of these previous studies 

have focused on a ‘snap-shot’ phenomenon, fish survival during a relatively short 

period (in most cases, < 24 hours) during their field and laboratory observations. 

Information on how fluctuations in environmental conditions affects fish early 

survival and production is still very limited in natural habitats such as vegetated 
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habitats, mangroves, rocky reef and so on (Valentine-Rose et al. 2007; Faunce and 

Serafy 2008; Grol et al. 2011; Kamimura et al. 2011). 

Rockfishes (genus Sebastes) consist of more than 100 species and are mainly 

distributed in coastal waters in the North Pacific (Love et al. 2002). They are 

commercially and recreationally important species in many countries and regions 

of the world. Sebastes larvae are extruded from adult female and usually 

experience a few months of pelagic period. Early juveniles associate with 

substrates such as vegetated habitats, rocky reef, drifting seaweed, artificial 

structure and so on for a few months to a year (Kokita and Omori 1998; Love et al. 

2002). Clarifying the survival and mortality processes of the substrate-associated 

period are considered to be essential for forecasting fluctuation and sustainable 

management of adult stocks since recruitment success is potentially to be 

determined by the end of the substrate-associated period (Mason 1998; Hobson et 

al. 2001; Laidig et al. 2007). 

Among the black rockfishes, which include several Sebastes species such as S. 

melanops, S. shlegeli and S. inermis, S. inermis is widely distributed in the coastal 

waters of the western North Pacific. Ecological information on the early life 

history of the black rockfish such as larval seasonal occurrence, distribution, 

settlement in vegetated habitats and post-settlement growth has been accumulated 

in previous studies (Harada 1962; Nagasawa et al. 2000; Plaza et al. 2002; Pasten 

et al. 2003; Guido et al. 2004; Mizusawa et al. 2004; Plaza et al. 2010). However, 

a recent taxonomic review based on morphological and genetical analyses of 

Sebastes species found the former S. inermis included three congeners, S. inermis, 

S. ventricosus and S. cheni (Kai and Nakabo 2008). Accumulating biological and 

ecological information on each species is an urgent subject indispensable for 

understanding the mechanism of recruitment fluctuation and sustainable use of the 

stock as fisheries resources. 

The goal of the present thesis is to quantifying the function of a macroalgal 

bed as fish nursery based on fish production. In chapter 1, seasonal change of fish 

community structure was investigated in a mixed vegetated habitat of seagrass 
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(Zostera marina) and macroalgae (Sargassum spp.) in the central Seto Inland Sea, 

Japan, in order to clarify how Sebastes fishes utilize vegetated habitats. In chapter 

2, validation of daily periodicity of otolith daily ring formation and timing of first 

increment formation were conducted in order to compare larval and juvenile 

growth rates between wild and cultured S. cheni. Annual fish production of the 

macroalgal bed and contribution of prey sources to the fish production were 

evaluated in chapter 3. Effect of seasonal change in habitat complexity of the 

macroalgal bed on cohort-specific mortality rate of post-settlement (20-60 mm in 

total length: TL) juvenile S. cheni was examined in chapter 4. In chapter 5, 

relationship between the cohort-specific mortality rate and growth-related survival 

mechanism of the juvenile was analyzed. 
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Chapter 1 
Seasonal changes in the fish assemblage in a mixed vegetated 
habitat of seagrass and macroalgae 
 

 

Introduction 

Vegetated habitats such as seagrass (mainly Zostera spp.) and macroalgal 

(mainly Sargassum spp.) beds in estuarine and coastal waters have been referred to 

as nurseries for fish as they serve feeding grounds and refuges from predation for 

early life stages of fish (Adams 1976; Sogard 1992). Although the role of these 

coastal habitats as nurseries is an established ecological concept commonly 

accepted, the nursery-role concept has not been clearly defined. Recently, the 

ecological processes operating in nursery habitats have been suggested to support 

greater contributions to adult recruitment as compared with other habitats (Beck et 

al. 2001). For example, juvenile fish production, but not abundance of juvenile 

fish, is a good index of the nursery function．However, information on fish 

production has been restricted while there are many observations on fish 

abundance and its spatio-temporal variability in the coastal habitats (Houde 1997; 

Rooker et al. 1999; Shoji and Tanaka 2007; Sano et al. 2008). Quantitative data on 

vital rates such as fish biomass, growth, mortality and resulting production would 

strongly contribute to the evaluation of economic value of these vegetated habitats 

(Costanza et al. 1997). 

Many observations on fish assemblages in the field have reported higher 

abundance and/or diversity of fish assemblages in vegetated habitats than those in 

adjacent habitats such as sandy shore and mud flat areas (Orth and Heck 1980; 

Sogard 1992; Mori 1995; Horinouchi and Sano 1999). However, most of these 

data have been limited to only a list of fish species, and have not included 

estimations of fish biomass or production. Furthermore, surveys using SCUBA 

techniques may lack accuracy in data measurements based on visual observations. 

For example, data on fish size, biomass and growth obtained from the diving 
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observations can be less accurate especially for fish with small size and/or in the 

turbid waters in coastal and estuarine habitats. Since the growth rate is the highest 

during young stages in the life (Houde 1987), estimation of larval and juvenile fish 

production would contribute to accurate evaluations of the importance of 

vegetated habitats as fish nurseries to the ecosystem. 

In many previous surveys, seasonal changes in habitat vegetation have been 

reported to affect abundance and diversity of fish assemblages. In seagrass beds, 

fish fauna is more abundant and diverse during summer when seagrass is abundant, 

while less abundant and diverse in winter when the seagrass disappears (Fuse 

1962a; Azuma 1981; Mori 1995). In macroalgal beds, on the other hand, there is 

only limited data available on fish assemblages. Several dominant fish species 

such as Sebastes spp. and Hexagrammos spp. have been reported to spawn in 

winter and inhabit macroalgal beds during early life stages from winter to summer 

(Fuse 1962b). Therefore, fish production in macroalgal beds is expected to be 

relatively high from winter to summer, in contrast to the seasonal change in 

seagrass beds where fish production is low during winter. 

The present study is part of a series of studies to quantify the role of seagrass 

and macroalgal beds as fish nurseries based on the fish production. In the present 

study, seasonal changes in fish assemblages and early growth of the dominant 

species in a mixed vegetation area (seagrass and macroalgae) are investigated. 

Since the seasonal peaks in vegetation biomass differ between the seagrass and 

macroalgal beds, a habitat with mixed vegetation of seagrass and macroalgae may 

serve as fish nursery for a longer period in a year compared with the habitats 

covered with either of seagrass or macroalgae. Therefore, annual fish production 

can be also expected to be higher in the mixed vegetation than areas with either 

seagrass or macroalgal beds only. Information on seasonal changes in abundance 

and diversity of fish assemblages in the mixed vegetation area would be helpful 

for future conservation and optimization of resources usage for coastal habitat. In 

the present study, 1) seasonal changes in fish abundance, biomass and species 

composition were investigated, and 2) based on the occurrence and growing 
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season of young stages, dominant fish species were categorized into types. 

 

 

Materials and Methods 

Sampling field 

Monthly fish sampling and environmental survey were conducted on a 

vegetated area (about 50 m in width, 500 m in length) off the southwestern coast 

of Aba Island, central Seto Inland Sea, Japan (Fig. 1), from August 2006 to July 

2007. Aba Island is an uninhabited island with a coast of about 2 km on its 

southwestern side. The vegetation is dominated by patchness of seagrass Zostera 

marina during summer and macroalgae (mostly, Sargassum filicinum, S.fusiformis, 

S. patens, and S. piluliferum) during winter (Fig. 2). Mean density of seagrass 

fluctuates between 20-160 shoots m-2 and mean biomass (wet weight) of the 

macroalgae between 100-3500 g m-2 (Kamimura and Shoji, unpublished data). The 

sea bottom of the vegetation area is comprised primarily of sand with occasional 

small stones (< 100 mm in diameter), on which the macroalgae grow. Fish were 

collected using a seine net (2 m in height, 30 m in length and 5 mm in mesh 

aperture: Fig. 3) during a tidal level between 70-130 cm in daytime, when the edge 

of the vegetated area was close to the shore. Three sides of a square (10 m in side 

length) were surrounded using the seine net, with another side facing to the shore 

(around border of the vegetation during the tidal level of 70-130 cm) and this was 

carried out at four separate locations randomly selected within the vegetated area. 

In winter, fish were collected together with the macroalgae and their substrates. All 

fish collected were preserved in 10% seawater formalin solution. Water 

temperature and salinity were measured at each sampling. 

In the laboratory, fish were identified to the lowest possible taxa according to 

Nakabo (2002) and were measured in total length (TL, mm) and wet weight (g). 

The black rockfish Sebastes inermis was reclassified into three Sebastes species (S. 

inermis, S. ventricosus and S. cheni) by genetical and morphological differences 

(Kai and Nakabo 2008). In the present study, these species were identified based 
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on morphological differences (Kai and Nakabo 2008). Mean fish abundance and 

biomass were expressed as number and wet weight of fish 100 m-2. Species 

composition (% of each species) in number and wet weight was calculated for 

each month. 

 

 

Results 

Dominant ichthyofauna 

A total of 3,363 fish belonging to more than 42 taxa in 26 families were 

collected during the study period (Table 1). The numerically dominant species (% 

in number) were S. cheni (45.0%), Favonigobius gymnauchen (16.9%), Hypodytes 

rubripinnis (16.2%), Takifugu niphobles (4.5%), Rudarius ercodes (3.7%) and 

Sillago japonica (3.4%) and the weight-based dominant species (% in weight) 

were H. rubripinnis (42.4%), S. cheni (22.6%), Thamnaconus modestus (6.7%), F. 

gymnauchen (4.9%), T. niphobles (4.3%) and Hexagrammos agrammus (3.5%). 

The majority (98.4% in number) of the fish were smaller than 100 mm in total 

length. 

 

Seasonal change 

The water temperature varied between 11.5 (February) and 27.0˚C 

(September) and salinity between 30.3 (January) and 33.1 (July: Fig. 4a). The 

mean (± SD) number of species 100 m-2 was lowest in February (3.3 ± 1.9) and 

highest in June (11.5 ± 2.1: Fig. 4b). Sampling month had a significant effect on 

the mean number of species (Kruskal-Wallis test, P = 0.0003). The mean fish 

abundance varied between 7.8 ± 4.5 100 m-2 (February) and 196.5 ± 145.7 100 m-2 

(April), and showed a 23.4-fold annual fluctuation (Fig. 4c). Sampling month had 

a significant effect on the fish abundance (Kruskal-Wallis test, P = 0.003). 

Takifugu niphobles was numerically most dominant in August, F. gymnauchen 

from September to February, S. cheni from March to May and in July, and H. 

rubripinnis in June (Fig. 5). Mean of total fish abundance increased by 20.8-fold 
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from 7.8 100 m-2 (February) to 162.0 100 m-2 (March) greatly according to the 

increase in abundance of S. cheni (Figs. 4c and 5). 

The mean fish biomass varied between 19.0 ± 20.3 g 100 m-2 (February) and 

441.0 ± 222.8 g 100 m-2 (June) and showed a 23.2-fold annual fluctuation (Fig. 

4d). Sampling month had a significant effect on the fish biomass (Kruskal-Wallis 

test, P = 0.0005). Hypodytes rubripinnis was most dominant in weight in August, 

from October to April, and June, T. niphobles in September, and S. cheni in May 

and July (Fig. 5). Mean total fish biomass increased by 7.6-fold from 19.0 g 100 

m-2 (February) to 143.9 g 100 m-2 (March) greatly according to the increases in 

biomass of S. cheni, H. rubripinnis and T. niphobles (Figs. 4d and 5). 

 

Occurrence and growth of dominant species 

Among the numerically dominant species, S. cheni and H. rubripinnis were 

abundant during spring, while T. niphobles and S. japonica were abundant from 

late summer to autumn (Fig. 5). Favonigobius gymnauchen and R. ercodes were 

collected throughout the year (Table 1 and Fig. 6). 

Growth of the young-of-the-year S. cheni was most prominent in spring with 

increase in TL from 25.0 ± 2.2 mm in March to 63.4 ± 3.5 mm in July. Thereafter, 

the growth of S. cheni decreased from July to September (64.3 ± 3.1 mm). 

Frequency distribution of total length of F. gymnauchen was separated into two 

groups with averages of 21.9 ± 3.5 mm and 55.6 ± 7.7 mm in August. Then mean 

total length of F. gymnauchen increased to 34.3 ± 6.6 mm in November while 

growth from November to April (38.7 ± 9.4 mm) was negligible. 

Young-of-the-year H. rubripinnis (31.3-36.0 mm) which were collected from 

October to December accounted for only 0.5% of the total number collected 

through the year. In contrast, older cohorts (> 50 mm) of H. rubripinnis occurred 

throughout the year. Mean total length of young-of-the-year T. niphobles and S. 

japonica increased from 31.0 ± 3.4 mm (August) to 40.0 ± 1.2 mm (October) and 

from 23.0 ± 8.7 mm (August) to 38.0 mm (n = 1, December), respectively. Growth 

of the R. ercodes was not detected from the seasonal change of length-frequency 
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distribution. 

 

 

Discussion 

Seasonal changes in the fish assemblages in the vegetated habitat 

Vegetated habitats such as seagrass and macroalgal beds have been reported to 

support larger numbers of fish species and individuals compared to adjacent un- 

and less-vegetated habitats (Orth and Heck 1980; Sogard 1992; Mori 1995). 

Habitat complexity produced by vegetation works as feeding ground (Fuse 1962a, 

b; Kikuchi 1966; Azuma 1981) and predation refuge for young fish (Rooker et al. 

1998; Nakamura and Sano 2004; Shoji et al. 2007). Many field studies have 

demonstrated that fish abundance and species composition fluctuate with the 

spatio-temporal variations in the shoot density and blade length in seagrass beds 

(Azuma 1981; Horinouchi and Sano 1999). However, in the majority of these 

previous studies, fish data were obtained from counting by visual census and from 

samples collected during operations of commercial fishermen’s boats (seine and 

trawl), with which quantitative analysis was difficult especially for fish with small 

sizes. 

In the temperate seagrass belts, fish fauna is most diverse and abundant from 

spring to summer, when seagrass grows, while fish are least abundant in winter 

(Azuma 1981; Mori 1995). In the present study, sampling by a seine net with a 

fine mesh size (5 mm) was conducted through a year in order to obtain 

quantitative data on fish abundance, biomass and species composition in a mixed 

vegetation area of seagrass and macroalgae in the central Seto Inland Sea. As a 

result, it was demonstrated that fish abundance and number of fish species 

increased from late winter to early spring, the season before seagrass grow but 

macroalgae were still abundant, in addition to early summer. The analysis on fish 

species composition revealed that the numerically dominant species (S. cheni) 

differed from weight-based dominant species (H. rubripinnis). These two species 

are considered as important components, which can influence the dynamics of fish 
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abundance and trophic flow in the fish assemblages of the surveyed area. 

Function of fish habitats as nurseries can be evaluated by how much 

production is attained in the habitat (Beck et al. 2001). For example, a habitat with 

a high fish abundance and/or biomass is not always a good nursery. Another 

habitat with a high juvenile fish production can be considered to be better nursery 

than the former even though fish abundance and/or biomass are lower in the latter 

(Beck et al. 2001). In the present study, H. rubripinnis occurred throughout the 

year and dominated in the fish fauna both in number (rank: 3) and in weight (rank: 

1). Previous studies also have reported that H. rubripinnis was one of the dominant 

components of the fish fauna in seagrass and macroalgal habitats (Fuse 1962a, b; 

Kikuchi 1966; Azuma 1981). However, the majority of the previous information 

was obtained from the commercial fishing and underwater visual census, with 

which quantitative analysis was difficult especially for fish with small sizes. In the 

present study, the majority of the H. rubripinnis collected by a seine net with a fine 

mesh size off the Aba Island (97% in number) was > 50 mm TL (> 1 year: Mori 

1995), indicating that early juveniles of H. rubripinnis (< 30 mm) mainly inhabit 

other habitats such as rocky shores and substrates in the surrounding area. We 

conclude that the surveyed area contributes as a major habitat for H. rubripinnis > 

1 year but not as a nursery. 

The length frequency distribution showed that young-of-the-year S. japonica 

and T. niphobles occurred and grew in the surveyed area from summer to autumn 

when seagrass dominate the flora. The high abundance of F. gymnauchen < 30 mm 

in September and increase in the total length of this cohort during the following 

period (September to January) indicate growth of young-of-the-year fish during 

autumn and winter. Growth of the R. ercodes was not detected from the present 

study due to the high variability in the total length and small sample in each month. 

According to the previous observations (Kikuchi 1966; Ishida and Tanaka 1980), R. 

ercodes has been categorized as residential species in seagrass and macroalgal 

habitats since this species occur almost throughout the life in these habitats. On the 

other hand, young-of-the-year S. cheni settled into the surveyed area in March 
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when seagrass were less abundant and macroalgae were still dominant. Mean total 

length of the S. cheni increased by about 40 mm from March to July. 

Young-of-the-year S. cheni are considered to be most dependent on macroalgae 

during the post-settlement period among the dominant species in the present study. 

 

Occurrence of S. cheni in the vegetated habitat 

There seems to be a spatial difference in the seasonal timing of Sebastes spp. 

settlement into coastal vegetated habitats. In the Sendai Bay, northeastern Japan, 

young-of-the-year Sebastes spp. (possibly including three Sebastes species) are 

abundant from April through July, which corresponds to the growing period of the 

seagrass (Plaza et al. 2002). Seasonal period of birth and juvenile settlement into 

the seagrass beds of the Sebastes spp. in the Sendai Bay is a few months later than 

those in the Seto Inland Sea (present study). Mizusawa et al (2004) reported that 

juveniles of S. ventricosus and S. cheni collected off Miura Peninsula, central 

Japan, were extruded mainly in January and February and settled in late March 

and early April. In the surveyed area off Aba Island, S. cheni settle into the 

vegetated habitats in March when macroalgae are still dominant instead of the 

seagrass. Results from our recent seine surveys and underwater visual censuses at 

an interval of one week from late February through late May in 2008 have 

revealed that S. cheni is most dominant (> 80 % in number) among Sebastes spp. 

in the mixed vegetation area off Aba Island (Kamimura et al. 2011). Due to the 

latitudinal difference in the seasonal timing of the settlement, young-of-the-year 

Sebastes spp. seem to be more associated with seagrass in northern area of Japan 

(e.g. Sendai Bay) while more associated with macroalgae in the southern area (e.g. 

Seto Inland Sea). 

Predation is the most important source of mortality of fish early life stages 

(Houde 1987). Vegetation reduces vulnerability of larval and juvenile fish to 

piscivorous fish predators through serving as physical and/or visual barriers and 

limiting the ability of predators to pursue and capture prey (Rooker et al. 1998; 

Shoji et al. 2007). In the Seto Inland Sea, it is likely that macroalgae is more 
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important as a predation refuge for the young-of-the-year S. cheni during the 

post-settlement period, when seagrass is not abundant yet. Thereafter, the relative 

importance of seagrass as predation refuge would increase as the macroalgae 

become less dominant. We suggest that co-existence of these two different types of 

vegetation, macroalgae and seagrass, within a small spatial scale can increase the 

accumulative survival rate of young-of-the-year S. cheni from the post-settlement 

period (March) through summer in the Seto Inland Sea. 

Many trials for the development and recovery of vegetated habitats have been 

conducted in order to improve fish and shellfish production in the coastal waters of 

Japan (Terawaki et al. 2000). However, seagrass or macroalgal (in most cases, 

Sargassum spp.) beds are individually developed in most of the trials. Results of 

the present study would give quantitative evidence on the development of a fish 

habitat with mixed vegetations of seagrass and macroalgae that can retain a higher 

fish production. Quantitative data on a variety of vegetation conditions (e.g. 

macroalgae only and no vegetation: sandy beach) are needed for further evaluation 

and comparative studies of fish production in vegetated habitats. 
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Chapter 2 
Validation of daily periodicity of otolith increment formation and 
application for growth analysis of wild Sebastes cheni 
 

 

Introduction 

Rockfishes (genus Sebastes) consist of more than 100 species and are widely 

distributed in the world’s oceans (Love et al. 2002). Some species have evolved a 

life history in which their larvae and juveniles strongly associate with substrates 

and vegetated habitats such as seagrass and macroalgal beds and reefs (Love et al. 

1991, 2002). In previous field and laboratory studies, variability in habitat 

conditions such as temperature and vegetation have been considered as important 

determinants which affect early survival and recruitment in several Sebastes 

species (Boehlert 1981; Boehlert and Yoklavich 1983; Love et al. 1991, 2002; 

Hobson et al. 2001; Laidig et al. 2007). 

A recent taxonomic review based on morphological and genetical analyses of 

Sebastes species found the former S. inermis included three congeners, S. inermis, 

S. ventricosus and S. cheni (Kai and Nakabo 2008). In previous studies before Kai 

and Nakabo (2008), S. inermis had been reported to be viviparous and highly 

dependent on vegetated habitats such as seagrass and macroalgal beds during the 

early life stages (Harada 1962; Nagasawa et al. 2000; Plaza et al. 2002; Pasten et 

al. 2003; Guido et al. 2004; Mizusawa et al. 2004). Larval and juvenile growth rate 

was estimated by the use of otolith daily increments (Plaza et al. 2001) as same as 

in other Sebastes species (Yoklavich and Boehlert 1987; Laidig et al. 1991; Kokita 

and Omori 1998). However, there are few studies which have worked on these 

three species separately (Kamimura and Shoji 2009; Kamimura et al. 2011) after 

the taxonomic review (Kai and Nakabo 2008). Accumulating biological and 

ecological information on each species is an urgent subject indispensable for 

understanding the mechanism of recruitment fluctuation and sustainable use of the 

stock as fisheries resources. 
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The objective of present study is 1) to validate the daily periodicity of otolith 

increment formation in the black rockfish, S. cheni, using laboratory-raised fishes 

and 2) to estimate the early growth rate of wild fish by applying the results from 

the validation of daily periodicity of otolith increments formation and 3) to 

compare early growth rates between wild and cultured fishes. Wild S. cheni were 

collected in a seagrass bed on the Pacific coast of northern Japan and their growth 

rates were back-calculated by the use of the biological intercept method. 

 

 

Materials and Methods 

Validation of periodicity of otolith increments formation of S. cheni 

Validation of periodicity of otolith increment formation was conducted by the 

use of another lot that was naturally extruded in a 200 t tank with several adult 

fishes on 3 January 2009. Larvae were fed with rotifer and brine shrimp in a 200 t 

tank at natural temperature (10.5-12.0ºC). Ten fish were sampled from the tank on 

10, 20 and 30 days after the extrusion and were preserved in 90% ethanol. The 

right-side saggita and lapillus were removed from each fish under a dissecting 

microscope and dried, then embedded in epoxy resin on a slide grass. Each otolith 

was grounded by 2000-10000 grid lapping films until the nucleus was clearly 

visible. Otolith rings were counted from the extrusion check (Plaza et al. 2001) to 

the edge at 400-1000 x magnification under a light microscope. Otolith ring 

counting was conducted three times and the mean values of the three counts were 

used as data. 

 

Growth of cultured fish 

Rearing experiments using cultured S. cheni juveniles (mean total length (TL) 

= 26.2 mm, n = 40) were conducted at Miyako Station, Tohoku National Fisheries 

Research Institute. Larvae were naturally extruded from an adult female (TL = 275 

mm) landed on 18 February 2010 at Miyako Fishermans’s Association, Iwate 

Prefecture. Then larvae were introduced into 1000 l black polycarbonate tanks on 
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6 May 2010 and were maintained at six temperatures (10, 12, 14, 16, 18 and 20 

ºC) under a 10: 14 (light: dark) photoperiod at a fish density about 1.0 l-1. Each 

tank was provided with aeration and fish were fed with rotifer and brine shrimp 

until satiation four times a day. Twenty fish were sampled from each tank every 

seven days for three weeks and 40 fish at the end of the experiment (four weeks 

from the start) and were preserved in 10% seawater formalin solution, then TL was 

measured. 

 

Field sampling 

Sampling for wild juveniles was conducted at a seagrass Zostera marina bed 

(38.332ºN, 141.146ºE) off Higashi-matsushima, Miyagi Prefecture, northern Japan, 

on 10 June 2009. Fish were collected using a small seine (2 m × 1 m, 2 mm mesh) 

and a scoop net (0.3 × 0.3 m, 2 mm mesh), and were preserved in 90% ethanol for 

otolith analysis. In the laboratory, juvenile S. cheni were enumerated and were 

measured in TL (mm) to the nearest 0.1 mm. A total of 27 individuals were 

processed for otolith analysis in the same manner as in the cultured fish. 

 

Otolith analysis of wild fish 

Growth analysis for wild S. cheni was carried out using the otolith daily ring 

measurement system (Ratoc System Engineering). In the present study, lapillus 

was used for the growth analysis due to higher visibility of formation of both 

sagittae and lapilli were validated. A measurement transect was set from the 

nucleus along the maximum radius. Number of increments on the lapillus was 

used as age (days after extrusion. Measurement of increment width was conducted 

from the nucleus to edge. A linear model was fitted to the relationship between 

otolith radius and TL. In addition, otolith of 30 cultured larvae (7.3-11.7 mm TL) 

and 46 larvae and small juveniles used for the validation of daily periodicity of 

increments formation were included in the analysis to establish the regression 

through the larval and juvenile stages (n = 103, including 27 wild juveniles). The 

biological intercept method (Campana 1990) was applied in order to estimate TL 
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at age of the wild S. cheni following the equation: 

La = Lc + (Ra - Rc)(Lc - Le)(Rc - Re)-1 

where La and Lc is fish size at age a and capture, Ra, Rc and Re is otolith radius 

at age a, capture and extrusion, and Le is mean fish size at extrusion (cultured fish 

(n = 30), 6.2 mm TL), respectively. Daily surface water temperature from 

December 2008 to May 2009 was obtained form an observation buoy of Miyagi 

Prefecture Fisheries Technology Institute (MPFTI) nearby the sampling sites Mean 

daily temperature from birth to capture, which each fish was expected to have 

experienced, was calculated for each fish. 

Mean growth rate of wild S. cheni was compared with those of cultured fish at 

the same TL range. According to the mean TL at the start of the rearing experiment 

(26.2 mm TL), growth trajectories of wild fish were also established for the TL 

range larger than 26.1 mm. Then mean growth rates of wild fishes back-calculated 

for four weeks after the day at which fish TL reached 26.2 mm TL were compared 

with those of cultured fishes for four weeks from the start of rearing experiments. 

 

 

Results 

Daily periodicity of otolith increments formation 

The relationships between the number of increments on sagittae (Is) or lapilli 

(Il) and age (Ac, day) of cultured S. cheni were expressed by linear formulas as 

follows (Fig. 7): 

Sagittae: Is = 0.975 × Ac + 0.467 (n = 30, r2 = 0.988, P < 0.001) 

Lapilli: Il = 0.950 × Ac + 0.6 (n = 30, r2 = 0.987, P < 0.001) 

The slopes of both regressions were not significantly different from 1.0 and 

intercept not significant from 0 (ANCOVA, P < 0.05). 

 

Growth of wild and cultured S. cheni juveniles 

Mean (± SD) and range of TL of wild S. cheni used for the growth analysis 

were 52.2 (± 4.8) mm, 36.1-61.7 mm and those of extrusion date were 2 January 
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2009 (± 9.1 d) and 20 December 2008-21 January 2009. The relationship between 

otolith radius (R) and TL (L), which was applied for the back-calculation of wild S. 

cheni, was expressed by a following linear regression: 

L = 0.136R + 0.657 (n = 103, r² = 0.968, P < 0.0001) 

Mean (± SD) back-calculated TL at age of wild fish increased from 26.2 to 

36.8 ± 1.3 mm during four weeks, the period for the comparison of growth rate 

between wild and cultured fishes. Mean (± SD) daily growth rates of fish during 

the four weeks were 0.38 ± 0.08 mm day-1 (Fig. 8). Mean daily temperature which 

each wild fish were expected to have been experienced during the four weeks, 

estimated by the use of temperature of the observation buoy, was 10.8 ºC. 

Mean (± SD) TLs of the cultured fish increased from 26.1 ± 1.6 to 30.7 ± 1.7 mm 

(10 ºC), 31.8 ± 2.1 mm (12 ºC), 32.9 ± 3.7 mm (14 ºC), 34.5 ± 4.9 mm (16 ºC), 

35.2 ± 5.6 mm (18 ºC) and 36.6 ± 6.2 mm (20 ºC) for four weeks. Mean daily 

growth rates during the period were 0.16 ± 0.06 (10 ºC), 0.20 ± 0.07 (12 ºC), 0.24 

± 0.13 (14 ºC), 0.30 ± 0.17 (16 ºC), 0.32 ± 0.20 (18 ºC) and 0.37 ± 0.22 mm day-1 

(20 ºC) (Fig. 8). The effect of temperature on the mean growth rate of cultured fish 

was significant (ANOVA followed by Tukey’s test for multiple comparison, P < 

0.0001). There was a significant positive correlation between the mean growth rate 

(G, mm d-1) of cultured fish and temperature (T, ºC) tested in the present study 

(10-20ºC) as follows: 

G = 0.0211 × T - 0.0489 (n = 6, r2 = 0.993, P < 0.0001) 

 

 

Discussion 

Daily periodicity of otolith increments formation and early growth of S. cheni 

Daily periodicity of otolith increment formation and timing of the first 

increment deposition have been validated in a variety of fish species (e.g. Pannella 

1971; Campana and Neilson 1985). Otolith daily increments start to be deposited 

at the first feeding in many marine fish species for which larvae hatch from 

pelagic eggs, while deposition of a check mark at extrusion followed with daily 



- 20 - 
 

increment have been reported in several viviparous Sebastes species (Laidig et al. 

1991; Kokita and Omori 1998; Plaza et al. 2001). In the present study, timing of 

the first increment formation (at extrusion) and periodicity of increment formation 

(daily) were validated in both sagitta and lapillus of S. cheni. 

According to a recent taxonomic review on Sebastes species by Kai and 

Nakabo (2008), which revealed that the former S. inermis consists of three species, 

S. inermis, S. ventricosus and S. cheni. Previous reports on growth rates of larval 

and juvenile S. inermis (ca. 0.5 mm day-1: Plaza et al. 2002; Mizusawa et al. 2004) 

possibly reflected a composite of the growth rates of the two other species. In the 

present study, mean growth rates of wild S. cheni larvae and juveniles were 

estimated to be 0.38 mm day-1 based on validation of otolith daily increment 

formation using cultured fish. 

Love et al. (1991) summarized growth rates of larvae and juveniles of 17 

Sebastes species ranged between 0.12-0.72 mm day-1 with a mean growth rate of 

0.29 day-1 for all species. In addition, mean growth rate of S. diploproa and S. 

melanops were reported to be 0.10-0.21 mm day-1 (10-20 ºC) and 0.09-0.31 mm 

day-1 (7-18 ºC), respectively, under laboratory conditions (Boehlert, 1981; 

Boehlert and Yoklavich, 1983). Based on these previous studies, S. cheni is 

concluded to exhibit a relatively higher growth rate during the larval and juvenile 

periods at similar temperatures among Sebastes species. 

 

Growth comparison between wild and cultured S. cheni juveniles 

Generally, growth rates obtained from laboratory experiments need to be 

interpreted carefully since there are a variety of artificial biases in environmental 

conditions such as tank size, feeding condition and handling, which wild fishes do 

not experience in nature. In the present study, since the cultured fish were fed with 

invertebrate zooplankton prey until satiation four times per day, it is plausible that 

prey availability in the tank was not a restricting factor for their growth rate. Mean 

daily growth rate of wild fish (0.38 mm day-1 at 10.8 ºC) was about double of that 

of cultured fish under similar temperatures (0.16 and 0.20 mm day-1 at 10 and 
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12ºC). In addition, standard deviation of the mean growth rate of wild fishes (0.38 

± 0.08 mm day-1 at 10.8 ºC) was smaller than those of cultured fishes (0.32 ± 0.20 

mm day-1 at 18 ºC, 0.37 ± 0.22 mm day-1 at 20 ºC) which had a similar growth rate 

as wild fishes. Variability in body size tends to be more prominent under 

laboratory conditions compared to wild cohorts since there is no size-selective 

mortality (mostly due to predation: Houde 1987) in captive tanks. In nature, on the 

other hand, size-selective predation is considered as an important factor which 

affects length frequency distribution of the survivors of larvae and juveniles in 

many fish species (Meekan and Fortier 1996, Takasuka et al. 2003; Takahashi and 

Watanabe 2004; Shoji and Tanaka 2006; Plaza and Ishida 2008; Islam et al. 2010). 

Although seagrass beds are considered as important refuges from predators, recent 

field sampling and analysis of stomach contents of predators revealed piscivorous 

fish predator biomass increased at nighttime (Kinoshita et al. 2012). The higher 

growth rate at the same temperature and smaller deviation at the same growth rate 

of wild fish compared to those of cultured fish might reflect size-selective 

mortality in nature. Further analysis on environmental conditions and size- and 

growth-selective survival in nature (such as repeated sampling to capture the same 

cohort coupled with growth back-calculations using otolith daily increments) are 

needed to understand the mechanisms of survival processes of S. cheni. 
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Chapter 3 
Production and food resources of juvenile Sebastes cheni in a 
vegetate habitats: estimation of economic value of a nursery 
 

 

Introduction 

The economic value of ecosystem services of vegetated habitats such as 

seagrass and macroalgal beds in coastal waters (19,004 USD ha-1 yr-1), is 

approximately the same as that of estuaries (22,832 USD ha-1 yr-1), and are 

estimated to be among the highest of the world’s ecosystem services that include 

marine (open ocean, coral reefs and shelf waters’) and terrestrial ecosystems 

(tropical forest, grasslands and rivers: Costanza et al. 1997). However, there are 

still many ecosystem services unevaluated although they are important 

components in relation to the economic value in each ecosystem. Especially, 

information on the production of fishes, which are important components of the 

provisioning services (Costanza et al. 1997), has been unavailable mainly because 

of the difficulty of quantification in the field. Estimation of the value of the 

provisioning services in highly productive shallow water areas is indispensable for 

a comprehensive estimation of the ecosystem services and for conservation and 

management of these ecosystems in the future. 

Vegetated habitats (seagrass and macroalgal beds) in estuarine and coastal 

waters have been considered to highly contribute as fish nurseries since they have 

a variety of ecological functions such as feeding grounds and predation refuges for 

fish early life stages (Fuse 1962a, b; Adams 1976; Azuma 1981). To date, many 

studies have reported that vegetated habitats support larger numbers of fish 

compared to adjacent unvegetated habitats (Kikuchi 1966; Sogard 1992). Recent 

studies have suggested that quantitative analyses on growth, survival and 

movement (recruitment to the fishery) of young fish, as well as their density, are 

important components for accurate estimation of fish production in vegetated 

habitats (e.g. Beck et al. 2001). 
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Many efforts have been made by researchers on studies of species composition 

and diet of fish assemblages in vegetated habitats by use of underwater census and 

quantitative sampling gears such as scoop nets and traps, while information on 

quantitative fluctuations in number or biomass of fish cohorts and populations is 

limited (Secor and Houde 1995; Rooker et al. 1999; Shoji and Tanaka 2007; 

Faunce and Serafy 2008). In coastal and estuarine habitats, underwater census in 

conditions with much vegetation and high turbidity tend to lead to uncertainty in 

estimation of fish size, number and biomass measurements. Under such conditions, 

for example, underestimation is likely for small-sized fish. Since fish growth and 

production rates are highest during their early life (Fuiman and Werner 2002), 

accurate information on abundance, biomass and growth are indispensable for 

quantitative estimation of fish production in the vegetated habitats (Beck et al. 

2001). 

Rockfishes (genus Sebastes: Scorpaenidae) are widely distributed and are one 

of the major components of fish production in temperate and sub-arctic coastal 

waters of the North Pacific (Love et al 2002). Black rockfishes, Sebastes inermis, 

S. ventricosus and S. cheni are abundant and are commercially and recreationally 

important fishery resources in eastern Asia. Larvae and juveniles of these species 

dominate seagrass and macroalgal beds from late winter through summer (Fuse 

1981; Nagasawa et al. 2000; Plaza et al. 2002). However, these three species had 

been dealt as one single species (S. inermis) in previous studies and fishery 

statistics before a taxonomic review on these species was made (Kai & Nakabo 

2008). Ecological information on each species is indispensable for effective 

fishery management and conservation of stocks since ecological features and 

recruitment mechanisms potentially differ among the three species and require 

independent clarification. 

In the central Seto Inland Sea, Japan, S. cheni larvae and juveniles dominate 

seagrass and macroalgal beds of the coastal waters from winter through summer 

(Kamimura and Shoji 2009). Early juveniles (ca. 20 mm in total length: TL) of S. 

cheni settle from offshore waters into mixed vegetation areas of seagrass (Zostera 
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marina) and macroalgae (Sargassum spp.) from late February to March and grow 

to about 50 mm TL by May (Kamimura and Shoji 2009). After the 

vegetation-associated period, they migrate to other habitats with rocky bottoms in 

deeper waters in summer depending on the water temperature in the shallow 

waters (Boehlert and Yoklavich 1983; Love et al. 1991). Quantitative information 

on the abundance, biomass and growth of larval and juvenile S. cheni would lead 

to a better understanding of the processes and determinant factors of juvenile S. 

cheni production in the vegetated habitat. In addition, application of analysis on 

feeding habits coupled with biochemical analysis of tissues such as stable isotope 

analysis, which has recently been advanced, would enable us to estimate the 

relative contribution of prey source to the fish production. Estimation of juvenile S. 

cheni production coupled with trophic flow analysis can contribute to evaluation 

of two components of the ecosystem services in the vegetated habitat: the 

provisioning services (production of fisheries resources) and the regulating 

services (removing organic matter from the ecosystem). 

In the present study, cohort-specific dynamics of abundance and biomass of 

larval and juvenile S. cheni were sampled at fine time intervals (one to two weeks) 

in order to estimate the annual juvenile production in the vegetated habitats by use 

of otolith microstructure analysis. Cultured juvenile S. cheni are sold as seedlings 

for aquaculture in the Seto Inland Sea and wild juveniles are potentially used for 

aquaculture (Shoji 2009). Preliminary estimation of the economic value of the 

annual production of wild S. cheni juveniles was conducted by converting the 

juvenile production and unit price of the cultured S. cheni seedlings. Stomach 

contents analysis coupled with stable isotope analysis were also conducted to 

detect the prey sources which contribute to the juvenile S. cheni production. 

 

 

Materials and methods 

Field sampling 
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Fish sampling and environmental surveys were conducted on a vegetated area 

(about 50 m in width, 500 m in length) off the southwestern coast of Aba Island, 

central Seto Inland Sea, Japan (Fig. 1) and information on the sampling site is 

detailed in Chapter 1. Fish were collected using a round seine net (2 m in height, 

30 m in length and 5 mm in mesh aperture: Kamimura and Shoji 2009) during a 

tidal level between 50-150 cm in daytime, when the edge of the vegetated area was 

close to the shore. Three sides of a square (10 m in side length) were surrounded 

using the seine net, with the other side facing to the shore and this was carried out 

at four separate locations randomly selected within the vegetated area. Fish 

samples were preserved in 10% seawater formalin solution and subsamples of S. 

cheni were preserved in 90% ethanol for otolith analysis. Water temperature and 

salinity were measured at each sampling. 

 

Otolith analysis 

In the laboratory, S. cheni were sorted and measured for TL and wet weight (g). 

Mean juvenile abundance and biomass were expressed as the number and wet 

weight of fish 100 m-2. Right-side lapilus (n = 20 at maximum for each sampling 

date) was removed from each fish body. Otoliths were embedded in a drop of 

transparent nail polish on a slide glass and were ground with 2000-10000 grid 

lapping films until the nucleus was clearly visible. Daily rings (Kamimura et al. 

2012) were counted at 400-1000 x magnification using a compound light 

microscope connected with a monitor. A total of 165 otoliths (2007: n = 72, 2008: 

n = 93) were analyzed for age estimation. Length-age relationship established for 

each sampling date was used for estimation of age of the other specimens for 

which otoliths were not analyzed. 

 

Estimation of annual production and economic value of juvenile S. cheni 

Birth dates were used to separate the juveniles into specific cohorts, defined as 

individuals extruded within a 10-day period following to the previous studies 

(Secor and Houde 1995; Rooker et al. 1999; Shoji and Tanaka 2007). Each cohort 
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was designated with an alphabetical character from A (12-21 December) to H 

(20-29 February). Annual production of S. cheni juveniles (g 100 m-2 yr-2) was 

calculated by summarizing the maximum biomass of each cohort within a year. In 

addition, the economic value of the annual juvenile fish production in the 

vegetated habitat was calculated based on the price of one cultured S. cheni 

juvenile as a seedling for aquaculture (ca. 50-300 JPY g-1: FRA 2008). 

 

Stomach contents and stable isotope analyses 

In order to understand the feeding habits during the post-migration period, a 

total of 30 S. cheni juveniles (ten fishes on 24 March and 16 April and five fishes 

on 1 and 22 May in 2008) were processed for stomach contents analysis. Stomach 

contents were removed from the fish body and were identified under a dissecting 

microscope. Composition (% in number) and number of prey organisms per fish 

was calculated for each juvenile size class of 10 mm TL. 

Stable isotope ratios of carbon (12C/13C) and nitrogen (15N/14N) were measured 

for 37 juveniles and 1-year-old S. cheni (seven, eight, fourteen and eight juveniles 

for each 10 mm TL class from 20- to 50- mm and an additional two over 

one-year-old fish from sub-samples: 106.1 and 140.1 mm TL) and their possible 

prey sources were obtained during the surveys in 2008. Collections of copepods (n 

= 3), particulate organic matter (POM: n = 4), decapods (n = 6, 11-36 mm in 

carapace length: CL), and benthic microalgae (n = 2) were carried out. Copepods 

were collected using a plankton net (250 µm mesh) at 3 separate locations in the 

survey area. The POM samples were collected from six stations at just below the 

sea surface prefiltered with a 200 µm mesh to remove macrozooplankton, then 

filtered onto Whatman GF/C glass-fiber filters. Decapods were collected with the 

fish samples and benthic microalgae were processed in the same manner as POM. 

All samples were preserved frozen at -30˚C until further processing for stable 

isotope analysis; final processing of drying and preparation followed methods 

obtained by Nagata and Miyajima (2008). Stable isotope ratios of carbon and 

nitrogen were measured with a mass spectrometer fitted with an elemental 
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analyzer. Isotope ratios are expressed as: 

δX = (R sample/Rstandard-1)×1000 

where δX is the stable isotope (δ13C or δ15N) in units of ‰, and R = 13C/12C or 
15N/14N. Atmospheric nitrogen (N2) and PeeDee belemnite were used as the 

standards for nitrogen and carbon stable isotopes, respectively. Precision for 

isotopic analysis was within ± 0.28‰ for both δ13C and δ15N. Mean stable isotope 

ratios were estimated for juvenile S. cheni by size classes of 10 mm (20-60 mm 

TL) and > 106 mm TL. 

 

 

Results 

Seasonal changes of environmental conditions and occurrence of S. cheni 

Water temperature ranged between 11.4 °C (March 19) and 17.3 °C (May 15) 

in 2007 and between 10.9 °C (March 11) and 18.2 °C (May 30) in 2008 (Fig. 9a) 

with higher values almost throughout the sampling season in 2007 than those in 

2008. Salinity ranged from 31.9 (April 19) to 33.1 (March 19) in 2007 and from 

31.5 (April 3) to 32.8 (February 21, March 11 and May 1) in 2008 (Fig. 9b). 

A total of 2,631 and 7,629 juveniles of the three Sebastes species (S. inermis, S. 

ventricosus and S. cheni) were collected in 2007 and 2008, respectively. Among 

the three species, S. cheni was dominant, comprising 77.6% (in number) in 2007 

and 80.0% in 2008 of the three species. The mean abundance of S. cheni was 

highest on April 13 (150.8 100 m-2) in 2007 and on March 24 (451.2 100 m-2) in 

2008 (Fig. 9c). The maximum mean biomass was 99.2 g 100 m-2 (April 13) in 

2007 and 115.2 g 100 m-2 (April 16) in 2008 (Fig. 9d). 

Mean total length of S. cheni was between 20 and 30 mm TL in March and 

reached 50 mm TL in May in both 2007 and 2008 (Fig. 10). Relationships between 

wet body weight (W, g) and TL (L, mm) of larval and juvenile S. cheni were 

expressed by power regressions (Table 2): 

2007: W = 6.904*10-6*L3.164 (n = 85, r2 = 0.991, P < 0.0001) 

2008: W = 3.010*10-6*L3.363 (n = 81, r2 = 0.996, P < 0.0001) 
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Cohort-specific abundance and biomass of S. cheni 

Birth date of S. cheni ranged between December 18 and February 7 in 2007 

and between December 16 and February 23 in 2008 (Fig. 11). The majority (91% 

in 2007 and 64% in 2008) of fish were extruded in January. The date when the fish 

biomass was maximum differed among the cohorts and years (Table 3). By 

summarizing the maximum biomass of each cohort within years, the annual 

production of juvenile S. cheni was estimated as 13,080 g ha-1 yr-1 in 2007 and 

18,360 g ha-1 yr-1 in 2008. Based on the unit price of cultured S. cheni juveniles 

(50 JPY per juvenile fish = 1.0 g: the lowest value in the literature: FRA 2008), the 

economic value of annual wild juvenile S. cheni production was estimated to be at 

least 654,000 JPY ha-1 yr-1 for 2007 and 918,000 JPY ha-1 yr-1 for 2008. 

The relationships between total length (L, mm) and age (A, day) were 

expressed by a linear regression for each year (Table 2): 

2007: L = 0.440A - 3.401 (n = 72, r2 =0.872, P < 0.0001) 

2008: L = 0.352A + 4.325 (n = 93, r2 = 0.895, P < 0.0001) 

 

Stomach contents and stable isotope ratios 

Majority of the stomach contents of juvenile S. cheni < 60 mm TL was 

composed of copepods belonging to Calanoida (over 80% was Paracalanus 

parvus), Poecilostomatoida (Corycaeus affinis) and Harpacticoida (Fig. 12). 

Among the copepods identified, calanoid copepods were most dominant through 

the TL range examined. The mean (± SD) number of food organisms per stomach 

increased from 38.0 (± 13.0) at 20-30 mm TL class to 689.4 (± 240.5) at 40-50 

mm TL class then decreased to 298.4 (± 186.4) at 50-60 mm TL class. 

Mean δ13C of S. cheni juveniles at 20-60 mm TL ranged between -21.1‰ and 

-19.1‰ and δ15N between 12.2-14.6‰, with δ13C values close to those of 

copepods (-20.2‰) and POM (-21.0‰: Fig. 13). Mean δ13C and δ15N of over 

1-year-old S. cheni (> 106 mm TL) was -15.7‰ and -14.5‰, respectively. The 

mean δ13C of over 1-year-old S. cheni was significantly higher than that of fish < 
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60 mm TL and was close to that of decapods (-15.1‰). 

 

 

Discussion 

Estimation of the economic value of annual juvenile production 

In the present study, seasonal fluctuation in cohort-specific biomass was 

analyzed in order to estimate the annual production of juvenile S. cheni. The 

annual production of S. cheni (13,080-18,360 g in wet weight ha-1 yr-1: production 

of only juveniles) were comparable with the estimates of annual fish production 

reported for other fish species and ecosystems (12,000-406,820 g in wet weight 

ha-1 yr-1: Valentine-Rose et al. 2007; Faunce and Serafy 2008). The sum of the 

maximum cohort-specific S. cheni biomass was 13,080 g ha-1 yr-1 for 2007 and 

18,360 g ha-1 yr-1 for 2008. Generally, maximum fish biomass of a single sampling 

day has been considered as an index of fish production in a habitat. However, such 

‘snap-shot’ information does not represent the fish production since fish samples 

collected on a single sampling day consist of multiple birth-date cohorts (Beck et 

al. 2001). Actually, the sum of the cohort-specific-maximum biomasses were 

28.1 % (2007) to 37.3% (2008) higher than the maximum of biomass on a single 

sampling date (9,920 g ha-1 yr-1; April 13, 2007 and 11,520 g ha-1 yr-1; April 23, 

2008, Fig. 9d). 

The economic value of the annual fish production (as the provisioning 

services) in the vegetated habitat off Aba Island would be still higher if values of 

other fish species were included. Production of the two other Sebastes fish (S. 

inermis and S. ventricosus) would have added at least 775,800 JPY ha-1 yr-1 for 

2007 and 1,109,400 JPY ha-1 yr-1 for 2008 to the juvenile S. cheni production 

estimated here. These estimates indicate that the economic value of ecosystem 

services of vegetated habitats calculated by Costanza et al. (1997), in which the 

provisioning services of fish production is not included, would increase by 

40-58%. Further information on production of other species (e.g. Hexagrammos 

spp. and other Sebastes spp.), which are important fishery resources and 
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vegetation-associated would lead to a more comprehensive estimation of the 

provisioning services of the vegetated area. 

 

Occurrence of juvenile S. cheni in vegetated habitats 

S. cheni juveniles were the most dominant among the three Sebastes species (S. 

inermis, S. ventricosus and S. cheni) and their biomass was highest in April in 

2007 and 2008 off Aba Island. Both in 2007 and 2008, the majority of S. cheni 

were extruded in January, almost the same period as in Sendai Bay, Miyagi, 

northern Japan (Plaza et al. 2001) and Miura Peninsula, eastern Japan (Mizusawa 

et al. 2004), although the three congeners of rockfishes were included altogether 

for the birth date analyses in these previous papers. Settlement of S. cheni into the 

vegetated habitat was observed at about 20 mm TL in the central Seto Inland Sea 

(Fig. 10), while it occurred about two weeks later in Sendai Bay (from late March 

to early April: Plaza et al. 2002). The birth period of Sebastes juveniles (peak in 

January) and size at settlement (ca. 20 mm TL, Plaza et al. 2002) did not differ 

between the two areas. Mean temperature from December to February in the Seto 

Inland Sea (11-18 ºC) is approximately 8 ºC higher than that in Sendai Bay (4-9 

ºC: http://tnfri.fra.affrc.go.jp/). Recent analysis showed that the larval growth rate 

of S. cheni back-calculated by the use of otolith microstructure of January-birth 

cohort was about 0.3 mm d-1 in the Seto Inland Sea and about 0.2 mm d-1 in Sendai 

Bay and that there was a significant positive correlation between daily growth 

rates and ambient temperatures (Shoji et al. 2011). The length-age relationships 

obtained during the larval and early juvenile periods were linear (Shoji et al. 2011; 

present study). Therefore, it is plausible that the differences in temperature would 

explain the difference in the seasonal timing of settlement: the higher larval 

growth rate due to higher temperature would have resulted in the earlier settlement 

(but at the same TL of 20 mm) of the S. cheni juveniles into the vegetated habitat 

in the Seto Inland Sea. 

 

Feeding habits and prey sources 
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Analysis of the stomach contents and stable isotopes revealed that juvenile S. 

cheni were highly dependent on copepods during the post-settlement period (20-60 

mm TL) in the vegetated habitats. The stable isotope analysis supported the shift in 

stomach contents composition of young-of-the-year S. cheni at about 60 mm TL: 

mean δ13C of over 1-year-old S. cheni (> 106 mm TL) was higher than those of S. 

cheni at 20-60 mm TL classes and copepods and was close to that of decapods 

(Fig. 13). A previous study also pointed to the same shift in feeding habits of 

Sebastes fish (Takai et al. 2002) as observed in the present study. However, data 

from three Sebastes species were combined in the previous study (Takai et al. 

2002) since the taxonomic review on Sebastes fishes (Kai & Nakabo 2008) had 

not been completed at that time. In the present study, the planktonic trophic 

pathway originating from phytoplankton is concluded to support the majority of 

the production of S. cheni during the post-settlement period in the seagrass and 

macroalgal beds through the production of copepod zooplankton off Aba Island, 

central Seto Inland Sea. Stable isotope analysis demonstrated a shift of feeding 

habits from the juvenile stage to over 1-year-old S. cheni. 

Since the developmental changes in feeding habits and prey sources of S. cheni 

was clarified in the present study, further investigation on the daily ration at each 

developmental stage of S. cheni would lead to quantification of the regulating 

services (e.g. removing organic matter) produced through S. cheni production in 

the vegetated habitats. Successful evaluation of the economic values of the 

regulating services as well as the provisioning services would show that the 

economic value of the total ecosystem services of the vegetated habitats would be 

much higher than those estimated in the previous studies. 
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Chapter 4 
Habitat complexity decreases post-settlement mortality of Sebastes 
cheni 
  

 

Introduction 

Vegetated habitats such as seagrass and macroalgal beds in coastal waters are 

considered as important ecosystems for many species of fish, molluscs and 

crustaceans which use them as a habitat (Adams 1976; Heck and Thoman 1984; 

Haywood et al. 1995). The economic values of ecosystem services provided by 

these vegetated habitats were estimated to be among one of the highest when both 

marine (open ocean, coral reefs and shelf waters) and terrestrial ecosystems 

(tropical forest, grasslands, and rivers) were considered (Costanza et al. 1997). To 

date, most of the economic values estimated for the vegetated habitats have been 

composed mostly of the supporting services (e.g. nutrient cycling), while 

provisioning services (e.g. production of fishes, the major components of the 

animal community) of them have been hardly quantified because of difficulty in 

quantification (Costanza et al. 1997). Many fish species migrate from one habitat 

to another with growth, development and/or change of season. Therefore, it is 

indispensable to understand the pattern of habitat use of dominant fish species and 

quantify their production in order to comprehensively evaluate the ecosystem 

services of coastal habitats (Beck et al. 2001). 

Plenty of studies on abundance, growth and survival mechanisms of fish early 

life stages have been conducted in seagrass beds (e.g. Heck et al. 2003). In 

macroalgal beds (such as kelp forests Sargassum spp. etc.), on the other hand, 

there has been far less information on the mortality and survival mechanisms 

(Forrester and Steele 2000; Anderson 2001; Johnson 2006a, b) compared to that 

on abundance and growth of fish early life stages (Holbrook et al. 1990; Ornellas 

and Coutinho 1998; Hixon and Jones 2005; Aburto-Oropeza et al. 2007; 

Kamimura et al. 2011). In temperate waters of the western North Pacific, seagrass 
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beds grow from spring to summer and macroalgal beds from winter to spring 

(Mukai 1971; Yoshida 2005) with increase in abundance and/or biomass of 

dominant species of each habitat (eg. Zostera marina for seagrass beds and 

Sargassum spp. for macroalgal beds: Fuse 1962a, b) according to seasonal 

changes in water temperature. Since both of the seagrass and macroalgal beds have 

been referred to serve as important habitats for a variety of fish species in the 

temperate waters, accumulating information on fish mortality and survival 

mechanisms are indispensable for comprehensive understanding of the 

contribution of these habitats. 

The black rockfish Sebastes cheni is widely distributed in coastal waters of the 

western North Pacific (Kai and Nakabo 2008). They dominate the fish community 

of the vegetated habitats (seagrass and macroalgal beds) in coastal waters and are 

commercially and recreationally important fishery resources (Fuse 1962a, b; 

Kamimura and Shoji 2009). Larvae are extruded in December to February in 

offshore areas and settle into vegetated habitats at about 20 mm in total length, 

then grow up to 60 mm in late spring (Kamimura et al. 2011). Juvenile S. cheni 

exhibit strong association with macroalgae during the post-settlement period as 

juveniles of other Sebastes species do with substrates such as seagrass beds, kelp 

and rocky reef until 60 mm (Love et al. 1991, 2002; Plaza et al. 2001). Moreover, 

recent surveys indicated that larval and juvenile survival during the 

substrate-associated period has a potential to determine the abundance of regional 

stocks of yellowtail rockfish Sebastes flavidus in the eastern North Pacific (Laidig 

et al. 2007). 

Predation is one of the most dominant factors that control survival of fish early 

life stages (Houde 1987). In vegetated habitats, habitat complexity potentially 

affects predation rate of larval and juvenile fishes by piscivorous fish predators 

through influencing swimming performance, prey catchability of the predators and 

predator-prey encounter rate (Horinouchi et al. 2009). Previous field and 

experimental works have examined if the habitat complexity affect vulnerability of 

larval and juvenile fish to predation (Rooker et al. 1998; Anderson 2001; Johnson 
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2006b; Shoji et al. 2007; Kinoshita et al. 2012). However, most of these previous 

studies have focused on a ‘snap-shot’ phenomenon, fish survival during a 

relatively short period (in most cases, < 24 hours). Information on how 

fluctuations in environmental conditions affects fish early survival is still very 

limited in natural habitats such as vegetated habitats, mangroves, rocky reef and so 

on (Valentine-Rose et al. 2007; Faunce and Serafy 2008; Grol et al. 2011; 

Kamimura et al. 2011). 

In the present study, the hypothesis that habitat complexity affects growth, 

survival and recruitment potential of juvenile S. cheni was tested in a macroalgal 

bed in temperate waters. Seasonal changes in weight-specific growth (G) and 

mortality (M) coefficients of each cohort were estimated by the use of otolith daily 

rings. The relative recruitment potential of individual cohorts was assessed by 

examining the ratio of G to M, which is commonly used as an index of 

stage-specific survival of fish early life stages (Houde 1996; Rooker et al. 1999; 

Shoji and Tanaka 2007). 

 

 

Materials and Methods 

Sampling Field 

Biotic and abiotic surveys were conducted at the western shore off Aba Island 

(Fig. 1), central Seto Inland Sea, Japan and information of the sampling site is 

detailed in Chapter 1. Fish collection was made using a round seine net (30 m in 

length, 2 m in height, 5 mm in mesh aperture). The sea floor is comprised of 

mostly sand with incidental small stones (< 100 mm in diameter), on which the 

macroalgae flourish and we could conduct fish collections using the net as same as 

in seagrass beds as detailed in Kamimura and Shoji 2009 and Kamimura et al. 

2011. In the macroalgal bed, three sides of a square (10 m in side length) were 

surrounded using the net, with the other side facing the shoreline (100 m2). All fish 

samplings were conducted at four randomly selected separate areas within the 

macroalgal bed during a tidal level of 50-150 cm on each day. 
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Day-night comparison 

In order to estimate the abundance and cohort-specific mortality of juvenile S. 

cheni during the post-settlement period (20-60 mm) as accurately as possible, 

differences in catch efficiency by the net was examined by comparing the juvenile 

abundance at length classes by day-night samplings conducted in March and May 

2011. Juvenile S. cheni are most abundant in March in the macroalgal bed off Aba 

Island and dominate the fish community accounting for 68.8-79.8% in number 

from March to May (Kamimura and Shoji 2009; Kamimura et al. 2011). Fish 

collection was conducted during 23:00-24:00 h on 16 March 2011 and 

15:00-16:00 h on 22 March 2011 and during 14:30-15:30 h on 20 May 2011 and 

21:00-22:00 h on 25 May 2011. Juvenile S. cheni was fixed in 10% seawater 

formalin solution and total length was measured in the laboratory. Juvenile 

abundance was expressed as number of fish 100 m-2. Juvenile abundance at length 

class of each 10 mm was compared between day and night within the same month. 

 

Seasonal sampling 

Fish collection was conducted during daytime (0900-1700 h) at intervals of 

5-14 days from 7 Feb to 30 May, 2008. Sebastes cheni were preserved in 90% 

ethanol for otolith analysis and subsamples were preserved in 10% seawater 

formalin solution for body weight measurement. In the laboratory, rockfish were 

counted and measured for total length (mm). Mean abundance of S. cheni at 20-60 

mm (post-settlement period: Plaza et al. 2001; Kamimura and Shoji 2009) on each 

sampling day was expressed as the number of fish 100 m-2. Water temperature and 

salinity in the macroalgal bed were measured with a multiple environmental 

measurement system (Alec Electronics Co. Ltd.). Vegetation index (bulk volume 

in water column: Iv, %) was estimated by underwater visual census using a 1 m2 

quadrat at four randomly selected separate areas. Mean Iv from the day of 

settlement into the macroalgal bed (at 25 mm, mean total length at settlement: 

Kamimura and Shoji 2009) to catch experienced by each S. cheni cohort 
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(identified by the use of otolith microstructures: see the results) was calculated 

based on the relationship between Iv and the Julian date (see the results). 

Zooplankton sampling was made with a plankton net (30 cm in mouth diameter, 

0.1 mm in mesh aperture). The net was towed at a speed of about 0.5 m s-1. 

Concentration of copepods, the major prey organisms for juveniles of 20-60 mm 

(Kamimura et al. 2011), was expressed as the number of individuals m-3 based on 

the flow meter count. 

Daily sea water temperature measured by the Hiroshima Prefectural 

Sea-farming Center (HPSC: Fig. 1), located 2 km north from the sampling site, 

was used for analysis of mean temperature experienced by each rockfish cohort 

(see the results) in the macroalgal bed. There was a significant, positive correlation 

between the temperatures measured at the sampling site (Ts, °C) and HPSC 

(Th, °C) on the same day (Ts = 0.974×Th + 0.763: n = 15, r2 = 0.92, P < 0.001). Ts 

on days without the field measurement was estimated from the equation. Mean 

water temperature experienced by rockfish from the day of settlement into the 

macroalgal bed (25 mm, mean total length at settlement: Kamimura and Shoji 

2009) to catch was calculated for each cohort. 

 

Otolith analysis 

In order to estimate the age of juvenile S. cheni, 40 fish at maximum from each 

collection were processed for otolith analysis. Daily periodicity of otolith 

increment formation and timing of extrusion check formation were validated for 

both sagittae and lapilli by the use of cultured larvae and juveniles (Kamimura et 

al. 2012). Right-side lapillus was removed from each fish under a dissecting 

microscope and was dried, then embedded in epoxy resin on a slide glass. Each 

otolith was ground using 2000-10000 grid lapping films until the nucleus was 

clearly visible. Otolith increments were counted from the extrusion check to the 

edge at 400-1000 x magnification under a light microscope. Increment counting 

was conducted three times and the mean of the three counts was used as juvenile 

age. Otoliths with errors > 5% increment counts were excluded from further 
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analysis. A total of 324 otoliths were processed for the estimation of birth date. 

Age-length key established for the wild rockfish was used to estimate age of fish 

whose otolith was not processed for the analysis: 

A = 2.350 × L + 12.69 (n = 324, r2 = 0.912, P < 0.001) 

where A and L represent age (days) and total length (mm), respectively. 

 

Estimation of growth and mortality coefficients 

Juvenile S. cheni were divided into seven specific cohorts with a 7-day period 

based on their birth date. Each cohort was designated with an alphabetical 

character: A (25-31 Dec), B (1-7 Jan), C (8-14 Jan), D (15-21 Jan), E (22-28 Jan), 

F (29 Jan to 4 Feb), G (5-11 Feb). Standardization of juvenile abundance was not 

made in the present study since the abundance at each length class did not 

significantly differ between day and night (see the results). In addition, fish < 20 

and > 60 mm (before and after settlement: from offshore into macroalgal beds: 

Plaza et al. 2002; Pasten et al. 2003; Guido et al. 2004; Kamimura and Shoji 2009), 

which contributed to less than 1.5% of all fishes in number, were excluded from 

the analysis. Estimation of juvenile abundance requires an assumption that the 

abundance data from sampling reflects the actual rockfish abundance in the 

macroalgal bed. We assume that juvenile S. cheni at 20-60 mm were retained in 

the macroalgal bed. Many species of rockfishes (genus Sebastes) have been 

reported to be highly dependent on specific substrates during the early life stages 

(Plaza et al. 2001; Love et al. 2002). Among the Sebastes fishes, species which 

juveniles inhabit the vegetated habitats in shallow waters tend to stay there during 

the post-settlement period (Love et al. 1991). Juvenile S. cheni settle into the 

macroalgal bed at 20 mm and then inhabit there until they reach 60 mm 

(Kamimura and Shoji 2009). In addition, Aba Island is relatively isolated in the sea, 

surrounded by waters of depths > 50m, without any other vegetated habitats in the 

area. Stomach contents analysis revealed that the juveniles (20-60 mm) had plenty 

of zooplankton prey in their stomachs (Kamimura et al.2011). Therefore, it is 

plausible that rockfish juveniles at 20-60 mm do not positively migrate out of the 
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macroalgal bed. Therefore, we concluded that the results from our field sampling 

reflect the actual abundance of S. cheni at 20-60 mm in the macroalgal bed. 

A weight-specific growth coefficient (G, day-1) was estimated for each cohort 

from the equation: 

Wa = W0 × exp (G × a) 

where Wa is the weight (mg) at time a (age, day), W0 is the weight at birth (age 

0), and G is the weight-specific growth coefficient. 

Instantaneous mortality coefficients (M, day-1) were estimated for each cohort 

applying the exponential model of decline (Secor and Houde 1995; Rooker et al. 

1999; 2004; Shoji and Tanaka2007). 

Nt = Nm × exp (- M × t) 

where Nt is the juvenile abundance at time t (days after the settlement), Nm is 

the estimated abundance at day of the maximum abundance of each cohort, and M 

is the instantaneous daily mortality coefficient. Number of plots (sampling dates) 

for the estimation varied between six and nine since data from the sampling dates 

with small numbers of fish were excluded from the analysis. The date at which 

mean total length of each cohort reached to 25 mm (Kamimura and Shoji 2009) 

was considered as the day of settlement into the macroalgal bed. In order to detect 

the effect of vegetation on juvenile survival, correlations between M and mean Iv 

between the day of settlement and catch date were analyzed. The macroalgal bed 

covers area over 40,000 m2 in coastal water around Aba Island. In this study, 

rockfish collection was carried out on macroalgal bed of 100 m2 at four separate 

areas on each day. Therefore, it is plausible that mortality of juvenile rockfish due 

to the sampling was minimal compared to their natural mortality. 

 

 

Results 

Day-night comparison 

There was no significant difference in juvenile S. cheni abundance (number of 

fish 100m-2) at each length class between the day and night samplings in both 



- 39 - 
 

March and May 2011 (Mann-Whitney U-test, P > 0.05, day; 6.5 ± 13.0 and night; 

6.5 ± 7.3 (20-30 mm), day; 1.0 ± 1.2 and night; 2.3 ± 2.6 (30-40 mm) in March 

and day; 7.0 ± 13.1 and night; 21.1 ± 14.0 (30-40 mm), day; 11.1 ± 22.2 and night; 

2.4 ± 3.1 (40-50 mm) and day; 0.7 ± 0.9 and night; 0.7 ± 0.8 (50-60 mm) in May). 

 

Seasonal changes in environmental conditions 

Water temperature ranged between 10.9 °C (11 March) and 18.2 °C (30 May) 

and salinity between 31.5 (3 Apr) and 32.8 (21 Feb and 11 Mar: Fig. 2a). Copepod 

concentration fluctuated between 1 931 m-3 (24 March) and 17 149 m-3 (1 May: 

Fig. 14a), without significant effect of sampling date (Spearman’s Correlation 

Coefficient, P < 0.05). The macroalgal vegetation index (Iv, %) ranged between 

1.5 (30 May) and 60.0% (11 March). The relationship between Iv and julian date 

(D, day) was expressed by a quadratic equation: 

Iv = - 0.011 × D2 + 1.579 × D - 3.189 (n = 14, r2 = 0.96, P < 0.001: Fig. 

14b) 

 

Juvenile abundance and cohort identification 

A total of 6,036 rockfish juveniles (19.8-65.2 mm: Fig. 15) were collected 

during the seasonal sampling in 2008. Juvenile abundance was highest on 24 

March (450.6 ± 327.0 100 m-2: Fig. 14c). Birth date of the juveniles ranged 

between 11 December 2007 and 24 February 2008 (Fig. 16). The majority (79.4% 

in number) were extruded in January. Of the 11 cohorts identified, seven (cohort 

A: 25-31 Dec to G: 5-11 Feb: Fig. 16) had a large enough sample size for further 

analysis of the cohort-specific mortality and growth coefficients. The date of 

settlement of each cohort was estimated to be 2 March, 16 March, 24 March, 31 

March, 8 April, 13 April, 19 April for cohort A, B, C, D, E, F and G, respectively 

(Fig. 14b). 

 

Growth, mortality and G:M ratio 

The G of each S. cheni cohort ranged between 0.029 (cohort A) and 0.047 
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(cohort G: Table 4). There was a significant effect of Julian date on G (Spearman’s 

correlation coefficient, n = 7, P < 0.05, Fig. 17a) with higher values in later 

cohorts. Mean daily temperature which juvenile rockfish experienced from the 

settlement date to catch date ranged between 13.5 °C (cohort A) and 15.5°C 

(cohort G). There was a significant effect of the mean temperature on G, with 

higher G in later cohorts (G = 0.008 × T – 0.083, n = 7, r2 = 0.89, P< 0.01). 

The M of each cohort ranged between 0.044 (cohort A) and 0.114 (cohort G: 

Table 4). The effect of Julian date on M was significant with higher values in later 

cohorts (Spearman’s correlation coefficient, n = 7, P < 0.05, Fig. 17b). The mean 

Iv had a significant effect on M with higher M in cohorts which experienced high 

vegetation coverage between the settlement and catch (Fig. 18). The G:M ratio 

was higher in earlier cohorts (cohorts A to E: 0.646 to 0.793: Fig. 17c) and was 

lower in the last two cohorts (cohorts F and G: 0.403 to 0.415). There was no 

significant effect of Julian date on the G:M ratio. 

 

 

Discussion 

Factors affecting juvenile survival 

The hypothesis that habitat complexity affects survival of fish early life stages 

has been tested in a variety of species in laboratory and field studies (Adams and 

Howard 1996; Rooker et al. 1998; Johnson 2006a, b, 2007; Shoji et al. 2007; 

Horinouchi et al. 2009). However, the majority of these previous works focused on 

a ‘snap-shot’ phenomenon, fish survival during a relatively short time period 

within several hours or days, or on a year-to-year fluctuation of habitat condition 

and recruitment of fish population at a broader spatial scale. In the present study, 

weekly or semi-weekly sampling in an isolated fish habitat at an uninhabited 

island enabled us to analyze fish survival in relation to the temporal fluctuation in 

their habitat condition during a longer time period on a fine spatial scale. In 

addition, application of the otolith daily increments for cohort identification 

provided evidence that temporal fluctuation of habitat complexity significantly 
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affected juvenile S. cheni survival in the field. 

Some of the previous studies have focused on temperature and prey availability, 

other than habitat complexity as possible factors controlling survival of larval and 

juvenile cohorts. Secor and Houde (1995) estimated cohort-specific mortality of 

larval striped bass Morone saxatilis in upper Chesapeake Bay by the use of larval 

otolith microstructures and found that larval survival was highly dependent on 

temperature, with lower mortality rates in cohorts that experienced intermediate 

temperatures. Rooker et al. (1999) examined mortality rates of post-settlement red 

drum Sciaenops ocellatus in seagrass meadows in the Aransas Estuary. 

Cohort-specific mortality rate of the red drum was lowest for the mid-season 

cohort. Shoji and Tanaka (2007) examined the temporal variability of 

cohort-specific mortality coefficients of larval and early juvenile sea bass 

Lateolabrax japonicus in the Chikugo estuary. Influence of temperature and spring 

bloom of prey zooplankton (an estuarine copepod Sinocalanus sinensis) was 

suggested to provide the later cohorts with a higher survival probability. 

In the present study, in contrast temporal variability in habitat complexity is 

suggested to have a significant effect on the cohort-specific mortality rate of S. 

cheni through influencing vulnerability to predation in natural habitat. Sebastes 

cheni settle into macroalgal beds at about 20 mm and then feed exclusively on 

copepods until they reach 60 mm (Kamimura and Shoji 2011). Among the major 

factors of mortality of fish early life stages (starvation, physical processes and 

predation: Houde 1987), starvation is considered to be less important for S. cheni 

during the post-settlement period since the juveniles collected in the macroalgal 

bed off Aba Island had plenty of prey in their stomachs (Kamimura et al. 2011). 

Effects of physical processes such as temperature effects and transportation also 

would be minimal since juvenile rockfish are able to swim and capture prey after 

fin formation at 20 mm TL (Nagasawa et al. 2000). Therefore, it is plausible that 

predation, rather than starvation and physical processes, is the most important 

determinant for juvenile S. cheni survival during the post-settlement period (20-60 

mm). Several experimental studies have showed that high habitat complexity 
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decreases risk of predation of juvenile fishes by piscivorous fish predators 

(Johnson 2007; Shoji et al. 2007; Horinouchi et al. 2009). 

A recent field survey in a seagrass bed in Ikuno Island which is located about 2 

km from Aba Island, revealed the fish community differed between day and night 

with a significant nighttime increase (by ten-fold) in biomass of potential fish 

predators (piscivorous fish such as conger eel, Conger myriaster, and Sebastes 

inermis > 100 mm) (Kinoshita et al. 2012). Sebastes spp. juveniles were found in 

the stomachs of these piscivorous fishes. Instantaneous predation rate of juvenile 

Sebastes spp. estimated from the ratio of the number of juveniles preyed upon 

(found in the predators’ stomachs) to that of population (sum of surviving and 

preyed upon juveniles) during nighttime was 5-10%. Tethering experiments 

revealed predation rate of juvenile Sebastes spp. was significantly higher in 

nighttime than in daytime (Kinoshita et al. 2012). Increase in vulnerability of 

juvenile fishes to piscivorous predators during nighttime in seagrass beds has been 

supported by underwater observations in Australian waters (Increase in abundance 

and biomass of piscivorous predators during nighttime: Hindell et al. 2000; Guest 

et al. 2003). Therefore, it is plausible that these vegetated habitats contribute as ‘a 

nighttime foraging area’ of piscivorous fish predators although they serve as a 

predation refuge for a variety of fish species. In addition, tracking movements of 

these predators by the use of bio-telemetry combined with day-night fish sampling 

in Ikuno Island and stomach contents analysis of the predators provided evidence 

that the piscivorous fishes visit to and feed in the vegetated habitats after sunset 

(Watanabe et al. unpublished data). Since the piscivorous fish predators were 

hardly collected during the daytime samplings in the present sampling site, 

predation on the juvenile rockfish was expected to prevail more often in nighttime. 

Clarifying the pattern of diel and seasonal movement and feeding of piscivorous 

fishes would lead to further understanding and quantification of mortality process 

of juvenile S. cheni. 

 

Relationships between growth and survival 
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According to a previous review by Houde and Zastrow (1993), in which 

growth and mortality coefficients of 188 species were summarized, the G:M ratio 

is less than 1.0 (mean 0.89) in larvae of the most fish species. In estuarine 

ecosystems, G:M ratios > 1.0 were reported for striped bass in the Chesapeake Bay 

(Rutherford and Houde 1995; Secor and Houde 1995), white perch Morone 

americana in the Hudson River (Limburg et al. 1999), red drum in Aransas 

Estuary (Rooker et al. 1999) and sea bass in Chikugo estuary, Japan (Shoji and 

Tanaka 2007). In contrast, the G:M ratios of juvenile S. cheni were lower than 1.0 

throughout the present study period (0.403-0.793). The variability in G:M ratio 

among fish species and ecosystems would be partly attributable to the higher 

variability in G induced by ambient temperatures since M does not highly fluctuate 

as G does among the species and ecosystems examined to date. For example, the 

average G of juvenile S. cheni in the present study (10.9-18.2˚C) was 0.039 (n = 7), 

which was far lower than that of red drum (0.165, n = 4) in Aransas Estuary 

(26.4-30.9˚C), while mean M was 0.069 in S. cheni (present study) and 0.139 in 

red drum (Rooker et al. 1999). 

The seasonal trend of fluctuation in G was similar with that of M in 

post-settlement S. cheni, showing higher values in later cohorts. The juveniles 

inhabit macroalgal bed from early spring through early summer when the water 

temperature increase. Since the dominant macroalgae (Sargassum spp.) grow 

during the low-temperature period, structural complexity of the habitat for juvenile 

rockfish decrease as season progressed with the increase in temperature. This 

vegetation phenology would increase predation risk for later cohorts of juvenile 

rockfish in their habitat. On the other hand, growth rate of juvenile rockfish 

increases as ambient temperature increases. Consequently, G:M ratios as a proxy 

recruitment potential of last two cohorts were lower than others because of M of 

these cohorts (F and G) abruptly increased under low vegetation. 
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Chapter 5 
Correspondence of strong selection for fast-growing individuals to 
high mortality in fish early life stages: a comparison among 
post-settlement Sebastes cheni cohorts 
 

 

Introduction 

Growth rates of cohorts and populations of fish early life stages have been 

considered as indices of survival of fish early life stages. Generally, fast growth 

shortens the duration of larval stage when the ratio of fish mortality due to 

starvation, predation and other physical processes is highest (Anderson 1988; 

Bailey and Houde 1989, Sogard 1997) and can increase probability of 

faster-growing individuals to survive (bigger is better hypothesis: Miller et al. 

1988; stage duration hypothesis: Chambers and Leggett 1987; Houde 1987) 

compared to those with slower growing individuals. In addition, growth rate itself 

also correlates with survival probability of fish early life stages regardless of the 

fish size (growth-selective predation hypothesis: Takasuka et al. 2003, 2004). 

Consequently, growth rates of cohorts and populations have been studied for 

predicting recruitment variability in a variety of fishes and ecosystems of the 

world (Houde 1987). 

Previous field studies have reported positive selection for fast growing 

individuals in a cohort of fish early life stages in which the cohort sampled later 

(survivors: SV) has fast grow rate compared to those sampled earlier (original 

population: OP) during the same period showing faster-growing individuals has 

more chance to survive (Meekan and Fortier 1996; Takahashi and Watanabe 2004; 

Takasuka et al. 2004; Shoji et al. 2006; Vigliola et al. 2007; Islam et al. 2010; 

Takahashi and Watanabe 2012). However, how the magnitude of selection 

(positive or negative) for growth correlates with the mortality rate each cohort has 

undergone has not been clarified (Robert et al. 2007; Takasuka et al. 2007). 

Sampling designs which enable quantitative analysis of mortality ratio together 
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with the magnitude of growth selection within/among cohorts are needed in field 

survey, experimental or mesocosm experiments in order to detect how growth 

selection relates with mortality rate. 

In a previous study, Kamimura and Shoji (in review) reported the effect of 

habitat complexity on cohort-specific mortality rate of juvenile S. cheni in a 

macroalgal (Sargassum spp.) bed by sampling the same cohort repeatedly at a fine 

time interval (one-two week). The later rockfish cohorts underwent higher 

mortality rates during the post-settlement period (ca. 20-60 mm in total length: 

TL) in the macroalgal bed due to decrease in vegetation coverage which has been 

considered to serve as predation refuge for the juveniles. In the present study, the 

linkage of cohort-specific mortality rate and magnitude of growth-selective 

survival are analyzed. 

Genus Sebastes (Scorpaenidae) is widely distributed in the North Pacific and 

commercially and recreationally important in each area (Love et al. 2002). Most of 

Sebastes fish have evolved life histories in which juveniles associate with 

substrates such as plants and rocks for several months after planktonic period 

(Love et al. 1991, 2002). Recent surveys indicated that survival during the 

substrate-associated period is an important determinant for recruitment abundance 

and population dynamics of yellowtail rockfish Sebastes flavidus in the eastern 

North Pacific (Laidig et al. 2007), suggesting that surveys on year-to-year 

fluctuation in larval and juvenile abundance, growth and survival are indispensable 

for understanding the mechanism of recruitment variability and population 

dynamics of Sebastes species. Sebastes cheni is distributed in temperate coastal 

waters of the western north pacific and is a commercially and recreationally 

important fishery resource (Kai and Nakabo 2008). Juveniles settle at vegetated 

habitats such as seagrass (Zostera marina) and macroalgal (Sargassum spp.) beds 

during at 20 mm TL and grow up to about 60 mm in summer (Kamimura et al. 

2011). In the present study, the linkage between strong growth-selective survival 

and high mortality were analyzed in post-settlement juvenile rockfish cohorts 

which were reported to have experienced different mortality rates in the previous 



- 46 - 
 

study (Kamimura and Shoji in review). Growth trajectory of juveniles was 

back-calculated by the use of otolith daily rings. The magnitude of selection for 

fast growing individuals and cohort-specific mortality rate were compared among 

three different cohorts 

 

 

Materials and methods 

Sampling field 

Field surveys were conducted at coastal waters off Aba Island, the central Seto 

Inland Sea, Japan from February to May 2008 (Fig. 1) and information of the 

sampling site is detailed in Chapter 1. The fish assemblage was dominated by 

juvenile S. cheni in the sampling area (68.8-79.8% in number, 18.3-46.0% in 

weight from March to May; Kamimura and Shoji, 2009). 

Biotic and abiotic researches were carried out during daytime (0900-1700 h) 

with a tidal level of 50-150 cm on each day at intervals of 5-14 days from 7 

February to 30 May. Fish collection was made using a round seine net (30 m in 

length, 2 m in height, 5 mm in mesh aperture: Kamimura et al. 2011). In the 

macroalgal bed, three sides of a square (10 m in side length) were surrounded 

using a net, with the other side facing shoreline (100 m2). All fish samplings were 

conducted at four separate areas randomly selected within the macroalgal bed. 

Collected rockfish juveniles were preserved in 10% seawater formalin solution 

and subsamples were preserved in 90% ethanol for otolith analysis. In the 

laboratory, S. cheni were counted and measured for total length (mm) to the 

nearest 0.1 mm. Mean abundance of juvenile S. cheni on each sampling date was 

expressed as no. fish 100 m-2. Water temperature and salinity in the macroalgal bed 

were measured using multiple environmental measurement system (Alec 

Electronics Co. 144 Ltd.). Vegetation index (bulk volume in water column) was 

estimated by visual census using a 1 m2 quadrat at four randomly selected separate 

areas (Kamimura and Shoji in review). Pelagic copepods, the major prey 

organisms of juvenile rockfish (Kamimura et al. 2011) was sampled using a 
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plankton net (30 cm in mouth diameter, 0.1 mm in mesh aperture) equipped with a 

flow-meter. The net was towed for 10 to 20 m at a speed of about 0.5 m s-1. 

Seasonal change in juvenile abundance, physical and biological environmental 

properties (temperature, salinity, vegetation index and zooplankton concentration) 

have been already published in the previous study (Kamimura and Shoji in 

review). 

 

Otolith analysis 

Otolith daily increments were analyzed to estimate birth date of the juvenile S. 

cheni. Daily periodicity of otolith increment and timing of extrusion check 

formation were validated by the use of cultured larvae and juveniles (Kamimura et 

al. 2012). Rite-side lapilli of 40 juveniles at maximum for each collection date 

were removed from the fish body under a dissecting microscope. Each lapillus was 

embedded in epoxy resin on a slide glass and dried, then grounded with 

2000-10000 grid lapping films until the nucleus was clearly visible. Daily rings 

were counted from extrusion check to the edge at 400-1000 x magnification under 

a light microscope. Radius of each daily ring was measured by the use of otolith 

daily ring measurement system (Ratoc System Engineering). The mean of the 

three counts was used for juvenile age estimate excluding those with errors of > 

5% within the three counts. 

 

Mortality rate estimation 

A total of 324 otoliths were processed for the estimation of birth date. In the 

previous study, juvenile S. cheni were divided into seven specific cohorts with a 

7-day period based on each birth date. Each cohort was designated with an 

alphabetical character; A (25-31 Dec), B (1-7 Jan), C (8-14 Jan), D (15-21 Jan), E 

(22-28 Jan), F (29 Jan-4 Feb) and G (5-11 Feb). In the present study, two of these 

cohorts were combined so that to make three cohorts: I (from B and C), II (from D 

and E) and III (F and G) due to small sample size for analysis of growth-selective 

survival. Consequently, each new cohort covers two weeks of birth date period 
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(Table 4). 

Instantaneous mortality coefficients (M, day-1) of the three cohorts were estimated 

applying exponential model of decline (Secor and Houde 1995; Rooker et al. 

1999; Shoji and Tanaka 2007; Kamimura and Shoji, in review) regarding the day 

of maximum abundance of juveniles in the macroalgal bed (24 Mar for cohort I, 3 

Apr for cohort II and 23 Apr for cohort III) as settlement day of each cohort: 

Nt = Nm × exp(- M × t) 

where Nt  is the juvenile abundance at time t (days after the settlement), Nm 

is the estimated abundance at day of the maximum abundance of each cohort, and 

M is the instantaneous daily mortality coefficient. Possible sampling bias due to 

net avoidance and migration have been considered to be minimal because of the 

ecological characteristics of genus Sebastes (Love et al. 1991, 2002). Estimation 

of the mortality coefficient was made for the three cohorts in two ways: using the 

juvenile abundance at all sampling days and using the earliest two sampling days. 

 

Analysis of growth-mortality of juvenile S. cheni 

Juveniles collected on the first sampling day (24 Mar for cohort I, 3 Apr for 

cohort II and 23 Apr for cohort III) were regarded as original population (OP) and 

those on the second sampling day (3 Apr for cohort I, 16 Apr for cohort II and 1 

May for cohort III) as survivors (SV). Juvenile total length and growth rate at age 

were back-calculated by the use of Biological Intercept method (Campana 1990) 

and were compared between the OP and SV within each cohort (Table 5). A liner 

model was fitted to the relationship between otolith radius and TL according 

previous studies (Plaza et al. 2001; Mizusawa et al. 2004; Kamimura et al. 2012). 

The total length at age of S. cheni was calculated following the equation: 

La = Lc + (Ra - Rc)(Lc - Le)(Rc - Re)-1 

where La and Lc is fish size at age a and capture, Ra, Rc and Re is otolith radius 

at age a, capture and extrusion, and Le is mean fish size at extrusion (6.2 mm TL: 

Kamimura et al. 2012), respectively. Mean growth rate for recent five days at age 

was calculated and was compared between OP and SV within each cohort to detect 
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growth-selective survival was back-calculated from birth to collection. The 

relationship between mortality rate and the magnitude of selection for 

fast-growing fish were compared among the three cohorts with different mortality 

rates between the two sampling days. 

 

 

Results 

Estimation of cohort-specific mortality rate 

A total of 6,036 juvenile S. cheni were collected during the sampling period. 

Juvenile abundance was highest on 24 March (450.6 ± 327.0 100 m-2) and 

decreased to 15 May (20.1 ± 19.0 100 m-2). Estimation of mortality coefficient 

showed that the latest cohort (III) underwent highest mortality. Instantaneous 

mortality coefficient of each cohort was estimated 0.052 (cohort I), 0.055 (II) and 

0.106 (III) when the abundance data on all sampling days was used for the 

estimation and was 0.123 (cohort I), 0.091 (cohort II) and 0.156 (cohort III) when 

the data only on the two earliest sampling days (OP and SV) was used (Fig. 19). A 

total of 30-56 fish for each cohort were processed for growth back-calculation 

(Table 5). 

 

Growth-related survival among the three cohorts 

Magnitude of selection for fast-growing individual differed among the three 

cohorts. In cohort I and II, there were not significant differences between mean 

daily growth rate of OP and SV while mean daily growth rate of SV was 

significantly higher than that of OP on day 60, 70 and 80 in cohort III (Student 

t-test, P < 0.05; Fig. 20). 

 

Discussion 

Strong selection for fast-growing individuals in the high mortality cohort. 

Evidence that strong selection for fast-growing rockfish juveniles occurred in a 

cohort with high mortality was obtained from the comparison of growth trajectory 
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within the same cohort repeatedly collected in the field. The two earliest cohorts of 

juvenile S. cheni (cohort I and II), which experienced lower mortality than the 

latest cohort, were exposed to milder selection for fast-growing individuals. On the 

other hand, the magnitude of selection was higher in the latest cohort (cohort III) 

which underwent higher mortality. 

 

Relationship between habitat complexity and survival of post-settlement S. cheni 

Seasonal change in habitat complexity would explain the difference in the 

mortality rate and magnitude of selection for fast-growing individuals among the 

juvenile cohorts. Sebastes cheni settle into vegetated habitats such as seagrass and 

macroalgal beds at ca. 20 mm in TL (Plaza et al. 2002; Kamimura et al. 2011). 

Contribution of starvation as source of mortality is considered to be minimal 

during the post-settlement period (20-60 mm TL) since most of the juveniles had 

plenty of prey organisms in their stomachs (Kamimura et al. 2011). Seasonal 

change in mortality rate during the post-settlement period was reported in S. cheni 

with higher mortality in later cohorts due to decrease in habitat complexity 

(Kamimura & Shoji in review). Stomach contents analysis of possible predators 

and tethering experiments showed mortality of juvenile rockfish due to predation 

in the vegetated habitat in the central Seto Inland Sea is minimal during the 

daytime (Kinoshita et al. 2012). Day-night comparison of fish assemblages and 

stomach contents of piscivorous fishes revealed increase in biomass of piscivorous 

fishes such as adult rockfish Sebastes spp. and conger eel Conger myriaster and 

predation rate by these predators during the nighttime in the vegetated habitats 

nearby the present sampling field (Kinoshita et al. 2012). However, seasonal 

changes in predator biomass were not significant from March through May 

(Kinoshita et al. unpublished data). Therefore, it is plausible that susceptibility of 

juvenile rockfish to predation was affected by the seasonal change in vegetation 

coverage under the similar level of predator biomass. Earlier cohort of juvenile 

rockfish which settled during high habitat complexity period could probably 

utilize the macroalgae as more effective shelter compared with the later cohort. 
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Survival probability of juvenile rockfish would not be affected by their growth rate, 

i.e. physiological condition (such as burst swimming speed) due to the higher 

habitat complexity (more effective shelter). Contrastingly, in later cohort which 

settled during low habitat complexity, fast-growing fish with would have more 

chance to survive since they have better physiological conditions under low 

vegetation coverage. I conclude that seasonal change in habitat complexity is one 

of the most important determinants for survival of juvenile rockfish by affecting 

the process of growth-dependent selection during the post-settlement period. 
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General discussion 
Ecological features of juvenile Sebastes cheni in the vegetated habitat 

The monthly fish sampling showed that S. cheni juveniles dominated the fish 

community of the macroalgal bed from March to May. Early juveniles settled at 

the macroalgal bed at ca. 20 mm TL from March to early April and grew up to 60 

mm TL in late May as reported in the previous studies on S. inermis juveniles (the 

three Sebastes species were included) in vegetated habitats in other areas of Japan 

(Harada 1962; Plaza et al. 2001, 2002; Mizusawa et al. 2004). Juvenile S. cheni 

was most dominant among the three species (S. inermis, S. ventricosus and S. 

cheni) in the vegetated habitats. Recently, day-night comparison of fish 

assemblages in a seagrass bed around the present study site revealed that adult S. 

inermis dominated the fish community in nighttime through a year (Kinoshita et al. 

2012). Stomach contents analysis of adult S. inermis showed that juvenile Sebastes 

spp. was preyed on in nighttime. Therefore, juvenile S. inermis might settle other 

habitats to avoid cannibalism. In future study, spatial and temporal fluctuation of 

juvenile occurrence and growth should be compared between the three species. 

Moreover, ecological studies (growth, behavior and reproduction) of these adult 

fishes have to be also investigated and compared among the species in order to 

manage the stock of each species effectively.  

 

Estimation of annual Sebastes production in a macroalgal bed 

In the present study, annual production of S. cheni juveniles was estimated to 

be 13,080 g ha-1 yr-1 for 2007 and 18,360 g ha-1 yr-1 for 2008 (Chapter 1). The 

economic value of annual production was calculated to be at least 654,000 JPY 

ha-1 yr-1 for 2007 and 918,000 JPY ha-1 yr-1 for 2008 based on the unit price of 

cultured Sebastes juveniles. If two other Sebastes fish (S. inermis and S. 

ventricosus) were included into the value, production would increase at least to 

775,800 JPY ha-1 yr-1 for 2007 and 1,109,400 JPY ha-1 yr-1 for 2008. These 

estimates indicate that the economic value of ecosystem services of vegetated 

habitats calculated by Costanza et al. (1997), in which the provisioning services of 
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fish production is not included, would increase by 40-58%. In addition, the 

stomach content and stable isotope analysis revealed that juvenile S. cheni 

production was highly dependent on copepods originating from phytoplankton 

during post-settlement period (Chapter 3). In the Seto Inland Sea, Japan, total area 

of seagrass beds had been decreased by one third from 1960 (22,635 ha) to 1990 

(6,381 ha) by coastal exploitations (Nature Conservation Bureau, Environment 

Agency and Marine Parks Center of Japan 1994). On the other hand, there is no 

statistical information available on the loss of area of macroalgal bed in the Seto 

Inland Sea. Assuming that macroalgal beds (5,511 ha in 1990) also had been 

decreased by the same ratio as the seagrass bed area depletion during the same 

period, the loss of economic value which originates from juvenile Sebastes 

production due to the loss of the macroalgal beds could be calculated to be about 

10.9-15.5 billion JPY per year in the Seto Inland Sea. The fisheries productivity 

(fish catch per unit area) of the Seto Inland Sea is among the highest in those of 

the world’s enclosed seas because of its high primary production (Takeoka 1997). 

Vegetated habitats are important part of the primary production of coastal 

ecosystems (Costanza et al. 1997). Therefore, loss of the vegetated habitats itself is 

possible to cause huge loss of the economic values. Moreover, juvenile Sebastes 

spp. was consumed by commercially important fishes such as adult Sebastes and 

conger eel Conger myriaster in the vegetated habitats and surrounding areas 

(Kinoshita et al. 2012). Therefore, juvenile Sebastes were considered to support 

the provisioning services (production of these large fishes) as prey organisms. The 

total economic value of ecosystem services of vegetated habitats would be higher 

when the economic values of production of both prey (Sebastes juveniles) and 

their predators are included. Furthermore, other functions such as stabilizing 

community structures and maintaining biodiversity functions also should be 

evaluated for comprehensive estimation of ecosystem services of the vegetated 

habitats, which would contribute to future conservation and management of these 

habitats. 
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Survival mechanism of juvenile S. cheni in the macroalgal bed 

Estimation of cohort-specific growth and mortality rates of post-settlement S. 

cheni using otolith microstructures in 2008 confirmed that both mean daily growth 

and mortality rates were significantly higher in the later cohorts that experienced 

higher temperature and lower habitat complexity. Many studies on fish early life 

stages indicated that faster growing individuals have higher probability to survive 

(Anderson 1988; Meekan & Fortier 1996; Sogard 1997). In the present study, 

habitat complexity seemed to be an important determinant for juvenile S. cheni 

survival. The ratio of G: M (indices of cohort-specific production) was lower in 

the later cohorts due to higher mortality (Chapter 4). Decrease in larval and 

juvenile mortality due to predation under high habitat complexity has been 

supported by other field and laboratory experiments (Rooker et al. 1998; Anderson 

2001; Johnson 2006b; Shoji et al. 2007; Horinouchi et al. 2009). The contribution 

of S. cheni production in the macroalgal bed is concluded to be greater in earlier 

cohorts which experienced low mortality under high habitat complexity. 

Mean daily growth rates of wild juvenile S. cheni (0.38 mm day-1 at 10.8 ºC) 

were double of those of cultured juveniles (0.16 and 0.20 mm day-1 at 10 and 

12ºC) under similar temperatures, suggesting size- and growth-selective predation 

(Miller et al. 1988; Takasuka et al. 2003, 2004) in wild juveniles (Chapter 2). 

Comparison of back-calculated growth trajectories between original population 

and survivors of S. cheni juveniles provided an evidence of selection for 

fast-growing individuals in the macroalgal bed (Chapter 5). However, the 

magnitude of selection for fast-growing juveniles varied among cohorts identified 

by their birth date. During post-settlement period, strong selection for fast-growing 

juveniles occurred in a cohort with high mortality under low habitat complexity 

condition. Juvenile survival seemed to be more dependent on individual growth 

rate, i.e. physiological condition such as burst swimming speed which affects 

probability to avoid their predators in the low habitat complexity (less effective 

shelter). Contrastingly, slow-growing juveniles still seemed to have more chance 

to survive in high habitat complexity due to low vulnerability to predation. As a 
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conclusion, temporal matching between the timing of juvenile settlement in the 

macroalgal bed and high habitat complexity (more effective shelter) is one of the 

important determinant for high juvenile production 
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Table 1. Fish collected in the mixed vegetation area of seagrass and macroalgae off 

Aba Island, central Seto Inland Sea, Japan, from August 2006 to July 2007. Total 

length and percentage of individuals in number and wet weight of each taxon to total 

fish are given with rank of 10 dominant (both in number and weight) taxa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Family Species Month of capture Total Rank Total Rank Range Mean (SD)
Clupeidae Sardinella zunasi Sep 1 9.3 105.0
Plecoglossidae Plecoglossus altivelis altivelis Apr 2 3.1 63.0-61.7 62.4 (0.9)
Atherinidae Hypoatherina valenciennei Sep 1 0.0 18.7
Hemiramphidae Hyporhamphus sajori Sep 1 9.1 170.6
Aulorhynchidae Aulichthys japonicus Jul 1 0.3 55.6
Syngnathidae Urocampus nanus Apr-Jul, Nov 10 1.5 51.3-99.4 83.9 (14.1)

Syngnathus schlegeli Mar-Jun, Aug-Dec 20 17.6 77.1-235.8 135.5 (44.5)
Hippocampus coronatus Mar, Nov 3 2.0 30.6-62.2 49.0 (16.4)

Scorpaenidae Sebastiscus marmoratus Jan, Apr 3 1.7 35.3-37.2 36.3 (1.3)
Sebastes cheni Mar-Sep, Nov 1512 1 1725.2 2 19.3-172.0 32.8 (16.1)

Synanceiidae Inimicus japonicus Aug 1 34.9 120.3
Tetrarogidae Hypodytes rubripinnis Jan-Dec 546 3 3232.0 1 31.3-93.4 70.0 (10.0)
Hexagrammidae Hexagrammos agrammus Jan, Mar-Jun, Aug 15 268.9 6 48.3-158.6 83.4 (29.2)

H. otakii Apr-Jun 7 23.6 43.6-92.1 63.8 (18.7)
Cottidae Pseudoblennius cottoides Feb-Jun 21 16.4 19.1-220.6 46.8 (42.1)
Percichthyidae Lateolabrax japonicus Jul 1 9.7 99.1
Sillaginidae Sillago japonica Jul-Dec 116 6 45.1 14.0-123.2 27.3 (18.4)
Carangidae Decapterus maruadsi Jul-Aug 3 5.9 57.7-65.0 60.6 (3.9)
Sparidae Acanthopagrus schlegelii Aug 1 0.8 37.0

A. latus Dec 7 0.3 15.1-16.8 16.1 (0.7)
Pagrus major Aug-Oct 68 7 95.0 10 33.0-90.2 47.0 (16.9)

Embiotocidae Ditrema jordani Jun-Oct 26 9 238.5 7 35.8-118.2 83.2 (24.2)
Mugilidae Mugil cephalus cephalus Jul-Sep 29 8 28.2 37.6-48.5 44.2 (3.1)

Chelon affinis Jul 3 2.6 39.2-42.2 40.9 (1.5)
Labridae Halichoeres poecilopterus Mar, Jul, Sep, Oct 4 13.3 31.0-104.0 62.4 (33.5)

H. tenuispinnis Jul 1 20.4 118.8
Zoarcidae Zoarchias glaber Feb, May, Jun 6 9.5 22.5-98.2 74.2 (28.3)
Pholididae Pholis nebulosa Jun 1 2.4 91.7
Blenniidae Petroscirtes breviceps Nov 2 0.5 28.1-30.0 29.1 (1.3)
Callionymidae Repomucenus beniteguri Jun 4 76.4 110.5-185.5 139.8 (32.1)

R. ornatipinnis Apr, Jun-Sep 15 154.4 8 45.0-194.6 103.1 (46.1)
Gobiidae Pterogobius elapoides Apr, Jun 11 36.5 58.1-78.1 70.8 (5.4)

Favonigobius gymnauchen Jan-Dec 569 2 357.2 4 16.1-75.2 34.4 (13.1)
Acentrogobius pflaumii Mar-Jun, Aug, Oct-Dec 24 10 23.6 26.7-66.3 48.1 (11.0)
Tridentiger trigonocephalus Feb, Mar, Dec 4 1.6 32.0-41.6 35.8 (4.9)
unidentified Gobiidae Mar 1 0.1 17.7

Soleidae Pseudaesopia japonica Sep 1 0.6 39.1
Monacanthidae Rudarius ercodes Jan-Apr, Jun-Dec 126 5 136.8 9 15.0-60.2 34.3 (10.5)

Thamnaconus modestus Jul, Oct, Nov 24 10 513.1 3 49.3-226.0 100.4 (38.8)
Stephanolepis cirrhifer Sep 1 47.3 131.0

Tetraodontidae Takifugu pardalis Jun, Jul 2 40.7 85.4-94.9 90.2 (6.7)
T. poecilonotus Jan-Mar, Aug, Oct-Dec 18 93.5 28.6-78.0 62.8 (14.4)
T. niphobles Feb-Apr, Jun-Dec 151 4 328.4 5 24.0-105.4 43.7 (13.0)
Total 3363 7627.8

N Weight (g) Total Length (mm)
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Table 2. Relationships between body weight (BW: W, g) and total length (TL: L, mm) 

and between TL and age (A, day) of Sebastes cheni by sampling year (2007 and 2008) 

and for the two years combined 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation N r2
 P 

2007 W = 6.904×10-6
×L3.164

 85 0.991 < 0.0001 

2008 W = 3.010×10-6
×L3.363

 81 0.996 < 0.0001 

Overall W = 4.179×10-6
×L3.288

 166 0.988 < 0.0001 

2007 L = 0.440×A - 3.401 72 0.872 < 0.0001 

2008 L = 0.352×A + 4.325 93 0.895 < 0.0001 

Overall L = 0.369×A + 2.718 165 0.881 < 0.0001 

Relationship 

TL-Age 

BW-TL 
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Table 3. Changes of mean biomass (g 100 m-2) of Sebastes cheni by the same birth 

date (BD) cohort in 2007 and 2008. Summary of the maximum biomass of each cohort 

(asterisk) was used as indices of annual production of juvenile S. cheni. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cohort A B C D E F G H
BD 12-21 Dec 22-31 Dec 1-10 Jan 11-20 Jan 21-30 Jan 31 Jan-9 Feb 10-19 Feb 20-29 Feb

2 Feb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 Mar 1.7 13.4 1.6 0.0 0.0 0.0 0.0 0.0 16.7
19 Mar 0.0 0.5 5.3 1.9 0.2 0.0 0.0 0.0 7.8
5 Apr 0.0 6.1 17.1 17.3 0.9 0.0 0.0 0.0 41.4
13 Apr 0.0 2.8 56.8 38.7 1.0 0.0 0.0 0.0 99.3
19 Apr 0.0 5.2 27.6 21.4 1.3 0.3 0.0 0.0 55.8
1 May 0.0 2.3 18.7 44.6 13.6 0.7 0.0 0.0 79.9
15 May 0.0 0.0 2.7 5.1 0.0 0.2 0.0 0.0 8.0

Max 1.7 13.4 56.8 44.6 13.6 0.7 0.0 0.0 130.8
6 Mar 0.5 1.6 0.4 0.1 0.0 0.0 0.0 0.0 2.6
11 Mar 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.4
19 Mar 0.0 1.5 6.4 13.7 0.5 0.0 0.0 0.0 22.1
24 Mar 0.0 0.0 30.8 56.0 6.8 0.0 0.0 0.0 93.6
3 Apr 0.0 0.0 7.6 22.6 33.3 5.2 0.0 0.0 68.6
8 Apr 0.0 0.0 4.3 6.6 5.0 1.9 0.3 0.0 18.1
16 Apr 4.2 6.0 43.8 40.5 17.4 2.3 1.1 0.0 115.2
23 Apr 0.0 26.0 41.7 34.9 7.2 1.0 2.2 0.0 112.9
1 May 2.0 5.9 8.3 23.8 9.7 3.3 1.3 0.0 54.3
8 May 3.2 7.1 32.7 25.8 11.7 1.7 1.1 0.4 83.7
15 May 0.0 3.8 6.1 6.6 5.9 3.3 0.0 0.0 25.7
22 May 16.7 14.5 21.3 19.3 6.6 1.9 0.0 0.0 80.3
30 May 2.9 6.9 15.4 13.4 5.6 0.5 0.4 0.3 45.3

Max 16.7 26.0 43.8 56.0 33.3 5.2 2.2 0.4 183.6

TotalYear & Sampling date

2007

2008

* *

*

* * *

*

*
*

*
* *

*

*
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Table 4. Relationships between body weight (W, mg) and age (a, day) and between 

abundance (N 100 m-2) and days after settlement of Sebastes cheni cohorts (A to G). 

Each cohort with 7-day birth date period was identified by the use of otolith daily 

increments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cohort Birth date W -age equation N r 2 P N -day equation N r 2 P 

A 25-31 Dec W  = 0.0287exp (0.0286a ) 35 0.92 P  < 0.05 N = 31.083exp (-0.0443t ) 9 0.54 P  < 0.001

B 1-7 Jan W  = 0.0137exp (0.0355a ) 98 0.91 P  < 0.01 N  = 98.442exp (-0.0475t ) 9 0.73 P < 0.001

C 8-14 Jan W  = 0.0096exp (0.0395a ) 92 0.93 P  < 0.001 N  = 184.456exp (-0.0556t ) 9 0.92 P < 0.001

D 15-21 Jan W  = 0.0091exp (0.0401a ) 40 0.93 P  < 0.001 N  = 87.074exp (-0.0581t ) 8 0.92 P  < 0.001

E 22-28 Jan W  = 0.0114exp (0.0387a ) 20 0.89 P  < 0.001 N  = 36.249exp (-0.0488t ) 8 0.87 P < 0.001

F 29 Jan-4 Feb W  = 0.0062exp (0.0457a ) 15 0.93 P < 0.05 N  = 20.599exp (-0.1134t ) 6 0.74 P  < 0.001

G 5-11 Feb W  = 0.0062exp (0.0471a ) 8 0.95 P < 0.05 N  = 6.7924exp (-0.1136t ) 6 0.79 P  < 0.001
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Table 5. Cohort-specific birth and sampling date, number of individuals (N) and mean 

and range of total length (TL) of original population (OP) and survivors (SV) 

processed for analysis of growth trajectory of juvenile Sebastes cheni in 2008. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cohorts I II III

Birth date Jan 1-14 Jan 15-28 Jan 29-Feb 11

1st sampling date (OP) 24 Mar 3 Apr 23 Apr

   N 25 21 14

   Mean TL (mm) ± SD 25.8 ± 1.4 27.0 ± 1.6 28.8 ± 1.8

   TL range (mm) 23.7-29.1 21.9-29.1 25.9-31.0

2nd sampling date (SV) 3 Apr 16 Apr 1 May

   N 31 14 16

   Mean TL (mm) ± SD 29.4 ± 2.2 32.0 ± 1.6 32.8 ± 2.1

   TL range (mm) 25.4-35.9 29.8-35.7 30.3-36.1
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Fig. 1. Map showing the sampling site off western coast of Aba Island, central Seto 

Inland Sea, Japan. Fish collections and environmental surveys were conducted in the 

shaded area. Asterisk shows Hiroshima Prefectural Sea-Farming Center where daily 

water temperature was observed and closed circle show Takehara Marine Science 

Station, Hiroshima University. Depth contours of 10 (dotted line) and 20 m (solid line) 

are indicated in the lower panel. 

 



- 73 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Seasonal changes in relative abundance of seagrass (open circles) and 

macroalgae (closed circles) in the mixed vegetation area off Aba Island. Values are 

shown as the ratio in each month to maximum value. Data was obtained from 

Kamimura and Shoji (unpublished). 
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Fig. 3. Seine net used to collect fish in the vegetation area off Aba Island 

 



- 75 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Seasonal changes in a) water temperature (open circles) and salinity (closed 

circles), b) mean number of fish species 100 m-2, c) mean fish abundance (N 100 m-2) 

and d) mean fish biomass (g 100 m-2) from August 2006 to July 2007. Vertical bars 

indicate standard deviation. 
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Fig. 5. Seasonal changes in dominant fish species (top: % in number; bottom: % in 

wet weight) from August 2006 to July 2007. FG: Favonigobius gymnauchen; HR: 

Hypodytes rubripinnis; RE: Rudarius ercodes; SC: Sebastes cheni; TN: Takifugu 

niphobles; OT: others. 
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Fig. 6. Seasonal changes in mean abundance (N 100 m-2: left panels) and length 

frequency distribution (right panels) of the six numerically-dominant species. Vertical 

bars indicate standard deviation. 
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Fig. 7. Relationships between the number of otolith increments (I) and days after birth 

(Ac) of cultured Sebastes cheni. A, sagittae (Is = 0.975 × Ac + 0.467, N = 30, r2 = 0.988, 

P < 0.001); B, lapilli (Il = 0.950 × Ac + 0.6, N = 30, r2 = 0.987, P < 0.001). Ten fish larvae 

were analyzed for each age. 
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Fig. 8. Mean daily growth rates of wild and cultured Sebastes cheni juveniles. Mean 

growth rate during four weeks from the start of the rearing experiment (26.2 mm TL) 

were estimated for cultured fish and that for four weeks from the day at which fish 

reached 26.2 mm TL for wild fish. Different alphabetical characters indicate 

significant difference among temperatures for cultured fish (ANOVA followed by 

Tukey’s test for multiple comparison, P < 0.0001). 

 



- 80 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Seasonal changes in water temperature (a), salinity (b), mean abundance (N 

100 m-2: c) and biomass (g 100 m-2: d) of Sebastes cheni juveniles from February to 

May in 2007 and 2008. Standard deviation is indicated for the mean abundance and 

biomass. 
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Fig. 10. Length frequency distributions of Sebastes cheni by sampling date in 2007 

and 2008. Sampling date is indicated in each panel. 
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Fig. 11. Birth date frequency distributions of Sebastes cheni by sampling date in 2007 

and 2008. Fish were divided into the same birth date cohort (A to H), each covering a 

period of 10 days. 
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Fig. 12. Stomach contents composition of Sebastes cheni juveniles by total length 

(TL) class of 10 mm. N and n on the top indicate number of fish examined and mean 

number of prey organism per fish. CA: Calanoida; PO: Poecilostomatoida; HA: 

Harpacticoida; UC: unidentified copepod. 
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Fig. 13. Plots of mean δ13C versus δ15N for samples collected off Aba Island, central 

Seto Inland Sea. Points are mean values and bars represent standard deviation. BA: 

benthic microalgae; CO: copepods; DE: decapods; RF20-60: the black rockfish, 

Sebastes cheni, at 20-60 mm TL, RF > 106: the black rockfish > 106 mm TL; POM: 

particulate organic matter. 
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Fig. 14. Seasonal changes in water temperature (WT) and prey density (a), vegetation 

index of macroalgae (b) and mean abundance of juvenile Sebastes cheni collected in 

the macroalgal bed off Aba Island in 2008. Bars show standard deviations. Arrow 

indicates settlement date of each S. cheni cohort (A to G: see the result) identified 

using the otolith daily increments. 
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Fig. 15. Length-frequency distributions of juvenile Sebastes cheni by sampling date 

(6 March to 30 May 2008) in the macroalgal bed off Aba Island. 
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Fig. 16. Birth-date frequency distribution of juvenile Sebastes cheni by sampling date 

(6 March to 30 May 2008) in the macroalgal bed off Aba Island. Fish were divided into 

specific cohorts (A to G by 7-day birth date period: see the results). 
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Fig. 17. Weight-specific growth coefficients (G: a), mortality coefficients (M: b) and 

the ratio of G:M (c) estimated for each Sebastes cheni in the macroalgal bed off Aba 

Island in 2008. The trends of increase in G and M were significant (Spearman’s 

correlation coefficient, P < 0.05). 
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Fig. 18. Plots of mortality coefficients (M) of juvenile Sebastes cheni cohorts on mean 

vegetation index (Iv) by each cohort experienced from settlement date to capture. 
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Fig. 19. Relationships between abundance (N 100 m-2) and days after settlement of 

Sebastes cheni cohorts (I to III). Each cohort with 14-day birth date period was 

identified by the use of otolith daily increments. Mortality coefficient was estimated 

for each cohort in two ways: using abundance data on all sampling days (solid line) 

and on two earliest sampling days (dotted line). OP and SV show original population 

and survivors in each cohort. 
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Fig. 20. Mean daily growth rate for recent five days (mm day-1) of Sebastes cheni 

cohorts (I to III) back-calculated by the use of otolith daily ring. OP and SV show 

original population and survivors in each cohort. Vertical bars show standard 

deviation and asterisk a significant difference between OP and SV (Student’s t-test, P 

< 0.05). 
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