
Study on Privacy-preserving Data Manipulation

and Secure Computation of Skyline Objects on

MapReduce

(プライバシー保護データ操作およびスカイラインオブジェクトの安全なMapReduce計算法に関する研究)

by

　Saleh Ahmed

A dissertation submitted

Graduate School of Engineering, Hiroshima University

in partial fulfillment of the requirements for the degree of

Doctor of Engineering

in

Information Engineering

under supervision of

Yasuhiko Morimoto

Department of Information Engineering

Graduate School of Engineering

Hiroshima University, Japan

September, 2019

[This page was intentionally left blank]

Dissertation Summary

Database systems commonly control the access in the database to regulate authorization

of confidential data. This process preserves the privacy of sensitive information, and the

provided data is obtained by utilizing the required database operation interfaces. However,

access control for vital and private data is often insufficient. Attacks against computer

systems have confirmed that the security of data can be compromised, if an unlawful user

can get access to the data files generated by the database management system, avoiding

the access constraint mechanism of a database completely. For example, the Toronto Star

issued an article. The article reports an occurrence where certain bank sold old disk in

eBay without deleting the potential private data of the hundreds of clients. The worldwide

privacy law does not support a disk holding the records of several hundred clients was being

sold on eBay. So, the privacy of client data is a vital issue. As a result, organizations must

encrypt the data before storing it in the drive.

People are concern about the privacy of sensitive data, such as salary, merit positions,

tender evaluation, and so on, stored in a database. Several privacy preserving methods

have been proposed. On the contrast, such encryption degrades the performance of the

database operations. This degradation occurs due to decryption of values in the first

place, then execution of the operations. Order-preserving encryption system (OPES) may

solve these issues and improve the performance degradation issues. However, the order of

numeric values itself is sensitive information. In such a case, it is necessary to hide the

order information as well as solve the performance degradation issues.

The author proposed three methods which run on the top of OPES able to hide the

order information in the values as well as solve the performance degradation issues.

On the contrary, every day, different computing organizations generate a huge amount

of information. Such a massive amount of data is accountable for information overwhelm

issues. Various related works to retrieve valuable information from large data have been

studied as a solution to the matter. The essential fundamental operation of information

selection is to gather a little number of objects that represent the whole data from a big

database. Skyline Query in one of the popular tools to select representative objects from

large scale databases.

Skyline query that is also appreciated as a successful information retrieval method has

been successfully utilizing to filter out dominated objects. Skyline query usually utilized

to retrieve objects that are good for all organizations whose evaluation mechanism are

not alike. However, it may generate a large number or a very few numbers of objects.

Moreover, whenever the organizations want to get the desired result of the skyline query,

it is essential to reveal the attribute values of the objects in the datasets. In various

situation, to calculate the skyline query, it needs to reveal valuable, sensitive information.

The author introduced a skyline object picking tool in this dissertation that accumulates

the favorite skyline objects for all the organizations; meantime, it also guarantees the

privacy of sensitive attribute value throughout the process of skyline calculation.

Recently, people frequently have to retrieve important objects using mobile devices like

a smartphone or phablets or tablets. In such a situation, it is difficult to explain complex

query requirements like top-k query evaluation function. Clients are willing to get desired

objects by defining only keywords. The proposed system must be serviceable for such

circumstances. To achieve the query as mentioned above, the author used the skyline query

function. To handle potential big data”, The author proposed a distributed algorithm in

MapReduce framework to calculate the skyline query. For big data processing, MapReduce

is a very popular, distributed open-source computing framework. The proposed method

utilizes the MapReduce framework to manage the large-scale database.

For calculating a skyline query in conventional distributed algorithms, the attribute

values of the individual object of a local database must be revealed to other organizations.

Nowadays, people are concern about the privacy of their data; as a result, such revelations

of private data in traditional distributed schemes are intolerable. In the proposed scheme,

the security and privacy of the distributed algorithm are improved by the author in such a

way that the confidentiality of the data during the processing of the skyline query remained

intact. A novel and efficient strategy is introduced by the author to calculate the skyline

from data of multiple organization in distributed computing condition without revealing

the local private attribute values of objects to other organizations.

The author investigates the background of the problem and provides the introduction of

the problem in Chapter 1. Then, the literature reviews on related work of the dissertation

are provided in Chapter 2. After that, the author divides this dissertation into different

parts. In the following section of this dissertation, the author discusses the semi-order

preserving encryption. Conventional encryption techniques encrypt the database values,

but query execution on encrypted values is a severe performance degradation issues. Order-

preserving encryption is introduced to solve this problem. But in several cases, the order in

the data is also a security concern. Therefore semi-order preserving encryption effectively

hides the order information and also solve the performance degradation issues. The author

discusses semi-order preserving encryption in detail in Chapter 3. In the Chapter 4

of this dissertation, the author discusses a novel scheme to compute the skyline query in

a secured manner in a distributed way on MapReduce. The author has considered the

circumstances where the owner of the dataset is multi-party rather than a private entity.

They desire to compute the skyline query result but never willing to reveal the attribute

values during computation. The individuals do not desire to disclose attribute value as

the values may be considered as sensitive information. The author introduced an efficient

solution to settle such circumstances and compute the skyline query without disclosing

any attribute values of the organizations. The suggested algorithm has used MapReduce

programming infrastructure to guarantee its capacity to handle big data in a distributed

manner.

Finally, a concluding study with a future guideline for enhancing the work has been

given in Chapter 5.

Contents

Page

1 Introduction 2

1.1 Motivation . 5

1.2 Thesis Organization . 8

2 Background Knowledge 9

2.1 Preliminaries on Semi-Order Preserving Encryption 9

2.1.1 Types of Attack Considered . 9

2.1.2 Threat Model . 10

2.1.3 Order Preserving Encryption . 11

2.1.4 Semi-Order Preserving Encryption 11

2.2 Related Work on Semi-Order Preserving Encryption 12

2.3 Skyline Query . 14

2.4 Secure Skyline Query . 15

2.4.1 Paillier Cryptosystem . 16

2.4.2 MapReduce on Hadoop framework 17

2.4.3 Related Works for Secure Skyline Query 19

Skyline Query . 19

2.4.4 Secure Skyline Query . 20

i

Skyline Query in MapReduce . 22

3 Semi-order Preserving Encryption 24

3.1 Introduction . 24

3.2 SOPE Technique using OPES and Two-way Perturbation 25

3.2.1 Sorting on Perturbed Values . 28

3.2.2 Some example of query processing in OPES scheme 30

Comparison Operator . 30

Aggregation Function . 31

Insertion and Deletion Operations 32

3.3 SOPE as a Block-wise OPES using Tree . 33

Interval Choosing Algorithm . 34

3.3.1 SOPE Technique using Dynamic Block-wise OPES using Tree 36

3.3.2 Query on Block-wise OPES Values by Tree 37

Comparison Operator . 37

Aggregation Function . 38

Insertion and Deletion Operations: 38

3.4 Evaluating SOPE Against Threat Model . 39

SOPE using OPES and Two-way Perturbation 40

SOPE Technique using Block-wise OPES using Tree 40

SOPE by Applying Dynamic Block-wise OPES using Tree 41

3.5 Analysis of SOPE in Different Types of Attack 41

COA attack . 41

Chosen-ciphertext attack . 41

Known-plaintext attack . 42

3.6 Experiments . 42

ii

3.6.1 Comparison Operator . 44

3.6.2 Order Hiding . 44

3.6.3 Retrieving of the Original Order . 46

3.7 Conclusion . 47

4 Secure Skyline Query 48

4.1 Secure Skyline Problem . 49

4.2 Proposed Model . 53

4.2.1 Initialization . 55

4.2.2 Local Skyline, OPE, and Perturbation of Original Order 55

Local Skyline Computation . 56

OPE of Original Attribute Values in Local Skyline 57

Perturbation of the Original Order 57

4.2.3 Distributive Computation of Cell-Wise Candidate Skyline 61

4.2.4 Global Skyline Computation from the Cell-Wise Candidate Skyline . 63

4.2.5 Decryption of the Global Skyline . 63

4.3 Scalability and Application of the Proposed Method 64

4.4 Privacy and Security . 65

4.5 Theoretical Analysis of the Proposed Method 66

4.6 Experimental Analysis of the Proposed Method 68

4.6.1 Experimental Setup and Datasets . 68

4.6.2 Analysis of Our Proposed Method for Different Data Distributions . 68

4.6.3 Analysis of Our Proposed Method with Variation in Object Dimensions 69

4.6.4 Comparison with the ESV Method 71

4.6.5 Comparison with Variation in the Number of Participating Databases 72

4.7 Conclusions . 73

iii

5 Conclusion 74

5.1 Applications of proposed models . 74

5.2 Contribution . 75

5.2.1 Contribution Of SOPE . 75

5.2.2 Contribution of Secure Skyline . 75

5.3 Future Direction . 76

5.3.1 Semi-order preserving Encryption . 76

5.3.2 Secure MR skyline query . 77

References 81

Referred Publications 82

Other Publications (not in dissertation) 83

iv

List of Figures

1.1 Understanding Skyline query . 4

1.2 Skyline and Multiparty skyline of organization-1&2 7

2.1 Skyline query . 15

2.2 The Secured Skyline Query . 16

3.1 Two-way Perturbation Example . 26

3.2 Detailed Binary Example of Two-way Perturbation 28

3.3 Radix Sort on Perturbed ciphertext . 29

3.4 Example of Comparison Operator . 31

3.5 Use of Aggregate Function . 32

3.6 Insertion Operation . 32

3.7 Block-wise Semi-Order Preserving Encryption using Tree 35

3.8 Example of Block-wise OPES using Tree . 35

3.9 Dynamic Split of Interval . 36

3.10 Dynamic Interval Update in “off-peak” Operation Hours 37

3.11 Time required for different operations . 44

3.12 Total Time for Order Hiding . 45

3.13 Time required for retrieving the original order. 46

4.1 The skyline and multiparty skyline of Organizations 1 and 2. 51

v

4.2 MapReduce-based multi-party secure skyline computation model. 54

4.3 Local skyline of Node A and Node B from their private objects. OPE,

Order-preserving Encryption. 56

4.4 Cell creation and attribute value perturbation of objects in the local skyline

of Node A and Node B. 58

4.5 MapReduce-based cell-wise skyline computation. Here, PkC1(x, y) means

(x, y) is encrypted by Coordinator 1’s public key. 62

4.6 Homomorphic addition by Coordinator 2 and decryption of global skyline

objects by Coordinator 1. Here, PkC1(x, y) means (x, y) is encrypted by

Coordinator 1’s public key. 62

4.7 Running time varies with data distribution (attribute: 2, partitions:

30/attribute, value: 32-bit). 69

4.8 Running time varies with objects attributes (distribution: independent,

partitions: 30/attribute). 70

4.9 Running time comparison with ESVand the proposed method in different

data distributions (attribute: 2, partitions: 30/attribute, value: 32-bit,

bit-slice length: 11-bit, slices/attribute:3). ESV, encrypted substitution

vector. 72

4.10 Running time varies with participating parties (attribute: 2, partition:

30/attribute). 73

vi

List of Tables

1.1 Organization Database . 7

4.1 Organization database. 50

4.2 Data of Node A and Node B. 55

4.3 Decrypted objects of the global skyline. 64

vii

Life is really simple, but we insist on making it complicated.

Confucius

Acknowledgments

At first, I would like to declare my faithful praise to Allah for providing me with the chance

to accomplish my research work. I desire to declare my sincere honour to my supervisor

prof. yasuhiko morimoto, Graduate School of Engineering, Hiroshima University, Japan

for allowing me to explore new concepts in the field of knowledge exploration and data

mining. Without his generous spirit and unique guidelines, it was not viable for me to

accomplish this work. His superior wisdom, motivation and above all diligence expertise in

this field give me many possibilities to acquire new views to build my carrier as a researcher.

I am grateful to my Sub-advisor prof. Satoshi Fujita for his wisdom and the proper

suggestion that help me throughout the period doctoral program and also want to show

my heartiest gratitude to prof. Koji Eguchi for his guidelines during the last period of

my doctoral program.

I am thankful to the Japanese Administration for giving the Mext scholarship to continue

my study. I am grateful to Bangabandhu Sheikh Mujibur Rahman Science and Technology

University, Goplaganj, Bangladesh that has allowed me a study leave to follow the Doctoral

program at Hiroshima University.

Specific gratitude to all my co-workers and lab members for their assistance and contribu-

tions during my research. Especially I’m thankful for Dr. Md. Anisuzzaman Siddique

and Dr. Asif Zaman for their generous assistance and cooperation since the opening of

my research work. I am also grateful to all of my countrymates for their cooperation, care,

and emotional bonds throughout my stay in Japan.

Last but not least, I am profoundly thankful to my family members for their appreciation,

love, care, and support during the research work.

ix

[This page was intentionally left blank]

Chapter 1

Introduction

Daily, different sources generate enormous amounts of data. Such vast quantities of data can

be utilized to evaluate entities and predict their actions more diligently. With the growing

market for big-data processing and cloud computing, numerous organizations and database

designers currently highlight the protection and confidentiality of sensitive information

such as worker wages, age, and expense. Such sensitive data are often aggregated in a

database. Some encryption systems have been introduced for protecting the privacy of

sensitive data [43, 10]. Still, such methods degrade the performance of query execution

completed on the encrypted database; a notable amount of time is spent for decrypting each

record before computing conditional operations given as a query parameter. To address

this issue, several order-preserving encryption scheme (OPES) and some of its variants

have been proposed in few articles [3, 8, 9, 10, 31, 16, 29].

The enhancement of the performance of the execution of database queries can be done

by maintaining the index knowledge of the original numeric values. However, in several

database applications, the ordered record of numerical data itself is regarded as sensitive

data. For illustration, some schools may think the merit status of a student as confidential

information that should not be exposed to the public. In this concern, the author introduced

2

semi-order preserving techniques, which perturb the initial order index of sensitive data to

enhance data privacy without degrading the performance of comparison operations over

encrypted data.

The current digital world, people produce a huge amount of data every day. These

huge amounts of data need to be processed and analyzed to understand the opinion of

mass people. This type of analysis can be used to understand the opinion of mass people

and predict their behavioural pattern. However, such a massive amount of data becomes

useless if anyone failed to filter out the unpromising part efficiently. The abundance of

data can be considered as both: a blessing and a curse, as it has become significantly

challenging to process data in order to isolate useful and relevant information. Researchers

of the database community have been keen to find efficient tools and design models for

filtering out non relevant and useless data objects from a large dataset. Skyline query

and its variants are considered such query tool that finds interesting data objects from a

very large dataset. Such queries help users to make intelligent decisions over the complex

dataset.

Skyline query [11, 24] and some of its variants [14, 49, 42] are reconnized as such

foremost query. The conventional SQL queries return the query result as a total result

set from the particular datasets, but the skyline queries returns the set of non-dominated

objects from a supplied dataset. If an object is not inferior to any other objects in any

of the attributes and is superior in at least one of the attributes then the object is stated

to be a non-dominated object. Skyline queries are applied to fulfil the gap between rank-

aware database retrieval [15] and set-based SQL queries. Suppose the case of Figure 1.1.

In the provided example, It can be observed that Figure 1.1(a) illustrates dataset with

two dimensional values: Dim1 and Dim2 − as well as data IDs. If it matches the data

object T with data object Q, it can be observed that Q is better than T in every dimension

(considering the less value is better). In such a case, it can be said that Q is dominating

3

�� ���� ����

� 	
 	�

� �
 	�

� 	� �

�
� �

�

�

� ��
�

� �� ��

���������

���		��
�

���

��
	

���	���

����	����

���������

���
�����

�

��

��

��

��

��

��

	�

� �� �� �� �� �� �� 	�
�
�
�
�
�

��
�

����������� ������� �!�

Figure 1.1: Understanding Skyline query

T or T is dominated by Q.

While matching Q with S, none can be declared to be better in each dimension. Hence,

they are not dominating each other. In Chapter 2 the author explained the mathematical

formulation of dominance relation and skyline query.

The skyline query returns the set of non dominated objects from a dataset, the Fig-

ure 1.1(b) shows that {P,R,U, T} never be the objects of the skyline query result set −

because they are somehow dominated by the other objects in the dataset. However, the

objects {Q,S, V } are not dominated by any other objects in the dataset. Hence, the objects

{Q,S, V } are the outcome of the skyline query set.

The IT world produces a massive amount of data at every moment. These datasets are

vast and complicated and consider as big data. Big data is such a vast collection of extensive

or complicated data, to process it, a sophisticated data processing application software is

needed. The traditional data processing software is not competent enough to deal with

such big data. To treat big data, traditional centralized and sequential data processing

schemes are not suitable enough. Parallel and distributed schemes are needed to treat such

big data. While composing distributed and parallel algorithms, programmer and designers

must study new issues like fault-tolerance, robustness, usability, availability etc., − as

well as computational performance requirements. To assist designers and programmers,

4

various programming paradigms have been proposed in the last few decades. MapReduce,

introduced by Google Inc., is one of the before-mentioned parallel programming paradigms.

This programming model was produced for processing a huge number of data (sometimes

called big data) using robust, parallel and distributed processing mechanism on a cluster.

While adopting such a robust distributed framework, the user never has to think the

factors such as redundancy, fault tolerance etc. The master node controls the distributed

computing of other nodes in the MapReduce framework and manages the various jobs in

a distributed and parallel way and controls all the interaction and transfer of the data

among the other nodes. The system also provides the facilities of data redundancy and

fault tolerance. We can get such implementation of MapReduce by using a software called

Hadoop, which is an open-source framework for Googles’ MapReduce.

1.1 Motivation

Secrecy of data of the organization has become a severe concern in the database society

for several decades. Information secrecy or data secrecy is one of the vital issues, so people

are concern about the acquisition and distribution of their private data. The organization

may have to face a legal issue if they are not able to provide security of clients’ data. The

privacy requirement of mass people has to be considered during the processing of their

data. The privacy issues are vital and essential whenever an organization want to gather,

process and save privately identifiable and sensitive data in the digital mode. In several

situations, security of individual private values needs to be protected, and in many cases, it

is not permissible to disclose aggregate values from the personal data. Assume that several

organizations ready to conduct studies regarding cost and risk forecast. Wherever all the

organizations have accumulated a similar type of private data from their customers. Man-

aging the privacy of the data of every client is a principal obligation for each organization.

It is known that skyline reckoning needs matching of attribute values among the objects

5

of each party; without exposing the attribute values, organizations are incapable of com-

puting join skyline from the combined databases. Therefore, in a traditional multi-party

skyline calculation, it is impossible to get the skyline objects without showing the objects

attribute values to others. Figure 4.1 demonstrates this situation wherever P1, P2, P3,

P4, P5 are five objects of party-1 and Q1, Q2, Q3, Q4, Q5 are five objects of party-2 with

their costs (dimention1) and risks(dimention2). If both parties require to obtain a logical

recommendation list regarding least cost and risk using skyline query, the skyline objects

for the own database of party-1 will be P1, P2, P4, and the skyline objects for party-2 will

be Q1, Q3, Q4. However, the skyline objects of their consolidated databases will be Q1,

P4, Q4, P2. Although the object P1 and the object Q3 are in the skyline of party-1 and

party-2 respectively, they do not exist in their merged skyline. Because the objects P4 of

party-1 dominates the object Q3 of party-2 and the objects Q1 of party-2 dominates the

object P1 of party-1.

Consequently, cost and risk forecast utilizing a skyline query is more authentic and

significant if it is computed from the data of both parties. So, the parties want to determine

skyline objects from their combined data. But for security reason, they do not prefer to

reveal the attribute values in the objects among others. As a result, it is required a secured

system that can calculate skyline from consolidated data of both parties without exposing

the real attribute values during the calculation.

A well-designed algorithms, like BBS(Branch-and-Bound Skyline) [33] or Sort-Filter-

Skyline(SFS) [13], also need to know the attributes values before the computation skyline.

Let us assume, the circumstances when the control of data belong to different bodies

or organizations, they are not want to reveal the attribute values but willing to get the

skyline objects. Traditional skyline query computation methods are inadequate to solve

such circumstances. In this research work, the author introduced an innovative procedure

to address the secure skyline computation in a distributed setting. The author presented

6

Organization-1

ID Cost Risk

P1 27 33

P2 39 3

P3 45 15

P4 30 17

P5 45 30

Organization-2

ID Cost Risk

Q1 22 30

Q2 48 11

Q3 32 25

Q4 36 8

Q5 42 37

Table 1.1: Organization
Database

��������	�
���

��������	�
��

��

��

��

��

��

��

��

��

��

��

�

�

��

��

��

��

��

��

��

�� �� �� �� �� �� ��

�
�
�
�

	
��

����������������������
���������������
������������
� �

�����������������������
���������������
������������
� �!

���������������������
���������������
���
���
���������
��!

Figure 1.2: Skyline and Multiparty skyline of organization-
1&2

a model which is capable to compute skyline objects set without disclosing the attribute

values on the MapReduce framework.

7

1.2 Thesis Organization

The author organized the rest of this thesis as follows: At first, the author highlights basic

background knowledge and related works regarding the proposed methods in Chapter 2.

InChapter 3 the author evaluated the model of Semi-order preserving encryption(SOPE).

Chapter 4 explain details about the secure computation of skyline query from multiple

datasets without exposing attribute values. The author proposed the model that uses

MapReduce framework as a parallel and distributed computing environment. Finally,

Chapter 5 provides the conclusion of the works and presents some future directions to go

ahead.

8

Chapter 2

Background Knowledge

This chapter contains the theoretical knowledge and related works for the proposed methods

in details.

2.1 Preliminaries on Semi-Order Preserving Encryption

2.1.1 Types of Attack Considered

• Ciphertext-only attack

In cryptography, a known-ciphertext attack or ciphertext-only attack (COA) is an

invasion model for cryptanalysis, here the adversary only can able to access cipher-

texts.

• Chosen-ciphertext attack

A chosen-ciphertext attack (CCA), is an invasion model for cryptanalysis, where

the adversary can decrypt some portion of chosen ciphertext. From this kind of

knowledge, a cryptanalyst can try to gain the private key utilized for decryption.

• Known-plaintext attack

Known-plaintext attack (KPA) is an invasion model for cryptanalysis, where the

9

adversary can get values in plaintext form and ciphertext form. This information

can be utilized for further investigation to reveal the private keys and the mapping

tables.

2.1.2 Threat Model

The threat models are chosen as provided underneath.

• Storage scheme managed by the database software is vulnerable to compromise.

Contemporary database schemes usually perform their storage management. But,

the storage policy is performed by the operating system in which the DBMS software

is installed. An adversary can get access the storage system and get the database files

by utilizing a path that is different than through the database management system,

or in the severe case getting the files directly from storage media. Attackers may gain

access to the database file. Since the proposed system encrypts values in the data,

such access may initiate a COA.

• The database software is entrusted.

It is assumed that the database software is trusted to implement encryption of query

constants and decrypt query returns. The author also believes that some values in

the database softwares’ memory may be accessible to opponents. An adversary can

launch a KPA from those values.

• All disk-resident data is encrypted.

It is considered that the database software encrypts schema information such as table

and field names; metadata such as column statistics; recovery logs; and data values.

Therefore, an opponent is unable to infer the data distribution.

• The attacker may get several plaintext values of some chosen ciphertext.

With the cooperation from the database operator, an attacker can achieve the plain-

10

text values of some chosen ciphertexts, which are not a part of the initial values saved

in the database. From such knowledge, the attacker can launch a CCA.

2.1.3 Order Preserving Encryption

Encryption is the most practical process to accomplish data security. Unencrypted data is

named as plaintext, and encrypted data as ciphertext. In cryptography, a key describe the

specific transformation of plaintext into ciphertext, or conversely for the time of decryption.

Assume plaintext and ciphertext be p and c, respectively. Let k1 and k2 be the encryp-

tion and decryption keys. the exhibit the encryption and the decryption can be shown by

the following functions:

c = encryption(p, k1)

p = decryption(c, k2)

If k1 = k2, then the system is recognized as symmetric-key cryptography else asymmetric-

key cryptography.

Order-preserving encryption is, to some extent, unlike ordinary encryption. Sup-

pose a database P consists of |P | plaintext numeric values, which are presented as P =

p1, p2, ..., p|P |, where pi < pi+1, then, when it encrypt the plaintext values into ciphertext

values, which are presented as C̃ = c̃1, c̃2, ..., c̃|P |, it need to be confirmed that c̃i < c̃i+1

(i = 1, ...|P | − 1). Therefore, the order of encrypted values needs to be the same as the

plaintext values. In various cases, the order itself is private and sensitive information.

Therefore, it can be considered that data privacy is not confirmed enough in the existing

OPES schemes.

2.1.4 Semi-Order Preserving Encryption

SOPE is an improvement of the OPES. It is not a standalone system; it runs on top of

the OPES. To improve the privacy of the order preserved encrypted values in C̃, these

11

values transform to semi-order preserving values. On transformation, C̃ = c̃1, c̃2, ..., c̃|P |

becomes C = c1, c2, ..., c|P |. In sequence C, its original ordered sequence is perturbed to a

new ciphertext, in which the order is no longer maintained.

2.2 Related Work on Semi-Order Preserving Encryption

Various OPES have been introduced in the literature [3, 8, 9, 10, 12, 31, 16, 29].

Agrawal et al. [3] came up with their OPES as follows: first, they represent the input

and target distributions as linear splines. Next, they level the plaintext database values into

a uniformly distributed database values. Moreover, they convert the uniformly distributed

database values into cypher database values.

The proposed method by Bebek [8] produces a sequence of random numbers. Besides,

the random numbers jth value is added to the jth integer to preserve the original order.

The disadvantage of this approach is its’ inefficiency in encrypting values. Moreover, the

method does not consider the inclusion of new data into the database.

Boldyreva et al. [9] offered an order-preserving symmetric encryption. In their system,

they managed a natural association between a random order-preserving function and the

hypergeometric probability distribution.

Distinctive from the above systems, Boldyreva et al. [10] proposed cryptography-based

OPES. At first, it represents the ideal OPES whose encryption function is chosen consis-

tently at random from a set of all strictly increasing functions. Though the idea of this

OPES is not feasible; it can be utilized as a security consideration for a practical OPES.

They proposed a method to transform a plaintext x to its ciphertext using a binary-search

process in the ciphertext space and then transform back the searched points using hyper-

geometric distribution to the space.

In the approach offered by Ozsoyoglu et al. [31], a series of strictly increasing polynomial

function is used to build the OPES. Encrypted value of an integer x is obtained from

12

iterative processes of encryption functions on x. The OPES security algorithm is hard to

analyze because it is not formed using basic conventional cryptographic algorithms.

Hacigümüş et al. [16] suggested a system that spilits the domain of plaintext into many

partitions and then allocates an identification, which can be order preserved, for each

partition. They applied a transformation function between the plaintext and encrypted

value. A limitation of this encryption algorithm is that it unable to compare all the

plaintexts (e.g. the plaintexts in the same partition).

Zheli Liu et al. [29] considered a system that utilizes information space expansion and

nonlinear space divisions to protect data distribution and frequency.

Xiao et al. [46] demonstrated protocols called ”DOPE” and ”OE-DOPE”, which can

accomplish OPES in multi-user modes. To assure that no entity in the system identifies

the OPES encryption key, they included a collection of key agents into the system and

introduced the DOPE protocol.

Ce Yang et al. [47] presented a SOPE, though with the loss of accuracy. On the other

hand, in the authors’ proposed system, the security of database values is managed correctly

without loss of precisions during encryption or decryption process.

All of the above mentioned algorithms need to store the order value to the disk, which

is, in reality, a risky way. Consequently, this method offers a new strategy to improve

security, which runs on top of the OPES algorithm [3, 9, 10, 29].

In addition to OPES, some of the secure multi-party calculations use similar procedures,

which are presented in Sections 3.2 and 3.2.1. Among them, Hamada et al. introduced a

secure multi-party computation of radix sort in [17]. The approach applied in their secure

computation is the same as in Section 3.2.1, where the union of other parties’ data used

as an encrypted database. Besides, the method considers general database queries on the

encrypted database.

13

2.3 Skyline Query

Skyline query is one of the most familiar and popular queries as recognized by the database

researchers society. It is an efficient and effective mechanism for acquiring preferable objects

from the datasets. A skyline query objects are those objects that are not dominated by

other objects in the dataset. Consider the case of a two-dimensional database, presented

in Figure 2.1. It is well known, the skyline is collection all non dominated objects, from

the figure {V,Q, S} are not dominated by other objects, so they are the skyline objects.

Nevertheless, the objects {P,R, T, U} are dominated by other objects in the dataset. As a

result, they are filtered out from the final skyline set.

Due to understand and define dominance relationship of objects in the dataset and

skyline query arithmetically, let us consider that there is an n dimension in the dataset

DS, {d1, d2, . . . dn} be the n attributes of DS and, m objects {Ob1, Ob2, · · · , Obm}. Here,

Obi.dj to denote the j-th dimension value of object Obi. Without losing of generality, it is

considered that the less value in each attribute is better.

Dominance: An object Obi ∈ DS is consider to dominate another object Obj ∈ DS,

written as Obi ≺ Obj , if Obi.dr ≤ Obj .dr (1 ≤ r ≤ d) for all the d attribute and Obi.dt <

Obj .dt (1 ≤ t ≤ d) for at least one dimension. One can consider such Obi as dominant

object and such Obj as dominated object between Obi and Obj . As an example in Figure 2.1,

R is better than U in each dimension, hence R ≺ U but in between R & P , R �≺ P and

P �≺ R.

Skyline: An object Obi ∈ DS is consider to be a skyline object of DS, if and only

if there is no other object Obj ∈ DS (j �= i) that dominates Obi. The skyline of DS,

presented as Sky(DS), is the set of skyline objects in DS. As an example in Figure 2.1,

Sky(DS) = {V,Q, S}.

Cells wise skyline:

14

�� ���� ����

� 	
 	�

� �
 	�

� 	� �

�
� �

�

�

� ��
�

� �� ��

���������

���		��
�

���

��
	

���	���

����	����

���������

���
�����

�

��

��

��

��

��

��

	�

� �� �� �� �� �� �� 	�
�
�
�
�
�

��
�

����������� ������� �!�

Figure 2.1: Skyline query

Cells are constructed by dividing the domain of each attribute by the corresponding

partition number. Figure 4.4(a)(b) explains the cell division by applying four partitions

in each attribute. While the method computes the skyline from the objects in the similar

cells from all the parties, then it is called cells wise skyline. For instance in figure 4.4(c)(d)

if it consider objects (1,4) ;(2,1) from cell (0,24) of party-A and object (2,3) from cell (0,24)

of party-B, then the cells wise skyline objects in cell (0,24) of party-A and party-B will

be (1,4) and (2,1). Because (2,3) is dominated by (2,1) in the cell (0,24) of party-A and

party-B.

2.4 Secure Skyline Query

The concept of “Secure skyline query” originates from the requirement of the data privacy

issue. Nowadays, the confidentiality of data, as well as complexity to compute the pri-

vate data, is a pivotal concern of the database researcher community. From the discussion

of the skyline, it is recognized that: to obtain the result of the skyline query; the dom-

inance relationship has to be determined. It is not possible to determine the dominance

relationship without disclosing the attribute values in each object. Branch-and-Bound

Skyline(BBS) [33] or Sort-Filter-Skyline(SFS) [13] are efficient algorithms to compute

15

�� ���� ����

�	
���

�
�
�

� ��
�

�
� ��

�	
���

� �� �

� �� ��

� �� ��

� �� ��

���������

���		��
�

���

��
	

���	���

����	����

���������

���
�����

�

��

��

��

��

��

��

	�

� �� �� �� �� �� �� 	�
�

�
�
�
�

��
�

�	���	�	��� ����� �!�"�

Figure 2.2: The Secured Skyline Query

skyline query, even these algorithms are not able to perform skyline query without disclos-

ing the attribute values. In a situation where the dataset is related to multiple organization,

they want to compute skyline query from their combined datasets but not willing to dis-

close their private data to others. To effectively understand the query problem, let us

assume the example given by Figure 2.2. As illustrate in the figure, the objects {P,Q,R}

belongs to Party1 and {S, T, U, V } belongs to Party2. In the case where Party1 & Party2

willing to determine the skyline query result from their join dataset without disclosing the

attribute values in the objects, in traditional way it is not possible to compute the desired

skyline. In traditional way dominance check between the objects of Party1 : {P,Q,R} and

objects of Party2 : {S, T, U, V } are not possible without knowing the attribute values. In

the proposed model, as explained in Chapter 4, addressed the problem and provided the

solutions to this problem. The proposed solution uses the Googles’ MapReduce program-

ming paradigms on hadoop framework, which is designed and implemented by the Apache

software foundation.

2.4.1 Paillier Cryptosystem

As an asymmetric key based homomorphic encryption mechanism Paillier cryptosystem is

a popular method [32]. In this system, both public and secret key are in integer form.

16

We can denote plaintext as p and ciphertext as c, respectively. Consider, the public key is

Paillierpk(n, g) and the secret key is Pailliersk(λ, μ).

Paillier encryption and decryption process can be defined by the functions as follows:

c = gp · rnmodn2

p = L(cλmodn2) · μmodn, where L(x) = x−1
n

The method is an additive-homomorphic cryptosystem; it is possible to add two values

in the encrypted form.

Let us consider, m1 and m2 are in plain text and the corresponding encrypted values are

ζ1 and ζ2, where ζ1 = Pkx(m1) and ζ2 = Pkx(m2), where Pkx(y) is a Paillier encryption

function and Pkx is a Paillier public key of x.

Then, We can accomplish homomorphic addition applying

• Homomorphic Addition

(ζ1 × ζ2)modn2 = Pkx((m1 +m2)modn)

2.4.2 MapReduce on Hadoop framework

MapReduce is a popular distributed programming paradigm and software framework for

processing big data introduced by Google Inc. In this programming paradigm, a huge

amount of data can be processed in a parallel and distributed manner using a cluster of

computers. It needs to design a parallel algorithm that can run on MapReduce framework.

The programmer does not need to manage the factors like the redundancy of data, fault

tolerance etc. during programming in this framework. The MapReduce framework performs

the processing of distributed data by managing the various computing nodes, distributing

the Map Reduce jobs in parallel, maintaining the data transfer among the different nodes

with redundancy and fault tolerance.

Programmers define a map function and reduce function; the map function takes input

17

as a key/value pair and produce another set of key/value pairs as an intermediate result.

The reduce function process all intermediate values generated by map function connected

with a certain intermediate key. Many real-world problems can be implemented in this

way.

The Apache Foundation maintains the Hadoop [5] as a popular open-source implemen-

tation of the MapReduce framework. A programmer only needs to assign a Map job, and

a Reduce job by defining the map, and reduce functions only. In this system, data are

presented as 〈key, value〉 pairs and calculations are distributed over a shared-nothing clus-

ter of independent computers. Jobs are accomplish in this framework only utilizing two

user-defined functions, named Map and Reduce:

Map(k1, v1)→ list(k2, v2)

Reduce(k2, list(v2))→ list(v3)

For each part of input data a 〈key, value〉 pairs are processed by Map function (usually

referred to as Mapper) and as a result it produces intermediate 〈key, value〉 pairs. After

that, the intermediate 〈key, value〉 pairs are sorted and arranged associated with the iden-

tical intermediate key. The Reduce function (usually referred to as Reducer) receive a a list

of key and values pairs. After receiving key and values pairs it applies the final processing

algorithm, and compute the final result. MapReduce is frequently utilized to process a

massive amount of data due to its scalability and fault-tolerance. The readily available of

scalable and open-source MapReduce architecture, such as Hadoop [1], make it a desirable

system for large-scale parallel skyline calculation. The author decided to use MapReduce

using Apache Hadoop because of its positive characteristics like being easy to implement,

its popularity, compliance, and fault-tolerance. The user can use and scale it managing the

general-purpose computers, so it is a cost-effective solution for the distributed computing

system. The algorithm design for the Apache Hadoop system can be easily portable to

18

Apache Spark. It also provides the wanted accurate result and performance in the case of

the implementation of the proposed method. Therefore, Hadoop MapReduce is adopted

to process the data produced from various parties throughout the computation of skyline.

Furthermore, there were many skyline computations in practice that apply the MapRe-

duce framework to compute skyline efficiently: the works in [30, 38, 50, 41] confirmed that

MapReduce-based parallel skyline calculation is more efficient than the centralized skyline

calculations and can process a large volume of data.

2.4.3 Related Works for Secure Skyline Query

Here, we discussed the various related works that need to understand the skyline query

and its different variations.

Skyline Query

BBlock-Nested-Loops(BNL),Divide-and-Conquer (D&C), and B-tree-based schemes [11]

are introduced by Borzsonyi et al. They first introduce skyline operator for big datasets.

In BNL schemes each object in the dataset compares with the other objects in the dataset

finally the non dominated objects are returned as a skyline set. In D&C schemes the

dataset is split into several partitions that can fit into the main memory. Then skyline

computation is performed in each partition after merging the skyline in each partition the

final skyline is computed. Kossmann et al. suggested the D&C algorithm using the nearest

neighbour (NN) algorithm the method and split the data space iteratively based on the

neighbouring objects in the space and efficiently filter out dominated objects [24]. Chomicki

et al. suggested Sort-Filter-Skyline(SFS) as a slight variant of BNL [13], a presorting

scheme is used to enhance the BNL algorithm. The efficient among the all skyline algo-

rithm Branch-and-Bound Skyline(BBS) is suggested by Papadias et al., in this method,

they use a progressive scheme utilizing best-first nearest neighbor (BF-NN) algorithm [33].

19

Nowadays, parallel computing model becomes very successful for skyline computation.

W.T. Balke et al. have suggested skyline queries in distributed settings in [7]. Their

work supports vertically partitioned web information. Various works had been done in the

field of distributed skyline queries. Wang et al. and Chen et al. [45] both use structured

P2P networks, called BATON networks and investigated skyline queries in the networks,

each peer have computed a section of the skyline from the data space and finally merge

the result to compute final skyline. A grid-based (AGiDS) scheme is proposed by Rocha-

Junior et al. [37]. In this method, they distributively compute skyline query using a grid-

based strategy where each peer holds a grid-based data summary to represent the data

distribution. Arefin et al. [6] in their work utilize agent-based privacy-preserving set-

skyline for distributed database. The problem solved by their approach is different from

the proposed secure skyline query.

The giant software company Google develop the MapReduce, which is a popular frame-

work to process queries over extensive data and capable of handle big data with scalability

and fault tolerance. In [49], Zhang et al. first suggested an efficient way to compute the

skyline query in MapReduce architecture. They proposed three different skyline computa-

tion process using the MapReduce framework, called MR-BNL, MR-SFS and MR-Bitmap.

In [34], Park et al. also proposed an algorithm that can efficiently compute skyline in

MapReduce called MR-SKY algorithm. A quad tree-based data partition is used to com-

pute the skyline in a distributed manner. They locally prune the non dominated objects

in each node then compute the global skyline by merging the node skyline.

2.4.4 Secure Skyline Query

Due to the privacy-aware present era, each institution shows concern about the safety

of their data. In various application perspectives, it is essential to compute multi-party

skyline without exposing private information to others. Liu et al. [26] suggested secure

20

skyline query that can perform the skyline query in encrypted form on the cloud platform.

To accomplish the secure skyline Liu et al. use secure comparing protocol offered by Veugen

et al. [44] and the secure bit-decomposition scheme suggested by Samanthula et al. [40].

Hua et al. proposed a privacy-aware skyline computation scheme called CINEMA [20]. In

their work, they offered a solution for computing secure-skyline query on the basis of the

user’s dynamic query. In their system, a user can protect the dynamic query point from

the database owner and the database owner can also preserve the privacy of data from

the user throughout the computation. Although their scheme gives a secure computation

setting concerning data privacy, their circumstances are not similar to us. Furthermore,

their model applies a computationally expensive secure comparison scheme.

Liu et al. suggested another privacy-aware skyline computation model [27] using ad-

ditivity property of skyline [19] to enhance the performance and reduce the number of

secure comparison. They calculate local skyline objects set at first. Later from the local

skyline, they utilize secure dominance relation to computing the global skyline object set.

However, for several participating parties, it requires a pairwise secure skyline calculation

for global skyline computation. So as the amount of the participating parties increases

the computational complexity increases quickly. Besides, the complexity of 0-encoding and

1-encoding system applied in their suggested system increase with the domain space of

the attribute values. From the earlier discussion, it can be understood that the meth-

ods discussed above for multi-party skyline query are not sufficient and efficient enough

when the number of parties increases and also need to exchange considerable amount data

throughout the computation among the parties.

Qaosar et al. proposed a secure multi-party skyline computation method [36] . It

enhances the efficiency, compared to other secured skyline computation methods, but it

needs to assign and share an encrypted substitution vector among the parties before secure

computation of skyline.

21

In the recommended proposed method, the problems are solved by keeping the exchange

of data minimum and by implementing parallel and distributed computation of skyline in

each stage.

Skyline Query in MapReduce

Nowadays, the distributed computing model has become very familiar with skyline compu-

tation. Kasper Mullesgaard et al. [30] offered efficient skyline computation in the MapRe-

duce framework. They produced a grid partitioning design to splits the data space into

different partitions and employed a bit-string to represent the partitions. The bit-string

was efficiently obtained in MapReduce, and it served to prune partitions (and tuples) that

could not have skyline tuples. Hyeong-Cheol Ryu et al., applied adaptive two-level grids

to compute the skyline query in MapReduce [38]. Ji Zhang et al. [50] in their system they

considered data partitioning, filtering, and parallel skyline computation as a holistic query

method. To enhance the parallel local skyline calculation, they proposed two partition-

aware filtering schemes that kept skyline candidates in a well-balanced way. Yoonjae Park

et al. [35] suggested efficient parallel scheme for processing the skyline and its alternatives

using MapReduce. They expertly pruned out non-skyline points in advance with the help

of histograms computed from all points. Then, applying the quadtree, they split the data

into partitions, where each partition contained the same amount of data points. In the first

MapReduce phase, it computed the candidate skyline in each split; then in the next step, it

merged the candidate skyline to produce the final skyline. Conversely, the above-discussed

systems did not consider multi-party databases and privacy concerns about the multi-party

skyline.

Asif Zaman et al. [48] proposed the secure objects’ ordering-based skyline computation

scheme. In his proposed model, all participating parties constructed their database objects’

order with the aid of a semi-honest third party, defined as a coordinator. Initially, the

22

scheme produced the order of the values for each attribute in the multi-party databases.

This computation needed one round of MapReduce process for each digit in a dimension.

For instance, in the multi-party databases, if there were D attributes, and each attribute

contained M digits, then it needed D ∗M number of MapReduce rounds for the generation

of the order of the attribute values. Later, from the order of the values in each attribute

of multi-party databases, it measured the skyline objects applying another round of the

MapReduce process. In the currently proposed method, three MapReduce rounds are used

for determining the privacy-preserving skyline objects, thus enhancing the performance.

23

Chapter 3

Semi-order Preserving Encryption

3.1 Introduction

The growing interest in massive data processing and the increasing popularity of cloud

computing, different groups and database designers currently highlight the confidentiality

and privacy of secured data such as employee wages, age, and expenses. Such sensitive data

are frequently saved in a database. Various encryption procedures have been utilized for

protecting the privacy of sensitive data [43, 10]. But, such procedures usually degrade the

performance of the query executed directly on the encrypted data. At first, the database

process decrypts the values and then execute the conditional operation in the particular

query on the decrypted data. A notable amount of time is spent for decrypting each tuple

before executing conditional operations contained in a query parameter.

As a consequence, several variants of the order-preserving encryption system (OPES)

and some of its’ other options have been proposed in the few articles [3, 8, 9, 10, 31, 16, 29].

The methods mentioned above can increase the performance of database queries by

preserving the order of the data. Nevertheless, in the application of several databases, the

ordered list of numerical data itself is regarded as sensitive information. For instance, some

organizations may observe the merit rank of a person as private information that should

24

not be revealed to other peoples. For this, the semi-order preserving encryption techniques

are proposed. Methods can perturb the original order or index of data and can able to

enhance the privacy of data without deteriorating the efficiency of comparison operations

over perturbed data.

In essence, the offerings of this research are as follows:

• In this dissertation, the author proposed three methods to perform semi-order pre-

serving encryption (SOPE) for numeric values, and which are run on top of OPES.

• Proposed scheme can execute the query with a comparison operator from the en-

crypted semi-ordered values.

• The author empirically confirmed the performance and effectiveness of these stated

methods through various experiments.

3.2 SOPE Technique using OPES and Two-way Perturba-

tion

In the first scheme, the author applies the perturbation of the order information in such a

way that it can quickly sort the perturbed values and perform queries efficiently.

For ease of understanding, the author considers that the database with private and

sensitive data consists of one table with one column. Assume that there have a column of

plaintext values: [43, 253, 629, 69, 521] which are encrypted as [2089, 3458, 7501, 2923, 6303]

by using the OPES to the plaintext values. In the proposed method, the traditional OPES

process is utilized for encryption; moreover, the proposed method perturbed the values

that are generated from the OPES.

To improve the privacy of encrypted order preserved values in C̃, it map the m-digit

ciphertext values for individual digit and produce perturbed m-digit ciphertext values.

25

After the transformation procedure, C̃ = c̃1, c̃2, ..., c̃|P |, in which, c̃i < c̃i+1 becomes C =

c1, c2, ..., c|P |, after that the order is no longer retained, and it addresses the sequence as:

“perturbed ciphertext values”. The order in C̃ is perturbed in C. Figure 3.1 demonstrates

an illustration of the perturbation step.

��������

	�
��
����

���������
�
��
���

	�
��
����

����������

����

�������

������	

������

����
��

��� ���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�������	����
�

�

	

�

�

�

�

�

�

�

������������
�

�

�

�

�

�

�

�

�

�

��������� ��������

������
��
������
��
���� ������	��������
����	���������

�������
����

������������

���������
��

������������

�	�������
��

��������

	�
��
����

�����������
��������

�
��
���

	�
��
����

�� ! " #����

����

�������� ��������

�	����
��
������
��
�����������

������
�
�����������

����������
�
����������

��� �������

����������	

����
������

��������
��

�	����� ���

��
����

�������

	������

��
����

����
��

�������

Figure 3.1: Two-way Perturbation Example

Assume c̃i be an m-digit ciphertext and c̃i[j] (0 ≤ j ≤ m − 1) be the jth digit value

of c̃i. it randomly select one of the two option of mappings in each digit: “an ascending

order map” denoted as “a” and “a descending order map”, denoted as “d”. It convert c̃i[j]

to ci[j] such a way that the order becomes ci1 [j] < ci2 [j] (ci1 [j] > ci2 [j]) in the ascending

(descending) order map if c̃i1 [j] < c̃i2 [j] (i1 �= i2)

Figure 3.1 (b) explains an illustration of the mapping. As an example, “3” is mapped

to “D” in an ascending order map and to “G” in a descending order map. Remark that in

each digit, the initial order in the ciphertext is maintained in the ascending order whereas,

reversed in the descending order map.

Figure 3.1 (a) illustrate the perturbed ciphertext when it randomly selsect “daad”; this

26

signify that the digits from 3-0 are transform into “d”, “a”, “a”, and “d” in that order.

For instance, “2089” is transform into the perturbed ciphertext value “HAIA”, in which

the 1st value “2” is transform into the descending order value “H” and the 2nd value “0”

is transform into the ascending order value “A”. Likewise, “8” and “9” are transform to

“I” and “A”, respectively.

Afterwards, it randomly determines a repositioning plan and applies reposition of each

digit in a number according to the plan. Figure 3.1 (c) presents the reposition of “HAIA”

when it randomly select“2013” as a reposition plan. In the reposition, “H”(the 3rd digit)

goes to the 2nd place, the 2nd digit “A” to the 0th place, the 1st digit “I” to the 1st place,

and the least significant digit “A”(the 0th digit) to the 3rd place. Ultimately, after the

repositioning, “HAIA” converts to “AHIA”.

The transform information such as “daad” and “2013” is saved in the database system

are protected from the adversary. It should be noted that an adversary never infer sensitive

data such as map information, the number of partitions (digits) each value is separated into,

amount of bits in each partition (digit), and whether ascending or descending transform is

used for each partition (digit).

In reality, ciphertext values saved in the database are neither decimal nor character

values such as the ones in the earlier example; they are binary values comparable to the

instance in Figure 3.2. In fact, in the figure, an OPES output “20171119” (in decimal) is

split into eight digits (each digit has four bits). Each digit is mapped based upon the secret

mapping “aaddddaa” into transform value with padded random noise and repositioned with

the secret reposition transform “03571264.”

As a consequence, an adversary never infers the original order of the ciphertext accu-

rately without comprehending the map data.

In contrast, the database scheme, which holds the map data, can compare the perturbed

ciphertext values. For instance, the database scheme can comprehend that “AHIA” is less

27

���������	
�
	
��

����������������
��

��

��
�

�

������������������������������� ���

������������ ���
 ��

 ��

��
��
 �

�

!�"

��������

�����

���

��
�

� ���

��

�����

�����

������������#���������$��������������������%����������������������
����������

������������������������������

�����

��

���

�

�����
�
�

������

�����

�����&%&	%&�	�$
	#
�

'()��������*(

�����������+

+

���
������
+

�+

��
������
�+

�
+

��

�����

+

��+

������
���+� �

+

��
���
��
+ �

�+

�
����
�
�+ �
�
+

�

���
�

+ �
��+

�����

��+ ��

+

�
���

�
+ ��
�+

���

+ ����+

)�",����-��.������#�� ���

!�"�/� ����(�������

0�1����0�1	�2���������� ��	�

��"����������3 ���

4�"����������

Figure 3.2: Detailed Binary Example of Two-way Perturbation

than “BGFE” because the 2nd digit (reposition of the real most significant digit or 3rd

digit) in the numbers are “H or “G”, where “H” is greater than “G” in descending order.

3.2.1 Sorting on Perturbed Values

Radix sort can be accomplished directly on the perturbed data, and it is well known that

the complexity of radix sort is O(mn) where m is the number of digits, and n is the number

of values. In practice, m is very small compared with the total values of n. The sorting

capability ensures that the binary search can be performed directly on perturbed values.

As a consequence, it covers all the query that we can perform efficiently in the case of OPES

values. As the order of each digit in perturbed values is maintained. As a result, during

the query execution, the database management software can able to compare the values

if it has the order and reposition map of each digit. The “radix sort” [39] scheme can be

utilized to perform sorting operation in the database values. The proposed method can use

the order map “daad” and reposition map “2013” to accomplish radix sort on perturbed

28

values. For example, the radix sort algorithm first ordered the values using the 3rd digit (a

reposition of initial 0th digit) in decreasing order. Which can be performed in O(n) where

n is the number of data. Holding the order index in the 3rd digit (a reposition of original

0th digit), it sorts the entire values using the next digit, i.e., the 1st digit (a reposition

of original 1st digit) in ascending order. In this way, the radix sort can be completed for

other digits. And the process produces the desired sorted values.

� ���� � � � 	

�
�
 � � �

� ����
 � � �

� ���� �
 	 �

�
��� � � � �

� ���� � � � 	

� ����
 � � �

�
�
 � � �

� ���� �
 	 �

�
��� � � � �

�
��� � � � �

� ����
 � � �

� ���� �
 	 �

� ���� � � � 	

�
�
 � � �

�
��� � � � �

�
�
 � � �

� ���� �
 	 �

� ����
 � � �

� ���� � � � 	

�
��� � � � �

� ���� �
 	 �

� ���� � � � 	

�
�
 � � �

� ����
 � � �

� � � �

 � � �

Figure 3.3: Radix Sort on Perturbed ciphertext

In Figure 3.3 the radix sort procedure is explained in details. Using the 3rd digit (a repo-

sition of the original 0th digit), the database management software can sort the database

values in descending order; the initial sequence {[1],[3],[5],[2],[4]} becomes {[5],[2],[4],[3],[1]}.

Next, retaining the order of the 3rd digit, the database management software sort the 1st

digit in ascending order, which is a reposition of the initial 1st digit. Both [5] and [4] have

equal value in the 1st digit. In this case, the order of the previous result is retained and

get the order as {[5],[4],[2],[3],[1]}. The method can be continued to perform the sorting

process in other digits. As a result, the complete sorted order of database values can be

obtained.

29

3.2.2 Some example of query processing in OPES scheme

Comparison Operator

SQL query uses, such as =(equal to), <> (not equal to), > (greater than), < (less than), ≥

(greater than or equal to) and ≤ (less than or equal to) operators for comparing numerical

values. Figure 3.4 describes how a database management software can perform the queries

applying the operators, as mentioned earlier. For example, considered that a user wants

to perform the following query:

SELECT ... WHERE value > 70

Traditional OPES can recognize the possible order index of the value, i.e., 70 using the

Lookup Table for OPES. It should be noted that the Lookup Table usually not cover the

total order index of the data in the database but stores the order index of some sample

data. The mapping function can use to recognize the order of each value. Details of the

process are discussed in the proposed work found in [3]. As an example, it can be assumed

that the position of 70 in the Lookup Table is 2.1, which is an intermediate value between

2 and 3.

Hence, the Query Modifier in database management software can rewrites the query as

follows:

SELECT ... WHERE order > 2.1

When DBMS engine gets such a transformed query, which has the ordered information,

it returns all the tuples that satisfy the particular transformed order condition in the query.

By applying the order condition, the tuples with the order index lesser 2.1, i.e. {[1], [2]}

are filtered out. As a result, the tuples whose plaintext values are bellow 70, i.e., {43, 69}

are filtered out from final the result.

30

Similarly, the queries that contain other operators can be modified by query modifier

and the database management software can perform the desired query in perturbed values.

������� � �����	���
����� � ��

������� ��

���	���
	��	� � ����

��������	
��	������
���
��
�

Figure 3.4: Example of Comparison Operator

Aggregation Function

Consider the figure 3.5, and assume that a client want ot perform following query:

SELECT MAX(value) ...

The query modifier in OPES database management software changes the query as:

SELECT MAX(order)...

When the transformed query is transferred to the database management software, it

returns the tuple with the maximum value from the order index. Consequently, all tuples

except {[5]} are filtered out. As a result, the desired value can be collected from plaintext

data (i.e., the tuple with a value 629).

Nevertheless, the database management software never able to process two aggregation

functions: “SUM” and “AVG”. These functions cannot be processed without decrypting

the SOPE value by the proposed method. It is known that all the OPES schemes are not

capable of performing such operations.

31

�
�
�
�
�
�
��

�
�
��
�
�
�
	
�
�
�
�

��������������	�����

��������	
��	������
���
��
�

Figure 3.5: Use of Aggregate Function

Insertion and Deletion Operations

Suppose that a user wants to execute the following query:

INSERT INTO ... VALUES (289)

�
�
�
�
�
�
��
�
�
	
�
�

�
�

�
�
��
�
�
�
�

��������	�
��

�������������

����������	� ���

��
���������

�������	
�����

 � � �
���������	
��

��

���

� � � �

Figure 3.6: Insertion Operation

Whenever such an operator is issued to database management software, the Query

Modifier determines the probable order index of new data value. As illustrates in the

example in Figure 3.6, and according to data in the running example in Figure 3.1.

It is easy to understand that the possible order of the new data value 289 is in between

the 3rd and 4th position. As a result, the order preserved m-digit ciphertext value would

lie within 3458 and 6303. It can be considered that the order-preserving ciphertext value

of 289 is 5320. The detailed process of the mapping can be found in details in the work[3].

32

After getting value 5320, the method applies the order preserved scheme then the DBMS

can determine the encrypted value that is supplied to the database engine.

Deletion operation can be performed using comparison operators in the perturbed text.

Consider that a user issues an operation:

DELETE ... FROM ... WHERE (VALUE > 70)

The method for deleting the values is almost identical, as shown in Figure 3.4. The Query

Modifier of DBMS has to determine the probable order index of 70 and performs the query

execution plan accordingly. The transformed query can be executed as the following query:

DELETE ... FROM ... WHERE (ORDER > 2.1)

In the case of no where condition in the query, the delete... process could be transferred

to the database management software directly.

3.3 SOPE as a Block-wise OPES using Tree

In this suggested method, it first determines plaintext intervals applying Algorithm 1, and

from this plaintext intervals it builds a B-tree in plaintext domain as illustrated in (1) in

Figure 3.7. Consider N is the number of a child node in the B-tree. After that, N disjoint

intervals are made in the ciphertext domain, as illustrated in (2) in the figure. Moreover,

the database management software randomly assigns the intervals in ciphertext domain

to each leaf node of the B-tree in plaintext domain, as represented in (3) in the figure.

Depending on the B-tree, it uses the conventional OPES for each leaf, as illustrated in

(4) in the figure. For instance, plaintext values reside in the [12, 25) are encrypted using

OPES to order preserved values interval [100, 199]. So that the initial order is preserved.

Figure 3.8 illustrates the example how to encrypt the values using the B-tree in Figure 3.7.

For example, 14 as a plaintext value arrives to leaf node of the B-tree [12, 25), and by

33

applying OPES, the value is decrypted to a value in the ciphertext interval [100, 199]. In

like fashion, 20 as a plaintext value can be encrypted to a ciphertext value in [100, 199]

using OPES. As an example, 14 and 20 are in plaintext form encrypted to 121 and 171 in

ciphertext form, respectively. It can be recognized that for each node the original order of

plaintext domain is retained in corresponding ciphertext domain. But, for two ciphertext

values in a different node, the order information is not maintained. As a result, the privacy

of order information in the ciphertext is preserved.

Interval Choosing Algorithm

The proposed method offers privacy preservation of sensitive order information in the

database values. Consequently, to determine the interval in the plaintext domain is an

important task. As illustrated in the Figure 3.7, the order information is maintained in the

same range for plaintext and ciphertext values. As a result, an algorithm should be needed

that ensures no two sensitive values are inserted in the same interval for providing this; the

author designed the interval choosing algorithm. The algorithm is stated as follows-

34

Algorithm 1: Interval Choosing Algorithm

Result: Intervals for plaintext domain

1 Take all the plaintext values in the plaintext domain;

2 ListA=First value in plaintext domain;

3 while all plaintext values are not processed do

4 if Is the current value order sensitive to values in ListA then

5 Assign a new plaintext interval for ListA values and store the interval;

6 empty ListA;

7 ListA=Current Value;

8 else

9 ListA=ListA + Current Value;

10 end

11 end

�� ��

��

�� �� �� 	�

��
�����

�
��������

�����	���

������ �	���������� ������� ������� ������� ������� ����	��
����

 �!"#

�$
%�

&
'(

���))� ������))� ������))� ������))� ������))�

���

))�

�����

�))�

�����

�))�

�����

�))�

�����

�))�

�����

�))�

�����

�))�

�

�����

�))�

����(��
��"
�����*!+�
�

��� �!�%��,"�������

!�����
��*!+�
�

����-%%
.����%��
��*

"
�����*!+�
��

����/��

0!����"�����0

Figure 3.7: Block-wise Semi-Order Preserving Encryption using Tree

��������� 	
�
�
�
� 	� 	� �� �
 �� �� �
 �� �� �� ��

����������

�
��

�
 �		 ��
 �
	 ��
 	
� 	�

� �� �

 �		 �

 ��

Figure 3.8: Example of Block-wise OPES using Tree

35

3.3.1 SOPE Technique using Dynamic Block-wise OPES using Tree

This is considered as a variation of the procedure explained in Section 3.3. The proposed

method in this section can manage two things. Firstly, it avoids two sensitive values to

insert in the same intervals. Whenever someone tries to insert two sensitive information

in the same interval, it creates two intervals and inserts two values at different intervals.

As an illustration, a values in interval 50-62 reach to the corresponding ciphertext interval

������

��

���

��

���

���

�	

���

���

�

���

	��

��

	��

�

��

��

��

��

��

���

��

���

���

��

���

�� ��	�

�� ��

��

���

��

���

������

��

���

��

���

���

�	

���

���

�

���

	��

��

	��

�

��

��

��

��

��

���

��

���

���

��

���

�� ��	�

�� ��

��

���

��

���

����

��

����

��

Figure 3.9: Dynamic Split of Interval

300-399 and maintain the similar order. for example a value 56 is order sensitive to any

other values in the interval 50-55, the dynamic tree based method will split the interval

50-62[300-399] into 50-55[300-399] and 56-62[1500-1600] to avoid two sensitive value in the

same intervals as displayed in Figure 3.9. As a result, Value 56 is transformed to ciphertext

using [1500, K5, 1600] and inserted toward the database.

Secondly, in general, the database operation, service hours may have peak and off-peak

hours. Throughout peak service hours, the database usually busy to perform different user

queries; though, throughout the off-peak service hours, the database is comparatively less

active. Therefore, during off-peak hours, the intervals can be changed in the ciphertext

36

domain to avoid any adversary to recognize the intervals pairs in (plaintext, ciphertext).

Figure 3.10 represents that throughout the service off-peak hours, the interval 800-899

������

��

���

��

���

���

�	

���

���

�

���

	��

��

	��

�

��

��

��

��

��

���

��

���

���

��

���

�� ��	�

�� ��

��

���

��

���

������

��

���

��

���

����

�	

�	��

���

�

���

	��

��

	��

�

��

��

��

��

��

���

��

���

�� ��	�

�� ��

��

���

��

���

Figure 3.10: Dynamic Interval Update in “off-peak” Operation Hours

in ciphertext intervals changes to 1001-2360. Consequently, all values in the ciphertext

interval 800-899 are converted to ciphertext values in the interval 1001-2360. In the case of

static intervals pairs, one time obtaining the intervals pair is sufficient to get information

about the values. But, in the dynamic intervals scheme, one time getting such information

never ensure the adversary to obtain any sensitive information from the database.

3.3.2 Query on Block-wise OPES Values by Tree

Comparison Operator

The scheme can process a query utilizing comparison operators efficiently: =, <>,<,>

,>=, <=. For example, it wants to execute a query:

SELECT ... FROM TABLE A WHERE VALUE > 70

It is considered that 70 is a plaintext value, and Table A holds encrypted values. The

method intends to perform the execution of this query in encrypted data directly and wants

37

to get the query outcome as an encrypted value. It is apparent from the construction of

B-tree when anyone passes the leaf node from left to right; the ciphertext intervals in the

leaf nodes are not in an ordered fashion. However, their corresponding plaintext intervals

are maintaining the order. When anyone crosses leaf nodes of the B-tree from left to

right in ciphertext interval, it signifies that he is crossing the corresponding plaintext

intervals in ascending order. For the execution of the query mentioned above, the database

management software searched the B-tree with value 70 and arrived the leaf [0,K5, 100]. It

utilizes the key K5 in the interval [0, 99] to perform the encryption operation of the value

70. After encryption operation, plaintext value 70 is converted into the ciphertext value

55. As a query result, the values higher than 55 in the intervals [0,100] and all the values

in the right side of the intervals [0,100] are returned.

Aggregation Function

From the discussion mentioned above, it is clear that values in the plaintext intervals, as

well as the values in ciphertext intervals in the B-tree, maintain the order from left to right

as ascending order. As a result, MAX values is the value in the rightmost leaf node interval

in the ciphertext. In the same way, MIN value is the lowest values in the leftmost leaf node

intervals in ciphertext domain.

As a result, this database management system can efficiently return the result aggre-

gation function like MIN and MAX. For example from B-tree in figure 3.7, it is clear that

the MIN value is the lowest value in the interval [200, 299] (which is interval in leftmost

leaf node) and the MAX value is the maximum value in the interval [600, 699](which is the

rightmost leaf node in the B-tree).

Insertion and Deletion Operations:

Assume, a user wants to perform an insertion operation:

38

INSERT INTO ... VALUES(16)

is issued to DBMS. For the execution of the query mentioned above, the suggested method

explores the tree applying value 16 and reaches the leaf-node [100,K2, 199]. Moreover, by

applying OPES key K2 and the ciphertext interval [100, 199], 16 is transformed into 150

after that the ciphertext value 150 is inserted by the DBMS into the database.

For example, the user wants to execute a delete operation:

DELETE ... FROM ... WHERE (VALUE>70)

is issued to the DBMS. From the discussion as mentioned earlier, the intervals in the B-tree

are in ascending order in plaintext domain. As well as in ascending order in the correspond-

ing ciphertext domain. As a result, deleting values higher than 70 can be performed by

deleting values greater than values in the corresponding ciphertext intervals and all the

values in the right side of intervals in ciphertext domain.

For example, in the proposed method for execution of the above query, it reaches the

leaf for value 70 in the B-tree, which is [0,K6, 99] in ciphertext domain. Consequently, 70

is encrypted by K6 in the interval [0, 99] transformed into 50 as a ciphertext value. The

above query eliminates all encrypted values higher than 50 in the interval [0, 99] as well as

all the values in the intervals [400, 499] and [600, 699], which reside right side of [0, 99] in

the B-tree.

3.4 Evaluating SOPE Against Threat Model

The method is developed on top of the order-preserving encryption. It apply the results of

OPES [3, 9, 10, 29] for the provable security. Therefore, the method has all the security

features of [3, 9, 10, 29] and additionally, it can hide the order.

39

SOPE using OPES and Two-way Perturbation

As the adversary can not able to access the OPES key, perturbed mapping table, repo-

sitioning mapping table, and position of noise bits, therefore, if an adversary desires to

identify the order information by applying attack like brute force attack. He has to ar-

range all the partitions into right order, also has to discard the noise bits as well as has to

gain access to the ascending-descending order mapping information. Furthermore, he has

to perform the reposition each digit accurately. For n digit binary numbers, the partitions

can be accomplished in 2n−1 possible ways. If anyone takes into account k number of noise

bits, they can be placed in nPk possible ways in the number, and permutation of the digits

can be accomplished in n! ways. As a result there are possible 2n−1 ∗ nPk ∗ n! ways to

decode a number. Therefore, by applying a brute force attack, the possibility of guessing

the correct order is 1/(2n−1 ∗ nPk ∗ n!).

SOPE Technique using Block-wise OPES using Tree

Whenever an adversary wants to determine the exact order, he has to split the values into

correct intervals as well as determine the OPES key for each interval. For example, N is the

number of possible values in the database domain; the number of possible intervals can be

produced from N data is 2N−1. Therefore, the probability of guessing the correct interval

is 1/(2N−1) whenever an adversary wants to apply a brute force attack. Consequently, it

is tough to determine the exact intervals. Moreover, all intervals are encrypted by distinct

OPES key. As a result, an adversary has to manage OPES key for each interval and as

well have to partition each interval into correct splits. The interval generation algorithm

provides extra security and avoids two sensitive value to insert into the same intervals.

40

SOPE by Applying Dynamic Block-wise OPES using Tree

To recognize the splits of the intervals is very hard, according to the previous discussion.

The adversary may manage the splits, but in this dynamic tree based OPES process, the

intervals are dynamically changed all the time. Therefore one time managing of such

information does not compromise the sensitive information in the database.

3.5 Analysis of SOPE in Different Types of Attack

COA attack

Usually COA attack, the adversary only able to manage some ciphertext values but no

other information like database statistics of the values. In the case of OPES([3, 9, 10, 29])

methods can withstand this kind of attack because the security of the SOPE methods is

already proved in case of COA attack. The suggested method runs on the top of OPES.

As a consequence, the proposed method is secured enough in these types of attacks.

Chosen-ciphertext attack

In this type of attacks, the adversary may have some information about the plaintext

and corresponding ciphertext. The adversary can try to obtain the encryption key and

other information from this attack. When the consideration is only OPES, this kind of

attack may guess the OPES key. The proposed method utilized OPES as the intermedi-

ate encryption for SOPE. Consequently, in the proposed method plaintext values in en-

crypted by OPES then by the proposed method (plaintext→ OPES → OPES(cypher)→

SOPE → ciphertext). The proposed method provides an extra layer of protection for the

OPES(cypher). Therefore, OPES security provided by the methods [3, 9, 10, 29]) un-

doubtedly applicable to SOPE. Moreover, in the case of SOPE values, the only attack the

adversary can able to perform is a brute force attack. On the other hand, in the case of

41

tree-based(SOPE) scheme, the adversary needs the correct splits of the values as well as

the OPES key for each split to guess the values.

From the preceding section, the possibility to determine the correct splits is 1/(2N−1),

where N is the number of values in the database. For example, a database contains

1,000,000 number of values, then the probability of determining the correct splits is 1/(21000000).

In realistic situations, values in the database domain are much larger.

Known-plaintext attack

As the proposed system applies OPES operation to get SOPE, the SOPE can get ap-

plying operation in following ways (plaintext → OPES → OPES(cipher) → SOPE →

ciphertext). In this case, the attacker can manage both plaintext and corresponding ci-

phertext. However, the OPES(cipher) consider as plaintext for SOPE cannot be obtained

by the adversary. As a result, the SOPE methods disconnect the link between the original

plaintext and SOPE(ciphertext). The security proved by [3, 9, 10, 29]) can be considered

as a security for this type of attack.

3.6 Experiments

Various experiments are performed to analyze the proposed method and its effectiveness.

The proposed approach was performed utilizing Matlab R2016b. The PC used in this

experiment has the configuration of fourth-generation Intel R© CoreTMi7 processor, 3.4 GHz

CPU, and 8 GB main memory, operating on 64-bit Microsoft Windows 10 Enterprise

system. The experiments were conducted five times, and the average value taken as the

final results. The values 10k, 100k, 500k, 1m, and 10m are chosen as the input values

for the experiments. Each value is generated as a 32-bit random integer. In the datasets

10k, 100k, 500k, 1m, and 10m means 10,000, 100,000, 500,000, 1,000,000, and 10,000,000

number 32 bit integer.

42

Order information can be hide by applying SOPE on OPES values. AES [22] is an

example of a well-known encryption system. Order in the OPES values can be protected

by applying AES operation on OPES values. For these experiments, AES is considered as

a baseline method to evaluate the proposed schemes.

43

3.6.1 Comparison Operator

For this experiment query is considered as “select * from Table A where A.x > value1”.

Here, it is considered that table A has a 10M number of records. Time is computed for

the number of tuples returned by the select query. Figure 3.11 illustrates that the SOPE

methods proposed in this dissertation are efficient enough compared to AES based method.

In this scenario, the tree-based method is the most efficient one. The other methods are

also efficient with compare to AES based method. The result in this section shows that the

proposed method is applicable for the practical database that wants to hide the sensitive

order information.

����

���

�

��

���

����

��� ���� ����� ��

�
�
�
�
�
�
�

��������	�
����
�

��������	���
�����
������
����������
�

�	
��

����� �
		�
��	� ��������������
		����	� ���������

Figure 3.11: Time required for different operations

3.6.2 Order Hiding

Figure 3.12 illustrates the time required for AES based method and the three proposed

method. The number of data considers form 10,000 to 1,000,000, and the experiment result

shows that the proposed methods can efficiently hide the order information. Suppose n is

the number of values in the database table then 2O(n) will be the complexity for order

44

hiding in perturbation based method. And O(n)+log(n)(searching the tree log(n) + linked

leaves traversal O(n)) will be the complexity of order hiding in tree-based method. The

figure shows that the computation time increase as the number of data increases. The

figure illustrates that proposed methods efficient enough compared with the AES based

baseline method. The time needed for dynamic tree-based method required extra time

than the tree-based method. Moreover, it provides an extra layer of protection, as well.

����

���

�

��

���

����

��� ���� ����� ��

�
�
�
�
�
�
�

��������	�
����

��������	���
�����
�
���������������
��

�	
��

����� �
		�
��	� ��������������
		����	� ���������

Figure 3.12: Total Time for Order Hiding

45

3.6.3 Retrieving of the Original Order

Figure 3.13 shows the amount of time needed for aquiring the original order. The datasets

are varied from 10,000 to 1,000,000 number of values.

Figure 3.13 illustrates that the tree-based method is most efficient than other methods.

But other methods are quite acceptable compared to AES based baseline method. Radix

����

���

�

��

���

����

��� ���� ����� ��

�
�
�
�
�
�
�

��������	�
����

��������	���
�������
��������
��������������
��

�	
��

����� �
		�
��	� ��������������
		����	� ���������

Figure 3.13: Time required for retrieving the original order.

sort is required in the case of perturbation based method to sort the values. The complexity

of radix sort is O(mn), where n and m is the number of data and digits in a number

correspondingly. In the tree-based method, a binary search and linked list traversal are

needed to sort the values; as a result; the complexity of retrieving the original order is

O(n) + log(n). When it is considered to order the unordered data, AES based method

shows a poor efficiency. From the figure, it can be concluded that the proposed three

methods are efficient enough compare to AES based method.

46

3.7 Conclusion

The introduction section focuses that there may be many circumstances when the user

of the database never want to disclose the order information. In this kind of situations,

the SOPE technique can successfully hide the secretive order information. SOPE provide

an extra layer of protection over OPES based values. The experiments show that the

execution times for the proposed SOPE methods are quite acceptable. The queries with

the comparison operator can be directly performed from SOPE values without decrypting

the SOPE value. As a result, SOPE techniques are applicable in the practical database

management system.

So far, the performance of the SOPE is satisfactory. As the future direction, the author

will apply SOPE operation in the distributed environment like MapReduce to handle big

databases.

47

Chapter 4

Secure Skyline Query

The skyline query retrieves the representing objects from large datasets. The skyline query

returns all non dominated objects. Currently, peoples are conscious of the privacy of their

object in a database. So far, many schemes are proposed for computing the skyline query a

few of them can execute the skyline query in a distributed manner and able to process “big

data” [2, 23, 34]. However, except [48] none of them considers the secure computation of

skyline objects without disclosing the domain values. In this chapter, the author proposed

a new way to compute the skyline query in a distributed manner on MapReduce securely.

suppose a group of the organization want to compute skyline from their join datasets

without disclosing the private information in the datasets. Since no organization wants to

disclose sensitive information. Thus, they are not able to compute the skyline from their

join datasets only able to compute skyline from their local datasets. Without any doubt,

the skyline from the combined datasets is more effective and valuable than the individual

local skyline.

Assume, two individual groups have accomplished some market study, and they have

collected datasets regarding commission cost and risk prediction. As this information is

sensitive, and both the organization never want to reveal the values of the original data.

48

However, those two organizations are willing to compute the skyline query from their

combined survey data. In this regards, a method is proposed to compute skyline from

data of both organizations without disclosing the domain values. Which is not possible in

typical skyline computation method without exposing the values to other organizations or

other third parties. The suggested approach can solve this problem as well as can perform

skyline operation in a distributed manner on the MapReduce framework.

4.1 Secure Skyline Problem

In the modern era of information technology, companies with the same kind of service col-

lect multiple information from their customers. For a reliable and practical study, they want

to survey their combined databases. This kind of analysis is considered as a multi-party

computation; examples of multi-party computations are joint data analysis, data mining,

statistical data analysis, etc. Company services may have sensitive information, such as

private, commercial, or health-related data of their customers. The revelation of such infor-

mation significantly break clients’ privacy and may produce a financial or goodwill loss to

the company. Therefore, the companies never desire to reveal their sensitive information to

others. However, throughout mutual data mining operations, the participating companies

are willing to get the result from their united databases without disclosing the confidential

information of the clients.

Skyline has gained significant importance in the database community throughout the

past few decades. It is a vital tool in various multi-criteria decision-making applications like

the business plan, hotel management, etc. Provide a dominance relationship in a dataset;

a skyline query delivers the objects that are not dominated by any other objects inside the

dataset.

The data of table 4.1 plotted on the figure 4.1 shows the multi-party secure skyline

query where P1, P2, P3, P4, and P5 are five objects of Organization 1 and Q1, Q2,

49

Q3, Q4, and Q5 are five objects of Organization 2 with their costs (d1) and risks (d2).

If both organizations want to obtain a feasible recommendation list regarding minimum

cost and risk applying skyline query. The skyline objects for the private database of

Organization 1 will be P1, P2, and P4, and the skyline objects for Organization 2 will be

Q1, Q3, and Q4. However, the skyline objects of their joined databases will be Q1, P4,

Q4, and P2. Though the object P1 and the object Q3 are in the skyline of Organization

1 and Organization 2, respectively, they do not exist in their joined skylines. The object

P4 of Organization 1 dominates the object Q3 of Organization 2 and the objects Q1 of

Organization 2 dominates the object P1 of Organization 1. Consequently, cost and risk

estimation applying a skyline query is more authentic and meaningful if they are calculated

from the data of both organizations. Hence, the parties want to determine skyline objects

from their joined data. However, for security purpose, they do not want to reveal the

attribute values in the objects with others. As a result, there requires a secured way

that can calculate the skyline from joined data of both parties without exposing the real

attribute values throughout the computation.

Table 4.1: Organization database.

Organization 1 Organization 2

ID Cost Risk ID Cost Risk

P1 27 33 Q1 22 30
P2 39 3 Q2 48 11
P3 45 15 Q3 32 25
P4 30 17 Q4 36 8
P5 45 30 Q5 42 37

50

��

��

��

��

��

��

��

��

���

���

���

���

���

���

���

���

�� �� �� �� �� �� ��

�

�

�
�
�
�
�
�

�
�
������

�	
��
���
����

�	
��
���
����

Figure 4.1: The skyline and multiparty skyline of Organizations 1 and 2.

Normally, skyline computation needs a large comparison of objects’ attributes to settle

whether an object is in the skyline or not. It may require multiple object dominance

checks, and each check may include all of the objects’ dimensions. Skyline calculation is

both IO-consuming and CPU-intensive in centralized environments [30, 48]. Consequently,

in the interest of overall performance, it is effective to compute skylines in distributed and

parallel settings.

Besides, MapReduce is frequently used to process big data due to its scalability and

fault tolerance. The availability of scalable and open-source MapReduce software, such as

Hadoop [1], makes it serviceable for large-scale parallel skyline computation. Though the

MapReduce framework normally has been designed in a local area network, which is main-

tained by one organization. The distributed computation can be extended to calculating

the skyline from the union of databases that are maintained by multiple organizations. In

such circumstances, users have to maintain each database independently and securely to

the MapReduce framework. In this way, the distributed computing of MapReduce will

be applied for multi-party databases. However, the security and the privacy of values

throughout the processing of multi-party data should have to be preserved. As a result,

the author thinks that privacy-aware computations of multi-party data in MapReduce have

51

to be considered.

Though a number of skyline calculation techniques [30, 38, 50, 35, 48] use the MapRe-

duce framework to determine the skyline in a distributed environment, except [48], none of

them consider the security concerns for the multi-party skyline. The previously-proposed

secure skyline computation systems [48] only used MapReduce process for sorting the

attribute values in the multi-party objects and required multiple rounds of MapReduce

operations.

Furthermore, various approaches have been introduced for secure skyline query [26, 20,

27, 36]. The schemes in [26, 20] only considered the secure calculation of the skyline for

clients from single party data saved in the cloud platform. The scheme in [27] computed

the skyline from two-party data and interchange a significant amount of data throughout

the secure comparison. It also required several two-party skyline computations to get

the multi-party skyline. Though the previously-proposed encrypted substitution vector-

based method [36] increased the efficiency, compared to other secure skyline computation

methods, it needs to share an encrypted substitution vector before secure calculation of

the skyline.

The proposed method introduces an efficient multi-party skyline computation system

that computes skyline objects from multi-party data and protects the privacy of individual

objects during multi-party skyline calculation. The method concurrently processes multi-

party data, simultaneously performs operations for skyline computation in each phase, and

uses only three rounds of MapReduce processes. For the proposed method, a minimum

number of data exchanged is needed among the participants.

This chapter is organized as follows:

Section 4.2 explains the methodology of computing the secure multi-party skyline with

an example; Section 4.3 specifies the scalability and the application of the method; Sec-

tion 4.4 specifies the security issues; Section 4.5 provides the theoretical analysis of the

52

proposed method; Section 4.6 discusses the experiment details and explains the effective-

ness and efficiency of the method under various settings; Section 4.7 concludes the proposed

work.

4.2 Proposed Model

In the proposed system, it introduces a skyline computation process that can compute the

skyline with the aides of coordinators utilizing multiple parties’ databases with privacy

assurance and security protection. The participating parties never desire to reveal the

original attribute values of the databases; as a result, in the proposed approach, every party

encrypted the database objects values before transferring them to the coordinators, and

the coordinators figured out the skyline on the encrypted attribute values. The proposed

method considered two coordinators: Coordinator 1 and Coordinator 2. Coordinator 2

compute the cell-wise skyline, and Coordinator 1 compute the final multi-party skyline.

Through skyline computation, it considered four kinds of privacies. The privacies were:

1. The privacy of the initial values of attributes.

2. The privacy of the original distribution of the values in each attribute of the multi-

party databases.

3. The privacy of the initial order of attribute values in each database.

4. The privacy of information about the origin of data, which indicates the privacy of

data about which information came from which party.

In the proposed scheme, throughout the computation, it secured privacies 1, 2, and

3 were in Coordinator 2 and privacies 1, 2, and 4 were in Coordinator 1. The method

considered all the parties and the coordinators as a semi-honest adversary. Consequently,

they can attempt to infer private values throughout computation, but never interact with

53

each other and transfer any information with other parties except those allowed by the

proposed system.

For performance, it concurrently computed the local skyline and encryption of the local

skyline in each party, simultaneously performing operations in each coordinator.

Figure 4.2 represents the block diagram of the privacy-preserving skyline computation

system. Here, Node 1, Node 2, ..., Node N want to compute the global skyline from their

local databases without revealing their attribute values. Coordinator 1 and Coordinator 2

determine the global skyline from the data of all party without identifying the real attribute

values of individual databases. The proposed algorithm has five steps.

1. Initialization

2. Local skyline computation, order-preserving encryption of local skyline objects, and

perturbation of the original order of attribute values

3. Cell-wise candidate skyline computation distributively and concurrently in each cell

4. Global skyline computation from the cell-wise candidate skyline

5. Decryption of the global skyline

For explaining the process in a simplified manner, each step of the proposed method is

described by two-dimensional data, as presented in Table 4.2. Here, Node A and Node B

are two parties.

��������	��
�

��������	��
�

������

������

�����	

�����

������

������

������

�

�

	

�

Figure 4.2: MapReduce-based multi-party secure skyline computation model.

54

Table 4.2: Data of Node A and Node B.

Node A Node B

ID Cost Risk ID Cost Risk

A01 105 154 B01 113 151
A02 113 149 B02 127 111
A03 124 102 B03 131 101
A04 133 99 B04 134 92
A05 191 85 B05 145 84
A06 144 72 B06 159 98
A07 167 64 B07 167 70
A08 176 55 B08 176 60
A09 191 53 B09 191 102
A10 167 151 B10 174 149
A11 167 98 B11 174 87
A12 191 53 B12 191 55

4.2.1 Initialization

It is considered that all databases of the participating nodes held the identical database

schema. Consequently, all participating nodes possessed the identical amount of attributes

in each object, and the same number of bits was required in each attribute to save the

values. Coordinator 1 starts the method by sending the signal to all nodes and gives

its Paillier public key (PkC1) to all nodes with a random number RC1. Coordinator 1

randomly chooses a node. The chosen node determines the OPES key for each attribute

and the number of partitions they make in each attribute. Later, the chosen node transfers

the OPE keys and partition for each attribute to all participating nodes.

4.2.2 Local Skyline, OPE, and Perturbation of Original Order

Before transferring any objects to the coordinator, each node determines the local skyline,

does order-preserving encryption, and perturbs the original order. The procedures are

explained in the subsequent subsections.

55

Local Skyline Computation

All the nodes calculate the local skyline from their private databases. As a result, all the

dominated objects from the private databases of each party are filtered out. Figure 4.3a,b

show the objects in the database of Node A and Node B. Figure 4.3c,d show the objects

in the local skyline of Node A and Node B.

����������

����������

��	��	����

��
�������

��������

��
�������

����������
����������

�

�

��

�

	�

� � �� �
 	�

���������

�����
����

��	������

��
��
����

�����������

��
�������

���������

����������
�

�

��

�

	�

� � �� �
 	�

���
���

��	 ��

���

���
��

��� ���

���

���

���

�

��

�

��

��

���

���

�
�

���

���

��� ��� �
� ��� ��� ���

���

���

��	
��

���

���

��

���

���

���

���

���

�

��

�

��

��

���

���

�
�

���

���

��� ��� �
� ��� ��� ���

���
���

��	 ��

���
��

��� ���

�

��

�

��

��

���

���

�
�

���

���

��� ��� �
� ��� ��� ���

���

���

��	
��

���

��

���
���

�

��

�

��

��

���

���

�
�

���

���

��� ��� �
� ��� ��� ���

��������	
���
�������
����������� ��������	
���
�������
�����������

���������������������������
����������� ���������������������������
�����������

���������������������������
��������������
�
���� ���������������������������
��������������
�
����

Figure 4.3: Local skyline of Node A and Node B from their private objects. OPE, Order-
preserving Encryption.

56

OPE of Original Attribute Values in Local Skyline

Here, every node runs order-preserving encryption for each attribute value by implement-

ing the OPE key (they get OPE keys for each attribute during initialization) for the cor-

responding attribute of the local skyline objects. Order-preserving encryption transforms

the attribute values and distribution of the values but preserves the relative order in each

attribute value. Figure 4.3c,d exhibit the local skyline of objects with the original attribute

values of Node A and Node B. Figure 4.3e,f show the order-preserving encrypted attribute

values of the local skyline of Node A and Node B.

Perturbation of the Original Order

OPE transforms the attribute values preserving the relative order of values in each at-

tribute. The objects in the local skyline of all nodes have to be sent to Coordinator 2 for

global skyline computation. If they give the values with the relative order in each attribute

of objects, then the coordinator can examine the relative position of all the objects of the

parties. This is also a vital privacy and security concern.

Consequently, each party perturbs the initial order of the values in each attribute prior

to sending it to Coordinator 2. For perturbation, in each node, the object space is divided

into several cells and changes the order of the attribute values in such a way that the order

of values inside a cell is retained, but the order of the values in the outside of the cell is

not maintained. It means, the order of values in the attributes with objects in other cells

is not maintained.

Cells are constructed by dividing the domain of each attribute by the corresponding

partition number. Since the partition number is given to each party in the time of ini-

tialization, all the parties will have an equal number of cells. Figure 4.4 explains the cell

division by utilizing four partitions in each attribute.

57

����������

����������

��	��	����

��
�������

��������

��
�������

����������
����������

�

�

��

�

	�

� � �� �
 	�

����������	��
��
������	
�
��
��������	
�
��
��

������

���������

�������	
�

����������

���������

�����
����

��	������

��
��
����

�����������

��
�������

���������

����������
�

�

��

�

	�

� � �� �
 	�

����������	��
��
������	
�
��
��������	
�
��
��

������

����
�����

����
������

�������	���

���������

���������

������
���

�������
���
�
���������

�

�

��

�

	�

� � �� �
 	�

������	
�	��
��
�����	��	��
��

	���
���������

������

����
�����	

�������
���

�����������

������
��

����������

������
���

�������
��

�
���������
�

�

��

�

	�

� � �� �
 	�

������	
�	��
��
�����	��	��
��

	���
���������

������

�������
�� �������
�� �����	
�
��

��������
��

�������
��

�������
�� �����	
�
��

��������
��

�������
��

�������
	
�

�������
���

�������
��

�������
��

�������
	
�

�������
���

Figure 4.4: Cell creation and attribute value perturbation of objects in the local skyline
of Node A and Node B.

Figure 4.4a,b show that Node A and Node B have the same number of cells. It con-

sidered the minimum integer attribute values in a cell as the cell id. For illustration, in

Figure 4.4a, cell(0, 8) is a cell with id (0, 8) because zero and eight are the smallest integer

attribute values in this cell.

The attribute values are subtracted in an object with the values in the cell id. As

an illustration, in Figure 4.4a, the object A01 of Node A with attribute value (1, 28)

in cell(0, 24) becomes (1, 28)−(0, 24) = (1, 4). Now an object can be considered as

< cellid >< subtractedvalue >. For instance, objects with attribute value (1, 28) in

cell(0, 24) can be considered as < 0, 24; 1, 4 >. Figure 4.4c,d show the object attribute

value as < cellid; value >.

58

In each node, the cell id is encrypted for each object by the public key of Coordinator 1

and RC1 (all parties collect RC1 at the time of initialization). At the same time, the

objects become < encryptedid; values >. For instance, object < 0, 24; 1, 4 > becomes

< PkC1(0, 24); 1, 4 >. Here, PkC1(0, 24) means (0, 24) is encrypted by the public key

of Coordinator 1. The encrypted cell id changes the inter-cell relative order in attribute

values. All the nodes send the value of the object with the encrypted id to Coordinator

2. Each node completes all the tasks utilizing Algorithm 2 where Line 2 performs the

divisions, Lines 5–12 forms the cell id, as well as the cell-wise attribute values of each

object, and Line 13 transfers the objects with an encrypted cell id to Coordinator 2.

59

Algorithm 2: Cell-wise object generation with encrypted cell id and translated

attribute values.
Input : Oj(1 ≤ j ≤ m) m objects with n attributes each, the bit length

bi(1 ≤ i ≤ n), the number of partitions Pari(1 ≤ i ≤ n), the Paillier

public key of Coordinator 1 PkC1, random number r1

Output: Cell-wise objects with encrypted cell id and translated attribute values

1 for i← 1 to n do

2 divi=(2bi + 1)/Pari;

3 end

4 Define P as a temporary object;

5 for j ← 1 to m do

6 cellid=null

7 for i← 1 to n do

8 P (i) = Oj(i) mod divi /* here, Oj(i) means the i-th attribute

of the j-th object */

9 celli = Oj(i)− P (i) /* cell id generation in the ith attribute

*/

10 Oj(i) = P (i) /* value of the ith attribute of the j-th object

*/

11 cellid = concatenate (cellid, celli)

12 end

13 send value < PkC1(cellid, R1) >< Oj > to Coordinator 2 /* encryption

of cell id by the Paillier public key

of Coordinator 1 using R1 */

14 end

60

4.2.3 Distributive Computation of Cell-Wise Candidate Skyline

Coordinator 2 accepts objects as < encrypted cell id; attributes values > from all nodes.

Since the ids of the objects are encrypted, it is impossible for Coordinator 2 to infer which id

matches to which cell. As it is well known, relative order is adequate for a dominance check

between two objects. Therefore, it is possible to compute the skyline from the relative order

in each attribute values. Coordinator 2 could calculate the skyline of objects in every cell

because the objects’ attribute values in each cell preserve their relative order. Coordinator

2 utilizes the MapReduce to execute the skyline in every cell simultaneously. Figure 4.5a

exhibits the objects received from all the nodes. Figure 4.5b explains the division of the

encrypted cell id of the object as the mapper-key and the cell-wise attribute values of

objects as the mapper-value. Figure 4.5c exhibits cell-wise objects. Figure 4.5d exhibits

the candidate skyline objects in each cell following the reducing operation.

Coordinator 2 accomplish PkC1(cell id) + PkC1(value) for every objects in the cell-wise

skyline. Because it is a homomorphic addition, that is why PkC1(cell id) + PkC1(value) =

PkC1(cell id + value) (Figure 4.6). After doing the homomorphic addition, Coordinator 1.

receives all the cell-wise skyline objects from Coordinator 2. Figure 4.6 illustrates the

homomorphic addition process of cell id and values.

61

��
��
������	
�����	

��
��
������	
������

��
��
�����

������

��
��
�����
��
���

��
��
�����
������

��
��
������
������

��
��
��
���
��	���

��
��
��	���
������

��
��
�����	
������

��
��
�����

��	���

��
��
�����

������

��
��
�����
������

��
��
�����
������

��
��
�����
�����

��
��
��
���
��	��	

��
��
��	����
������

���
��
������	
�������	�

���
��
������	
���������

���
��
�����

����������

���
��
�����
������
����

���
��
�����
�����������

���
��
�����
�����������

���
��
��
���
����	����

���
��
��	���
����������

���
��
�����	
����������

���
��
�����
�
����	����

���
��
�����

����������

���
��
�����
������������

���
��
�����
������������

���
��
�����
�����������
�

���
��
��
���
�����	��	�

���
��
��	���
����������

���
��
������	
�������	�

���
��
������	
���������

���
��
�����	
����������

���
��
�����

����������

���
��
�����
�
����	����

���
��
�����

����������

���
��
�����
�����
����

���
��
�����
����������

���
��
�����
����������

���
��
�����
���� �������

���
��
�����
� ����
�

���
��
��
���
�����	����

���
��
��
���
�����	��	�

���
��
��	���
����������

���
��
��	���
����������

���
��
�����
����������

��� �����	
 �
��

���
��
������	
�������	�

���
��
������	
���������

���
��
�����

����������

���
��
�����

���������

���
��
������
�����
����

���
��
�����
����������

���
��
�����
���������

���
��
�����
����������

���
��
��
���
����	����

���
��
��	���
����������

��� ��� �
� ���

Figure 4.5: MapReduce-based cell-wise skyline computation. Here, PkC1(x, y) means
(x, y) is encrypted by Coordinator 1’s public key.

���
��
�����	
�����
��
�

���
��
�����	
�����	��
�

���
��
����
����������	�

���
��
����
����������
�

���
��
����������������

���
��
�����������
����

���
��
���������������

���
��
�����������	��	�

���
��
�
���������
��	�

���
��
�	
���������
��
�

���������	�
�����

������

��

������
�	��

�
�
�
�����	������
�

�	�������	���	�����

�����	

��

��

������
�	��

!�������
�

�	
������	

�����	"

��

��

������
�	#�

��
��
�����	
������

���
�
��
�

��
��
�����	
������

���
�	��
�

��
��
����
�������

���
����	�

��
��
����
�������

���
����
�

��
��
�����������

���
������

��
��
�����������

���
�
����

��
��
�����������

���
������

��
��
�����������

���
�	��	�

��
��
�
����������

���
�
��	�

��
��
�	
���������

���
�
��
�

��
��
�
���	��

��
��
�	���	��

��
��
����
��

��
��
����
���

��
��
����
���

��
��
������

��
��
�
������

��
��
�
���
��

��
��
�	���	�

��
��
�	���
�

�
���	��

�	���	��

����
��

����
���

����
���

������

�
������

���
��

�	���	�

�	���
�

Figure 4.6: Homomorphic addition by Coordinator 2 and decryption of global skyline
objects by Coordinator 1. Here, PkC1(x, y) means (x, y) is encrypted by Coordinator 1’s
public key.

62

4.2.4 Global Skyline Computation from the Cell-Wise Candidate Skyline

Coordinator 1 utilize its secret-key (SkC1) and decrypts all the objects attribute values

(Figure 4.6) and computes the global skyline concurrently in each node using the MapRe-

duce framework. After calculation of the skyline, skyline objects are sent to all the nodes.

Because the cell id and values are summed together before transferring each object to

Coordinator 1, the coordinator can identify the initial order of all objects. Besides, the

objects are straight coming from Coordinator 2 (not from other parties) to Coordinator 1.

Consequently, Coordinator 1 has no idea about which objects arrived from which party;

therefore, Coordinator 1 is unable to analyze the relative order of the objects of a particular

party.

4.2.5 Decryption of the Global Skyline

Dominated objects are filtered out in every stage, and at last, only the non-dominated

objects remained. It is known that the skyline is the set of non-dominated objects; as a

consequence, all the parties obtain the required global skyline. Each party receives the

global skyline where every attribute value is encrypted with the OPE key for a particular

attribute. Later, they decrypt the attribute values utilizing the OPE key for every attribute

and get the global skyline in plaintext mode. Table 4.3 presents the decrypted values of

the global skyline.

63

Table 4.3: Decrypted objects of the global skyline.

Global Skyline (OPE) Global Skyline (Plaintext)

1 28 105 154
2 25 113 149
3 18 124 102
5 17 131 101
6 15 133 99
9 7 144 72
15 5 167 64
20 2 176 55
25 1 191 53

4.3 Scalability and Application of the Proposed Method

Local skyline computation, OPE, and perturbation are executed simultaneously in each

node, so the scheme is scalable as the number of participating parties grows. The system

utilized the Hadoop MapReduce distributed computing system. Because MapReduce is

a profoundly scalable and distributed arrangement, the method is scalable for a higher

number of nodes or a significant size of data.

The work may be useful wherever there are multi-party datasets, and they willing

to achieve secure computation without revealing the original values in the data. It can

easily extend the work “The inferring fine-grained urban flows” [25] to multi-party secure

urban traffic flow analysis using the proposed method. Spatiotemporal calculation utilizing

ST(Spatiotemporal) -Hadoop [4] can easily extended for multi-party secure computation

utilizing ST(Spatiotemporal) -Hadoop [4]. The concept of the proposed method may be

deployable for secure computation of K-nearest skyline query in spatiotemporal databases

[21]. In the case of the urban area, if there exist multiple water quality testing services,

then the proposed method can utilize to extend the work introduced by Ye Liu et al. [28] for

the secure examination of data from multiple water-quality examination service datasets.

64

4.4 Privacy and Security

To develop the secured privacy-preserving skyline computation system, the author em-

ployed order-preserving encryption and Paillier encryption to satisfy the secure computa-

tion and data privacy demands. It is known that in the semi-honest adversary model [18],

no party is permitted to share data with any other party breaking the protocol specified

to each party.

Because no party supplies their secret data with other parties; as a result, the individual

party has no idea about data from other participants. Only information is shared with

Coordinator 1 and Coordinator 2, so the privacy of data in Coordinator 1 and Coordinator

2 should be assured throughout the computation.

In Coordinator 2, order-preserving encryption is used to encrypt the values, and en-

cryption of each cell id perturbed the original orders among the cells. Coordinator 2 can

discover the original order of values if it is able to rearrange the cells accurately. Assume

that the objects contain M number of attributes, and every attribute is split into N par-

tition; as a result, the permutation NM cells can be performed in (NM)! possible ways.

Consequently, the probability of accurately organizing all cells will be 1/(NM)!. Further-

more, Coordinator 2 has no way to discover the correct arrangement of cells because each

arrangement provides similar kinds of outcome, which are not distinguishable from each

other. Hence, it is impossible for Coordinator 2 to infer the right order. Therefore, the

privacy of the values in each attribute and the privacy of the relative order in each attribute

are maintained throughout the computation of cells-wise skyline in Coordinator 2.

On the contrary, in Coordinator 1, it does not identify the actual values of each at-

tribute because OPES encrypts the values. Nevertheless, it can detect the relative order

of the values in each attribute of a minimal object, because a substantial amount of ob-

jects are filtered out throughout the local skyline calculation and cell-wise skyline calcula-

65

tion. Furthermore, Coordinator 1 does not identify which objects issued from which party.

Consequently, it never able to analyze and determine the relative order of the objects of

participating parties.

4.5 Theoretical Analysis of the Proposed Method

In this section, the author presents the theoretical comparison of the system with the

existing systems. The computational complexity of the secure skyline in the proposed

method depended on the following operations:

1. The time needed for the calculation of the local skyline, OPE, perturbation, and

cell-wise value generation.

2. The time required for the calculation of the cell-wise candidate skyline.

3. The time required for the calculation of the global skyline.

All the nodes concurrently determine the local skyline, OPE, perturbation, and cell-

wise values. Therefore, if the number of parties raises, the time needed for this step does

not change. Besides, Coordinator 2 determines the cells-wise skylines simultaneously in

each cell, filter out a substantial amount of dominated object, and improves the perfor-

mance. Furthermore, at the time of global skyline computation, it calculates the global

skyline concurrently in each node using the MapReduce framework; thus, it increases the

performance. Moreover, throughout the calculation, the coordinators do not require to

exchange any data with the participating parties or other coordinators; this also improves

the overall performance.

The method suggested in [27] uses comparison to matched the pair-wise objects’ at-

tributes and determined the dominance of objects of two parties. In their proposed scheme,

they did not use the coordinator for calculating the multi-party skyline. Consequently, it

66

cannot process multiple parties data concurrently; it can be only able to calculate the

skyline between two parties’ objects. As a result, for n parties, it requires nC2 = n(n−1)
2

two-party skyline computations to measure n-party skyline. Furthermore, it needs a secure

comparison of values in each object attribute for the dominance comparison, which is also

very time-consuming and requires many rounds of data exchange among the parties to

compare each attribute value.

On the contrary, the complexity of the proposed system depends on the number of total

local skyline objects of all parties, not depends on the number of participants. Furthermore,

it does not need any series of data exchange among any participating parties and also

compares objects directly on the encrypted values and applies the dominance check.

In the system proposed in [48], all the participating parties organized their database

objects’ order with the aid of a semi-honest third party, named as the coordinator. To

produce the combined order in each attribute, every digit in the attribute required one

step of MapReduce process in the coordinator. For instance, if there were D attribute,

and each attribute held M digits, D ∗M MapReduce steps were needed for order creation

and one extra step for generating the skyline. In the proposed work, it only required three

MapReduce steps.

The work [36] enhanced the performance, in contrast with other skyline frameworks

for secure skyline computation. But it needed to compute and distribute an encrypted

substitution vector to all the parties before secure computation of the skyline. For example,

if we consider 32-bit integer values and 16-bit partitions for encrypted substitution vector,

it required 2 × 216 32-bit integer values as a substitution vector and should be computed

and distributed among the participants before skyline computation.

67

4.6 Experimental Analysis of the Proposed Method

4.6.1 Experimental Setup and Datasets

Here, the author presents and analyze the performance and efficiency of the proposed sys-

tem. For each node, the scheme used machines with a fourth-generation Intel R© CoreTMi7,

3.4-GHz CPU, and 8 GB main memory, operating on the 64-bit Microsoft Windows 10

Enterprise edition system. For Coordinator 1 and Coordinator 2, the system is configured

as a group of commodity PCs in a high-speed Gigabit network, all of which had an Intel

E8500 3.16-GHz CPU and 8 GB memory. The source codes are compiled with Hadoop

core and Java V8. Hadoop Version 2.5.2 and 64-bit Cent-OS 7 are used throughout the

process of the skyline.

The evaluation of the suggested privacy-preserving secure skyline scheme is performed

in a multi-party distributed setting on synthetic datasets. The system applied randomly

produced integer values, in which it considers three kinds of data distributions: correlated,

anticorrelated, and independent.

4.6.2 Analysis of Our Proposed Method for Different Data Distributions

It is known that the standard approach to examine the skyline calculation is how the

complexity of the computation changes with correlated, anticorrelated, and independent

input distributions. Most of the relevant literature applied these three distributions to

examine the complexity of skyline calculation. Typically, correlated data produce fewer

non-dominated objects in skyline calculation, thus demanding a shorter time. On the

contrary, anticorrelated data create a large amount of non-dominated objects in skyline

calculation; consequently, they need the longest time. Nevertheless, the amount of skyline

objects the independent data provides is in between the amount of non-dominated objects

produced by correlated and anticorrelated data. It also requires to test how the complexity

of the proposed scheme changed with various data distributions. For this experiment, each

68

participating parties’ object numbers are ranged from 10–50 k, each object holding two

attributes, and values were in a 32-bit integer and also used 30 partitions per attribute.

As in the Figure 4.7 illustrates that the skyline reckoning was more efficient for the

correlated data and less efficient for the anticorrelated data. Nevertheless, the efficiency

for the independent data lied in between the efficiency for the anticorrelated and correlated

data. For correlated data, a massive amount of objects are filtered out throughout local

skyline calculation. On the other hand, In the independent data, the average amount of

objects is filtered out. In the case of anticorrelated data, less filtering happened. From

the figure, the time required for skyline grew when the number of objects per party raised

because it required a dominance check for every object of one participant with the objects

of the others.

�

���

���

���

���

���

���

���

	��

����� ����� ����� ����� �����

�
��
�
��
�
�
�

��������	�
����
�����

����������	
���
�
����������������
�������

��
�
��
��

����
���
�

���������
���
�

��� ������

Figure 4.7: Running time varies with data distribution (attribute: 2, partitions: 30/at-
tribute, value: 32-bit).

4.6.3 Analysis of Our Proposed Method with Variation in Object Di-

mensions

Another approach to examining the complexity of skyline calculation is how the calculation

time changes with the change in object dimensions. It is known that skyline calculation

needs comparison in every dimension to measure non-dominating objects from the data.

69

As a result, the complexity of skyline calculation grows with the growth in the object

dimensions. In this segment, how the proposed skyline calculation time changed with the

change in the objects’ dimensions is addressed.

Figure 4.8 explains how time changed with the change of the data dimension for calcu-

lating skyline. In this experiment, the variation of data dimensions is considered from 2–6

and explain how the computation time changed with the difference in the data dimensions.

�

����

����

����

����

�����

�����

����� ����� ����� ����� �����

�
�
�
�
�
�
�
�
	

�������	
����
���������

����������	
���
�
���������	
�����

�	

�	

�	

�	

�	

��
�������������������������������������
�����������������������������������
�����������������������������������
������������ ��
���

��
���

��
���

Figure 4.8: Running time varies with objects attributes (distribution: independent, parti-
tions: 30/attribute).

Because the number of needed attribute partitions along with the number of compar-

isons and the amount of qualified local skyline objects grow with the object dimension, the

execution time of skyline computation therefore increases. Consequently, in Figure 4.8, it

is seen that the execution time grew when object dimensions increased. It is also seen that

the time required for skyline computation raised when the number of objects per party

grew because it required a dominance check for every object of one participant with the

objects of the others.

70

4.6.4 Comparison with the ESV Method

An encrypted substitution vector (ESV) scheme has been introduced for multi-party skyline

calculation in a distributed manner. The system is efficient in term of computation time

compared with other contemporary multi-party secure skyline calculations. In this segment,

the comparison of the suggested method is considered with the ESV based system. For this

analysis, each party had 10k to 50 k objects, each object carrying two attributes, and the

values in each attribute held a 32-bit value. It is also supposed that attribute values are

divided into 30 partitions. In the case ESV based system, attribute values are partitioned

into 11-bit bit-slice length for generating the encrypted substitution vector.

The ESV-based system needs determining and distributing an encrypted substitution

vector among the parties before the secure calculation of the skyline. Furthermore, it does

not use the simultaneous calculation of the skyline in the coordinator. In the suggested

approach, the interchange of data among the participants was only OPE keys for each

dimension and the number of partitions in each dimension. The operations in every stage

are performed simultaneously to calculate the global skyline. Therefore, the measurement

outcomes explain that the suggested system required less time than the ESV based system.

Figure 4.9a–c illustrates that the suggested system outperformed the ESV based system

for the independent, correlated, and anticorrelated data.

71

�

���

���

���

���

���

���

���

	��

��

����� ����� ����� ����� �����

�
��
�
��
�
�
�

��������	
���

��

��������
������� ��

�����������

�

���

���

���

	��

����

����

����

����� ����� ����� ����� �����

�
��
�
��
�
�
�

��������	
���

������

��������
������� ������

�����������

�

���

���

���

���

���

���

���

����� ����� ����� ����� �����

�
��
�
��
�
�
�

��������	
���

�������������
������� ����������������

������ ������ ������ ������ ������

������ ������ ������ ������ ������ ������ ������ ������ ������ ������

Figure 4.9: Running time comparison with ESVand the proposed method in different
data distributions (attribute: 2, partitions: 30/attribute, value: 32-bit, bit-slice length:
11-bit, slices/attribute:3). ESV, encrypted substitution vector.

4.6.5 Comparison with Variation in the Number of Participating Databases

From the earlier discussion, the method is efficient even for the increases in the number of

parties. Here, the variation is made for the amount of participating parties and determined

the time required for multi-party secure skyline computation. For this experiment, it is

considered that each party has 50 k objects, each object containing two attributes, and

each attribute value was a 32-bit unsigned integer. It is also considered that there are 30

partitions per attribute.

Figure 4.10 shows the time required for skyline computation with variation in the

number of participating parties. The number of parties varied from 2–8. Since the pro-

posed method did not share data among the parties during computation and did not need

pair-wise computation, thus the computation time grew linearly with the growth in the

number of participating parties. Therefore, the time required for the proposed method

72

in Figure 4.10 showed a steady increase in time with an increase in participating parties’

databases.

�

����

����

����

����

�����

�����
�
�
�
�
�
�
�
�
	

�������	
����
���

��	
�
�	
��

���
���
	

���������
���
	

������������	��
�

����������
��

������

������

Figure 4.10: Running time varies with participating parties (attribute: 2, partition:
30/attribute).

4.7 Conclusions

In the proposed system, it efficiently manipulated multi-party data without revealing the

real attribute values throughout the calculation of the secure skyline. It concurrently

performs local skyline calculation and encryption of local skyline objects in each party.

Furthermore, Coordinator 1 and Coordinator 2 parallelly conducted the processes for cal-

culating the global skyline. It also kept a limited interchange of data among other par-

ticipants throughout the calculation of the skyline. Therefore, the proposed system gave

better performance. Both of the coordinators applied the MapReduce framework; accord-

ingly, the method can process a big amount of data from multi-party with fault tolerance

and cost-effectively.

73

Chapter 5

Conclusion

In this chapter, the author first presented the application of proposed system in Section 5.1.

Then in Section 5.2, the author explained the critical contribution. And finally, in Sec-

tion 5.3, the the author illustrates the future direction for improving the current systems.

5.1 Applications of proposed models

The proposed model (in Chapter 3) provides the process to securely store and manipulate

data in an efficient way without disclosing the values and the orders of original data. In

many practical scenarios like student merit position in an educational institute, the tender

evaluation results etc. are sensitive to reveal the order information. The order information

can be securely stored and manipulated by this method. For the last several decades,

the skyline query is recognized to be a widespread query method for collecting valuable

objects from datasets. The proposed model (in Chapter 4) capable of computing the skyline

query without disclosing domain values from multiple datasets. An opportunity is created

for collecting interesting objects where the datasets are associated with multiparty, and

individuals are not interested in revealing the domain values at all. The proposed scheme

is designed by utilizing Google’s MapReduce framework, which provides the users to apply

74

the model in a position where traditional single-core algorithms are not efficient.

5.2 Contribution

Computational performance, as well as the secrecy of data, have been acquired significant

awareness from the database analysis area for decades. In this study, the author ana-

lyzed two sophisticated features of secure data storage and skyline queries: (i) Semi-order

Preserving Encryption (ii) Secure skyline query

5.2.1 Contribution Of SOPE

There are many circumstances in which no one expects to disclose order information.

In such cases, the proposed advanced encryption method successfully protects the order

information. It also gives an additional security layer to the OPES approach. Order-

preserving encryption (OPE) produces ciphertexts that preserve the relative order of the

underlying plaintexts. Thus, it is very suitable for range queries over encrypted outsourced

data, as it is a famous case in cloud database scenarios. However, the order information

in the ciphertext is also mater of concern for the organizations, especially for merit order

in an educational institute, the salary of the employees in other organization, the order of

tender evaluation, quotation serial etc. The proposed SOPE method can successfully hide

the order information and also overcome the performance degradation issues. Execution

time for the proposed methods is acceptable, as shown by experiments. We can execute

the queries using different comparison operators without decrypting the original value.

Therefore, our technique is suitable for practical use.

5.2.2 Contribution of Secure Skyline

The secure MapReduce based skyline query from multiple datasets owned by different

parties is illustrated in Chapter 4. In the last several decades, the database researcher

75

community consider the skyline query as one of the popular and useful queries to analyze

massive data. On the other hand, the conventional skyline computation method incapable

of computing any outcome if the attribute values in the database entity are sensitive or

non-revealable. In many cases, the researcher only wants to know the skyline objects

without knowing all objects values in the database domain. The computation becomes

more critical when data are related to multiple organizations, and they do not want to

disclose the objects attribute values to others. To process the massive data comes from the

different organization is also a matter of concern.

The author proposed a novel method that can process the skyline query without disclos-

ing the attribute values of the objects in the database domain. MapReduce is a distributed

framework designed by Google. The Apache Hadoop is open-source software for reliable,

scalable, distributed computing to run MapReduce based algorithms. The author develops

a MapReduce based secure skyline computation method; that can compute skyline from

massive data of various organization without disclosing the attribute values of objects in

the database domain. Each party concurrently execute the operations in their local data.

The coordinators distributively and simultaneously perform the processes in each phase

during the computation of the skyline. Therefore, the experiment results show that the

proposed method computationally efficient enough compare to other methods.

5.3 Future Direction

This dissertation the authors incorporates various direction to extends the current work

for future research.

5.3.1 Semi-order preserving Encryption

As discussed in the Introduction section, there are many situations in which people do

not want to reveal order information. In such cases, our proposed encryption technique

76

successfully hides the order information. It also provides an extra protection layer to

the OPES method. Execution time for the proposed methods is acceptable, as shown by

experiments. We can execute the queries using different comparison operators without

decrypting the original value. Therefore, our technique is suitable for practical use.

So far, the feasibility of the proposed schemes is confirmed. The author is also consid-

ering the distributed computation of the comparison operators of the proposed schemes in

the MapReduce framework.

5.3.2 Secure MR skyline query

The secure skyline query is one of the essential tools to select representative objects from

a large dataset without disclosing the attribute values of multiple organizations. The pro-

posed encryption technique can compute the skyline query in the MapReduce framework.

It is a very efficient method to perform secure skyline query in a distributed manner, but

it needs two coordinators. As a future direction, the author will consider the skyline query

using one coordinator to compute the skyline query. Moreover, the author also considers

securely compute other variations of skyline query such as top-k query and k-skyband query

in a distributed manner on a MapReduce framework.

77

Reference

[1] Apache. welcome to apachetmhadoop. http://hadoop.apache.org. Accessed: 2019-
05-01.

[2] F. N. Afrati, P. Koutris, D. Suciu, and J. D. Ullman. Parallel skyline queries. In
International Conference on Database Theory (ICDT), page 274284, 2012.

[3] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order-
preserving encryption for numeric data. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, Paris, France, June 13-18, 2004,
pages 563–574, 2004.

[4] Louai Alarabi, Mohamed F. Mokbel, and Mashaal Musleh. St-hadoop: a mapreduce
framework for spatio-temporal data. GeoInformatica, 22(4):785–813, Oct 2018.

[5] Apache. Apache hadoop. In http://hadoop.apache,org. 2010.

[6] Mohammad Shamsul Arefin and Yasuhiko Morimoto. Privacy aware parallel computa-
tion of skyline sets queries from distributed databases. 2013 International Conference
on Computing, Networking and Communications (ICNC), pages 186–192, 2011.

[7] Wolf-Tilo Balke, Ulrich Güntzer, and Jason Xin Zheng. Efficient Distributed Skylining
for Web Information Systems, pages 256–273. Springer Berlin Heidelberg, 2004.

[8] G. Bebek. Anti-tamper database research: Inference control techniques. Technical
Report EECS 433 Final Report, Case Western Reserve University, 433, 2002.

[9] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. Order-
preserving symmetric encryption. In Antoine Joux, editor, Advances in Cryptology -
EUROCRYPT 2009, pages 224–241, Berlin, Heidelberg, 2009. Springer Berlin Heidel-
berg.

[10] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-Preserving En-
cryption Revisited: Improved Security Analysis and Alternative Solutions. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

[11] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. In Proceedings of
IEEE International Conference on Data Engineering (ICDE), pages 421–430, 2001.

[12] Nathan Chenette, Kevin Lewi, Stephen A. Weis, and David J. Wu. Practical order-
revealing encryption with limited leakage. In Fast Software Encryption (FSE), 2016.

78

[13] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In Proceedings
of IEEE International Conference on Data Engineering (ICDE), pages 717–719, 2003.

[14] E. Dellis and B. Seeger. Efficient computation of reverse skyline queries. In Proceedings
of VLDB, pages 291–302, 2007.

[15] Lakhmi C. Jain Editors: Barbara Catania. Intelligent Systems Reference Library
Volume 36 2013. Springer Berlin Heidelberg, 2013.

[16] H. Hacigümüş, B.R. Iyer, C. Li, and S. Mehrotra. Executing sql over encrypted
data in the databaseservice-provider model. Proc. of the ACM SIGMOD Conf. on
Management of Data, Madison,Wisconsin, pages 216–227, 2002.

[17] Koki Hamada, Dai Ikarashi, Koji Chida, and Katsumi Takahashi. Oblivious radix sort:
An efficient sorting algorithm for practical secure multi-party computation. IACR
Cryptology ePrint Archive, 2014:121, 2014.

[18] Carmit Hazay and Yehuda Lindell. Definitions, pages 19–49. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2010.

[19] Katja Hose and Akrivi Vlachou. A survey of skyline processing in highly distributed
environments. The VLDB Journal, 21(3):359–384, Jun 2012.

[20] J. Hua, H. Zhu, F. Wang, X. Liu, R. Lu, H. Li, and Y. Zhang. Cinema: Efficient
and privacy-preserving online medical primary diagnosis with skyline query. IEEE
Internet of Things Journal, pages 1–1, 2018.

[21] Yuan-Ko Huang and Zong-Han He. Processing continuous k-nearest skyline query with
uncertainty in spatio-temporal databases. Journal of Intelligent Information Systems,
45(2):165–186, Oct 2015.

[22] Vincent Rijmen Joan Daemen. The Design of Rijndael AES The Advanced Encryption
Standard. Springer International Publishing, 2002.

[23] Hua Lu Kasper Mullesgaard, Jens Laurits Pedersen and Yongluan Zhou. Efficient sky-
line computation in mapreduce. In International Conference on Extending Database
Technology (EDBT), pages 37–48, 2014.

[24] Donald Kossmann, Frank Ramsak, and Steffen Rost. Shooting stars in the sky: An on-
line algorithm for skyline queries. In Proceedings of the 28th International Conference
on Very Large Data Bases, VLDB ’02, pages 275–286. VLDB Endowment, 2002.

[25] Yuxuan Liang, Kun Ouyang, Lin Jing, Sijie Ruan, Ye Liu, Junbo Zhang, David S.
Rosenblum, and Yu Zheng. Urbanfm: Inferring fine-grained urban flows. CoRR,
abs/1902.05377, 2019.

[26] J. Liu, J. Yang, L. Xiong, and J. Pei. Secure skyline queries on cloud platform. In
2017 IEEE 33rd International Conference on Data Engineering (ICDE), pages 633–
644, April 2017.

79

[27] Ximeng Liu, Rongxing Lu, Jianfeng Ma, Le Chen, and Haiyong Bao. Efficient and
privacy-preserving skyline computation framework across domains. Future Generation
Computer Systems, 62:161 – 174, 2016.

[28] Ye Liu, Yu Zheng, Yuxuan Liang, Shuming Liu, and David S. Rosenblum. Urban
water quality prediction based on multi-task multi-view learning. In Proceedings of
the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI’16,
pages 2576–2582. AAAI Press, 2016.

[29] Zheli Liu, Xiaofeng Chen, Jun Yang, Chunfu Jia, and Ilsun You. New order preserving
encryption model for outsourced databases in cloud environments. Journal of Network
and Computer Applications, 59:198 – 207, 2016.

[30] Kasper Mullesgaard, Jens Laurits Pederseny, Hua Lu, and Yongluan Zhou. Efficient
skyline computation in mapreduce. In EDBT, 2014.

[31] G Ozsoyoglu, D Singer, and SS Chung. Anti-tamper databases: Querying encrypted
databases. Proc. of the 17th Annual IFIP WG 11.3 Working Conference on Database
and Applications Security, Estes Park, Colorado, pages 133–146, 2006.

[32] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, Proceedings of Advances in Cryptology - Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT) ’99, pages 223–238, Berlin, Heidelberg, 1999. Springer Berlin Heidel-
berg.

[33] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. Progressive skyline
computation in database systems. ACM Trans. Database Syst., 30(1):41–82, March
2005.

[34] Yoonjae Park, Jun-Ki Min, and Kyuseok Shim. Parallel computation of skyline and
reverse skyline queries using mapreduce. In Proceedings of International Conference on
Very Large Data Bases (VLDB) Endowment, volume 6-14, pages 2002–2013, August
2013.

[35] Yoonjae Park, Jun-Ki Min, and Kyuseok Shim. Parallel computation of skyline and re-
verse skyline queries using mapreduce. Proc. VLDB Endow., 6(14):2002–2013, Septem-
ber 2013.

[36] Mahboob Qaosar, Asif Zaman, Md. Anisuzzaman Siddique, Annisa, and Yasuhiko Mo-
rimoto. Privacy-preserving secure computation of skyline query in distributed multi-
party databases. Information, 10(3), 2019.

[37] João B. Rocha, Akrivi Vlachou, Christos Doulkeridis, and Kjetil Nørv̊ag. AGiDS: A
Grid-Based Strategy for Distributed Skyline Query Processing, pages 12–23. Springer,
2009.

[38] Hyeong-Cheol Ryu and Sungwon Jung. Mapreduce-based skyline query processing
scheme using adaptive two-level grids. Cluster Computing, 20(4):3605–3616, December
2017.

80

[39] Anthony Vinay Kumar S and A. Arya. Fastbit-radix sort: Optimized version of
radix sort. In 2016 11th International Conference on Computer Engineering Systems
(ICCES), pages 305–312, 2016.

[40] Bharath K. K. Samanthula, Hu Chun, and Wei Jiang. An efficient and probabilistic
secure bit-decomposition. In Proceedings of the 8th ACM SIGSAC Symposium on
Information, Computer and Communications Security, ASIA CCS ’13, pages 541–546,
New York, NY, USA, 2013. ACM.

[41] M. A. Siddique, H. Tian, and Y. Morimoto. Distributed skyline computation of ver-
tically splitted databases by using mapreduce. In DASFAA, pages 33–45, 2014.

[42] M. A. Siddique, H. Tian, and Y. Morimoto. k-dominant skyline query computation
in mapreduce environment. IEICE Transactions on Information and Systems, pages
1745–1361, 2015.

[43] Douglas R. Stinson. Cryptography : theory and practice. Chapman & Hall/CRC, Boca
Raton, 2005.

[44] T. Veugen, F. Blom, S. J. A. de Hoogh, and Z. Erkin. Secure comparison protocols
in the semi-honest model. IEEE Journal of Selected Topics in Signal Processing,
9(7):1217–1228, Oct 2015.

[45] S. Wang, B. C. Ooi, A. K. H. Tung, and L. Xu. Efficient skyline query process-
ing on peer-to-peer networks. In 2007 IEEE 23rd International Conference on Data
Engineering, pages 1126–1135, April 2007.

[46] Liangliang Xiao, I-Ling Yen, and Dung T Huynh. Extending order preserving encryp-
tion for multi-user systems. IACR Cryptology ePrint Archive, 2012:192, 2012.

[47] Ce Yang, Weiming Zhang, and Nenghai Yu. Semi-order preserving encryption. Infor-
mation Sciences, 387:266 – 279, 2017.

[48] Asif Zaman, Md. Anisuzzaman Siddique, Annisa, and Yasuhiko Morimoto. Secure
computation of skyline query in mapreduce. In Jinyan Li, Xue Li, Shuliang Wang,
Jianxin Li, and Quan Z. Sheng, editors, Advanced Data Mining and Applications,
pages 345–360, Cham, 2016. Springer International Publishing.

[49] Boliang Zhang, Shuigeng Zhou, and Jihong Guan. Adapting skyline computation
to the mapreduce framework: Algorithms and experiments. In Proceedings of DAS-
FAA’11, pages 403–414. Springer-Verlag, 2011.

[50] J. Zhang, X. Jiang, W. Ku, and X. Qin. Efficient parallel skyline evaluation using
mapreduce. IEEE Transactions on Parallel and Distributed Systems, 27(7):1996–2009,
July 2016.

81

List of Referred Publications

Referred Journals

J-1 Saleh Ahmed, Mahboob Qaosar, Asif Zaman, Md. Anisuzzaman Siddique, Chen Li,
Kazi Md. Rokibul Alam and Yasuhiko Morimoto, “Privacy-Aware MapReduce Based
Multi-Party Secure Skyline Computation”, Information, MDPI, Switzerland,10(6):207(1-
19), DOI: 10.3390/info10060207.

J-2 Saleh Ahmed, Annisa, Asif Zaman, Zhan Zhang, Kazi Md. Rokibul Alam and Ya-
suhiko Morimoto, “Semi-Order Preserving Encryption Technique for Numeric Database”,
International Journal of Networking and Computing (IJNC), ISSN 2185-2847, Vol 9,
Issue 1, Pages 111-129, January 2019.

Referred International Conferences

C-1 Saleh Ahmed, Annisa, Asif Zaman, Zhan Zhang, Kazi Md. Rokibul Alam, and Ya-
suhiko Morimoto “Semi-Order Preserving Encryption Technique forNumeric Data to
Enhance Privacy”, Proceedings of the Fifth International Symposium on Computing
and Networking (CANDAR, 17), pp:68-74, Aomori, Japan, November 19-22, 2017,
DOI 10.1109/CANDAR.2017.39

82

Other Publications (not in dissertation)

Referred Journals

J-3 Chen Li, Annisa Annisa, Asif Zaman, Mahboob Qaosar, Saleh Ahmed and Ya-
suhiko Morimoto, “MapReduce Algorithm for Location Recommendation by Using
Area Skyline Query”, Algorithms, MDPI, Switzerland,Vol: 11, Issue 6, Page 191(1-
15), doi:10.3390/a11120191.

Referred International Conferences

C-2 Saleh Ahmed, Mahboob Qaosar, Rizka Wakhidatus Sholikah and Yasuhiko Mori-
moto, “Early Dementia Detection through Conversations to Virtual Personal Assis-
tant”, The 2018 AAAI Spring Symposium Series Technical Report on Beyond Ma-
chine Intelligence: Understanding Cognitive Bias and Humanity for Well-Being AI,
pp. 198-203, Palo Alto, California, USA, March 26-28, 2018.

C-3 Mahboob Qaosar, Saleh Ahmed, Chen Li and Yasuhiko Morimoto, “Hybrid Sensing
and Wearable Smart Device for Health Monitoring and Medication: Opportunities and
Challenges”, The 2018 AAAI Spring Symposium Series Technical Report on Beyond
Machine Intelligence: Understanding Cognitive Bias and Humanity for Well-Being
AI, pp. 269-274, Palo Alto, California, USA, March 26-28, 2018.

83

