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Summary

In this paper, we propose a model selection criterion in the generalized
estimating equation method when the scale and correlation parameters
are unknown. This model selection criterion is derived with reflecting the
influence of the estimation of these unknown parameters. Furthermore,
we evaluated the asymptotic bias of this criterion when the maximum
cluster size goes to infinity as the sample size goes to infinity.

1 Introduction

Recently, in real data analysis, we treat data with correlation in many fields,
for example medical science, economics and many other fields. Especially, data
that are measured repeatedly over times from the same subjects, named longi-
tudinal data, are widely used in those fields. In general, the data from the same
subject have a correlation, whereas the data from different subjects are inde-
pendent. Nelder and Wedderburn [13] proposed the generalized linear model
(GLM), and after that Liang and Zeger [11] introduced an extension of the
GLM, named generalized estimating equation (GEE). The GEE method is one
of the methods to analyze the data with correlation. Defining features of the
GEE method are that we use a working correlation matrix which can be chosen
freely. We can get the consistent estimators of parameters whether the working
correlation matrix is correct or not. It is worthy to say that we do not need a
full specification of the joint distribution. In those reasons, the GEE method is
widely used.

As with other statistical frameworks, the model selection problem in the
GEE method is also important. In general, in the model selection, we measure
the goodness of models by a certain risk. Then, by using some asymptotically
unbiased estimators of the risk, we obtain a model selection criterion. For ex-
ample, the most famous Akaike’s information criterion (AIC) (Akaike, [1], [2])
was defined as an asymptotic unbiased estimator of the expected Kullback-
Leibler divergence (Kullback and Leibler [10]). The AIC is calculated by AIC =
−2× (the maximum log likelihood)+2× (the number of parameters). Further-
more, the generalized information criterion (GIC) proposed by Nishii [14] and
Rao [16] which is a generalization of the AIC is also applied to many fields.
However, we cannot use model selection criteria based on the likelihood func-
tion such as the AIC or GIC for the GEE because we do not specify the joint
distribution. Some model selection criteria like the AIC and GIC in the GEE
method have been already proposed. For example, Pan [15] proposed the QIC
(quasi-likelihood under the independence model criterion) based on the quasi-
likelihood defined by Wedderburn [17]. Moreover, the GCp (generalized version
of Mallows’s Cp) proposed by Cantoni et al. [3] is a generalization of Mallows’s
Cp (Mallows [12]). The correlation information criterion (CIC) proposed by
Hin and Wang [6] and Gosho et al. [4] is a criterion for selecting the correlation
structure. In the GEE method, we can get the smallest asymptotic variance
of the GEE estimator by using the true correlation matrix as a working cor-
relation matrix. It seems that the estimation accuracy can be improved by
simultaneously selecting explanatory variables and a correlation structure, and
the efficiency will be improved. Therefore, it is important to simultaneously
select explanatory variables and a working correlation structure using one risk
function. Unfortunately, the risk function of the QIC is based on the inde-
pendent quasi likelihood, so the risk function does not reflect the correlation.
Moreover, the CIC is focused on the working correlation structure modeling, on
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the other hand, the CIC is not focused on the variable selection. The Mallows’s
Cp is based on the prediction mean squared error so we can use these type of
criteria in the GEE method. From this background, Inatsu and Imori [8] pro-
posed the new model selection criterion, named PMSEG (the prediction mean
squared error in the GEE) using the risk function based on the prediction mean
squared error (PMSE) normalized by the covariance matrix. Inatsu and Imori
[8] proposed this criterion when both the correlation parameters included in a
working correlation matrix and the scale parameters are known, but the corre-
lation and scale parameters are generally unknown in practice, so we consider
to modify this criterion for the case that they are unknown.

In this paper, there are two purposes. One purpose is to propose a model
selection criterion taking account of the correlation structure when both the
correlation and scale parameters are unknown. In order to propose our model
selection criterion, we evaluate the asymptotic bias of the estimator of a risk
function and investigate the influences of the estimations of the correlation and
scale parameters. We focus on the variable selection and the working correlation
structure selection. The other purpose is to evaluate the asymptotic bias of the
PMSEG when the maximum cluster size goes to infinity as the sample size goes
to infinity.

The present paper is organized as follows: In section 2, we introduce the GEE
framework and propose an estimation method for parameters. In section 3, we
perform the stochastic expansion of the GEE estimator and propose our model
selection criterion when the scale and correlation parameters are unknown, in
the case of the sample size goes to infinity and the cluster sizes are bounded.
After that, we perform a numerical study. In section 4, we introduce asymptotic
properties of the GEE estimator and the asymptotic bias of the PMSEG. After
that, we perform a numerical study. In Appendix, we provide the calculation
process of the asymptotic bias of the PMSEG, and the proofs of two theorems
given in section 4.

2 Preliminaries

2.1 GEE estimator

Let yij be a scalar response variable from the ith subject at the jth ob-
servation time and xf,ij be an l-dimensional nonstochastic vector consisting of
possible explanatory variables, where i = 1, . . . , n and j = 1, . . . ,m. Assume
that the response variables from different subjects are independent and the re-
sponse variables from the same subject are correlated. For each i = 1, . . . , n,
let yi = (yi1, . . . , yim)

′
be the response vector from the ith subject and Xf,i =

(xf,i1, . . . ,xf,im)
′
be the explanatory matrix from the ith subject. Moreover,

let Xi = (xi1, . . . ,xim)
′
be an m × p submatrix of the matrix Xf,i. All the

observed data for the ith subject are (yi,Xf,i). Liang and Zeger [11] used the
GLM as the marginal density of yij ,

f(yij ,xij ,β, ϕ) = exp [{yijθij − a(θij)}/ϕ+ b(yij , ϕ)], (2.1)

where a(·) and b(·) are known functions, θij is an unknown location parameter
defined by θij = u(ηij) = θij(β) with a known function u(·) and ϕ is a scale

parameter. Here, β is a p-dimensional unknown parameter and ηij = x
′

ijβ
is called the linear predictor. In the present paper, we assume that the scale
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parameter ϕ is unknown, and let Θ be the natural parameter space (see, Xie
and Yang [18]) of the exponential family of distributions presented in (2.1), and
the interior of Θ is denoted as Θ◦. Then, it is known that Θ is convex and
all the derivatives of a(·) and all the moments of yij exist in Θ◦. We denote

the derivative and the second derivative of a function f(x) as ḟ(x) and f̈(x),
respectively. Under these conditions, the expectation and variance of yij are
given by

µij(β) = E[yij ] = ȧ(θij), σ
2
ij(β) = Var[yij ] = ä(θij)ϕ ≡ ν(µij(β)).

In the GLM framework, the expectation of yij is represented by the link function

g(·) as g(µij) = ηij = x
′

ijβ, where g(t) = (ȧ ◦ u)−1(t). We call that the model
with xf,ij and xij as the full model and the candidate model, respectively. We
assume that the true density function of yij can be written as (2.1), i.e., the
true model is one of the candidate models. When the correlation and scale
parameters are known, GEE proposed by Liang and Zeger [11] is as follows:

qn(β) =

n∑
i=1

D
′

i(β)V
−1
i (β,α)(yi − µi(β)) = 0p, (2.2)

where µi(β) = (µi1(β), . . . , µim(β))
′
, Di(β) = ∂µi(β)/∂β

′
= Ai(β)∆i(β)Xi,

Ai(β) = diag(σ2
i1(β), . . . , σ

2
im(β)), ∆i(β) = diag(∂θi1/∂ηi1, . . . , ∂θim/∂ηim)

and Vi(β,α) = A
1/2
i (β)Rw(α)A

1/2
i (β)ϕ. Here, Rw(α) is called a working cor-

relation matrix which can be chosen freely. Moreover, Rw(α) includes nuisance
parameter α. The nuisance parameter space is defined as follows:

A = {α = (α1, . . . , αs)
′
∈ Rs|Rw(α) is positive definite}.

We can use different working correlation matrices depending on each situation.
Typical working correlation matrices are as follows:

(1) independence: (Rw(α))jk = 0 (j ̸= k),

(2) exchangeable: (Rw(α))jk = α (j ̸= k),

(3) autoregressive: (Rw(α))jk = (Rw(α))kj = αj−k (j > k),

(4) 1-dependence: (Rw(α))jk = (Rw(α))kj =

{
α (j = k + 1)

0 (j ̸= k + 1, j ̸= k)
,

(5) unstructured: (Rw(α))jk = (Rw(α))kj = αjk (j > k).

Note that the diagonal elements of Rw(α) are ones, since it is a correlation
matrix. The dimension of α depends on the working correlation matrix. In
many cases, α is unknown. Although α is the nuisance parameter, we must
estimateα in order to estimate β. In practice, we estimateα by real data. When
both the correlation and scale parameters are unknown, we estimate α by β

and ϕ̂, where ϕ̂ is an estimator of ϕ. Denote α̂(β, ϕ̂) = (α̂1(β, ϕ̂), . . . , α̂s(β, ϕ̂))
′
,

and assume that α̂(β0, ϕ0)
p−→ α0 ∈ A◦, where β0 is the true value of β, α̂ is

the estimator of α, α0 is the limiting value of α̂, A◦ is the interior of A and ϕ0

is the limiting value of ϕ̂. Denote Σi(β) = A
1/2
i (β)R0A

1/2
i (β)ϕ, where R0 is
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the true correlation matrix. Assume that for i = 1, . . . , n, the true correlation
matrix is the common matrix R0. If Rw(α0) = R0, Vi(β0,α0) = Σi(β0) =

A
1/2
i (β0)R0A

1/2
i (β0)ϕ0 = Cov[yi].

In this paper, we assume that α and ϕ are unknown, so we replace V −1
i (β,α)

in (2.2) with Γ−1
i (β) including the estimator of the correlation parameter α̂,

where Γi(β) = Vi(β, α̂(β, ϕ̂(β))). Then, we obtain the following equation:

sn(β) =

n∑
i=1

D
′

i(β)Γ
−1
i (β)(yi − µi(β)) = 0p. (2.3)

The solution of (2.3) denoted as β̂ is the estimator of β0. We call β̂ the GEE
estimator.

2.2 Estimation method

The parameters α, β and ϕ are unknown, so we estimate them by the following
iterative method:

Algorithm (Estimation method for parameters α, β and ϕ)

Step 1 Set an initial value of α denoted as α̂<0>

Step 2 Solve the GEE with α̂<k>, and the solution of the GEE is denoted as
β̂<k> = β̂(α̂<k>).

Step 3 Estimate ϕ̂<k+1> by β̂<k>.

Step 4 Estimate α̂<k+1> by β̂<k> and ϕ̂<k+1>.

Step 5 Iterate from step 2 to 4 until a certain condition about the convergence
holds.

In the present paper, we estimate the scale parameter ϕ as follows:

ϕ̂(β̂) =
1

nm

n∑
i=1

m∑
j=1

(yij − µij(β̂))
2

ä(θij(β̂))
,

and assume that ϕ̂
p−→ ϕ0. In addition, the estimator α̂ differs depending on

each working correlation structure, and we give the following examples:

Exchangeable : α̂(β̂, ϕ̂(β̂)) =
1

nm(m− 1)

n∑
i=1

∑
j>k

r̂ij(β̂)r̂ik(β̂)/ϕ̂(β̂),

Autoregressive : α̂(β̂, ϕ̂(β̂)) =
1

n(m− 1)

n∑
i=1

m−1∑
j=1

r̂ij(β̂)r̂i,j+1(β̂)/ϕ̂(β̂),

1-dependence : α̂(β̂, ϕ̂(β̂)) =
1

(n− p)(m− 1)

n∑
i=1

m−1∑
j=1

r̂ij(β̂)r̂i,j+1(β̂)/ϕ̂(β̂),

Unstructured : α̂jk(β̂, ϕ̂(β̂)) =
1

n

n∑
i=1

r̂ij(β̂)r̂ik(β̂)/ϕ̂(β̂),

4



where r̂ij(β̂) = yij −µij(β̂). A moment estimation is popular. In fact, α̂ is cal-
culated by using the moment method in many statistical softwares. Empirically,
by using the moment method, the above algorithm usually converges. However,
the moment assumption does not necessarily imply that Rw(α0) is positive
definite. Nevertheless, in many working assumptions (e.g., “Exchangeable” or
“AR-1”), the positive definiteness of Rw(α0) mostly holds.

3 A Cp type criterion for model selection in the
GEE method when both scale and correlation
parameters are unknown

3.1 Stochastic expansion of GEE estimator

In this subsection, we perform the stochastic expansion of β̂. Furthermore, in
order to evaluate the asymptotic properties of the GEE estimator, we assume
the following conditions (Xie and Yang [18]):

C1. For all sequence {xij}, it is established that u(x
′

ijβ) ∈ Θ◦ and xij ∈ X ,
where X is a compact set.

C2. The true regression coefficient β0 is in an admissible set B, and B is an
open set of Rp.

C3. For any β ∈ B, it is established that x
′

ijβ is included in g(M), where M
is the image of ȧ(Θ◦).

C4. The function u(ηij) is four times continuously differentiable and u̇(ηij) > 0
in g(M◦).

C5. The matrix Mn,0 is positive definite when n is large, denoted by

Mn,0 =

n∑
i=1

D
′

i,0V
−1
i,0 Σi,0V

−1
i,0 Di,0,

where Di,0 = Di(β0), Vi,0 = Vi(β0,α0) and Σi,0 = Σi(β0).

C6. It is established that lim infn→∞ λmin(Hn,0/n) > 0, where Hn,0 =∑n
i=1 D

′

i,0V
−1
i,0 Di,0 and λmin(A) is the minimum eigenvalue of a matrix

A.

C7. There exist a constant c0 > 0 and n0, such that for all n ≥ n0 and for any
p-dimensional vector λ satisfying ||λ|| = 1, it holds that

P

(
−λ

′ ∂sn(β)

∂β′ λ ≥ nc0

)
= 1 (β ∈ N0),

where N0 is a neighborhood of β0.

C8. The GEE has a unique solution when n is large.

Conditions C1-C8 are modifications of the conditions proposed by Xie and Yang
[18]. Conditions C1, C2 and C3 are necessary to consider the GLM framework.
Conditions C4 and C5 are necessary to calculate the asymptotic bias of the
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estimator of the risk. In addition, Conditions C1, C6, C7 and C8 are necessary
to have the strong consistency, asymptotic normality and uniqueness of the GEE
estimator. Furthermore, in order to evaluate the asymptotic bias of the model
selection criterion, we assume the following additional conditions.

C9. There exists a compact neighborhood of α0, say Uα0
, and vec{R−1

w (α)}
is three times continuously differentiable in the interior of Uα0 .

C10. There exists a compact neighborhood of β0, say Uβ0
, and α̂(β, ϕ̂(β)) is

three times continuously differentiable in the interior of Uβ0
.

C11. For all β ∈ Uβ0
, it is established that α̂(k) = Op(1) (k = 1, 2, 3), where

α̂(1)(β) =
∂α̂(β, ϕ̂(β))

∂β′ ,

α̂(2)(β) =
∂

∂β′ ⊗ α̂(1)(β),

α̂(3)(β) =
∂

∂β′ ⊗ α̂(2)(β).

C12. The estimator α̂0 = α̂(β0, ϕ̂(β0)) satisfies
√
n(α̂0 − α0) = Op(1), and

there exists an s × p nonstochastic matrix H such that α̂(1)(β0) −H =
Op(n

−1/2).

C13. The following equations hold:

E

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0h1,0

]
= O(n−1),

E

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0j1,0

]
= O(n−1),

E

[
n∑

i=1

(yi − µi,0)
′
diag(A∗

f,i,0bf,0)R
−1
0 A

−1/2
i,0 Di,0h1,0

]
= O(n−1),

E

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,0)Di,0h1,0

]
= O(n−1),

E

[
n∑

i=1

(yi − µi,0)
′
diag(A∗

f,i,0bf,0)R
−1
0 A

−1/2
i,0 Di,0j1,0

]
= O(n−1),

E

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,0)Di,0j1,0

]
= O(n−1),

where µi,0 = µi(β0) and Ai,0 = Ai(β0).

Note that for a matrix W = (wij), the derivatives of W by β = (β1, . . . , βp)
′

and βk are defined as follows:

∂

∂β′ ⊗W =

(
∂W

∂β1
, . . . ,

∂W

∂βp

)
,
∂W

∂βk
=

(
∂wij

∂βk

)
.
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We define h1,0, j1,0,A
∗
f,i,0 and bf,0 at the end of this section. Conditions C9,

C10, C11, C12 and C13 are necessary for ignoring the influence of estimating
the nuisance parameter α. Furthermore, by Condition C5, it is established that

Hn,0 = O(n). Furthermore, by Condition C12, α̂(β0, ϕ0)
p−→ α0 ∈ A◦ holds.

Theorem 1. Suppose that Conditions C1, C2, C3, C4, C7 and C8 hold. Fur-
thermore, suppose that α̂ is a moment estimator. If the matrix Rw(α0) is
positive definite, Conditions C9, C10, C11, C12 and C13 hold.

The moment estimator is defined by a continuous function of β. By using
properties of continuous functions, it is easy to show that Theorem 2 holds.
Hence, we omit the proof of Theorem 2.

Based on the above conditions, to perform the stochastic expansion of β̂, we

focus on the equation ŝn = sn(β̂) = 0p. By applying Taylor’s expansion around

β̂ = β0 to this equation, ŝn is expanded as follows:

sn,0 +
∂sn(β)

∂β′

∣∣∣
β=β0

(β̂ − β0)

+
1

2
{(β̂ − β0)

′
⊗ Ip}

(
∂

∂β
⊗ ∂sn(β)

∂β′

) ∣∣∣
β=β∗

(β̂ − β0)

= sn,0 −Dn,0(Ip +D1,0 +D2,0)(β̂ − β0) +
1

2
{(β̂ − β0)

′
⊗ Ip}L1(β

∗)(β̂ − β0)

= 0p,

where β∗ lies between β0 and β̂, Ip is the p-dimensional identity matrix and
sn,0 = sn(β0). Here, L1(β

∗), Dn,0, D1,0 and D2,0 are follows:

L1(β
∗) =

(
∂

∂β
⊗ ∂sn(β)

∂β′

) ∣∣∣
β=β∗

,Dn,0 =

n∑
i=1

D
′

i,0Γ
−1
i,0Di,0,

D1,0 = −D−1
n,0

n∑
i=1

D
′

i,0

(
∂

∂β′ ⊗ Γ−1
i (β)

∣∣∣
β=β0

)
{Ip ⊗ (yi − µi,0)},

D2,0 = −D−1
n,0

n∑
i=1

(
∂

∂β′ ⊗D
′

i(β)
∣∣∣
β=β0

)
[Ip ⊗ {Γ−1

i,0 (yi − µi,0)},

where Γi,0 = Γi(β0). By Lindberg central limit theorem, it holds that L1(β
∗) =

Op(n), β̂ − β0 = Op(n
−1/2), D1,0 = Op(n

−1/2) and D2,0 = Op(n
−1/2). More-

over, R−1
w (α̂0) is expanded as follows:

R−1
w (α̂0) = R−1

w (α0) +R−1
w (α0){Rw(α0)−Rw(α̂0)}R−1

w (α0) +Op(n
−1).

By Taylor’s theorem, since α̂0 −α0 = Op(n
−1/2), it holds that

||Rw(α0)−Rw(α̂0)|| ≤
∣∣∣∣∣∣∣∣ ∂

∂α
⊗Rw(α)

∣∣∣
α=α∗

∣∣∣∣∣∣∣∣ ||α̂0 −α0|| = Op(n
−1/2),

i.e., Rw(α0)−Rw(α̂0) = Op(n
−1/2), where α∗ lies between α0 and α̂. Hence,

it holds that

Dn,0 =

n∑
i=1

D
′

i,0Γ
−1
i,0Di,0
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=

n∑
i=1

D
′

i,0A
−1/2
i,0 R−1

w (α̂0)A
−1/2
i,0 Di,0

= Hn,0 +Op(n
1/2),

By this result and the fact that sn,0 = qn,0 +Op(1), β̂ is expanded as follows:

β̂ − β0 = H−1
n,0qn,0 +Op(n

−1) = b1,0 +Op(n
−1) (say),

where qn,0 = qn(β0). Also, since(
∂

∂β′ ⊗R−1
w (α̂(β, ϕ̂(β))

∣∣∣
β=β0

)
− E

[
∂

∂β′ ⊗R−1
w (α̂(β, ϕ̂(β)))

∣∣∣
β=β0

]
= Op(n

−1/2),

and above these results, (2.3) is expanded as follows:

sn,0

=

[
Hn,0 +

n∑
i=1

D
′

i,0A
−1/2
i,0 R−1

w (α0){Rw(α0)−Rw(α̂0)}R−1
w (α0)A

−1/2
i,0 Di,0

]
· (Ip +G1,0 +G2,0 +G3,0)(β̂ − β0)

− 1

2
{(β̂ − β0)

′
⊗ Ip}{S1,0 + (L1,0 − S1,0)}(β̂ − β0)

− 1

6
{(β̂ − β0)

′
⊗ Ip}

{
∂

∂β′ ⊗
(

∂

∂β
⊗ ∂sn(β)

∂β′

)} ∣∣∣
β=β∗∗

· {(β̂ − β0)⊗ (β̂ − β0)}, (3.4)

where β∗∗ lies between β0 and β̂. Denote S1,0 = E[L1,0]. Then, S1,0 = O(n)

and L1,0 − S1,0 = Op(n
1/2), where

L1,0 =

(
∂

∂β
⊗ ∂sn(β)

∂β′

) ∣∣∣
β=β0

.

Note that β̂ − β0 = Op(n
−1/2) and{

∂

∂β′ ⊗
(

∂

∂β
⊗ ∂sn(β)

∂β′

)} ∣∣∣
β=β∗∗

= Op(n).

Hence, the last term of (3.4) is Op(n
−1/2). We define C1i, C2i, C3i, G1,0, G2,0,

G3,0, h1,0 and j1,0 as follows:

C1i(β) = D
′

i(β)A
−1/2
i (β)R−1

w (α0), C2i(β) = D
′

i(β)A
−1/2
i (β),

C3i(β) = R−1
w (α0)A

−1/2
i (β),

G1,0 = −H−1
n,0

n∑
i=1

C1i,0
(

∂

∂β′ ⊗A
−1/2
i (β)

∣∣∣
β=β0

)
{Ip ⊗ (yi − µi,0)},

G2,0 = −H−1
n,0

n∑
i=1

(
∂

∂β′ ⊗ C2i(β)
∣∣∣
β=β0

)
[Ip ⊗ {C3i,0(yi − µi,0)}],
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G3,0 = −H−1
n,0

n∑
i=1

C2i,0E

[
∂

∂β′ ⊗R−1
w (α̂(β, ϕ̂(β))

∣∣∣
β=β0

]
· [Ip ⊗ {A−1/2

i,0 (yi − µi,0)}],

h1,0 = −H−1
n,0

n∑
i=1

C1i,0{Rw(α0)−Rw(α̂0)}C
′

1i,0b1,0,

j1,0 = H−1
n,0

n∑
i=1

C1i.,0{Rw(α0)−Rw(α̂0)}C3i,0(yi − µi,0),

where C1i,0 = C1i(β0), C2i,0 = C2i(β0) and C3i,0 = C3i(β0). Note that G1,0 =

Op(n
−1/2), G2,0 = Op(n

−1/2), G3,0 = Op(n
−1/2), h1,0 = Op(n

−1) and j1,0 =

Op(n
−1). By using the above equations, β̂ is expanded as follows:

β̂ − β0

= (Ip −G1,0 +G2,0 +G3,0)
[
Ip

−H−1
n,0

n∑
i=1

D
′

i,0A
−1/2
i,0 R−1

w (α0){Rw(α0)−Rw(α̂0)}R−1
w (α0)A

−1/2
i,0 Di,0

]
·H−1

n,0

[
sn,0 +

1

2
{(β̂ − β0)

′
⊗ Ip}{S1,0 + (L1,0 − S1,0)}(β̂ − β0)

]
= b1,0 + b2,0 +Op(n

−3/2), (3.5)

where b1,0 = H−1
n,0qn,0 = Op(n

−1/2) and b2,0 = H−1
n,0(b

′

1,0 ⊗ Ip)S1,0b1,0/2 −
G1,0b1,0 −G2,0b1,0 −G3,0b1,0 + h1,0 + j1,0 = Op(n

−1).

3.2 Main result

In this section, we propose a model selection criterion. We measure the goodness
of fit of the model by the risk function based on the PMSE normalized by the
covariance matrix. The risk function is as follows:

RiskP = PMSE−mn = Ey

[
Ez

[
n∑

i=1

(zi − µ̂i)
′
Σ−1

i,0 (zi − µ̂i)

]]
−mn,

where µ̂i = µi(β̂) and zi = (zi1, . . . , zim)
′
is an m-dimensional random vector

that is independent of yi and has the same distribution as yi. If β̂ = β0,
RiskP has the minimum value zero, i.e., PMSE has the minimum value mn. We
consider that the model which has minimum PMSE is the optimum model, and
we want to select this model. Since the PMSE is typically unknown, we must
estimate it.

We define R̂(β), L(β1,β2) and L∗(β) as follows:

R̂(β) =
1

n

n∑
i=1

A
−1/2
i (β)(yi − µi(β))(yi − µi(β))

′
A

−1/2
i (β)/ϕ̂(β),

L(β1,β2)

=

n∑
i=1

(yi − µi(β1))
′
A

−1/2
i (β2)R̂

−1(β2)A
−1/2
i (β2)(yi − µi(β1))ϕ̂

−1(β2),
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L∗(β) =

n∑
i=1

(yi − µi(β))
′
Σ−1

i,0 (yi − µi(β)).

Then, we estimate the PMSE by L(β̂, β̂f ), where β̂f is the GEE estimator from

the full model, namely, we obtain β̂f as the solution of the following equation:

sf,n(βf ) =

n∑
i=1

D
′

i(βf )V
−1
i (βf ,αf )(yi − µi(βf )) = 0l,

where Di(βf ) = Ai(βf )∆(βf )Xf,i,Vi(βf ,αf ) = A
1/2
i (βf )R̄i(αf )A

1/2
i (βf )

and R̄i(αf ) is a positive definite working correlation matrix which can be chosen
freely. Also, R̄i(αf ) is the same for all the candidate models. For simplicity,
we denote L(β0,β2) = L(β2) and L∗(β0) = L∗.

We construct a model selection criterion by correcting the asymptotic bias

of the estimator L(β̂, β̂f ) as an estimator of PMSE like as the Mallows’s Cp.

The bias of L(β̂, β̂f ) is given by

Bias = PMSE− Ey[L(β̂, β̂f )]

= {RiskP − Ey[L∗(β̂)]}+ {Ey[L∗(β̂)]− Ey[L∗]}
+ {Ey[L∗]− Ey[L(β̂f )]}+ {Ey[L(β̂f )]− Ey[L(β̂, β̂f )]}

= Bias1 + Bias2 + Bias3 + Bias4.

We evaluate Bias1, Bias2, Bias3 and Bias4 separately.
At first, Bias3 is as follows:

Bias3

= Ey

[
n∑

i=1

(yi − µi,0)
′
{Σ−1

i,0 −A
−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )ϕ̂(β̂f )}(yi − µi,0)

]

= mn− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )ϕ̂(β̂f )(yi − µi,0)

]
.

Hence, Bias3 depends on only the full model, so we can ignore Bias3 for model
selection.

Second, Bias1 is expanded as follows:

Bias1

= Ey

[
Ez

[
n∑

i=1

(zi − µ̂i)
′
Σ−1

i,0 (zi − µ̂i)

]
−

n∑
i=0

(yi − µ̂i)
′
Σ−1

i,0 (yi − µ̂i)

]

= Ey

[
Ez

[
n∑

i=1

(zi − µi,0 + µi,0 − µ̂i)
′
Σ−1

i,0 (zi − µi,0 + µi,0 − µ̂i)

]

−
n∑

i=1

(yi − µi,0 + µi,0 − µ̂i)
′
Σ−1

i,0 (yi − µi,0 + µi,0 − µ̂i)

]

= Ez

[
n∑

i=1

(zi − µi,0)
′
Σ−1

i,0 (zi − µi,0)

]
+ Ey

[
n∑

i=1

(µi,0 − µ̂i)
′
Σ−1

i,0 (µi,0 − µ̂i)

]
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− Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 (yi − µi,0)

]
− 2Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 (µi,0 − µ̂i)

]

− Ey

[
n∑

i=1

(µi,0 − µ̂i)
′
Σ−1

i,0 (µi,0 − µ̂i)

]

= 2Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 (µ̂i − µi,0)

]
. (3.6)

For expanding Bias1, we must expand µ̂i − µi,0. Since µ̂i is the function of β̂,

by applying Taylor’s expansion around β̂ = β0, µ̂i is expanded as follows:

µ̂i − µi,0

=
∂µi(β)

∂β′

∣∣∣
β=β0

(β̂ − β0)

+
1

2
{(β̂ − β0)

′
⊗ Im}

(
∂

∂β
⊗ ∂µi(β)

∂β′

) ∣∣∣
β=β0

(β̂ − β0)

+
1

6
{(β̂ − β0)

′
⊗ Im}

{
∂

∂β′ ⊗
(

∂

∂β
⊗ ∂µi(β)

∂β′

)} ∣∣∣∣∣
β=β∗∗∗

· {(β̂ − β0)⊗ (β̂ − β0)}

= Di,0(β̂ − β0) +
1

2
{(β̂ − β0)

′
⊗ Im}D(1)

i,0 (β̂ − β0) +Op(n
−3/2), (3.7)

where β∗∗∗ lies between β0 and β̂, and D
(1)
i,0 is defined by

D
(1)
i,0 =

(
∂

∂β
⊗Di(β)

) ∣∣∣
β=β0

.

By substituting (3.5) for (3.7), we can expand µ̂i as follows:

µ̂i − µi,0 = Di,0b1,0 +

{
Di,0b2,0 +

1

2
(b

′

1,0 ⊗ Im)D
(1)
i,0 b1,0

}
+Op(n

−3/2).

(3.8)

By using (3.6) and (3.8), we get the following expansion:

1

2
Bias1 = Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 (µ̂i − µi,0)

]

= Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0b1,0

]

+ Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0

{
Di,0b2,0 +

1

2
(b

′

1,0 ⊗ Im)D
(1)
i,0 b1,0

}]
+ Ey[Op(n

−1/2)]. (3.9)

Since the data from different two subjects are independent, we can get E[(yi −
µi,0)

′
(yj − µj,0)] = 0 (i ̸= j). The first term of (3.9) is calculated as follows:

Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0b1,0

]
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= Ey

 n∑
i=1

n∑
j=1

(yi − µi,0)
′
Σ−1

i,0Di,0H
−1
n,0D

′

j,0V
−1
j,0 (yj − µj,0)


= Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0H
−1
n,0D

′

i,0V
−1
i,0 (yi − µi,0)

]

= Ey

[
tr

{
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0H
−1
n,0D

′

i,0V
−1
i,0 (yi − µi,0)

}]

= Ey

[
tr

{
H−1

n,0

n∑
i=1

D
′

i,0V
−1
i,0 (yi − µi,0)(yi − µi,0)

′
Σ−1

i,0Di,0

}]

= tr

{
H−1

n,0

n∑
i=1

D
′

i,0V
−1
i,0 E

[
(yi − µi,0)(yi − µi,0)

′
]
Σ−1

i,0Di,0

}

= tr

(
H−1

n,0

n∑
i=1

D
′

i,0V
−1
i,0 Di,0

)
= tr (Ip)

= p. (3.10)

Also, since for all i, j, k (not i = j = k),

E
[
(yi − µi,0)⊗ (yj − µj,0)

′
(yk − µk,0)

]
= 0m,

the second term of (3.9) is calculated as follows:

Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0

{
Di,0b2,0 +

1

2
(b

′

1,0 ⊗ Im)D
(1)
i,0 b1,0

}]

= Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0

{
Di,0b2i,0 +

1

2
(b

′

1i,0 ⊗ Im)D
(1)
i,0 b1i,0

}]

= Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0

{
Di,0(b2i,0 − h1,0 − j1,0)

+
1

2
(b

′

1i,0 ⊗ Im)D
(1)
i,0 b1i,0

}]

+ Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 {Di,0(h1,0 + j1,0)}

]
,

where

b1i,0 = H−1
n,0D

′

i,0V
−1
i,0 (yi − µi,0),

b2i,0 = H−1
n,0(b

′

1i,0 ⊗ Ip)S1,0b1i,0/2−G1i,0b1i,0 −G2i,0b1i,0 −G3i,0b1i,0

+ h1,0 + j1,0,

G1i,0 = −H−1
n,0C1i,0

(
∂

∂β′ ⊗A
−1/2
i (β)

∣∣∣
β=β0

)
{Ip ⊗ (yi − µi,0)},

G2i,0 = −H−1
n,0

(
∂

∂β′ ⊗ C2i(β)
∣∣∣
β=β0

)
[Ip ⊗ {C3i,0(yi − µi,0)}],
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G3i,0 = −H−1
n,0C2i,0E

[
∂

∂β′ ⊗R−1
w (α̂(β, ϕ̂(β)))

∣∣∣
β=β0

]
· [Ip ⊗ {A−1/2

i,0 (yi − µi,0)}].

Under Condition C13, we have

Di,0(b2i,0 − h1,0 − j1,0) + (b
′

1i,0 ⊗ Im)D
(1)
i,0 b1i,0/2 = Op(n

−2),

Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 {Di,0(h1,0 + j1,0)}

]
= O(n−1),

so the second term of (3.9) is calculated as follows:

Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0

{
Di,0b2,0 +

1

2
(b

′

1,0 ⊗ Im)D
(1)
i,0 b1,0

}]
= O(n−1).

(3.11)

Under the regularity conditions, the limit of expectation is equal to the ex-
pectation of limit. Furthermore, in many cases, a moment of statistic can be
expanded as power series in n−1 (e.g., Hall [5]). Therefore, by substituting
(3.10) and (3.11) for (3.9), we obtain

Bias1 = 2p+O(n−1).

Similarly, we obtain

Bias2 + Bias4 = O(n−1). (3.12)

The derivation of (3.12) is shown in Appendix.
From the above, the bias is expanded as follows:

Bias = 2p+Bias3 +O(n−1).

Note that Bias3 does not depend on all the candidate models so we propose the
model selection criterion as

PMSEG = L(β̂, β̂f ) + 2p.

This criterion is the same as the criterion proposed by Inatsu and Imori [8].

3.3 Numerical study

In this section, we perform a numerical study and discuss the result. There
are two aims to perform this simulation. One is to compare the frequencies
of selecting models in the case of we use the correct correlation structure as a
working correlation and in the case of we use the wrong correlation structure
as a working correlation. The other is to compare the prediction errors in the
same situation with estimating the correlation and scale parameters. The QIC
proposed by Pan [15] and modified QIC proposed by Imori [7] are representative
model selection criteria in the GEE method, and Inatsu and Imori [8] confirmed
a usefulness of the PMSEG through comparisons with the QIC and modified
QIC. Similar results of the comparisons can be expected in the framework of
this paper. Therefore, the comparisons with the QIC and modified QIC are not
performed in this numerical study.
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In this simulation, we got data from the gamma distributions which have
the scale parameter included in the exponential family. Then, we supposed
that there are two groups (e.g., male and female). Furthermore, we supposed
that the distribution of observations from one group is different from the other
one. To create data distributed according to the gamma distributions with
correlation, we used the copula method. We set n = 50, 100, 150, 200 andm = 3.
For each i = 1, 2, . . . , n, we constructed the 3 × 8 explanatory matrix Xf,i =

(xf,i1,xf,i2,xf,i3)
′
= (X1i,X2i). Here, for each i = 1, . . . , (n/2),

X1i =

1 0 0 1 0 0
1 1 1 1 1 1
1 2 1 1 2 1

 ,

and for each i = (n/2) + 1, . . . , n,

X1i =

1 0 0 0 0 0
1 1 1 0 0 0
1 2 1 0 0 0

 .

Furthermore, all the elements of X2i (i = 1, . . . , n) are independent and iden-
tically distributed according to the uniform distribution on the interval [−1, 1].
Let the true correlation structure be the exchangeable structure, i.e., R0 =
(1−α)Im+α1m1

′

m, where α is the correlation parameter. Furthermore, in this
simulation, we prepare two situations, as follows:

Case 1: α = 0.3, β0 = (0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0, 0)
′
,

Case 2: α = 0.8, β0 = (0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0, 0)
′
.

The explanatory matrix for the ith subject in the kth model (k = 1, 2, . . . , 8)
consists of the first k columns of Xf,i. We simulate 10,000 realizations of y =

(y11, . . . , y13, . . . , yn1, . . . , yn3)
′
, where each yij is distributed according to the

gamma distribution with the mean µij = exp (x
′

f,ijβ0). Here, in order to obtain

β̂f , we used the independence working correlation matrix in this simulation.
First, we consider the situation we use the exchangeable structure as a work-

ing correlation structure. The frequencies of selecting models and the prediction
errors in Case 1 and Case 2 are given in Table 9 and Table 10, respectively. The
values in parentheses are the standard errors of the prediction error of each sit-
uation. In the both situations, the frequency of selecting the 6th model tends
to be large as n is large. Furthermore, the frequencies of selecting the 1-5th
models tend to 0.

Table 1: Frequencies of selecting models (%) and prediction errors when α = 0.3
using exchangeable working correlation matrix

n 1 2 3 4 5 6 7 8 Prediction Error

50 3.4 1.4 3.8 0.7 12.6 53.1 14.2 10.8 6.573 (0.03)
100 0.1 0.0 0.2 0.1 3.3 71.8 13.1 11.4 6.512 (0.03)
150 0.0 0.0 0.0 0.0 0.3 75.4 13.6 10.7 6.641 (0.03)
200 0.0 0.0 0.0 0.0 0.0 75.5 15.6 8.9 6.494 (0.03)

Next, we consider the situation we use a wrong correlation structure as a
working correlation structure. We use the autoregressive structure as one of
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Table 2: Frequencies of selecting models (%) and prediction errors when α = 0.8
using exchangeable working correlation matrix

n 1 2 3 4 5 6 7 8 Prediction Error

50 0.6 0.5 0.3 0.2 0.9 67.4 17.6 12.5 7.089(0.04)
100 0.0 0.0 0.0 0.0 0.0 71.7 17.4 10.9 6.533(0.03)
150 0.0 0.0 0.0 0.0 0.0 73.7 15.5 10.8 6.455(0.03)
200 0.0 0.0 0.0 0.0 0.0 75.4 14.9 9.7 6.688(0.03)

such structures. The frequencies of selecting models and the prediction errors
in Case 1 and in Case 2 are given in Table 11 and Table 12, respectively. In
the case of using the different correlation structure as well as using the true
correlation structure, the frequency of selecting the 6th model tends to large as
n is large, and the frequencies of selecting the 1-5 models tend to 0. In Case
1, the prediction error in Table 9 is not much different from that in Table 11
for each n, on the other hand, in Case 2, the prediction error in Table 10 is
different from that in Table 12 for each n. From this, it is considered that
the larger the true correlation value, the greater the influence of the working
correlation structure on the prediction error.

Table 3: Frequencies of selecting models (%) and prediction errors when α = 0.3
using autoregressive working correlation matrix

n 1 2 3 4 5 6 7 8 Prediction Error

50 8.2 0.9 4.2 0.7 6.7 58.0 11.2 10.1 6.660 (0.03)
100 0.2 0.0 0.6 0.0 2.1 73.8 14.9 8.4 6.810 (0.04)
150 0.0 0.0 0.0 0.0 0.5 74.8 13.4 11.3 6.767 (0.03)
200 0.0 0.0 0.0 0.0 0.0 78.2 12.8 9.0 6.990 (0.04)

Table 4: Frequencies of selecting models (%) and prediction errors when α = 0.8
using autoregressive working correlation matrix

n 1 2 3 4 5 6 7 8 Prediction Error

50 1.2 0.6 0.4 0.2 2.9 65.5 17.0 12.2 7.268 (0.04)
100 0.1 0.1 0.0 0.0 0.0 74.2 16.8 8.8 7.158 (0.04)
150 0.0 0.0 0.0 0.0 0.0 78.2 13.3 8.5 7.017 (0.04)
200 0.0 0.0 0.0 0.0 0.0 79.6 12.9 7.5 7.402 (0.04)

Next, we consider the situation we use the independence structure as a
working correlation structure, namely, we assume the GLM. The frequencies
of selecting models and the prediction errors in Case 1 and in Case 2 are given
in Table 5 and table 6, respectively. In this situation, the frequency of selecting
the 6th model is the largest of three situations, but the prediction error is the
largest.

Finally, we consider selecting the explanatory variables and the working cor-
relation structure simultaneously. We use three working correlation structures,
i.e., exchangeable (Ex.), autoregressive (AR) and independence (Ind.). Then,
the number of models is 8 × 3 = 24. The frequencies of selecting models and
the prediction errors in Case 1 and in Case 2 are given in Table 7 and Table 8,
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Table 5: Frequencies of selecting models (%) and prediction errors when α = 0.3
using independence working correlation matrix

n 1 2 3 4 5 6 7 8 Prediction Error

50 8.7 1.9 3.2 0.9 9.2 52.6 13.8 9.7 6.829 (0.04)
100 0.3 0.0 1.5 0.0 3.2 69.4 15.3 10.3 7.135 (0.04)
150 0.0 0.0 0.0 0.0 0.3 75.8 14.5 9.4 7.069 (0.04)
200 0.0 0.0 0.0 0.0 0.0 78.6 13.1 8.3 7.199 (0.04)

Table 6: Frequencies of selecting models (%) and prediction errors when α = 0.8
using independence working correlation matrix

n 1 2 3 4 5 6 7 8 Prediction Error

50 2.2 2.0 1.0 0.3 5.4 69.3 12.1 7.7 11.600(0.04)
100 0.1 0.0 0.0 0.0 0.7 83.6 11.1 4.5 11.276(0.04)
150 0.0 0.1 0.0 0.0 0.2 84.0 10.6 5.1 11.833(0.04)
200 0.0 0.0 0.0 0.0 0.0 87.8 7.6 4.6 11.585(0.04)

respectively. By comparing Table 7 with Table 9 and Table 8 with Table 10, it
shows that the prediction errors in Table 7 and Table 8 are significantly smaller
than the prediction errors in the case of we use the true correlation structure as
a working correlation for each n. Similarly, by comparing Table 7 with Table
11 and Table 8 with Table 12, it shows that the prediction errors in Table 7
and Table 8 are significantly smaller than the prediction errors in the case of
we use the wrong correlation structure as a working correlation. Table 7 and
Table 8 indicate that by selecting both variables and a working correlation, we
may be able to improve the prediction accuracy. Note that if we use a specific
correlation structure, the prediction error might be large.

16



Table 7: Frequencies of selecting models (%) and prediction errors when α = 0.3
using tree types of correlation matrix

n W-Cor. 1 2 3 4 5 6 7 8 Prediction Error

Ex. 3.2 1.1 1.5 0.6 4.7 24.2 8.0 6.3
50 AR 6.2 0.7 2.2 0.4 2.2 15.0 3.5 2.6 6.043 (0.03)

Ind. 0.7 0.1 0.7 0.4 2.2 9.8 1.6 2.1
Ex. 0.0 0.0 0.2 0.2 0.8 41.2 8.5 6.0

100 AR 0.1 0.1 0.1 0.0 0.5 17.1 3.4 2.9 6.147 (0.03)
Ind. 0.0 0.0 0.2 0.0 0.8 13.8 2.7 1.4
Ex. 0.0 0.0 0.0 0.0 0.4 41.7 8.8 7.2

150 AR 0.0 0.0 0.0 0.0 0.0 19.9 4.0 2.3 6.104 (0.03)
Ind. 0.0 0.0 0.0 0.0 0.1 12.3 2.5 0.8
Ex. 0.0 0.0 0.0 0.0 0.1 41.8 8.1 6.2

200 AR 0.0 0.0 0.0 0.0 0.1 21.5 3.6 2.2 6.028 (0.03)
Ind. 0.0 0.0 0.0 0.0 0.0 13.7 1.4 1.3

Table 8: Frequencies of selecting models (%) and prediction errors when α = 0.8
using tree types of correlation matrix

n W-Cor. 1 2 3 4 5 6 7 8 Prediction Error

Ex. 0.5 0.4 0.1 0.2 0.7 40.7 10.9 7.9
50 AR 0.7 0.0 0.0 0.0 0.5 19.2 5.8 6.1 6.098 (0.03)

Ind. 0.0 0.1 0.1 0.0 0.2 4.8 0.6 0.5
Ex. 0.0 0.2 0.0 0.0 0.0 48.3 9.7 7.3

100 AR 0.1 0.0 0.0 0.0 0.0 21.3 4.9 3.4 6.136 (0.03)
Ind. 0.0 0.0 0.0 0.0 0.0 4.2 0.3 0.3
Ex. 0.0 0.0 0.0 0.0 0.0 47.7 10.1 8.4

150 AR 0.0 0.0 0.0 0.0 0.0 19.2 4.6 2.3 5.949 (0.03)
Ind. 0.0 0.0 0.0 0.0 0.0 6.4 0.8 0.5
Ex. 0.0 0.0 0.0 0.0 0.0 49.0 9.0 7.5

200 AR 0.0 0.0 0.0 0.0 0.0 22.7 4.3 2.6 5.844 (0.03)
Ind. 0.0 0.0 0.0 0.0 0.0 4.3 0.3 0.3
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4 Asymptotic bias of Cp type criterion for model
selection in the GEE when the sample size and
the cluster sizes are large

4.1 Model selection in the GEE

In this section, since n and m go to infinity, we change the notations. The GEE
is as follows:

qnm(β) =

n∑
i=1

D
′

i(β)V
−1
i (β,α)(yi − µi(β)) = 0p,

and

snm(β) =

n∑
i=1

D
′

i(β)Γ
−1
i (β)(yi − µi(β)) = 0p.

Let

Hnm(β) =

n∑
i=1

D
′

i(β)V
−1
i (β,α0)Di(β),

Mnm(β) = Cov[qnm(β)] =

n∑
i=1

D
′

i(β)V
−1
i (β,α0)Σi(β)V

−1
i (β,α0)Di(β),

Fnm(β) = Hnm(β)M−1
nm(β)Hnm(β).

We consider the following regularity conditions (see, e.g., Xie and Yang [18],
Inatsu and Sato [9]):

C5*. The matrix Mnm,0 is positive definite when n or m is sufficiently large,
denoted by

Mnm,0 =

n∑
i=1

D
′

i,0V
−1
i,0 Σi,0V

−1
i,0 Di,0.

C6*. It is established that lim infn→∞,m→∞ λmin(Hnm,0/nm) > 0, whereHnm,0

= Hnm(β0).

C14. It holds that τnmλmax(H
−1
nm,0) → 0, where τnm = λmax(R

−1
w (α0)R0).

C15. It holds that π2
nmτnmmγ

(0)
nm → 0, where

πnm =
λmax(R

−1
w (α0))

λmin(R
−1
w (α0))

,

γ(0)
nm = max

1≤i≤n
max

1≤j≤m
x

′

ijH
−1
nm,0xij .

C16. It holds that (cnm)1+δ(λ̃nmm)2+δγ
(0)
nm → 0 for some δ > 0, where

cnm = λmax(M
−1
nm,0Hnm,0),

λ̃nm = λmax(R
−1
w (α0)).
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Conditions C5*, C6* and C14-C16 are the modifications of the conditions pro-
posed by Xie and Yang [18]. Here, to evaluate the asymptotic bias of the
PMSEG, we present the following lemma:

Lemma 1. Suppose Conditions C1 - C4, C5*, C6* and C14-C16 hold.

(a) There exists a sequence of random variable β̂ such that β̂ → β0 in prob-

ability, and M
−1/2
nm,0Hnm,0(β̂ − β0) and M

−1/2
nm,0qnm(β0) have the same

asymptotic distribution.

(b) When n → ∞,

M
−1/2
nm,0Hnm,0(β̂ − β0) → N(0p, Ip) in distribution

Lemma 1 is Corollary 1 of Xie and Yang [18], so we omit the proof. Here,
Ip is the p-dimensional identity matrix.

4.2 Asymptotic bias of PMSEG

In this section, we evaluate the asymptotic bias of the PMSEG. We consider
the following assumptions (see, Inatsu and Sato [9]):

C12*. The estimator α̂0 = α̂(β0, ϕ̂(β0)) satisfies (
√
n/m)(α̂0−α0) = Op(1), and

there exists an s × p nonstochastic matrix H such that α̂(1)(β0) −H =
Op(m/

√
n).

C13*. The following equations hold:

E

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0h1,0

]
= O(m4/n),

E

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0j1,0

]
= O(m4/n),

E

[
n∑

i=1

(yi − µi,0)
′
diag(A∗

f,i,0bf,0)R
−1
0 A

−1/2
i,0 Di,0h1,0

]
= O(m4/n),

E

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,0)Di,0h1,0

]
= O(m4/n),

E

[
n∑

i=1

(yi − µi,0)
′
diag(A∗

f,i,0bf,0)R
−1
0 A

−1/2
i,0 Di,0j1,0

]
= O(m4/n),

E

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,0)Di,0j1,0

]
= O(m4/n).

C17. lim infn→∞ λmin(Bnm,0/nm) > 0, where

Bnm,0 =

n∑
i=1

X
′

i∆i,0Ai,0∆i,0Xi.
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We write the definitions of h1,0, j1,0,A
∗
f,i,0 and bf,0 in the proof of Theorem

2 in Appendix. By using the moment estimator of the correlation parameters
and the scale parameter, Conditions C9, C10, C11, C12* and C13* are fulfilled.
Condition C17 is necessary to prove following Lemma 2:

Lemma 2. Suppose Conditions C1 - C4, C5*, C6*, C8, C9-C11, C12*, C13*
and C14-C17 hold. Even if the working correlation matrix is misspecified, we
have

β̂ − β0 = Op(m/
√
n).

Proof. Suppose Conditions C1 - C4, C5*, C6*, C8, C9-C11, C12*, C13* and
C14-C17 hold, we have

Hnm,0 =

n∑
i=1

Xi∆i,0A
1/2
i,0 R−1

w (α0)A
1/2
i,0 ∆i,0Xi

≥ λmin(R
−1
w (α0))Bnm,0

=
1

λmax(Rw(α0))
Bnm,0,

Mnm,0 =

n∑
i=1

Xi∆i,0A
1/2
i,0 R−1

w (α0)R0R
−1
w (α0)A

1/2
i,0 ∆i,0Xi

≤ m{λmax(R
−1
w (α0))}2Bnm,0.

According to Lemma 1, β̂ − β0 → N(0,F−1
nm,0) in distribution. We calculate

Fnm,0 as follows:

F−1
nm,0 = H−1

nm,0Mnm,0H
−1
nm,0

≤ m{λmax(R
−1
w (α0))}2H−1

nm,0Bnm,0H
−1
nm,0.

Then, we can get the following inequality:

B
1/2
nm,0H

−1
nm,0Mnm,0H

−1
nm,0B

1/2
nm,0

≤ m{λmax(R
−1
w (α0))}2B1/2

nm,0H
−1
nm,0Bnm,0H

−1
nm,0B

1/2
nm,0

= m{λmax(R
−1
w (α0))}2(B1/2

nm,0H
−1
nm,0B

1/2
nm,0)

2

≤ m{λmax(R
−1
w (α0))}2{λmax(Rw(α0))Ip}2.

Thus, we calculate F−1
nm,0 as follows:

H−1
nm,0Mnm,0H

−1
nm,0 ≤ m{λmax(R

−1
w (α0))}2{λmax(Rw(α0))}2B−1

nm,0

= O(m2/n).

Hence, we have

β̂ − β0 = Op(m/
√
n).
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Then, we evaluate the asymptotic bias of the PMSEG.

Theorem 2. Suppose Conditions C1 - C4, C5*, C6*, C8, C9-C11, C12*, C13*
and C14-C17 hold. The variance of the asymptotic bias of the PMSEG excluding
the bias independent of a candidate model goes to 0 with the rate of m4/n or
faster even if we use a wrong correlation structure as a working correlation.

We prove Theorem 2 in Appendix.
Furthermore, to evaluate the case that we use the true correlation matrix as

a working correlation matrix, we present the following lemma:

Lemma 3. Suppose Conditions C1 - C4, C5*, C6*, C8, C9-C11, C12*, C13*
and C14-C17 hold. If Rw(α0) = R0, we have

β̂ − β0 = Op(1/
√
n).

Proof. Suppose that Rw(α0) = R0, we have

Mnm,0 =

n∑
i=1

Xi∆i,0A
1/2
i,0 R−1

w (α0)R0R
−1
w (α0)A

1/2
i,0 ∆i,0Xi

=

n∑
i=1

Xi∆i,0A
1/2
i,0 R−1

w (α0)A
1/2
i,0 ∆i,0Xi

= Hnm,0

Thus, we have

F−1
nm,0 = H−1

nm,0 ≤ λmax(Rw(α0))B
−1
nm,0 = O(1/n).

By the above, we have

β̂ − β0 = Op(1/
√
n).

Then, we evaluate the asymptotic bias of the PMSEG when we use true
correlation matrix.

Theorem 3. Suppose Conditions C1 - C4, C5*, C6*, C8, C9-C11, C12*, C13*
and C14-C17 hold. The variance of the asymptotic bias of the PMSEG excluding
the bias independent of a candidate model goes to 0 with the rate of m2/n or
faster if we use the true correlation structure as a working correlation.

We prove Theorem 3 in Appendix.

4.3 Numerical study

In this section, we perform a numerical study and discuss the result. The pur-
pose of this simulation is to compare the results by using the correct correlation
structure and the results by using a wrong correlation structure. The targets of
comparison are the values of each bias and the prediction errors. In this simula-
tion, we got data from gamma distributions which have scale parameter included
in exponential family. In this simulation we supposed that there are two groups
(e.g., male and female). To create data distributed according to the gamma
distributions with correlation, we used copula method. We set m = 10, 20.
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When m = 10, we set n = 20, 50, 100. For each i = 1, 2, . . . , n, we construct a
10 × 8 explanatory matrix Xf,i = (xf,i1,xf,i2, . . . ,xf,i10)

′
. Here, for each i =

1, . . . , (n/2), the first column of Xf,i is 110, where 1p is the p-dimensional vector
of ones. The second column of Xf,i is (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0).
The third and forth columns of Xf,i are 010. Furthermore, all the elements of
the fifth, sixth, seventh and eighth columns are independent and identically dis-
tributed according to the uniform distribution on the interval [−1, 1]. For each
i = (n/2)+1, . . . , n, the first column ofXf,i is 110. The second column ofXf,i is
(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). The third column of Xf,i is 110, and
the forth column of Xf,i is (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). Further-
more, all the elements of the fifth, sixth, seventh and eighth columns are inde-
pendent and identically distributed according to the uniform distribution on the
interval [−1, 1]. When m = 20, we set n = 80, 200, 400. For each i = 1, 2, . . . , n,

we construct a 20×8 explanatory matrix Xf,i = (xf,i1,xf,i2, . . . ,xf,i20)
′
. Here,

for each i = 1, . . . , (n/2), the first column of Xf,i is 120. The second column of
Xf,i is (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,
1.9, 2.0). The third and forth columns of Xf,i are 020. Furthermore, all the ele-
ments of the fifth, sixth, seventh and eighth columns are independent and iden-
tically distributed according to the uniform distribution on the interval [−1, 1].
For each i = (n/2)+1, . . . , n, the first column of Xf,i is 120. The second column
of Xf,i is (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,
1.8, 1.9, 2.0). The third column of Xf,i is 120, and the forth column of Xf,i

is (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9,
2.0). Furthermore, all the elements of the fifth, sixth, seventh and eighth
columns are independent and identically distributed according to the uniform
distribution on the interval [−1, 1].

Let β0 = (0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0, 0)
′
be the true value of regression

coefficient. The explanatory matrix for the ith subject in the kth model (k =
1, 2, . . . , 8) consists of the first k columns of Xf,i. Let the true correlation struc-

ture be the exchangeable structure, i.e., R0 = (1−α)Im+α1m1
′

m. Furthermore,
we set α = 0.3. We simulate 10,000 realizations of y = (y11, . . . , y1m, . . . , yn1, . . . ,
ynm), where each yij is distributed according to the gamma distribution with

the mean µij = exp (x
′

f,ijβ0). Here, in order to obtain β̂f , we used the inde-
pendence working correlation matrix in this simulation.

First, we considered the case that we use the correct correlation structure.
Since the bias includes Bias3 in proof of Theorem 2, to ignore Bias3, we evaluate
(the bias of the 8th model)−(the bias of the each model). The frequencies of
selecting models and the prediction errors are given in Table 9. In Table 9, the
frequency of selecting the 6th model tends to be large when m2/n goes to 0.
Furthermore, the frequencies of selecting of the 1-5th models tend to 0. In Table
10, (the bias of the 8th model) − (the bias of the 6th model) seems to go to 0
as m2/n goes to 0 when m = 10 and m = 20.

Next, we consider the case that we use a wrong correlation structure as a
working correlation structure. We use the autoregressive structure as one of such
structures. The frequency of selection of each model and prediction error are
given in Table 11. Table 11 indicates that in the case of the working correlation
structure is misspecified, the frequency of selecting the 6th model tends to large
as m4/n is small, and the frequencies of selecting of the 1-5 models tend to 0.
In Table 12, the differences between the bias of the 8th model and the bias of
the 6th model and the 7th model go to 0. Furthermore, Table 12 indicates that
the rate of the asymptotic bias of the PMSEG m4/n is overestimate, so we may
not need so many samples.
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Table 9: Frequencies of selecting models (%) and prediction errors
n m 1 2 3 4 5 6 7 8 Prediction Error

20 10 10.1 6.9 5.8 4.2 15.0 25.5 15.5 17.0 7.9230 (0.04)
50 10 3.1 0.8 0.8 0.8 2.1 56.7 17.5 18.2 7.3248 (0.04)
100 10 0.1 0.0 0.2 0.2 0.3 62.1 18.9 17.2 6.9307 (0.04)
80 20 6.1 1.8 1.9 0.0 3.2 51.3 18.7 17.0 9.4235 (0.05)
200 20 0.0 0.0 0.0 0.0 0.0 58.8 22.3 18.9 9.1930 (0.05)
400 20 0.0 0.0 0.0 0.0 0.0 76.1 12.1 11.8 8.5806 (0.04)

Table 10: (The bias of the 8th model) − (The bias of the each model)
n m 1 2 3 4 5 6 7 8

20 10 14.83 12.65 11.69 9.705 2.416 6.025 2.640 0.0
50 10 39.28 25.26 27.31 26.27 11.62 -3.193 0.993 0.0
100 10 5.483 1.858 -1.464 -2.077 0.378 1.028 0.522 0.0
80 20 177.1 186.2 172.8 179.7 48.62 12.96 2.024 0.0
200 20 -245.9 -184.0 -97.02 -85.64 -35.13 2.705 1.111 0.0
400 20 -766.9 -497.2 -314.7 -273.1 -138.2 1.024 0.490 0.0

5 Conclusions and discussions

In this paper, we proposed a Cp type criterion for model selection in the GEE
method when the both scale and correlation parameters are unknown. Further-
more, we discussed about the asymptotic bias of the PMSEG when the sample
size and the cluster sizes are large.

According to Section 3, when n goes to infinity and m is bounded, the
asymptotic bias of the PMSEG excluding the bias independent of a candidate
model goes to 0. Furthermore, according to Section 4, when m goes to infinity
as n goes to infinity, the asymptotic bias of the PMSEG excluding the bias
independent of a candidate model goes to 0 if m4/n → 0. Furthermore, if
we use the true correlation structure as a working correlation and m2/n, the
asymptotic bias of the PMSEG excluding the bias independent of a candidate
model goes to 0.

The GEE method is widely used in many studies. The GEE method is pack-
aged in statistical software “R” and “SAS”, so this method is useful. Moreover,
a moment estimation is used in these software. We can select the explanatory
variables and the working correlation structure simultaneously by using the PM-
SEG and prove the prediction accuracy. Hence, we thought that this criterion

Table 11: Frequencies of selecting models (%) and prediction errors
n m 1 2 3 4 5 6 7 8 Prediction Error

20 10 14.5 7.5 6.9 3.8 12.5 29.2 12.5 13.1 8.0385 (0.04)
50 10 1.7 0.6 0.9 1.6 1.8 55.8 20.3 17.3 7.8406 (0.04)
100 10 0.1 0.1 0.0 0.0 0.1 69.2 19.3 11.2 7.6361 (0.04)
80 20 6.6 1.7 1.1 3.5 4.8 44.5 16.4 21.4 9.8726 (0.05)
200 20 0.2 0.0 0.0 0.1 0.2 72.2 14.9 12.4 9.9280 (0.05)
400 20 0.0 0.0 0.0 0.0 0.0 73.1 15.8 11.1 10.1993 (0.05)
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Table 12: (The bias of the 8th model) − (The bias of the each model)
n m 1 2 3 4 5 6 7 8

20 10 64.84 139.3 107.3 39.11 41.90 -172.1 -67.21 0.0
50 10 18.13 10.39 9.038 6.802 0.834 -1.311 1.238 0.0
100 10 3.335 1.409 1.878 1.288 0.471 1.135 0.4865 0.0
80 20 -649.7 -339.8 -266.8 -199.1 -71.66 -5.982 -7.344 0.0
200 20 -279.5 -187.5 -104.3 -88.66 -45.36 1.404 0.5944 0.0
400 20 -763.7 -500.4 -322.1 -283.0 -141.2 1.278 0.5243 0.0

is useful.
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A Appendix

A.1 Derivation of (3.12) in section 3.2

We calculate Bias2 + Bias4. Now, Bias2 and Bias4 are expressed as follows:

Bias2 = Ey[L∗(β̂)]− Ey[L∗(β0)]

= Ey

[
n∑

i=1

(yi − µ̂i)
′
Σ−1

i,0 (yi − µ̂i)−
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 (yi − µi,0)

]

= Ey

[
2

n∑
i=1

(yi − µi,0)
′
Σ−1

i,0 (µi,0 − µ̂i)

]

+ Ey

[
n∑

i=1

(µi,0 − µ̂i)
′
Σ−1

i,0 (µi,0 − µ̂i)

]
,

Bias4 = Ey

[
L(β0, β̂f )

]
− Ey

[
L(β̂, β̂f )

]
= Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )(yi − µi,0)ϕ̂

−1(β̂f )

]

− Ey

[
n∑

i=1

(yi − µ̂i)
′
A

−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )(yi − µ̂i)ϕ̂

−1(β̂f )

]

= −Ey

[
2

n∑
i=1

(yi − µi,0)
′
A

−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )

· (µi,0 − µ̂i)ϕ̂
−1(β̂f )

]

− Ey

[
n∑

i=1

(µi,0 − µ̂i)
′
A

−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )

· (µi,0 − µ̂i)ϕ̂
−1(β̂f )

]
.

Hence, Bias2 + Bias4 is

Bias2 + Bias4

= Ey

[
2

n∑
i=1

(yi − µi,0)
′
{
Σ−1

i,0 −A
−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )ϕ̂

−1(β̂f )
}

· (µi,0 − µ̂i)

]
(A1.1)

+ Ey

[
n∑

i=1

(µi,0 − µ̂i)
′
{
Σ−1

i,0 −A
−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )ϕ̂

−1(β̂f )
}

· (µi,0 − µ̂i)

]
. (A1.2)
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In order to evaluate these expectations, we perform the stochastic expansion of

A
−1/2
i (β̂f ), R̂

−1(β̂f ),µi(β̂f ), β̂f and ϕ̂(β̂f ). We expand β̂f as with the expan-

sion of β̂ in section 2. The expansion is as follows:

β̂f − βf,0 = H−1
f,n,0sf,n(βf,0) +Op(n

−1) = bf,0 +Op(n
−1),

where βf,0 is the true value of βf . Here, Hf,n,0 is

Hf,n,0 =

n∑
i=1

D
′

f,i,0A
−1/2
i,0 R̄−1

i (αf )A
−1/2
i,0 Df,i,0,

where Df,i = Ai(βf )∆i(βf )Xf,i, Df,i,0 = Ai,0∆i,0Xf,i and R̄i is the working
correlation matrix of the full model. In addition, as with the expansion of µ̂i in

section 3, we expand µi(β̂f ) as follows:

µi(β̂f )− µi,0 = Df,i,0bf,0 +Op(n
−1).

Furthermore, af,i(βf ) is the m-dimensional vector consisting of the diagonal

components of A
−1/2
i,0 (βf ), i.e., diag(af,i(βf )) = A

−1/2
i (βf ). Then, we can

perform Taylor expansion of af,i(β̂f ) around β̂f = βf,0 as follows:

af,i(β̂f ) = af,i(βf,0) +A∗
f,i,0bf,0 +Op(n

−1),

where

A∗
f,i,0 =

∂

∂β
′
f

af,i(βf )
∣∣∣
βf=βf,0

.

Therefore, we can expand A
−1/2
i (β̂f ) as follows:

A
−1/2
i (β̂f ) = diag(af,i(β̂f )) = A

−1/2
i,0 + diag(A∗

f,i,0bf,0) +Op(n
−1).

Note that bf,0 = Op(n
−1/2), Df,i,0bf,0 = Op(n

−1/2) and diag(A∗
f,i,0bf,0) =

Op(n
−1/2). Moreover, we can expand ϕ̂(β̂f ) as follows:

ϕ̂(β̂f ) = ϕ0 +Op(n
−1/2).

Furthermore, R̂(β̂f ) is expanded as follows:

R̂(β̂f ) =
1

n

n∑
i=1

A
−1/2
i (β̂f )(y − µi(β̂f ))(yi − µi(β̂f ))

′
A

−1/2
i (β̂f )ϕ̂

−1(β̂f )

=
1

n

n∑
i=1

{A−1/2
i,0 + diag(A∗

f,i,0bf,0)}{yi − (µi,0 +Df,i,0bf,0)}

· {yi − (µi,0 +Df,i,0bf,0)}
′
{A−1/2

i,0 + diag(A∗
f,i,0bf,0)}

· (ϕ−1
0 + ϕ̂−1(β̂f )− ϕ−1

0 )

+Op(n
−1)

= − 1

n

n∑
i=1

A
−1/2
i,0 {(Df,i,0bf,0)(yi − µi,0)

′
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+ (yi − µi,0)(Df,i,0bf,0)
′
}A−1/2

i,0 ϕ−1
0

+
1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ−1

0

+
1

n

n∑
i=1

diag(A∗
f,i,0bf,0)(yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ−1

0

+
1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
diag(A∗

f,i,0bf,0)ϕ
−1
0

+
1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 (ϕ̂−1(β̂f )− ϕ−1

0 )

+Op(n
−1). (A1.3)

By Lindberg central limit theorem, the first term of (A1.3) is Op(n
−1). Then,

we get the following expansion with using above expansions:

R
−1/2
0 R̂(β̂f )R

−1/2
0

= Im − Im +
1

n
R

−1/2
0

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 R

−1/2
0 ϕ−1

0

+
1

n
R

−1/2
0

n∑
i=1

diag(A∗
f,i,0bf,0)(yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 R

−1/2
0 ϕ−1

0

+
1

n
R

−1/2
0

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
diag(A∗

f,i,0bf,0)R
−1/2
0 ϕ−1

0

+
1

n
R

−1/2
0

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 R

−1/2
0 (ϕ̂−1(β̂f )− ϕ−1

0 )

+Op(n
−1)

= Im −R
−1/2
0

{
R0 −

1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ−1

0

− 1

n

n∑
i=1

diag(A∗
f,i,0bf,0)(yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ−1

0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
diag(A∗

f,i,0bf,0)ϕ
−1
0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 (ϕ̂−1(β̂f )− ϕ−1

0 )
}
R

−1/2
0

+Op(n
−1).

Therefore, the inverse matrix of R
−1/2
0 R̂(β̂f )R

−1/2
0 can be expanded as follows:

R
1/2
0 R̂−1(β̂f )R

1/2
0

= Im +R
−1/2
0

{
R0 −

1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ−1

0
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− 1

n

n∑
i=1

diag(A∗
f,i,0bf,0)(yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ−1

0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
diag(A∗

f,i,0bf,0)ϕ
−1
0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 (ϕ̂−1(β̂f )− ϕ−1

0 )
}
R

−1/2
0

+Op(n
−1). (A1.4)

Therefore, R̂−1 is expanded as follows:

R̂−1(β̂f )

= R−1
0 +R−1

0

{
R0 −

1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ−1

0

− 1

n

n∑
i=1

diag(A∗
f,i,0bf,0)(yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ−1

0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
diag(A∗

f,i,0bf,0)ϕ
−1
0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 (ϕ̂−1(β̂f )− ϕ−1

0 )
}
R−1

0

+Op(n
−1). (A1.5)

Note that the second term of (A1.5) is Op(n
−1/2). Then, we have

Σ−1
i,0 −A

−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )ϕ̂

−1(β̂f )

= Σ−1
i,0 − {A−1/2

i,0 + diag(A∗
f,i,0bf,0)}

·

[
R−1

0 +R−1
0

{
R0 −

1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ−1

0

− 1

n

n∑
i=1

diag(A∗
f,i,0bf,0)(yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ−1

0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
diag(A∗

f,i,0bf,0)ϕ
−1
0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 (ϕ̂−1(β̂f )− ϕ−1

0 )
}
R−1

0

]
· {A−1/2

i,0 + diag(A∗
f,i,0bf,0)}{ϕ−1

0 + (ϕ̂−1(β̂f )− ϕ−1
0 )}

+Op(n
−1)

= −diag(A∗
f,i,0bf,0)R

−1
0 A

−1/2
i,0 ϕ−1

0 −A
−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,0)ϕ

−1
0

−A
−1/2
i,0 R−1

0

{
R0 −

1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ−1

0
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− 1

n

n∑
i=1

diag(A∗
f,i,0bf,0)(yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ−1

0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
diag(A∗

f,i,0bf,0)ϕ
−1
0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 (ϕ̂−1(β̂f )− ϕ−1

0 )
}
R−1

0 A
−1/2
i,0 ϕ−1

0

−A
−1/2
i,0 R−1

0 A
−1/2
i,0 {ϕ̂−1(β̂f )− ϕ−1

0 }
+Op(n

−1).

Note that Σ−1
i,0 −A

−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )ϕ̂

−1(β̂f ) = Op(n
−1/2) and µ̂i −

µi,0 = Di,0b1,0 = Op(n
−1/2). Then, (A1.2) is calculated as follows:

Ey

[
n∑

i=1

(µi,0 − µ̂i)
′
{
Σ−1

i,0 −A
−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )ϕ̂

−1(β̂f )
}

· (µi,0 − µ̂i)

]
= O(n−1).

In addition, we calculate (A1.1) as follows:

Ey

[
2

n∑
i=1

(yi − µi,0)
′

{
Σ−1

i,0 −A
−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )ϕ̂

−1(β̂f )

}

· (µi,0 − µ̂i)

]

= Ey

[
2

n∑
i=1

(yi − µi,0)
′

{
diag(A∗

f,i,0bf,0)R
−1
0 A

−1/2
i,0 ϕ−1

0

+A
−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,0)ϕ

−1
0

}
Di,0b1,0

]

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′

·A−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1,0

]

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

diag(A∗
f,j,0bf,0)(yj − µj,0)(yj − µj,0)

′

·A−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1,0

]

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′
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· diag(A∗
f,j,0bf,0)R

−1
0 ϕ−2

0 A
−1/2
i,0 Di,0b1,0

]

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′
A

−1/2
j,0

· {ϕ̂−1(β̂f )− ϕ−1
0 }R−1

0 A
−1/2
i,0 ϕ−1

0 Di,0b1,0

]

+ Ey

[
2

n∑
i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0 A
−1/2
i,0 {ϕ̂−1(β̂f )− ϕ−1

0 }Di,0b1,0

]

+ Ey

[
2

n∑
i=1

(yi − µi,0)
′
A

−1/2
i R−1

0 A
−1/2
i,0 ϕ−1

0 Di,0b1,0

]
+O(n−1). (A1.6)

Note that E[(yi, − µi,0)⊗ (yj − µj,0)
′
(yk − µk,0)] = 0m (not i = j = k), so we

can calculate the first term of (A1.6) as follows:

Ey

[
2

n∑
i=1

(yi − µi,0)
′

{
diag(A∗

f,i,0bf,0)R
−1
0 A

−1/2
i,0 ϕ−1

0

+A
−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,0)

}
Di,0b1,0

]

= Ey

[
2

n∑
i=1

(yi − µi,0)
′

{
diag(A∗

f,i,0bf,i,0)R
−1
0 A

−1/2
i,0 ϕ−1

0

+A
−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,i,0)

}
Di,0b1,0

]
= O(n−1), (A1.7)

where bf,i,0 = H−1
f,n,0D

′

i(βf,0)V
−1
i (βf,0)(yi − µi(βf,0)). Similarly, because of

Ey[(yi −µi,0)
′
(yj −µj,0)(yj −µj,0)

′
(yk −µk,0)] = 0 (unless i = k), the second

term of (A1.6) is calculated as follows:

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′

·A−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1,0

]

= −Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1,i̸=j

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′

·A−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1i,0

]
+O(n−1)

= −Ey

[
2

n∑
i=1

(yi − µi,0)
′
Σ−1

i,0Di,0b1i,0

]
+O(n−1)
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= −2p+O(n−1). (A1.8)

Here, we define notations of summation as follows:∑
i,j

=

n∑
i=1

n∑
j=1

,

∑
i ̸=j

=

n∑
i=1

n∑
j=1,i̸=j

.

It holds that Ey[(yi−µi,0)
′
((yj−µj,0)⊗(yk−µk,0)

′
)((yk−µk,0)⊗(yl−µl,0))] = 0

unless the following condition:

i = j = l or i = j ̸= k = l or i = l ̸= k = j or j = l ̸= k = i.

Thus, the third term of (A1.6) is calculated as follows:

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

diag(A∗
f,j,0bf,0)(yj − µj,0)(yj − µj,0)

′

·A−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1,0

]

= −Ey

[∑
i,j

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n
diag(A∗

f,j,0bf,0)(yj − µj,0)(yj − µj,0)
′

·A−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1,0

]

= −Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n
diag(A∗

f,i,0bf,0)(yi − µi,0)(yi − µi,0)
′

·A−1/2
i,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1,0

]

− Ey

[∑
i ̸=j

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n
diag(A∗

f,j,0bf,i,0)(yj − µj,0)(yj − µj,0)
′

·A−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1j,0

]

− Ey

[∑
i ̸=j

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n
diag(A∗

f,j,0bf,j,0)(yj − µj,0)(yj − µj,0)
′

·A−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1i,0

]
+O(n−1)

= O(n−1). (A1.9)

Similarly, the forth term of (A1.6) is calculated as follows:

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′
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· diag(A∗
f,j,0bf,0)R

−1
0 ϕ−2

0 A
−1/2
i,0 Di,0b1,0

]
= O(n−1). (A1.10)

The fifth term of (A1.6) is calculated as follows:

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′
A

−1/2
j,0

· {ϕ̂−1(β̂f )− ϕ−1
0 }R−1

0 A
−1/2
i,0 ϕ−1

0 Di,0b1,0

]

= −Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n
A

−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0

· ∂ϕ̂(βf )

∂βf

∣∣∣∣∣
βf=βf,0

bf,j,0R
−1
0 A

−1/2
i,0 ϕ−1

0 Di,0b1j,0

]

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′
A

−1/2
j,0

· ∂ϕ̂(βf )

∂βf

∣∣∣∣∣
βf=βf,0

bf,i,0R
−1
0 A

−1/2
i,0 ϕ−1

0 Di,0b1i,0

]

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′
A

−1/2
j,0

· ∂ϕ̂(βf )

∂βf

∣∣∣∣∣
βf=βf,0

bf,i,0R
−1
0 A

−1/2
i,0 ϕ−1

0 Di,0b1j,0

]

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′
A

−1/2
j,0

· ∂ϕ̂(βf )

∂βf

∣∣∣∣∣
βf=βf,0

bf,j,0R
−1
0 A

−1/2
i,0 ϕ−1

0 Di,0b1i,0

]
= O(n−1) (A1.11)

The sixth term of (A1.6) is calculated as follows:

Ey

[
2

n∑
i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0 A
−1/2
i,0 {ϕ̂(β̂f )− ϕ−1

0 }Di,0b1,0

]

= Ey

[
2

n∑
i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0 A
−1/2
i,0

∂ϕ̂(βf )

∂βf

∣∣∣∣∣
βf=βf,0

bf,i,0Di,0b1i,0

]
= O(n−1) (A1.12)

Furthermore, the seventh term of (A1.6) is calculated as with (3.10).

Ey

[
2

n∑
i=1

(yi − µi,0)
′
A

−1/2
i R−1

0 A
−1/2
i,0 ϕ−1

0 Di,0b1,0

]
= 2p. (A1.13)
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By (A1.7)-(A1.13), (A1.1) is calculated as follows:

Ey

[
2

n∑
i=1

(yi − µi,0)
′

{
Σ−1

i,0 −A
−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )ϕ̂

−1(β̂f )

}

· (µi,0 − µ̂i)

]
= O(n−1).

Thus, we have Bias2 + Bias4 = O(n−1).

A.2 Proof of Theorem 2 and Theorem 3

We prove the Theorem 2 and Theorem 3, simultaneously. In the proof of this
section, the notations used in section 3 and A.1 are used again, but with some
changes, they are redefined.

Proof. By applying Taylor’s expansion around β̂ = β0 to the equation snm(β̂) =

0p, snm(β̂) is expanded as follows:

snm,0 +
∂snm(β)

∂β

∣∣∣
β=β0

(β̂ − β0)

+
1

2
{(β̂ − β0)

′
⊗ Ip}

(
∂

∂β
⊗ ∂snm(β)

∂β′

) ∣∣∣
β=β∗

(β̂ − β0)

= snm,0 −Dnm,0(Ip +D1,0 +D2,0)(β̂ − β0)

+
1

2
{(β̂ − β0)

′
⊗ Ip}L1(β

∗)(β̂ − β0)

= 0p,

where β∗ lies between β0 and β̂, and snm,0 = snm(β0). Here, L1(β
∗), Dnm,0,

D1,0 and D2,0 are defined as follows:

L1(β
∗) =

(
∂

∂β
⊗ ∂snm(β)

∂β′

) ∣∣∣
β=β∗

,Dnm,0 =

n∑
i=1

D
′

i,0Γ
−1
i,0Di,0,

D1,0 = −D−1
nm,0

n∑
i=1

D
′

i,0

(
∂

∂β′ ⊗ Γ−1
i (β)

∣∣∣
β=β0

)
{Ip ⊗ (yi − µi,0)},

D2,0 = −D−1
nm,0

n∑
i=1

(
∂

∂β′ ⊗D
′

i(β)
∣∣∣
β=β0

)
[Ip ⊗ {Γ−1

i,0 (yi − µi,0)},

where Γi,0 = Γi(β0). By Lindberg central limit theorem, it holds that L1(β
∗) =

Op(nm) and β̂ − β0 = Op(m/
√
n). Furthermore, if Rw(α0) = R0, we have

L1(β
∗) = Op(nm

1/2) and β̂−β0 = Op(1/
√
n). Moreover, R−1

w (α̂0) is expanded
as follows:

R−1
w (α̂0) = R−1

w (α0) +R−1
w (α0){Rw(α0)−Rw(α̂0)}R−1

w (α0) +Op(m
2/n).
(A2.1)
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By Taylor’s theorem, since α̂0 −α0 = Op(m/
√
n), it holds that

||Rw(α0)−Rw(α̂0)|| ≤
∣∣∣∣∣∣∣∣ ∂

∂α
⊗Rw(α)

∣∣∣
α=α∗

∣∣∣∣∣∣∣∣ ||α̂0 −α0|| = Op(m/
√
n),

i.e., Rw(α0) − Rw(α̂0) = Op(m/
√
n), where α∗ lies between α0 and α̂0. If

Rw(α0) = R0, we have Rw(α0)−Rw(α̂0) = Op(1/
√
n) and the third term of

(A2.1) is Op(1/n). Hence, it holds that

Dnm,0 =

n∑
i=1

D
′

i,0Γ
−1
i,0Di,0

=

n∑
i=1

D
′

i,0A
−1/2
i (β0)R

−1
w (α̂0)A

−1/2
i (β0)Di,0

= Hnm,0 +Op(m
2n1/2).

Thus, by using the fact that snm,0 = qnm,0+Op(m
2), β̂ is expanded as follows:

β̂ − β0 = H−1
nm,0qnm,0 +Op(m

3/n) = b1,0 +Op(m
3/n),

where qnm,0 = qnm(β0). Also, since(
∂

∂β′ ⊗R−1
w (α̂(β, ϕ̂(β)))

∣∣∣
β=β0

)
− E

[
∂

∂β′ ⊗R−1
w (α̂(β, ϕ̂(β)))

∣∣∣
β=β0

]
= Op(m/

√
n),

the GEE substituted in β0 is expanded as follows:

snm,0

= −
n∑

i=1

D
′

i,0A
−1/2
i,0 R−1

w (α0){Rw(α0)−Rw(α̂0)}R−1
w (α0)A

−1/2
i,0 (yi − µi,0)

+Hnm,0(Ip +H−1
nm,0B1,0 +H−1

nm,0B2,0 +H−1
nm,0B3,0)(β̂ − β0)

+

n∑
i=1

D
′

i,0A
−1/2
i,0 R−1

w (α0){Rw(α0)−Rw(α̂0)}R−1
w (α0)A

−1/2
i,0 Di,0(β̂ − β0)

− 1

2
{(β̂ − β0)

′
⊗ Ip}{S1,0 + (L1(β0)− S1,0)}(β̂ − β0)

− 1

6
{(β̂ − β0)

′
⊗ Ip}

{
∂

∂β′ ⊗
(

∂

∂β
⊗ ∂snm(β)

∂β′

)} ∣∣∣
β=β∗∗

· {(β̂ − β0)⊗ (β̂ − β0)}, (A2.2)

where β∗∗ lies between β0 and β̂, and S1,0 = E[L1(β0)]. We define B1,0, B2,0

and B3,0 as follows:

B1,0 =

n∑
i=1

X
′

i

(
∂

∂β′ ⊗∆i(β)
∣∣∣
β=β0

)
{Ip ⊗A

−1/2
i,0 R−1

w (α̂0)A
−1/2
i,0 (yi − µi,0)},

B2,0 =

n∑
i=1

X
′

i∆i,0

(
∂

∂β′ ⊗A
1/2
i (β)

∣∣∣
β=β0

)
{Ip ⊗R−1

w (α̂0)A
−1/2
i,0 (yi − µi,0)},
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B3,0 =

n∑
i=1

X
′

i∆i,0A
1/2
i,0 R−1

w (α̂0)

(
∂

∂β′ ⊗A
−1/2
i (β)

∣∣∣
β=β0

)
{Ip ⊗ (yi − µi,0)}.

Here, we calculate the rate of B1,0.

E[B1,0B
′

1,0] = E

[
n∑

i=1

p∑
k=1

X
′

i

∂∆i(β)

∂βk
A

1/2
i,0 R−1

w (α̂0)A
−1/2
i,0 (yi − µi,0)

(yi − µi,0)
′
A

−1/2
i,0 R−1

w (α̂0)A
1/2
i,0

∂∆i(β)

∂βk
Xi

]

=

n∑
i=1

p∑
k=1

X
′

i

∂∆i(β)

∂βk
A

1/2
i,0 R−1

w (α̂0)R0R
−1
w (α̂0)A

1/2
i,0

∂∆i(β)

∂βk
Xi

≤ m{λmax(R
−1
w (α̂0))}2

n∑
i=1

p∑
k=1

X
′

i

∂∆i(β)

∂βk
Ai,0

∂∆i(β)

∂βk
Xi

= O(nm2).

Thus, B1,0 = Op(n
1/2m). Similarly, we calculate B2,0 = Op(n

1/2m) and B3,0 =

Op(n
1/2m). Furthermore, if Rw(α0) = R0, we have B1,0 = Op(n

1/2m1/2),

B2,0 = Op(n
1/2m1/2) and B3,0 = Op(n

1/2m1/2). By (A2.2), we have

Hnm,0(Ip +H−1
nm,0B1,0 +H−1

nm,0B2,0 +H−1
nm,0B3,0)(β̂ − β0)

= qnm,0

+

n∑
i=1

D
′

i,0A
−1/2
i,0 R−1

w (α0){Rw(α0)−Rw(α̂0)}R−1
w (α0)A

−1/2
i,0 (yi − µi,0)

−
n∑

i=1

D
′

i,0A
−1/2
i,0 R−1

w (α0){Rw(α0)−Rw(α̂0)}R−1
w (α0)A

−1/2
i,0 Di,0b1,0

+
1

2
(b

′

1,0 ⊗ Ip)S1,0b1,0

+Op(m
4/
√
n)

From the above, we expand β̂ − β0 as follows:

β̂ − β0 = H−1
nm,0qnm,0 +

1

2
H−1

nm,0(b
′

1,0 ⊗ Ip)S1,0b1,0 +H−1
nm,0(B1,0 +B2,0

+B3,0)H
−1
nm,0qnm,0 + h1,0 + j1,0 +Op(m

4/n3/2),

where

j1,0

= H−1
nm,0

n∑
i=1

D
′

i,0A
−1/2
i,0 R−1

w (α0){Rw(α0)−Rw(α̂0)}R−1
w (α0)A

−1/2
i,0

· (yi − µi,0),

h1,0

= H−1
nm,0

n∑
i=1

D
′

i,0A
−1/2
i,0 R−1

w (α0){Rw(α0)−Rw(α̂0)}R−1
w (α0)A

−1/2
i,0 Di,0b1,0.
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Denote

b2,0 = H−1
nm,0(B1,0 +B2,0 +B3,0)H

−1
nm,0qnm,0,

b3,0 = H−1
nm,0(b

′

1,0 ⊗ Ip)S1,0b1,0/2 + h1,0 + j1,0.

Note that above b2,0 is different from b2,0 in section 3, and the sum of above
b2,0 and b3,0 is equal to b2,0 in section 3. Hence, we have

β̂ − β0 = b1,0 + b2,0 + b3,0 +Op(m
4/n3/2) (A2.3)

Note that, b1,0 = Op(m/
√
n), b2,0 = Op(m

2/n) and b3,0 = Op(m
3/n). Further-

more, if Rw(α0) = R0, we have

β̂ − β0 = b1,0 + b2,0 + b3,0 +Op(m
2/n3/2),

where b1,0 = Op(1/
√
n), b2,0 = Op(m/n) and b3,0 = Op(m/n).

We calculated the asymptotic bias of the PMSEG as follows:

Bias = PMSE− Ey[L(β̂, β̂f )]

= {RiskP − Ey[L∗(β̂)]}+ {Ey[L∗(β̂)]− Ey[L∗]}
+ {Ey[L∗]− Ey[L(β̂f )]}+ {Ey[L∗(β̂f )]− Ey[L(β̂, β̂f )]}

= Bias1 + Bias2 + Bias3 + Bias4

We evaluate Bias1, Bias2, Bias3 and Bias4 separately.
Bias1 is expanded as follows:

Bias1

= Ey

[
Ez

[
n∑

i=1

(zi − µ̂i)
′
Σ−1

i,0 (zi − µ̂i)

]
−

n∑
i=0

(yi − µ̂i)
′
Σ−1

i,0 (yi − µ̂i)

]

= Ey

[
Ez

[
n∑

i=1

(zi − µi,0 + µi,0 − µ̂i)
′
Σ−1

i,0 (zi − µi,0 + µi,0 − µ̂i)

]

−
n∑

i=1

(yi − µi,0 + µi,0 − µ̂i)
′
Σ−1

i,0 (yi − µi,0 + µi,0 − µ̂i)

]

= Ez

[
n∑

i=1

(zi − µi,0)
′
Σ−1

i,0 (zi − µi,0)

]
+ Ey

[
n∑

i=1

(µi,0 − µ̂i)
′
Σ−1

i,0 (µi,0 − µ̂i)

]

− Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 (yi − µi,0)

]
− 2Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 (µi,0 − µ̂i)

]

− Ey

[
n∑

i=1

(µi,0 − µ̂i)
′
Σ−1

i,0 (µi,0 − µ̂i)

]

= 2Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 (µ̂i − µi,0)

]
. (A2.4)

Since µ̂i is the function of β̂, by applying Taylor’s expansion around β̂ = β0,
µ̂i is expanded as follows:

µ̂i − µi,0
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=
∂µi(β)

∂β′

∣∣∣
β=β0

(β̂ − β0)

+
1

2
{(β̂ − β0)

′
⊗ Im}

(
∂

∂β
⊗ ∂µi(β)

∂β′

) ∣∣∣
β=β0

(β̂ − β0)

+
1

6
{(β̂ − β0)

′
⊗ Im}

{
∂

∂β′ ⊗
(

∂

∂β
⊗ ∂µi(β)

∂β′

)} ∣∣∣∣∣
β=β∗∗∗

· {(β̂ − β0)⊗ (β̂ − β0)}

= Di,0(β̂ − β0) +
1

2
{(β̂ − β0)

′
⊗ Im}D(1)

i,0 (β̂ − β0) +Op(m
7/2/n3/2) (A2.5)

where β∗∗∗ lies between β0 and β̂, and D
(1)
i,0 is defined by

D
(1)
i,0 =

(
∂

∂β
⊗Di(β)

) ∣∣∣
β=β0

.

By substituting (A2.3) for (A2.5), we can expand µ̂i as follows:

µ̂i − µi,0 = Di,0(b1,0 + b2,0 + b3,0) +
1

2
(b

′

1,0 ⊗ Im)D
(1)
i,0 b1,0 +Op(m

7/2/n3/2).

(A2.6)

By using (A2.4) and (A2.6), we get the following expansion:

1

2
Bias1 = Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 (µ̂i − µi,0)

]

= Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0b1,0

]

+ Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0b2,0

]

+ Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0b3,0

]

+ Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 (b
′

1,0 ⊗ Im)D
(1)
i,0 b1,0

]
+ Ey[Op(n

−1/2m7/2)]. (A2.7)

Same as Inatsu and Sato [9], the first term of (A2.7) is calculated as follows:

Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0b1,0

]
= p.

Since the data from different two subjects are independent, we calculate the
second term of (A2.7) as follows:

Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0b2,0

]
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= Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0H
−1
nm,0G0H

−1
nm,0D

′

i,0V
−1
i,0 (yi − µi,0)

]

= tr

(
n∑

i=1

H−1
nm,0G0H

−1
nm,0D

′

i,0V
−1
i,0 Di,0

)
= O(m2/n),

where G0 = B1,0 + B2,0 + B3,0. If Rw(α0) = R0, the second term of (A2.7)
is O(m2/n). Similarly, the orders of the third and the forth term of (A2.7) are
evaluated as follows:

Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0Di,0b3,0

]
= O(m7/2/n)

Ey

[
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 (b
′

1,0 ⊗ Im)D
(1)
i,0 b1,0

]
= O(m5/2/n).

Furthermore, ifRw(α0) = R0, the order of the third term of (A2.7) isO(m3/2/n)
and the order of the forth term of (A2.7) is O(

√
m/n). Under the regularity

conditions, the limit of expectation is equal to the expectation of limit. Fur-
thermore, in many cases, a moment of statistic can be expanded as power series
in n−1 (e.g., Hall [5]). Therefore, we obtain

Bias1 = 2p+O(m7/2/n).

If Rw(α0) = R0, we have

Bias1 = 2p+O(m3/2/n).

Similarly, we calculate Bias2 + Bias4. Now, Bias2 and Bias4 are expressed
as follows:

Bias2 = Ey[L∗(β̂)]− Ey[L∗(β0)]

= Ey

[
n∑

i=1

(yi − µ̂i)
′
Σ−1

i,0 (yi − µ̂i)−
n∑

i=1

(yi − µi,0)
′
Σ−1

i,0 (yi − µi,0)

]

= Ey

[
2

n∑
i=1

(yi − µi,0)
′
Σ−1

i,0 (µi,0 − µ̂i)

]

+ Ey

[
n∑

i=1

(µi,0 − µ̂i)
′
Σ−1

i,0 (µi,0 − µ̂i)

]
,

Bias4 = Ey

[
L(β0, β̂f )

]
− Ey

[
L(β̂, β̂f )

]
= Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )(yi − µi,0)ϕ̂

−1(β̂f )

]

− Ey

[
n∑

i=1

(yi − µ̂i)
′
A

−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )(yi − µ̂i)ϕ̂

−1(β̂f )

]
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= −Ey

[
2

n∑
i=1

(yi − µi,0)
′
A

−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )

· (µi,0 − µ̂i)ϕ̂
−1(β̂f )

]

− Ey

[
n∑

i=1

(µi,0 − µ̂i)
′
A

−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )

· (µi,0 − µ̂i)ϕ̂
−1(β̂f )

]
.

Hence, Bias2 + Bias4 is

Bias2 + Bias4

= Ey

[
2

n∑
i=1

(yi − µi,0)
′
{
Σ−1

i,0 −A
−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )ϕ̂

−1(β̂f )
}

· (µi,0 − µ̂i)

]
(A2.8)

+ Ey

[
n∑

i=1

(µi,0 − µ̂i)
′
{
Σ−1

i,0 −A
−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )ϕ̂

−1(β̂f )
}

· (µi,0 − µ̂i)

]
. (A2.9)

Then, we perform the stochastic expansion of A
−1/2
i (β̂f ), R̂

−1(β̂f ),µi(β̂f ), β̂f

and ϕ̂(β̂f ). The expansion of β̂f is as follows:

β̂f − βf,0 = H−1
f,nm,0qf,nm(βf,0) +Op(m

3/n) = bf,0 +Op(m
3/n),

where βf,0 is the true value of βf , bf,0 = H−1
f,nm,0qf,nm(βf,0),

qf,nm(βf ) =

n∑
i=1

D
′

f,i(βf )V
−1
i (βf ,αf,0)(yi − µi(βf )),

αf,0 is the limiting value of a correlation parameter in the full model and
Df,i(βf ) = Ai(βf )∆i(βf )Xf,i. Here, Hf,nm,0 is

Hf,nm,0 =

n∑
i=1

D
′

f,i,0A
−1/2
i,0 R̄−1

i (αf )A
−1/2
i,0 Df,i,0,

where Df,i,0 = Ai,0∆i,0Xf,i and R̄−1
i (αf ) is a working correlation matrix

which can be chosen freely including a nuisance correlation parameter αf . Fur-
thermore, if Rw(α0) = R0, we have

β̂f − βf,0 = H−1
f,nm,0qf,nm(βf,0) +Op(m/n) = bf,0 +Op(m/n).

Thus, we can expand µi(β̂f ) as follows:

µi(β̂f )− µi,0 = Df,i,0bf,0 +Op(m
7/2/n).
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If Rw(α0) = R0, we have

µi(β̂f )− µi,0 = Df,i,0bf,0 +Op(m
3/2/n).

Furthermore, af,i(βf ) is the m-dimensional vector consisting of the diagonal

components of A
−1/2
i,0 (βf ), i.e., diag(af,i(βf )) = A

−1/2
i (βf ). Then, we can

perform Taylor’s expansion of af,i(β̂f ) around β̂f = βf,0 as follows:

af,i(β̂f ) = af,i(βf,0) +A∗
f,i,0bf,0 +Op(m

3/n),

where

A∗
f,i,0 =

∂

∂β
′
f

af,i(βf )
∣∣∣
βf=βf,0

.

Therefore, we can expand A
−1/2
i (β̂f ) as follows:

A
−1/2
i (β̂f ) = diag(af,i(β̂f )) = A

−1/2
i,0 + diag(A∗

f,i,0bf,0) +Op(m
3/n).

Note that bf,0 = Op(m/
√
n), Df,i,0bf,0 = Op(m

3/2/
√
n) and diag(A∗

f,i,0bf,0)

= Op(m/
√
n). If Rw(α0) = R0, we have bf,0 = Op(1/

√
n), Df,i,0bf,0 =

Op(
√
m/

√
n) and diag(A∗

f,i,0bf,0) = Op(1/
√
n). Moreover, we can expand ϕ̂(β̂f )

as follows:

ϕ̂(β̂f ) = ϕ0 +Op(m/
√
n).

Furthermore, same as Inatsu and Sato [9], R̂−1(β̂f ) is expanded as follows:

R̂−1(β̂f )

= R−1
0 +R−1

0

{
R0 −

1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ−1

0

− 1

n

n∑
i=1

diag(A∗
f,i,0bf,0)(yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ−1

0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
diag(A∗

f,i,0bf,0)ϕ
−1
0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 (ϕ̂−1(β̂f )− ϕ−1

0 )
}
R−1

0

+Op(m
3/n). (A2.10)

Note that the second term of (A2.10) is Op(m/
√
n). Then, we have

Σ−1
i,0 −A

−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )ϕ̂

−1(β̂f )

= Σ−1
i,0 − {A−1/2

i,0 + diag(A∗
f,i,0bf,0)}

·

[
R−1

0 +R−1
0

{
R0 −

1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ−1

0

40



− 1

n

n∑
i=1

diag(A∗
f,i,0bf,0)(yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ−1

0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
diag(A∗

f,i,0bf,0)ϕ
−1
0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 (ϕ̂−1(β̂f )− ϕ−1

0 )
}
R−1

0

]
· {A−1/2

i,0 + diag(A∗
f,i,0bf,0)}{ϕ−1

0 + (ϕ̂−1(β̂f )− ϕ−1
0 )}

+Op(m
3/n)

= −diag(A∗
f,i,0bf,0)R

−1
0 A

−1/2
i,0 ϕ−1

0 −A
−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,0)ϕ

−1
0

−A
−1/2
i,0 R−1

0

{
R0 −

1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ−1

0

− 1

n

n∑
i=1

diag(A∗
f,i,0bf,0)(yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 ϕ−1

0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
diag(A∗

f,i,0bf,0)ϕ
−1
0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0 (ϕ̂−1(β̂f )− ϕ−1

0 )
}
R−1

0 A
−1/2
i,0 ϕ−1

0

−A
−1/2
i,0 R−1

0 A
−1/2
i {ϕ̂−1(β̂f )− ϕ−1

0 }
+Op(m

3/n),

where Σ−1
i,0 −A

−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )ϕ̂(β̂f ) = Op(m/

√
n) and µ̂i−µi,0 =

Di,0b1,0 = Op(m
3/2/

√
n). Then, (A2.9) is calculated as follows:

Ey

[
n∑

i=1

(µi,0 − µ̂i)
′
{
Σ−1

i,0 −A
−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )ϕ̂

−1(β̂f )
}

· (µi,0 − µ̂i)

]
= Ey[Op(m

4/
√
n)]

= O(m4/n).

Furthermore, if Rw(α0) = R0, we have

Σ−1
i,0 −A

−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )ϕ̂(β̂f ) = Op(1/

√
n),

and µ̂i −µi,0 = Di,0b1,0 = Op(
√
m/

√
n). Thus, the order of (A2.9) is O(m/n).

In addition, we calculate (A2.8).

Ey

[
2

n∑
i=1

(yi − µi,0)
′

{
Σ−1

i,0 −A
−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )ϕ̂

−1(β̂f )

}

· (µi,0 − µ̂i)

]
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= Ey

[
2

n∑
i=1

(yi − µi,0)
′

{
diag(A∗

f,i,0bf,0)R
−1
0 A

−1/2
i,0 ϕ−1

0

+A
−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,0)ϕ

−1
0

}
Di,0b1,0

]

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′

·A−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1,0

]

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

diag(A∗
f,j,0bf,0)(yj − µj,0)(yj − µj,0)

′

·A−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1,0

]

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′

· diag(A∗
f,j,0bf,0)R

−1
0 ϕ−2

0 A
−1/2
i,0 Di,0b1,0

]

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′
A

−1/2
j,0

· {ϕ̂−1(β̂f )− ϕ−1
0 }R−1

0 A
−1/2
i,0 ϕ−1

0 Di,0b1,0

]

+ Ey

[
2

n∑
i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0 A
−1/2
i,0 {ϕ̂−1(β̂f )− ϕ−1

0 }Di,0b1,0

]

+ Ey

[
2

n∑
i=1

(yi − µi,0)
′
A

−1/2
i R−1

0 A
−1/2
i,0 ϕ−1

0 Di,0b1,0

]
+O(m4/n). (A2.11)

Note that E[(yi, − µi,0)⊗ (yj − µj,0)
′
(yk − µk,0)] = 0m (not i = j = k), so we

can expand the first term of (A2.11) as follows:

Ey

[
2

n∑
i=1

(yi − µi,0)
′

{
diag(A∗

f,i,0bf,0)R
−1
0 A

−1/2
i,0 ϕ−1

0

+A
−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,0)ϕ

−1
0

}
Di,0b1,0

]

= Ey

[
2

n∑
i=1

(yi − µi,0)
′

{
diag(A∗

f,i,0bf,i,0)R
−1
0 A

−1/2
i,0 ϕ−1

0

+A
−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,i,0)ϕ

−1
0

}
Di,0b1,0

]
= O(m4/n), (A2.12)
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where bf,i,0 = H−1
f,nm,0D

′

f,i(βf,0)V
−1
i (βf,0)(yi−µi(βf,0)). Moreover, ifRw(α0)

= R0, the order of the first term of (A2.11) is O(m2/n). Similarly, since Ey[(yi−
µi,0)

′
(yj − µj,0)(yj − µj,0)

′
(yk − µk,0)] = 0 (unless i = k), the second term of

(A2.11) is expanded as follows:

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′

·A−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1,0

]

= −Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1,i̸=j

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′

·A−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1i,0

]
+O(m4/n)

= −Ey

[
2

n∑
i=1

(yi − µi,0)
′
Σ−1

i,0Di,0b1i,0

]
+O(m4/n)

= −2p+O(m4/n), (A2.13)

where b1i,0 = H−1
nm,0D

′

i,0V
−1
i,0 (yi−µi,0) = Op(m/n). If Rw(α0) = R0, we have

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′

·A−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1,0

]
= −2p+O(m2/n).

It holds that Ey[(yi − µi,0)
′
(yj − µj,0 ⊗ yk − µ

′

k,0)(yk − µk,0 ⊗ yl − µl,0)] = 0
unless the following condition:

i = j = l or i = j ̸= k = l or i = l ̸= k = j or j = l ̸= k = i.

Thus, the third term of (A2.11) is calculated as follows:

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

diag(A∗
f,j,0bf,0)(yj − µj,0)(yj − µj,0)

′

·A−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1,0

]

= −Ey

[∑
i,j

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n
diag(A∗

f,j,0bf,0)(yj − µj,0)(yj − µj,0)
′

·A−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1,0

]
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= −Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n
diag(A∗

f,i,0bf,0)(yi − µi,0)(yi − µi,0)
′

·A−1/2
i,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1,0

]

− Ey

[∑
i ̸=j

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n
diag(A∗

f,j,0bf,i,0)(yj − µj,0)(yj − µj,0)
′

·A−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1j,0

]

− Ey

[∑
i ̸=j

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n
diag(A∗

f,j,0bf,j,0)(yj − µj,0)(yj − µj,0)
′

·A−1/2
j,0 R−1

0 ϕ−2
0 A

−1/2
i,0 Di,0b1i,0

]
+O(m4/n)

= O(m4/n). (A2.14)

If Rw(α0) = R0, the order of the third term of (A2.11) is O(m2/n). Similarly,
the forth term of (A2.11) is expanded as follows:

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′

· diag(A∗
f,j,0bf,0)R

−1
0 ϕ−2

0 A
−1/2
i,0 Di,0b1,0

]
= O(m4/n). (A2.15)

If Rw(α0) = R0, the order of the forth term of (A2.11) is O(m2/n). The fifth
term of (A2.11) is calculated as follows:

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′
A

−1/2
j,0

· {ϕ̂−1(β̂f )− ϕ−1
0 }R−1

0 A
−1/2
i,0 ϕ−1

0 Di,0b1,0

]

= −Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n
A

−1/2
i,0 (yi − µi,0)(yi − µi,0)

′
A

−1/2
i,0

· ∂ϕ̂(βf )

∂βf

∣∣∣∣∣
βf=βf,0

bf,j,0R
−1
0 A

−1/2
i,0 ϕ−1

0 Di,0b1j,0

]

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′
A

−1/2
j,0

· ∂ϕ̂(βf )

∂βf

∣∣∣∣∣
βf=βf,0

bf,i,0R
−1
0 A

−1/2
i,0 ϕ−1

0 Di,0b1i,0

]
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− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′
A

−1/2
j,0

· ∂ϕ̂(βf )

∂βf

∣∣∣∣∣
βf=βf,0

bf,i,0R
−1
0 A

−1/2
i,0 ϕ−1

0 Di,0b1j,0

]

− Ey

[
n∑

i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0

2

n

n∑
j=1

A
−1/2
j,0 (yj − µj,0)(yj − µj,0)

′
A

−1/2
j,0

· ∂ϕ̂(βf )

∂βf

∣∣∣∣∣
βf=βf,0

bf,j,0R
−1
0 A

−1/2
i,0 ϕ−1

0 Di,0b1i,0

]
= O(m4/n) (A2.16)

The sixth term of (A2.11) is calculated as follows:

Ey

[
2

n∑
i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0 A
−1/2
i,0 {ϕ̂(β̂f )− ϕ−1

0 }Di,0b1,0

]

= Ey

[
2

n∑
i=1

(yi − µi,0)
′
A

−1/2
i,0 R−1

0 A
−1/2
i,0

∂ϕ̂(βf )

∂βf

∣∣∣∣∣
βf=βf,0

bf,i,0Di,0b1i,0

]
= O(m3/n) (A2.17)

Furthermore, the seventh term of (A2.11) is calculated as follows:

Ey

[
2

n∑
i=1

(yi − µi,0)
′
A

−1/2
i R−1

0 A
−1/2
i,0 ϕ−1

0 Di,0b1,0

]
= 2p. (A2.18)

By (A2.12)-(A2.18), (A2.8) is calculated as follows:

Ey

[
2

n∑
i=1

(yi − µi,0)
′

{
Σ−1

i,0 −A
−1/2
i (β̂f )R̂

−1(β̂f )A
−1/2
i (β̂f )ϕ̂

−1(β̂f )

}

· (µi,0 − µ̂i)

]
= O(m4/n).

If Rw(α0) = R0, the order of (A2.8) is O(m2/n). Thus, we have

Bias2 + Bias4 = O(m4/n),

If Rw(α0) = R0, we have Bias2 + Bias4 = O(m2/n). From the above, the bias
is expanded as follows:

Bias = 2p+Bias3 +O(m4/n).

If Rw(α0) = R0, the bias is expanded as follows:

Bias = 2p+Bias3 +O(m2/n).

Note that Bias3 does not depend on the candidate model. If we ignore Bias3,
the asymptotic bias of the PMSEG goes to 0 with the rate of m4/n or faster.
Furthermore, if we use the true correlation structure as a working correlation,
the asymptotic bias of the PMSEG goes to 0 with the rate of m2/n or faster.
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