
Studies on MapReduce based Area Skyline
Query and Parameter Estimation of

Queueing Systems
(MapReduceによるエリアスカイライン問合せ及び

キューイングシステムのパラメータ推定に関する研究)

by

Chen Li

A dissertation submitted

Graduate School of Engineering, Hiroshima University

in partial fulfillment of the requirements for the degree of

Doctor of Engineering

in

Information Engineering

under supervision of

Yasuhiko Morimoto

Department of Information Engineering

Graduate School of Engineering

Hiroshima University, Japan

September, 2019

[This page was intentionally left blank]

Dissertation Summary

In this dissertation, the author discusses two kinds of research works, MapReduce based

computation of area skyline query for location recommendation, and parameter estimation

of queueing systems with utilization data, respectively.

MapReduce Based Area Skyline Query

With the rapid development of computer technology and network technology, a vast amount

of available information may cause information overload problem. The exponential growth

of data makes customers inundate with various choices. To solve the “information over-

load” problem, recommender designers develop recommendation systems. Recommenda-

tion systems are widely accepted in E-commerce in recent years. The basic premise of

recommenders is to reduce noise and filter out information, which is not relevant to cus-

tomers’ tastes. In the past decades, many researchers worked on generating excellent

recommenders. Recommendation systems can help enterprises improve economies. For ex-

ample, Amazon.com [1] claimed that product sales improved 35% from the recommendation

system. Moreover, Netflix.com claimed that 66% movies were rented by using recommen-

dation systems. Google News Recommendations [1] generated 38% more click-throughs.

Location recommendations are a main part of recommendation systems. For example,

the selection of good locations is essential in the service filed, which may help customers

find implicit preferable places in an unfamiliar environment. Moreover, it is also critical

for a businessperson to find a suitable location to build a company.

Skyline query is a well-known information retrieval approach for recommendation sys-

tems. Skyline query aims to select a small number of representative objects from an

extensive database, and already has been applied in the location selection problem. For

example, a traveler wants to find a hotel from several candidate hotels. In this case, we

can use the skyline query to help the traveler select an excellent hotel. However, in some

real-world scenarios, the candidate points are not given for the location recommendation

problem. For example, the businessman looks for a good vacant area to build a hotel at

any cost. In such a situation, candidate points do not exist. Besides, the two-dimensional

area is much complicated than a candidate point, which makes the problem of good lo-

cation selection more difficult and challenging. However, most of the skyline algorithms

to solve the problem of location selection assume that the candidate points always exist.

To generate the spatial relationship between objects, we consider solving such problem by

using our team’s previous work, called the area skyline query.

Area skyline query is a new skyline query for selecting spatial area objects on a map.

Grid-based Area Skyline (GASKY) algorithm is an efficient and practical algorithm by

dividing data structure into grids for retrieving interesting areas. For example, a business-

man wants to find a good area to build a hotel. The good area should be close to some

preferable facilities, such as bus/train stations and sightseeing spots, and is far from some

unpreferable facilities, such as open landfills and noisy places. In such a situation, GASKY

first divides a square region on a map into several girds. Then, we calculate the minimum

and maximum distance from an area to the closest preferable facility and the farthest un-

preferable facility of each facility type. After the calculation of the minimum and maximum

distance of every grid, the problem of the area skyline query can be transformed into the

conventional skyline query. However, the computational cost of the time complexity for

GASKY algorithm is much higher than the conventional skyline query. Furthermore, the

average processing time increases linearly with the growth of facilities.

To resolve the poor performance problem of GAKSY and to handle “big data” well, we

consider a distributed algorithm for computing the GASKY.

MapReduce is a programming model and an associated implementation for processing

big data. Mainly, a MapReduce program is composed of a Map function and a Reduce

function. The Map function takes a set of data and converts it into another collection of

data, where individual elements are broken down into tuples. The Reduce function takes the

output from the Map function as an input and combines those data tuples into a smaller

set of tuples. In recent years, the MapReduce framework is widely used for computing

skyline query. In general, there are three main MapReduce based algorithms for skyline

query processing, called MR-BNL, MR-SFS, and MR-Bitmap. Unfortunately, only a few

algorithms focus on spatial skyline query in such parallel way. The GASKY algorithm is

a new skyline query for selecting spatial area objects. In this work, we propose a novel

algorithm to improve the performance of the GASKY algorithm and handle large-scale

database.

Parameter Estimation of Queueing Systems

In the second work, the author discusses the parameter estimation problem of queueing

systems.

Performance evaluation plays a vital role in the computer design phase. Performance

evaluation can help computer designers determine the optimal system configuration, such

as the size of memory, the number of CPU, and the storage capacity. As the complexity of

system increases, the new system architecture tends to integrate a collection of independent

systems, called a system of systems (SoS). To configure such kind of an SoS, performance

evaluation becomes more challenging and more critical.

In general, there are three main methods for performance evaluation of computer sys-

tems, measurement-based performance evaluation, simulation-based performance evalua-

tion, and model-based performance evaluation, respectively. If the system already exists,

we usually use the measurement method to evaluate performance. When the system is

under designing, we select to use simulation-based method and model-based method for

performance evaluation. Simulation-based performance evaluation is more flexible, accu-

rate, and credible, but require more time to derive models. Model-based performance

evaluation constructs a systematic mathematical model and quantitatively analyzes the

model. For example, Markov chains, queuing systems, and queuing networks are conven-

tional techniques of model-based methods, which are usually used in telecommunication

systems. Although to some extent, the model-based approach is an approximation, the

amount of calculation is small.

Queueing systems for model-based performance evaluation are very common. Typically,

a single queue has three main components: input, queue, and server. The input is a stream

of customers or jobs, which wait for service in the queue. The jobs leave the system after the

service. More specifically, we usually define a queueing system by the symbol A/S/m/k. A

is the type of the arrival process, and S is the distribution of the service time of customers.

m is the number of servers, and k is the queue capacity. For example, M/M/1/K means

that the customers arrive at the service facility via the Poisson process, and the service

time follows an exponential distribution. Moreover, there is only one server in the system

with a capacity of k. In other words, the input processes and service distributions are two

necessary components for a queueing system. Unfortunately, in practice, it is not easy to

model the input process and service distribution. In general, we must observe the arrival

process and service time in a fixed time, and then we can estimate the arrival rate and

service rate. In most queueing systems, the arrival process and service time is observable.

In other words, we can know the exact job arrival time and service time by a period

of observation. However, the parameter estimation of the arrival processes in computer

systems, such as CPU utilization, are quite limited.

Moreover, we usually assume that the arrival rate is constant for a queueing system.

However, in the real world, the fixed arrival rate cannot model the arrival process very

well. For example, the customers’ arrival rates in a convenient store are always varying

dynamically. The arrival rate of morning and evening rush hours may be higher than the

rate of other periods.

Non-Homogeneous Poisson Process (NHPP) is a Poisson process over a non-linear time

scale, which has already been used to solve complex independent arrival processes. In this

work, the author considers an NHPP for the job arrival process of a computer system, and

generate an Mt/M/1/K queueing system. The author aims to estimate the arrival rate,

which varies as a function of time by using utilization data.

To summarize, this dissertation introduces two kinds of research works. The first re-

search work is tilted MapReduce based computation of area skyline query for selecting good

locations in a map. The other research work is titled parameter estimation of queueing

systems with dynamic arrival process from utilization data, respectively. The outline of

this dissertation is organized as follows.

Chapter 1 discusses the motivations of the two research works and gives the organi-

zation of this dissertation.

In Chapter 2, the author introduces the first research work in detail. In this chapter,

we first introduce the definitions of skyline query, spatial skyline query, and area skyline

query. Secondly, we review the related works. And then, we propose our novel MapReduce

based algorithm for the calculation of area skyline query. Finally, we conduct two numer-

ical experiments on both the synthetic dataset and real dataset, The experimental results

confirm that our proposed model is efficient and effective for handling “big data.”

In Chapter 3, the author presents the detail of the other research work: parame-

ter estimation of queueing systems with dynamic arrival process from utilization data.

In this chapter, we first give some definitions of queueing system, utilization data, and

Non-Homogeneous Poisson Process. Secondly, we review the related works. And then,

we introduce a parameter estimation method, which is called maximum likelihood esti-

mates. Also, we propose to use the Expectation-Maximization algorithm to overcome the

incomplete information problem. Finally, we conduct two experiments on both synthetic

utilization data and real CPU utilization data to discuss the performance of our proposed

model.

Finally, a concluding discussion of the contributions of the two research works and

conclusions are discussed in Chapter 4.

Contents

Page

1 Introduction 3

1.1 MapReduce Based Area Skyline Query . 3

1.1.1 Motivation . 4

1.2 Parameter Estimation of Queueing Systems 5

1.2.1 Motivation . 6

1.3 Thesis Organization . 7

2 MapReduce-based Area Skyline for Location Recommendations 8

2.1 Introduction . 8

2.1.1 Skyline Query . 8

2.1.2 Spatial Skyline Query . 10

2.1.3 Area Skyline Query . 12

2.2 Related Works . 14

2.2.1 Skyline Query . 14

2.2.2 Spatial Skyline Query . 15

2.2.3 MapReduce Based Skyline Computation 17

2.3 MapReduce-based Area Skyline . 18

2.3.1 MRGASKY Algorithm . 19

i

2.4 Experimental Evaluation . 27

2.4.1 Efficiency of Synthetic Dataset . 28

2.4.2 Efficiency of Real Dataset . 32

2.5 Concluding Remarks . 35

3 Parameter Estimation of Queueing Systems with Utilization Data 38

3.1 Introduction . 38

3.1.1 Performance Evaluation . 38

3.1.2 Queueing Systems . 39

3.1.3 Non-homogeneous Poisson Process 41

3.2 Related Works . 43

3.2.1 Queueing Systems . 43

3.2.2 Maximum Likelihood Estimates . 45

3.2.3 Expectation Maximization Algorithm 46

3.3 Mt/M/1/k Queue . 47

3.3.1 Approximation of an NHPP . 48

3.3.2 Utilization Data . 49

3.4 Parameter Estimation . 50

3.4.1 Likelihood Function . 50

3.4.2 EM Algorithm . 52

3.5 Numerical Experiments . 54

3.5.1 Simulation . 54

3.5.2 Real CPU Utilization . 57

3.6 Concluding Remarks . 63

4 Conclusion 80

4.1 MapReduce Based Area Skyline Query . 80

ii

4.1.1 Applications of the MRGAKSY Model 81

4.1.2 Contributions of MRGAKSY Model 82

4.1.3 Future Direction . 82

4.2 Parameter Estimation of Queueing Systems 82

4.2.1 Applications of the Mt/M/1/l Queueing System 84

4.2.2 Contributions of the Mt/M/1/l Queueing System 84

4.2.3 Future Direction . 85

Reference 85

Referred Publications 90

Other Publications (not in dissertation) 91

iii

List of Figures

2.1 A Conventional Skyline Example. 10

2.2 Some Facilities in a Map. 11

2.3 An Area Skyline Example. 13

2.4 An Example of the Simplification. 19

2.5 An Example of Step 1.1. 20

2.6 An Example of Step 1.2. 20

2.7 An Example of Step 1. 21

2.8 An Example of Deleting Point pj . 22

2.9 An Example of Maintaining Point pj . 23

2.10 An Example of Step 2.1. 23

2.11 An Example of Step 2.2. 24

2.12 Example of the Step 2 Process. 26

2.13 MapReduce Data Flow of MRGASKY Algorithm. 27

2.14 Processing Time of SYN A1. 30

2.15 Processing Time of SYN A2. 30

2.16 Processing Time of SYN B. 31

2.17 Processing Time of SYN C. 32

2.18 Processing Time of US A. 33

2.19 Processing Time of US B. 34

iv

2.20 Processing Time of US C. 35

3.1 Possible behavior of system state and observed and unobserved periods for

utilization. 50

3.2 Utilization of simulation. 55

3.3 CPU utilization of server A. 57

3.4 CPU utilization of server B. 58

3.5 The optimal estimation result for intensity function (n=17) of server A. . . 60

3.6 The optimal estimation result for intensity function (n=1) of server B. . . . 62

3.7 Estimation results for intensity function (n=1). 64

3.8 Estimation results for intensity function (n=2). 64

3.9 Estimation results for intensity function (n=3). 65

3.10 Estimation results for intensity function (n=4). 65

3.11 Estimation results for intensity function (n=5). 66

3.12 Estimation results for intensity function (n=6). 66

3.13 Estimation results for intensity function (n=7). 67

3.14 Estimation results for intensity function (n=8). 67

3.15 Estimation results for intensity function (n=9). 68

3.16 Estimation results for intensity function (n=10). 68

3.17 Estimation results for intensity function (n=11). 69

3.18 Estimation results for intensity function (n=12). 69

3.19 Estimation results for intensity function (n=13). 70

3.20 Estimation results for intensity function (n=14). 70

3.21 Estimation results for intensity function (n=15). 71

3.22 Estimation results for intensity function (n=16). 71

3.23 Estimation results for intensity function (n=17). 72

3.24 Estimation results for intensity function (n=18). 72

v

3.25 Estimation results for intensity function (n=19). 73

3.26 Estimation results for intensity function (n=20). 73

3.27 Estimation results for intensity function (n=21). 74

3.28 Estimation results for intensity function (n=22). 74

3.29 Estimation results for intensity function (n=23). 75

3.30 Estimation results for intensity function (n=24). 75

3.31 Estimation results for intensity function (n=25). 76

3.32 Estimation results for intensity function (n=26). 76

3.33 Estimation results for intensity function (n=27). 77

3.34 Estimation results for intensity function (n=28). 77

3.35 Estimation results for intensity function (n=29). 78

3.36 Estimation results for intensity function (n=30). 78

3.37 Estimation results for intensity function (n=100). 79

vi

List of Tables

2.1 A Hotel Example. 10

2.2 Distance Table. 11

3.1 AIC of the model. 56

3.2 AIC of the real CPU utilzation from Server A. 59

3.3 AIC of the real CPU utilzation from Server B. 59

3.4 Response time of integrated system. 61

3.5 Comparison of response time between HPP and NHPP for the integrated

system. 62

vii

The only way to do great work is to love what you do.

Steve Jobs

Acknowledgments

First of all, I would like to express my special appreciation and thanks to my supervisor

Prof. Yasuhiko Morimoto, Graduate School of Engineering, Hiroshima University,

Japan, for allowing me to explore new ideas in the field of knowledge discovery and data

mining. He has been a tremendous mentor for me. I want to thank him for encouraging

my research, for the continuous support of my Ph.D. study and related research, for his

patience, motivation, and immense knowledge. His guidance helped me in all the time

of research and writing of this thesis. He is my inspiration to be a better scientist and

researcher.

I would like to thank my committee members, Prof. HIROYUKI OKAMURA and

Prof. KOJI EGUCHI, for letting my defense be an enjoyable moment, and also for their

brilliant comments and suggestions that enrich my knowledge.

Also, thanks to all my co-authors and lab members, for their support and contributions

during my research. Primarily I’m grateful to Dr. Annisa and Dr. A. Zaman for their

generous support and cooperation since the beginning of my research work. I am also

thankful for all of my countrymates. Because of their collaboration, support, and warm

relationships during my stay in Japan, I can complete the doctoral dissertation.

I am deeply grateful to my family members for their comprehension, dedication, care, and

support throughout the research work.

Finally, I hope this work will give significant contributions and advantages, especially

for data management research in Japan and China.

ix

[This page was intentionally left blank]

2

Chapter 1

Introduction

1.1 MapReduce Based Area Skyline Query

Information retrieval is a very critical part of data mining, such as the location selection

problem. In general, the cases of selecting hotels, restaurant, and sightseeing spots, an

excellent location may have a direct impact on time, cost, and effort. Therefore, selecting

the right place can help customers and people in business save some time and cost. For

example, in business filed, if a businessperson wants to a location for his company, he should

consider some sites, which can attract many potential customers. The good sites should

be close to the places, such as the retail centers, train/bus stations, commercial district,

etc. The proximity to such locations can bring profit and benefit for the site. Besides,

the businessman should also consider potential competitors and other unpreferable factors.

For example, the places, such as factories, open landfills, and noisy sources, may reduce

profit and bring unfavorable effect on the location.

Therefore, a good location should be close to some preferable facilities and be far from

some unpreferable facilities. For example, in the business field: a businessman aims to

select a location for his new company. The businessman finds some candidate locations,

and he would like to choose an apartment from the candidate locations. To attract potential

3

customers, the site of the company should be in the region that is close to train/bus stations

and commercial districts and is far from open landfills.

1.1.1 Motivation

Notice that there are some candidate points, such as the rooms of a hotel, in the above

example. We aim to select the interesting points from a set of candidate points. To resolve

the problem, we apply the well-known technique, which we call “skyline query.” In the

information retrieval field, a skyline is a simplified approach for selecting a small number

of interesting data objects from a large database. In this situation, locations in a map are

typical two-dimensional data. Since most of the existing skyline query approaches can only

select zero-dimensional data, we consider applying the spatial skyline query to solve the

problem.

Spatial skyline query can select a small number of the two-dimensional location ob-

jects from a set of geographic candidate data. However, in some real-world situation, the

candidate points do not exist. For example, a businessman wants to build a supermar-

ket in an excellent free region. For this problem, the candidate points are not given, and

the businessman must find the ideal area in a map. In other words, he/she must find

a two-dimensional location, which is close to the preferable facilities and is far from the

unpreferable facilities on a map.

Since the two-dimensional area is much complicated than the zero-dimensional points,

the selection of the two-dimensional data is challenging and critical. The previous work

of our team has proposed the definition of area skyline query, which can select the two-

dimensional data in a map. However, the time complexity is worse than the conventional

skyline query. Furthermore, the processing time increases linearly with the growth of the

number of facility types, the number of grids, and the number of objects.

In recent years, distributed skyline computations for big data has received more atten-

4

tion. For example, MapReduce is a popular parallel programming model for processing

large amounts of data. To reduce the complexity of the algorithm, and to improve the

performance of the area skyline query, the author proposes a novel parallel algorithm. The

parallel algorithm can solve area skyline query computation in the MapReduce framework,

which we call “MRGASKY.”

1.2 Parameter Estimation of Queueing Systems

In another work, the author proposes a novel model to estimate the parameter of queueing

systems by using utilization data.

Parameter estimation is always of great importance in the computer design phase. In

general, parameter estimation can capture the underlying structure of the whole system.

For example, the statistical inference can determine the optimal system configuration,

such as the number of CPU, memory size, and hard disk capacity. In recent decades, the

integration of complex systems, which we call “a system of systems (SoS)” has drawn the

attention of researchers. To configure such kind of an SoS, performance evaluation becomes

more challenging and more critical.

Queueing systems, a typical method for model-based performance evaluation, are widely

used in various fields. The problem of parameter estimation of queueing systems consists of

several components, such as input, queue, and server. The input is a stream of customers or

jobs, which wait for service in the queue. The customers or jobs leave the system after the

service. More specifically, we usually define a queueing system by the symbol A/S/m/k. A

is the type of the arrival process, and S is the distribution of the service time of customers.

m is the number of servers, and k is the queue capacity. For example, M/M/1/K means

that the customers arrive at the service facility via the Poisson process, and the service

time follows an exponential distribution. Moreover, there is only one server in the system

with a capacity of k. In other words, the estimation of the arrival rate and service rate are

5

the essential and challenging thing in the queueing systems.

1.2.1 Motivation

The Poisson distribution is a discrete distribution that observes the counts of the event

in a given interval of time. Define the parameter of the Poisson distribution as the mean

number of events per an interval of time. We usually use the Poisson distribution as the

arrival rate of a queueing system. In other words, the arrival rate is constant in this case.

However, in the real world, the fixed arrival rate cannot model the arrival process very

well. For example, the arrival rate of the customers is always changing dynamically in a

convenient store. Usually, the arrival rate in the morning rush hour and mealtime may

higher than the rate of midnight.

In this case, we usually use Non-Homogeneous Poisson Process (NHPP) to represent

the arrival process. NHPP is a Poisson process over a non-linear time scale, which has

already been used to solve complex independent arrival processes.

On the other hand, when we estimate the arrival process and service distribution, we

need to observe the system in a fixed time. In some observable queueing systems, we can

observe the exact job arrival time and service time by a period of observation. However,

in computer systems, some observation cannot get easily. For example, CPU utilization

data can reflect the utilization of computing resources and are a widespread type of data

in computer systems. However, we can not observe the arrival process and service process

of jobs directly from the CPU utilization data. In this case, the parameter estimation is

quite limited.

In this work, the author considers an NHPP for the job arrival process of a computer

system, and generate an Mt/M/1/K queueing system. The author aims to estimate the

arrival rate, which varies as a function of time by using utilization data.

6

1.3 Thesis Organization

To summarize, this dissertation introduces two kinds of research works. The first work is

titled ”MapReduce based computation of area skyline query for selecting good locations

in a map.” The other research work is titiled ”parameter estimation of queueing systems

with dynamic arrival process from utilization data.” The rest of the thesis is organized as

follows.

In Chapter 2, the author introduces the first research work in detail. In this chapter,

we first introduce the definitions of skyline query, spatial skyline query, and area skyline

query. Secondly, we review the related works. And then, we propose our novel MapReduce

based algorithm for the calculation of area skyline query. Finally, we conduct two numerical

experiments on both the synthetic dataset and real dataset. The experimental results

confirm that our proposed model is efficient and effective for handling “big data.”

In Chapter 3, the author presents the detail of the other research work: parame-

ter estimation of queueing systems with dynamic arrival process from utilization data.

In this chapter, we first give some definitions of queueing system, utilization data, and

Non-Homogeneous Poisson Process. Secondly, we review the related works. And then,

we introduce a parameter estimation method, which is called maximum likelihood esti-

mates. Also, we propose to use the Expectation-Maximization algorithm to overcome the

incomplete information problem. Finally, we conduct two experiments on both synthetic

utilization data and real CPU utilization data to discuss the performance of our proposed

model.

Finally, a concluding discussion of the contributions of the two research works and

conclusions are discussed in Chapter 4.

7

Chapter 2

MapReduce-based Area Skyline

for Location Recommendations

2.1 Introduction

With the advancement of technology, more and more people are inseparable from mobile

devices and GPS systems. For example, Google announced that there over 2 billion monthly

active users use Google Maps on the Android system. Mobile devices usually have limita-

tions on display size and processing power. We can generate recommendation systems to

recommend the information of potential interest, such as good locations of Google Maps,

to the users. However, with the ever-changing environments and locations of mobile users,

it challenges the researchers to generate appropriate recommendation systems in mobile

devices.

2.1.1 Skyline Query

In the information retrieval field, skyline operation [2] is a well-known approach for selecting

a small number of interesting objects from a large database. Let D be a n-dimensional

database. D = {d1, d2, ..., dn} are the n attributes of D.

8

Definition 2.1.1. (Dominance) Given a set of points {p1, p2, ..., pr}, a point pi is said to

dominate another point pj(i 6= j) if pi is not worse than pj in any of the d-dimensions and

pi is better than pj in at least one of the n-dimensions.

The skyline query returns some objects; the objects are not dominated by each other.

Each of the objects dominates at least one other objects in D. Since the skyline query

has an excellent ability in filtering the uninteresting objects, the author utilizes the skyline

query for the location recommendation problem.

In general, a good hotel should be close to excellent facilities, such as bus/train stations,

sightseeing spots, and shopping malls. Also, it should be far from unpreferable facilities,

such as other competitors, noise pollution areas, and open landfills. In this example, we

want to choose a hotel, which has a lower cost, and a shorter distance to the bus/train

station. But in general, the hotels near the bus/train stations usually have higher room

prices; while the hotels with inconvenient transportation tend to have a lower price for the

rooms.

Table 2.1 and Figure 2.1 show a typical example of skyline query for selecting locations.

In Table 2.1, there are five candidate hotels {h1, h2, ..., h5} with two dimensions, which are

the room price and the distance to bus/train stations. For instance, the room price of the

hotel h1 is 3, and the distance the bus/train station is 8. The hotel h1 has the lowest

room price but the longest distance; while the hotel h4 has the highest room price but the

shortest distance. In Figure 2.1, we map the five two-dimensional data into the coordinate.

According to the definition 2.1.1, the hotel h2 and the hotel h5 are dominated by the hotel

h3. The hotels h1, h3 and h4 are not dominated each other. Therefore, the skyline objects

are {h1, h3, h4}.

9

Table 2.1: A Hotel Example.

ID Price Distance

h1 3 8
h2 5 4
h3 4 3
h4 9 2
h5 7 3

Figure 2.1: A Conventional Skyline Example.

There already existed many skyline query algorithms, which are recorded in [3, 4, 5].

However, most of the existing skyline query approaches can only retrieve zero-dimensional

data, which means we cannot retrieve the two-dimensional data, such as locations. To filter

the interesting objects of spatial data, we apply the spatial skyline query.

2.1.2 Spatial Skyline Query

Let P be a set of spatial points, and F be a set of facilities, which can be categorized into

m types, F = {F1, F2, ..., Fm}. We annotate “+” mark on the facility symbol to represent

preferable facilities F+, while we annotate “−” mark on the facility symbol to represent

unpreferable facilities F−.

Figure 2.2 and Table 2.2 illustrate the skyline query for spatial points. In this case, the

businessman would like to find a good hotel on a map. In Figure 2.2, we use square marks,

10

triangle marks, and star marks to indicate the location of facilities. The star marks, de-

noted as F1+ = {f1+1 , f1+2 , f1+3 }, and triangle marks, denoted as F2+ = {f2+1 , f2+2 , f2+3 },

are preferable facilities. The square marks, denoted as F3− = {f3−1 , f3−2 , f3−3 }, are un-

preferable facilities.

Figure 2.2: Some Facilities in a Map.

Table 2.2: Distance Table.

Point F1+ F2+ F3−

p1 3 5 -10
p2 4 9 -7
p3 8 1 -8

Based on the map of Figure 2.2, we calculate the Table 2.2. In the table, there are three

candidate points p1, p2, p3. We record distance from each candidate point pi(i = 1, 2, 3) to

the closest facility of F1+, F2+, and F3− types. For example, the closest F1+ (star) facility

from p1 is f1+1 , and the value of the distance is 3. Similarly, the closest F2+ (triangle)

facility from p1 is f2+1 , and the value of the distance is 5. The closest F3− (square) facility

from p1 is f3−3 , and the value of the distance is 10. Notice that we assume the smaller

value is better in each of the attributes. Then we multiply −1 to each distance value of

11

unpreferable facilities F−. In Table 2.2, point p1 dominates point p2, since the values of

F1+, F2+ and F3− of point p1 are smaller than the values of point p2. p3 is not dominated

by p1 and p2, since p3 is closer to F2+ than p1, p2 but farther to F3− than p2. So the

skyline objects are p1 and p3.

After comparing the distance values of each candidate points, we can calculate that the

points p1 and p3 are the skyline objects. Therefore, we can get the spatial skyline query

by calculating the two-dimensional data in Table 2.2.

In the above case, we assume that the candidate point pi always exists. However, in

some real-world scenarios, such point pi does not exist. For example, a businessman would

like to build a new supermarket in a blank area. In this case, we cannot find any candidate

points on a map. We must find such an area based on more preferable facilities around it,

and more unpreferable facilities away from it. The previous work of our team’s, recorded in

[6], Annisa have proposed the novel skyline query algorithm, called “Area Skyline Query”,

for selecting good areas in a map.

2.1.3 Area Skyline Query

Assume that A is a rectangular region, where a businessman wants to find an excellent

location to build his/her supermarket, on a map. Let F = {F1, F2, ..., Fm} be a set of

facility types, which are categorized into m types. Notice that the “+” mark and “-” mark

represent preferable facilities and unpreferable facilities, respectively. Each facility has a

set of facility objects, i.e., the preferable facility F1+ = {f1+1 , f1+2 , f1+3 }. In this example,

we define area skyline and area dominance as follows.

Definition 2.1.2. (Area Skyline) For simplicity, we assume that the region A is a square

region. We divide a square region A into n× n grids G = {g1,1, ..., gn,n}. A grid gi is said

to be in skyline if there is no other grid gj(i 6= j) in a map such that the distance of gj to

the closest preferable facilities are smaller than that of gi and the distance to the closest

12

unpreferable facilities are larger than that of gi.

Definition 2.1.3. (Area Dominance) Area Skyline is a set of grids, each of which is not

dominated by another grid in a map. Specifically, if there exists such gird gj, we say that

gi is dominated by gj or gj dominates gi.

Figure 2.3: An Area Skyline Example.

Figure 2.3 is an example of the area skyline query. In this example, the square region

A is divided into 8 × 8 grids. The facilities F1+, F2+, F3− are located into the grids. We

calculate the area skyline objects by the algorithm proposed in [6]. We call the algorithm

grid-based area skyline query (GASKY). In Figure 2.3, the shaded grids are the area skyline

objects, which dominate other unshaded grids, and are not dominated each other. For

example, the shaded grid at 7-th row and 4-th column is closer to the preferable facilities

f1+1 and f2+1 , and is farther from the unpreferable facility f3−3 than other unshaded grids.

By using the area skyline query, we can easily select good areas from a map. However,

the complexity of the area skyline query is much higher than the conventional skyline query.

Furthermore, the average processing time of area skyline query increases linearly with the

number of facilities increasing. In this work, we propose a novel algorithm, which is based

13

on the MapReduce framework, to reduce the complexity and average processing time of

area skyline query. We call the proposed novel algorithm “MRGASKY.”

The main contributions of this work are as follows.

1. In our previous work, we have proposed the algorithm for area skyline query compu-

tation. In this work, to reduce the high cost on complexity and time processing, we

propose a novel distributed algorithm for the area skyline query.

2. We propose a MapReduce-based area skyline query computation, which can reduce

the complexity, and efficiently reduce the cost of time processing.

3. We conduct an extensive performance evaluation, which shows the high efficiency and

scalability of our proposed algorithm.

2.2 Related Works

2.2.1 Skyline Query

In recent decades, there exist much literature working on skyline query computation. Broz-

sonyi et al. [2] first proposed the skyline operator in large database applications. In this

paper, the author proposed three main algorithms, Block Nested-Loop (BNL), Divide-

and-Conquer (D&C) and B-tree based schemes, to compute the skyline queries. BNL is

a simple algorithm by comparing an object to other objects in a naive way. Sort-Filter-

Skyline (SFS) is a novel algorithm, which improved BNL by the presorting operator, was

proposed by Chomicki et al. [3]. Tan et al. [4] proposed Bitmap and Index, the two progres-

sive algorithms, to improve the computation of skyline queries. To improve the retrieval

ability of skyline query algorithm, Papadias et al. [5] proposed an effective algorithm, called

Brach and Bound Skyline (BBS). BBS algorithm is a progressive algorithm, which is based

on the Best First Nearest Neighbor (BFNN) algorithm. In general, all the above skyline

14

query algorithms can be categorized into two classes, index-based algorithms, and non-

index-based algorithms, respectively. The BNL algorithm, D&C algorithm, and Bitmap

algorithm belongs to the non-index-based skyline algorithm. The B-tree based schema,

BF-NN algorithm, and BBS algorithm are examples of the index-based skyline algorithm.

With the development of technology of the Internet, the information shows exponential

growth. Also, data becomes more and more complex, and the dimensions become higher

and higher. Many researchers aim to address the dimensionality problem of skyline query,

such as the problem of skyline frequency [7], k-dominant skyline [8] and k-representative

skylines [9]. All the proposed skyline query processing algorithms on the above focused on

the non-spatial database. However, spatial data are quite common in the real world and

playing a vital role in real life. To improve the processing ability of spatial data, lots of

papers worked on spatial skyline queries.

2.2.2 Spatial Skyline Query

Sharifzadeh et al. [10] first proposed the spatial skyline query to resolve the problem of

spatial data processing. In the paper, they proposed three algorithms, B2S2 and V S2 and

V CS2 of spatial skyline queries. B2S2 and V S2 are algorithms for static query points,

and V CS2 algorithm is for dynamic query points, which exploited the pattern of change

in query points to avoid unnecessary re-computation of the skyline.

Moreover, there are lots of other literature, which aim to address the problems of the

spatial skyline queries [11, 12, 13, 14]. Kodama et al. [11] considered that the candidate

objects should be close to the facilities. They calculated the distance between the closest

facility and the candidates, and then transform the spatial, skyline problem to the conven-

tional skyline query problem. Kodama et al. [12] proposed an algorithm, which considered

non-spatial preferences also had an impact on the computation of spatial skyline. The

facilities in [11] and [12] are preferable facilities.

15

In [13], You et al. first proposed a novel progressive algorithm based on the TFSS

algorithm. The algorithm is called Branch-and-Bound Farthest Spatial Skyline (BBFS) to

compute the farthest spatial skyline queries. The algorithm used the unpreferable facilities,

and the experiment results outperformed the TFSS algorithm. However, the candidate

points should be not only close to preferable facilities but also far away from unpreferable

facilities. Based on this consideration, Lin et al. [14] proposed the EFFN algorithm by

using preferable facilities and unpreferable facilities.

The above papers assumed that the candidate points always existed. However, the

candidate objects may not exist in some real cases. Annisa et al. [15] first proposed the

Unfixed-Shape Areas Skyline (UASKY) algorithm to retrieve a small number of objects

without candidate points for location recommendations. Specifically, the authors divided

a given region A into several disjoint subregions by using a Voronoi Diagram. Again, for

every subregion, they executed the previous operation to divide the subregion by other

facility types. Finally, they calculated the Euclidean distance of each sub-subregion to the

closest surrounding facilities. After these operations, the spatial skyline problem without

candidates can transform into common skyline query problem.

Though the past work [15] can solve the area skyline problem, the complexity is very

high, since the iterative computation of Voronoi Diagrams. In [6], Annisa et al. proposed

another area skyline query algorithm, named Grid-based Area Skyline (GASKY), to reduce

the algorithm complexity and processing time. Different to the UASKY algorithm, GASKY

algorithm is based on grid partition. Specifically, they divided the region A into n×n grids,

and the experiment results outperformed the UASKY algorithm. However, the reduced

complexity and processing time cannot fit the real world very well. The processing time

increased linearly with the size of facility types, the number of objects, and the number of

grids increasing.

Our work is based on Annisa’s work [6]. The referenced work for the area skyline query

16

relies on the centralized indexing structure. However, at the age of big data, the amount

of data increase much fast. The centralized indexing structures cannot work well.

2.2.3 MapReduce Based Skyline Computation

With the development of technology of the Internet, the information shows exponential

growth. At the age of big data, distributed computations received more attention to

companies and researchers. Information retrieval is a vital part of big data processing.

In this subsection, we review the distributed skyline computations for big data.

Hose et al. [16] survived the skyline processing problem in highly distributed environ-

ments. MapReduce is a useful programming technique of the Hadoop platform and an

associated implementation for a massive volume of data processing. In recent years, the

MapReduce technique is widely utilized for computing skyline queries [18, 17, 19, 20, 21].

Zhang et al. [17] proposed three distributed algorithms based on MapReduce, called MR-

BNL, MR-SFS, and MR-Bitmap, to calculate the skyline queries. The Evaluation results

illustrated that the proposed three algorithms could process the skyline query more effective

than the conventional skyline algorithms. Chen et al. [18] also worked on the computation

of the skyline query by using the MapReduce framework. In the paper, they partitioned

the data space by using an angular partitioning, and the proposed model significantly

reduced the processing time. Papadias et al. [19] worked on k-dominant skyline query

processing by developing a MapReduce-based algorithm. Wu et al. [20] discovered the

skyline points progressively based on the grid structure. The proposed distributed skyline

query algorithm, called DSL, can improve the performance significantly. In [21], Wang et

al. adapted skyline computation to the MapReduce framework. Similarly, they splited the

data dimensions into several subpartitions iteratively by a grid-based scheme.

All the proposed algorithms of the above literature worked on conventional skyline

query processing. Unfortunately, few works implemented the spatial skyline queries by

17

using the distributed techniques. In this work, the author aims to apply the distributed

platform to compute the area skyline queries. Specifically, the author proposes a novel

MapReduce based algorithm computation for selecting good locations on a map.

2.3 MapReduce-based Area Skyline

In this section, the author proposes a novel distributed algorithm based on MapReduce

framework, called “MRGASKY”, to improve performance of the computation of area sky-

line query.

For simpolicity, we assume the rectangular target area A is a square region (see Figure

2.3).. Firstly, we divide the region A into n× n grids on average by using a grid structure.

Then, to identify the different grids, we assign IDs to all the grids. Specifically, we assign

IDs g1,1 to gn,n to the grids from the bottom-left to the top-right of A. Next, for grids in

the same row, we calculate the distance from each grid to each type of facility in the Map

function. Finally, for the grids in each column, we calculate the Euclidean distance from

each grid to the closest facility for each type in the Reduce function. The results of the

MapReduce operation are saved to the table like 2.2 shown. Using such a table, we can

transform the area skyline query to the conventional skyline query problem, and we can

retrieve the non-dominated grids.

To simplify the distributed area skyline problem, we assume that the distance between

two grids approximate to be the distance of the center points of the two grids. When the

length of the grid is small enough, the approximation is approximately equal to the exact

distance. Figure 2.4 shows an example of the simplification. We define the four vertexes of

a grid as a, b, c and d. Then ,the distance of a vetex d to the facility f can be represented

by dist(d, f). And star mark f is a preferable facility. The previous model in [6] define

the minmum distance and the maximum distance of a grid from to a facility point f is

dist(d, f) and dist(a, f). In our work, we simplify the model and define the distance of the

18

grid to the facility f as dis(g, h), where the points g and f are the centers of these two

grids.

Figure 2.4: An Example of the Simplification.

2.3.1 MRGASKY Algorithm

The author explains the details of the MRGASKY algorithm as follows.

Step1 We partition the map row by row. And in each row, we calculate the distance to

the closest facility of each type in the Map function.

Step1.1 Specifically, we divide a map into n rows. In the same row, the Map function

reads all the grids from left to right and right to left, respectively. Then the Map

function calculates the distance from every grid to the facilities. Initially, we assume

the values of all the grids are infinite. When a facility is encountered, we set the value

of the grid as zero. Then, the adjacent next grid is updated based on the former grid

plus one, until the next facility is encountered.

Figure 2.5 demonstrates the calculation process of the 7-th row of the map shwon in

Figure 2.3. The shaded grids are the preferable facilities of type F1. According to the

above algorithm, we set the values of the shaded grids as zero. By reading the grids from

the left to right side, we update the value of 5-th, 6-th, and 8-th grids to 1, 2, and 1.

Similarly, we update the values of the 6-th, 5-th, 3rd, 2nd, and the first grids to 1, 2, 1, 2,

19

and 3.

Figure 2.5: An Example of Step 1.1.

Step1.2 After the calculation from both sides, we choose the minimum value of every grid

as a result. Then we return the results from the Map function.

Figure 2.6 illustrate the process of step 1.2. For example, after calculating, the values

of the first grid are ∞ and 3. The minimum of this grid is 3. Similarly, the values of all

the grids are updated to 3, 2, 1, 0, 1, 1, 0, and 1. Notice that the Map function calculates

all the rows of a map.

Figure 2.6: An Example of Step 1.2.

The whole algorithm of the Map function is illustrated in Algorithm 1. The information

of the map is saved into the Hadoop Distributed File System (HDFS). The map is formed

as a binary image. That means, for the binary image of size n × n, mi,j(1 ≤ i, j ≤ n)

is an array, which includes every type of facilities in the grid of ith row and j th column.

mi,j [k](k ≤ m) is the kth element of array mi,j , where m is the total number of facility

types. mi,j [k] = 1 represents the facility of kth type is inside the grid gi,j and mi,j [k] = 0

represents that there are no facilities of kth facility type inside grid gi,j .

Usually, the output format of the Map function is the key−value pairs. The key is the

location of the grid gi,j . In other words, the key represents the column ID and row ID as j

and i respectively for the grid gi,j . The value represents the distance, which is calculated

20

in step 1.

Algorithm 1 Map Function for Step 1 Process

Require: A binary image

Ensure: (key, value)=(type x-coordinate of grids. y-coordinate of grids, distance)

1: for each line in HDFS do

2: calculate the Euclidean Distance from left to right: distleft→right

3: calculate the Euclidean Distance from right to left: distleft←right

4: end for

5: for each grid in the same row do

6: distmin = min(distleft→right, distleft←right)

7: end for

Figure 2.7: An Example of Step 1.

Figure 2.7 demonstrates the results after step 1 process of facility type F1+. Since

there are only three facilities of F1+ on the map, we only update the values of the 3rd row

and 7-th row. Other values in other rows are not updated.

Step2 In the Reduce function, we calculate the distance of each grid to the closest facility

by column-wise based on the results of Map operation.

Step2.1 In step 1, the key−value pairs are the row numbers and column numbers. In this

21

step, we sort and shuffle the key−value pairs by columns. First, the Reduce function

reads the key − value pairs in a parallel way. For example, for the i -th column, we

save the values into a stack from the bottom side to the upside. Notice that there

exists a corresponding stack for each column. The sorted and shuffled values are saved

to the corresponding stack. Then, we map the values in the stack of the same column

into a two-dimensional coordinate. The x-axis represents the column IDs of the grids,

while the y-axis represents the values of the stack. We name all these n points as

p1, p2, ..., pn, and bisect the two adjacent points pi = (xi, yi), and pj = (xj , yj), where

(1 ≤ i < j ≤ n). We represent the intersection of the vertical bisector pipj and x-axis

as xij . Then the function of xij can be calculated as follows.

xij =
(y2j − y2i) + (x2j − x2i)

2(xj − xi)
(2.1)

For example, there are three adjacent points pi, pj , pk and i < j < k. If and only if

xij > xjk, we delete the point pj from the stack. Otherwise, we retain the point pj in the

stack. To better understand the algorithm in step 2, we illustrate the two cases in Figure

2.8 and Figure 2.9, whether deleting the point pj or not.

Figure 2.8: An Example of Deleting Point pj .

22

Figure 2.9: An Example of Maintaining Point pj .

In Figure 2.8, since xij > xjk, we delete the point pj from the stack. Similarly, in Figure

2.9, since xij < xjk, we save the point pj into the stack.

Figure 2.10 shows the process of step 2.1 of the 5-th column of Figure 2.7. Firstly, we

compare x12 and x23. Since x12 > x23, we delete the point p2 from the stack. Then, the

stack is updated according to the previous operation. Again, we compare the values of x13

and x34. Since x13 < x34, we retain the point p3 into the stack. Update the stack until

all the points are retrieved, we return the results of the stack. In this example, the points

p1, p3 and p7 are retained into stack; while the points p2, p4, p5, p6 and p8 are removed from

the stack.

Figure 2.10: An Example of Step 2.1.

Step2.2 For each column on the map, we determine the proximate intervals [22] based on

23

the left points. First, we bisect the adjacent left points on x-axis. According to xij

and xjk (i < j < k), we can determine the dominated area of all the left points, i.e.,

the dominated area of the point pj is [xij , xjk]. Then, according to the dominated

areas, we determine the dominated points for the left points from the deleting points

of step 2.1. Specifically, if the column IDs of the deleting points in the interval

[xij , xjk], we say that the deleting point is dominated by the point pj . Finally, we

compute the Euclidean distance of this deleting point by using the value of the point

pj .

For example, Figure 2.11 demonstrates the process of step 2.2. In the figure, p1, p3 and

p7 are the results of step 2.1. In other words, these three points are the retained points.

First, we bisect the adjacent two points of p1, p3 and p3, p7, to calculate xij . Since x13 < 0

and x37 = 5, we set the dominated intervals of the points p3, p7 are [x13, x37] and [x37, 8]

respectively. In other words, the point p3 dominates four deleting points p1, p2, p4 and p5.

The point p7 dominates two deleting points p6 and p8. Then the Euclidean distance of all

the grids in the same column can be calculated in an obvious way.

Figure 2.11: An Example of Step 2.2.

Algorithm 2 demonstrates the whole process of the Reduce function. The input of

this phase is key − value pairs. The keys and values are the column IDs and the output

distance from the Map function. The outputs of the Reduce function are the Euclidean

24

distances of all the grids.

Algorithm 2 Reduce Function for Step 2 Process

Require: The results of the sorted and shuffle phase

Ensure: Area skyline objects

1: for each point sorted by x-coordinate in the same column do

2: if xij > xjk then

3: pop the point pj from the stack

4: end if

5: end for

6: for all un-popped points which are sorted by x-coordinate do

7: calculate the proximate interval of each point on x-axis

8: calculate the Euclidean Distance of the points in the interval

9: end for

10: //remove the dominated grids

11: for the record ri of the Euclidean Distance for all types of each grid do

12: if ri < rj then

13: remove the dominated grid from the record

14: end if

15: end for

16: return skyline objects

After this operation, we can transform the problem of area skyline processing to a

distance table of all the grids. It is a common skyline processing problem, and we can

calculate the area skyline objects easily. It means the area skyline objects are the shaded

grids such as Figure 2.3 shown.

Figure 2.12 shows an example results of step 2 of the type F1+. Notice that other

facility types, such as F2+ and F3− are also calculated in the MapReduce framework.

Intuitively, the proposed MRGASKY algorithm is the same process to the Voronoi

Diagram. However, the proposed MRGASKY algorithm can significantly reduce the com-

plexity of the Voronoi Diagram in the MapReduce framework. Moreover, the average

25

processing time can also be reduced to a constant.

Figure 2.12: Example of the Step 2 Process.

To better understand the proposed algorithm, the author demonstrates the whole data

flow of the MapReduce framework of facility type F1+ and F2+ in Figure 2.13.

The input of the MapReduce framework is the binary image, which saves all information

on a map. The information is stored in HDFS. Specifically, for each row of the input is

formed as the facility type F , row IDs n, and the values of the binary image. Then, we

partition the HDFS row by row and send the separated row data into Map function. In

the Map function, data are processed by the format of key − value pairs. After the Map

operation, the key − value pairs are regenerated. According to the intermediatekeys, the

new intermediate key − value pairs are grouped and sorted. After the sorted and shuffle

phase, the grids are grouped by column-wise. The grouped column-wise data are regarded

as the input of the Reduce function. Then the Reduce function calculates the Euclidean

distance of each grid by column-wise, and return the final results to the HDFS again.

26

Figure 2.13: MapReduce Data Flow of MRGASKY Algorithm.

2.4 Experimental Evaluation

In this section, we conduct two experiments to evaluate the average processing time of the

proposed MRGASKY algorithm. We implement all these models by using Python 3.5.2.

We compare the performance of the proposed MRGASKY algorithm with the GASKY

algorithm. GASKY algorithm is conducted on the Linux operating system, and the con-

figuration of the CPU is Intel Core i7 3.40GHz processor. The size of the main memory is

4GB.

For the experiments of the proposed MRGASKY algorithm, we implement it on Hadoop

2.5.2 version. We set four computing nodes for the MapReduce framework. All the four

computing nodes are conducted on the Linux operating systems, with 4GB main memo-

ries. The CPU of one of the four computing nodes are Intel Core i7 3.40GHz processor.

The retaining three computing nodes are Intel Core 2 3.16GHz, 3.16GHz, and 2.13GHz

processors.

For the two experiments, we use two kinds of data, synthetic dataset and real dataset

respectively. The main description of the datasets is explained as follows.

27

Synthetic dataset: We synthesize a dataset to learn the scalability of the proposed algo-

rithm. We denote the synthetic dataset as SYN. Specifically, we randomly generate

the two-dimensional data to represent the location of the facilities. We represent the

number of grids by n2, the number of facility types by m, and the number of objects

by obj, to evaluate the performance. We name these four experiments as SYN A1,

SYN A2, SYN B, and SYN C, to represent the varying of the number of grids, the

number of facility types and the number of objects, respectively.

Real dataset: We conduct the second experiment by using the real dataset, the U.S.

Geological Survey (USGS), which we call it “US”. In the US dataset, there records

2,033,545 objects at total 406,709 locations. There is a total of 40 facility types for all

the objects. We represent the experiments by US A, US B, and US C, respectively,

where the experiment US A is varying the number of grids n2, the experiment US B

is varying the number of facility types m, and US C is varying the number of objects

obj, respectively.

Since GASKY is the first algorithm for area skyline query, we can only compare the

proposed distributed algorithm MRGASKY with GASKY. Furthermore, in these two kinds

of experiments, we select the average processing time as the indicator to evaluate the

performance. All the two algorithms aim to generate a distance table to transform the

area skyline problem into the skyline query problem. Since the skyline query process is the

same process to remove the dominated locations from the dataset for the two algorithms,

and no difference in performance evaluation, we remove the computation of this part.

2.4.1 Efficiency of Synthetic Dataset

We first investigate the efficiency of the synthetic dataset in this subsection.

Effect on grid number: In these experiments, we conduct two sets of experiment

28

SYN A1 and SYN A2 to investigate the effect of grids. The number of objects of the

SYN A1 dataset is obj = 32. We fix the facility type as m = 4. It means we select four

types of facilities on the virtual map. Both the number of preferable facility types and the

unpreferable facility types are two. We vary the number of grids n2 with 32× 32, 64× 64,

128× 128, 512× 512 and 1024× 1024 respectively.

For the dataset SYN A2, the number of objects is larger than the dataset SYN A1. We

set the number of objects to obj = 2000. We fix the facility types as two,, which a kind

for the preferable facility, and a kind for the unpreferable facility. We vary the number of

grids n2 with 100× 100, 500× 500 and 1000× 1000.

Figures 2.14 and 2.15 demonstrate the results of effect on the number of grids. In Fig-

ure 2.14, the average processing time of both the GASKY algorithm and the MRGASKY

increase with the number of grids increasing. When n2 < 256×256, the GASKY algorithm

seems to work better than the MRGASKY algorithm. Because the number of grids n2,

facility types m = 4, and the number of objects obj = 32 are small enough, the GASKY

algorithm on the centralized indexing structure can work well. However, the average pro-

cessing time of the GASKY algorithm increases much faster than the MRGASKY algorithm

when n2 > 256×256. It means that with the data are big enough, the distributed algorithm

on the MapReduce can handle the big data better than the centralized indexing structure.

To better analyze the effect on the number of grids, we experiment with the dataset

SYN A2. For the dataset SYN A2, we enlarge the amount of data. The results show in

Figure 2.15. The average processing time of the GASKY algorithm increases faster than

the MRGASKY algorithm at the beginning. The increase seems to be linear of the GASKY

algorithm. Relatively, the MRGASKY algorithm has a steady increase with the changing of

the grids. The previous paper [6] has discussed that the GASKY algorithm takes more time

cost in the min −max table computation and the Voronoi Diagram building. Therefore,

the proposed MRGASKY algorithm has better scalability of the effect on the number of

29

grids.

Figure 2.14: Processing Time of SYN A1.

Figure 2.15: Processing Time of SYN A2.

Effect on facility types: For the dataset SYN B, we explore the changing of the

average processing time of the effect on facility types. We fix the number of objects as

obj = 10, 000. Also, the number of grids are set to n2 = 128 × 128. We vary the number

of facility types with 2, 4, 6, and 8, respectively. Notice that the number of facility types

consists the preferable facilities and the unpreferable facilities with the same size. For

example, when the facility type m = 4, both of the number of preferable facility types and

30

the number of unpreferable facility types are two.

We show the results of the effect on the number of facility types in Figure 2.16. It

is easily observed that the average processing time of the GASKY algorithm is larger

than the MRGASKY algorithm at the beginning in the figure. Furthermore, the average

processing time of the GASKY algorithm increases linearly with the changing of m, while

the MRGASKY algorithm is much smaller and tends to be stable at 40[sec.].

From the experiment SYN B, we can say that our proposed MRGASKY algorithm

outperforms the GASKY algorithm on the effect of facility types. Also, the MRGAKSY

algorithm has good scalability and can handle big data better than the baseline.

Figure 2.16: Processing Time of SYN B.

Effect on object number: For the dataset SYN C, we explore the changing of the

average processing time of the effect on the number of objects. In this experiment, we fix

the number of facility types as m = 2. Also, we set the number of grids to n2 = 128× 128.

We vary the number of objects with the size 4000, 8000, 12,000 and 16,000, respectively.

Figure 2.17 demonstrates the results of dataset SYN C. We can observe that the average

processing time of the GASKY algorithm is larger than the MRGASKY algorithm at the

beginning in the figure with the changing of the number of objects. Furthermore, the

31

average processing time of the GASKY algorithm increases linearly with the changing of

m, while the MRGASKY algorithm is much smaller and tends to be stable at 20[sec.].

From the experiment SYN C, we can say that our proposed MRGASKY algorithm

outperforms the GASKY algorithm on the effect of objects. Overall, the MRGASKY

algorithm maintains sufficient stability to handle “big data.”

Figure 2.17: Processing Time of SYN C.

2.4.2 Efficiency of Real Dataset

In this subsection, we conduct several experiments, which explore the effect of the average

processing time. We vary the number of grids, the number of facility types, and the number

of objects, in the real dataset, respectively.

Effect of grids: In the dataset US A, we mainly analyze the effect on the number

of grids. We fix the number of facility types as m = 2. Notice that both of the excellent

and unpreferable facility types are the same, and the values are 1. We set the number

of objects to obj = 1000. Then, we change the number of grids with the values are

n2 = 200× 200, 300× 300, 400× 400, 500× 500, and 600× 600, respectively.

Figure 2.18 demonstrates the effect on the number of grids of the real dataset US A.

We can easily observe that the average processing time of the GASKY algorithm is larger

32

than the MRGASKY algorithm at the beginning in the figure. Furthermore, the average

processing time of the GASKY algorithm increases linearly with the changing of n2, while

the MRGASKY algorithm is much smaller and tends to be stable at 40[sec.].

From the real dataset of the US A, we can say that our proposed MRGASKY algorithm

outperforms the GASKY algorithm on the effect of grids.

Figure 2.18: Processing Time of US A.

Effect of facility types: In the dataset US B, we mainly analyze the effect on the

number of facility types. We fix the number of grids as n2 = 200 × 200. Also, we set the

number of objects to obj = 1000. Then, we change the number of facility types with the

values is m = 2, 4, 6, and 8, respectively.

Figure 2.19 demonstrates the effect on the number of grids of the real dataset US B.

We can easily observe that the average processing time of the GASKY algorithm is larger

than the MRGASKY algorithm at the beginning in the figure. Furthermore, the average

processing time of the GASKY algorithm increases linearly with the changing of m, while

the MRGASKY algorithm is much smaller and tends to be stable under 50[sec.].

From the real dataset of the US B, we can say that our proposed MRGASKY algorithm

outperforms the GASKY algorithm on the effect of facility types.

33

Figure 2.19: Processing Time of US B.

Effect of objects: In the dataset US C, we discuss the effect on the number of objects.

We fix the number of grids as n2 = 200× 200. Also, we set the number of facility types to

obj = 2, and both of the preferable facility type and the unpreferable facility type are 1.

Then, we change the number of objects with the values is m = 2000, 4000, 6000, 8000 and

10, 000, respectively.

Figure 2.20 demonstrates the effect on the number of objects of the real dataset US C.

We can observe that the average processing time of the GASKY algorithm is larger than the

MRGASKY algorithm. Furthermore, the average processing time of the GASKY algorithm

increases linearly with the changing of obj, while the MRGASKY algorithm is much smaller

and tends to be stable under 50[sec.].

From the real dataset of the US C, we can say that our proposed MRGASKY algorithm

outperforms the GASKY algorithm on the effect of objects.

34

Figure 2.20: Processing Time of US C.

Overall, our proposed MRGASKY algorithm has a significant improvement on perfor-

mance comparing to the previous GASKY algorithm of the area skyline query problem for

location recommendation on a map. In other words, the MRGASKY algorithm can handle

“big data” well.

2.5 Concluding Remarks

Location-based recommendation systems are essential for mobile applications. Many map-

based applications can filter the uninteresting locations for mobile users, and recommend

a small number of areas for users. In general, an interesting or a good location should

always be surrounded by preferable facilities, and should also be far away from unpreferable

facilities. In the previous work [6], Annisa et al. has proposed area skyline queries based

on a grid structure, called GASKY, to retrieve good locations on a map. However, the

complexity and the average processing time of the GASKY algorithm is very large, since

the Voronoi Diagram and max−min table computation cost a lot.

In this work, we proposed a novel distributed area skyline query, which is based on

the MapReduce framework. The novel algorithm, called MRGASKY, aims to improve

the performance, i.e., the average processing time, comparing to the GASKY algorithm.

35

To confirm the effectiveness and efficiency of the MRGASKY algorithm, we conducted

experiments. The experimental results illustrated that the average processing time of the

MRGASKY algorithm tends to be stable with the number of grids, the number of facility

types, and the number of objects increases. Overall, the proposed MRGASKY algorithm

can handle the “big data” better and more effective than the GASKY algorithm.

For applications, the MRGASKY algorithm can be utilized in some specific scenarios

as follows.

• In the travel filed: The utilization of map-based applications on mobile devices is

very common for travelers during a trip. In general, travelers would like to travel

to places which have convenient transportations and are close to famous sightseeing

spots. Also, the places should be far from the pollution areas and wildernesses.

In other words, a good location should be close to preferable facilities and be far

from unpreferable facilities according to user preferences. The proposed MRGASKY

algorithm can recommend such good locations to the tourists of mobile devices in a

short time.

• In the business field: It is a typical case for people in business, who want to find some

good locations for the company building. For example, a real estate developer would

like to search for an area to build a community. In this case, the great area should

be close to some convenient places, such as bus/train stations, malls, and schools.

Moreover, the desirable area should also be far away from some unpopular places,

such as pollution areas, wildnesses, and noisy factories. The proposed distributed

MRGASKY algorithm can also be applied into the business field, to help such the

real estate developers find the potential areas on a map. Also, the MRGASKY

algorithm can help the company reduce the survey cost in general.

In the future, we will take some non-spatial properties, such as the prices of the areas,

36

the population densities of the regions into account. Also, we will consider the k−dominant

problem, since the dimensions of data are more and more sophisticated in the age of “big

data.” Moreover, we would like to apply our algorithm in the map applications to help

more people to make location recommendations.

37

Chapter 3

Parameter Estimation of Queueing

Systems with Utilization Data

3.1 Introduction

3.1.1 Performance Evaluation

Performance evaluation plays a vital subject in many fields, such as the performance eval-

uation of traffic, the performance evaluation of computer systems, etc. For example, the

performance evaluation of traffic can alleviate traffic pressure effectively, and help cities to

carry out road planning and construction. Also, the performance evaluation of computer

systems can help the designers determine the system configuration in the system design

phase. For example, We can determine the number of CPU from the performance evalua-

tion of computation cost. From the evaluation of storage, we can determine the memory

size. However, with the advancement of computer technology, a tremendous amount of

new data is generated every day. The improvement the computing power and computing

capacity of computers are not economical and unrealistic sometimes. As a way to solve

the problem, the recent design of system architecture tends to combine existing systems

38

as models, which is called the system of systems (SoS) [23]. The integration of SoS can

effectively improve the utilization of computer systems, and can also reduce economic con-

sumption. So, performance evaluation of the integrated systems, such as SoS, becomes

more and more critical in recent years.

In general, there are three main performance evaluation methods for computer systems,

measurement-based performance evaluation, simulation-based performance evaluation, and

model-based performance evaluation, respectively. We usually use a measurement-based

approach to evaluate the performance of existing systems. A simulation-based approach

is more flexible and accurate for the systems under designing. However, the simulation-

based method takes too much time in deriving models. The model-based approach is the

most commonly used approach of performance evaluation, which can build a mathematical

model, and analyze the model quantitatively.

3.1.2 Queueing Systems

Queuing-based model is the typical method for model-based performance evaluation. Sta-

tistical inference in queueing theory [24, 25, 26, 27, 28] has attracted many researchers in

the past decades.

In general, there are several main components for a queueing system, the input, the

queue, and the server, respectively. In a computer system, the input is a flow of jobs or

tasks. The input jobs wait for service in the queue. The jobs or tasks leave the queueing

system after service. In general, we represent a queueing system by using the notation

A/S/m/k. Here, the symbol A represents the type of an arrival process, S represents the

types of service distribution, m represents the number of servers, and k is the capacity of

a queue. For example, the notation M/M/1/k represents a typical queueing system. Jobs

or tasks arrive at the queueing system following Poisson distribution, and service times

of these jobs are following an exponential distribution. There is only one server in this

39

queueing system with a capacity of k.

The problem of estimation concerning the parameters of queueing systems such as ar-

rival rate and service rate is an essential thing in the queueing systems [24, 29, 30, 31, 32, 33].

Thiruvaiyaru et al. [24] estimated the parameters of arrival and service rates. In this work,

they assumed that the system is continuously observable over a fixed interval for inter-

arrival times and service times as an open Jackson network. Clarke et al. [31] generated

a M/M/1 queueing system, and estimated the Poisson arrival rate and exponential ser-

vice distribution by collect the arrival times and departure times in a fixed time interval.

Thiruvaiyaru et al. [32] generated an empirical Bayes model for a M/M/1 single queue and

estimated the Poisson arrival rate and exponential service rate after the collection of data

of observation. Basawa et al. [33] collected waiting times from n successive customers, and

estimated the parameters of a GI/G/1 queueing system.

Most of the above literature [24, 31, 32] were interested in the experimental results that

occur randomly for the counts of events within intervals of time. The Poisson distribution

is a typical discrete distribution, which is usually used into the statistical inference of

queueing theory. The Poisson distribution can observe the counts of the event in a given

time interval. In general, the parameter of the Poisson distribution is the mean number

of events per time interval. In other words, the arrival rate of the Poisson distribution is

constant. However, for most the real cases in the world, the arrival processes are always

changing over time. Such a constant assumption for the arrival rate cannot work well in the

above cases. For example, the arrival process is always varying dynamically of the traffic.

The arrival rate of transportations in the morning rush hour or evening rush hour is much

higher than other time. Furthermore, the arrival rate at morning rush hour should also be

different from evening rush hours. Also, the arrival rates of customers of a convenient store

at different periods should be changed. The customers’ arrival rate at mealtime should be

much higher than other time, and the arrival rate at midnight should be the smallest.

40

3.1.3 Non-homogeneous Poisson Process

To generate a better model to satisfy the real-world situation, we use the dynamical chang-

ing arrival rate to model the arrival process, which we call Non-homogeneous Poisson Pro-

cess (NHPP). The NHPP has already successfully been implemented to model the complex

independent arrival processes in many past works [34, 35, 36]. An NHPP is a generalization

of an ordinary Poisson process where events occur overtime randomly at a rate of λ events

per unit time. In general, we define the rate of an NHPP, which varies over time, by the

intensity function λ(t). We can find that the intensity function is a function of arrival rate,

which is respect with time t. In this work, we assume that the jobs or tasks of computer

systems arrive at the queueing systems following an NHPP, i.e., Mt/M/1/k. It means that

the queueing system has an NHPP arrival Mt, exponential service time M with one single

server and queue capacity k.

On the other hand, all the queueing systems of the above literature are observable.

In other words, we can collect the arrival times and the number of arrivals directly in a

time interval. However, in some unobservable systems, we cannot estimate parameters

by directly observing the arrival times and the number of arrivals. For example, in a

computer system, CPU utilization is a widespread data type and can reflect the usage of

the computing resource. CPU utilization data can be collected easily from a computer

system. However, we cannot know the information on the arrival time and the service

time of CPU-tasks from CPU utilization data directly. The observations of the arrival and

service for the estimation are quite limited in this case.

In this work, we focus on generating a novel model to estimate parameters with uti-

lization data. Utilization data are a kind of time-series data. Utilization data refer to the

usage of processing resources or the amount of work handled by a computing node. In

general, we define the utilization data as the time fractions of busy periods in fixed time

intervals. Utilization data is parctically used to reprensent server conditions, such as CPU

41

utilization data, health care utilization data, etc. The definition of utilization data shows

one of the properties that the data collection process of utilization data allocates in a series

of discrete-time slices. Besides, there exists another slice adjacent to the collection slice,

where we cannot monitor and collect information. Utilization data is the only data we can

get in computer systems, and the estimation procedure should be developed.

The main contributions of this work are as follows:

1. We mainly estimate the arrival process of a queueing system from utilization data.

To the best of our knowledge, this is the first paper to estimate the arrival process by

using utilization data. In general, utilization data is defined as a fraction of a busy

period in a fixed time interval. We cannot get exact arrival time and service time

from utilization data. It is challenging for us to generate a novel model to estimate

parameters from utilization data.

2. To better model the arrival process in the real world, we consider Non-homogeneous

Poisson process as the input. The queueing model is noted as Mt/M/1/K. Since the

intensity function of the NHPP is a function of rates, which is respected with time

λ(t), the NHPP is more realistic and complex than the conventional Poisson process.

To simplify the problem, we make an approximation of the NHPP and transform

the dynamical complex arrival process to a series of Homogeneous Poisson Process

(HPP).

3. We aim to estimate the arrival process of the Mt/M/1/K queueing system from

incomplete utilization data. To make accurate estimations, we propose to apply the

Maximum Likelihood Estimation (MLE) via the Expectation-Maximization (EM)

algorithm.

4. In the experiments, we conduct an extensive performance evaluation based on simu-

lated utilization data and real CPU utilization data respectively to verify the proposed

42

model.

The rest of the paper is organized into several sections. Section 3.2 reviews the

related works. Section 3.3 shows the definitions in detail of the Mt/M/1/K queueing

systems. In Section 3.4, the author demonstrates the estimation approaches, such as the

MLE method and the EM algorithm to estimate parameters. Next, in Section 3.5, the

author conducts some experiments with the simulated utilization data and the real CPU

utilization data to estimate the intensity function of an NHPP arrival process. Besides,

the author demonstrates the response time of the queueing system to verify the proposed

model. Finally, in Section 3.6, the author concludes this work.

3.2 Related Works

3.2.1 Queueing Systems

Statistical inference of queueing systems has attracted many researchers in recent decades

[24, 25, 34, 37, 38]. A queueing system can model many processes. We can make the

analogy to the queues we encounter in our daily life, such as patients waiting for lines in a

hospital [39], phone call systems [40], and shipping container in a seaport [41]. In general,

there are three typical components for a queuing system, arrival process, service process,

and a queue, respectively. It is vital for a queueing system to estimate the parameters such

as the arrival rate and service rate. [24] consider the case that travelers wait for service,

as the objective queueing system. To simplify the queueing system, the authors proposed

a simple M/M/1 queueing model. In the queueing system, customers arrive at the queue

following Poisson distribution. The service time follows an exponential distribution with

a single server. Basawa et al. [25] proposed two specific queues, named M/M/1 and

M/Ek/1. M/M/1 is a typical and simplest queueing system. Different to the previous

queueing system, in the queueing system of M/Ek/1, the author model the service time

43

followed Erlang distribution. They estimated parameters, i.e., the mean number of events

per time interval λ, from waiting for time data of n successive customers. Since waiting

time data are partial data, it is much simpler than inter-arrival times and service times.

Fischer et al. [34] generated a M/G/1 queueing model, where the service time follows

gamma distribution from waiting time data. They proposed an approximation approach

to simplify the waiting time distribution. Specifically, they used the Laplace transform to

transform the waiting time distribution instead of the waiting time distribution itself. In

[37], Ross et al. proposed to estimate parameters of a M/M/c queueing system with queue

length data, which were collected by n successive time points. They generated density-

dependent transition rates of a Markov process by taking the arrival rate to be of the same

order as the number of servers. In [38], Liu et al. proposed a queueing system based on the

queue length. They used the number of queueing vehicles to represent the queue length

and used a real-time length estimation with probe vehicles’ data to estimate parameters.

All the above papers considered the input follow a Homogeneous Poisson Process, which

means the arrival rates λ represent the mean number of events per time interval. Since the

Poisson distribution assumed that the arrival rate is a constant, it can only model some

simple arrival process of customers or jobs of queueing systems. However, in real-world

situations, the arrival processes are changing over time. In these cases, we consider an

NHPP to represent the dynamical arrival process.

The intensity function λ(t) of an NHPP is a function of arrival rate λ, which is respect

with time t. The arrival process of such an NHPP is much complicated and challenging

than an HPP. Rothkopf et al. [42] made an approximation for a queueing system with

NHPP input. The proposed queueing system contained an arrival distribution with time-

varying and service rates with a single server. Heyman et al. [43] generated a Mt/G/c

model, where the input followed the NHPP, the service distribution followed the gamma

distribution with c servers. Green et al. [44] proposed a queueing model with the NHPP

44

input. Since the nonhomogeneous process rate was a function of time t, it is too challenging

to estimate such time-continuous rate. They made an approximation to the non-stationary

intensity function. In [45], Pant et al. modeled the waiting traffic system by the annotation

Mt/M/1. On the formulating of the mathematical model, they got the mean waiting time

of customers, mean time spent, the mean number of customers iteratively.

3.2.2 Maximum Likelihood Estimates

The Maximum Likelihood Estimates (MLE) and the Moment Estimate (ME) are two typ-

ical estimation methods for the arrival and service parameters of queueing models. In

statistics, the MLE is a method of estimating the parameters by maximizing a likelihood

function. The primary assumption of the MLE is that the observed data is most probable.

Clarke et al. [31] estimated the arrival and service parameters of a M/M/1 queueing

model by using the MLE. The M/M/1 queueing model, proposed by Thiruvaiyaru et al.

[32], have mentioned on the above, used an empirical Bayes approach to determine the

arrival and service parameters. Benes [46] generated a queueing model for a telephone

exchange system, which had an infinite number of trunks. The parameters were estimated

from a standard queueing system by the ME. Wang et al. [47] considered a M/M/R/N

queue, which the arrival and service distribution were the Poisson and exponential distribu-

tion with multi-servers. They developed the confidence interval formula for the estimated

results by using the MLE. In [48], Amit et al. estimated the NHPP intensity function of a

traffic system by observing the number of customers from a Mt/M/1 queueing system.

Most of the above works need a complete collection of data in a fixed time. In practice,

however, missing data or incomplete data always occur. Therefore, researchers usually use

the Expectation-Maximization (EM) algorithm to process the statistical inference under

missing data.

45

3.2.3 Expectation Maximization Algorithm

The EM algorithm is a technique that finds the MLE in parametric models for incomplete

data. In general, given a set of incomplete data, the EM algorithm is an iterative procedure

to find the MLE of the parameter vector by repeating the following steps.

1. The expectation E-step: Given a set of parameter estimates, the E-step calculates

the conditional expectation of the complete data log-likelihood given the observed

data and parameter estimates.

2. The maximization M-step: Given a complete data log-likelihood, the M-step aims

to find the parameter estimates to maximize the estimates form E-step.

The two steps are iterated until the iterations coverage.

The EM algorithm is first proposed by Dempster et al. [49]. Based on this work,

Wu [50] discussed the convergence of the EM algorithm. Wu et al. considered that an EM

sequence coverages to a unique MLE with a unimodal and differentiable likelihood function.

Besides, Wu found that the EM algorithm was powerful to process the multi-parameter

stochastic model. Rydén [51] estimated parameters of a model, called Markov modulated

Poisson process (MMPP) by applying an EM algorithm. In [52], Basawa et al. derived

arrival parameters of a GI/G/1 queue by applying the EM algorithm with missing data.

In this work, Basawa collected partial waiting times as the observed data with the “First

Come First Served” (FCFS) discipline. Okamura et al. [53] collected partial group data

and estimated parameters of a Markovian arrival process (MAP). They first calculated

the log-likelihood by using the MLE method and applied the EM algorithm based on the

results of the log-likelihood function.

In general, the EM algorithm can guarantee the likelihood increase for every iteration

operation. Also, the E-step and M-step are often pretty simple for many problems in

terms of implementation. In this work, the author considers applying the EM algorithm

46

to estimate the Mt/M/1 queueing model based on incomplete data.

On the other hand, all the mentioned past works estimated the parameters from the

exact arrival time and service time. For example, the waiting times have a direct relation

to the service distribution. Also, after observing in a fixed time, the arrival related data

can directly be collected, such as the traffic volume or telephone calls. In other words, the

past works assumed that we could observe the arrival time or the number of arrivals in a

time interval. However, in a real-world situation, such the data cannot be observed, such as

utilization data. For example, CPU utilization data is the most common data in computer

systems. CPU utilization data reflect the computation cost of the CPU. However, the

arrival process of the CPU queueing system cannot be observed directly. So the parameter

estimation from CPU utilization data is complicated and challenging for researchers.

In this work, the author aims to estimate the NHPP arrival process of Mt/M/1 queue-

ing systems, by using an MLE via the EM algorithm from incomplete utilization data.

Firstly, the author makes several assumptions for utilization data. Then, the author gen-

erates an Mt/M/1 queueing system, whose jobs arrive at the system following an NHPP.

Next, to simplify the non-stationary arrival process, the author makes an approximation

of the NHPP input. Specifically, the author transforms the intensity function to a series

of HPPs. For the estimation of HPPs, the author applies the MLE via the EM algorithm.

In the experiments, the author first generates the utilization data through simulation.

Also, the author collects real CPU utilization data. The evaluation results investigate the

effectiveness of the proposed method.

3.3 Mt/M/1/k Queue

Assume that the queueing system only has one server, called Mt/M/1/k, with the First

Come First Served (FCFS) discipline. Suppose the tasks arrive at computer systems fol-

lowing an NHPP and represent the intensity function by the notation λ(t). Since there

47

is only one server in the system, the first arrived task can be served directly. The next

task waits in the queue if the previous job is being served. The queueing system performs

a similar process for the next arrived tasks until the tasks waiting for service exceeds the

capacity of k. The service time follows the exponential distribution, where the service rate

is µ.

We can use a nonhomogeneous Markov Chain can represent the system behavior. The

infinitesimal generator can be shown as follows.

Q(t) =



−λ(t) λ(t)

µ −(µ+ λ(t)) λ(t)

. . .
. . .

µ −µ


(3.1)

3.3.1 Approximation of an NHPP

An NHPP is similar to an ordinary Poisson distribution, except that the mean rage of

arrivals is allowed to be dynamically changed concerning time t. Since the intensity function

λ|(t) of an NHPP is a function of time t, it is not easy for the estimation of the arrival

process. In general, a discrete model is more simple than the time related continuous model.

It motived us to make an approximation to transform the intensity function λ|(t) into a

series of Poisson distributions. And, each Poisson distribution has a piecewise constant

arrival rate λ.

Explicitly, we define the total observation time of the arrival process as [0, T]. Then we

divide the observation time [0, T] into n (n ≥ 1) equal time slices. We represent the equal

time slices by the symbol ∆t. Then, for the i-th (1 ≤ i ≤ n) period, the jobs arrive at the

system following an HPP, and the arrival rate is λi. If the length of the equal time slice is

small enough, the series of the HPPs can be integrated to be a continuous NHPP.

48

The approximation of the NHPP can be formulated as follows.

λ(t) =



λ1 (0 ≤ t ≤ ∆t)

λ2 (∆t < t ≤ 2∆t)

...
...

λn ((n− 1)∆t < t ≤ T)

(3.2)

3.3.2 Utilization Data

Define the utilization data as the time fractions of busy periods in fixed time intervals. The

definition of utilization data shows one of the properties that the data collection process of

utilization data allocates in a series of discrete-time slices. Assume that the arrival process

in the i-th time slice ((i− 1)∆t, i∆t] follows an HPP, where the arrival rate is λi. For the

utilization data, we make several assumptions:

• Utilization is computed at every fixed time interval.

• Each time interval consists of two periods: the unobserved period and the observed

period.

• Utilization on a time interval can be computed as a time fraction of busy time over

total time only in the observed period.

• In an observed period, there is at most one change from busy (idle) to idle (busy).

The first three assumptions illustrate that utilization data could be monitored as a

time fraction only at the observed period. The fourth assumption demonstrates that the

observed period is sufficiently small so that more than one state change cannot occur in

one observation period.

Figure 3.1 demonstrates the possible behavior of the system state of the observed and

unobserved periods for utilization data. Let tu and to be the time lengths of unobserved

49

and the observed periods, respectively. Let Bt represent the length of a busy time, and It

represent the length of idle time in a time slot. Based on the mentioned assumptions, the

utilization in a time slice tu + to can be formulated by Bto/(Bto + Ito) with to � tu.

Figure 3.1: Possible behavior of system state and observed and unobserved periods for
utilization.

3.4 Parameter Estimation

In this section, the author aims to estimate arrival parameters by using MLE. However,

based on the above assumptions of utilization data, we cannot monitor the utilization data

at the unobserved periods. In other words, the lack of data at the unobserved periods

causes utilization data being incomplete data. The author applies the EM algorithm to

resolve the problem of incomplete data.

3.4.1 Likelihood Function

In statistics, the MLE is a method of estimating the parameters by maximizing a likelihood

function. The primary assumption of the MLE is that the observed data is most probable.

50

In this work, the author formulates the likelihood function from utilization data by using

the MLE.

Define the two infinitesimal generators of i-th period as follows.

Q0
i =



−λi

−(µ+ λi) λi

. . .
. . .

µ −µ


, (3.3)

Q1
i =



λi

µ

O


, (3.4)

where O is the zero matrix. Note that Qi = Q0
i +Q1

i .

Let utilization be D = (D1,D2, . . . ,Dn). The utilization data in i−th time period ∆t

is defined as Di = (u1i , u
2
i , . . . , u

k
i), 0 ≤ uji ≤ 1. We formulate the likelihood function as

follows.

L(λ1, λ2, · · · , λn;D) = pL1(λ1;D1)L2(λ2;D2) · · ·Ln(λn;Dn)1, (3.5)

Li(λi;Di) = Li(u1i)Li(u2i) · · · Li(uki), (3.6)

51

Li(u) = exp(Qitu)Λ0 exp(Q0
i (1− u)to)Q

1
i exp(Q0

iuto)

+ exp(Qitu)Λ1 exp(Q0
iuto)Q

1
i exp(Q0

i (1− u)to),

if 0 < u < 1 (3.7)

Li(u) = exp(Qitu)Λ0 exp(Q0
i to), if u = 0, (3.8)

Li(u) = exp(Qitu)Λ1 exp(Q0
i to), if u = 1, (3.9)

where p is the initial probability vector. Also, Λ0 and Λ1 are (K + 1)-by-(K + 1) block

matrices;

Λ0 =



1

0

. . .

0


, (3.10)

Λ1 =



0

1

. . .

1


. (3.11)

3.4.2 EM Algorithm

We apply the EM algorithm to resolve the problem of incomplete data and to improve

the scalability of the estimation algorithm based on the previous computation result of the

likelihood function.

In general, there are two steps, named E-step and M-step, for the EM algorithm:

• E step: compute the expected log-likelihood function with the posterior probability

52

of the hidden variables. The formula can be expressed:

E[log p(D,U ;θ
′
)], (3.12)

where D is the observed data, U is the missing data in the unobserved period and θ
′

is the parameter vector.

• M step: maximize the expected log-likelihood function to find the parameter θ

θ = argmaxE[log p(D,U ;θ
′
)], (3.13)

For example, EM formula for the arrival rate from i state to j state as λi,j is given by

λi,j =
E[Ni,j]

E[Si]
=
E[NU

i,j +NO
i,j | D]

E[SU
i + SO

i | D]
, (3.14)

where Ni,j is the number of transition from state i to state j, Si is the sojourn time in state

i, NU
i,j is the number of transition from state i to state j at unobserved time period, NO

i,j is

the number of transition from state i to state j at observed time period, SU
i is the sojourn

time in state i at unobserved period and SO
i is the sojourn time in state i at observed

period.

Let the symbol T be the total monitor time, and the symbol n be the number of equal

time slices of the time T . If the n is too small, the length of a time slice is too large

to estimate the intensity function well. For example, when n = 1, the intensity function

λ(t) = λ. The NHPP is transformed into an HPP with the arrival rate λ. If n is too large,

the length of a time slice tends to be too small, which may cause the overfitting problem

that the estimation λ(t) overreacting to minor fluctuations.

In this work, n is the only hyper-parameter. The author utilizes the Akaike Information

Criterion (AIC) to quantify the goodness of the model. The AIC is an estimator of the

53

relative quality of statistical models for a given set of data. Given a collection of models

for the data, AIC estimates the quality of each model, relative to each of the other models.

Thus, AIC provides a means for model selection. When AIC takes the minimum value, the

n may the best.

AIC = −2LLF + 2(] of parameters) (3.15)

where LLF is the maximum value of the log-likelihood function.

So we can use this method to select the minimum value of AIC as the number of

parameters is from 1 to n (n ≥ 1).

3.5 Numerical Experiments

In this section, the author conducts two numerical experiments, the experiment on simu-

lation and the experiment on real CPU utilization, respectively.

3.5.1 Simulation

We set the intensity function of the NHPP is as follows.

λ(t) = sin(0.004t) + 1 (3.16)

For the Mt/M/1/k queueing system, we set the exponential service rate to µ = 10 with

the system capacity of k = 10. Also, we define the unobserved time length and the observed

time length as tu = 0.95, to = 0.05. We set the total observation time is T = 2000, and

monitor the utilization data per second. Figure 3.2 demonstrates the utilization data of

simulation.

54

The x-axis represents the observation times. Since the utilization data are collected per

second, we can collect 2000 utilization data. The y-axis on the left represents the utilization

data. The utilization changes rapidly from 0 to 1. The y-axis on the right is the intensity

function, shown in formula 3.16. The utilization tends to be high when the value of the

intensity function is large; while the utilization is changed to be zero when the intensity

function is zero.

Figure 3.2: Utilization of simulation.

The estimated intensity function changes when the values of n change. To select the

best model concerning n, we utilize the AIC approach. Table 3.1 exhibits the values of

AIC with respect to n, where 1 ≤ n ≤ 30. To examine the effect of a large value of n, we

also estimate the intensity function, when n = 100.

From the table, we find the optimal number of the time interval is n = 12. The

minimum value of the AIC is 1280.997. The estimation results in the table are further

depicted from Figure 3.7 to Figure 3.37.

In Figure 3.7, the estimation of the intensity function is a constant over the totoal

T = 2000. It means that the intensity function of the NHPP is same to the HPP. The

55

Table 3.1: AIC of the model.

n LLF AIC

1 -712.987 1427.973

2 -698.927 1401.854

3 -681.246 1368.492

4 -648.228 1304.455

5 -662.962 1335.924

6 -639.015 1290.030

7 -644.716 1303.431

8 -635.233 1286.466

9 -632.422 1282.844

10 -634.796 1289.592

11 -634.506 1291.011

12 -628.498 1280.997

13 -633.896 1293.792

14 -626.879 1281.758

15 -629.794 1289.588

n LLF AIC

16 -626.644 1285.288

17 -629.651 1293.302

18 -625.456 1286.913

19 -625.239 1288.479

20 -627.769 1295.537

21 -625.390 1292.780

22 -625.998 1295.995

23 -624.723 1295.447

24 -624.933 1297.865

25 -621.882 1293.765

26 -623.207 1298.413

27 -623.246 1300.491

28 -624.711 1305.421

29 -623.426 1304.851

30 -618.796 1297.592

100 -590.283 1380.566

value of the AIC equals to 1427.973, and it is much higher than other models because

the HPP cannot model the arrival process well. This result also illustrates that the HPP

cannot fit the real-world case. The Mt/M/1/k queueing system, which has the NHPP

arrival process is better than the ordinary M/M/1/k queueing system in this case.

Similarly, the estimation results when n = 2, 3, ..., 11 exhibit from Figure 3.8 to 3.17.

As the value of time slice n increase, the value of the AIC tends to be smaller. It means

that the model tends to be better when the time slice n is more significant from 1 to 11.

When n = 12, the AIC is the smallest, and the estimated result exhibits in Figure 3.18.

As the value of n is larger than 12, the AIC is larger. The reults exhibit from Figure

3.19 to 3.36. In these cases, although the estimated intensity functions approach the exact

intensity function, they tend to cause the complexity of the model increasing. When

n = 100 in Figure 3.37, the time slice n tends to be too large to estimate the optimal

intensity function.

56

3.5.2 Real CPU Utilization

In this experiment, we utilize the real CPU utilization data to estimate the intensity func-

tion of the Mt/M/1/k queueing system. Specifically, we monitor the CPU utilization data

from two servers, named Server A and Server B, in a laboratory in Hiroshima University.

We exhibit the evaluation of the average response time for the integrated system.

We monitor the CPU utilization data for about one week (7 days). We collect the CPU

utilization data per ten minute and collect it for 1000 times. The capacity of the queueing

system is set to k = 20. The observed time length and the unobserved time length are

set to tu = 599s, and to = 1s. We set service time of the Server A, and the Server B

follow an exponential distribution, and service rates of A and B are µA = 3 and µB = 2.5,

respectively. The collected real CPU utilization data exhibit in Figure 3.3 and Figure 3.4.

Figure 3.3: CPU utilization of server A.

Table 3.2 exhibits the values of AIC with respect to n, where 1 ≤ n ≤ 30.

From the table, we find the optimal number of the time interval of Server A is n = 17.

The minimum value of the AIC is 511.220. The estimation result when n = 17, is depicted

in Figure 3.5.

57

Figure 3.4: CPU utilization of server B.

Table 3.3 exhibits the values of AIC with respect to n, where 1 ≤ n ≤ 30 of Server B.

From the table, we find the optimal number of the time interval of Server B is n = 1.

The minimum value of the AIC is 1075.980. The estimation result when n = 1, is depicted

in Figure 3.6. It means that the optimal arrival process of Server B is an HPP.

To evaluate the performance of the integrated system, we integrate both Server A

and Server B. In other words, in an integrated system, after knowing the arrival intensity

function and service distribution of Server A and Server B, we integrate these two servers

into a system and deliver the overarching performance.

We set the integrated intensity function of Server A and Server B to λall = λA+λB. To

indicate the performance, we utilize the average response time of the integrated system. The

average response time is the time from a job arriving at the system to the job responding

to a request after service. We represent the average response time by the symbol Tres.

We set the service rate from 0.5 to 20.0. The performance of the integrated system

58

Table 3.2: AIC of the real CPU utilzation from Server A.

n LLF AIC

1 -258.486 518.972

2 -258.261 520.522

3 -258.262 522.524

4 -257.093 522.186

5 -254.924 519.848

6 -255.252 522.504

7 -255.614 525.228

8 -253.444 522.888

9 -255.874 529.748

10 -252.190 524.380

11 -251.220 524.440

12 -249.700 523.400

13 -249.126 524.252

14 -245.136 518.272

15 -244.162 518.324

n LLF AIC

16 -247.170 526.340

17 -238.610 511.220

18 -248.421 532.842

19 -244.532 527.064

20 -238.210 516.420

21 -242.499 526.998

22 -237.127 518.254

23 -237.382 520.764

24 -238.376 524.752

25 -242.572 535.144

26 -238.602 529.204

27 -237.785 529.570

28 -236.595 529.190

29 -235.270 528.540

30 -237.437 534.874

Table 3.3: AIC of the real CPU utilzation from Server B.

n LLF AIC

1 -536.990 1075.980

2 -536.586 1077.172

3 -536.922 1079.844

4 -536.503 1081.006

5 -535.041 1080.082

6 -535.187 1082.374

7 -536.296 1086.592

8 -535.955 1087.910

9 -536.378 1090.756

10 -534.285 1088.570

11 -534.443 1090.886

12 -534.075 1092.150

13 -534.352 1094.704

14 -534.008 1096.016

15 -533.239 1096.478

n LLF AIC

16 -530.934 1093.868

17 -532.934 1099.868

18 -530.202 1096.404

19 -530.308 1098.616

20 -529.203 1098.406

21 -531.481 1104.962

22 -525.890 1095.780

23 -531.605 1109.210

24 -530.523 1109.046

25 -528.260 1106.520

26 -531.467 1114.934

27 -528.686 1111.372

28 -529.612 1115.224

29 -527.595 1113.190

30 -527.436 1114.872

59

Figure 3.5: The optimal estimation result for intensity function (n=17) of server A.

shows in Table 3.4.

We can observe that the average response time reduces when the service rate µ increases.

The average response time tends to be changed slowly when the service rate is high enough.

In addition, we discuss the integrated system of two cases:

• Case 1: We set n = 1 of Server A, and set n = 1 of Server B. In this case, both Server

A and Server B are HPPs. In other words, we integrate two M/M/1/k queueing

systems.

• Case 2: We set n = 17 of Server A, and set n = 1 of Server B. In this case,

both the two models of Server A and Server B are the optimal models based on the

previous experiments. In other words, we integrate the Mt/M/1/k and the M/M/1/k

queueing systems into an integrated system.

For the above two cases, we calculate the average response times and compare the

60

Table 3.4: Response time of integrated system.

ServiceRate µ Tres (s)

0.5 4.285

1.0 1.271

1.5 0.758

2.0 0.545

2.5 0.426

3.0 0.350

3.5 0.298

4.0 0.259

4.5 0.229

5.0 0.206

5.5 0.186

6.0 0.171

6.5 0.157

7.0 0.146

7.5 0.136

8.0 0.127

8.5 0.120

9.0 0.113

9.5 0.107

10.0 0.101

ServiceRate µ Tres (s)

10.5 0.096

11.0 0.092

11.5 0.088

12.0 0.084

12.5 0.081

13.0 0.078

13.5 0.075

14.0 0.072

14.5 0.070

15.0 0.067

15.5 0.065

16.0 0.063

16.5 0.061

17.0 0.059

17.5 0.058

18.0 0.056

18.5 0.054

19.0 0.053

19.5 0.052

20.0 0.050

61

Figure 3.6: The optimal estimation result for intensity function (n=1) of server B.

differences.

Table 3.5 demonstrates the average response time of case 1 (THPP
res) and case 2 (TNHPP

res)

of the integrated system.

Table 3.5: Comparison of response time between HPP and NHPP for the integrated sys-
tem.

µ THPP
res TNHPP

res

0.3 17.129 24.517

0.4 6.502 7.260

0.5 3.817 4.046

0.6 2.706 2.756

0.7 2.052 2.113

0.8 1.667 1.705

0.9 1.411 1.435

1.0 1.225 1.240

1.1 1.083 1.097

µ THPP
res TNHPP

res

1.2 0.971 0.980

1.3 0.881 0.888

1.4 0.807 0.813

1.5 0.742 0.750

1.6 0.692 0.695

1.7 0.644 0.649

1.8 0.604 0.608

1.9 0.570 0.573

2.0 0.540 0.540

The author has already confirmed that the proposed queueing system can model the

arrival process better than the typical M/M/1/k system. When the service rate µ is small,

62

the difference between THPP
res and TNHPP

res is large. Also, with the service rate µ being more

extensive, the difference tends to be smaller, and the different kinds of arrival processes

have a little effect on the response time..

3.6 Concluding Remarks

In this chapter, we generate a novel queueing system to estimate the arrival process with

utilization data. In particular, since the Poisson distribution cannot fit the real-world

situations, we generate the queueing system with the arrival process following an NHPP.

An NHPP can model the dynamical changing process of arrival process better than an

HPP. However, since the intensity function of an NHPP is a function of time t, it is

more complicated and challenges to estimate the intensity function from such a continuous

process.

To simplify the problem, the author made an approximation of the NHPP arrival input.

After the approximation, the author transformed the continuous arrival process into a series

of discrete piecewise HPPs.

On the other hand, the author defined that utilization is a fraction of busy time at a

fixed time interval. The definition illustrated that there existed the observed time intervals

and unobserved time intervals of the utilization data. In other words, utilization data is a

kind of incomplete data. For the estimation of the intensity function, the author proposed

to use the MLE via the EM algorithm.

In the experiments, the author first generated the simulated utilization data for an

Mt/M/1/k queueing system. Then, the author investigated the effectiveness of the pro-

posed approach. Furthermore, the author utilized the real CPU utilization data again, to

estimate the intensity function of the two servers. Besides, the author used the average

response time to examine the performance evaluation of an integrated system.

63

Figure 3.7: Estimation results for intensity function (n=1).

Figure 3.8: Estimation results for intensity function (n=2).

64

Figure 3.9: Estimation results for intensity function (n=3).

Figure 3.10: Estimation results for intensity function (n=4).

65

Figure 3.11: Estimation results for intensity function (n=5).

Figure 3.12: Estimation results for intensity function (n=6).

66

Figure 3.13: Estimation results for intensity function (n=7).

Figure 3.14: Estimation results for intensity function (n=8).

67

Figure 3.15: Estimation results for intensity function (n=9).

Figure 3.16: Estimation results for intensity function (n=10).

68

Figure 3.17: Estimation results for intensity function (n=11).

Figure 3.18: Estimation results for intensity function (n=12).

69

Figure 3.19: Estimation results for intensity function (n=13).

Figure 3.20: Estimation results for intensity function (n=14).

70

Figure 3.21: Estimation results for intensity function (n=15).

Figure 3.22: Estimation results for intensity function (n=16).

71

Figure 3.23: Estimation results for intensity function (n=17).

Figure 3.24: Estimation results for intensity function (n=18).

72

Figure 3.25: Estimation results for intensity function (n=19).

Figure 3.26: Estimation results for intensity function (n=20).

73

Figure 3.27: Estimation results for intensity function (n=21).

Figure 3.28: Estimation results for intensity function (n=22).

74

Figure 3.29: Estimation results for intensity function (n=23).

Figure 3.30: Estimation results for intensity function (n=24).

75

Figure 3.31: Estimation results for intensity function (n=25).

Figure 3.32: Estimation results for intensity function (n=26).

76

Figure 3.33: Estimation results for intensity function (n=27).

Figure 3.34: Estimation results for intensity function (n=28).

77

Figure 3.35: Estimation results for intensity function (n=29).

Figure 3.36: Estimation results for intensity function (n=30).

78

Figure 3.37: Estimation results for intensity function (n=100).

79

Chapter 4

Conclusion

In this dissertation, the author discusses two kinds of research works, MapReduce based

computation of area skyline query for location recommendation in Chapter 2, and pa-

rameter estimation of queueing systems with utilization data in Chapter 3, respectively.

4.1 MapReduce Based Area Skyline Query

Location-based recommendation systems are essential for mobile applications. Many map-

based applications can filter the uninteresting locations for mobile users, and recommend

a small number of areas for users. In general, an interesting or good location should

always be surrounded by excellent facilities, and should also be far away from unpreferable

facilities. In the previous work [6], Annisa et al. has proposed area skyline queries based

on a grid structure, called GASKY, to retrieve good locations on a map. However, the

complexity and the average processing time of the GASKY algorithm is vast, since the

Voronoi Diagram and max−min table computation cost a lot.

In this work, we proposed a novel distributed area skyline query, which is based on

the MapReduce framework. The novel algorithm, called MRGASKY, aims to improve

the performance, i.e., the average processing time, comparing to the GASKY algorithm.

80

To confirm the effectiveness and efficiency of the MRGASKY algorithm, we conducted

experiments. The experimental results illustrated that the average processing time of the

MRGASKY algorithm tends to be stable with the number of grids, the number of facility

types, and the number of objects increases. Overall, the proposed MRGASKY algorithm

can handle the “big data” better and more effective than the GASKY algorithm.

4.1.1 Applications of the MRGAKSY Model

For applications, the MRGASKY algorithm can be utilized in some specific scenarios as

follows.

• In the travel filed: The utilization of map-based applications on mobile devices is

very common for travelers during a trip. In general, travelers would like to travel

to places which have convenient transportations and are close to famous sightseeing

spots. Also, the places should be far from the pollution areas and wildernesses.

In other words, a good location should be close to preferable facilities and be far

from unpreferable facilities according to user preferences. The proposed MRGASKY

algorithm can recommend such good locations to the tourists of mobile devices in a

short time.

• In the business field: It is a typical case for people in business, who want to find some

good locations for the company building. For example, a real estate developer would

like to search for an area to build a community. In this case, the great area should

be close to some convenient places, such as bus/train stations, malls, and schools.

Moreover, the desirable area should also be far away from some unpopular places,

such as pollution areas, wildnesses, and noisy factories. The proposed distributed

MRGASKY algorithm can also be applied into the business field, to help such the

real estate developers find the potential areas on a map. Also, the MRGASKY

algorithm can help the company reduce the survey cost in general.

81

4.1.2 Contributions of MRGAKSY Model

The main contributions of this work are as follows.

1. In our previous work, we have proposed the algorithm for area skyline query compu-

tation. In this work, to reduce the high cost on complexity and time processing, we

propose a novel distributed algorithm for the area skyline query.

2. We propose a MapReduce-based area skyline query computation, which can reduce

the complexity, and efficiently reduce the cost of time processing.

3. We conduct an extensive performance evaluation, which shows the high efficiency and

scalability of our proposed algorithm.

4.1.3 Future Direction

In the future, we will take some non-spatial properties, such as the prices of the areas, the

population densities of the regions into account. Also, we will consider the k−dominant

problem, since the dimensions of data are more and more sophisticated in the age of “big

data.” Moreover, we would like to apply our algorithm in the map applications to help

more people to make location recommendations.

4.2 Parameter Estimation of Queueing Systems

Statistical inference of queueing theory plays a vital subject in many fields, such as the

performance evaluation of traffic, the performance evaluation of computer systems, etc.

For example, the performance evaluation of traffic can alleviate traffic pressure effectively,

and help cities to carry out road planning and construction. Also, the performance evalua-

tion of computer systems can help the designers determine the system configuration in the

system design phase. For example, We can determine the number of CPU from the perfor-

mance evaluation of computation cost. From the evaluation of storage, we can determine

82

the memory size. However, with the advancement of computer technology, a tremendous

amount of new data is generated every day. The improvement the computing power and

computing capacity of computers are not economical and unrealistic sometimes. As a way

to solve the problem, the recent design of system architecture tends to combine existing

systems as models, which is called the system of systems (SoS) [23]. The integration of SoS

can effectively improve the utilization of computer systems, and can also reduce economic

consumption. So, performance evaluation of the integrated systems, such as SoS, becomes

more and more critical in recent years.

In this work, the author generates a novel queueing system to estimate the arrival

process with utilization data. In particular, since the Poisson distribution cannot fit the

real-world situations, we generate the queueing system with the arrival process following

an NHPP. An NHPP can model the dynamical changing process of arrival process better

than an HPP. However, since the intensity function of an NHPP is a function of time t, it is

more complicated and challenges to estimate the intensity function from such a continuous

process.

To simplify the problem, the author made an approximation of the NHPP arrival input.

After the approximation, the author transformed the continuous arrival process into a series

of discrete piecewise HPPs.

On the other hand, the author defined that utilization is a fraction of busy time at a

fixed time interval. The definition illustrated that there existed the observed time intervals

and unobserved time intervals of the utilization data. In other words, utilization data is a

kind of incomplete data. For the estimation of the intensity function, the author proposed

to use the MLE via the EM algorithm.

In the experiments, the author first generated the simulated utilization data for an

Mt/M/1/k queueing system. Then, the author investigated the effectiveness of the pro-

posed approach. Furthermore, the author utilized the real CPU utilization data again, to

83

estimate the intensity function of the two servers. Besides, the author used the average

response time to examine the performance evaluation of an integrated system.

4.2.1 Applications of the Mt/M/1/l Queueing System

For applications, the proposed Mt/M/1/l queueing system can be utilized in some specific

scenarios, such as the computer design phase.

In a computer system, CPU utilization is a widespread data type and can reflect the

usage of the computing resource. CPU utilization data can be collected easily from a

computer system. However, we cannot know the information on the arrival time and the

service time of CPU-tasks from CPU utilization data directly. The observations of the

arrival and service for the estimation are quite limited in this case. The proposed queueing

system can effectively resolve the above problem. We can estimate the scalable arrival

process only from CPU utilization data.

4.2.2 Contributions of the Mt/M/1/l Queueing System

The main contributions of this work are as follows:

1. We mainly estimate the arrival process of a queueing system from utilization data.

To the best of our knowledge, this is the first paper to estimate the arrival process by

using utilization data. In general, utilization data is defined as a fraction of the busy

period in a fixed time interval. We cannot get exact arrival time and service time

from utilization data. It is challenging for us to generate a novel model to estimate

parameters from utilization data.

2. To better model the arrival process in the real world, we consider Non-homogeneous

Poisson process as the input. The queueing model is noted as Mt/M/1/K. Since the

intensity function of the NHPP is a function of rates, which is respected with time

λ(t), the NHPP is more realistic and complex than the conventional Poisson process.

84

To simplify the problem, we make an approximation of the NHPP and transform

the dynamical complex arrival process to a series of Homogeneous Poisson Process

(HPP).

3. We aim to estimate the arrival process of the Mt/M/1/K queueing system from

incomplete utilization data. To make accurate estimations, we propose to apply the

Maximum Likelihood Estimation (MLE) via the Expectation-Maximization (EM)

algorithm.

4. In the experiments, we conduct an extensive performance evaluation based on simu-

lated utilization data and real CPU utilization data respectively to verify the proposed

model.

4.2.3 Future Direction

In the future, we will take the Maximum A Posterior (MAP) into account. The estimation

results of the intensity function in this work tend to be changed a little violently from the

previous experiments.
To resolve the problem, we will consider applying the MAP algorithm into the MLE.

Also, we will generate a hierarchical Bayesian estimation (HBE) to further consideration.

85

Bibliography

[1] O. Celma, P. Lamere, “Music recommendation tutorial,” In International Conference
on Music Information Retrieval (ISMIR 2007), Vienna, 2007.

[2] S. Borzsonyi, D. Kossmann, K. Stocker, “The skyline operator,” In Proceedings of the
17th International Conference on Data Engineering (ICDE), pp. 421-430, Heidelberg,
Germany, April 2-6, 2001.

[3] J. Chomicki, P. Godfrey, J. Gryz, D. Liang, “Skyline with presorting,” In Proceed-
ings of the 19th International Conference on Data Engineering (ICDE), pp. 717-719,
Bangalore, India, March 5-8, 2003.

[4] K. L. Tan, P. K. Eng, B. C. Ooi, “Efficient progressive skyline computation,” In
Proceedings of the 27th International Conference on Very Large Data Bases (VLDB),
pp. 301-310, Rome, Italy, September 11-14, 2001.

[5] T. Xia, D. Zhang, Y. Tao, “On skylining with flexible dominance relation,” In Proceed-
ings of the 24th International Conference on Data Engineering (ICDE), pp. 1397-1399,
Cancun, Mexico, April 7-12, 2008.

[6] A. Zaman, Y. Morimoto, “Area skyline query for selecting good locations in a map,”
J. Inf. Process, pp. 946-955, 2016.

[7] C. Y. Chan, H. Jagadish, K. L. Tan, A. K. Tung, Z. Zhang, “On high dimensional
skylines,” In Proceedings of the 10th International Conference on Extending Database
Technology, pp. 478-495, Munich, Germany, March 26-31, 2006.

[8] C. Y. Chan, H. Jagadish, K. L. Tan, A. K. Tung, Z. Zhang, “Finding k-dominant
skylines in high dimensional space,” In Proceedings of the International Conference
on Management of Data and Symposium on Principles Database and Systems, pp.
444-457, Chicago, IL USA, June 27-29, 2006.

[9] X. Lin, Y. Yuan, Q. Zhang, Y. Zhang, “Selecting stars: The k most representative
skyline operator,” In Proceedings of the 23rd International Conference on Data Engi-
neering, pp. 86-95, Istanbul, Turkey, April 11-15, 2007.

[10] M. Sharifzadeh, C. Shahabi, “The spatial skyline queries,” In Proceedings of the 32nd
International Conference on Very Large Data Bases (VLDB), pp. 751-762, Seoul,
Korea, September 12-15, 2006.

86

[11] K. Kodama, Y. Iijima, X. Guo, Y. Ishikawa, “Skyline queries based on user locations
and perferences for making location-based recommendations,” In Proceedings of the
19th International Workshop on Location Based Social Networks (LBSN), pp. 9-16,
Washington, DC, USA, November 3, 2009.

[12] M. Arefin, J. Xu, Z. Chen, Y. Morimoto, “Skyline query for selecting spatial objects
by utilizing surrounding objects,” J. Softw., pp. 1742-1749, 2013.

[13] G.W. You, M. W. Lee, H. Im, S.W. Hwang, “The farthest spatial skyline queries,”
Inf. Syst., pp. 286-301, 2013.

[14] Y.W. Lin, E. T. Wang, C. F. Chiang, A. L. P. Chen, “Finding targets with the nearst
favor neighbor and farthest disfavor neighbor by a skyline query,” In Proceedings of the
29th Annual ACM Symposium on Applied Computing (SAC), pp. 821-826, Gyeongju,
Korea, March 24-28, 2014.

[15] M.A. Siddique, A. Zaman, Y. Morimoto, “A method for selecting desirable unfixed
shape areas from integrated geographic information system,” In Proceedings of the
4th International Congress on Advanced Applied Informatics, pp. 195-200, Okayama,
Japan, July 12-16, 2015.

[16] K. Hose, A. Vlachou, “A survey of skyline processing in highly distributed environ-
ments,” Int. J. Very Large Data Bases, pp. 359-354, 2012.

[17] B. Zhang, S. Zhou, J. Guan, “Adapting skyline computation to the mapreduce frame-
work: algorithms and experiments,” In Proceedings of the 16th International Confer-
ence on Database Systems for Advanced Applications, pp. 403-414, Hong Kong, China,
April 22-25, 2011.

[18] L. Chen, K. Hwang, J. Wu, “MapReduce skyline query processing with new angular
partitioning approach,” In Proceedings of the 2012 IEEE 26th International Parallel
and Distributed Processing Symposium Workshops and PhD Forum’, pp. 2262-2270,
Shanghai, China, May 21-25, 2012.

[19] D. Papadias, Y. Tao, G. Fu, B. Seeger, “Progressive skyline computation in database
systems,” ACM Trans. Database Syst., pp. 41-82, 2005.

[20] P. Wu, C. Zhang, Y. Feng, B. Zhao, D. Agrawal, A. Abbadi, “Parallelizing skyline
queries for scalable distribution,” In Proceedings of the 10 International Conference
on Extending Database Technology, Munich, Germany, March 26-31, 2006.

[21] W. Wang, J. Zhang, M. T. Sun, W. S. Ku, “Efficient parallel spatial skyline evaluation
using MapReduce,” In Proceedings of the 20th International Conference on Extending
Database Technology, Venice, Italy, March 21-24, 2017.

[22] D. Man, K. Uda, Y. Ito, K. Nakano, “Accelerating computation of Euclidean distance
map using the GPU with efficient memory access,” Int. J. Parallel Emergent Distrib.
Syst., pp. 383-406, 2012.

[23] S. Popper, S. Bankes, R. Callaway and D. DeLaurentis, “System-of-systems sym-
posium: report on a summer conversation,” Potomac Institute for Policy Studies,
Arlington, VA, July 21-22, 2004.

87

[24] D. Thiruvaiyaru and I.V. Basawa, “Estimation for a class of simple queueing net-
works,” Queueing Systems, 9, 301-312, 1991.

[25] I.V. Basawa, “Maximum likelihood estimation for single server queues from waiting
time data,” Queueing systems, 24, 155-167, 1996.

[26] K. S. Trivedi, “Probability and statistics with reliability, queueing, and computer sci-
ences applications,”, John Wiley & Sons, New York, 2nd edition, 2001.

[27] S. Dharmaraja and K. S. Trivedi and D. Logothetis, “Performance modeling of wireless
networks with generally distributed handoff interarrival times,” Computer Communi-
cations, 26(15):1747-1755, 2003.

[28] M. Stasiak, M. Gabowski, A. Wisniewski and P. Zwierzykowski, Modelling and dimen-
sioning of mobile networks: from GSM to LTE, Wiley, 2011.

[29] J. Medhi, Stochastic models in queueing theory (Second Edition), Academic Press.
2003.

[30] U. N. Bhat, An Introduction to queueing theory-modeling and analysis in applications,
Birkhauser Boston, 2008.

[31] AB. Clarke, “Maximum likelihood estimaties in a simple queue,” Ann. Math. Statist.,
28, 1036-1040, 1957.

[32] D. Thiruvaiyaru and I.V. Basawa, “Empirical Bayes estimation for queueing systems
and networks,” Queueing Systems, 11, 179-202, 1992.

[33] I. Basawa,“Maximun likelihood estimation for single server queues from waiting time
data,” Queueing systems, 24, 155-167, 1996.

[34] M. J. Fischer, D. Gross, D. M. Bevilacqua Masi, et al., “Analyzing the waiting time
process is internet queuing systems with the transform approximation method,” The
Telecommunication Review, 12:21-32, 2001.

[35] I. Shams and K. Shahanaghi, “Analysis of nonhomogeneous input data using likelihood
ratio test,” in Proc IEEE International Conference on Industrial Engineering and
Engineering Management (IEEM), Hong Kong, 2009.

[36] R. P. Trinatha, R. K. Srinivasa and K.V.V.S. Reddy, “Performance of non-
homogeneous communication with Poisson arrivals and dynamic bandwidth alloca-
tion,” International Journals of Systems, Control and Communication (IJSCC), 4(3):
164-182, 2012.

[37] J. V. Ross, T. Taimre and P. K. Pollett, “Estimation for queues from queue length
data,” Queueing Sytems, 131-138, 2007.

[38] H. Q. Liu, W. L. Liang, L. Rai, K. Teng and S. L. Wang, “A real-time queue length
estimation method based on probe vehicles in CV environment,” IEEE Access, 20825-
20839, 2019.

88

[39] H. Takagi, Y. Kanai, and K. Misue, “Queueing network model for obstetric patient
flow in a hospital,” Health Care Management Science, 20, 433–451, 2017.

[40] N. Gans, G. Koole, and A. Mandelbaum, “Telephone call centers: Tutorial, review,
and research prospects,” Manufacturing & Service Operations Management, 5, 79-141,
2003.

[41] E. Kozan, E, “Comparison of analytical and simulation planning models of seaport
container terminals,” Transportation Planning and Technology, 20, 235-248, 1997.

[42] M. H. Rothkopf and S. S. Oren, “A closure approximation for the non-stationary
M/M/S queue,” Management Science, 25 (6): 522-534, 1979.

[43] D. P. Heyman and W. Whitt, “The asymptotic behavior of queues with time-varying
arrival rates,” Journal of Applied Probability, 21: 143-156, 1984.

[44] L. Green, P. Kolesar and A. Svoronos, “Some effects of non-stationarity on multi-server
Markovian queueing systems,” Operations Research, 39 (3): 502-511, 1991.

[45] A. P. Pant and R. P. Ghimire, “Mt/M/1 queueing system with sinusoidal arrival rate,”
Journal of Institute of Engineering, 11 (1): 120-127, 2015.

[46] V. E. Benes, “A sufficient set of statistics for a simple telephone exchange model,”
Bell System Technology Journal, 36, 939-964, 1957.

[47] L. H. Wang, S. C. Chen and J. C. Ke, “Maximum likelihood estimates and confidence
intervals of an M/M/R queue with heterogeneous servers,” Mathematical Methods
Operational Research, 63, 371-384, 2006.

[48] C. Amit and B. Arpita, “Statistical inference on traffic intensity in an M/M/1 queue-
ing system,” International Journal of Management Science and Engineering Manage-
ment, vol. 13, 2018.

[49] A. P. Dempster, N. M. Laird and D. B. Rubin, “Maximum likelihood from incomplete
data via the EM algorithm,” J. Roy. Stat. Soc. B, vol. B-39, pp. 1-38, 1977.

[50] C. F. J. Wu, “On the convergence properties of the EM algorithm,” Ann. Stat., vol.
11, pp. 95-103, 1983.

[51] T. Rydén, “An EM algorithm for estimation in Markov-modulated Poisson processes,”
Computational Statistics Data Analysis, 21(4), 431-447, 1996.

[52] I. V. Basawa, U. N. Bhat and J. Zhou, “Parameter estimation in queueing systems
using partial information,” Statist. Probab. Lett., 2008.

[53] H Okamura, T. Dohi and K. S. Trivedi, “Markovian arrival process parameter estima-
tion with group data,” IEEE/ACM Transactions on Networking, 17(4), 1326-1339, 8
2009.

89

List of Referred Publications

Referred Journals

J-1 Chen Li, Annisa, Asif Zaman, Mahboob Qaosar, Saleh Ahmed and Yasuhiko Mo-
rimoto, “MapReduce algorithm for location recommendation by using area skyline
query”, Algorithms, 2018, 11(12):191, Basel, Switzerland.

J-2 Chen Li, Hiroyuki Okamura and Tadashi Dohi, “Parameter estimation of Mt/M/1/K
queueing systems with utilization data”, IEEE Access, Vol 7, Pages 42664-42671,
March 2019.

Referred International Conferences

C-1 Chen Li, Annisa, Asif Zaman and Yasuhiko Morimoto, “MapReduce-based compu-
tation of area skyline query for selecting good locations in a map”, Proceedings of
2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA,
December 11-14, 2017, doi: 10.1109/BigData.2017.8258540.

90

Other Publications (not in dissertation)

Referred Journals

J-3 Saleh Ahmed, Mahboob Qaosar, Asif Zaman, Md. Anisuzzaman Siddique, Chen Li
and Yasuhiko Morimoto “Privacy aware MapReduce based multi-party secure skyline
computation” , Information, 2019, 10(3):119, Basel, Switzerland.

Referred International Conferences

C-2 Chen Li, Minjia He, Mahboob Qaosar, Saleh Ahmed and Yasuhiko Morimoto, “Cap-
turing temporal dynamics of users’ preference from purchase history big data for rec-
ommendation system”, Proceedings of the 2018 IEEE International Conference on Big
Data (Big Data), Seattle, WA, USA, USA, December 10-13, 2018, doi: 10.1109/Big-
Data.2018.8622411.

C-3 Chen Li, Xu Zhang, Mahboob Qaosar, Saleh Ahmed, Kazi Md. Rokibul Alam
and Yasuhiko Morimoto, “Multi-factor based stock price prediction using hybrid neu-
ral networks with attention mechanism”, Proceedings of the 5th IEEE International
Conference on Cloud and Big Data Computing (CBDCom 2019), Fukuoka, Japan,
August 5-8, 2019.

C-4 Mahboob Qaosar, Saleh Ahmed, Chen Li and Yasuhiko Morimoto, “Hybrid sensing
and wearable smart device for health monitoring and medication: opportunities and
challenges”, Proceedings of the 2018 AAAI Spring Symposium Series, pages 269-274,
March 2018.

C-5 Xu Zhang, Chen Li and Yasuhiko Morimoto, “A multi-factor approach for stock price
prediction by using recurrent neural networks”, Proceedings of Bulletin of Networking,
Computing, Systems, and Software (BNCSS), Vol 8, Number 1, pages 9-13, January
2019.

Non-Referred International Conferences

N-1 Chen Li, Chao Luo, Hiroyuki Okamura and Tadashi Dohi, “A note on performance
evaluation of system with CPU utilization data”, IEICE-Assurance System confer-
ence, Hiroshima, Japan, 2015.

91

N-2 Chen Li, Annisa, Asif Zaman and Yasuhiko Morimoto, “MapReduce-based compu-
tation of area skyline query for selecting good locations in a map”, DEIM conference,
Fukui, Japan, 2018.

N-3 Mahboob Qaosar, Saleh Ahmed, Chen Li and Yasuhiko Morimoto, “Privacy-preserving
multi-party skyline computation framework based on homomorphic encryption with
data perturbation and anonymization”, the 4th International Symposium on Big Data
Analytics in Science and Engineering (BASE 2019), Fukushima, Japan, 2019.

92

