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Abstract ���

Although synbiotics may be effective in maintaining remission of inflammatory bowel ���

disease, their anticarcinogenic effects are still debated. To address this issue, we ���

evaluated the effects of synbiotics, probiotics, and prebiotics on tumorigenesis using a �	�

CDX2P-Cre; Apc+/flox mouse model harboring a colon-specific Apc knock out, which �
�

develops adenoma and adenocarcinoma of the colon. Dextran sodium sulfate (DSS)-���

administration promoted colonic tumor development in CDX2P-Cre; Apc+/flox mice, and ���

these tumors were associated with loss of Apc heterozygosity, as confirmed by � �

observation of well-differentiated adenocarcinomas with β-catenin accumulation in ���

tumor cell cytoplasm. Synbiotics-treatment suppressed dextran sodium sulfate-induced ���

colitis in CDX2P-Cre; Apc+/flox mice, thereby reducing mortality, and inhibited ���

tumorigenesis accelerated by DSS-administration. Conversely, neither probiotics nor ���

prebiotics had any effect on inflammation and tumorigenesis. Lactobacillus casei and ���

Bifidobacterium breve were detected in the fecal microbiota of probiotics-treated mice. �	�

Synbiotics-treatment suppressed DSS-induced expression of IL-6, STAT-3, COX-2, and �
�

TNF-� gene transcripts in normal colonic epithelium, indicating the possibility of ���
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���

suppressing tumor development. Importantly, these genes may be potential therapeutic ���

targets in inflammation-associated colon cancer. � �
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Introduction  ���

� Individuals with inflammatory bowel disease have a 10- to 40-fold increased risk of �	�

developing colorectal cancer compared with the general population. This indicates that �
�

colitis-associated cancer develops from chronically persistently inflamed mucosa, and ���

progresses through dysplasia to adenocarcinoma. Therefore, efficacious anti-	��

inflammatory treatment can reduce or retard the development of colorectal dysplasia 	 �

and cancer in inflammatory bowel disease [1–4]. Nonetheless, the mechanisms that link 	��

these chronic inflammatory states to colorectal cancer development are largely 	��

unknown. Experimental evidence suggests that chronic inflammation creates a 	��

favorable environment for colitis-associated cancer initiation and for tumor growth 	��

promotion and progression [5,6]. Noxious compounds released during chronic colon 	��

inflammation are thought to damage DNA and/or alter cell proliferation or survival, 		�

thereby promoting oncogenesis [1,2]. New insights that suggest a direct relationship 	
�

between the DNA damage response and chromosomal instability (CIN) have been 	��

provided by in vivo studies [7,8]. Immune cells, which often infiltrate tumors and 
��

preneoplastic lesions, produce a variety of cytokines and chemokines that propagate a 
 �
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localized inflammatory response, and also enhance premalignant cell growth and 
��

survival by activating signaling pathways, such as those involving IL-6/STAT3, TNF-
��

�, PGE2/COX-2, NF-κB, or MAPKs [5,8–12].  
��

� The pathogenesis of inflammatory bowel disease is related to inappropriate and 
��

exaggerated mucosal immune responses to constituents of the intestinal flora [13,14]. 
��

Dextran sodium sulfate (DSS)-induced colitis is a well-established animal model of 
	�

mucosal inflammation that has been used in the study of ulcerative colitis pathogenesis 

�

and in preclinical studies [6,11,15]. DSS is known to be directly cytotoxic to cells at 
��

multiple levels, resulting in induction of colonic epithelium breakdown [6,16–20]. ���

Exposure to gut flora leads to a significant increase in the expression of several � �

proinflammatory cytokines, chemokines, nitric oxide, and inducible nitric oxide ���

synthase [21–24]. Two inflammation-associated cancer mouse models induced by DSS ���

have been reported. One is the ApcMIN/+ mouse, which shows increased intestinal ���

adenoma and adenocarcinoma increase on DSS-administration [25]. Another model ���

involves administration of azoxymethane (AOM) as a carcinogen and DSS to mice [6].  ���
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� Previously, we demonstrated that CDX2P 9. 5-NLS Cre; Apc+/flox (CPC;Apc) mice �	�

develop adenomas and carcinomas mainly in the distal colon and rectum, together with �
�

a small number of cecum and small intestine adenomas [26]. In human colorectal ���

carcinoma with the CIN phenotype, there is a frequent loss of heterozygosity at loci on  ���

chromosomes 5q, 17p, and 18q [27], whereas in CPC;Apc mice carrying constitutional,  � �

heterozygous, inactivating mutations in the Apc gene, the wild-type Apc allele is  ���

inactivated by loss of heterozygosity, indicating that CIN contributes to tumor  ���

progression.   ���

� “Synbiotics” (“syn” -together and “bios” -life) are a combination of probiotic bacteria  ���

and a growth-promoting prebiotic ingredient that are purported to exhibit synergism  ���

[28]. Several studies have shown that synbiotics might be effective for maintaining  �	�

remission of inflammatory bowel disease in patients, and a previous review of  �
�

synbiotics indicated possible inhibitory mechanisms in colon carcinogenesis [28–34].  ���

However, the anticarcinogenic effect of synbiotics is ambiguous and still under debate.    ��

In Japan, the Lactobacillus casei strain Shirota and Bifidobacterium breve strain Yakult    �

have been marketed since 1935, and are common lactic acid bacteria which are   ��
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available commercially throughout the world. The probiotics and prebiotics used in this   ��

study were chosen because they were found in Japan, are widely used worldwide as a   ��

general supplement reported to have good effects, and are readily obtainable [35,36].   ��

� In this study, we created a new mouse model that promoted tumor development by   ��

eliciting colitis in CPC;Apc mice, which experience spontaneous colon cancer. Using   	�

this model, we evaluated the impact of synbiotics, probiotics, and prebiotics, and   
�

examined the mechanism of tumorigenesis.   ��
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Materials and Methods   ���

Ethics statement  ���

This study was performed in strict accordance with the Guide for the Care and Use of  � �

Laboratory Animals and the local committee for animal experiments. All animal  ���

protocols were approved by the Committee on the Ethics of Animal Experiments of  ���

Hiroshima University (Permit Number: 10–008). We checked the body weights of the  ���

mice every day, and euthanized them immediately after weight loss was detected.  ���

Surgery was performed under sodium pentobarbital anesthesia, and all efforts were  ���

made to minimize the suffering of the mice. Mice were euthanized by CO2 asphyxiation  �	�

as per IACUC guidelines.  �
�

  ���

Bacterial cells: probiotics and prebiotics   ���

In this study, the Lactobacillus casei strain Shirota and Bifidobacterium breve strain  � �

Yakult, were obtained from the Japan Collection of Microorganisms (Saitama, Japan),  ���

and were used as probiotics [35,36]. These strains were cultured in Gifu Anaerobic  ���

Medium broth (Nissui Pharmaceuticals, Tokyo, Japan) under anaerobic conditions  ���
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using AnaeroPack (Mitsubishi Gas Chemical, Tokyo, Japan) at 37 °C for 16 h. The  ���

harvested bacterial cells were washed twice with phosphate-buffered saline (PBS) and  ���

resuspended in PBS at a concentration of 1 × 108 colony-forming units/mL.  �	�

Suspensions were stored at -80 °C until use. 4G-β-Galactosyl-sucrose (3.75 g/body;  �
�

Ensuiko Sugar Refining. Co. Ltd, Japan) was used as a prebiotic [37].   ���

  ���

Animal model  � �

Male CPC;Apc mice were used in this study in order to avoid sex bias.   ���

To obtain CPC;Apc mice, 8-week-old Apcflox/flox females were bred with male CDX2P  ���

9.5-NLS Cre males. All mice were housed under specific pathogen-free conditions.  ���

Teklad Mouse Breeder Diet 8626 (Harland-Teklad) and automatically supplied water  ���

were provided to all mice used in tumorigenesis experiments. The breeding room was  ���

maintained at a constant temperature of 23�2�, relative humidity of 50%5%, 15- �	�

20 air changes per hour, and a 12-h light/dark cycle, with lights on at 8:00 am. Four or  �
�

five mice were housed per cage with chopped wood bedding [38].  ���
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To confirm the mouse genotype, loss of Apc heterozygosity was assessed by multiplex  ���

PCR using the following primers: Apc-P3, 5ʹ- � �

GTTCTGTATCATGGAAAGATAGGTGGTC-3ʹ; Apc-P4, 5ʹ- ���

CACTCAAAACGCTTTTGAGGGTTGATTC-3ʹ; and Apc-P5, 5ʹ- ���

GAGTACGGGGTCTCTGTCTCAGTGAA-3ʹ. The target (580S), deletion (580D), and  ���

wild-type alleles yielded products of 314 (P3 and P4), 258 (P3 and P5), and 226 bp (P3  ���

and P4), respectively. The presence of the CDX2 promoter region was assessed by PCR  ���

as previously described [26].  �	�

  �
�

Induction of chronic colitis in mice; synbiotic, probiotic, and  ���

prebiotic treatments; and general assessment of colitis and  	��

tumorigenesis   	 �

Acute colitis was induced in 7- to 8-week-old mice by administering filter-purified  	��

drinking water (Millipore Corp., Billerica, MA, USA) containing 1% (w/v) DSS (MW  	��

36,000–50,000; MP Biomedicals, Solon, OH, USA) for 7 days. From day 7 onwards,  	��

the animals received normal drinking water. To induce chronic colitis, the mice were  	��
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administered 1% DSS for 7 days during weeks 8, 11, 14, and 17 [6,15]. Synbiotics,  	��

probiotics, and prebiotics were orally consumed daily from 7 weeks to 20 weeks. Body  		�

weight, stool consistency, and fecal blood loss were recorded daily. The number of mice  	
�

administrated drugs in this study was as follows; CPC;Apc mice (control group) was 8,  	��

treated with synbiotics was 9, administrated DSS was 8, administrated DSS and treated  
��

prebiotics was 7, administrated DSS and treated probiotics was 7, and administrated  
 �

DSS and treated synbiotics was 8. At 20 weeks of age, the entire gastrointestinal tract of  
��

mice was removed immediately after euthanizing and flushed with ice-cold PBS.  
��

Intestinal tissue was sliced longitudinally, and the location, number, and diameters of  
��

polyps in the colon were recorded. The intestine was transferred to 10% buffered  
��

formalin to be processed for histopathological studies. Consistent with the histologic  
��

appearance, a hemispherical shape was assumed for large bowel polyps. We recorded  
	�

the location, number, and diameter of large intestinal polyps.   

�

  
��

Disease activity score assessment and histopathological  ���

scoring  � �
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Body weight loss, stool consistency, and the presence of gross blood determined by  ���

fecal observation were assessed daily for each mouse to generate a weekly disease  ���

activity index (DAI), as described previously [39]. Each parameter was scored as shown  ���

in S1 Table. These scores were summed to obtain a DAI ranging from 0 to 12.  ���

To assess DSS-induced colitis, colons were fixed in formalin and stained with  ���

hematoxylin and eosin (H&E). Sections were coded for blind microscopic assessment  �	�

of inflammation (DSS-induced colitis). Histologic scoring was performed based on  �
�

three parameters, i.e., the severity of inflammation, crypt damage, and ulceration, as  ���

described previously [39], with scores shown in S2 Table. The values were summed to ����

give a histological score (maximum 11). At minimum, two sections of different parts of �� �

the distal colon per animal were scored.  ����

 ����

Immunohistochemistry ����

We performed immunohistochemical analysis as described previously [40]. Anti-�-����

catenin (BD Transduction Laboratories), rabbit monoclonal anti-CDX2 (clone ����

EPR2764Y; Nichirei, Tokyo, Japan), rabbit polyclonal anti-p53 (NCL-p53-CM5; Leica ��	�
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Biosystems, Newcastle, UK), and rabbit monoclonal anti-Ki-67 (ab1667, Abcam plc, ��
�

Cambridge, UK) antibodies were used at dilutions of 1:2,000, 1:1,000, 1:200, and 1:100 ����

(final concentration, 5 �g/mL), respectively. The �-catenin, CDX2, p53, and Ki-67 � ��

staining positivity rates in the tumor area and normal colon epithelial cells were �  �

quantified using Image J. [41, 42] � ��

Total RNA extraction and quantitative real-time reverse � ��

transcription-PCR analysis � ��

To assess the effect of DSS and synbiotics administration on gene transcription related � ��

to inflammation and carcinogenesis in background mouse mucosa, we performed � ��

quantitative RT-PCR using total RNA extracted from mouse colon epithelium. Total � 	�

RNA was extracted from mouse normal colon epithelium using an RNeasy kit (Qiagen). � 
�

Quantitative real-time PCR was performed as described previously [43].  � ��

We used commercially available IL-6, STAT3, NF-κB, PGE-2, COX-2, and TNF-α real-����

time RT PCR primers from Qiagen (product numbers: PPM03015A, PPM04643F, �� �

PPM26197A, PPM03647E, PPM30180A, and PPM03113G-200). The primer sequences ����

used for amplification of �-2m (microglobulin) as an internal control were as follows: ����
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� ��

sense 5ʹ-TGGTCTTTCTGGTGCTTGTC-3ʹ, anti-sense 5ʹ -����

GTATGTTCGGCTTCCCATTC-3ʹ. ����

 ����

Fecal bacteriological examinations ��	�

Feces were obtained directly from the colons of six mice in each treatment group to ��
�

investigate the effect of L. casei and B. breve strains on the gut microbiota. Fecal ����

samples for bacteriological analysis were acquired from pre- and post-treated mice at 20 ����

weeks of age. Immediately after defecation, fecal samples were weighed and suspended �� �

in nine volumes of RNAlater (Ambion Inc., Austin, TX, USA). The preparations were ����

then incubated for 10 min at room temperature. For RNA stabilization, fecal ����

homogenate (200 μL) was added to 1 mL of sterilized PBS and centrifuged at 5,000 × g ����

for 10 min. The supernatant was discarded and the pellet stored at -80 °C until RNA ����

extraction. RNA was isolated using a modification of the acid guanidinium thiocyanate-����

phenol-chloroform extraction method. The resulting nucleic acid fraction was ��	�

suspended in 1 mL of nuclease-free water (Ambion) [44,45]. Bacterial numbers were ��
�

determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). ����
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A standard curve was generated from RT-qPCR data (using the threshold cycle [CT] ����

method) and the corresponding cell count, which was determined microscopically with �� �

4,6-diamidino-2-phenylindole (Vector Laboratories, Burlingame, CA) staining for the ����

dilution series of the standard strains [46]. To measure the bacterial populations in each ����

sample, three serial dilutions of extracted RNA were used for RT-qPCR. CT values in ����

the linear range of the assay were applied to the standard curve to obtain the ����

corresponding bacterial cell count in each nucleic acid sample and then converted to the ����

number of bacteria per sample. The specificity of the RT-qPCR assay using group- or ��	�

species-specific primers was determined as described previously [44,45].  ��
�

 ����

Statistical analysis ����

All data are expressed as means ± standard deviations (SDs). Statistical significance �� �

was assessed using the Mann-Whitney U test, chi-square test, unpaired t test or Fisher’s ����

exact test. Kruskal-Wallis analysis was used as a nonparametric test of multiplicity. The ����

data were considered statistically significant at P < 0.05. All statistical analyses were ����

performed using JMP 10 software (SAS Institute Inc., Cary, NC, USA). ����
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 ����

Results  ��	�

DSS-administration promotes colonic tumor development in a ��
�

CPC;Apc mouse model and the tumors were caused by a loss of ����

Apc heterozygosity  ����

We investigated the effect of DSS-induced intestinal inflammation on large intestine �� �

tumorigenesis using CPC;Apc mice. We compared a DSS-administration group with a ����

control group for the appearance of colon, cecum, and small intestine tumors. To assess ����

loss of Apc heterozygosity, we performed Apc genotyping on the tumor, normal colon ����

epithelium, and proximal small intestine. ����

Tumor number was increased in the DSS-administration group; however, there was no ����

significant difference between the treatment and control groups with regards to maximum ��	�

tumor diameter (tumor number [DSS vs. control]; 4 vs. 20; P = 0.002, tumor maximum ��
�

diameter; 6 mm vs. 5.5 mm; P = 0.608) (Fig 1A). In the control group, tumors generally ����

did not develop in the proximal large intestine; however, in DSS-administered mice, �	��

tumors developed in the proximal region at almost the same frequency as in the distal �	 �



�

� 
�

colon (Fig 1A). These tumors also showed a loss of Apc heterozygosity (Fig 1B). �	��

 �	��

Fig 1. Evaluation of tumor formation and histological analysis.  �	��

(A) Comparison of tumor number and site of occurrence in the large intestine between �	��

DSS-administered CPC;Apc mice and control mice. Solid circles indicate a tumor of 5 �	��

mm or more and less than 10 mm. Blue triangles indicate a tumor less than 5 mm. Red �		�

squares indicate a tumor of 10 mm or more. (B) Estimation of Apc loss of heterozygosity �	
�

by multiplex PCR. Histological analysis of tumors in DSS-administered CPC;Apc mice. �	��

Hematoxylin and eosin-stained (C, D, E) and immunohistochemical staining of �-�
��

catenin (F, G, H), CDX2 (I, J, K), p53 (L, M, N), and Ki-67 (O, P, Q). (C, F, I, L, O: 40×, �
 �

box with a solid line indicates a tumor; box with a broken line indicates normal colon �
��

epithelium. D, G, J, M, P: tumor 200×. E, H, K, N, Q: normal colon epithelium 200×.��
��

 �
��

Tumor induction by DSS-administration was confirmed by the �
��

presence of well-differentiated adenocarcinomas with β-�
��

catenin accumulation in tumor cell cytoplasm �
	�
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� ��

The tumors of DSS-administered mice had nuclear atypia and maintained the duct �

�

structure. Almost no infiltration into the submucosal layer was observed (Fig 1C–E). a �
��

high accumulation of �-catenin was observed in the tumor cell cytoplasm, whereas ����

normal colon epithelium in the mucosal crypt stained weakly for this marker (Fig 1F–H). �� �

Immunostaining for CDX2 showed moderate staining in both tumor cells and normal ����

colon epithelium cells (Fig 1I–K), indicating well-differentiated tumors. Immunostaining ����

for p53 produced light staining in both tumor and normal colon epithelium (Fig 1L–N). ����

Immunostaining for Ki-67 generally showed no staining in either tumor or normal colon ����

epithelium (Fig 1O–Q). On the basis of the histological findings, the tumors elicited by ����

DSS-administration were well-differentiated adenocarcinomas with low invasive ��	�

behavior and low growth potential at the time of sacrifice (20 weeks of age). The analysis ��
�

of immunostaining positivity rates using ImageJ indicated that �-catenin, CDX2, p53, ����

and Ki-67 were present in, respectively, 9.6%, 22%, 5%, and 3% of normal colon ����

epithelial tissue. In contrast, they were present in, respectively, 88%, 30%, 10%, and 2% �� �

of tumor tissue.  ����

�����



�

����

Synbiotics-treatment suppresses the symptoms of colitis ����

induced by DSS, resulting in reduced mortality  ����

To evaluate the severity of colitis, we measured changes in the body weight, survival rate, ����

and colitis status of the mice using DAI scoring based on a combination of weight loss, ��	�

rectal bleeding, and stool consistency. We evaluated the effect of one course of DSS-��
�

administration (Fig 2B), observing a weight loss of up to 2% in the DSS-administration ����

group compared with the control. After discontinuation of DSS-administration, there was � ��

an immediate gain in weight. Therefore, we evaluated the change in body weight from �  �

day 0 to day 7, because day 7 represented the nadir of body weight. Over the course of � ��

administration, mice receiving DSS showed increased weight loss. Weight loss during the � ��

four courses of DSS-administration was 10% or more. In contrast, during the courses, � ��

synbiotics-treatment significantly suppressed weight loss by 5% or less (P < 0.05) (Fig � ��

2C). In survival rate analysis, the DSS-administration group showed 50% mortality � ��

related to colitis or tumor. In contrast, a significantly lower mortality rate (10%) was � 	�

observed in the DSS-administered mice receiving synbiotics-treatment (Fig 2D) (P = � 
�

0.04). On the other hand, probiotics and prebiotics alone resulted in a slight decrease in � ��
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�� �

weight loss and a tendency to improve survival rate compared to treatment with DSS ����

alone, but this difference was not significant. Synbiotics, administered to DSS-challenged �� �

mice, reduced DAI scores by 56% compared to those for animals that received DSS alone ����

(Fig 2E) (DSS vs. DSS + synbiotics; 3.6 ± 0.35 vs. 1.6 ± 0.27, P < 0.001).  ����

 ����

Fig 2. Administration schedule of DSS, probiotics and prebiotics. Evaluation of body ����

weight change and survival of mice and intestinal inflammation. ����

(A) Timetable of DSS-administration and drug-treatment with probiotics and prebiotics. ��	�

(B) Weight transition for DSS-administration during course 1 (day 0–21, open circle and ��
�

broken line: control, open circle and solid line: DSS-administered mice, solid circle and ����

solid line: DSS-administered and synbiotics-treated mice). (C) Weight change during ����

each DSS-administration course (1st to 4th) in mice administered DSS and treated with �� �

probiotics and/or prebiotics (open circle: DSS-administration only, solid circle: DSS-����

administered and synbiotics-treated mice, cross: DSS-administration and probiotics-����

treatment, solid triangle: DSS-administration and prebiotics-treatment). (D) Percent ����

survival of each group, with treatments indicated by the same symbols shown in (C).�(E) ����
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����

Disease activity index (DAI) of DSS-administered mice and mice administered DSS and ����

treated with synbiotics. *: P < 0.01, **: P < 0.001 ��	�

 ��
�

Synbiotics-treatment inhibits tumor development accelerated ����

by DSS-administration in a CPC;Apc mouse model �����

We investigated tumorigenesis in CPC;Apc mice with or without DSS-administration, �� �

and in the DSS-administration + probiotics- and prebiotics-treatment groups. There was ����

no significant difference between CPC;Apc mice in the synbiotics treatment and those in ����

the non-treatment groups regarding tumor number (P = 0.379) and maximum tumor ����

diameter (P = 0.509) (Fig 3).  ����

 ����

Fig 3. Comparison of tumor number and maximum tumor diameter.  ��	�

(A) CPC;Apc mice [average tumor number, average tumor maximum diameter (n = 8); ��
�

4.0, 5.9], (B) CPC;Apc mice + synbiotics [average tumor number, average tumor ����

maximum diameter (n = 9); 3.5, 5.0], (C) CPC;Apc mice + DSS [average tumor number, ����

average tumor maximum diameter (n = 8); 19.5, 4.4], (D) CPC;Apc mice + prebiotics �� �



�

����

(average tumor number, average tumor maximum diameter (n = 7); 21, 4.6), (E) CPC;Apc ����

mice + probiotics [average tumor number, average tumor maximum diameter (n = 7); 14, ����

4.6], (F) CPC;Apc mice + synbiotics [average tumor number, average tumor maximum ����

diameter (n = 8); 8.2, 4.5]. *: P = 0.01, **: P = 0.002  ����

 ����

No significant differences were observed in maximum tumor diameter among the ��	�

experimental groups. However, there was a significant reduction (42%) in tumor number ��
�

in the synbiotics-treatment group compared with the group administered DSS alone (DSS ����

+ synbiotics vs. DSS; 8.2 vs. 19.5: P = 0.01). There was no significant difference in tumor ����

number in the probiotics-alone group or the prebiotics-alone group compared with the �� �

DSS-administration group (Fig 3). ����

 ����

Synbiotics-treatment suppresses the inflammation of normal ����

colon mucosa induced by DSS-administration ����

� Histological analysis of the large intestine indicates that tumor development was ����

increased by DSS-administration and suppressed by simultaneous synbiotics-treatment ��	�



�

����

(Fig 4A–C). In addition to weight transition rate, survival rate, and DAI scoring, we ��
�

estimated background mucosa inflammation histologically. ����

 �	��

Fig 4. Analysis of background inflammation in the normal colon epithelium of DSS-�	 �

administered and synbiotics-treated CPC;Apc mice using hematoxylin and eosin �	��

(H&E) staining and histological score.  �	��

 (A) control; CPC;Apc mouse. (B) CPC;Apc mouse administered DSS. (C) CPC;Apc �	��

mouse administered DSS with synbiotics-treatment (yellow scale 1 cm). H&E staining of �	��

normal colon epithelium (D; control, E; DSS-administered mouse, F; mouse administered �	��

with DSS and treated with synbiotics: ×200, black scale 100 µm) in CPC;Apc mouse. (G) �		�

Estimation of histological score of colon epithelium inflammation. (DSS vs. DSS + �	
�

synbiotics; 4.5 ± 0.7 vs. 1.9 × 0.6, P < 0.01). *: P < 0.01 �	��

� Although H&E staining of normal epithelium in the control group revealed no obvious �
��

inflammation of the background normal mucosa (Fig 4D), the DSS-administered group �
 �

showed strong inflammation and mucosal damage, including strong inflammatory cell �
��

infiltration and an intermediate-to-high degree of erosion (Fig 4E). The DSS-�
��



�

����

administration + synbiotics-treatment group showed mucosal damage and moderate �
��

inflammatory cell infiltration and erosion (Fig 4F). To evaluate mouse colitis, we �
��

estimated the severity of colon inflammation, including crypt damage and ulceration, in �
��

the H&E-stained specimens. Synbiotics-treatment under DSS-administration decreased �
	�

the inflammation score compared with DSS-administration alone (Fig 4G) (DSS + �

�

synbiotics vs. DSS; 1.9 ± 0.57 vs. 4.5 ± 0.69, P < 0.01). �
��

 ����

Lactobacillus casei and Bifidobacterium breve are present in �� �

the fecal microbiota of mice treated with synbiotics  ����

The analysis of fecal microbiota shows that both L. casei and B. breve were present in ����

the treatment group, but not in the non-treatment group (Table 1). Additionally, analysis ����

of other anaerobic bacteria revealed no significant changes in the bacterial population ����

(Table 1).  ����

 ��	�

Table 1. Presence of Lactobacillus casei strain Shirota and Bifidobacterium breve ��
�

strain Yakult and changes in the intestinal flora in mouse colon under ����



�

����

administration of dextran sulfate sodium (DSS), synbiotics, Lactobacillus alone, and ����

oligosaccharide alone. �� �

Treatment group a b c d e f 

  control DSS(-)/syn DSS(+) DSS(+)/pro DSS(+)/pre DSS(+)/syn 

mice number (n) 3 3 6 3 4 6 
Total bacteria 9.7 ± 0.6 10.0 ± 0.4 9.1 ± 0.8 9.5 ± 0.4 10 ± 0.4 9.1 ± 0.6 
Obligatory anaerobe       
Clostridium coccoides 

group 8.9 ± 1.3 9.6 ± 0.5 8.5 ± 0.8 8.9 ± 1.0 9.8 ± 0.6 8.5 ± 0.5 
C. leptum subgroup 8.3 ± 1.1 8.7 ± 0.5 8.1 ± 0.5 9.1 ± 0.9 8.6 ± 0.5 8.3 ± 0.5 
Bacteroides fragilis 

group 7.5 ± 0.4 8.1 ± 0.4 7.3 ± 1.0 7.8 ± 0.8 7.9 ± 0.3 7.7 ± 0.8 
Bifidobacterium 7.9 ± 0.8 9.0 ± 0.1 8.0 ± 1.1 8.7 ± 1.2 8.4 ± 1.3 8.3 ± 1.0 
Atopobium cluster 7.7 ± 0.5 9.0 ± 0.7 8.5 ± 0.9 8.0 ± 1.0 8.1 ± 0.3 8.4 ± 0.9 
Prevotella 7.2 ± 0.5 8.0 ± 0.9 7.0 ± 0.6 7.5 ± 0.9 7.8 ± 0.6 7.6 ± 0.8 
C. perfringens <2.3 <2.3 <2.3 <2.3 4.3 ± 0 <2.3 
Facultative anaerobe       
Total Lactobacillus 8.9 ± 0.5 8.9 ± 1.0 7.0 ± 1.1 7.9 ± 1.1 7.2 ± 0.3 7.4 ± 1.3 
L. gasseri subgroup 8.4 ± 0.9 8.5 ± 1.5 6.4 ± 1.2 7.8 ± 1.2 6.6 ± 0.9 6.9 ± 1.5 
L. brevis 3.4 ± 0.1 3.1 ± 0.5 <2.3 2.9 ± 0 <2.3 <2.3 
L. casei subgroup <3.0 7.0 ± 1.2 <3.0 5.8 ± 0.6 <2.9 5.4 ± 1.4 
L. fermentum <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 
L. fructivorans <2.3 <2.3 <2.3 <2.3 <2.3 <2.3 
L. plantarum subgroup <2.4 2.8 ± 0.1 <2.4 <2.4 <2.4 <2.4 
L. reuteri subgroup 8.3 ± 0.4 7.9 ± 0.6 6.6 ± 1.3 6.8 ± 1.3 5.8 ± 0.3 6.1 ± 1.2 
L. ruminis subgroup 8.1 ± 0.6 8.0 ± 0.6 6.1 ± 0.8 7.0 ± 0.9 7.0 ± 0.3 6.4 ± 1.2 
L. sakei subgroup 6.6 ± 0 5.5 ± 0.4 4.6 ± 1.0 5.0 ± 1.2 3.7 ± 0.4 4.4 ± 0.3 
Enterobacteriaceae 5.3 ± 0 5.5 ± 0 5.0 ± 0.8 5.2 ± 0.4 4.8 ± 0 5.8 ± 0.3 
Enterococcus 7.6 ± 0.7 7.4 ± 0.5 6.3 ± 0.4 6.4 ± 0.9 6.6 ± 0.2 6.6 ± 0.6 
Staphylococcus 4.4 ± 0.3 4.7 ± 0.2 4.4 ± 0.1 4.5 ± 0.7 5.2 ± 0.4 5.0 ± 1.1 



�

��	�

Aerobes       
Pseudomonas <2.9 <2.9 <2.9 <2.9 <2.9 <2.9 
Lactobacillus casei 
strain Shirota <4.9 7.0 ± 1.2 <4.9 5.8 ± 0.6 <4.9 5.8 ± 0.6 
Bifidobacterium breve 

strain Yakult <5.0 7.3 ± 1.2 <5.0 6.0 ± 0.1 <5.0 6.2 ± 1.0 

  

Mean bacterial counts (log10 cells/g) per 1 g of feces from 3–6 mice are indicated in ����

each group. ����

�  ����

Because the L. casei subgroup contains the L. casei strain Shirota, it was detected in the ����

administration group.�The L. brevis, L. ruminis, and L. sakei subgroups showed a decrease ����

with DSS administration, although the differences were not significant. ��	�

 ��
�

DSS-induced expression of IL-6, STAT-3, COX-2, and TNF-α ����

gene transcripts in normal colonic epithelium was suppressed � ��

by synbiotics-treatment �  �

Quantitative RT-PCR using total RNA extracted from mouse colon epithelium showed � ��

that, in the DSS-administration group,�expression of IL-6, STAT3, COX-2, PGE-2, NF-� ��

�B was significantly increased by approximately 22- to 110-fold compared to that in � ��



�

��
�

the control by DSS administration. Synbiotics treatment significantly reversed the � ��

upregulation of IL-6 (63%), STAT3 (41%), COX-2 (66%), and TNF-� ����� (Fig � ��

5).  � 	�

 � 
�

Fig 5. Expression analysis was performed for inflammation- and tumorigenesis-� ��

associated genes in normal colon epithelium by quantitative real-time PCR.  ����

� Gene expression of total RNA samples from 20-week-old CPC;Apc mice (C: control, �� �

n = 8), 20-week-old DSS-administered CPC;Apc mice (D: DSS, n = 8), and 20-week-old ����

CPC;Apc mice administered DSS and treated with synbiotics (DS: DSS + synbiotics, n = ����

8) was analyzed using commercial high-density oligonucleotide arrays. *: P < 0.05, **: ����

P < 0.001 ����

 ����

Discussion ��	�

� Colorectal cancer in mice is chemically induced with AOM, and the most-used model ��
�

of colitis-associated colon cancer is induced with a combination of AOM and DSS [6]. ����

To mimic known mechanisms underlying colitis and cancer in humans, genetically ����



�

����

engineered mouse models have been created, of which ApcMIN/+ mice were among the �� �

first, although in this model tumor development was mostly limited to the small ����

intestine [25]. Previously, we showed that intestine-specific caudal-related homeobox ����

transcription factor CDX2 elements confer colon epithelium-preferential transgene ����

expression in the adult mouse, and that mice carrying a CDX2P-NLS Cre recombinase ����

transgene and a floxed Apc allele developed colorectal adenomas and carcinomas [26]. ����

Morphologic and molecular studies of the mouse tumors revealed their similarity to ��	�

human colorectal tumors, suggesting that mice in which the CDX2P-NLS Cre transgene ��
�

is used to target Apc (CPC-Apc), and other genes of interest such as K-ras and Tgfbrt2, ����

simultaneously can be used for studies in colitis-induced colorectal cancer development. ����

In this study, we created a new inflammation-associated colon cancer mouse model by �� �

treating CPC;Apc mice with DSS, characterized by Apc conditional knockout with a ����

background of CIN. Our data demonstrated the inhibitory effects of synbiotics on tumor ����

development through suppression of colitis using CPC;Apc mice. Tumor occurrence ����

was elicited by DSS-promoted colitis, although tumor growth was not promoted. These ����

observations are similar to the findings of a previous study using an ApcMIN/+ mouse ����



�

����

model [25], in which background colitis was strongly involved in tumor development. ��	�

Furthermore, as the CPC;Apc mouse model develops adenocarcinoma in a CIN ��
�

background, these observations suggested that colon epithelium inflammation may ����

promote tumor development through an effect on CIN. ����

� Regarding the roles of synbiotics in colon cancer prevention, the current study �� �

demonstrated that synbiotics-treatment in CPC;Apc mice had no effect on tumorigenesis ����

in terms of either tumor number or maximum diameter without intestinal inflammation ����

induced by DSS. One possible explanation is that the mice were bred in a specific ����

pathogen-free environment that maintained a constant balance of intestinal bacteria, ����

resulting in a minimal effect of synbiotics in the mouse model of spontaneous carcinoma ����

with colon-preferential Apc inactivation. In contrast, the human intestinal environment is ��	�

exposed to various stresses, which cause aggravation of the intestinal environment and ��
�

colitis [34]. Based on this background, we analyzed the impact of synbiotics on ����

carcinogenesis induced by colitis. We demonstrated that treatment with synbiotics ����

suppressed enteritis more effectively than administration of either Lactobacillus or �� �

oligosaccharides alone, thereby inhibiting inflammation-induced carcinogenesis in mice ����



�

�� �

that reproduced an environment close to that of human colon carcinogenesis. ����

� While previous studies have reported the effects of inflammation and intestinal bacteria ����

on tumorigenesis [29,47], this inflammation-induced colon cancer mouse model based on ����

CIN is considered a more useful model to investigate the carcinogenesis of colon for two ����

reasons. First, this model does not require the use of chemicals such as carcinogens. When ��	�

using carcinogens such as mutation inducers, the evaluation of genes associated with ��
�

certain phenotypes might be difficult. The CPC;Apc mouse model is considered to offer ����

a more precise analysis of tumor development because it involves just a single mutation �	��

(Apc). Second, the model enables observation of colon cancer development. Previous �	 �

reports showed only small intestine adenoma or adenocarcinoma in mouse models of �	��

spontaneous intestinal cancer such as the ApcMIN/+ mouse, whereas the present model is �	��

considered to be superior in that it more closely reproduces the environment of human �	��

colon cancer.  �	��

� We detected Lactobacillus in the feces of mice in the Lactobacillus treatment group, �	��

indicating that these bacteria reached the large intestine and persisted there. However, �		�

there was no significant change in other bacterial flora following synbiotics-treatment, �	
�



�

����

suggesting that the administered Lactobacillus had a direct anti-inflammatory effect on �	��

the colonic mucosa. Previous studies have demonstrated that using probiotics and �
��

prebiotics in combination reduced the fecal pH of mice and increased the amounts of �
 �

short-chain fatty acids, thereby preventing mucosal damage, including that of the �
��

colonic crypt cells, and further promoting regeneration [48,49]. Although we did not �
��

perform the relevant evaluations in the present study, it is believed that a combined �
��

administration of probiotics and prebiotics inhibits mucosal damage through the �
��

abovementioned mechanism. In addition, L. brevis and bacteria in the L. ruminis and L. �
��

sakei subgroups showed a decrease associated with mucosal disorder following DSS-�
	�

administration, and this possibly affected the acceleration of tumorigenesis. Because the �

�

absence of L. ruminis has been reported to be correlated with lactate and butyrate �
��

contents in fecal waters [50], our observations can be considered compelling evidence ����

of intestinal environmental change caused by DSS-administration. There was no �� �

significant change in the bacteria of the intestinal microbial flora in both the ����

Lactobacillus-alone and oligosaccharide-alone groups, and thus other factors must be ����

considered to explain the effect of oligosaccharide treatment on the intestinal mucosa. ����



�

����

� Through quantification of the expression levels of gene transcripts associated with ����

inflammation and tumorigenesis, we found that the expression of genes associated with ����

inflammation, such as IL-6, STAT3, NF-κB, PGE-2, COX-2, and TNF-α, increased in the ��	�

DSS-administration group. Among these genes, the expression of IL-6, STAT3, COX-2, ��
�

and TNF-α was decreased in the synbiotics-treatment group with DSS administration. IL-����

6, STAT3, COX-2, and TNF-α have been reported to be associated with tumorigenesis ����

[9,25,51–53], which was similarly demonstrated in the present analysis using CPC;Apc �� �

mice. Thus, tumor suppressive mechanisms that involve suppression of the transcripts of ����

these genes are considered useful subjects for future therapeutic research. For example, ����

antibody drugs for each of the gene products have already been developed; the anti-TNF-����

α antibody drug is infliximab, and IL-6 is targeted by the anti-IL-6 antibody tocilizumab ����

as well as COX-2 inhibitors. These drugs may be expected to suppress tumor ����

development. COX-2 inhibitors and NSAIDs have been shown to reduce the risk of death ��	�

from colon cancer and to prevent cancer [54,55]. The use of the mouse model created in ��
�

this study could enable estimation of the effects of these drugs, thereby indicating ����

appropriate target and drug combinations. � ��



�

����

� There were some limitations to the present study. First, we were not able to evaluate �  �

the impact of DSS-administration on CIN and methylation. Second, the combination of � ��

probiotics and prebiotics that we used is only one of many possible combinations. Many � ��

studies have investigated strains that are beneficial for intestinal inflammation and � ��

immunity, and comparison of a variety of combinations is an important consideration for � ��

future research [28-37]. Third, although we used normal colon mucosa to analyze the � ��

expression of gene transcripts related to inflammation and tumorigenesis, stromal cells � 	�

were present among the mucosal epithelial cells because the tissue was collected � 
�

macroscopically. Therefore, we were unable to obtain a completely uniform evaluation � ��

due to cell heterogeneity. Also, this study selected probiotics and prebiotics that have ����

been shown to be useful. The combination of either the Lactobacillus casei strain Shirota �� �

or Bifidobacterium breve strain Yakult as probiotics and oligosaccharide as probiotics ����

may be useful for suppressing enteritis and tumor development. However, the purpose of ����

this study was not to detect the best combination of probiotics and prebiotics, and this ����

will be left for future research. ����

� In conclusion, using CPC;Apc mice, we created an inflammation-related colon cancer ����



�

����

mouse model in which tumor development is promoted via colitis induced by the ��	�

administration of DSS. The strength of this model is that it is based on CIN with the single ��
�

knockout of Apc, and does not require the use of carcinogens. Moreover, it is ����

physiologically similar to human carcinogenesis in colorectal cancer and enables ����

observation of the effects of drug administration. Furthermore, the present study �� �

demonstrates that synbiotics-treatment suppressed colitis and tumor initiation in this ����

model. The notion in the current study that synbiotics have downregulated IL-6, STAT3, ����

COX-2, and TNF-α genes, which are normally associated with inflammation and ����

tumorigenesis in colon epithelium could possibly disclose new promising therapeutic ����

avenue for patients with colitis-associated colorectal cancer. ����
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