
THE TRANSACTIONS OF THE IEICE, VOL. E 72, NO. 3 MARCH 1989
223

(PAPER

A 1-Tape 2-Symbol Reversible Turing Machine

Kenichi MORITAt, Member, Akihiko SHIRASAKitt, Nonmember

and Yoshifumi GONOttt, Member

SUMMARY Bennett proved that any irreversible Turing
machine can be simulated by a reversible one. However, Bennett'
s reversible machine uses 3 tapes and many tape symbols. Previ­
ously, Gono and Morita showed that the number of symbols can
be reduced to 2. In this paper, by improving these methods, we
give a procedure to convert an irreversible machine into an
equivalent 1-tape 2-symbol reversible machine. First, it is shown
that the "state-degeneration degree" of any Turing machine can
be reduced to 2 or less. Using this result and some other tech­
niques, a given irreversible machine is converted into a 1-tape
32-symbol (i. e., 5-track 2-symbol) reversible machine. Finally the
32-symbol machine is converted into a 1-tape 2-symbol reversible
machine. From this result, it is seen that a 1-tape 2-symbol
reversible Turing machine is computation universal.

1. Introduction

A reversible Turing machine is a "backward deter­
ministic" Turing machine, and thus every computational
configuration of it has at most one predecessor. Usual
Turing machines are, in general, irreversible since they
can "forget" their previous internal states or can "erase"
a symbol on a tape. Reversible computations are very
important when considering the minimal power dissipa­
tion in a computation theoretically. Many researchers
have been studying them from this standpoint<2H4J,(B),(7),
and suggested that it is ideally possible to devise a
power dissipationless computing mechanism by making
use of their reversibility.

Bennett<0 proved that every irreversible Turing
machine can be simulated by a 3-tape many-symbol
reversible Turing machine. Of course, it is easy to
simulate an irreversible machine by a reversible one by
recording all the movements (history) of the former
machine step by step. This method, however, leaves
large amount of garbage informations on the tape at the
end of the computation. The important point of
Bennett's construction is that it is possible to reversibly
erase these garbage records without erasing the com­
puted results.

However, the reversible machine constructed by

Manuscript received September 5, 1988.

t The author is with the Faculty of Engineering,
Yamagata University, Yonezawa-shi, 992 Japan.

tt The author is with Dainippon Screen Mfg., Co., Ltd.,
Kyoto-shi, 602 Japan.

ttt The author is with Shinko Electric Industries Co., Ltd. ,
Nagano-shi, 380 Japan.

Bennett uses 3 tapes and many tape symbols. Previous­
ly, Gono et al.15> showed that a 3-tape 2-symbol machine
suffices to reversibly simulate an irreversible one.

In this paper, by improving the methods in Refs.
(1) and (5) , we prove that any irreversible Turing
machine can be converted into an equivalent 1-tape
2-symbol (i. e., of the simplest form) reversible Turing
machine. First we define the state-degeneration degree
of a Turing machine, and show that the state­
degeneration degree of any machine can be reduced to 2
or less (Lemma 1). Using this result and some other
techniques, a given irreversible machine is converted
into a 1-tape 32-symbol (i. e., 5-track 2-symbol) revers­
ible machine (Lemma 2). Finally the 32-symbol revers­
ible machine is converted into a 1-tape 2-symbol revers­
ible machine (Lemma 3).

2. Definitions

A 1-tape Turing machine T is a system defined by

T=(Q, S, q(O), q(/), to, F),

where
(1) Q is a non-empty finite set of states,
(2) S is a non-empty finite set of tape symbols,
(3) q(O) is an initial state (q(O)E Q),
(4) q(/) is a final state (q(/)EQ),
(5) to is a special blank symbol (toE S), and
(6) F is a subset of Q x S x S x Q U Q x {/} x { -, 0,

+}xQ.
(In what follows, we assume each state of a given
Turing machine is denoted in the form q(X).)

Note that F is a move function in quadruple form.
Although usually F is written in quintuple form, we
adopt quadruple notation according to Bennett(0.
Because, it is convenient to use quadruples when rever­
sibility is in issue. The reason is as follows : (1)
reversibility of a Turing machine can be easily defined
from its quadruple set F, and (2) it is also easy to
construct a "reverse quadruple" corresponding to the
reverse move of a given quadruple.

Each quadruple is of the form [q(r), t, t', q(s)] or
[q(r), /, d, q(s)], where q(r), q(s)EQ, t, t'E S, and dE
{-,0, +}. The symbols "-", "O", and "+" denote
"left-shift", "zero-shift", and "right-shift", respectively.
[q(r), t, t', q(s)] means that if T reads the symbol t in

THE TRANSACTIONS OF THE IEICE, VOL. E 72, NO. 3
224

state q(r), write t' and go to state q(s). [q(r), /, d,
q(s)] means that if T is in state q(r), shift the head to
the direction d and go to state q(s).

Let a1 and az be two quadruples in F.

a1=[q(r1), b1, c1, q(s1)]

az=[q(rz), bz, Cz, q(sz)]

We say that a1 and az overlap in domain iff
(i) q(ri) = q(r2) and bi= bz, or
(ii) q(r1)=q(r2) and bi or bz is "/".
We say that a1 and az overlap in range iff
(i) q(s1)=q(s2) and c1=c2, or
(ii) q(s1)=q(s2) and bi or bz is "/".
A quadruple a is said to be deterministic (in F) iff there
is no other quadruple in F with which a overlaps in
domain. On the other hand, a is said to be reversible (in
F) iff there is no other quadruple in F with which a
overlaps in range. A Turing machine T is called deter­
ministic iff every quadruple in F is deterministic, and is
called reversible iff every quadruple in F is reversible.
In what follows, we consider only deterministic 1-tape
Turing machines, and discuss their reversibility.

Let q(s) be a state of T. q(s) is called state­
degenerative if there are at least two distinct quadruples
[q(ri), b1, c1, q(s)] and [q(rz), bz, c2, q(s)] in F. If there
are exactly k such quadruples in F, we say that state­
degeneration degree of q(s) is k, and denote it as
sdeg(q(s))=k. That is,

sdeg(q(s))=l { al a=[q(r), b, c, q(s)]EF}I,

where IAI denotes the number of elements of A. Note
that if q(s) is not state-degenerative, then sdeg(q(s))�
1. State-degeneration degree of T is defined as

sdeg(T)=max{sdeg(q(s))lq(s)E Q}.

3. Converting an Irreversible Turing Machine into a

1-Tape 32-Symbol Reversible Turing Machine

In this section, we show a method to convert an
arbitrary irreversible 1-tape Turing machine into a
1-tape 32-symbol (i. e., 5-track 2-symbol) reversible
Turing machine (Lemma 2).

As a preliminary, we show Lemma 1. The proof of
this lemma is essentially the same as in Ref. (5) , where
somewhat different notion of degeneration (overlapping
in range of quadruples) is discussed.
[Lemma l] For any Turing machine T, we can con­
struct an equivalent Turing machine T' such that
sdeg(T') � 2.
(Proof) Let T=(Q, S, q(O), q(/), lo, F), and let q(s)

EQ be a state such that sdeg(q(s))>2 (if no such q(s)
exists, the lemma is proved). If sdeg(q(s)) =k, there are
k distinct quadruples in F as follows.

[q(r1), b1, c1, q(s)]

[q(rz), bz, c2, q(s)]

[q(rs), bs, Cs, q(s)]

[q(rk), bk, Ck, q(s)]

In T', the above k quadruples are replaced by
following 2k-2 quadruples.

(1) [q(ri) ' b1 , C1 , q([s, 1, •])]

[q(rz) , bz , C2 , q([s, 1, •])]

(2) [q([s, 1, •]) , I ,0 , q([s, 2, •])]

[q(rs) , bs , Cs , q([s, 2, •])]

(i) [q([s, i-1, • D. I ,0 , q([s, i, •])]

[q(r;+1) , bz+1 , Cz+1 , q([s, i, *])]

(k-2) [q([s, k-3, •]),/ ,0 , q([s, k-2, •])]

[q(rk-1) ' bk-I, Ck-I, q([s, k-2, •])]

(k-1) [q([s, k-2, •]), / ,0 , q(s)]

the

q([s, i, •]) (l�i�k-2) are new states, and added to
the state set of T'. Repeating this procedure for all q(s)
such that sdeg(q(s)) >2 , we can obtain T' with sdeg(T')
�2. It is clear that T' is equivalent to T. (Q. E. D.)
[Lemma 2] For any irreversible 1-tape Turing
machine T, we can construct a 1-tape 32-symbol (i. e.,
5-track 2-symbol) reversible Turing machine R which
simulates T.
(Proof) Let

T=(Q, S, q(O), q(f), lo, F)

be a given deterministic irreversible Turing machine.
We can assume, without loss of generality, T holds the
following conditions (it is easy to convert T so that it
satisfies these conditions) .
(a) The tape is one-way (rightward) infinite.
(b) The set S of tape symbols is {O, l} (0 is the blank
symbol).
(c) In order to finitely determine the used portion of
the tape, symbol sequences " 10" and " 1 1" are used as
"codes" to represent two distinct (macro) symbols. And
thus "00" never appears between any two l's.
(d) The leftmost two squares of the tape are always
O's.

(e) When T starts or stops, the head is at the left­
most square.
(f) The initial state q(O) never appears at the fourth
position of a quadruple in F (i. e., sdeg(q(O))=O).
(g) sdeg(T) = 2 (by Lemma 1).

R is constructed from T in the following way. We

MORITA et al: REVERSIBLE TURING MACHINE

now write R as

R=(Q', S', q(O), p(O), [O, 0, 0, 0, O], F'),

where S'={[t,, f2, f3, f4, f5]lt;E{O, l}} (t; represents the
contents of the i-th track). Note that the initial state of
R coincides with that of T's.

The reversible Turing machine shown Ref. (1)
uses three tapes (i. e., the working tape, the history tape,
and the output tape) to simulate T. In R, these three
tapes are simulated using five tracks.

1st track : working tape (i. e., T's tape)
2nd track: head position of the working tape
3rd track : history tape
4th track : head position of the history tape
5th track : output tape

The tape of R is also one-way (rightward) infinite. Its
leftmost square always contains [O, 1, 0, 1, O]. Initially,
the contents of each track except the leftmost square is
as follows.

1st track : T's initial tape
2nd track: 100···
3rd track : 000· · ·
4th track : 100· · ·
5th track : 000· · ·

Head positions of the working and the history tapes are
represented by l's on the tracks 2 and 4. The initial head
position of R is at the second square from the left (Fig.
1).

The entire computation process of R is divided into
three stages as in Ref. (1) (provided that T halts).
They are the compute stage, the copy stage, and the
retrace stage. Let F1, F2 and F3 be quadruple sets of R
in these three stages (thus F' = F, U F2 U F3). These
quadruple sets are defined as follows.
[Compute stage] This stage is a forward simulation
process of T. R simulates T using the tracks 1 and 2.
When T executes a reversible quadruple, R simulates T

in a straightforward manner. On the other hand, when
T executes an irreversible quadruple, R does an addi­
tional movements. That is, R records the information
which quadruple is used on the 3rd track in order to
keep R reversible.

The quadruple set F, of R in the compute stage is as
follows.
(1) For each reversible quadruple

a=[q(r), t, t', q(s)]EF (t, t'E S),

include the following quadruples in F1.

Track
1 Working tape
2 Working tape he ad
3 His tory tape
4 His tory tape he ad
5 Output t ape

0
1
0
1
0

input
1 0 0
0 0 0
1 0 0
0 0 0
i
q(O)

t ape
. . .
. . .
. . .
. . .

Fig . 1 The initial configuration of R.

of T

[q(r), [t, 1, x, y, O], [t', 1, x, y, O], q(s)]

(x, yE{O, l})

225

(Note that the above is a "quadruple scheme" which
represents 4 quadruples, because x, yE{O, l}.)
(2) For each reversible quadruple

a=[q(r), /, d, q(s)]EF (dE{-, 0, + }),

include the following quadruples in Fi.

[q(r) , [v, 1, x, y, O], [v, 0, x, y, O], q([r, <t])]

[q([r, ¢]), / d , q([r, $])]

[q([r, $]) , [v, 0, x, y, O], [v, 1, x, y, 0], q(s)]

(v, x, yE{O, l})

(3) For each pair of irreversible quadruples

a1=[q(r1), b,, c,, q(s)]EF and

a2=[q(r2), b2, c2, q(s)]EF

which overlap in range, do (i) - (iii) .
(i) For each h(=l, 2), if bh=/ then include the fol­
lowing quadruples in F1.

q(rh) , [v, 1, x, y, O], [v, 0, x, y, O] , q([s, 0, h])]

[q([s, 0, h]), I Ch , q([s, 1, h])]

[q([s, 1, h]), [v, 0, x, y, O], [v, 1, x, y, 0] , q([s, 2, h])]

[q([s, 2, h]), I , q([s, 3, h])]

[q([s, 3, h]), [v, 0, x, y, O], [v, 0, x, y, 0] , q([s, 2, h])]

[q([s, 3, h]), [O, 1, 0, 1, O] , [O, 1, 0, 1, O] , q([s, 4, h])]

[q([s, 4, h]), I + , q([s, 5, h])]

[q([s, 5, h]), [v, w, x, 0, OJ, [v, w, x, 0, O] , q([s, 4, h])]

[q([s, 5, h]), [v, w, x, 1, OJ, [v, w, x, 0, O] , q([s, 6, h])]

[q([s, 6, h]), I + , q([s, 7, h])]

[q([s, 7, h]), [v, w, 0, 0, O], [v, w, h-1, 1, O], q([s, O])]

(v, w, x, yE{O, l})

(ii) For each h(=l, 2), if bhE S then include the fol­
lowing quadruples in F1.

q(rh) , [bh, 1, x, y, OJ, [ch, 1, x, y, O], q([s, 2, h])]

[q([s, 2, h]), / , q([s, 3, h])]

[q([s, 3, h]), [v, 0, x, y, O] , [v, 0, x, y, O] , q([s, 2, h])]

[q([s, 3, h]), [O, 1, 0, 1, O] , [O, 1, 0, 1, O] , q([s, 4, h])]

[q([s, 4, h]), / + , q([s, 5, h])]

[q([s, 5, h]), [v, w, x, 0, OJ, [v, w, x, 0, O], q([s, 4, h])]

[q([s, 5, h]), [v, w, x, 1, OJ, [v, w, x, 0, O], q([s, 6, h])]

[q([s, 6, h]), / + , q([s, 7, h])]

[q([s, 7, h]), [v, w, 0, 0, O], [v, w, h-1, 1, O], q([s, O])]

THE TRANSACTIONS OF THE IEICE, VOL. E 72, NO. 3
226

(v, w, x, yE{O, l})

(iii) Include the following quadruples in Fi.

[q([s, O]), I ,q([s, I])]

[q([s, l]), [v, w, x, 0, OJ, [v, w, x, 0, O],q([s, O])]

[q([s, l]), [O, 1, 0, 1, O] , [O, 1, 0, 1, O] ,q([s, 2])]

[q([s, 2]), / + ,q([s, 3])]

[q([s, 3]), [v, 0, x, y, O], [v, 0, x, y, O],q([s, 2])]

[q([s, 3]), [v, 1, x, y, O], [v, 1, x, y, O] , q(s)]

(v, w, x, yE{O, l})

It is seen that R can simulate T by the above
quadruples. Furthermore, we can see that each quadru­
ple in F1 is deterministic and reversible. It can be
verified by noticing the following facts and by a careful
inspection.

In the above procedure (2), the newly added states
q([r, ¢]) and q([r, $]) uniquely correspond to a in (2)
(i. e., they appear only in these three quadruples), since
a is deterministic and thus q(r) never appears at the
first position of other quadruples in F. In (3), the
newly added states q([s, i, h]) (i=O,···, 7) uniquely cor­
respond to ah, and q([s, i]) (i=O,-··, 3) uniquely corre­
spond to the pair { a1, az}. Because sdeg(T)=2 and thus
q(s) never appears at the fourth position of other qua­
druples in F.
[Copy stage] In this stage, R simply copies the con­
tents of the 1st track into the 5th track. In order to
determine the portion to be copied, the assumptions (c)
and (d) for T is used. The quadruple set Fz of the copy
stage is as follows, where c([i, j]) (i= I,···, 4, j=l, 2)
and p(f) are newly added states.

[q(f) , [O, w, x, y, O] , [O, w, x, y, O] , c([l, O])]

[c([l, O]), I + , c([2, O])]

[c([2, OJ), [v, w, x, y, O], [v, w, x, y, v], c([3, O])]

[c([3, O]), I + , c([4, O])]

[c([4, OJ), [l, w, x, y, 0] , [l, w, x, y, l] , c([l, O])]

[c([4, O]), [O, w, x, y, O] , [O, w, x, y, O], c([4, l])]

[c([4, l]), I , c([3, l])]

[c([3, l]), [v, w, x, y, v], [v, w, x, y, v], c([2, l])]

[c([2, l]), I , c([l, l])]

[c([l, l]), [l, W, X, y, l] , [l, W, x, y, l]' c([4, l])]

[c([l, l]), [O, w, x, y, O] , [O, w, x, y, O] , p(f)]

(v, w, x, yE{O, l})

It is easily seen that these quadruples are all determinis­
tic and reversible.
[Retrace stage] This stage is a backward simulation
process of T in order to reversibly erase the history

track. This process is performed by executing the
"reverse quadruples" of F1. The quadruple set F3 of the
retrace stage is as follows, where p(X) are newly added
states.
(1) For each quadruple

[q(r), [v, w, x, y, O], [v', w', x', y', O], q(s)]EF1

include the following quadruples in F3.

[p(s), [v', w', x', y', OJ, [v, w, x, y, O], P(r)]

[p(s), [v', w', x', y', 1], [v, w, x, y, l], p(r)]

Note that, although the quadruples of the form [q(r), [v,
w, x, y, l], [v', w', x', y', l], q(s)] might be included in
F1, they are useless since the output (5th) track is
entirely blank in the compute stage. In the retrace
stage, however, the above two kinds of quadruples
should be included.
(2) For each quadruple

[q(r), /, d, q(s)]EF1,

include the following quadruple in F3, where rev(-) = +,
rev(O) =0, rev(+)= -.

[a) Compute stage (beginning)

1
2
3
4
5

0
1
0
1
0

i nput Io I ...
1 0 0 ...
0 0 0 ...
1 0 0 .. .

0 0 0 ...
T
q (0)

(b) Copy stage (beginning)

1 0 result
2 1 1 0 0 ...
3 0 his tor
4 1 0 0 0
5 0 0 0 0

q (f)

(c) Retrace stage (beginning)

1 0 result
2 1 1 0 0 . ..
3 0
4 1 0 0 0
5 0 result

p (f}

(d) Final configuration

0 i nput 101 ...
1 1 10101 ...
0 0 I 0 I 0 I • • •
1 1 10101 ...

1

1

1
2
3
4
5 0 result 101 ...

T
p(O)

0
0

0
0

Fig. 2 The computation process of R.

MORITA et al : REVERSIBLE TURING MACHINE

[p(s), /, rev(d), p(r)]

Since quadruples in F1 are deterministic and revers­
ible, these "reverse quadruples" in F3 are also deter­
ministic and reversible. These quadruples undo the
computation in the compute stage, retaining the output
track unchanged. Eventually R reaches to p(O), which
is assured to be a halting state by the assumption (/).

The computation process of R is shown in Fig. 2. If
T halts, R also halts in the state p(O) leaving the result
in the track 5. (Q. E. D.)

4. Converting a 32-Symbol Reversible Tu ring

Machine into a 2-Symbol Reversible Turing

Machine

In this section, we show a method to convert an
arbitrary I-tape 32-symbol reversible Turing machine
into a I-tape 2-symbol reversible Turing machine (this
method is easily generalized to a Turing machine with
any number of tape symbols) .
[Lemma 3] For any I-tape 32-symbol (i. e., 5-track
2-symbol) reversible Turing machine R1, we can con­
struct a I-tape 2-symbol reversible Turing machine R2
which simulates R1.
(Proof) Let

R1=(Q1, S, q(O), q(/), [O, 0, 0, 0, O], F1)

be a given I-tape 32-symbol reversible Turing machine,
where S={[t1, tz, t3, t4, ts]lt;E{O, l}}.

R2 is constructed from R1 as follows.

R2=(Q2, {O, I}, q(O), q(/), 0, Fz)

Note that the initial and the final states coincide with
those of R1's. R2 simulates one square of R1's tape using
consecutive 5 squares of R2's tape. The quadruple set Fz
is given as follows.
(I) For each quadruple

[q(r), /, 0, q(s)]EF1

include the following quadruple in Fz.

[q(r), /, 0, q(s)]

(2) For each quadruple

[q(r), /, d, q(s)]EF1 (d=FO)

include the following 5 quadruples in Fz.

[q(r) ,/,d,q([r, I])]

[q([r, I]),/, d, q([r, 2])]

[q([r, 2]), /, d, q([r, 3])]

[q([r, 3]), /, d, q([r, 4])]

[q([r, 4]), /, d, q(s) J
(3) For each quadruple

a=[q(r), [a, b, c, d, e], [/, g, h, i, j], q(s)]EF1

227

add (i. e., take the set union) the following I7 quadruples
to Fz. These quadruples simulate a, keeping the sym­
bols that have been read or should be written by the
newly added states.

q(r) , a , 0, q([r,[a,-,-,-],O])]
[q([r, [a,-,-,-], O])], / , +, q([r, [a,-,-, -],I])]

[q([r, [a,-,-,-], I]) , b,0,q([r,[a,b,-,-], OJ)]

[q([r,[a,b,-,-], OJ) ,/ , +,q([r,[a,b,-,-], I])]

[q([r, [a,b,-,-], l]) , 　c, 0 , q([r, [a, b, c, -], OJ)]

[q([r, [a, b, c, -], O]) , / , +, q([r, [a, b, c, -], I])]

[q([r, [a, b, c, -], I]) , d, 0 , q([r, [a, b, c, d] , OJ)]

[q([r, [a, b, c, d], O]) , / , +, q([r, [a, b, c, d], l])]

[q([r, [a, b, c, d], I]) , e, j , q([s, [!, g, h , i], 2])]

[q([s, [!, g, h, i] , 2]) , I , -, q([s, [!, g, h, i], 3)))

[q([s, [!, g, h, i] , 3])

[q([s, [!, g, h, -], 2])

[q([s, [!, g, h, -], 3])

[q([s,[/, g, -, -], 2])

[q([s, [/, g, -, -], 3])

[q([s,[/, -, -, -],2))

, 0, i , q([s, [/, g, h, -], 2])]

,I , -,q([s,[!, g, h,-],3])]

, 0 , h ,q([s, [!, g,-,-], 2])]

,I , -,q([s,[/,g,-,-J, 3])]

, 0,g ,q([s,[J, -, -,-),2))]

,I , -,q([s,[/,-,-,-J,3])]

[q ([s, [/, -, -, -], 3)) , 0 , / , q(s)]

Note that the above I 7 quadruples do not uniquely
correspond to a. For example, I7 quadruples converted
from

[q(r), [O, I, 0, 0, 0), [I, 1, 0, 0, O], q(s)]

have the first 6 and last 2 quadruples in common with
those from

[q(r), [O, I, 0, I, OJ, [l, 0, 0, 1, 0), q(s)].

Of course, this does not break the reversibility of R2.
It is easy to see that R2 simulates R1. (Q. E. D.)
From Lemmas I-3, we obtain the following theo­

rem.
[Theorem I] For any irreversible Turing machine T,
we can construct a I-tape 2-symbol reversible Turing
machine R which simulates T.

5. Conclusion

We have shown that any irreversibie Turing
machine can be converted into a I-tape 2-symbol revers­
ible Turing machine (Theorem I). At the end of the
computation, the reversible machine leaves only the
input and the result (answer) on the tape (leaves no
garbage informations).

In order to test the conversion methods given in
Lemmas I-3, we implemented a software system which

THE TRANSACTIONS OF THE IEICE, VOL. E 72, NO. 3
228

performs these conversions and simulates the move­
ments of converted Turing machines. Examples of the
conversion and the simulation results are shown in Ref.
(8) .

Theorem 1 shows that a 1-tape 2-symbol reversible
Turing machine (i. e., in some sense, the simplest form
of a reversible machine) is computation universal. This
result seems useful to study other reversible systems'
computing ability (e. g., reversible cellular automata, or
a system constructed by reversible logic elements (such
as Fredkin gate(4>), etc.).

Acknowledgement

One of the authors K. Morita wishes to thank Pro­
fessor Masateru Harao of Yamagata University for his
helpful discussions and encouragement.

References

(1) C. H. Bennett : "Logical reversibility of computation'', IBM

J. Res. & Dev., 17, 6, pp. 525-532 (1973).

(2) C.H. Bennett: "The thermodynamics of computation -

A review", Int. J. Theoretical Physics, 21, 12, pp. 905-940
(1982).

(3) C.H. Bennett and R. Landauer: "The fundamental physi­
cal limits of computation", Scientific American, 253, 1, pp.

38-46(July 1985).

(4) E. Fredkin and T. Toffoli: "Conservative logic", Int. J.

Theoretical Physics, 21, 3/ 4, pp. 219-253 (1982).

(5) Y. Gono and K. Morita: "Construction of a 2-symbol 3-tape

reversible Turing machine", Trans. IEICE, J70-D, 5, pp.

1047-1050(May 1987).

(6) R. W. Keyes and R. Landauer: "Minimal energy dissipa­

tion in logic", IBM J. Res. & Dev., 14, pp. 152-157 (1970).

(7) R. Landauer: "Irreversibility and heat generation in the
computing process", IBM J. Res. & Dev., 5, pp. 183-191

(1961).

(8) K. Morita, A. Shirasaki, and Y. Gono: "A 1-tape 2-symbol
reversible Turing machine", IEICE Technical Report,

COMP88-37(Sept. 1988).

Kenichi Morita was born in Osaka, on
March 30, 1949. He received the B. E., M.
E., and Dr. E. degrees from Osaka Univer­

sity in 1971, 1973, and 1978, respectively.

From 1974 to 1987, he was a Research

Associate of the Faculty of Engineering

Science, Osaka University. Since 1987 he

has been an Associate Professor of the

Faculty of Engineering, Yamagata Uni­

versity. He has been engaged in the

r e s e a r c h o f a u t o m a t a t h e o r y ,

computational complexity, formal language theory, and logic
systems for knowledge and language processing. Dr. Morita is a

member of Information Processing Society of Japan, LA Sympo­

sium, Mathematical Linguistic Society of Japan, Japanese Society

for Artificial Intelligence, ACM, and ACL.

Akihiko Shirasaki received the B. E.

degree from Faculty of Engineering Sci­

ence, Osaka University in 1987. Since

1987, he is a staff of Dainippon Screen

Mfg., Co., Ltd. in Kyoto. In Osaka Univer­
sity, he engaged in the research of autom­

ata theory.

Yoshifumi Gono was born in Maizuru,

Kyoto Prefecture, on Nov. 10, 1960. He

received the B. E. and M. E. degrees from

Faculty of Engineering Science, Osaka

University in 1985 and 1987, respectively.
During this period, he engaged in the

research of automata theory. Since 1987,

he is a staff of Shinko Electric Industries
Co., Ltd. in Nagano.

morita
ノート注釈
Typos and small errors contained in the published paper (p.227) have been corrected.

	page1
	page2
	page3
	page4
	page5
	page6

