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A 1-Tape 2-Symbol Reversible Turing Machine 
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and Yoshifumi GONOttt, Member 

SUMMARY Bennett proved that any irreversible Turing 
machine can be simulated by a reversible one. However, Bennett' 
s reversible machine uses 3 tapes and many tape symbols. Previ­
ously, Gono and Morita showed that the number of symbols can 
be reduced to 2. In this paper, by improving these methods, we 
give a procedure to convert an irreversible machine into an 
equivalent 1-tape 2-symbol reversible machine. First, it is shown 
that the "state-degeneration degree" of any Turing machine can 
be reduced to 2 or less. Using this result and some other tech­
niques, a given irreversible machine is converted into a 1-tape 
32-symbol (i. e., 5-track 2-symbol) reversible machine. Finally the 
32-symbol machine is converted into a 1-tape 2-symbol reversible 
machine. From this result, it is seen that a 1-tape 2-symbol 
reversible Turing machine is computation universal. 

1. Introduction 

A reversible Turing machine is a "backward deter­
ministic" Turing machine, and thus every computational 
configuration of it has at most one predecessor. Usual 
Turing machines are, in general, irreversible since they 
can "forget" their previous internal states or can "erase" 
a symbol on a tape. Reversible computations are very 
important when considering the minimal power dissipa­
tion in a computation theoretically. Many researchers 
have been studying them from this standpoint<2H4J,(B),(7), 
and suggested that it is ideally possible to devise a 
power dissipationless computing mechanism by making 
use of their reversibility. 

Bennett<0 proved that every irreversible Turing 
machine can be simulated by a 3-tape many-symbol 
reversible Turing machine. Of course, it is easy to 
simulate an irreversible machine by a reversible one by 
recording all the movements (history) of the former 
machine step by step. This method, however, leaves 
large amount of garbage informations on the tape at the 
end of the computation. The important point of 
Bennett's construction is that it is possible to reversibly 
erase these garbage records without erasing the com­
puted results. 

However, the reversible machine constructed by 
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Bennett uses 3 tapes and many tape symbols. Previous­
ly, Gono et al.15> showed that a 3-tape 2-symbol machine 
suffices to reversibly simulate an irreversible one. 

In this paper, by improving the methods in Refs. 
( 1 ) and ( 5 ) , we prove that any irreversible Turing 
machine can be converted into an equivalent 1-tape 
2-symbol (i. e., of the simplest form) reversible Turing 
machine. First we define the state-degeneration degree 
of a Turing machine, and show that the state­
degeneration degree of any machine can be reduced to 2 
or less (Lemma 1). Using this result and some other 
techniques, a given irreversible machine is converted 
into a 1-tape 32-symbol (i. e., 5-track 2-symbol) revers­
ible machine (Lemma 2). Finally the 32-symbol revers­
ible machine is converted into a 1-tape 2-symbol revers­
ible machine (Lemma 3). 

2. Definitions 

A 1-tape Turing machine T is a system defined by 

T=(Q, S, q(O), q(/), to, F), 

where 
( 1 ) Q is a non-empty finite set of states, 
( 2 ) S is a non-empty finite set of tape symbols, 
( 3 ) q(O) is an initial state (q(O)E Q), 
( 4 ) q(/) is a final state (q(/)EQ), 
( 5) to is a special blank symbol (toE S), and 
( 6) F is a subset of Q x S x S x Q U Q x {/} x { -, 0, 

+}xQ. 
(In what follows, we assume each state of a given 
Turing machine is denoted in the form q(X).) 

Note that F is a move function in quadruple form. 
Although usually F is written in quintuple form, we 
adopt quadruple notation according to Bennett(0. 
Because, it is convenient to use quadruples when rever­
sibility is in issue. The reason is as follows : ( 1 ) 
reversibility of a Turing machine can be easily defined 
from its quadruple set F, and ( 2 ) it is also easy to 
construct a "reverse quadruple" corresponding to the 
reverse move of a given quadruple. 

Each quadruple is of the form [q(r), t, t', q(s)] or 
[q(r), /, d, q(s)], where q(r), q(s)EQ, t, t'E S, and dE 
{-,0, +}. The symbols "-", "O", and "+" denote 
"left-shift", "zero-shift", and "right-shift", respectively. 
[q(r), t, t', q(s)] means that if T reads the symbol t in 
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state q(r), write t' and go to state q(s). [q(r), /, d, 
q(s)] means that if T is in state q(r), shift the head to 
the direction d and go to state q(s ). 

Let a1 and az be two quadruples in F. 

a1=[q(r1), b1, c1, q(s1)] 

az=[q(rz), bz, Cz, q(sz)] 

We say that a1 and az overlap in domain iff 
( i ) q( ri) = q( r2) and bi= bz, or 
( ii) q(r1)=q(r2) and bi or bz is "/". 
We say that a1 and az overlap in range iff 
( i )  q(s1)=q(s2) and c1=c2, or 
( ii) q(s1)=q(s2) and bi or bz is "/". 
A quadruple a is said to be deterministic (in F) iff there 
is no other quadruple in F with which a overlaps in 
domain. On the other hand, a is said to be reversible (in 
F) iff there is no other quadruple in F with which a 
overlaps in range. A Turing machine T is called deter­
ministic iff every quadruple in F is deterministic, and is 
called reversible iff every quadruple in F is reversible. 
In what follows, we consider only deterministic 1-tape 
Turing machines, and discuss their reversibility. 

Let q(s) be a state of T. q(s) is called state­
degenerative if there are at least two distinct quadruples 
[q(ri), b1, c1, q(s)] and [q(rz), bz, c2, q(s)] in F. If there 
are exactly k such quadruples in F, we say that state­
degeneration degree of q(s) is k, and denote it as 
sdeg(q(s))=k. That is, 

sdeg(q(s))=l { al a=[q(r), b, c, q(s)]EF}I, 

where IAI denotes the number of elements of A. Note 
that if q(s) is not state-degenerative, then sdeg(q(s))� 
1. State-degeneration degree of T is defined as 

sdeg( T)=max{sdeg(q(s))lq(s)E Q}. 

3. Converting an Irreversible Turing Machine into a 

1-Tape 32-Symbol Reversible Turing Machine 

In this section, we show a method to convert an 
arbitrary irreversible 1-tape Turing machine into a 
1-tape 32-symbol (i. e., 5-track 2-symbol) reversible 
Turing machine (Lemma 2). 

As a preliminary, we show Lemma 1. The proof of 
this lemma is essentially the same as in Ref. ( 5 ) , where 
somewhat different notion of degeneration (overlapping 
in range of quadruples) is discussed. 
[Lemma l] For any Turing machine T, we can con­
struct an equivalent Turing machine T' such that 
sdeg( T') � 2. 
(Proof) Let T=(Q, S, q(O), q(/), lo, F), and let q(s) 

EQ be a state such that sdeg(q(s))>2 (if no such q(s) 
exists, the lemma is proved). If sdeg(q(s)) =k, there are 
k distinct quadruples in F as follows. 

[q(r1), b1, c1, q(s)] 

[q(rz), bz, c2, q(s)] 

[q(rs), bs, Cs, q(s)] 

[q(rk), bk, Ck, q(s)] 

In T', the above k quadruples are replaced by 
following 2k-2 quadruples. 

( 1 ) [ q( ri) ' b1 , C1 , q([s, 1, • ])] 

[q(rz) , bz , C2 , q([s, 1, • ])] 

( 2 ) [q([s, 1, • ]) , I ,0 , q([s, 2, • ])] 

[ q( rs) , bs , Cs , q([s, 2, • ])] 

( i ) [q([s, i-1, • D. I ,0 , q([s, i, • ])] 

[q(r;+1) , bz+1 , Cz+1 , q([s, i, * ])] 

(k-2) [q([s, k-3, •]),/ ,0 , q([s, k-2, •])] 

[q(rk-1) ' bk-I, Ck-I, q( [s, k-2, • ])] 

(k-1) [q([s, k-2, •]), / ,0 , q(s) ] 

the 

q([s, i, •]) (l�i�k-2) are new states, and added to 
the state set of T'. Repeating this procedure for all q(s) 
such that sdeg(q(s)) >2 , we can obtain T' with sdeg( T') 
�2. It is clear that T' is equivalent to T. (Q. E. D.) 
[Lemma 2] For any irreversible 1-tape Turing 
machine T, we can construct a 1-tape 32-symbol (i. e., 
5-track 2-symbol) reversible Turing machine R which 
simulates T. 
(Proof) Let 

T=(Q, S, q(O), q(f), lo, F) 

be a given deterministic irreversible Turing machine. 
We can assume, without loss of generality, T holds the 
following conditions (it is easy to convert T so that it 
satisfies these conditions) . 
( a ) The tape is one-way (rightward) infinite. 
( b )  The set S of tape symbols is {O, l} (0 is the blank 
symbol). 
( c ) In order to finitely determine the used portion of 
the tape, symbol sequences " 10" and " 1 1" are used as 
"codes" to represent two distinct (macro) symbols. And 
thus "00" never appears between any two l's. 
( d ) The leftmost two squares of the tape are always 
O's. 

( e ) When T starts or stops, the head is at the left­
most square. 
( f ) The initial state q(O) never appears at the fourth 
position of a quadruple in F (i. e., sdeg(q(O))=O). 
( g ) sdeg( T) = 2 (by Lemma 1). 

R is constructed from T in the following way. We 
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now write R as 

R=(Q', S', q(O), p(O), [O, 0, 0, 0, O], F'), 

where S'={[t,, f2, f3, f4, f5]lt;E{O, l}} (t; represents the 
contents of the i-th track). Note that the initial state of 
R coincides with that of T's. 

The reversible Turing machine shown Ref. ( 1 ) 
uses three tapes (i. e., the working tape, the history tape, 
and the output tape) to simulate T. In R, these three 
tapes are simulated using five tracks. 

1st track : working tape (i. e., T's tape) 
2nd track: head position of the working tape 
3rd track : history tape 
4th track : head position of the history tape 
5th track : output tape 

The tape of R is also one-way (rightward) infinite. Its 
leftmost square always contains [O, 1, 0, 1, O ]. Initially, 
the contents of each track except the leftmost square is 
as follows. 

1st track : T's initial tape 
2nd track: 100··· 
3rd track : 000· · · 
4th track : 100· · · 
5th track : 000· · · 

Head positions of the working and the history tapes are 
represented by l's on the tracks 2 and 4. The initial head 
position of R is at the second square from the left (Fig. 
1). 

The entire computation process of R is divided into 
three stages as in Ref. ( 1 ) (provided that T halts). 
They are the compute stage, the copy stage, and the 
retrace stage. Let F1, F2 and F3 be quadruple sets of R 
in these three stages (thus F' = F, U F2 U F3). These 
quadruple sets are defined as follows. 
[Compute stage] This stage is a forward simulation 
process of T. R simulates T using the tracks 1 and 2. 
When T executes a reversible quadruple, R simulates T 

in a straightforward manner. On the other hand, when 
T executes an irreversible quadruple, R does an addi­
tional movements. That is, R records the information 
which quadruple is used on the 3rd track in order to 
keep R reversible. 

The quadruple set F, of R in the compute stage is as 
follows. 
( 1 ) For each reversible quadruple 

a=[q(r), t, t', q(s) ]EF (t, t'E S), 

include the following quadruples in F1. 

Track 
1 Working tape 
2 Working tape he ad 
3 His tory tape 
4 His tory tape he ad 
5 Output t ape 

0 
1 
0 
1 
0 

input 
1 0 0 
0 0 0 
1 0 0 
0 0 0 
i 
q(O) 

t ape 
. . .  
. . .  
. . .  
. . .  

Fig . 1 The initial configuration of R. 

of T 

[q(r), [t, 1, x, y, O ], [t', 1, x, y, O], q(s)] 

(x, yE{O, l}) 
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(Note that the above is a "quadruple scheme" which 
represents 4 quadruples, because x, yE{O, l}.) 
( 2 )  For each reversible quadruple 

a=[q(r), /, d, q(s)]EF (dE{-, 0, + }), 

include the following quadruples in Fi. 

[ q(r) , [v, 1, x, y, O], [v, 0, x, y, O], q([r, <t])] 

[q([r, ¢]), / d , q([r, $]) ] 

[ q([r, $ ]) ,  [v, 0, x, y, O], [v, 1, x, y, 0], q(s) ] 

(v, x, yE{O, l}) 

( 3 ) For each pair of irreversible quadruples 

a1=[q(r1), b,, c,, q(s)]EF and 

a2=[q(r2), b2, c2, q(s)]EF 

which overlap in range, do ( i ) - ( iii ) .  
( i )  For each h(=l, 2), if bh=/ then include the fol­
lowing quadruples in F1. 

q( rh) , [v, 1, x, y, O], [v, 0, x, y, O] , q([s, 0, h])] 

[q([s, 0, h ]), I Ch , q([s, 1, h])] 

[q([s, 1, h]), [v, 0, x, y, O], [v, 1, x, y, 0] , q([s, 2, h])] 

[q([s, 2, h ]), I , q([s, 3, h])] 

[q([s, 3, h]), [v, 0, x, y, O], [v, 0, x, y, 0] , q([s, 2, h])] 

[q([s, 3, h]), [O, 1, 0, 1, O] , [O, 1, 0, 1, O] , q([s, 4, h])] 

[q([s, 4, h]), I + , q([s, 5, h])] 

[q([s, 5, h]), [v, w, x, 0, OJ, [v, w, x, 0, O] , q([s, 4, h])] 

[q([s, 5, h]), [v, w, x, 1, OJ, [v, w, x, 0, O] , q([s, 6, h])] 

[q([s, 6, h]), I + , q([s, 7, h])] 

[q([s, 7, h ]), [v, w, 0, 0, O ], [v, w, h-1, 1, O], q([s, O]) ] 

(v, w, x, yE{O, l}) 

( ii) For each h(=l, 2), if bhE S then include the fol­
lowing quadruples in F1. 

q(rh) , [bh, 1, x, y, OJ, [ch, 1, x, y, O ], q([s, 2, h])] 

[q([s, 2, h ]), / , q([s, 3, h])] 

[q([s, 3, h]), [v, 0, x, y, O] , [v, 0, x, y, O ] , q([s, 2, h])] 

[q([s, 3, h]), [O, 1, 0, 1, O] , [O, 1, 0, 1, O] , q([s, 4, h])] 

[q([s, 4, h]), / + , q([s, 5, h])] 

[q([s, 5, h]), [v, w, x, 0, OJ, [v, w, x, 0, O], q([s, 4, h]) ]  

[q([s, 5, h]), [v, w, x, 1, OJ, [v, w, x, 0, O], q([s, 6, h])] 

[q([s, 6, h]), / + , q([s, 7, h])] 

[q([s, 7, h]), [v, w, 0, 0, O], [v, w, h-1, 1, O], q([s, O]) ] 
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(v, w, x, yE{O, l}) 

(iii ) Include the following quadruples in Fi. 

[q([s, O]), I ,q([s, I])] 

[q([s, l]), [v, w, x, 0, OJ, [v, w, x, 0, O],q([s, O])] 

[q([s, l]), [O, 1, 0, 1, O] , [O, 1, 0, 1, O] ,q([s, 2])] 

[q([s, 2]), / + ,q([s, 3])] 

[q([s, 3]), [v, 0, x, y, O], [v, 0, x, y, O],q([s, 2])] 

[q([s, 3]), [v, 1, x, y, O], [v, 1, x, y, O] , q(s) ] 

(v, w, x, yE{O, l}) 

It is seen that R can simulate T by the above 
quadruples. Furthermore, we can see that each quadru­
ple in F1 is deterministic and reversible. It can be 
verified by noticing the following facts and by a careful 
inspection. 

In the above procedure ( 2 ), the newly added states 
q([r, ¢]) and q([r, $]) uniquely correspond to a in ( 2 )
(i. e., they appear only in these three quadruples), since 
a is deterministic and thus q(r) never appears at the 
first position of other quadruples in F. In ( 3 ), the 
newly added states q([s, i, h]) ( i=O,···, 7) uniquely cor­
respond to ah, and q([s, i]) ( i=O,-··, 3) uniquely corre­
spond to the pair { a1, az}. Because sdeg(T)=2 and thus 
q(s) never appears at the fourth position of other qua­
druples in F. 
[Copy stage] In this stage, R simply copies the con­
tents of the 1st track into the 5th track. In order to 
determine the portion to be copied, the assumptions ( c ) 
and ( d ) for T is used. The quadruple set Fz of the copy 
stage is as follows, where c( [ i, j]) ( i= I,···, 4, j=l, 2) 
and p(f) are newly added states. 

[ q(f) , [O, w, x, y, O] ,  [O, w, x, y, O] , c([l, O])] 

[c([l, O]), I + , c([2, O])] 

[c([2, OJ), [v, w, x, y, O], [v, w, x, y, v], c([3, O])] 

[c([3, O]), I + , c([ 4, O])] 

[c([ 4, OJ), [l, w, x, y, 0] , [l, w, x, y, l] ,  c([l, O])] 

[c([4, O]), [O, w, x, y, O] , [O, w, x, y, O], c([4, l])] 

[c([4, l]), I , c([3, l])] 

[c([3, l]), [v, w, x, y, v], [v, w, x, y, v], c([2, l]) ] 

[c([2, l]), I , c([l, l])] 

[c([l, l]), [l, W, X, y, l] ,  [l, W, x, y, l]' c([ 4, l])] 

[c([l, l]), [O, w, x, y, O] , [O, w, x, y, O] , p(f) ] 

(v, w, x, yE{O, l}) 

It is easily seen that these quadruples are all determinis­
tic and reversible. 
[Retrace stage] This stage is a backward simulation 
process of T in order to reversibly erase the history 

track. This process is performed by executing the 
"reverse quadruples" of F1. The quadruple set F3 of the 
retrace stage is as follows, where p(X) are newly added 
states. 
( 1 ) For each quadruple 

[q(r), [v, w, x, y, O], [v', w', x', y', O], q(s)]EF1

include the following quadruples in F3. 

[p(s), [v', w', x', y', OJ, [v, w, x, y, O], P(r)]

[p(s), [v', w', x', y', 1], [v, w, x, y, l], p(r)]

Note that, although the quadruples of the form [q(r), [v, 
w, x, y, l], [ v', w', x', y', l], q(s)] might be included in
F1, they are useless since the output (5th) track is 
entirely blank in the compute stage. In the retrace 
stage, however, the above two kinds of quadruples 
should be included. 
( 2 ) For each quadruple 

[q(r), /, d, q(s)]EF1, 

include the following quadruple in F3, where rev( -) = +, 
rev(O) =0, rev(+)= -. 

[a) Compute stage (beginning) 

1 
2 
3 
4 
5 

0 
1 
0 
1 
0 

i nput Io I ... 
1 0 0 ... 
0 0 0 ... 
1 0 0 .. . 

0 0 0 ... 
T 
q ( 0) 

(b) Copy stage (beginning) 

1 0 result 
2 1 1 0 0 ... 
3 0 his tor 
4 1 0 0 0 
5 0 0 0 0 

q ( f )

(c) Retrace stage (beginning) 

1 0 result 
2 1 1 0 0 . .. 
3 0 
4 1 0 0 0 
5 0 result 

p ( f} 

(d ) Final configuration 

0 i nput 101 ... 
1 1 10101 ... 
0 0 I 0 I 0 I • • •
1 1 10101 ... 

1 

1 

1 
2 
3 
4 
5 0 result 101 ... 

T 
p(O) 

0 
0 

0 
0 

Fig. 2 The computation process of R. 
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[p(s), /, rev(d), p(r) ] 

Since quadruples in F1 are deterministic and revers­
ible, these "reverse quadruples" in F3 are also deter­
ministic and reversible. These quadruples undo the 
computation in the compute stage, retaining the output 
track unchanged. Eventually R reaches to p(O), which 
is assured to be a halting state by the assumption (/). 

The computation process of R is shown in Fig. 2. If 
T halts, R also halts in the state p(O) leaving the result 
in the track 5. (Q. E. D.) 

4. Converting a 32-Symbol Reversible Tu ring 

Machine into a 2-Symbol Reversible Turing 

Machine 

In this section, we show a method to convert an 
arbitrary I-tape 32-symbol reversible Turing machine 
into a I-tape 2-symbol reversible Turing machine (this 
method is easily generalized to a Turing machine with 
any number of tape symbols) . 
[Lemma 3] For any I-tape 32-symbol (i. e., 5-track 
2-symbol) reversible Turing machine R1, we can con­
struct a I-tape 2-symbol reversible Turing machine R2 
which simulates R1. 
(Proof) Let 

R1=(Q1, S, q(O), q(/), [O, 0, 0, 0, O ], F1) 

be a given I-tape 32-symbol reversible Turing machine, 
where S={[t1, tz, t3, t4, ts ]lt;E{O, l}}. 

R2 is constructed from R1 as follows. 

R2=(Q2, {O, I}, q(O), q(/), 0, Fz) 

Note that the initial and the final states coincide with 
those of R1's. R2 simulates one square of R1's tape using 
consecutive 5 squares of R2's tape. The quadruple set Fz 
is given as follows. 
(I ) For each quadruple 

[q(r), /, 0, q(s)]EF1 

include the following quadruple in Fz. 

[q(r), /, 0, q(s)] 

( 2 ) For each quadruple 

[q(r), /, d, q(s) ]EF1 (d=FO) 

include the following 5 quadruples in Fz. 

[ q(r) ,/,d,q([r, I ]) ] 

[q([r, I]),/, d, q([r, 2 ]) ] 

[q([r, 2 ]), /, d, q([r, 3 ]) ] 

[q([r, 3 ]), /, d, q([r, 4 ]) ] 

[q([r, 4 ]), /, d, q(s) J 
( 3 ) For each quadruple 

a=[q(r), [a, b, c, d, e ], [/, g, h, i, j], q(s) ]EF1 
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add (i. e., take the set union) the following I7 quadruples 
to Fz. These quadruples simulate a, keeping the sym­
bols that have been read or should be written by the 
newly added states. 

q(r)   , a , 0, q([r,[a,-,-,-],O ])]
[q([r, [a,-,-,-], O]) ], / ,  +, q([r, [a,-,-, -],I ]) ] 

[q([r, [a,-,-,-], I ] ) , b,0,q([r,[a,b,-,-], OJ)]

[q([r,[a,b,-,-], OJ) ,/ , +,q([r,[a,b,-,-], I ] )] 

[q([r, [a,b,-,-], l ]) , 　c,   0 ,  q([r, [a, b, c, -], OJ) ] 

[q([r, [a, b, c, -], O ]) , / , +, q([r, [a, b, c, -], I ])] 

[q([r, [a, b, c, -], I ] ) , d, 0 , q([r, [a, b, c, d ] , OJ)] 

[q([r, [a, b, c, d], O ]) , / ,  +, q([r, [a, b, c, d], l ]) ] 

[q([r, [a, b, c, d], I] )  ,  e,    j , q([s, [!, g,  h , i ],  2 ])] 

[q([s, [!, g, h, i ] , 2]) , I , -, q([s, [!, g, h, i ], 3)))

[q([s, [!, g, h, i ] , 3])

[q([s, [!, g, h, -], 2])

[q([s, [!, g, h, -], 3])

[q([s,[/, g, -, - ], 2])

[q([s, [/, g, -, -], 3])

[q([s,[/, -, -, -],2))

, 0, i , q([s, [/, g, h, -], 2]) ] 

,I , -,q([s,[!, g, h,-],3 ]) ] 

, 0 ,  h ,q([s, [!, g,-,- ], 2]) ] 

,I , -,q([s,[/,g,-,-J, 3])]

, 0,g ,q([s,[J, -, -,-),2)) ] 

,I , -,q([s,[/,-,-,-J,3])] 

[q ([s, [/, -, -, -], 3)) , 0 , / , q(s) ] 

Note that the above I 7 quadruples do not uniquely 
correspond to a. For example, I7 quadruples converted 
from 

[q(r), [O, I, 0, 0, 0), [ I, 1, 0, 0, O ], q(s) ] 

have the first 6 and last 2 quadruples in common with 
those from 

[q(r), [O, I, 0, I, OJ, [l, 0, 0, 1, 0), q(s) ]. 

Of course, this does not break the reversibility of R2. 
It is easy to see that R2 simulates R1. (Q. E. D.) 
From Lemmas I-3, we obtain the following theo­

rem. 
[Theorem I] For any irreversible Turing machine T, 
we can construct a I-tape 2-symbol reversible Turing 
machine R which simulates T. 

5. Conclusion 

We have shown that any irreversibie Turing 
machine can be converted into a I-tape 2-symbol revers­
ible Turing machine (Theorem I). At the end of the 
computation, the reversible machine leaves only the 
input and the result (answer) on the tape (leaves no 
garbage informations). 

In order to test the conversion methods given in 
Lemmas I-3, we implemented a software system which 
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performs these conversions and simulates the move­
ments of converted Turing machines. Examples of the 
conversion and the simulation results are shown in Ref. 
( 8 ) . 

Theorem 1 shows that a 1-tape 2-symbol reversible 
Turing machine (i. e., in some sense, the simplest form 
of a reversible machine) is computation universal. This 
result seems useful to study other reversible systems' 
computing ability (e. g., reversible cellular automata, or 
a system constructed by reversible logic elements (such 
as Fredkin gate(4>), etc.). 
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ノート注釈
Typos and small errors contained in the published paper (p.227) have been corrected.
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