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“O company of jinn and mankind, if you are able to pass beyond the regions of

the heavens and the earth, then pass. You will not pass except by authority

(from Allah). ”

Q.S. Ar-Rahman [55] verse 33

“. . . And when you are told, “Arise,”then arise; Allah will raise those who have

believed among you and those who were given knowledge, by degrees. ”

Q.S. Al-Mujadila [58] verse 11

“For indeed, with hardship (will be) ease. Indeed, with hardship (will be) ease.

So when you have finished (your duties), then stand up (for worship). And to your Lord

direct (your) longing.”

Q.S. Ash-Sharh [94] verses 5-8
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Abstract

The origin of the asymmetry of the universe is the one of unresolved problem

of the fundamental physics in both cosmology and particle physics. From the standard

model point of view, it is insufficient to accommodate such a problem. Therefore, this

indicates a need to extend the standard model.

In this thesis, we develop a mechanism to generate particle number asymmetry

(PNA) which is realized with a Lagrangian including a complex scalar field and a neutral

scalar field. The complex scalar carries U(1) charge which is associated with the PNA.

It is written in terms of the condensation and Green’s function, which is obtained with

two-particle irreducible (2PI) closed time path (CTP) effective action (EA). In the spa-

tially flat universe with a time-dependent scale factor, the time evolution of the PNA is

computed. We start with an initial condition where only the condensation of the neutral

scalar is non-zero. The initial condition for the fields is specified by a density operator

parameterized by the temperature of the universe. With the above initial conditions,

the PNA vanishes at the initial time and later it is generated through the interaction

between the complex scalar and the condensation of the neutral scalar. We investigate

the case that both the interaction and the expansion rate of the universe are small and

include their effects up to the first order of the perturbation. The expanding universe

causes the effects of the dilution of the PNA, freezing interaction and the redshift of the

particle energy. As for the time dependence of the PNA, we found that PNA oscillates

at the early time and it begins to dump at the later time. The period and the amplitude

of the oscillation depend on the mass spectrum of the model, the temperature and the

expansion rate of the universe. In addition to the discussion on BAU, we also estimate

the numerical value of the PNA over entropy density.
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Chapter 1

Introduction

1.1 Research background

The standard model (SM) of particle physics is the most successful model to explain

strong, weak and electromagnetic interactions, with a wide range of predictions in the

experiments. However, the SM has failed to explain several fundamental problems such

as neutrino oscillation, mass hierarchies for both neutrino and quark, the baryon asym-

metry of the universe (BAU), dark matter and dark energy. This indicates a need for

the physics beyond the SM.

The origin of BAU has long been a question of great interest in explaining why

there is more baryon than anti-baryon in nature. Big bang nucleosynthesis (BBN) [1]

and cosmic microwave background [2] measurements give the BAU as η ≡ nB/s w

10−10, where nB is the baryon number density and s is the entropy density. In order to

address this issue, many different models and mechanisms have been proposed [3–7]. The

mechanisms discussed in the literature satisfy the three Sakharov conditions [3], namely,

(i) baryon number (B) violation, (ii) charge (C) and charge-parity (CP ) violations, and

(iii) a departure from the thermal equilibrium. To some extend new physics models

which deal with BAU can be divided into three types. (1) The extension of the SM by

including extra scalar particles in the Higgs sector can alter the electroweak transition

to the first order phase transition, which later provides the non-equilibrium conditions.

In this type of extension, there can be also an extra CP violation. Two-Higgs-doublet

models and many variants of supersymmetric models are the most studied examples

of this type. (2) The extension of the SM with heavy particles which decay out of

equilibrium to the SM particles. Examples include leptogenesis models with a heavy

right-handed neutrino. (3) A particle asymmetry can be first produced in a dark sector

and then transfered to the SM sector. However, in these types of models, there have

1



Introduction 2

been little discussion about the origin of the asymmetry due to a lack of understanding

of the dark sector. For reviews of different types of models and mechanisms, see, for

example, [8–10]. Recently, the variety of the method for the calculation of BAU has

been also developed [11–14].

In this research, we further extend the model of scalar fields presented in [15]

and develop a new mechanism to generate PNA through interactions [16, 17]. The new

feature of our approach will be briefly explained as follows. The model which we have

proposed [18] consists of a complex scalar field and a neutral scalar field. The PNA

is related to the U(1) current of the complex field. In our model, the neutral scalar

field has a time-dependent expectation value which is called condensation. In the new

mechanism, the oscillating condensation of the neutral scalar interacts with the complex

scalar field. Since the complex scalar field carries U(1) charge, the interactions with the

condensation of the neutral scalar generate PNA. The interactions break U(1) symmetry

as well as charge conjugation symmetry. At the initial time, the condensation of the

neutral scalar is non-zero. We propose a way which realizes such initial condition.

As for the computation of the PNA, we use 2PI formalism combined with density

operator formulation of quantum field theory [19]. The initial conditions of the quantum

fields are specified with the density operator. The density operator is parameterized by

the temperature of the universe at the initial time. We also include the effect of the

expansion of the universe. It is treated perturbatively and the leading order term which

is proportional to the Hubble parameter at the initial time is considered. With this

method, the time dependence of the PNA is computed and the numerical analysis is

carried out. Especially, the dependence on the various parameters of the model such as

masses and strength of interactions is investigated. We also study the dependence on

the temperature and the Hubble parameter at the initial time. We first carry out the

numerical simulation without specifying the unit of parameter sets. Later, in a radiation

dominated era, we specify the unit of the parameters and estimate the numerical value

of the PNA over entropy density.

1.2 Research methods

The methods for doing this research will be primarily literature study. We also use

Mathematica Wolfram (version 11) software for helping simulations and numerical cal-

culations.
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1.3 The Systematic writing of the thesis

This thesis has been organized in the following ways. In chapter 2, we introduce our

model with CP and particle number violating interactions. We also specify the density

operator as the initial state. In chapter 3, we derive the equation of motion for Green’s

function and field by using 2PI CTP EA formalism. We also provide the initial condition

for Green’s function and field. Chapter 4 deals with the computation of the expecta-

tion value of the PNA by using the solution of Green’s function and field. Chapter 5

provides the numerical study of the time dependence of the PNA. We will also discuss

the dependence on the parameters of the model. Chapter 6 gives a summary and dis-

cussion of the findings. In Appendix A, we introduce theory of 2PI CTP EA formalism

and later we derive the expectation value of field and Green’s function. Appendix B

introduces a differential equation which is a prototype for Green’s function and field

equations. Applying the solutions of the prototype, we obtain the solutions for both

Green’s function and field equations. In Appendices C-E, the useful formulas to obtain

the PNA for non-vanishing Hubble parameter case are derived.



Chapter 2

A Model of Interacting Scalars

The aim of this chapter is to present a model discussed in [18]. The model consists of

scalar fields and it has both CP and particle number violating features. As an initial

statistical state for scalar fields, we employ the density operator for thermal equilibrium.

In addition, we also compute the matrix element of the normalized density operator at

the initial time.

Let us start by introducing a model which consists of a neutral scalar, N , and a

complex scalar, φ. The action is given by,

S =

∫
d4x
√
−g (Lfree + Lint) ,

Lfree =gµν∇µφ†∇νφ−m2
φ|φ|2 +

1

2
∇µN∇µN −

M2
N

2
N2 +

B2

2
(φ2 + φ†2)

+
(α2

2
φ2 + h.c.

)
R+ α3|φ|2R,

Lint =Aφ2N +A∗φ†2N +A0|φ|2N,

(2.1)

where gµν is the metric and R is the Riemann curvature. With this Lagrangian, we study

the PNA produced through the soft-breaking terms of U(1) symmetry whose coefficients

are denoted by A and B2. One may add the quartic terms to the Lagrangian which are

invariant under the U(1) symmetry. Though those terms stabilize the potential for large

field configuration and are also important for the renormalizability, they do not lead to

the leading contribution for the generation of the PNA. We also set the coefficients of the

odd power terms for Nn(n = 1, 3) zero in order to obtain a simple oscillating behavior

for the time dependence of the condensation of N . We assume that our universe is

homogeneous for space and employ the Friedmann-Lemâıtre-Robertson-Walker metric,

gµν = (1,−a2(x0),−a2(x0),−a2(x0)), (2.2)

4



A Model of Interacting Scalars 5

where a(x0) is the scale factor at time x0. Correspondingly the Riemann curvature is

given by,

R(x0) = 6

[
ä(x0)

a(x0)
+

(
ȧ(x0)

a(x0)

)2
]
. (2.3)

In Eq.(2.1), the terms proportional to A, B and α2 are the particle number violating

interactions. In general, only one of the phases of those parameters can be rotated away.

Throughout this paper, we study the special case that B and α2 are real numbers and

A is a complex number. Since only A is a complex number, it is a unique source of the

CP violation.

Note that, from the Lagrangian in Eq.(2.1), one can also derive the Einstein

equations for the scale factor coupled with scalar particles. They are given as [17],

Tµν =∂µφi∂νφi − gµν
(

1

2
gαβ∂αφi∂βφi −

1

2
m2
iφ

2
i +

1

3
Aijkφiφjφk

)
, (2.4)

−8πGT00 =− 3(1− 8πGβiφ
2
i )

(
ȧ

a

)2

, (00 component) (2.5)

−8πGTii =(1− 8πGβiφ
2
i )(2aä+ ȧ2), (ii component) (2.6)

−8πGTµν(6=µ) =0, (off diagonal component), (2.7)

where Tµν is the energy-momentum tensor and G is the Newton’s constant. However, a

full discussion for solving them lies beyond the scope of this study. At present, we work

for the case that the time dependence of the scale factor is given, independently from

Einstein’s equations.

Next we rewrite all the fields in terms of real scalar fields, φi (i = 1, 2, 3), defined

as,

φ =
φ1 + iφ2√

2
, N = φ3. (2.8)

With these definitions, the free part of the Lagrangian is rewritten as,

Lfree =
1

2

√
−g[gµν∇µφi∇νφi − m̃2

i (x
0)φ2i ], (2.9)

where the kinetic term is given by,

gµν∇µφi∇νφi =
∂φi
∂x0

∂φi
∂x0
− 1

a(x0)2
∂φi
∂xj

∂φi
∂xj

, (2.10)
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Table 2.1: The cubic interactions and their properties

Cubic interaction coupling Property

A113 = A0
2 + Re.(A) –

A223 = A0
2 − Re.(A) –

A113 −A223 = 2Re.(A) U(1) violation

A123 = −Im.(A) U(1), CP violation

and their effective masses are given as follows,

m̃2
1(x

0) =m2
φ −B2 − (α2 + α3)R(x0), (2.11)

m̃2
2(x

0) =m2
φ +B2 + (α2 − α3)R(x0), (2.12)

m̃2
3(x

0) =m2
N . (2.13)

Non-zero B2 or α2 leads to the non-degenerate mass spectrum for φ1 and φ2. The

interaction Lagrangian is rewritten with a totally symmetric coefficient Aijk,

Lint =

3∑
ijk=1

1

3
Aijkφiφjφk (2.14)

with i, j, k = 1, 2, 3. The non-zero components of Aijk are written with the couplings

for cubic interaction, A and A0, as shown in Table 2.1. We also summarize the qubic

interactions and their properties according to U(1) symmetry and CP symmetry.

Nöether current related to the U(1) transformation is written as,

jµ(x) =
i

2

(
φ†
↔
∂µφ− φ

↔
∂µφ

†
)
. (2.15)

In terms of real scalar fields, the Nöether current alters into,

jµ =
1

2

(
φ2
↔
∂µφ1 − φ1

↔
∂µφ2

)
. (2.16)

The ordering of the operators in Eq.(2.15) is arranged so that the current is Hermite

and the particle number operator,

Q(x0) =

∫
d3x
√
−g j0(x), (2.17)

has a normal ordered expression. Then, in the vanishing limit of interaction terms and

particle number violating terms, the vacuum expectation value of the particle number

vanishes. With the above definition, j0(x) is the PNA per unit comoving volume. The
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expectation value of the PNA is written with a density operator,

〈j0(x)〉 = Tr(j0(x)ρ(t0)). (2.18)

Note that, the PNA is a Heisenberg operator and ρ(t0) is a density operator which

specifies the state at the initial time x0 = t0. In this work, we use the density operator

with zero chemical potential. It is specifically given by,

ρ(t0) =
e−βH

Tr(e−βH)
, (2.19)

where β denotes inverse temperature, 1/T , and H is a Hamiltonian which includes linear

term of fields,

H =
1

2

3∑
i=1

∫
d3x a(t0)

3

[
πφiπφi +

∇φi · ∇φi
a(t0)2

+ m̃2
i (φi − vi)2

]
, (2.20)

where vi is a constant. The linear term of fields in Eq.(2.20) is prepared for the non-zero

expectation value of fields. Note that the density operator in Eq.(2.19) is not exactly the

same as the thermal equilibrium one since in the Hamiltonian, the interaction part are

not included. Since we assume three dimensional space is translational invariant, then

the expectation value of the PNA depends on time x0 and the initial time t0. As we will

show later, the non-zero expectation value for the field φ3 leads to the time dependent

condensation which is the origin of the non-equilibrium time evolution of the system.

Below we consider the matrix element of the density operator given in Eq.(2.19).

We start with the following density operator for one component real scalar field as an

example,

ρ(t0) =
e−βHexample

Tr(e−βHexample)
, (2.21)

Hexample =
1

2

∫
d3x a(t0)

3

[
πφπφ +

∇φ · ∇φ
a(t0)2

+ m̃2 (φ− v)2
]
. (2.22)

The above Hamiltonian is obtained from that of Eq.(2.20) by keeping only one of the real

scalar fields. The matrix element of the initial density operator in Eq.(2.21) is written

in terms of the path integral form of the imaginary time formalism and is given as,

〈φ1|ρ(t0)|φ2〉 =

∫
φ(0)=φ2,φ(β)=φ1 dφe

−Sexample
E [φ]∫

dφ1
∫
φ(0)=φ1,φ(β)=φ1 dφe

−Sexample
E [φ]

, (2.23)
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where Sexample
E is an Euclidean action which corresponds to the Hamiltonian in Eq.(2.22)

and it is given by,

Sexample
E [φ(x, u)] =

1

2

∫ β

0
du

∫
d3x

{(
∂φ

∂u

)2

+
∇φ · ∇φ
a(t0)2

+ m̃2(φ− v)2

}
. (2.24)

After carring out the path integral, the density matrix is written with Sexample
E [φcl(x, u)]

which is the action for the classical orbit φcl satisfying the boundary conditions, φcl(u =

0) = φ2, φcl(u = β) = φ1. It is given as the functional of the boundary fields φi(i = 1, 2)

and vacuum expectation value v as,

〈φ1|ρ(t0)|φ2〉 =
exp

[
−Sexample

Ecl [φ1, φ2]
]

∫
dφ1 exp[−Sexample

Ecl [φ1, φ1]]
, (2.25)

where Sexample
Ecl [φ1, φ2] ' Sexample

E [φcl(x, u)] is given by,

Sexample
Ecl [φ1, φ2] =− a(t0)

6

2

∫
d3k

(2π)3

{
2∑
i=1

φi(k)κii(−k)φi(−k)

−φ1(k)κ12(−k)φ2(−k)− φ2(k)κ21(−k)φ1(−k)
}

+ a(t0)
6

{
2∑
i=1

φi(0)κii(0)− φ1(0)κ12(0)− φ2(0)κ21(0)

}
v. (2.26)

In the above expression, we drop the terms which are proportional to v2 because they

do not contribute to the normalized density matrix. κbd(k) is defined as [15],

κ11(k) = κ22(k) :=− 1

a(t0)3
ω(k) coshβω(k)

sinhβω(k)
,

κ12(k) = κ21(k) :=− 1

a(t0)3
ω(k)

sinhβω(k)
,

ω(k) :=

√
k2

a(t0)2
+ m̃2.

(2.27)

Using the above definitions, one can write the density matrix in Eq.(2.25) as the following

form,

〈φ1|ρ(t0)|φ2〉 =N exp

[∫ √
−g(x)d4xJa(x)cabφb(x)

+
1

2

∫
d4xd4y

√
−g(x)φa(x)cabKbd(x, y)cdeφe(y)

√
−g(y)

]
, (2.28)

with φ1(t0) = φ1 and φ2(t0) = φ2. The upper indices a and b are 1 or 2. cab is the metric

of CTP formalism [19] and c11 = −c22 = 1 and c12 = c21 = 0. In the above expression,

the source terms J and K do not vanish only at the initial time t0 and they are given
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by,

Jb(x) :=− iδ(x0 − t0)jb, jb = −a3t0κ
bd(k = 0)cdeve, (2.29)

Kbd(x, y) :=− iδ(x0 − t0)δ(y0 − t0)κbd(x− y), κab(x) =

∫
d3k

(2π)3
κab(k)e−ik·x,

(2.30)

where κab(k) is given in Eq.(2.27). In Eq.(2.28), N is a normalization constant which is

given as,

1

N
=

∫
dφ1

∫
dφ2δ(φ1 − φ2) exp

[∫ √
−g(x)d4xJa(x)cabφb(x)

+
1

2

∫
d4xd4y

√
−g(x)φa(x)cabKbd(x, y)cdeφe(y)

√
−g(y)

]
. (2.31)



Chapter 3

Two Particle Irreducible Closed

Time Path Effective Action

From general properties of 2PI CTP EA, one can derive the equations of motion for

both mean (background) fields and Green’s functions (propagators). 2PI EA is not

only the functional of background fields but also the functional of Green’s functions.

In this chapter, we firstly introduce the concept of 2PI formalism. Secondly, we derive

the equations of motion, i.e., the Schwinger-Dyson equations (SDEs) for both Green’s

function and field. SDEs are obtained by taking the variation of 2PI EA with respect to

fields and Green’s functions, respectively. Finally, we also provide the initial condition

for Green’s function and field to solve SDEs.

3.1 2PI Effective Action

This section deals with a short review of the CTP EA theory in the flat space-time. The

advantage to work with the CTP EA rather than with the CTP generating functional

is that the treatment of the perturbative expansion is simpler. Namely, all connected

diagrams contribute to the latter, while one-particle irreducible (1PI) diagrams only

contribute to the former. In practice, one can simplify the perturbative expansion by

writing Feynman diagrams where the internal lines represent the full propagators Gab,

rather than the free propagators ∆ab or some intermediate objects. This means that the

diagrams which contain some internal line of the simpler diagram must be disregarded

because all possible corrections are already taken into account in the full propagator

Gab. Therefore, the remaining diagrams are those where no non-trivial subdiagram can

be isolated by cutting two internal lines, so-called the two-particle irreducible (2PI)

diagrams [20].

10
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Now let us discuss the 2PI formalism. For simplicity, we will work for the case

of one real scalar field. Typically, the generating functional has only the local source

term J . In addition to J , one can add another non-local (two-point) source K. The 2PI

generating functional written with a path integral over original field φ is defined as 1,

eiW [J,K]

=

∫
dφExp

{
i

[
S[φA] +

∫
d4xJA(x)φA(x) +

1

2

∫
d4xd4yφA(x)KAB(x, y)φB(y)

]}
,

(3.1)

where S[φ] is the classical action.The mean field φ̄ and Green’s function are defined by

taking the functional derivative with respect to the source terms J and K, respectively

as,

φ̄A(x) =
δW [J,K]

δJA(x)
, (3.2)

1

2

[
φ̄A(x)φ̄B(y) +GAB(x, y)

]
=

δW [J,K]

δKAB(x, y)
. (3.3)

The 2PI EA, Γ2, is related to the generating functional W [J,K] by Legendre transfor-

mation as [20, 21],

Γ2[φ̄, G] =W [J,K]−
∫
d4xJA(x)φ̄A(x)

− 1

2

∫
d4x

∫
d4yKAB(x, y)

[
φ̄A(x)φ̄B(y) +GAB(x, y)

]
. (3.4)

From the above equation, the dynamic equations for the mean field and Green’s function,

namely SDEs, are derived. By taking variation with respect to the mean field and

Green’s function, we obtain,

δΓ2[φ̄, G]

δφ̄A(x)
=− JA(x)−

∫
d4yKAB(x, y)φ̄B(y), (3.5)

δΓ2[φ̄, G]

δGAB(x, y)
=− 1

2
KAB(x, y). (3.6)

The Green’s function and the expectation value of the mean field are obtained as solu-

tions of SDEs.

1In Ref.[20], their notations Φ, φ and ϕ correspond to our notations φ, φ̄ and Φ, respectively.
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3.2 2PI Formalism in Curved Space-Time

2PI CTP EA in curved space-time has been investigated in [22] and their formulations

can be applied to the model discussed in the previous chapter. In curved space-time,

the 2PI generating functional written with the source terms J and K are given by,

eiW [J,K] =

∫
dφ exp

(
i

[
S[φ, g] +

∫ √
−g(x)d4xJai (x)cabφbi(x)

+
1

2

∫
d4xd4y

√
−g(x)φai (x)cabKbd

ij (x, y)cdeφej(y)
√
−g(y)

])
, (3.7)

where i, j = 1 or 2 and S[φ, g] is the action in our model which is given by,

S[φ, g] =

∫
d4x
√
−g(x)

[
1

2
cab(gµν∇µφai∇νφbi − m̃2

iiφ
a
i φ

b
i) +

1

3
DabcAijkφ

a
i φ

b
jφ
c
k

]
, (3.8)

where D111 = −D222 = 1 and the other components are zero. The upper indices of

the field and the source terms distinguish two different time paths in closed time path

formalism [19]. One can define the mean fields φ̄ai and Green’s function by taking the

functional derivative with respect to the source terms J and K, respectively,

φ̄ai (x) =
cab√
−g(x)

δW [J,K]

δJbi (x)
, (3.9)

φ̄ai (x)φ̄ej(y) +Gaeij (x, y) =2
cab√
−g(x)

δW [J,K]

δKbd
ij (x, y)

cde√
−g(y)

. (3.10)

If one sets the source terms to be the ones given in Eqs.(2.29) and (2.30), one

can show that the expectation value of the product of the field operators with the initial

density operator is related to the Green function and mean fields. Definitely, we can

prove the following relations,

φ̄ai (x) =

∫
dφ1

∫
dφ2〈φ2|φi(x)|φ1〉 exp(−SEcl[φ

1, φ2])∫
dφ1

∫
dφ2δ(φ1 − φ2) exp(−SEcl[φ1, φ2])

(3.11)

=Tr[φi(x)ρ(t0)], (3.12)

G12
ij (x, y) =

∫ ∫
dφ1dφ2〈φ2|Φj(y)Φi(x)|φ1〉e−SEcl[φ

1,φ2]∫ ∫
dφ1dφ2δ(φ2 − φ1)e−SEcl[φ1,φ2]

(3.13)

=Tr[φj(y)φi(x)ρ(t0)]− φ̄2j (y)φ̄1i (x), (3.14)

with φ̄a(x) = φ̄(x) and Φ(x) is a Heisenberg operator which has form as Φ(x0,x) ≡
φ(x0,x)− φ̄(x0). The equality of Eqs.(3.11) and (3.12) will be derived in Appendix A.2,

while the equality of Eqs.(3.13) and (3.14) will be derived in Appendix A.3 in details,

respectively.
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Next, let us temporarily go back to Eq.(2.18). With Eq.(3.14), one can write the

expectation value of the current in Eq.(2.18) as the sum of the contribution from Green

function and the current of the mean fields. Then it alters into,

〈j0(x)〉 = Re

[(
∂

∂x0
− ∂

∂y0

)
G12

12(x, y)
∣∣
y→x + φ̄22(x)

↔
∂0φ̄

1
1(x)

]
, (3.15)

where we have used Eq.(2.16) and the following relations,

Gab∗ij (x, y) = τ1acGcdij (x, y)τ1db, (3.16)

φ̄a∗i (x) = τ1abφ̄bi(x), (3.17)

where τ is the Pauli matrix.

As has been stated early, the Green functions and expectation value of fields are

derived as solutions of the SDEs which are obtained with 2PI EA. Following Eq.(3.4)

and considering in the curved space-time case, we can write the following relation,

Γ2[G, φ̄, g]

=W [J,K]−
∫
d4x
√
−g(x)Jai (x)cabφ̄bi(x)

− 1

2

∫
d4x

∫
d4y
√
−g(x)cabKbd

ij (x, y)cde{φ̄ai (x)φ̄ej(y) +Gaeij (x, y)}
√
−g(y). (3.18)

Now let us write the 2PI EA Γ2 of the model discussed in the preceeding chapter.

It is written as,

Γ2[G, φ̄, g] =S[φ̄, g] +
1

2

∫
d4x

∫
d4y

δ2S[φ̄, g]

δφ̄ai (x)δφ̄bj(y)
Gabij (x, y) +

i

2
TrLn G−1 + ΓQ,

(3.19)

ΓQ =
i

3
DabcAijk

∫
d4x

∫
d4y
√
−gx

√
−gyGaa

′
ii′ (x, y)Gbb

′
jj′(x, y)Gcc

′
kk′(x, y)

×Da′b′c′Ai′j′k′ , (3.20)

where S[φ̄, g] is the action written in terms of mean fields as,

S[φ̄, g] =

∫
d4x
√
−g(x)

[
−φ̄ai

1

2
cab(�+ m̃2

ii)φ̄
b
i +

1

3
DabcAijkφ̄

a
i φ̄

b
jφ̄
c
k

]
+

1

2

∫
d4x
√
−g(x)[δ(x0 − T )− δ(x0 − t0)]φ̄ai cab ˙̄φbi . (3.21)

In Eq.(3.19), the interactions are included in the first term as well as in the second term.

In the action above, we have also taken into account the surface term at the boundary

which corresponds to the last term of Eq.(3.21). T and t0 in Eq.(3.21) are the upper
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Gii′

Gjj′

Gkk′

Aijk Ai′j′k′

Figure 3.1: The lowest order of 2PI diagram [18].

bound and the lower bound of the time integration, respectively. Meanwhile, Eq.(3.20)

is obtained from the lowest order of 2PI diagram as shown in Fig.3.1. In practice, when

we compute the expectation value of PNA, we will consider the case that the interaction

term is keeped up to the first order of cubic interaction, Aijk. Therefore, the ΓQ term

can be dropped because it is the second order of Aijk.

3.3 Schwinger Dyson Equations

Now let us derive SDEs for both Green’s function and field. These equations can be

obtained by taking the variation of the 2PI EA, Γ2, with respect to the scalar field φ̄

and Green’s function G.

In the following, we first derive SDEs for the field. The variation of the 2PI EA

in Eq.(3.18) with respect to the scalar field φ̄ leads to,

1√
−g(x)

δΓ2

δφ̄ai (x)
= −cabJbi (x)−

∫
d4z cabKbc

ij (x, z)ccd
√
−g(z)φ̄dj (z). (3.22)

Using Eqs.(2.29) and (2.30), one computes the right hand side of the above equation as,

cabJbi (x) +

∫
d4zcabKbc

ij (x, z)ccd
√
−g(z)φ̄dj (z)

=− iδ(x0 − t0)
(
vim̃i tanh

βm̃i

2
+ cabκbcii (k = 0)ccda(t0)

3vdi

)
=0, (3.23)
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where we have used κab(k) given in Eq.(2.27). The left hand side of Eq.(3.22) is computed

using Eq.(3.19) and one obtains the following equation of motion of the scalar field φ̄,

(δij�+ m̃2
ij)φ̄

d
j (x) = cdaDabcAijk

{
φ̄bj(x)φ̄ck(x) +Gbcjk(x, x)

}
, (3.24)

where m̃ij = δijm̃ii and the Laplacian of Friedman-Lemâıtre-Robertson-Walker metric

is given by,

� = ∇µ∇µ =
∂2

∂x02
− 1

a(x0)2
∇ · ∇+ 3

ȧ

a

∂

∂x0
. (3.25)

Next, the equation of motion for Green’s function is derived in the following way.

The variation of the 2PI EA in Eq.(3.18) with respect to Green’s function G leads to,

δΓ2

δGabij (x, y)
= −1

2
cac
√
−g(x)Kcd

ij (x, y)
√
−g(y)cdb. (3.26)

The left hand side of the above equation is obtained by taking variation of Eq.(3.19)

with respect to Green’s function as,

δΓ2

δGabij (x, y)
= − i

2
(G−1)baji (y, x) +

1

2

δ2S[φ̄, g]

δφ̄ai (x)δφ̄bj(y)
, (3.27)

where the second term of above expression is computed using action in Eq.(3.21). Taking

all together Eqs.(3.26) and (3.27), one obtains the following two differential equations

for Green’s function,

(
→
�x + m̃2

i )G
ab
ij (x, y) =− iδij

cab√
−g(x)

δ(x− y) + 2cadDdceAiklφ̄
e
l,xG

cb
kj,xy

+

∫
d4zKae

ik (x, z)
√
−g(z)cefGfbkj(z, y), (3.28)

(
→
�y + m̃2

j )G
ab
ij (x, y) =− iδijδ(x− y)

cab√
−g(y)

+ 2Gacik,xyDcefAkjlφ̄
f
l,yc

eb

+

∫
d4zGaeik (x, z)cef

√
−g(z)Kfb

kj (z, y), (3.29)

where �x = ∇µx∇xµ and �y = ∇µy∇yµ.
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Next, we rescale Green’s function, field and coupling constant of interaction as

follows,

φ̄(x0) =:

(
at0
a(x0)

)3/2

ϕ̂(x0), (3.30)

G(x0, y0,k) =:

(
at0
a(x0)

)3/2

Ĝ(x0, y0,k)

(
at0
a(y0)

)3/2

, (3.31)

Â(x0) :=

(
at0
a(x0)

)3/2

A, (3.32)

where at0 := a(t0) stands for the initial value for the scale factor and we have used

Fourier transformation for Green’s function as,

G(x0, y0,k) =

∫
d3rG(x0, r, y0, 0)eik·r. (3.33)

By using these new definitions, SDEs in Eqs.(3.24) is written as,[
∂2

∂x02
+ m̄2

i (x
0)

]
ϕ̂di (x

0) =cdaDabcÂijk(x
0){ϕ̂bj(x0)ϕ̂ck(x0) + Ĝbcjk(x, x)}. (3.34)

Next SDEs for the rescaled Green’s function in Eqs.(3.28) and (3.29) are written

as, [
∂2

∂x02
+ Ω2

i,k(x0)

]
Ĝabij,x0y0(k) =2cadDdceÂikl,x0ϕ̂

e
l,x0Ĝ

cb
kj,x0y0(k)− iδijδx0y0

cab

a3t0

− iδt0x0κ
ae
ik (k)a3t0c

ef Ĝfb
kj,t0y0

(k), (3.35)[
∂2

∂y02
+ Ω2

i,k(y0)

]
Ĝabij,x0y0(k) =2Ĝacik,x0y0(k)Dcef Âkjl,y0ϕ̂

f
l,y0
ceb − iδijδx0y0

cab

a3t0

− iĜaeik,x0t0(k)cefa3t0κ
fb
kj(k)δt0y0 , (3.36)

where we have defined,

Ω2
i,k(x0) :=

k2

a(x0)2
+ m̄2

i (x
0), (3.37)

m̄2
i (x

0) :=m̃2
i (x

0)− 3

2

(
ä(x0)

a(x0)

)
− 3

4

(
ȧ(x0)

a(x0)

)2

. (3.38)

Note that the first derivative with respect to time which is originally presented in the

expression of Laplacian, Eq.(3.25), is now absent in the expression of SDEs for the

rescaled fields and Green’s functions.
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3.4 The initial condition for Green’s function and field

In this section, the initial conditions for Green’s function and field are determined.

For simplicity, let us look back to the example model for one real scalar field. We

first compute the initial condensation of the field φ̄(t0) = ϕ̂(t0) (see Eq.(3.30)). Using

Eq.(3.11) and setting x0 = t0, we compute it as follows,

φ̄(t0) ≡ 〈φ(t0,x)〉

=

∫
dφ φ(t0,x) exp

[
−Sexample

Ecl [φ, φ]
]

∫
dφ exp

[
−Sexample

Ecl [φ, φ]
]

=

∫
dφ φ(x) exp

[
−1

2

∫
d3xd3yφ(x)D(x− y)φ(y) + 2a3t0

∫
d3xφ(x)j1

]∫
dφ exp

[
−1

2

∫
d3xd3yφ(x)D(x− y)φ(y) + 2a3t0

∫
d3xφ(x)j1

] , (3.39)

where we have computed the last term of Eq.(2.26) using Eq.(2.29) and D(r) is defined

as [15],

D(r) = 2a3t0

∫
d3k

(2π)3
ω(k)(coshβω(k)− 1)

sinhβω(k)
e−i r·k. (3.40)

To proceed the calculation, we denote J(x) as J(x) = 2a3t0j
1. Then the initial conden-

sation of field 〈φ(t0,x)〉 is given by,

〈φ(t0,x)〉

=

∫
dφ′(x)

{
φ′(x) +

∫
d3zD−1(x− z)J(z)

}
exp

[
−1

2

∫
d3xd3yφ′(x)D(x− y)φ′(y)

]∫
dφ′(x) exp

[
−1

2

∫
d3xd3yφ′(x)D(x− y)φ′(y)

]
=v, (3.41)

where we have defined φ′(x) = φ(x)−
∫
d3zD−1(z− x)J(z) and D−1(z− x) satisfies,∫

d3xD−1(z− x)D(x− y) = δ(z− y). (3.42)

Next we will compute the initial condition for Green’s function G(t0, t0,k) =

Ĝ(t0, t0,k) (see Eq.(3.31)). By using Eq.(3.13) and setting x0 = t0 and y0 = t0, one
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computes it as follows,

Gab(t0,x, t0,y) =

∫ ∫
dφ1dφ2〈φ2|Φ(t0,y)Φ(t0,x)|φ1〉 exp

[
−Sexample

Ecl [φ1, φ2]
]

∫
dφ exp

[
−Sexample

Ecl [φ, φ]
]

=

∫
dφ′ φ′(y)φ′(x) exp

[
−1

2

∫
d3xd3yφ′(x)D(x− y)φ′(y)

]∫
dφ′ exp

[
−1

2

∫
d3xd3yφ′(x)D(x− y)φ′(y)

] ,

=D−1(y − x). (3.43)

Using Eqs.(3.33) and (3.40), Eq.(3.43) becomes,

Gab(t0, t0,k) =D−1(k)

=
1

2ω(k)a3t0

[
sinhβω(k)

coshβω(k)− 1

]
. (3.44)

The above results with the example model can be extended to our model and we

summarize them as,

Ĝabij,t0t0(k) =δij
1

2ωi(k)a3t0

[
sinhβωi(k)

coshβωi(k)− 1

]
, (3.45)

ϕ̂ai (t0) =vi. (3.46)

Next we derive the time derivative of the field and Green’s function at the initial

time t0. First we integrate the field equation in Eq.(3.34) with respect to time. By

setting x0 = t0, we obtain,

∂ϕ̂i,x0

∂x0

∣∣∣
x0=t0

= 0. (3.47)

Similarly, we integrate Eq.(3.35) with respect to time x0. By setting both x0 and y0

equal to t0, we obtain the following initial condition,

lim
x0→t0

∂

∂x0
Ĝabij,x0t0(k) = −iδij

cab

a3t0
− iκaeik (k)a3t0c

ef Ĝfbkj,t0t0(k). (3.48)

Finally, we integrate Eq.(3.36) with respect to time y0. By setting both x0 and y0 equal

to t0, we obtain another initial condition,

lim
y0→t0

∂

∂y0
Ĝabij,t0y0(k) = −iδij

cab

a3t0
− iĜaeik,t0t0(k)cefa3t0κ

fb
kj(k). (3.49)



Chapter 4

The Expectation Value of PNA

The SDEs obtained in the previous chapter allow us to write the solutions for both

Green’s functions and fields in the form of integral equations. In this chapter, we present

the correction to the expectation value of the PNA up to the first order contribution

with respect to the cubic interaction. For this purpose, in section 4.1, we show how

one analytically obtains the solutions of SDEs. We write down the solutions up to the

first order of the cubic interaction. In section 4.2, we also write the expectation value of

the PNA up to the first order of the cubic interaction and investigate it by taking into

account of the time dependence of the scale factor.

4.1 The solution of Green’s function and fields including

o(A) corrections

The SDEs in present work are inhomogeneous differential equations of the second order.

To solve the differential equation, the variation of constants method is used. With the

method, the solutions of SDEs are written in the form of integral equations. We solve

the integral equation pertubatively and the solutions up to the first order of the cubic

interaction are obtained. We first write the solutions of fields as,

ϕ̂di,x0 =ϕ̂d,free
i,x0

+ ϕ̂
d,o(A)
i,x0

, (4.1)

ϕ̂d,free
i,x0

=− K̄ ′i,x0t0ϕ̂
d
i,t0 , (4.2)

ϕ̂
d,o(A)
i,x0

=

∫ x0

t0

K̄i,x0tc
daDabcÂijk(t)

{
ϕ̂b,freej (t)ϕ̂c,freek (t) +

∫
d3k

(2π)3
Ĝbc,freejk,tt (k)

}
dt, (4.3)

where ϕ̂free denotes the free part contribution while ϕ̂o(A) is the contribution due to

the first order of the cubic interaction. In Appendix B.2, Eqs.(4.1)-(4.3) are derived in

19
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details. K̄i,x0y0 := K̄i,x0y0,k=0 and K̄i,x0y0,k is defined by,

K̄i,x0y0,k :=
1

Wi,k
{fi,k(x0)gi,k(y0)− gi,k(x0)fi,k(y0)}, (4.4)

where Wi,k is defined as,

Wi,k := ḟi,k(x0)gi,k(x0)− fi,k(x0)ġi,k(x0). (4.5)

In the above equations, fi,k and gi,k are the solutions which satisfy the following homo-

geneous differential equations,[
∂2

∂x02
+ Ω2

i,k(x0)

]
fi,k(x0) =0, (4.6)[

∂2

∂x02
+ Ω2

i,k(x0)

]
gi,k(x0) =0, (4.7)

where Ω2
i,k(x0) is given in Eq.(3.37). In Appendix C, fi,k and gi,k are derived in details.

K̄ ′i,x0y0 := K̄ ′i,x0y0,k=0 and K̄ ′i,x0y0,k is also defined as follows,

K̄ ′i,x0y0,k :=
∂K̄i,x0y0,k

∂y0
. (4.8)

Next we write down the solution of Green’s function as follows,

Ĝabij,x0y0(k) =Ĝab,free
ij,x0y0

(k) + Ĝ
ab,o(A)
ij,x0y0

(k), (4.9)

Ĝab,free
ij,x0y0

(k) =
δij

2ωi,ka
3
t0

coth
βωi,k

2

(
1 1

1 1

)ab [
K̄ ′i,x0t0,kK̄

′
i,y0t0,k

+ ω2
i,kK̄i,x0t0,kK̄y0t0,k

]
+
iδij
2a3t0

K̄i,x0y0,k{εab + cab(θ(y0 − x0)− θ(x0 − y0))}, (4.10)

Ĝ
ab,o(A)
ij,x0y0

(k) =

∫ y0

t0

R
ab,o(A)
ij,x0t,k

K̄j,y0t,kdt

+

∫ x0

t0

K̄i,x0t,kQ
ac,o(A)
ij,tt0,k

(ET,cbjj,k K̄j,y0t0,k − K̄
′
j,y0t0,k

δcb)dt, (4.11)

where εab is an anti-symmetric tensor and its non-zero components are given as ε12 = 1

while θ(t) denotes a unit step function. In Eq.(4.11), Qo(A), Ro(A) and Ek are given as,

Q
ab,o(A)
ij,x0y0,k

=2cadDdceÂikl,x0ϕ̂
e,free
l,x0

Ĝcb,free
kj,x0y0

(k), (4.12)

R
ab,o(A)
ij,x0y0,k

=2Ĝac,free
ik,x0y0

(k)Dcef Âkjl,y0ϕ̂
f,free
l,y0

ceb, (4.13)

Eacik,k =− iκaeik (k)a3t0c
ec, (4.14)
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where κabij (k) is given in Eq.(2.27). In Appendices B.4 and B.5, we derive Eqs.(4.10) and

(4.11) in details, respectively.

4.2 The expectation value of PNA including o(A) correc-

tions and the first order of the Hubble parameter

Next we compute the PNA in Eq.(3.15) including the first order correction with respect

to A (o(A)) and the effect of expansion up to the first order of the Hubble parameter.

By using rescaled fields, Green’s function and coupling constant in Eqs.(3.30)-(3.32),

one can write down total contribution to the expectation value of PNA with order o(A)

corrections as,

(
a(x0)

at0

)3

〈j0(x0)〉 = Re
[
ϕ̂1,free
2 (x0) ˙̂ϕ1∗,free

1 (x0)− ϕ̂1,free
1 (x0) ˙̂ϕ1∗,free

2 (x0)
]

+

∫
d3k

(2π)3

(
∂

∂x0
− ∂

∂y0

)
Re
[
Ĝ

12,o(A)
12 (x0, y0,k)

]∣∣∣∣
y0→x0

+ Re
[
ϕ̂1,free
2 (x0) ˙̂ϕ

1∗,o(A)
1 (x0)− ϕ̂1,free

1 (x0) ˙̂ϕ
1∗,o(A)
2 (x0)

]
+ Re

[
ϕ̂
1,o(A)
2 (x0) ˙̂ϕ1∗,free

1 (x0)− ϕ̂1,o(A)
1 (x0) ˙̂ϕ1∗,free

2 (x0)
]
. (4.15)

The first line of the above equation is the zeroth order of the cubic interaction while the

next three terms are the first order.

As was indicated previously, we will further investigate the expectation value of

the PNA for the case of time-dependent scale factor. For that purpose, one can expand

scale factor around t0 for 0 < t0 6 x0 as follows,

a(x0) =a(t0) + (x0 − t0)ȧ(t0) +
1

2
(x0 − t0)2ä(t0) + . . .

=a(0) + a(1)(x0) + a(2)(x0) + . . . . (4.16)

We first assume that a(n+1)(x0) < a(n)(x0) when x0 is near t0. Then one can keep only

the following terms,

a(x0) ' a(0) + a(1)(x0), (4.17)

and a(n)(x0) for (n > 2) are set to be zero. a(0) corresponds to the constant scale factor

and a(1)(x0) corresponds to linear Hubble parameter H(t0). Thus it can be written as,

a(x0)

a(t0)
= 1 + (x0 − t0)H(t0), (4.18)
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where H(t0) is given by,

H(t0) =
ȧ(t0)

a(t0)
, (4.19)

and t0 > 0. Throughout this study, we only keep first order of H(t0) as the first non-

trivial approximation. For the case that Hubble parameter is positive, it corresponds

to the case for the expanding universe. Under this situation, ȧ(x0) = a(t0)H(t0) and

ä(x0) = 0.

Now let us briefly go back to Eq.(3.38). With these approximations, the second

term of Eq.(3.38) is apparently vanished. Since ȧ(x0) is proportional to linear H(t0),

the third term of Eq.(3.38) involves second order of H(t0). Hence, one can neglect it

and the Riemann curvature R(x0) in Eq.(2.3) is also vanished. Therefore, m̄2
i (x

0) are

simply written as m̃2
i and they are given as,

m̃2
1 =m2

φ −B2, (4.20)

m̃2
2 =m2

φ +B2, (4.21)

m̃2
3 =m2

N . (4.22)

Next we define ωi,k as,

ωi,k :=

√
k2

a2t0
+ m̃2

i . (4.23)

We consider Ωi,k(x0) defined in Eq.(3.37). One can expand it around time t0 as,

Ωi,k(x0) 'ωi,k + (x0 − t0)
∂

∂x0
Ωi,k(x0)

∣∣∣∣
x0=t0

=ωi,k

{
1−H(t0)(x

0 − t0)
k2

[a(t0)ωi,k(t0)]2

}
. (4.24)

Now let us investigate the expectation value of PNA under these approximations.

For the case that ϕ̂1,t0 = ϕ̂2,t0 = 0 and ϕ̂3,t0 6= 0, the non-zero contribution to the

expectation value of PNA comes only from o(A) corrections to Green’s function. From
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Eq.(4.15), we can obtain,

〈j0(x0)〉 =
2

a(x0)3
ϕ̂3,t0

∫
d3k

(2π)3

∫ x0

t0

Â123,t(−K̄ ′3,tt0,0)

[{
1

2ω2,k(t0)

× coth
βω2,k(t0)

2
[( ˙̄K1,x0t,kK̄

′
2,x0t0,k

− K̄1,x0t,k
˙̄K ′2,x0t0,k)K̄ ′2,tt0,k

+ ω2
2,k(t0)(

˙̄K1,x0t,kK̄2,x0t0,k − K̄1,x0t,k
˙̄K2,x0t0,k)K̄2,tt0,k]}

− {1↔ 2for lower indices}]dt, (4.25)

where we have used Eqs.(4.2) and (4.11). Following the expression of the scale factor in

Eq.(4.18), K̄ is also divided into the part of the constant scale factor and the part which

is proportional to H(t0). In Appendix D, K̄ and its derivative are derived in details. In

the above expression, H(t0) is also included in Â(t). Since we are interested in the PNA

up to the first order of H(t0), we expand it as follows,

Â(t) ' A

{
1− 3

2
(t− t0)H(t0)

}
. (4.26)

Furthermore, substituting Eqs.(4.18), (4.26) and K̄ and its derivative in Eqs.(D.9),

(D.10), (D.13)-(D.18) into Eq.(4.25), one can divide the PNA into two parts,

〈j0(x0)〉 = 〈j0(x0)〉1st + 〈j0(x0)〉2nd, (4.27)

〈j0(x0)〉1st =
2ϕ̂3,t0A123

a3t0

∫
d3k

(2π)3

∫ x0

t0

{
1− 3(x0 − t0)H(t0)−

3

2
(t− t0)H(t0)

}

×

[{
(−K̄(0)′

3,tt0,0
)

2ω2,k(t0)
coth

βω2,k(t0)

2

[(
K̄

(0)′
2,x0t0,k

↔
∂ ˙K̄

(0)
1,x0t,k

)
K̄

(0)′
2,tt0,k

+ω2
2,k(t0)

(
K̄

(0)
2,x0t0,k

↔
∂ ˙K̄

(0)
1,x0t,k

)
K̄

(0)
2,tt0,k

]}
− {1↔ 2 for lower indices}

]
dt,

(4.28)



The Expectation Value of PNA 24

〈j0(x0)〉2nd =
2ϕ̂3,t0A123

a3t0

∫
d3k

(2π)3

∫ x0

t0

[{
(−K̄(0)′

3,tt0,0
)

2ω2,k(t0)
coth

βω2,k(t0)

2

×
[(
K̄

(0)′
2,x0t0,k

↔
∂ ˙K̄

(0)
1,x0t,k

)
K̄

(1)′
2,tt0,k

+

(
K̄

(1)′
2,x0t0,k

↔
∂ ˙K̄

(0)
1,x0t,k

+ K̄
(0)′
2,x0t0,k

↔
∂ ˙K̄

(1)
1,x0t,k

)
K̄

(0)′
2,tt0,k

+ ω2
2,k(t0)

[(
K̄

(0)
2,x0t0,k

↔
∂ ˙K̄

(0)
1,x0t,k

)
K̄

(1)
2,tt0,k

+

(
K̄

(1)
2,x0t0,k

↔
∂ ˙K̄

(0)
1,x0t,k

+ K̄
(0)
2,x0t0,k

↔
∂ ˙K̄

(1)
1,x0t,k

)
K̄

(0)
2,tt0,k

]]}
−{1↔ 2 for lower indices}] dt, (4.29)

and the derivative
↔
∂ ˙ acts on the first argument of K̄ and defined as follows,

K̄2,x0t,k

↔
∂ ˙K̄1,x0t,k = K̄2,x0t,k

(
∂

∂x0
K̄1,x0t,k

)
−
(

∂

∂x0
K̄2,x0t,k

)
K̄1,x0t,k. (4.30)

Each term of the PNA shown in Eqs.(4.28) and (4.29) can be understood as follows. The

first term is the PNA with the constant scale factor. The second term with a prefactor

−3H(t0)(x
0 − t0) 1

a3t0
' 1

a(x0)3
− 1

a3t0
is called the dilution effect. The third term with a

prefactor −3
2A123(t− t0)H(t0) ' Â123(t)− A123 is called the freezing interaction effect.

The fourth term which corresponds to 〈j0(x0)〉2nd is called the redshift effect. Below we

explain their physical origins. The dilution of the PNA is caused by the increase of the

volume of the universe. The origin of the freezing interaction effect can be understood

with Eq.(4.26). It implies that the strength of the cubic interaction Â(t) controlling

the size of PNA, decreases as the scale factor grows. The origin of the redshift can

be explained as follows. As shown in Eq.(3.37), as the scale factor grows, the physical

wavelength becomes large. Therefore, the momentum and the energy of the particles

becomes small. Note that this effect does not apply to the zero-mode such as condensate

which is homogeneous and is a constant in the space.

Before closing this section, we compute the production rate of the PNA per unit

time which is a useful expression when we understand the numerical results of the PNA.

We compute the time derivative of the PNA for the case of the constant scale factor

Ht0 = 0. By setting Ht0 = 0, one obtains it at the initial time x1 = x0 − t0 = 0,

∂

∂x1
〈j0(x1 + t0)〉|x1=0 =

v3A123

a3t0

∫ ∞
0

k2dk

2π2
1

ω1,kω2,k

× [(n2 − n1)(ω1,k + ω2,k) + (n2 + n1 + 1)(ω1,k − ω2,k)], (4.31)
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where ni is the distribution functions for the Bose particles,

ni =
e−βωi,k

1− e−βωi,k
, (i = 1, 2). (4.32)

In Appendix E, we derive Eq.(4.31) in details. Because we assume m̃1 < m̃2, one obtains

inequality n2 < n1. From the expression above, the production rate of PNA at the initial

time is negative for v3A123 > 0. One also finds the rate is logarithmically divergent for

the momentum (k) integration,

∂

∂x1
〈j0(x1 + t0)〉|divergentx1=0

' v3A123

2π2a3t0

m̃2
1 − m̃2

2

2
log

(
kmax

µ

)
, (4.33)

where µ = O(m̃i) (i = 1, 2) and kmax is an ultraviolet cut off for the momentum integra-

tion. With the expression, one expects that for the positive v3A123, the PNA becomes

negative from zero just after the initial time and the behavior will be confirmed in the

numerical simulation.



Chapter 5

Numerical Results

In this chapter, we numerically study the time dependence of the PNA. The PNA

depends on the parameters of the model such as masses and coupling constants. It also

depends on the initial conditions and the expansion rates of the universe. Since the

PNA is linearly proportional to the coupling constant A123 and the initial value of the

field ϕ̂3,t0 , we can set these parameters as unity in the unit of energy and later on one

can multiply their values. As for the initial scale factor at0 , without loss of generality,

one can set this dimensionless factor is as unity. For the other parameters of the model,

we choose m̃2, B and ω3,0 = m̃3 as independent parameters since the mass m̃1 is written

as,

m̃2
1 = m̃2

2 − 2B2. (5.1)

The temperature T and the expansion rate H(t0) determine the environment for the

universe. The former determines the thermal distribution of the scalar fields. Within

the approximation for the time dependence of the scale factor in Eq.(4.18), H(t0) is the

only parameter which controls the expansion rate of the universe. The approximation

is good for the time range which satisfies the following inequality,

x0 − t0 �
1

3H(t0)
. (5.2)

The time dependence of PNA is plotted as a function of the dimensionless time defined

as,

t = ωr3,0(x0 − t0), (5.3)

26
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where ωr3,0 is a reference frequency. In terms of the dimensionless time, the condition of

Eq.(5.2) is written as,

t� tmax ≡
ωr3,0

3H(t0)
. (5.4)

How the PNA behaves with respect to time is discussed in the following section

(5.1-5.3). The results, as will be shown later, revealed that the PNA has an oscillatory

behavior. We also investigate the parameter dependence for two typical cases, one of

which corresponds to the longer period and the other corresponds to the shorter period.

In the numerical simulation, we do not specify the unit of parameters. Note that the

numerical values for the dimensionless quantities such as ratio of masses do not depend

on the choice of the unit as far as the quantities in the ratio are given in the same unit.

In section 5.4, we assign the unit for the parameters and estimate the ratio of the PNA

over entropy density.

5.1 The PNA with the longer period
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Figure 5.1: Dependence on temperature T of the time evolution of PNA. In horizontal
axis, we use the dimensionless time t = ωr

3,0(x0 − t0) where we choose ωr
3,0 = 0.35.

We fix a set of parameters as (m̃1, m̃2, B,Ht0 , ω3,0) = (0.04, 0.05, 0.021, 10−3, 0.0035)
for all of the lines. The dotted red, black, dashed red and red lines show the cases

T = 50, 100, 200 and 400, respectively.

Let us now consider the PNA which has the longer period. While we investigate

the dependence of several parameters, we fix two parameters as (m̃2, Ht0) = (0.05, 10−3).

In Fig. 5.1, the temperature (T ) dependence of PNA is shown. It depends on the

temperature only through hyperbolic function as shown in Eq.(4.25). In this figure, tmax

in Eq.(5.4) is around 110. What stands out of this figure is the change of the amplitude
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Figure 5.2: Dependence on parameter B of the time evolution of PNA. The
horizontal axis is the dimensionless time defined as t = ωr

3,0(x0 − t0). As a ref-
erence angular frequency, we choose ωr

3,0 = 0.35. We fix a set of parameters as
(m̃2, T,Ht0 , ω3,0)=(0.05, 100, 10−3, 0.0035) for all of the lines. The purple, thin pur-
ple, dotted purple, black, dashed purple and dot-dashed purple lines show the cases

B = 0.027, 0.025, 0.024, 0.021, 0.018 and 0.012, respectively.
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Figure 5.3: The ω3,0 dependence of the time evolution of PNA. In horizontal axis, we
use the dimensionless time t = ωr

3,0(x0 − t0) where we choose ωr
3,0 = 0.35. For all the

lines, we use a set of parameters as (m̃1, m̃2, B, T,Ht0) = (0.04, 0.05, 0.021, 100, 10−3).
The black, blue, dot-dashed blue, dashed blue and dotted blue lines show the cases

ω3,0 = 0.0035, 0.0045, 0.008, 0.012 and 0.015, respectively.

for PNA among the three curves. As the temperature increases, the amplitude of the

oscillation becomes larger. In Fig. 5.2, we show the B dependence. Interestingly, both

of the amplitude and the period of the oscillation change when we alter the parameter B.

As it increases, the amplitude becomes larger and its period becomes shorter. Fig. 5.3

shows the dependence of the PNA on ω3,0. As shown in the black, blue and dot-dashed

blue lines, the position of the first node does not change when ω3,0 takes its value

within the difference of m̃1 and m̃2. However, the amplitude of oscillation gradually
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Figure 5.4: Dependence on the expansion rate Ht0 of the time evolution of
PNA. In the horizontal axis, we use the dimensionless time t = ωr

3,0(x0 − t0)
where we choose ωr

3,0 = 0.35. We fix a set of parameters as (m̃1, m̃2, B, T, ω3,0) =
(0.04, 0.05, 0.021, 100, 0.0035) for all of the lines. The gray, dashed gray, dotted gray

and black lines show the cases Ht0 = 0, 10−4, 5× 10−4 and 10−3, respectively.

decreases as ω3,0 increases up to the mass difference. The more interesting findings were

observed when ω3,0 becomes larger than the mass difference. As ω3,0 becomes larger,

the amplitude decreases and the new node is formed at once. The dashed and dotted

blue lines show this behavior. The dependence on the expansion rate (Ht0) is shown

in Fig. 5.4. There is an interesting aspect of this figure at the fixed time t. As the

expansion rate becomes larger, the size of PNA becomes smaller.

5.2 The PNA with the shorter period

Now we investigate the PNA with the shorter period. In Fig. 5.5, we show the temper-

ature (T ) dependence for the time evolution of PNA. In this regard, the temperature

dependence is similar to the one with the longer period. Namely, the amplitude of

oscillation becomes larger as the temperature increases. The Fig. 5.6 shows the B de-

pendence. As B parameter decreases, the period of oscillation becomes longer. However,

there were different effects on the amplitude of oscillation. In the left plot, we show the

cases that the mass difference m̃2 − m̃1 is larger than the frequency ω3,0. Since B2,

proportional to mass squared difference m̃2
2 − m̃2

1, of the magenta line is smaller than

that of the black line, the mass difference m̃2 − m̃1 of the magenta line is closer to ω3,0.

At the beginning (0 < t < 22), the black line of large B has the larger amplitude than

that of the magenta line of small B. At time t ∼ 22, the amplitude of the magenta

line becomes larger than that of the black line. We also observed that when the mass

difference is near to the ω3,0, that is for the case of magenta line, the amplitude grows
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Figure 5.5: Dependence on temperature T of the time evolution of PNA. As for
horizontal axis, we use the dimensionless time t = ωr

3,0(x0 − t0) where we choose
ωr
3,0 = 0.35. We fix a set of parameters as (m̃1, m̃2, B, ω3, Ht0) = (2, 3, 1.58, 0.35, 10−3)

for all the lines. The black, light red and red lines show the cases T = 100, 200 and
400, respectively.

Figure 5.6: B dependence for the time evolution of PNA. The horizontal axis is
the dimensionless time defined as t = ωr

3,0(x0 − t0). As a reference angular fre-
quency, we choose ωr

3,0 = 0.35. We use a set of parameters as (m̃2, T,Ht0 , ω3,0) =
(3, 100, 10−3, 0.35) for all the lines. In the left plot, the black and magenta lines display
the cases B = 1.58 and 1.01, respectively. For the right plot, the black and blue lines

display the cases B = 1.58 and 0.76, respectively.

slowly compared with that of the black line and reaches its maximal value between one

and a half period and twice of the period. After taking its maximal value, it slowly de-

creases. In the right plot, the blue line shows the case that the mass difference m̃2− m̃1

is smaller than the frequency ω3,0. In comparison with the black line, the phase shift of
π
2 was observed in the blue line. The dependence on the parameter B is similar to that

of the magenta line. Namely, as B becomes smaller, the amplitude gradually grows at

the beginning and slowly decreases at the later time.

In Fig. 5.7, we show the dependence on ω3,0. In the left plot, we show the cases

that ω3,0’s are smaller than the mass difference as, ωblack
3,0 < ωorange

3,0 < m̃2 − m̃1. As
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Figure 5.7: Dependence on frequency ω3,0 of the time evolution of the PNA. We
use the dimensionless time t = ωr

3,0(x0 − t0) for horizontal axis and as a reference
angular frequency, we choose ωr

3,0 = 0.35. We fix parameters (m̃1, m̃2, B, T,Ht0) =
(2, 3, 1.58, 100, 10−3) for all the lines. The black and orange lines show the cases ω3,0 =
0.35 and 0.9, respectively (left plot). The black and green lines show the cases ω3,0 =

0.35 and 1.5, respectively (right plot).

Figure 5.8: The expansion rate H(t0) dependence of the time evolution PNA. In
horizontal axes, we use the dimensionless time t = ωr

3,0(x0 − t0) where we choose
ωr
3,0 = 0.35. We fix parameters as (m̃1, m̃2, B, ω3,0, T ) = (2, 3, 1.58, 0.35, 100) for all

the lines. The light gray, brown and black lines display the cases H(t0) = 0, 5 × 10−4

and 10−3, respectively.

ω3,0 increases, the period of the oscillation becomes shorter. There is also a different

behavior of the amplitudes as follows. At the beginning, the amplitudes of both black

and orange lines increase. After that, in comparison with the black lines, the amplitude

of the orange line slowly decreases. In the right plot, the green line shows the case that

ω3,0 is larger than the mass difference. We observe that the amplitude of the green line

is smaller than that of the black line and the period of the green one is shorter than

that of the black one. Figure 5.8 shows the dependence of expansion rate (Ht0). In this

plot, the PNA gradually decreases as the expansion rate increases.
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Figure 5.9: Comparison two different periods of the time evolution of the PNA.
We use the dimensionless time t = ωr

3,0(x0 − t0) for horizontal axis and as a reference
we choose ωr

3,0 = 0.35. We fix parameters (T,Ht0) = (100, 10−3) for all the lines.
The black (shorter period) and black dotted (longer period) lines show the set param-
eters (m̃1, m̃2, B, ω3,0) as (2, 3, 1.58, 0.35) and (0.04, 0.05, 0.021, 0.0035) , respectively.

Noticed that, our approximation will break down after t = 80.

5.3 The comparison of two different periods

In this section, we present a comparison of two different periods of the time evolution of

the PNA. In Fig. 5.9, the black line shows the case of the shorter period and the dotted

black line shows the case of the longer one. As can be seen in this figure, the PNA with

the shorter period frequently changes the sign and the magnitude also strongly depends

on the time. In contrast to the shorter period case, both the sign and magnitude of the

longer period case are stable if we restrict to the time range t = 30 ∼ 60 in Fig. 5.9.

5.4 The evolution of the PNA with the scale factor of a

specific time dependence

In this section, we interpret the numerical simulation in a specific situation. We assume

that the time dependence of the scale factor is given by the one in radiation dominated

era. We also specify the unit of the parameters, time and temperature. By doing so, we

can clarify implication of the numerical simulation in a more concrete situation.

Specifically, the time dependence of the scale factor is given as follows,

a(x0) =
√

1 + 2Ht0(x0 − t0). (5.5)
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The above equation is derived as follows. The Einstein’s equations without cosmological

constant lead to the following equation,(
ȧ

a

)2

=
8π

3
Gρ, (5.6)

where ρ is the energy density for radiation and it is given by,

ρ(x0) = ρ0a
−4(x0), (5.7)

where ρ0 is the initial energy density and we set at0 = 1. By setting x0 = t0 in Eq.(5.6),

the initial Hubble parameter is given by,

H2
t0 =

8π

3
Gρ0. (5.8)

Then using Eq.(5.8), Eq.(5.6) becomes,

d

dx0
{a(x0)2} = 2Ht0 . (5.9)

Solving the equation above, one can obtain Eq.(5.5).

From the expression in Eq.(5.5), one needs to specify the unit of the Hubble pa-

rameter at t0. Through Eq.(5.8), it is related to the initial energy density ρ0. Assuming

ρ0 is given by radiation with an effective degree of freedom g∗ and a temperature T (t0),

one can write ρ0 as follows,

ρ0 = g∗
π2

30
T 4(t0). (5.10)

Hereafter, we assume that the temperature of the radiation T (t0) is equal to the tem-

perature T in the density operator for the scalar fields. Then one can write the ratio of

the initial Hubble parameter and temperature T as follows,

Ht0

T
=
π

3

√
4πg∗

5

T

MPl
, (5.11)

where MPl is the Planck mass, MPl = 1.2 × 1019 (GeV). Then one can write the tem-

perature T in GeV unit as follows,

T (GeV) =
3

π

√
5

4πg∗

(
Ht0

T

)
MPl(GeV). (5.12)

In the numerical simulation, the ratio Ht0/T is given. Therefore, for the given ratio and

g∗, the temperature T in terms of GeV unit is determined. Then Ht0 in GeV unit also
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Table 5.1: The mass paremeters in GeV unit for both longer and shorter period cases
in Fig.5.9

Mass parameter (GeV) The shorter period The longer period

m1 2× 1011 4× 109

m2 3× 1011 5× 109

ω3,0 3.5× 1010 3.5× 108

becomes,

Ht0(GeV) = T (GeV)×
(
Ht0

T

)
. (5.13)

The masses of the scalar fields m̃i (i = 1, 2, 3) can be also expressed in GeV unit as,

m̃i(GeV) = Ht0(GeV)×
(
m̃i

Ht0

)
, (5.14)

where we use the ratios m̃i
Ht0

given in the numerical simulation.

As an example, we study the implication of the numerical simulation shown in

Fig.5.9 by specifying the mass parameter in GeV unit. We also determine the unit of

time scale. We first determine the temperature in GeV unit using Eq.(5.12). As for

the degree of freedom, we can take g∗ ' 100 which corresponds to the case that all

the standard model particles are regarded as radiation. Then, substituting the ratio

Ht0/T = 10−5 adapted in Fig.5.9 to Eq.(5.12) and (5.13), one obtains T ∼ 1013 (GeV)

and H(t0) ∼ 108 (GeV), respectively. The mass parameters are different between the

longer period case (the dotted line) and the shorter period case (the solid line). They

are also given in GeV unit shown in Table 5.1. The time scale ∆t = 100 corresponds to

3× 10−9 (GeV)−1 which is about 2× 10−33 (sec).

One can also estimate the size of PNA. Here, we consider the maximum value of

the PNA for the longer period case in Fig.5.9. We evaluate the ratio of the PNA over

entropy density s,

〈j0(t ' 50)〉
s

= −5× 1011(GeV)

T (GeV)
× A123(GeV)

T (GeV)
× v3(GeV)

T (GeV)
× 45

2π2g∗
, (5.15)

where s is given by,

s = g∗
2π2

45
T 3(GeV3). (5.16)
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In Eq.(5.15), the first numerical factor, −5 × 1011(GeV), is obtained in the following

way,

A123 (GeV)

T (GeV)
=

A123

T
, (5.17)

v3 (GeV)

T (GeV)
=

v3
T
, (5.18)

−5× 1011 (GeV)

T (GeV)
=
−5

T
. (5.19)

In the right hand side of the above equations, T denotes the temperature in the universal

unit of the simulation in Fig.5.9 where T = 100 is used. In the left hand side, T denotes

the corresponding temperature in GeV unit and it is T = 1013 (GeV). Substituting the

temperature T = 1013 (GeV) into Eq.(5.15), one obtains,

〈j0(t ' 50)〉
s

= −1× 10−11 ×
(
A123(GeV)

108(GeV)

)
×
(
v3(GeV)

1010(GeV)

)
. (5.20)

From the equation above, we can achieve the ratio as 10−10 by taking A123 = 108 (GeV)

and v3 = 1011 (GeV).
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Summary

In this research, we developed a new mechanism for generating the PNA. This mechanism

is realized with the specific model Lagrangian which we have proposed. The model

includes a complex scalar. The PNA is associated with U(1) charge of the complex

scalar. In addition, we introduce a neutral scalar which interacts with the complex

scalar. The U(1) charge is not conserved due to particle number violating interaction.

As an another source of particle number violation, the U(1) symmetry breaking mass

term for the complex scalar is introduced. The initial value for the condensation of

the neutral scalar is non-zero. Using 2PI formalism and specifying the initial condition

with density operator, the time-dependent PNA is obtained. To include the effect of the

time dependence of the scale factor, we approximate it up to the first order of Hubble

parameter.

The results show that the PNA depends on the interaction coupling A123 and the

initial value of the condensation of the neutral scalar ϕ̂3,t0 . It also depends on the mass

squared difference of two real scalars which originally form a complex scalar. We found

that the interaction coupling A123 and the mass squared difference play a key role to give

rise to non-vanishing PNA. Even if the initial value of the neutral scalar is non-zero, in

the vanishing limit of interaction terms and the mass squared difference, the PNA will

vanish. Another important finding is that the contribution to the PNA is divided into

four types. The constant scale factor which is the zeroth order of Hubble parameter is

the leading contribution. The rests which are the first order terms contribute according

to their origins. Those are summarized in Table 6.1.

We have numerically calculated time evolution of the PNA and have investigated

its dependence on the temperature, parameter B, the angular frequency ω3,0 and the

expansion rate of the universe. Starting with the null PNA at the initial time, it is

generated by particle number violating interaction. Once the non-zero PNA is generated,
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Table 6.1: The classification of o(Ht0) contributions to the PNA

The effect The origin

Dilution The increase of volume of the universe due to expansion,
1

a(x0)3
− 1

a3t0

Freezing interaction The decrease of the strength of the cubic interaction Â as
Â123 −A123.

Redshift The effective energy of particle as indicated in Eq.(3.37),
k2

a(x0)2
+ m̄2

i (x
0).

it starts to oscillate. The amplitude decreases as the time gets larger. The dumping

rate of the amplitude increases as the Hubble parameter becomes larger. The period of

the oscillation depends on the angular frequency ω3,0 and the parameter B. The former

determines the oscillation period for the condensation of the neutral scalar. The latter

determines the mass difference of φ1 and φ2. In the simulation, we focus on the two

cases for the oscillation period, one of which corresponds to the longer period case and

the other is the shorter period case. The longer period is about half of the Hubble time

(1/Ht0) and the shorter period is one percent of the Hubble time. The set of parameters

(ω3,0, B) which corresponds to the longer period is typically one percent of the values for

the shorter period. In both cases, the amplitude gets larger as the temperature increases.

For the longer period, as parameter B becomes larger, the amplitude increases. For the

shorter period, in order to have large amplitude, the parameter B is taken so that the

mass difference m̃2 − m̃1 is near to ω3,0. In other words, when the resonance condition

ω3,0 ' m̃2− m̃1 is satisfied, the amplitude becomes large. For the longer period case, as

the angular frequency ω3,0 decreases, the amplitude becomes large.

To show how the mechanism can be applied to a realistic situation, we study

the simulated results for radiation dominated era when the degree of freedom of light

particles is assumed to be g∗ ' O(100). Then when the initial temperature of the

scalar fields is the same as that of the light particles, the simulation with
Ht0
T = 10−5

corresponds to the case that the temperature of the universe is 1013 (GeV) which is

slightly lower than GUT scale ∼ 1016 (GeV) [23, 24]. The masses of the scalar fields

in Fig.5.9 are different between the shorter period case and the longer period case as

shown in Table 5.1. In the shorter period case, the mass spectrum of the scalar ranges

from 1010 (GeV) to 1011 (GeV) while for the longer period case, it is lower than that

of the shorter period case by two orders of magnitude. For the longer period case,

the maximum asymmetry is achieved at 10−33 (sec) after the initial time. For shorter

period, it is achieved at about 10−34 (sec). We have estimated the ratio of the PNA over

entropy density by substituting the numerical values of the coupling constant (A123) and

the initial expectation value (v3).
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Compared with the previous works [13, 15, 25, 26], instead of assuming the non-

zero PNA at the initial time, the PNA is created through interactions. These interactions

have the following unique feature; namely, the interaction between the complex scalars

and oscillating condensation of a neutral scalar leads to the PNA. In our work, by

assuming the initial condensation of the neutral scalar is away from the equilibrium

point, the condensation starts to oscillate. In the expression of the amplitude of PNA,

one finds that it is proportional to the CP violating coupling between the scalars and

the condensation, the initial condensation of the neutral scalars, and mass difference

between mass eigenstates of the two neutral scalars which are originally introduced as

a complex scalar with the particle number violating mass and curvature terms. One of

the distinctive feature of the present mechanism from the one which utilizes the PNA

created through the heavy particle decays is as follows. In the mechanism which utilizes

the heavy particle decays, the temperature must be high enough so that it once brings

the heavy particle to the state of the thermal equilibrium. Therefore the temperature

of the universe at reheating era must be as high as the mass of the heavy particle. In

contrast to this class of the models, the present model is not restricted by such condition.

In place of the condition, the initial condensation must be large enough to explain the

asymmetry.

In our model, even for the longer period case, the oscillation period is shorter

than the Hubble time (1/Ht0). It implies that one of Sakharov conditions for BAU,

namely non-equilibrium condition is not satisfied. In this respect, we expect that due to

the finite life time of the condensation of the neutral scalar, the interaction between the

condensation and complex scalars will vanish and eventually the oscillation of the PNA

may terminate. The detailed study will be given in the future research. The relation

between the PNA and the observed BAU should be also studied. In particular, we need

to consider the mechanism how the created PNA is transferred to the observed BAU.
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Appendix A

Expectation value of field and

Green’s function

In this Appendix, as an introduction, we provide a short note about the transition

amplitude written with path integral formulation. Later, in the next two sections, we

will derive expectation value of the field and Green’s function from 2PI CTP generating

functional.

A.1 A short introduction to the path integral

At first, we write the transition amplitude from the state |x1〉 which is prepared at

x0 = t0 to |x2〉 at x0 = T after time development. It is given as,

〈x2|e−iH(T−t0)|x1〉 = 〈x2(T )|x1(t0)〉, (A.1)

where the left hand side of the above equation is an expression with Schrodinger rep-

resentation. The states |xi〉 (i = 1, 2) are eigenstates of position operator x̂ and they

satisfy x̂|xi〉 = xi|xi〉. In the right hand side of Eq.(A.1), we introduce the following

states,

|x1(t0)〉 =eiHt0 |x1〉, (A.2)

|x2(T )〉 =eiHT |x2〉, (A.3)
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where |x1(t0)〉 (|x2(T )〉) is an eigenstate of Heisenberg operator x̂H(x0 = t0) (x̂H(x0 =

T )) with eigenvalues x1(x2). For instance, one can compute the position operator,

x̂H(x0) = eiHx
0
x̂e−iHx

0
(A.4)

act to state |x1(t0)〉 in Eq.(A.2) as,

x̂H(t0)|x1(t0)〉 =(eiHt0 x̂e−iHt0)eiHt0 |x1〉

=eiHt0 x̂|x1〉 = x1|x1(t0)〉. (A.5)

Now let us consider the following quantity,

〈x2(T )|x̂H(x0)|x1(t0)〉 =

∫
dx〈x2(T )|x̂H(x0)|x(x0)〉〈x(x0)|x1(t0)〉

=

∫
dx〈x2(T )|x(x0)〉x〈x(x0) |x1(t0)〉 , (A.6)

where we have used the state which consititues the completeness relation as,∫
dx|x(x0)〉〈x(x0)| =

∫
dxeiHx

0 |x〉〈x|e−iHx0 = 1, (A.7)

x̂H(x0)|x(x0)〉 = (eiHx
0
x̂e−iHx

0
)eiHx

0 |x〉

= xeiHx
0 |x〉 = x|x(x0)〉, (A.8)

where |x(x0)〉 is eigenstate which satisfies Eq.(A.8). Next, let us express the transition

amplitude in Eq.(A.1) in terms of path integral expression. It is written as,

〈x2(T )|x1(t0)〉 =

∫ t6T,x(T )=x2∏
t>t0,x(t0)=x1

dx(t) exp[iSt0→T ], (A.9)

St0→T =

∫ t=T

t=t0

L(x(t), ẋ(t))dt. (A.10)
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Next task is to express operator inserted matrix element as 〈x2(T )|x̂H(x0)|x1(t0)〉 in

Eq.(A.6) in terms of path integral. It can be written as,

〈x2(T )|x̂H(x0)|x1(t0)〉 =

∫
dx〈x2(T )|x(x0)〉x〈x(x0)|x1(t0)〉

=

∫
dx

∫ t<T,x(T )=x2∏
t>x0x(x0)=x

dx(t) exp[iSx0→T ]x

×
∫ t<x0,x(x0)=x∏

t>t0x(t0)=x1

dx(t) exp[iSt0→x0 ]

=

∫
dx(x0)

∫ t<T,x(T )=x2∏
t>x0

t<x0∏
t>t0x(t0)=x1

dx(t)x(x0) exp[iSt0→T ]

=

∫ t6T,x(T )=x2∏
t>t0x(t0)=x1

dx(t)x(x0) exp[iSt0→T ], (A.11)

where x(x0) = x and St0→T is given by,

St0→T =St0→x0 + Sx0→T , (A.12)

Sx0→T =

∫ T

x0
L(x(t), ẋ(t))dt, (A.13)

St0→x0 =

∫ x0

t0

L(x(t), ẋ(t))dt. (A.14)

A.2 The expectation value of the field

In the following, we will derive the expectation value of the field. For simplicity, we start

with Eq.(3.7) for one real scalar field. It can be rewritten as follows,

iW [J,K] = ln

[∫
dφ exp

(
i

{
S +

∫ √
−g(x)d4xJacabφb

+
1

2

∫
d4x

∫
d4y
√
−g(x)φa(x)cabKbc(x, y)ccdφd(y)

√
−g(y)

})]
. (A.15)

The expectation value of field can be obtained from generating functional W [J,K] by

taking functional derivative with respect to the source term J as shown in Eq.(3.9).
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Using Eq.(A.15), Eq.(3.9) alters into,

φ̄a(x) =
cabiδW√
−g(x)δiJb(x)

=

∫
dφφa(x)e

i
[
S+

∫ √
−g(x)d4xJacabφb+ 1

2

∫
d4xd4y

√
−g(x)φa(x)cabKbc(x,y)ccdφd(y)

√
−g(y)

]
∫
dφe

i
[
S+

∫ √
−g(x)d4xJacabφb+ 1

2

∫
d4xd4y

√
−g(x)φa(x)cabKbc(x,y)ccdφd(y)

√
−g(y)

] .

(A.16)

Next substituting source terms J and K in Eqs.(2.29) and (2.30) in the equation above,

one can write it in terms of path integral as follows,

φ̄a(x)|J=−iδ(x0−t0)j,K=−iδ(x0−t0)δ(y0−t0)κ

= lim
T→∞

∫ ∏x0=T
x0=t0

dφa(x0)φa(x)eiS+
√
−g(t0)

∫
d3xjacabφb(t0)+

1
2

∫
d3xd3y

√
−g(t0)φa(t0)cabκbc(x−y)ccdφd(t0)

√
−g(t0)∫

dφee
iS+
√
−g(t0)

∫
d3xjacabφb(t0)+

1
2

∫
d3xd3y

√
−g(t0)φ

a(t0)c
abκbc(x−y)ccdφd(t0)

√
−g(t0)

(A.17)

Now let us compute the numerator of Eq.(A.17) as,

Num. of φ̄a(x)

= lim
T→∞

∫ x0=T,φ1(T )=φ2(T )=φ(T )∏
x0=t0 ,φa=φa(t0)

dφa(x0) φa(x) exp(iS[φ1(x)]) exp(−iS[φ2(x)]∗)

× exp

[√
−g(t0)

∫
d3xjacabφb(t0) +

1

2

∫
d3xd3y

√
−g(t0)φ

a(t0)c
abκbc(x− y)ccdφd(t0)

√
−g(t0)

]

= lim
T→∞

∫ x0=T,φ1(T )=φ2(T )=φ(T )∏
x0=t0φa=φa(t0)

2∏
a=1

dφa(x0) φa(x) exp(iS[φ1(x)]) exp(−iS[φ2(x)]∗)

× exp
(
−SEcl[φ1, φ2]

)
(A.18)

with φ1 = φ1(t0), φ
2 = φ2(t0), φ

1(T ) = φ2(T ) = φ(T ) and we have used the following

relation in the intermediate step,

S = S[φ1]− S[φ2]∗. (A.19)

SEcl[φ
1, φ2] is given as,

− SEcl[φ1, φ2]

=
√
−g(t0)

∫
d3xjacabφb(t0) +

1

2

∫
d3xd3y

√
−g(t0)φ

a(t0)c
abκbc(x− y)ccdφd(t0)

√
−g(t0),

(A.20)
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which is inverse Fourier transformation of Eq.(2.26). Now let us compute φ̄1(x). Setting

a = 1 in Eq.(A.18), the numerator of φ̄1(x) is written as,

Num. of φ̄1(x)

=

∫
dφ1

∫
dφ2

∫
dφ(T )

∫ x0<T∏
x0>t0 ,{φ1=φ1(t0),φ(T )=φ1(T )}

dφ1(x0)φ1(x) exp(iS[φ1(x)])


× exp(−SEcl[φ

1, φ2])

 x0<T∏
x0>t0 ,{φ2=φ2(t0),φ(T )=φ2(T )}

dφ2(x0) exp(iS[φ2(x)])

∗

=

∫
dφ1

∫
dφ2

∫
dφ(T ) < φ(T )|φH(x)|φ1(t0) > exp(−SEcl[φ

1, φ2]) < φ(T )|φ2(t0) >∗

=

∫
dφ1

∫
dφ2

∫
dφ(T ) < φ2|φ(T ) >< φ(T )|φH(x)|φ1 > exp(−SEcl[φ

1, φ2])

=

∫
dφ1

∫
dφ2 < φ2|φH(x)|φ1 > exp(−SEcl[φ

1, φ2]). (A.21)

In the above expression, we have used the path integral forms shown in Eqs.(A.9) and

(A.11). Meanwhile, the denominator of Eq.(A.17) is computed as,

Denom. of φ̄a(x) =

∫
dφ1

∫
dφ2 < φ2|φ1 > exp(−SEcl[φ

1, φ2])

=

∫
dφ1

∫
dφ2δ(φ1 − φ2) exp(−SEcl[φ

1, φ2]). (A.22)

Inputting Eqs.(A.21) and (A.22) in Eq.(A.21), then we obtain,

φ̄1(x)|J=−iδ(x0−t0)j,K=−iδ(x0−t0)δ(y0−t0)κ

=

∫
dφ1

∫
dφ2 < φ2|φH(x)|φ1 > exp(−SEcl[φ

1, φ2])∫
dφ1

∫
dφ2δ(φ1 − φ2) exp(−SEcl[φ1, φ2])

=

∫
dφ2

∫
dφ1 < φ2|φH(x)|φ1 >< φ1|ρ(t0)|φ2 >

=

∫
dφ2 < φ2|φH(x)ρ(t0)|φ2 >

= Tr[φH(x0)ρ(t0)], (A.23)

where < φ1|ρ(t0)|φ2 > is given in Eq.(2.25).
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Below we compute the expectation value of φ̄2(x). The numerator of φ̄2(x) is

calculated as,

Num. of φ̄2(x)

=

∫ ∫
dφ1dφ2

∫
dφ(T )

∫ x0<T∏
x0>t0 ,{φ1=φ1(t0),φ(T )=φ1(T )}

dφ1(x0) exp(iS[φ1(x)])


× exp(−SEcl[φ

1, φ2])

 x0<T∏
x0>t0 ,{φ2=φ2(t0),φ(T )=φ2(T )}

φ2(x0)dφ2(x0) exp(iS[φ2(x)])

∗

=

∫ ∫
dφ1dφ2

∫
dφ(T ) < φ(T )|φ1 > exp(−SEcl[φ

1, φ2]) < φ(T )|φH(x0)|φ2 >∗

=

∫ ∫
dφ1dφ2

∫
dφ(T ) < φ2|φH(x0)|φ(T ) >< φ(T )|φ1 > exp(−SEcl[φ

1, φ2])

=

∫ ∫
dφ1dφ2 < φ2|φH(x0)|φ1 > exp(−SEcl[φ

1, φ2]) = Num. of φ̄1(x). (A.24)

Note that, in the above derivation, we have used the fact of the neutral scalar field,

φH(x0)† = φH(x0). For the case that the field is complex scalar one, the above equation

is no longer valid. Therefore, one can show that,

φ̄a(x0,x) = Tr[φH(x0)ρ(t0)], (A.25)

with a = 1, 2. From the derivation above, we have completed the proof of the equality

between Eqs.(3.11) and (3.12).

A.3 The expectation value of Green’s function

Following the preceding section, below we will also consider the case of one real scalar

particle for simplicity. The expectation value of Green’s function is defined from gener-

ating funtional W [J,K] by taking funtional derivative with respect to K as described in

Eq.(3.10). Using Eq.(A.15), it is computed as,

φ̄a(x)φ̄d(y) +Gad(x, y)

=2
cab√
−g(x)

δiW [J,K]

δiKbc(x, y)

ccd√
−g(y)

=

∫
dφφa(x)φb(y)e

i
[
S+

∫ √
−g(x)d4xJacabφb+ 1

2

∫
d4x

∫
d4y
√
−g(x)φa(x)cabKbc(x,y)ccdφd(y)

√
−g(y)

]
∫
dφe

i
[
S+

∫ √
−g(x)d4xJacabφb+ 1

2

∫
d4x

∫
d4y
√
−g(x)φa(x)cabKbc(x,y)ccdφd(y)

√
−g(y)

]
(A.26)
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One can rewrite the above equation as follows,

Gad(x, y)

=

∫
dφφa(x)φd(y)e

i
[
S+

∫ √
−g(x)d4xJacabφb+ 1

2

∫
d4x

∫
d4y
√
−g(x)φa(x)cabKbc(x,y)ccdφd(y)

√
−g(y)

]
∫
dφe

i
[
S+

∫ √
−g(x)d4xJacabφb+ 1

2

∫
d4x

∫
d4y
√
−g(x)φa(x)cabKbc(x,y)ccdφd(y)

√
−g(y)

]
− φ̄a(x)φ̄d(y)

=

∫
dΦΦa(x)Φd(y)e

i
[
S+

∫ √
−g(x)d4xJacabφb+ 1

2

∫
d4x

∫
d4y
√
−g(x)φa(x)cabKbc(x,y)ccdφd(y)

√
−g(y)

]
∫
dΦe

i
[
S+

∫ √
−g(x)d4xJacabφb+ 1

2

∫
d4x

∫
d4y
√
−g(x)φa(x)cabKbc(x,y)ccdφd(y)

√
−g(y)

]
(A.27)

where Φ(x) is a Heisenberg operator discussed in Section 3.2 and it has form as Φa(x) =

φa(x)− φ̄a(x). Next step is to substitute the source terms J and K given in Eqs.(2.29)

and (2.30) into the above equation. Then, Gad(x, y) alters into,

Gad(x, y)|J=−iδ(x0−t0)j,K=−iδ(x0−t0)δ(y0−t0)κ

= lim
T→∞

∫
dφΦa(x)Φb(y)eiS+

∫
d3x
√
−g(t0)jacabφb(x0)+ 1

2

∫
d3x

∫
d3y
√
−g(t0)φa(x0)cabκbc(x−y)ccdφd(y0)

√
−g(t0)∫

dφeiS+
∫
d3x
√
−g(t0)jacabφb(x0)+ 1

2

∫
d3x

∫
d3y
√
−g(t0)φa(x0)cabκbc(x−y)ccdφd(y0)

√
−g(t0)

,

(A.28)

where we have used short hand notation for the integral over field φ which is given by,

∫
dφ =

∫
dφ(T )

x0<T∏
x0>t0

dφ1(x0)dφ2(x0). (A.29)

Here after, we will use the above short hand notation.

Next we compute the numerator of Eq.(A.28). It is given as,

Num. of Gad(x, y)
∣∣∣
J=−iδ(x0−t0)j,K=−iδ(x0−t0)δ(y0−t0)κ

= lim
T→∞

∫ x0=T∏
x0=t0

dφΦa(x)Φd(y)

× eiS+
∫
d3x
√
−g(t0)jacabφb(x0)+ 1

2

∫
d3x

∫
d3y
√
−g(t0)φa(x0)cabκbc(x−y)ccdφd(y0)

√
−g(t0)

= lim
T→∞

∫
dφΦa(x)Φd(y)eiS[φ

1(x0)]e−iS[φ
2(x0)]∗

× e
∫
d3x
√
−g(t0)jacabφb(x0)+ 1

2

∫
d3x

∫
d3y
√
−g(t0)φa(x0)cabκbc(x−y)ccdφd(y0)

√
−g(t0)

= lim
T→∞

∫
dφΦa(x)Φd(y)eiS[φ

1(x0)]e−iS[φ
2(x0)]∗e−SEcl[φ

1,φ2] (A.30)
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Using the above expression, we specify a = 1 and d = 2 and obtain,

Num. of G12(x, y)|J=−iδ(x0−t0)j,K=−iδ(x0−t0)δ(y0−t0)κ

=

∫ ∫
dφ1dφ2dφ(T )

∫ x0<T∏
x0=t0 ,{φ1=φ1(t0),φ(T )=φ1(T )}

dφ1(x0)Φ1(x)eiS[φ
1]

 e−SEcl[φ
1,φ2]

×

∫ y0<T∏
y0=t0{φ2=φ2(t0),φ(T )=φ2(T )}

dφ2(y0)Φ2(y)eiS[φ
2]

∗

=

∫ ∫
dφ1dφ2dφ(T ) < φ(T )|Φ(x)|φ1(t0) > e−SEcl[φ

1,φ2] < φ(T )|Φ(y)|φ2(t0) >∗

=

∫ ∫
dφ1dφ2dφ(T ) < φ2(t0)|Φ(y)|φ(T ) >< φ(T )|Φ(x)|φ1(t0) > e−SEcl[φ

1,φ2]

=

∫ ∫
dφ1dφ2 < φ2(t0)|Φ(y)Φ(x)|φ1(t0) > e−SEcl[φ

1,φ2]. (A.31)

As for the denominator of Eq.(A.28), it is the same as appeared in Eq.(A.22). Therefore,

substituting Eqs.(A.31) and (A.22) into Eq.(A.28), we obtain G12(x, y) as,

G12(x, y)|J=−iδ(x0−t0)j,K=−iδ(x0−t0)δ(y0−t0)κ

=

∫ ∫
dφ1dφ2 < φ2(t0)|ΦH(y)ΦH(x)|φ1(t0) > e−SEcl[φ

1,φ2]∫ ∫
dφ1dφ2δ(φ2 − φ1)e−SEcl[φ1,φ2]

=

∫ ∫
dφ1dφ2 < φ2(t0)|ΦH(y)ΦH(x)|φ1(t0) >< φ1|ρ(t0)|φ2 >

=Tr[ΦH(y)ΦH(x)ρ(t0)]. (A.32)

From the above derivation, we have completed the proof of equality between Eqs.(3.13)

and (3.14).



Appendix B

The solution of SDEs for both

Green’s function and field

B.1 The general solutions of SDEs

In this section, we provide the general solution of SDEs. Let us introduce the following

differential equation for a field ϕ,[
∂2

∂x02
+m2(x0)

]
ϕ(x0) = S(x0) + E(t0) δ(x

0 − t0) + F (T ) δ(x0 − T ), (B.1)

where S is an arbitrary function of time x0 and we will find the solution within the time

range from x0 = t0 to x0 = T . At the boundaries x0 = t0 and x0 = T , we introduce the

source terms of the form of delta function. The strength of the delta function is denoted

as E(t0) and F (T ), respectively. One may assume that field vanishes at x0 < t0,

ϕ(x0 < t0) = 0,
∂ϕ(x0)

∂x0

∣∣∣∣
x0<t0

= 0. (B.2)

One integrates Eq.(B.1) with respect to time x0 from t0 − ε to t0 + ε and obtains initial

condition for the first derivative of the field as,

∂ϕ(x0)

∂x0

∣∣∣∣
t+0

= E(t0), (B.3)

where we have used the above assumption and taken limit ε→ 0. t+0 denotes t0 + 0.

48
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The method of variation of constants has been employed to determine the solution

of Eq.(B.1) and it is written as,

ϕ(x0) = C1(x
0) f(x0) + C2(x

0) g(x0), (B.4)

where f(x0) and g(x0) are two linear independent solutions of the following homogeneous

equation, [
∂2

(∂x0)2
+m2(x0)

]
ϕhomo(x

0) = 0. (B.5)

Firstly, the following condition is imposed,

Ċ1(x
0)f(x0) + Ċ2(x

0)g(x0) = 0. (B.6)

Eq.(B.4) becomes the solution of the differential equation Eq.(B.1) when Ci(x
0) satisfies

another condition,

Ċ1(x
0)ḟ(x0) + Ċ2(x

0)ġ(x0) = S(x0) + F (T )δ(x0 − T ). (B.7)

The remaining task is to find Ci(x
0) which satisfy the conditions in Eqs.(B.6) and (B.7).

It is convenient to write these conditions in matrix form as,(
Ċ1(x

0)

Ċ2(x
0)

)
=

1

W

(
g(x0) −ġ(x0)

−f(x0) ḟ(x0)

)(
S(x0) + F (T )δ(x0 − T )

0

)
, (B.8)

where we have defined,

W = ḟ(x0)g(x0)− f(x0)ġ(x0). (B.9)

and it is a constant with respect to time. Integrating Eq.(B.8) with respect to time from

t+0 to x0, one obtains,

C1(x
0) =

∫ x0

t+0

1

W
(g(t) {S(t) + F (t) δ(t− T )}) dt+ C1(t

+
0 ) (B.10)

C2(x
0) = −

∫ x0

t+0

1

W
(f(t) {S(t) + F (t) δ(t− T )}) dt+ C2(t

+
0 ) (B.11)

Therefore Eq.(B.4) becomes,

ϕ(x0) =
1

W

∫ x0

t+0

[
f(x0)g(t)− g(x0)f(t)

]
{S(t) + F (t) δ(t− T )} dt

+ C1(t
+
0 )f(x0) + C2(t

+
0 )g(x0) (B.12)
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In this regard, it enables us to define,

K̄[x0, y0] :=
1

W

[
f(x0)g(y0)− g(x0)f(y0)

]
. (B.13)

Then Eq.(B.12) alters into

ϕ(x0) =

∫ x0

t+0

K̄[x0, t] {S(t) + F (t) δ(t− T )} dt+ C1(t
+
0 )f(x0) + C2(t

+
0 )g(x0). (B.14)

To determine Ci(t
+
0 ), it is required the first derivative of field,

∂

∂x0
ϕ(x0) =

∫ x0

t+0

(
∂K̄[x0, t]

∂x0

)
{S(t) + F (t) δ(t− T )} dt

+ C1(t
+
0 )ḟ(x0) + C2(t

+
0 )ġ(x0). (B.15)

Consequently, using definition Eq.(B.13), the term which includes S(t0) vanishes after

integration. From now on, we will denote ϕ̇(x0) as ∂ϕ(x0)
∂x0

.

Let us now write Ci(t
+
0 ) in terms of ϕ(t0) and ϕ̇(t0). We consider the following

equations,

ϕ(t+0 ) = C1(t
+
0 ) f(t+0 ) + C2(t

+
0 ) g(t+0 ), (B.16)

ϕ̇(t+0 ) = C1(t
+
0 ) ḟ(t+0 ) + C2(t

+
0 ) ġ(t+0 ). (B.17)

Next, one can write Ci(t
+
0 ) in matrix form as,(

C1(t
+
0 )

C2(t
+
0 )

)
= − 1

W

(
ġ(t+0 ) −g(t+0 )

−ḟ(t+0 ) f(t+0 )

)(
ϕ(t+0 )

ϕ̇(t+0 )

)
. (B.18)

Thus one substitutes these Ci(t
+
0 ) into Eq.(B.14) and obtains,

ϕ(x0) =

∫ x0

t+0

K̄[x0, t]S(t)dt+ K̄[x0, T ]F (T )θ(x0 − T )− K̄ ′[x0, t0]ϕ(t0)

+ K̄[x0, t0]E(t0), (B.19)

where we have used the initial condition in Eq.(B.3) and K̄ ′[x0, y0] is defined as,

K̄ ′[x0, y0] :=
∂K̄[x0, y0]

∂y0
. (B.20)

In the next section, we will use the obtained solution to provide the solution of SDEs.
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B.2 The SDEs for the field

Next we move to consider the SDEs for the field in Eqs.(3.34). It is rewritten as,[
∂2

∂x02
+ Ω2

i,x0,k=0

]
ϕ̂di,x0 = Sdi,x0 , (B.21)

where we have defined Sdi,x0 as,

Sdi,x0 := cdaDabcÂijk(x
0){ϕ̂bj(x0)ϕ̂ck(x0) + Ĝbcjk(x, x)}. (B.22)

To solve Eq.(B.21), one first sets E(t0) = 0 and F (T ) = 0 in Eq.(B.1). Then, the general

differential equation is similar to the SDEs for the field. The SDEs of the field in the

form of integral equation are given by,

ϕ̂di,x0 = −K̄ ′i,x0t0ϕ̂
d
i,t0 +

∫ x0

t+0

K̄i,x0tS
d
i,t dt, (B.23)

ϕ̂d,free
i,x0

= −K̄ ′i,x0t0ϕ̂
d
i,t0 , (B.24)

ϕ̂d,int
i,x0

=

∫ x0

t+0

K̄i,x0tS
d
i,t dt. (B.25)

By using the above equations and keeping the solutions up to the first order of the cubic

interaction, one obtains Eqs.(4.1)-(4.3).

B.3 The SDEs for the Green’s function

In this section, we consider the SDEs for Green’s function in Eqs.(3.35) and (3.36). They

are simply rewritten as, →
∂2

∂x02
+ Ω2

i,x0,k

 Ĝabij,x0y0,k = Qabij,x0y0,k + Eacik,kĜ
cb
kj,t0y0,k

δt0x0 + F abij δx0y0 , (B.26)

Ĝabij,x0y0,k

 ←
∂2

∂y02
+ Ω2

i,y0,k

 = Rabij,x0y0,k + Ĝacik,x0t0,kE
Tcb
kj,kδt0y0 + F abij δx0y0 , (B.27)

where we have defined,

F abij :=− iδij
cab

a3t0
, (B.28)

Qabij,x0y0(k) :=2cadDdceÂikl,x0ϕ̂
e
l,x0Ĝ

cb
kj,x0y0(k), (B.29)

Rabij,x0y0(k) :=2Ĝacik,x0y0(k)Dcef Âkjl,y0ϕ̂
f
l,y0
ceb, (B.30)
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y0

Ĝ(t0, t0)

Ĝ(t0, y
0)

Ĝ(x0, t0)

x0 Ĝ(x0, x0)

Ĝ(x0, y0)

x0

Figure B.1: Two paths to obtain Ĝ(x0, y0). We show the paths for the case x0 < y0.

and Eacik,k is given in Eq.(4.14).

In the following, we will obtain SDEs for Green’s functions at (x0, y0) in the form

of integral equation. Starting with the initial condition for Green’s function at (t0, t0),

we obtain two expressions for the Green’s function at (x0, y0). The two expressions

correspond to two paths shown in Figure B.1 which are used to integrate the differential

equation in Eqs.(B.26) and (B.27). They are given by1,

Ĝbrx0y0 =
{
K̄x0t0 ·

(
E · Ĝt0t0 + F

)
− K̄ ′x0t0 · Ĝt0t0

}
·
(
ET · K̄y0t0 − K̄

′
y0t0

)
+θ(y0 − x0)F · K̄y0x0 +

∫ y0

t+0

Rx0t · K̄y0t dt

+

∫ x0

t+0

K̄x0t ·Qtt0 dt ·
(
ET · K̄y0t0 − K̄

′
y0t0

)
, (B.31)

Ĝgo
x0y0

=
(
K̄x0t0 · E − K̄

′
x0t0

)
·
{(
Ĝt0t0 · ET + F

)
· K̄y0t0 − Ĝt0t0 · K̄

′
y0t0

}
+θ(x0 − y0)K̄x0y0 · F +

∫ x0

t+0

K̄x0t ·Qty0 dt

+
(
K̄x0t0 · E − K̄

′
x0t0

)
·
∫ y0

t+0

Rt0t · K̄y0t dt, (B.32)

where the upper indices “br”and “go”denote the blue red path and the green orange

path, respectively.

Now let us explain how one can derive Eq.(B.31). The steps are summarized

below.

1Dot multiplication describes matrix product corresponding their indices.
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• We first consider the differential equation in Eq.(B.26) which Green’s function

Ĝ(t, t0) on the blue line (t0 ≤ t ≤ x0) satisfies. Using the solution of the general

differential equation in Eq.(B.19), we obtain the expression,

Ĝx0t0 =

∫ x0

t+0

K̄x0t ·Qtt0 dt+ K̄x0t0 ·
(
E · Ĝt0t0 + F

)
− K̄ ′x0t0 · Ĝt0t0 , (B.33)

where Ĝt0t0 denotes the initial condition.

• Next we consider the differential equation in Eq.(B.27) which Green’s function

Ĝ(x0, t) on the red line (t0 ≤ t ≤ y0) satisfies. Using the solution of the general

differential equation in Eq.(B.19), we obtain the expression,

Ĝx0y0 =

∫ y0

t+0

Rx0t · K̄y0t dt+ Ĝx0t0 ·
(
E · K̄y0t0 − K̄

′
y0t0

)
+ θ(y0 − x0)F · K̄y0x0 ,

(B.34)

where Ĝx0t0 denotes the initial condition.

• Substituting Eq.(B.33) to Eq.(B.34), we obtain Eq.(B.31).

The Eq.(B.32) is obtained through the steps similar to the above. The difference is

as follows. We first integrate the differential equation on the green line with the initial

condition at (t0, t0) and obtain the expression for Ĝt0y0 . Using it as the initial condition,

we integrate the differential equation on the orange line and obtain the expression in

Eq.(B.32).

B.4 The derivation of free part for Green’s function and

its path independence

In the following section, we derive the free parts of Green’s function which are the zeroth

order of cubic interaction. From Eqs.(B.31) and (B.32), we can write them respectively

as,

Ĝbr,free
x0y0

=
{
K̄x0t0 ·

(
E · Ĝt0t0 + F

)
− K̄ ′x0t0 · Ĝt0t0

}
·
(
ET · K̄y0t0 − K̄

′
y0t0

)
+ θ(y0 − x0)F · K̄y0x0 , (B.35)

Ĝgo,free
x0y0

=
(
K̄x0t0 · E − K̄

′
x0t0

)
·
{(
Ĝt0t0 · ET + F

)
· K̄y0t0 − Ĝt0t0 · K̄

′
y0t0

}
+ θ(x0 − y0)K̄x0y0 · F. (B.36)
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Both of the above expressions satisfy the differential equations in which we turn off the

interaction part, namely, →
∂2

∂x02
+ Ω2

i,x0,k

 Ĝab,free
ij,x0y0,k

= Eacik,kĜ
cb,free
kj,t0y0,k

δt0x0 + F abij δx0y0 , (B.37)

Ĝab,free
ij,x0y0,k

 ←
∂2

∂y02
+ Ω2

i,y0,k

 = Ĝac,free
ik,x0t0,k

ETcbkj,kδt0y0 + F abij δx0y0 , (B.38)

Below we show both expressions in Eqs.(B.35) and (B.36) lead to a single expression.

Using Eqs.(3.46),(4.14) and (B.28), we can rewrite them as follows,

Ĝab,br,free
ij,x0y0

(k) =
δij

2ωi(k)a3t0

[
sinhβωi(k)

coshβωi(k)− 1

](
1 1

1 1

)ab
×
[
K̄ ′i,x0t0K̄

′
i,y0t0

+ ω2
i (k)K̄i,x0t0K̄i,y0t0

]
+
iδij
2a3t0

(
K̄ ′i,x0t0K̄i,y0t0 − K̄i,x0t0K̄

′
i,y0t0

) (
−1 1

−1 1

)ab

− iδij
2a3t0

θ(y0 − x0)K̄i,y0x0c
ab. (B.39)

Ĝab,go,free
ij,x0y0

(k) =
δij

2ωi(k)a3t0

[
sinhβωi(k)

coshβωi(k)− 1

](
1 1

1 1

)ab
×
[
K̄ ′i,x0t0K̄

′
i,y0t0

+ ω2
i (k)K̄i,x0t0K̄i,y0t0

]
+
iδij
2a3t0

(
K̄ ′i,x0t0K̄i,y0t0 − K̄i,x0t0K̄

′
i,y0t0

) (
1 1

−1 −1

)ab

− iδij
2a3t0

θ(x0 − y0)K̄i,x0y0c
ab, (B.40)

By using the following relation,

K̄ ′i,x0t0K̄i,y0t0 − K̄i,x0t0K̄
′
i,y0t0

= K̄i,x0y0 , (B.41)

we can show that two expressions are identical to each other. Therefore, they can be

summarized into a single expression which is Eq.(4.10).
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B.5 The interaction part of Green’s function and its path

independence

Now we move to consider the interaction parts of Green’s function. From Eqs.(B.31)

and (B.32), we can temporary define them respectively as,

Ĝbr,int
x0y0

:=

∫ y0

t+0

Rx0t · K̄y0t dt+

∫ x0

t+0

K̄x0t ·Qtt0 dt ·
(
ET · K̄y0t0 − K̄

′
y0t0

)
, (B.42)

Ĝgo,int
x0y0

:=

∫ x0

t+0

K̄x0t ·Qty0 dt+
(
K̄x0t0 · E − K̄

′
x0t0

)
·
∫ y0

t+0

Rt0t · K̄y0t dt, (B.43)

where Q and R are written in terms of the same Ĝ and ϕ̂ in Eqs.(B.29) and (B.30).

Below, we will show the two expressions are the same to each other. Remind us that Q

and R in Eqs.(B.42) and (B.43) are written in terms of Ĝx0y0,int in Eq.(4.9) through the

following differential equation,

Qx0y0 =

 →
∂2

∂x02
+ Ω2

x0

 Ĝint
x0y0 − E · Ĝ

int
t0y0

δt0x0 , (B.44)

Rx0y0 = Ĝint
x0y0

 ←
∂2

∂y02
+ Ω2

y0

− Ĝint
x0t0
· ET δt0y0 . (B.45)

Substituting these expressions to Eqs.(B.42) and (B.43), we obtain,

Ĝgo,int
x0y0

= Ĝint
x0y0 + K̄x0t0 ·

(
E · Ĝint

t0y0
− lim
t→t0

∂Ĝint
ty0

∂t

)
+
(
K̄x0t0 · E − K̄

′
x0t0

)
· Ĝint

t0t0 · K̄
′
y0t0

+
(
K̄ ′x0t0 − K̄x0t0 · E

)
· lim
t→t0

∂Ĝint
t0t

∂t
· K̄y0t0 , (B.46)

= Ĝint
x0y0 , (B.47)

Ĝbr,int
x0y0

= Ĝint
x0y0 +

(
Ĝint
x0t0
· ET − lim

t→t0

∂Ĝint
x0t

∂t

)
· K̄y0t0

+K̄ ′x0t0 · Ĝ
int
t0t0 ·

(
ET · K̄y0t0 − K̄

′
y0t0

)
+K̄x0t0 · lim

t→t0

∂Ĝint
tt0

∂t
·
(
K̄ ′y0t0 − E

T · K̄y0t0

)
, (B.48)

= Ĝint
x0y0 , (B.49)
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respectively. To show the equalities of Eqs.(B.47) and (B.49), we have used the following

relations,

Ĝint
t0t0 = 0, (B.50)

lim
t→t0

∂

∂t
Ĝint
t0t = 0, (B.51)

lim
t→t0

∂Ĝint
tt0

∂t
= 0, (B.52)

E · Ĝint
t0y0

= lim
t→t0

∂Ĝint
ty0

∂t
, (B.53)

Ĝint
x0t0
· ET = lim

t→t0

∂Ĝint
x0t

∂t
. (B.54)

We complete the proof of equality of two expressions given in Eqs.(B.42) and (B.43).

Since they are identical each other, from now on, we will use Ĝbr,int
x0y0

in Eq.(B.42).

To summarize this section, let us write the SDEs of Green’s functions in the form

of integral equations. Omitting the upper and lower indices i, j, a and b, the interaction

part of Green’s function is written as,

Ĝint
x0y0 =

∫ y0

t+0

Rx0t · K̄y0t dt−
∫ x0

t+0

K̄x0t ·
[
Qtt0 · K̄ ′y0t0 −Qtt0 · E

T · K̄y0t0

]
dt, (B.55)

where Q and R are given in Eqs.(B.29) and (B.30). Using the above equations and

keeping the solutions up to the first order of the cubic interaction, one can obtain

Eq.(4.11).



Appendix C

Derivation for f (x0) and g(x0) up

to first order of H(t0)

f(x0) and g(x0) are the solutions of a homogeneous differential equation given in Eqs.(4.6)

and (4.7). In this appendix, we derive those solutions for the case that the scale factor is

given in Eq.(4.18). We present them within linear approximation with respect to H(t0).

One first considers a couple of general homogeneous differential equations given

in Eqs.(4.6) and (4.7). As for Ωi,k(x0), we substitute the expression given in Eq.(4.24).

The solutions are expanded up to the first order with respect to H(t0),

fi,k(x0) = f
(0)
i,k (x0) + f

(1)
i,k (x0), (C.1)

gi,k(x0) = g
(0)
i,k (x0) + g

(1)
i,k (x0), (C.2)

where f (0)(x0) and g(0)(x0) are the solutions which correspond to the zeroth order of

H(t0) while f (1)(x0) and g(1)(x0) are the solutions which correspond to the first order

correction with respect to H(t0).

We first compute solution for f(x0). The differential equations of f(x0) in Eq.(4.6)

can be rewritten as, [
1

ω2
i,k

∂2

∂x02
+

Ω2
i,k(x0)

ω2
i,k

]
fi,k(x0) = 0. (C.3)

Using Eq.(4.24), the second term in parentheses of above expression is rewritten as,

Ω2
i,k(x0)

ω2
i,k

= 1− 2H(t0)(x
0 − t0)

k2

[a(t0)ωi,k]2
. (C.4)
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Then using Eq.(C.4), Eq.(C.3) alters into,[
1

ω2
i,k

∂2

∂x02
+ 1− 2H(t0)(x

0 − t0)
k2

[a(t0)ωi,k]2

]
fi,k(x0) = 0. (C.5)

One can define several dimensionless parameters as,

s := ωi,kx
0, s0 := ωi,kt0, h0 :=

H(t0)

ωi,k
, l :=

k

a(t0)ωi,k
(C.6)

Then using the above dimensionless parameters, Eq.(C.5) is rewritten as (for simplicity,

we omit the lower indices, i and k),[
∂2

∂s2
+ 1− 2h0(s− s0)l2

]
f(s) = 0. (C.7)

The above equation leads to the following leading equations,[
∂2

∂s2
+ 1

]
f (0)(s) = 0, (C.8)[

∂2

∂s2
+ 1

]
f (1)(s) = 2h0(s− s0)l2f (0)(s). (C.9)

As for the solution of Eq.(C.8), we choose,

f (0)(s) = sin(s). (C.10)

Next one needs to solve f (1)(s). The solution is written in terms of linear combination

of sine and cosine functions,

f (1)(s) = C1(s) sin(s) + C2(s) cos(s), (C.11)

where their coefficients Ci depend on time. Since we can impose the following condition,

C ′1(s) sin(s) + C ′2(s) cos(s) = 0, (C.12)

one can show that Ci(s) satisfy,

C ′1(s) cos(s)− C ′2(s) sin(s) = 2h0(s− s0)l2 sin(s), (C.13)

where C ′i(s) are defined as,

C ′i(s) :=
dCi(s)

ds
. (C.14)
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From Eqs.(C.12) and (C.13), one can write C ′i(s) as,

C ′1(s) = h0(s− s0)l2 sin(2s), (C.15)

C ′2(s) = h0(s− s0)l2{cos(2s)− 1}. (C.16)

With the initial conditions Ci(s0) = 0, Ci(s) are written as,

C1(s) =− h0l
2

2

[
(s− s0) cos(2s)− 1

2
{sin(2s)− sin(2s0)}

]
, (C.17)

C2(s) =
h0l

2

2

[
(s− s0){sin(2s)− 2s}+

1

2
{cos(2s)− cos(2s0)}+ (s2 − s20)

]
. (C.18)

Now using Eqs.(C.17) and (C.18), the solution of f (1)(s) is written as,

f (1)(s) =
h0l

2

2
(s− s0)

{
sin(s)− sin(s− s0)

(s− s0)
sin(s0)− (s− s0) cos(s)

}
. (C.19)

To summarize this part, let us write f (0)(s) and f (1)(s) in terms of original dimensional

parameters. They are given by,

f (0)(x0) = sin[ωi,kx
0], (C.20)

f (1)(x0) =
H(t0) k2(x0 − t0)

2{a(t0)ωi,k}2

{
sin[ωi,kx

0]−
sin[ωi,k(x0 − t0)]
ωi,k(x0 − t0)

sin[ωi,kt0]

−ωi,k(x0 − t0) cos[ωi,kx
0]
}
. (C.21)

Now we move to compute for g(x0). In this regard, g(s) satisfies the same equation

in Eq.(C.7) which f(s) satisfies. The difference is that g0(s) is a cosine function,

g(0)(s) = cos(s). (C.22)

Applying the same procedure which we have used for the derivation of f1(s), we obtain,

g(1)(s) =
h0l

2

2
(s− s0)

[
cos(s)− sin(s− s0)

(s− s0)
cos(s0) + (s− s0) sin(s)

]
. (C.23)

Finally, one rewrites g(0)(s) and g(1)(s) in terms of original variables. They are given

by,

g(0)(x0) = cos[ωi,kx
0], (C.24)

g(1)(x0) =
H(t0) k2(x0 − t0)

2{a(t0)ωi,k}2

{
cos[ωi,kx

0]−
sin[ωi,k(x0 − t0)]
ωi,k(x0 − t0)

cos[ωi,kt0]

+ωi,k(x0 − t0) sin[ωi,kx
0]
}
. (C.25)
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Derivation of K̄i[x
0, y0] up to first

order of H(t0)

In this appendix, we present K̄i,x0y0,k given in Eq.(4.4) within the linear approximation

with respect to H(t0). For simplicity, momentum index k is suppressed. K̄i,x0y0,k is also

expanded up to the first order with respect to H(t0), namely,

K̄i[x
0, y0] = K̄

(0)
i [x0, y0] + K̄

(1)
i [x0, y0], (D.1)

where we have defined,

K̄
(0)
i [x0, y0] :=

1

Wi
{f (0)i (x0)g

(0)
i (y0)− f (0)i (y0)g

(0)
i (x0)}, (D.2)

K̄
(1)
i [x0, y0] :=

1

Wi
{f (0)i (x0)g

(1)
i (y0)− f (0)i (y0)g

(1)
i (x0) + f

(1)
i (x0)g

(0)
i (y0)

−f (1)i (y0)g
(0)
i (x0)}. (D.3)

One can show that W is written in terms of the zeroth order solutions f
(0)
i , g

(0)
i and

their derivatives,

Wi = ḟ
(0)
i (t0)g

(0)
i (t0)− f (0)i (t0)ġ

(0)
i (t0) = ωi,k, (D.4)

because f (1)(t0), ḟ
(1)(t0), g

(1)(t0)and ġ(1)(t0) vanish. Substituting the zeroth order func-

tion and the first order function of f and g in Eqs.(C.10), (C.19), (C.22) and (C.23),

Eqs.(D.2) and (D.3) alters into,

K̄
(0)
i [x0, y0] =

sin(s− u)

ωi,k
(D.5)

K̄
(1)
i [x0, y0] =

h0l
2

2ωi,k
{u+ s− 2s0}[sin(s− u) + (u− s) cos(s− u)], (D.6)
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where we have defined the following dimensionless parameters as,

u := ωi,ky
0, (D.7)

s0 := u0 = ωi,kt0. (D.8)

and s, s0, h0 and l are defined in Eq.(C.6), respectively. Therefore, K̄i[x
0, y0] in Eq.(D.1)

is written in terms of original parameters as,

K̄i[x
0, y0] =K̄

(0)
i [x0, y0] + K̄

(1)
i [x0, y0]

K̄
(0)
i [x0, y0] =

sin[ωi,k(x0 − y0)]
ωi,k

, (D.9)

K̄
(1)
i [x0, y0] =

H(t0)

2

k2

ω2
i,ka(t0)2

(x0 + y0 − 2t0)

×
(

sin[ωi,k(x0 − y0)]
ωi,k

− (x0 − y0) cos[ωi,k(x0 − y0)]
)
. (D.10)

We define ˙̄Ki and ˙̄K ′i as follows,

˙̄Ki[x
0, y0] :=

∂K̄i[x
0, y0]

∂x0
, (D.11)

˙̄K ′i[x
0, y0] :=

∂2K̄i[x
0, y0]

∂x0∂y0
. (D.12)

Then K̄ ′i in Eq.(B.20), ˙̄Ki and ˙̄K ′i are given in terms of original parameters as,

K̄ ′i[x
0, y0] =K̄

(0)′
i [x0, y0] + K̄

(1)′
i [x0, y0],

K̄
(0)′
i [x0, y0] =− cos(s− u) = − cos[ωi,k(x0 − y0)], (D.13)

K̄
(1)′
i [x0, y0] =

h0l
2

2
[(u− s) cos(s− u) + {1 + (u+ s− 2s0)(u− s)} sin(s− u)],

=H(t0)
k2

2ω3
i,ka(t0)2

[ωi,k(y0 − x0) cos[ωi,k(x0 − y0)]

+ {1 + ω2
i,k(y0 + x0 − 2t0)(y

0 − x0)} sin[ωi,k(x0 − y0)]], (D.14)

˙̄Ki[x
0, y0] = ˙̄K

(0)
i [x0, y0] + ˙̄K

(1)
i [x0, y0],

˙̄K
(0)
i [x0, y0] = cos(s− u) = cos[ωi,k(x0 − y0)], (D.15)

˙̄K
(1)
i [x0, y0] =

h0l
2

2
[(u− s) cos(s− u) + {1− (u+ s− 2s0)(u− s)} sin(s− u)]

=H(t0)
k2

2ω3
i,ka(t0)2

[ωi,k(y0 − x0) cos[ωi,k(x0 − y0)]

+ {1− ω2
i,k(y0 + x0 − 2t0)(y

0 − x0)} sin[ωi,k(x0 − y0)]], (D.16)
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˙̄K ′i[x
0, y0] = ˙̄K

(0)′
i [x0, y0] + ˙̄K

(1)′
i [x0, y0],

˙̄K
(0)′
i [x0, y0] =ωi,k sin(s− u) = ωi,k sin[ωi,k(x0 − y0)], (D.17)

˙̄K
(1)′
i [x0, y0] =

h0l
2

2
ωi,k(u+ s− 2s0)[(u− s) cos(s− u)− sin(s− u)]

=H(t0)
k2

2ωi,ka(t0)2
(y0 + x0 − 2t0)

× {ωi,k(y0 − x0) cos[ωi,k(x0 − y0)]− sin[ωi,k(x0 − y0)]}. (D.18)



Appendix E

Calculation of the expectation

value of PNA

E.1 Time integration and momentum integration of 〈j0(x
0)〉1st

In this section, we provide both time and momentum integrations in the expression of

the expectation value of the PNA. Let us first consider Eq.(4.28). We can rewrite it as

follows,

〈j0(x0)〉1st = 〈j0(x0)〉1st,A + 〈j0(x0)〉1st,B, (E.1)

〈j0(x0)〉1st,A =
1

a3t0
ϕ̂3,t0A123

{
1− 3(x0 − t0)H(t0)

}∫ d3k

(2π)3

[
1

2

(
1

ω2,k
+

1

ω1,k

)
×
(

coth
βω2,k

2
− coth

βω1,k

2

)∫ x0

t0

cosω3,0t cos(ω1,k − ω2,k)(x0 − t)dt

+
1

2

(
1

ω2,k
− 1

ω1,k

)(
coth

βω2,k

2
+ coth

βω1,k

2

)
×
∫ x0

t0

cosω3,0t cos(ω1,k + ω2,k)(x0 − t)dt

]
, (E.2)

〈j0(x0)〉1st,B =− 3

2

H(t0)

a3t0
ϕ̂3,t0A123

∫
d3k

(2π)3

[
1

2

(
1

ω2,k
+

1

ω1,k

)(
coth

βω2,k

2
− coth

βω1,k

2

)
×
∫ x0

t0

(t− t0) cosω3,0(t− t0) cos(ω1,k − ω2,k)(x0 − t)dt

+
1

2

(
1

ω2,k
− 1

ω1,k

)(
coth

βω2,k

2
+ coth

βω1,k

2

)
×
∫ x0

t0

(t− t0) cosω3,0(t− t0) cos(ω1,k + ω2,k)(x0 − t)dt

]
. (E.3)
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〈j0(x0)〉1st,A is the part which includes the PNA with constant scale factor and dilution

effect while 〈j0(x0)〉1st,B is the part which includes the freezing interaction effect. One

can derive Eqs.(E.2) and (E.3) by substituting Eqs.(D.9), (D.13), (D.15) and (D.17) into

Eq.(4.28).

Below we first carry out time integration of 〈j0(x0)〉1st,A. One defines the new

variable of integration as,

s := x0 − t, (E.4)

x1 := x0 − t0. (E.5)

Then one obtains that,

〈j0(x1 + t0)〉1st,A =
ω3,0

2a3t0
ϕ̂3,t0A123(m̃

2
1 − m̃2

2)
{

1− 3x1H(t0)
}∫ d3k

(2π)3
1

ω1,kω2,k

×

( 2e−βω2,k

1− e−βω2,k
− 2e−βω1,k

1− e−βω1,k

) sin[ω3,0x1]
(ω1,k−ω2,k)

− sin[(ω1,k−ω2,k)x
1]

ω3,0

ω2
3,0 − (ω1,k − ω2,k)2

+

(
1 + e−βω2,k

1− e−βω2,k
+

1 + e−βω1,k

1− e−βω1,k

) sin[ω3,0x1]
ω1,k+ω2,k

− sin[(ω1,k+ω2,k)x
1]

ω3,0

ω2
3,0 − (ω1,k + ω2,k)2

 .
(E.6)

By taking first time derivative of the above expression, setting x1 = 0, using the initial

expectation value of ϕ̂3,t0 = v3 and setting H(t0) = 0, we can obtain Eq.(4.31).

We move now to compute 〈j0(x0)〉1st,B. To perform time integration for 〈j0(x0)〉1st,B,

one introduces the new variable of integration,

s := t− t0, (E.7)

and obtains,

〈j0(x1 + t0)〉1st,B =− 3H(t0)ω3,0

4a3t0
ϕ̂3,t0A123(m̃

2
1 − m̃2

2)

∫
d3k

(2π)3
1

ω1,kω2,k

[(
coth

βω2,k

2 − coth
βω1,k

2

ω−12,k

)

×

 x1 sinω3,0x
1

(ω2
3,0 − ω

−
12,k

2
)

+

ω2
3,0+ω

−
12,k

2

ω3,0
{cosω3,0x

1 − cos[ω−12,kx
1]}

(ω2
3,0 − ω

−
12,k

2
)2


+

(
coth

βω2,k

2 + coth
βω1,k

2

ω+
12,k

)(
x1 sinω3,0x

1

(ω2
3,0 − ω

+
12,k

2
)

+

ω2
3,0+ω

+
12,k

2

ω3,0
{cosω3,0x

1 − cos[ω+
12,kx

1]}

(ω2
3,0 − ω

+
12,k

2
)2


 , (E.8)
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where we have defined ω±12,k as,

ω±12,k := ω1,k ± ω2,k. (E.9)

The next task is to integrate Eqs.(E.6) and (E.8) with respect to spatial momen-

tum. Using those equations, Eq.(E.1) leads to the following expression,

〈j0(x1 + t0)〉1st

=− ϕ̂3,t0A123

a3t0

(m̃2
1 − m̃2

2)

ω3,0

[
{1− 3x1H(t0)}

{
J1(x

1, m̃1, m̃2, ω3,0)

+J2(x
1, m̃1, m̃2, ω3,0)

}
+

3

4
H(t0)

{
J3(x

1, m̃1, m̃2, ω3,0) + J4(x
1, m̃1, m̃2, ω3,0)

}]
,

(E.10)

where auxiliary functions Ji(x
1, m̃1, m̃2, ω3,0) (i = 1, . . . , 4) are defined as,

J1(x
1, m̃1, m̃2, ω3,0) :=− sin[ω3,0x

1]

2

∫
d3k

(2π)3
1

ω2,kω1,k

(
1+e

−βω2,k

1−e−βω2,k
+ 1+e

−βω1,k

1−e−βω1,k

)
1− (ω+

12,k)
2

ω2
3,0

1

ω+
12,k

+
1

2ω3,0

∫
d3k

(2π)3
1

ω2,kω1,k

(
1+e

−βω2,k

1−e−βω2,k
+ 1+e

−βω1,k

1−e−βω1,k

)
sin[ω+

12,kx
1]

1− (ω+
12,k)

2

ω2
3,0

,

(E.11)

J2(x
1, m̃1, m̃2, ω3,0) :=− sin[ω3,0x

1]

2(m̃2
1 − m̃2

2)

∫
d3k

(2π)3

ω+
12,k

ω1,kω2,k

(
1+e

−βω2,k

1−e−βω2,k
− 1+e

−βω1,k

1−e−βω1,k

)
1− (ω−12,k)

2

ω2
3,0

+
1

2ω3,0

∫
d3k

(2π)3
1

ω2,kω1,k

(
1+e

−βω2,k

1−e−βω2,k
− 1+e

−βω1,k

1−e−βω1,k

)
sin[ω−12,kx

1]

1− (ω−12,k)
2

ω2
3,0

,

(E.12)
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J3(x
1, m̃1, m̃2, ω3,0) :=

∫
d3k

(2π)3
1

ω1,kω2,k

ω+
12,k

2
(

coth
βω2,k

2 − coth
βω1,k

2

)
ω+
12,k

2 − (m̃2
1−m̃2

2)
2

ω2
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[
x1 sin[ω3,0x

1]

ω−12,k

+

(
ω+
12,k

2
+

(m̃2
1−m̃2

2)
2

ω2
3,0

) cos[ω3,0x1]

ω−12,k
−

cos

[
(m̃2

1−m̃
2
2)x

1

ω+
12,k

]
ω−12,k


ω3,0

(
ω+
12,k

2 − (m̃2
1−m̃2

2)
2

ω2
3,0

)

,

(E.13)

J4(x
1, m̃1, m̃2, ω3,0) :=

∫
d3k

(2π)3
1

ω1,kω2,k

(
1+e

−βω2,k

1−e−βω2,k
+ 1+e

−βω1,k

1−e−βω1,k

)
1− ω+

12,k

2

ω2
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[
x1 sin[ω3,0x

1]
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+

(
1 +
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1]}

ω3,0ω
+
12,k

(
1− ω+

12,k

2

ω2
3,0

)
 . (E.14)

We carry out the momentum integration of the above expressions numerically.

E.2 Time integration and momentum integration of 〈j0(x
0)〉2nd

Below we consider time and momentum integrations of the second part of PNA which is

Eq.(4.29). Substituting Eqs.(D.9), (D.10), (D.13)-(D.18) into Eq.(4.29) and performing
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time integration, we obtain,

〈j0(x1 + t0)〉2nd

=− 2ϕ̂3,t0A123

a3t0

∫
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[{
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− {1↔ 2 for lower indices}], (E.15)

where we have introduced ∆′i,k defined by,

∆′i,k =
H(t0)

2

k2

ω2
i,ka(t0)2

. (E.16)

For notational simplicity, ωi,k is denoted as ωi (i = 1, 2) and ω±12,k is denoted as ω±12 in

Eq.(E.15).

The next task is to integrate Eq.(E.15) with respect to spacial momentum.

Eq.(E.15) leads to the following expression,

〈j0(x1 + t0)〉2nd =
ϕ̂3,t0A123

a3t0

H(t0)

4
(m̃2

1 − m̃2
2)
[
J11(x

1, m̃1, m̃2, ω3,0) + J12(x
1, m̃1, m̃2, ω3,0)

+J13(x
1, m̃1, m̃2, ω3,0) + J14(x

1, m̃1, m̃2, ω3,0) + J15(x
1, m̃1, m̃2, ω3,0)

]
,

(E.17)
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where we have defined auxiliary functions Ji(x
1, m̃1, m̃2, ω3,0) (i = 11, . . . , 15) as,

J11(x
1, m̃1, m̃2, ω3,0) :=

∫
d3k

(2π)3
k2
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(ω1ω2)3

[(
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3 − ω

−2
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)]
, (E.18)

J12(x
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J13(x
1, m̃1, m̃2, ω3,0) :=(m̃2
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J14(x
1, m̃1, m̃2, ω3,0) :=−
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J15(x
1, m̃1, m̃2, ω3,0) :=− 2
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We carry out the momentum integration of the above expressions numerically.
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