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Summary
In this paper, we propose a model selection criterion in the generalized
estimating equation method when the scale and correlation parameters
are unknown. This model selection criterion is derived with reflecting the
influence of the estimation of these unknown parameters. Furthermore,
we evaluated the asymptotic bias of this criterion when the maximum
cluster size goes to infinity as the sample size goes to infinity.

1 Introduction

Recently, in real data analysis, we treat data with correlation in many fields,
for example medical science, economics and many other fields. Especially, data
that are measured repeatedly over times from the same subjects, named longi-
tudinal data, are widely used in those fields. In general, the data from the same
subject have a correlation, whereas the data from different subjects are inde-
pendent. Nelder and Wedderburn [13] proposed the generalized linear model
(GLM), and after that Liang and Zeger [11] introduced an extension of the
GLM, named generalized estimating equation (GEE). The GEE method is one
of the methods to analyze the data with correlation. Defining features of the
GEE method are that we use a working correlation matrix which can be chosen
freely. We can get the consistent estimators of parameters whether the working
correlation matrix is correct or not. It is worthy to say that we do not need a
full specification of the joint distribution. In those reasons, the GEE method is
widely used.

As with other statistical frameworks, the model selection problem in the
GEE method is also important. In general, in the model selection, we measure
the goodness of models by a certain risk. Then, by using some asymptotically
unbiased estimators of the risk, we obtain a model selection criterion. For ex-
ample, the most famous Akaike’s information criterion (AIC) (Akaike, [1], [2])
was defined as an asymptotic unbiased estimator of the expected Kullback-
Leibler divergence (Kullback and Leibler [10]). The AIC is calculated by AIC =
—2 x (the maximum log likelihood) + 2 x (the number of parameters). Further-
more, the generalized information criterion (GIC) proposed by Nishii [14] and
Rao [16] which is a generalization of the AIC is also applied to many fields.
However, we cannot use model selection criteria based on the likelihood func-
tion such as the AIC or GIC for the GEE because we do not specify the joint
distribution. Some model selection criteria like the AIC and GIC in the GEE
method have been already proposed. For example, Pan [15] proposed the QIC
(quasi-likelihood under the independence model criterion) based on the quasi-
likelihood defined by Wedderburn [17]. Moreover, the GC,, (generalized version
of Mallows’s C),) proposed by Cantoni et al. [3] is a generalization of Mallows’s
C, (Mallows [12]). The correlation information criterion (CIC) proposed by
Hin and Wang [6] and Gosho et al. [4] is a criterion for selecting the correlation
structure. In the GEE method, we can get the smallest asymptotic variance
of the GEE estimator by using the true correlation matrix as a working cor-
relation matrix. It seems that the estimation accuracy can be improved by
simultaneously selecting explanatory variables and a correlation structure, and
the efficiency will be improved. Therefore, it is important to simultaneously
select explanatory variables and a working correlation structure using one risk
function. Unfortunately, the risk function of the QIC is based on the inde-
pendent quasi likelihood, so the risk function does not reflect the correlation.
Moreover, the CIC is focused on the working correlation structure modeling, on



the other hand, the CIC is not focused on the variable selection. The Mallows’s
Cp is based on the prediction mean squared error so we can use these type of
criteria in the GEE method. From this background, Inatsu and Imori [8] pro-
posed the new model selection criterion, named PMSEG (the prediction mean
squared error in the GEE) using the risk function based on the prediction mean
squared error (PMSE) normalized by the covariance matrix. Inatsu and Imori
[8] proposed this criterion when both the correlation parameters included in a
working correlation matrix and the scale parameters are known, but the corre-
lation and scale parameters are generally unknown in practice, so we consider
to modify this criterion for the case that they are unknown.

In this paper, there are two purposes. One purpose is to propose a model
selection criterion taking account of the correlation structure when both the
correlation and scale parameters are unknown. In order to propose our model
selection criterion, we evaluate the asymptotic bias of the estimator of a risk
function and investigate the influences of the estimations of the correlation and
scale parameters. We focus on the variable selection and the working correlation
structure selection. The other purpose is to evaluate the asymptotic bias of the
PMSEG when the maximum cluster size goes to infinity as the sample size goes
to infinity.

The present paper is organized as follows: In section 2, we introduce the GEE
framework and propose an estimation method for parameters. In section 3, we
perform the stochastic expansion of the GEE estimator and propose our model
selection criterion when the scale and correlation parameters are unknown, in
the case of the sample size goes to infinity and the cluster sizes are bounded.
After that, we perform a numerical study. In section 4, we introduce asymptotic
properties of the GEE estimator and the asymptotic bias of the PMSEG. After
that, we perform a numerical study. In Appendix, we provide the calculation
process of the asymptotic bias of the PMSEG, and the proofs of two theorems
given in section 4.

2 Preliminaries

2.1 GEE estimator

Let y;; be a scalar response variable from the ith subject at the jth ob-
servation time and x;; be an [-dimensional nonstochastic vector consisting of
possible explanatory variables, where ¢ = 1,...,n and j = 1,...,m. Assume
that the response variables from different subjects are independent and the re-
sponse variables from the same subject are correlated. For each i = 1,... n,
let y; = (yi1, - - - ,yim)/ be the response vector from the ith subject and X;; =
(Tf41,-.. ,acf,im), be the explanatory matrix from the ith subject. Moreover,
let X; = (@1, .. .,a:im)' be an m X p submatrix of the matrix X;,. All the
observed data for the ith subject are (y;, Xy,;). Liang and Zeger [11] used the
GLM as the marginal density of y;;,

f(ij, iz, B, ¢) = exp [{yi;0:i5 — a(0i5)}/ ¢ + b(yij, 9)], (2.1)

where a(-) and b(-) are known functions, 6;; is an unknown location parameter
defined by 6;; = u(n;;) = 6;;(8) with a known function u(-) and ¢ is a scale
parameter. Here, B is a p-dimensional unknown parameter and 7;; = w;j,@
is called the linear predictor. In the present paper, we assume that the scale



parameter ¢ is unknown, and let © be the natural parameter space (see, Xie
and Yang [18]) of the exponential family of distributions presented in (2.1), and
the interior of © is denoted as ©°. Then, it is known that © is convex and
all the derivatives of a(-) and all the moments of y;; exist in ©°. We denote

the derivative and the second derivative of a function f(z) as f(z) and f(z),
respectively. Under these conditions, the expectation and variance of y;; are
given by

15 (B) = Elyi;] = a(0;;), 07;(8) = Var(y;;] = @(0:;)¢ = v(i;(8))-

In the GLM framework, the expectation of y;; is represented by the link function
g(-) as g(pij) = mij = w;jﬂ, where g(t) = (@ ou)~t(t). We call that the model
with s ;; and x;; as the full model and the candidate model, respectively. We
assume that the true density function of y;; can be written as (2.1), i.e., the
true model is one of the candidate models. When the correlation and scale
parameters are known, GEE proposed by Liang and Zeger [11] is as follows:

an(8) = 3_Di(B)V, (B ) (y: — 1i(B)) = 0, (2:2)

where p;(8) = (uia(B), .., im(B)) ', Di(B) = 0ps(8)/98 = Ai(B)A:(B) X,
Ai(B) = diag(c}(B),...,05,(8)), Ai(B) = diag(0i1/nir, - .., 0im/Onim)
and V;(8,a) = A1/2(6)Rw(a)AV2(ﬁ)¢. Here, R, () is called a working cor-

1 (3
relation matriz which can be chosen freely. Moreover, R,,(a) includes nuisance

parameter . The nuisance parameter space is defined as follows:
A={a=(ay,...,0,) €R°|Ry(a) is positive definite}.

We can use different working correlation matrices depending on each situation.
Typical working correlation matrices are as follows:

(1) independence: (R ())r =0 (j # k),
(2) exchangeable: (R (a))r = (j # k),
(3) autoregressive: (Ry(a))jkx = (Ru(@)); =ad=% (j > k),

a(j=k+1)
0G£k+1, j£K)

(5) unstructured: (Ry(a))r = (Ru(a))k; = o (5 > k).

(4) 1-dependence: (R, (c));r = (Ry(a))k; =

Note that the diagonal elements of R, («) are ones, since it is a correlation
matrix. The dimension of a depends on the working correlation matrix. In
many cases, « is unknown. Although « is the nuisance parameter, we must
estimate « in order to estimate 3. In practice, we estimate o by real data. When
both the correlation and scale parameters are unknown, we estimate o by 3
and ¢, where ¢ is an estimator of ¢. Denote &8, d;) = (&1(B, gf)), coGs(B, gi;))/,

and assume that &(Bo, ¢o) 2y o € A°, where By is the true value of 3, & is
the estimator of a, ag is the limiting value of &, A° is the interior of A and ¢

is the limiting value of ¢. Denote X;(8) = A21/2(,6')R0A1/2(['3)¢7 where Ry is

7



the true correlation matrix. Assume that for s = 1,...,n, the true correlation
matrix is the common matrix Ry. If R, (o) = Ro, Vi(Bo,a0) = X;(Bo) =

A;"*(Bo)RoA;"* (Bo) o = Covly,).
In this paper, we assume that a and ¢ are unknown, so we replace V;_l (B, a)
in (2.2) with T;!(8) including the estimator of the correlation parameter &,

where T';(8) = Vi(8, &(8, é(ﬁ))) Then, we obtain the following equation:
=Y _Di(BT;(B)(yi — mi(B) = 0,. (2.3)
i=1
The solution of (2.3) denoted as B is the estimator of B,. We call 8 the GEE
estimator.

2.2 Estimation method

The parameters ¢, 3 and ¢ are unknown, so we estimate them by the following
iterative method:

Algorithm (Estimation method for parameters a, 3 and ¢)

Step 1 Set an initial value of o denoted as &<%>

Step 2 Solve the GEE with &<F>, and the solution of the GEE is denoted as
B<k> _ B(d<k>)_

Step 3 Estimate ¢p<F*t1> by B<k>,
Step 4 Estimate a<Ft1> by 3<F> and ¢<F+1>.

Step 5 Iterate from step 2 to 4 until a certain condition about the convergence
holds.

In the present paper, we estimate the scale parameter ¢ as follows:

and assume that gz§ 2y ¢o. In addition, the estimator é& differs depending on
each working correlation structure, and we give the following examples:

Exchangeable : &(8, $(8)) = ] Z;Zl;m B)/5(8),
Autonegssive : (3, 3(8) = - Zmz i (B)/98)

==
1-dependence:a<6,é<é>>=( e ZZ i1 (B)/5()
Unstructured : a0(3, 6(8)) = jlz o (B)Fa)/6(8),



where 7;;(8) = yi; — 1i;(8). A moment estimation is popular. In fact, & is cal-
culated by using the moment method in many statistical softwares. Empirically,
by using the moment method, the above algorithm usually converges. However,
the moment assumption does not necessarily imply that R, (o) is positive
definite. Nevertheless, in many working assumptions (e.g., “Exchangeable” or
“AR-17), the positive definiteness of R, () mostly holds.

3 A (), type criterion for model selection in the
GEE method when both scale and correlation
parameters are unknown

3.1 Stochastic expansion of GEE estimator

In this subsection, we perform the stochastic expansion of 3. Furthermore, in
order to evaluate the asymptotic properties of the GEE estimator, we assume
the following conditions (Xie and Yang [18]):

C1. For all sequence {x;;}, it is established that u(:c;J,B) € ©° and x;; € X,
where X’ is a compact set.

C2. The true regression coefficient 3y is in an admissible set 5, and B is an
open set of RP.

C3. For any B € B, it is established that :c;jﬁ is included in g(M), where M
is the image of a(©°).

C4. The function u(n;;) is four times continuously differentiable and @(7;;) > 0
in g(M°).

C5. The matrix M, o is positive definite when n is large, denoted by
My, o= Z D;’OVJ)lEZ-,OViI)lDi@
i=1
where D; o = D;(Bo), Vi,o = Vi(Bo, ) and X; o = 3;(Bo)-

C6. It is established that liminf,,_, o Amin (Hp,o0/n) > 0, where H,, o =
Dy D;OVJOIDZ-,O and Apin(A) is the minimum eigenvalue of a matrix
A.

C7. There exist a constant ¢y > 0 and ng, such that for all n > ngy and for any
p-dimensional vector A satisfying [|A|| = 1, it holds that

P <X asa,g/ﬁ))\ > nco> =1 (8 e Ny),

where Ny is a neighborhood of 3.
C8. The GEE has a unique solution when n is large.

Conditions C1-C8 are modifications of the conditions proposed by Xie and Yang
[18]. Conditions C1, C2 and C3 are necessary to consider the GLM framework.
Conditions C4 and C5 are necessary to calculate the asymptotic bias of the



estimator of the risk. In addition, Conditions C1, C6, C7 and C8 are necessary
to have the strong consistency, asymptotic normality and uniqueness of the GEE
estimator. Furthermore, in order to evaluate the asymptotic bias of the model
selection criterion, we assume the following additional conditions.

9.
C10.

C11.

C12.

C13.

Note that for a matrix W = (w;;), the derivatives of W by 8 = (51,...,05p)

There exists a compact neighborhood of oy, say Uy, , and vec{ R, ()}
is three times continuously differentiable in the interior of Ug, .

There exists a compact neighborhood of By, say Ug,, and &(83, (Z)(,B)) is
three times continuously differentiable in the interior of Ug, .

For all B € Ug,, it is established that alk) = 0,(1) (k=1,2,3), where

at)(3) = 226.08)),
a(B) = 5 0 ()
a(B) = 5 0l (9)

The estimator &y = &(Bo, ¢(Bo)) satisfies \/n(dy — ag) = Op(1), and
there exists an s x p nonstochastic matrix H such that & (8y) — H =
O, (n=1/2).

The following equations hold:

E > (9 — pi0) By Dighio| = O0(nY),
Lim1
B> (yi— 1i0) Zig Diojro| = 0™,

=1
E Z(yz — Mi70)/diag(A;‘c,LObf’o)RglAi_,ol/2Di_’0h170‘| = O(nil),

Li=1
f' n

E | (i — pio) Ay >Ry diag(A}, 0br0)Diohio| = O(n™h),
Li=1

E (y; — Ni,O)/diag(A},i,Obf,O)RalA;(}/QDi,Ujl,O =0(n1),
Li=1

E > (yi — pio) Arg/* Ry diag(A} ; obr.o)Diogro| = O(n™h),
=1

where p; 0 = pi(Bo) and A; 0 = A;(Bo).

’

and [ are defined as follows:

i@w_ (8W 6W> 151%%4 o (811)1'.7')
B’ S \9B 0B, 9B \ 9B )



We define ki, j1,0, A}, and by at the end of this section. Conditions C9,
C10, C11, C12 and C13 are necessary for ignoring the influence of estimating
the nuisance parameter . Furthermore, by Condition C5, it is established that

H,, o = O(n). Furthermore, by Condition C12, &(Bo, ¢o) 2 o € A° holds.
Theorem 1. Suppose that Conditions C1, C2, C3, C4, C7 and C8 hold. Fur-

thermore, suppose that & is a moment estimator. If the matriz R, (o) is
positive definite, Conditions C9, C10, C11, C12 and C18 hold.

The moment estimator is defined by a continuous function of 3. By using
properties of continuous functions, it is easy to show that Theorem 2 holds.
Hence, we omit the proof of Theorem 2.

Based on the above conditions, to perform the stochastic expansion of ,é, we
focus on the equation §,, = sn(B) = 0,,. By applying Taylor’s expansion around
ﬁ = By to this equation, §,, is expanded as follows:

s, (B) ’
o8 lp=po
05, (8)

5(6-p0 o5} (mp e )| (5

(B - Bo)

Sn,0 +

= 500~ Duolly + Pro + Doo)(B — Bo) + {8~ o) © LYL1(8)(B ~ o)
= Op7

where 3* lies between 3y and ﬁ, I, is the p-dimensional identity matrix and
Sn,0 = Sn(Bo). Here, L1(8*), Dy0, D1 and D3y are follows:

*\ i asn(/a) _ - ! 1.
Ly(B) = <8ﬁ ® 57 ) ‘ﬁ:ﬁ*,m,o = ;DLOI‘LODLO’

I~ 13} _
Dip= *'Dn}) ZDi,O </ ®@TI; 1(,3)‘ ) {I, ® (yi — pio)},

=Bo

n a ,

where I'; o = I';(Bo). By Lindberg central limit theorem, it holds that L, (8*) =
O,(n), B— By = Op(n_l/z)7 Do = Op(n_1/2) and Dq = O,(n~1/2). More-
over, R (&) is expanded as follows:

R, (&) = Ry, (o) + Ry (o) { Rus(0x0) — Ruy(60) } R, (o) + Op(n 7).

By Taylor’s theorem, since &y — ag = Op(n’l/z), it holds that

. 0 . _
1Ru(en) = Rutaol < || gt o Ruta)| a0 = aoll= 0,2,

a=o*

ie., Ry(ag) — Ry(éo) = O,(n~1/?), where o* lies between oy and é&. Hence,
it holds that

n
7
—1
Dy = E D, I'; yDio

=1



= Z DQ,oAJ,é/QR;l (dO)A;é/QDi,O
i—1

= n,0 + Op(nl/Q)a

By this result and the fact that s, 0 = gn,0 + Op(1), B is expanded as follows:

B—Bo=H, (qno+Op(n~") =b1 o+ Oy(n"") (say),
where @0 = ¢, (B0). Also, since

(8(;, ® R, (&(B, é(ﬂ))\ﬁ_ﬁo) -E [aaﬁ/ @ R, (&(8.(8)))

= Op(nil/Q)a

5—,30:|

and above these results, (2.3) is expanded as follows:

Sn,0

i=1

Iy + G+ Gap+ G3,0)(B - Bo)
- %{(B —Bo) @ LHS10+ (Lo — S1.0)}(B — Bo)

e aten e (DO

{(B—=Bo)® (B - Bo)}, (3.4)

where 8** lies between By and 8. Denote S1,0 = E[L1¢]. Then, 81, = O(n)
and Ly g — 81,9 = Oy(n'/?), where

N 8sn(ﬂ)>
Ll’o_(3ﬂ® oB' ‘6:50'

Note that 3 — By = O,(n~'/?) and

(8 (5o 5000

Hence, the last term of (3.4) is Op(n_l/Q). We define Cy;, Ca4, Csi, G1,0, G20,
Gs, hi and ji as follows:

= [an +) D; A7’ Ry, (o) {Ru(co) — Rw(dO)}RlZl(aO)Ai,éﬂDi,O]

C:(8) = D,(B)A; > (B)R, (), C24(8) = D,(B)A;*(8),
Csi(B8) = R, (a0)A; *(B),

e d _
Gio= *Hn,(l) Zcu,o (83 ® A, 1/2(5)’ > {I, ® (yi — 1ip)},
i1

=Bo

" 0
Goo=—H3 3 (5 @ €a®)| _, ) e (Caralys — o)}
2,0 ,0; o8 2 ’ﬁ=ﬁ0 p 34,0 0



n a R
Goo=~H3 Y ook [ 0 R a0.00) |
3,0 0 ; 2,0 196} ’ﬁ:ﬁo

(L, @ {A (yi — o)},

hio=—H, 53 Ciio{Ru(ao) — Ru(60)}Cy; b1 o,
=1

Ji,0 = Hrf,(l) Zcu.,o{Rw(ao) — R, (&) }Csi0(Yi — wi0),
i=1

where Cli,O = Cli(,@()), Cgi’o = ng(ﬂo) and Cg@() = Cgi(,@()). Note that Gl,O =
Op(n_l/Q), GQ’O = Op(n_1/2), G370 = Op(n_1/2), h170 = Op(n_l) and jLO =
O,(n~1). By using the above equations, ,@ is expanded as follows:

B-Bo
=T, — G100+ G20+ Gsp) |1,

—Ho b DA Ry o) {Ru(ao) — Ru(60) R, (o)A Do
i=1

_ 1 - / R
H [n0+ (8- 0) @ L} {S10-+ (Bro— $100)(5 -~ o)
=b1o+bao+ Op(n_g/Q), (3.5)
where bl,O = H;éqn)o = Op(’l’L_l/Q) and b270 = Hr:,(l)(bél,o ® Ip)8170b170/2 —
G10b1,0 — Gaobio— Gsobio+ hio+ 10 =0,(n"1).

3.2 Main result

In this section, we propose a model selection criterion. We measure the goodness
of fit of the model by the risk function based on the PMSE normalized by the
covariance matrix. The risk function is as follows:

n
Riskp = PMSE — mn = E, |E, lZ(Zi — ﬂi)’zgg(zi — )| | —mn,
i=1
where f1; = p; (,é) and z; = (21, .., zim)l is an m-dimensional random vector

that is independent of y; and has the same distribution as y;. If ,@ = By,
Riskp has the minimum value zero, i.e., PMSE has the minimum value mn. We
consider that the model which has minimum PMSE is the optimum model, and
we want to select this model. Since the PMSE is typically unknown, we must
estimate it.

We define R(8), L(B1,82) and L*(8) as follows:

R(B) = -3 A7(8) (i — ma(8)) (i — mi(8)) A7 V2(8)/(8),

LBLB)
= (i — wi(B1)) A7V (Bo) RN (B2) AT (B2) (yi — 1i(81)) 6™ (Be),



’

£(B) = 3_(yi — m(B) B (i — mi(B)):

Then, we estimate the PMSE by L(B, ,éf), where /éf is the GEE estimator from
the full model, namely, we obtain ,C:)' + as the solution of the following equation:

Sfn( ZD (Br)V; /Bfaaf)(yi — 1i(By)) = 04,

where Di(B;) = Ai(By)A(By) Xy, Vi(By.op) = A (By)Ri(cry) AY(By)
and R;(ay) is a positive definite working correlation matrix which can be chosen
freely. Also, R;(cxy) is the same for all the candidate models. For simplicity,

we denote L£(Bo,B82) = L(B2) and L*(By) = L

We construct a rgo@el selection criterion by correcting the asymptotic bias
of the estimator £(83,8) as an estimator of PMSE like as the Mallows’s C,,.
The bias of E(ﬁ, ,éf) is given by
Bias = PMSE — E,[£(8, 8;)]
= {Riskp — E,[L"(B)]} + {E,[£"(8)] — E,[£"]}
+{Ey[L7] = By [L(8)]} +{Ey [L(81)] — Ey[L£(8, B}
= Biasl + Bias2 + Bias3 + Bias4.

We evaluate Biasl, Bias2, Bias3 and Bias4 separately.
At first, Bias3 is as follows:

Bias3
=B, [ (i — nio) {00 — AT 2(BHR B AV (Br)(Br) Hy w]
=mn—By | > (yi — pio) A2 (BHRT(BAT (BB m]

Hence, Bias3 depends on only the full model, so we can ignore Bias3 for model
selection.
Second, Biasl is expanded as follows:

Biasl
=E, |E. i’l(zz‘ — )| = Z(yi — ) B0 (yi — i)
i=1 =0
=E,|E, lz — pio+ Mio — ) EZS(Z@‘—M,O'FM,O—M)
i=1
Z — a0+ pio — 1) Big (Ui — o + pio — fu)
i=1
n n
= E. | ) (2 — o) Tig (2 — i) | + By | D (1i0 — 1) Tig (a0 — i)
i=1 i1

10



—Ey Z( pi0) io (i — i 0)1 2B, Z(yi — pio) Big (B0 — fi)
i=1 i=1
n
—By | ) (w0 — i) B0 (pio — i)
i—1
= 2E, Z(yz — o) Tyo (i — i) (3.6)
i=1

For expanding Biasl, we must expand fi; — ;0. Since fi; is the function of B,
by applying Taylor’s expansion around ,é = Bo, f1; is expanded as follows:
i — io
_ opi(B) 3
- 8ﬂ/ ﬁ:ﬁo (ﬁ ﬁo)
Lo ' 9 _ oui(B) A
- _ )= d _
1.4 0 0 _ 0mi(B)
+518 ﬂw<®Lﬁ{aﬁ<®<aﬂ® 08
{(B~-Bo) @ (B—Bo)}

ZDw@—5M+%KB—%)®I}D (B—Bo) + Op(n=3/%),  (3.7)

B=p***

where 3*** lies between 3y and B, and DE}O) is defined by

13
DY = (@D» ) ’ .
Q= (gen®)|,_,
By substituting (3.5) for (3.7), we can expand fi; as follows:

B — pio = Diobio + {Dz ob2,o + 5 (b1 0®lI )Dg}())bl,()} + 0, (n=%/?).
(3.8)
By using (3.6) and (3.8), we get the following expansion:

n

Z — M, 0) l(ﬂz‘ - Mi,o)]

1
fBlasl =

Z — i) Di,Obl,O]

+ By Z(yz - Hi,o)/zzol {Dz ob2o+ 5 (b1 0®In )Dz(lo b 0}]
i=1

+Ey[0p(n™/?). (3.9)
Since the data from different two subjects are independent, we can get E[(y; —
pio) (y; — 1j0)] =0 (i # 7). The first term of (3.9) is calculated as follows:

n
E, [Z(yz - Ni,O),EZéDi,Obl,O]

i=1
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=E, Z Z(yz — Bip) Ei_,olDz oH,, (1)DJ 0V; 0 ( — 15,0)

=E, Z(yz — pio) 3 oDioH,, éDl oVio "(yi — pio)

n
Z(yi —i0) B9 DioH, (D, V' (yi — M,o)}

H,; Z D, Vi (yi — 1i0)(yi — pio) Ty Dio H
_ -1 . / -1 ‘ —1

— tr {H 0 D, Vi 'E [(y,- — pi,0)(Yi — Hio) } 20 Di,O}
=tr | H,§ Y D;}OleDi,0>

=p. (3.10)
Also, since for all 4,7,k (not i = j = k),
E [(y’ — Hio) @ (Y5 — l‘j,(l)/(yk - I»Lk,())} = 0,

the second term of (3.9) is calculated as follows:

Ey Z(yz _l*"iﬁo)lzzo { 10b20+ (b10®I )D(l)bl 0}]
i=1
=By | (i — pio) ;g {Dl obaio + = (bh o®1 )Dg}gbm}]
i=1
n
=E, lZ(yz — o) i {Di,o(b%,o —hi0—7J1,0)
i=1
1oy (1)
+ 50110 ® L) Dy g brio
+Ey — Mio) ;&{Di,()(hl,() + .7'1,0)}1 )
z:l
where

biio = H;(I)Di,o‘/;,_()l (Yi — i),

baio = H, (b, o @ I,)S1,0b11,0/2 — G1i0biio — Gaiobiio — Giobiio
+hio+ 310,

Giip = —H,Z%)Cu,o <3,3 A_l/Q('B)‘ﬁfﬁ > {I ® (Yi — Hio)}

0

0 = *I{_1
Gaio (8ﬂ

9 €u(d),_, ) e (Carolus — o)}l
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0 R ~
G = _HT;%)C%,OE {aﬂ, ® Rl_ul(a(ﬂad)(ﬁ)))‘

—1/2
(1, (A (i — mio))].
Under Condition C13, we have
D; o(b2i0 — h1o — J1,0) + (b/u,o ® Im)Dg,lo)bu‘,o/2 =0p(n7?),

n

Z('yi - Nz‘,o)lzg(}{Di,o(hLo +3J1.0)}

i=1

E, =0(n™),

so the second term of (3.9) is calculated as follows:

=0(n™1).

n e 1,
E, lZ(yz — o) Big {Di,ObQ,O + §(b1’0 ® Im)Df}O)bLO}
i=1

(3.11)

Under the regularity conditions, the limit of expectation is equal to the ex-
pectation of limit. Furthermore, in many cases, a moment of statistic can be
expanded as power series in n=! (e.g., Hall [5]). Therefore, by substituting
(3.10) and (3.11) for (3.9), we obtain

Biasl = 2p 4+ O(n™1).
Similarly, we obtain
Bias2 + Bias4 = O(n™1). (3.12)

The derivation of (3.12) is shown in Appendix.
From the above, the bias is expanded as follows:

Bias = 2p + Bias3 + O(n™ ).

Note that Bias3 does not depend on all the candidate models so we propose the
model selection criterion as

PMSEG = £(3,8;) + 2p.

This criterion is the same as the criterion proposed by Inatsu and Imori [8].

3.3 Numerical study

In this section, we perform a numerical study and discuss the result. There
are two aims to perform this simulation. One is to compare the frequencies
of selecting models in the case of we use the correct correlation structure as a
working correlation and in the case of we use the wrong correlation structure
as a working correlation. The other is to compare the prediction errors in the
same situation with estimating the correlation and scale parameters. The QIC
proposed by Pan [15] and modified QIC proposed by Imori [7] are representative
model selection criteria in the GEE method, and Inatsu and Imori [8] confirmed
a usefulness of the PMSEG through comparisons with the QIC and modified
QIC. Similar results of the comparisons can be expected in the framework of
this paper. Therefore, the comparisons with the QIC and modified QIC are not
performed in this numerical study.
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In this simulation, we got data from the gamma distributions which have
the scale parameter included in the exponential family. Then, we supposed
that there are two groups (e.g., male and female). Furthermore, we supposed
that the distribution of observations from one group is different from the other
one. To create data distributed according to the gamma distributions with
correlation, we used the copula method. We set n = 50, 100, 150, 200 and m = 3.
For each i = 1,2,...,n, we constructed the 3 x 8 explanatory matrix X;; =

(xf’il,:cmg,a:f,ig,), = (Xli,XQi). Here, for each 7 = 1, ey (n/2),

1001 00
1 1

X,=|1 11 1 ,
1 211 2 1
and for each i = (n/2)+1,...,n,
1 000

o o

0
X,=|1110 0
121000

Furthermore, all the elements of Xo; (i = 1,...,n) are independent and iden-
tically distributed according to the uniform distribution on the interval [—1, 1].
Let the true corrgzlation structure be the exchangeable structure, i.e., Ry =
(1-a)I,, +al,,1,,, where « is the correlation parameter. Furthermore, in this
simulation, we prepare two situations, as follows:

Case 1: a=0.3, By = (0.25,0.25,0.25,0.2570.25,0.25,0,0)/,
Case 2: @ = 0.8, By = (0.25,0.25,0.25,0.25,0.25,0.25, 0,0)/.
The explanatory matrix for the ith subject in the kth model (kK = 1,2,...,8)
consists of the first & columns of X ;. We simulate 10,000 realizations of y =

(Y11 - Y135 -« - s Ynls - - - ,yng),, where each y;; is distributed according to the
gamma distribution with the mean p;; = exp (:I:/fl y Bo). Here, in order to obtain

B ¢, we used the independence working correlation matrix in this simulation.

First, we consider the situation we use the exchangeable structure as a work-
ing correlation structure. The frequencies of selecting models and the prediction
errors in Case 1 and Case 2 are given in Table 9 and Table 10, respectively. The
values in parentheses are the standard errors of the prediction error of each sit-
uation. In the both situations, the frequency of selecting the 6th model tends
to be large as n is large. Furthermore, the frequencies of selecting the 1-5th
models tend to 0.

Table 1: Frequencies of selecting models (%) and prediction errors when oo = 0.3
using exchangeable working correlation matrix
n H 1 2 3 4 5 6 7 8 H Prediction Error

50 || 34 14 38 0.7 126 53.1 142 108 6.573 (0.03)
100 | 0.1 00 02 01 33 71.8 131 114 6.512 (0.03)
150 | 0.0 00 00 0.0 03 754 136 10.7 6.641 (0.03)
200 || 00 00 0.0 00 00 755 156 89 6.494 (0.03)

Next, we consider the situation we use a wrong correlation structure as a
working correlation structure. We use the autoregressive structure as one of

14



Table 2: Frequencies of selecting models (%) and prediction errors when o = 0.8

using exchangeable working correlation matrix

n H 1 2 3 4 5 6 7 8 H Prediction Error
5006 05 03 02 09 674 176 125 7.089(0.04)
100 |{{ 0.0 0.0 0.0 0.0 0.0 717 174 10.9 6.533(0.03)
150 |{{ 0.0 0.0 0.0 0.0 0.0 737 155 10.8 6.455(0.03)
200 || 0.0 0.0 0.0 0.0 0.0 754 149 9.7 6.688(0.03)

such structures. The frequencies of selecting models and the prediction errors
in Case 1 and in Case 2 are given in Table 11 and Table 12, respectively. In
the case of using the different correlation structure as well as using the true
correlation structure, the frequency of selecting the 6th model tends to large as
n is large, and the frequencies of selecting the 1-5 models tend to 0. In Case
1, the prediction error in Table 9 is not much different from that in Table 11
for each n, on the other hand, in Case 2, the prediction error in Table 10 is
different from that in Table 12 for each n. From this, it is considered that
the larger the true correlation value, the greater the influence of the working
correlation structure on the prediction error.

Table 3: Frequencies of selecting models (%) and prediction errors when oo = 0.3
using autoregressive working correlation matrix

n H 1 2 3 4 5 6 7 8 H Prediction Error
50 || 8.2 09 42 0.7 6.7 580 11.2 10.1 6.660 (0.03)
100 /(0.2 0.0 06 0.0 21 738 14.9 8.4 6.810 (0.04)
150 |{ 0.0 0.0 0.0 0.0 0.5 748 134 11.3 6.767 (0.03)
200 | 0.0 0.0 0.0 0.0 0.0 782 128 9.0 6.990 (0.04)

Table 4: Frequencies of selecting models (%) and prediction errors when o = 0.8

using autoregressive working correlation matrix
nl[ 1 2 3 4 5 6 7

8 H Prediction Error

50 | 1.2 06 04 0.2 29 655 17.0 122 7.268 (0.04)
100 | 0.1 01 00 0.0 00 742 168 8.8 7.158 (0.04)
150 | 0.0 0.0 0.0 0.0 00 782 133 85 7.017 (0.04)
200 | 0.0 00 0.0 00 00 796 129 7.5 7.402 (0.04)

Next, we consider the situation we use the independence structure as a
working correlation structure, namely, we assume the GLM. The frequencies
of selecting models and the prediction errors in Case 1 and in Case 2 are given
in Table 5 and table 6, respectively. In this situation, the frequency of selecting
the 6th model is the largest of three situations, but the prediction error is the
largest.

Finally, we consider selecting the explanatory variables and the working cor-
relation structure simultaneously. We use three working correlation structures,
i.e., exchangeable (Ex.), autoregressive (AR) and independence (Ind.). Then,
the number of models is 8 x 3 = 24. The frequencies of selecting models and
the prediction errors in Case 1 and in Case 2 are given in Table 7 and Table 8,
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Table 5: Frequencies of selecting models (%) and prediction errors when o = 0.3

using independence working correlation matrix
n H 1 2 3 4 5 6 7 8 H Prediction Error

50 || &7 19 32 09 92 526 138 9.7 6.829 (0.04)
100 | 0.3 00 15 0.0 32 694 153 10.3 7.135 (0.04)
150 || 0.0 0.0 0.0 0.0 03 758 145 9.4 7.069 (0.04)
200 | 00 0.0 0.0 00 00 786 131 83 7.199 (0.04)

Table 6: Frequencies of selecting models (%) and prediction errors when oo = 0.8
using independence working correlation matrix
n H 1 2 3 4 5 6 7 8 H Prediction Error

50 || 22 20 10 03 54 693 121 7.7 11.600(0.04)
100 | 0.1 00 00 0.0 0.7 836 11.1 4.5 11.276(0.04)
150 || 0.0 01 00 00 0.2 840 106 5.1 11.833(0.04)
200 00 00 0.0 00 00 87.8 76 46 11.585(0.04)

respectively. By comparing Table 7 with Table 9 and Table 8 with Table 10, it
shows that the prediction errors in Table 7 and Table 8 are significantly smaller
than the prediction errors in the case of we use the true correlation structure as
a working correlation for each n. Similarly, by comparing Table 7 with Table
11 and Table 8 with Table 12, it shows that the prediction errors in Table 7
and Table 8 are significantly smaller than the prediction errors in the case of
we use the wrong correlation structure as a working correlation. Table 7 and
Table 8 indicate that by selecting both variables and a working correlation, we
may be able to improve the prediction accuracy. Note that if we use a specific
correlation structure, the prediction error might be large.
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Table 7: Frequencies of selecting models (%) and prediction errors when o = 0.3
using tree types of correlation matrix

n H W-Cor. ‘ 1 2 3 4 5 6 7 8 H Prediction Error
Ex. |32 11 15 06 4.7 242 80 6.3

50 AR | 6.2 07 22 04 22 150 35 26 6.043 (0.03)
Ind. | 0.7 0.1 07 04 22 98 16 2.1
Ex. |00 00 0.2 02 08 412 85 6.0

100 AR | 0.1 01 01 00 05 171 34 29 6.147 (0.03)
Ind. | 0.0 00 02 00 08 138 27 14
Ex. |00 00 00 00 04 417 88 7.2

150 AR | 0.0 0.0 0.0 00 00 199 40 23 6.104 (0.03)
Ind. | 0.0 00 0.0 0.0 01 123 2.5 0.8
Ex. |00 0.0 00 00 01 418 81 6.2

200 AR | 0.0 0.0 00 00 01 215 36 22 6.028 (0.03)
Ind. | 0.0 00 0.0 0.0 00 13.7 14 1.3

Table 8: Frequencies of selecting models (%)
using tree types of correlation matrix

and prediction errors when oo = 0.8

n H W-Cor. \ 1 2 3 4 5 6 7 8 H Prediction Error
Ex. |05 04 0.1 02 07 407 109 7.9

50 AR | 0.7 0.0 0.0 00 05 192 58 6.1 6.098 (0.03)
Ind. | 0.0 0.1 0.1 00 02 48 06 0.5
Ex. |00 0.2 00 00 00 483 9.7 7.3

100 AR | 0.1 0.0 0.0 00 00 213 49 34 6.136 (0.03)
Ind. | 0.0 0.0 00 00 00 42 03 0.3
Ex. | 0.0 00 0.0 0.0 00 477 101 8.4

150 AR | 0.0 0.0 0.0 00 00 192 4.6 2.3 5.949 (0.03)
Ind. | 0.0 0.0 00 00 00 64 08 05
Ex. | 0.0 0.0 0.0 00 00 49.0 9.0 7.5

200 AR | 0.0 0.0 0.0 00 00 227 43 26 5.844 (0.03)
Ind. | 0.0 0.0 00 00 00 43 03 0.3
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4 Asymptotic bias of C, type criterion for model
selection in the GEE when the sample size and
the cluster sizes are large

4.1 Model selection in the GEE

In this section, since n and m go to infinity, we change the notations. The GEE
is as follows:

qnm ZD _1 ﬁv )( )u’t(:B)) = 0[)7

and

M (B) = Covgnm (B ZD ~H(B,0)Z:(B)V, (B, a0) Dy (B),

Fn’"l(ﬁ) = HTLTYL(IB)M’V;}L(ﬁ)HTLm(ﬁ)'

We consider the following regularity conditions (see, e.g., Xie and Yang [18],
Inatsu and Sato [9]):

C5*. The matrix M, ¢ is positive definite when n or m is sufficiently large,
denoted by

n
! —1 —1
M0 = E D, Vs %0V, Dio-
i=1

C6*. Tt is established that liminf,, o0 m—so00 Amin (Hnm,o/nm) > 0, where H,,y, o
= Hnm(ﬁO)

C14. Tt holds that TpmAmax(H,,.L o) — 0, where 7, = Amax (R, (o) Ro).

nm,0

C15. It holds that 7TnmTnmm'y,(m)I — 0, where

_ )‘maX(R_ ( 0))
T A (Rut ()

(0)

’
Yrm = max max x, H

1<i<n 1<j<m nm 0 t

C16. It holds that (cnm)1+5(;\nmm)2+6%(% — 0 for some § > 0, where

Cnm = Amax(]\d-nm QHnm O)
j\nm = /\max(Rwl(ao))'
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Conditions C5*, C6* and C14-C16 are the modifications of the conditions pro-
posed by Xie and Yang [18]. Here, to evaluate the asymptotic bias of the
PMSEG, we present the following lemma:

Lemma 1. Suppose Conditions C1 - C4, C5%, C6* and C14-C16 hold.

(a) There exists a sequence of random variable B such that B — Bo in prob-
ability, and M_1/2Hnm’0(B — Bo) and M;,}L{(?Qnm(,@o) have the same

nm,0
asymptotic distribution.

(b) When n — oo,

M, H . 0(8 — Bo) = N(0,,1,) in distribution

nm,0

Lemma 1 is Corollary 1 of Xie and Yang [18], so we omit the proof. Here,
I, is the p-dimensional identity matrix.

4.2 Asymptotic bias of PMSEG

In this section, we evaluate the asymptotic bias of the PMSEG. We consider
the following assumptions (see, Inatsu and Sato [9]):

C12*. The estimator &y = &(Bo, ¢(Bo)) satisfies (v/n/m)(&o—aw) = Op(1), and
there exists an s x p nonstochastic matrix # such that & (8y) — H =

Op(m/+/n).
C13*. The following equations hold:

E _Zn:(yi - Hi,o)/E;éDi,0h17O = O(m*/n),
Li=1
E zn:(yz' - ui,o)lzi,éDi,ojLo] = O(m*/n),
Li=1
E i(yz - Hi,o),diag(A},i,obf,o)Ro_lA;3/2Di,oh1,o = O(m*/n),
i=1
E i(yi — mio) A" Ry ' diag(A}, obs0)Diohio| = O(m* /n),
Li=1
E i(yz - Hi,O)Idiag(A;i,obf,O)Ro_1Ai_73/2D1'70j1,0 = 0(7714/77,)7
Li=1
E i:(yl - “i,O)/A,Zol/2RO_1diag(A7c7i70bf,0)Di7oj1,0 = O(m4/n)
Li=1

C17. liminf, o0 Amin(Bnm,o/nm) > 0, where

Bumo =Y X;Ai0AioAioXi.

i=1
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We write the definitions of hl,O»jl,OaA?,i7o and by in the proof of Theorem
2 in Appendix. By using the moment estimator of the correlation parameters
and the scale parameter, Conditions C9, C10, C11, C12* and C13* are fulfilled.
Condition C17 is necessary to prove following Lemma 2:

Lemma 2. Suppose Conditions C1 - C4, C5%, C6*, C8, C9-C11, C12*, C13*
and C14-C17 hold. Even if the working correlation matriz is misspecified, we
have

B~ Bo = Oy(m/Vn).

Proof. Suppose Conditions C1 - C4, C5*%, C6*, C8, C9-C11, C12*, C13* and
C14-C17 hold, we have

H,,o= Z XiAi,0A37{)2R;1(QO)A;/OQAi,OXi
=1
Z )\min(qul(QO))Bnm,O
B 1
)\max(Rw(QO))

Mmoo = Z XiAy‘,,oAZ%?R; (w)Ro R, (QO)AZ b Ao X,
i=1

< m{)\max(R;l (ao))}2Bnm70~

Bnm,Oa

According to Lemma 1, 8 — By — N(0, an o) in distribution. We calculate
F,m 0 as follows:
F.,=H,

nm,0 an

Mnm OH !

nm,0

< m{ Amax( Rt_u( ))}2 nmo nm,OH;nlL,O

Then, we can get the following inequality:

B2

nm,0—"nm,0

S m{)‘maX(Rw (050))}231/2 H Bnm OH Bl/2

nm, 0 "nm O nm,0~"nm,0

= 1 { Amax (R, (@0)) Y (Botr o Hiyl o Bl )

nm,0 nm,0

Sm{)\maX(R;l(ao))}Q{)\max( w( 0)) P}2’

B2 H-! M, (H!

nm,0""nm, 0

Thus, we calculate F ! o as follows:

Hnm OM Hnril 0= < m{)‘maX(R;l(ao))}Z{AmaX(Rw(aO))}2Bnm ,0
= O(m?/n).

Hence, we have

B~ Bo = Oy(m/Vn).
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Then, we evaluate the asymptotic bias of the PMSEG.

Theorem 2. Suppose Conditions C1 - C4, C5%, C6*, C8, C9-C11, C12*, C13*
and C14-C17 hold. The variance of the asymptotic bias of the PMSEG excluding
the bias independent of a candidate model goes to 0 with the rate of m*/n or
faster even if we use a wrong correlation structure as a working correlation.

We prove Theorem 2 in Appendix.
Furthermore, to evaluate the case that we use the true correlation matrix as
a working correlation matrix, we present the following lemma;:

Lemma 3. Suppose Conditions C1 - C4, C5%, C6*, C8, C9-C11, C12*, C18*
and C14-C17 hold. If R,,(ap) = Ry, we have

B — Bo = 0y(1/V/n).
Proof. Suppose that R, (ag) = Ry, we have

Moo=y XiAi o A5 Ry (o) Ro Ry (00) AL A o X
=1

n
= Z Xz'Az‘,oA}gR;l(ao)Az%zAi,OXi
i=1

nm,0
Thus, we have

Foo=H, ;< Anax(Ru(cw))B,, o = O0(1/n).

nm,0 nm,0 =

By the above, we have

B —Bo = 0,(1/Vn).
O

Then, we evaluate the asymptotic bias of the PMSEG when we use true
correlation matrix.

Theorem 3. Suppose Conditions C1 - C4, C5%, C6*, C8, C9-C11, C12*, C18*
and C14-C17 hold. The variance of the asymptotic bias of the PMSEG excluding
the bias independent of a candidate model goes to 0 with the rate of m?/n or
faster if we use the true correlation structure as a working correlation.

We prove Theorem 3 in Appendix.

4.3 Numerical study

In this section, we perform a numerical study and discuss the result. The pur-
pose of this simulation is to compare the results by using the correct correlation
structure and the results by using a wrong correlation structure. The targets of
comparison are the values of each bias and the prediction errors. In this simula-
tion, we got data from gamma distributions which have scale parameter included
in exponential family. In this simulation we supposed that there are two groups
(e.g., male and female). To create data distributed according to the gamma
distributions with correlation, we used copula method. We set m = 10, 20.
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When m = 10, we set n = 20, 50,100. For each i = 1,2,...,n, we construct a
10 x 8 explanatory matrix X;; = (xf1, %y 2,... ,acfyilo)/. Here, for each ¢ =
1,...,(n/2), the first column of X ; is 119, where 1, is the p-dimensional vector
of ones. The second column of X ; is (0.1,0.2,0.3,0.4,0.5,0.6, 0.7,0.8,0.9,1.0).
The third and forth columns of X ; are 0;9. Furthermore, all the elements of
the fifth, sixth, seventh and eighth columns are independent and identically dis-
tributed according to the uniform distribution on the interval [—1,1]. For each
i=(n/2)+1,...,n, the first column of X, is 119. The second column of X ; is
(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0). The third column of Xy ; is 119, and
the forth column of Xy ; is (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0). Further-
more, all the elements of the fifth, sixth, seventh and eighth columns are inde-
pendent and identically distributed according to the uniform distribution on the
interval [—1,1]. When m = 20, we set n = 80,200,400. For each i =1,2,...,n,
we construct a 20 x 8 explanatory matrix X ; = (i1, Tf2, - -, 1}f7i20),. Here,
for each ¢ =1,...,(n/2), the first column of X ; is 19. The second column of
Xy, 1s(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1, 1.2,1.3,1.4,1.5,1.6,1.7, 1.8,
1.9,2.0). The third and forth columns of X ; are Ogp. Furthermore, all the ele-
ments of the fifth, sixth, seventh and eighth columns are independent and iden-
tically distributed according to the uniform distribution on the interval [—1, 1].
For each i = (n/2)+1,...,n, the first column of X ; is 199. The second column
of X, is (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1, 1.2,1.3,14,1.5,1.6,1.7,
1.8,1.9,2.0). The third column of Xy, is 159, and the forth column of Xy,
is (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4, 1.5,1.6,1.7,1.8,1.9,
2.0). Furthermore, all the elements of the fifth, sixth, seventh and eighth
columns are independent and identically distributed according to the uniform
distribution on the interval [—1,1].

Let By = (0.25,0.25,0.25,0.25,0.25,0.25, 0, O)/be the true value of regression
coefficient. The explanatory matrix for the ith subject in the kth model (k =
1,2,...,8) consists of the first k& columns of X ;. Let the true correlation struc-

ture be the exchangeable structure, i.e., Ry = (l—a)Im—i—alml;n. Furthermore,
we set & = 0.3. We simulate 10,000 realizations of ¥y = (Y11, -+, Y1m, -+ Ynly -« - s
Ynm ), Where each y;; is distributed according to the gamma distribution with

the mean p;; = exp (:Dllfﬂ-jﬁo). Here, in order to obtain ,éf, we used the inde-
pendence working correlation matrix in this simulation.

First, we considered the case that we use the correct correlation structure.
Since the bias includes Bias3 in proof of Theorem 2, to ignore Bias3, we evaluate
(the bias of the 8th model)—(the bias of the each model). The frequencies of
selecting models and the prediction errors are given in Table 9. In Table 9, the
frequency of selecting the 6th model tends to be large when m?/n goes to 0.
Furthermore, the frequencies of selecting of the 1-5th models tend to 0. In Table
10, (the bias of the 8th model) — (the bias of the 6th model) seems to go to 0
as m?/n goes to 0 when m = 10 and m = 20.

Next, we consider the case that we use a wrong correlation structure as a
working correlation structure. We use the autoregressive structure as one of such
structures. The frequency of selection of each model and prediction error are
given in Table 11. Table 11 indicates that in the case of the working correlation
structure is misspecified, the frequency of selecting the 6th model tends to large
as m*/n is small, and the frequencies of selecting of the 1-5 models tend to 0.
In Table 12, the differences between the bias of the 8th model and the bias of
the 6th model and the 7th model go to 0. Furthermore, Table 12 indicates that
the rate of the asymptotic bias of the PMSEG m*/n is overestimate, so we may
not need so many samples.
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Table 9: Frequencies of selecting models (%) and prediction errors

n \ m H 1 2 3 4 5 6 7 8 H Prediction Error
20 | 10 || 10.1 6.9 5.8 4.2 150 255 155 17.0 7.9230 (0.04
50 | 10 3.1 08 0.8 0.8 2.1 56.7 17.5 18.2 7.3248 (0.04
100 | 10 0.1 0.0 0.2 0.2 0.3 62.1 18.9 17.2 6.9307 (0.04
80 | 20 6.1 1.8 1.9 0.0 3.2 51.3 187 17.0 9.4235 (0.05
200 | 20 0.0 0.0 0.0 0. 0.0 58.8 223 189 9.1930 (0.05
400 | 20 0.0 0.0 0.0 0.0 0.0 76.1 12.1 11.8 8.5806 (0.04

Table 10: (The bias of the 8th model) — (The bias of the each model)
n | m] 1 2 3 4 5 6 78

20 | 10 14.83 12.65 11.69 9.705 2.416 6.025 2.640 0.0
50 | 10 || 39.28 25.26 27.31 26.27 11.62 -3.193 0.993 0.0
100 | 10 || 5.483 1.858 -1.464 -2.077 0378 1.028 0.522 0.0
80 | 20 1771 186.2 1728 179.7 48.62 1296 2.024 0.0
200 | 20 || -245.9 -184.0 -97.02 -85.64 -35.13 2.705 1.111 0.0
400 | 20 || -766.9 -497.2 -314.7 -273.1 -138.2 1.024 0.490 0.0

5 Conclusions and discussions

In this paper, we proposed a C), type criterion for model selection in the GEE
method when the both scale and correlation parameters are unknown. Further-
more, we discussed about the asymptotic bias of the PMSEG when the sample
size and the cluster sizes are large.

According to Section 3, when n goes to infinity and m is bounded, the
asymptotic bias of the PMSEG excluding the bias independent of a candidate
model goes to 0. Furthermore, according to Section 4, when m goes to infinity
as n goes to infinity, the asymptotic bias of the PMSEG excluding the bias
independent of a candidate model goes to 0 if m*/n — 0. Furthermore, if
we use the true correlation structure as a working correlation and m?/n, the
asymptotic bias of the PMSEG excluding the bias independent of a candidate
model goes to 0.

The GEE method is widely used in many studies. The GEE method is pack-
aged in statistical software “R” and “SAS”, so this method is useful. Moreover,
a moment estimation is used in these software. We can select the explanatory
variables and the working correlation structure simultaneously by using the PM-
SEG and prove the prediction accuracy. Hence, we thought that this criterion

Table 11: Frequencies of selecting models (%) and prediction errors

n ‘ m H 1 2 3 4 5 6 7 8 H Prediction Error
20 | 10 || 145 7.5 6.9 3.8 125 292 125 13.1 8.0385 (0.04
50 | 10 1.7 0.6 09 1.6 1.8 55.8 20.3 17.3 7.8406 (0.04
100 | 10 0.1 0.1 0.0 0.0 0.1 69.2 193 11.2 7.6361 (0.04
80 | 20 66 1.7 1.1 3.5 4.8 445 164 214 9.8726 (0.05
200 | 20 0.2 00 00 0.1 0.2 722 149 124 9.9280 (0.05
400 | 20 0.0 0.0 0.0 0.0 0.0 73.1 158 11.1 10.1993 (0.05
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Table 12: (The bias of the 8th model) — (The bias of the each model)
n \ m H 1 2 3 4 5 6 7 8

20 | 10 || 64.84 139.3 1073 39.11 4190 -172.1 -67.21 0.0
50 | 10 18.13 10.39 9.038 6.802 0.834 -1.311 1.238 0.0
100 | 10 || 3.335 1409 1.878 1.288 0471 1.135 0.4865 0.0
80 | 20 || -649.7 -339.8 -266.8 -199.1 -71.66 -5.982 -7.344 0.0
200 | 20 || -279.5 -187.5 -104.3 -88.66 -45.36 1.404 0.5944 0.0
400 | 20 || -763.7 -500.4 -322.1 -283.0 -141.2 1.278 0.5243 0.0

is useful.
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A Appendix
A.1 Derivation of (3.12) in section 3.2

We calculate Bias2 + Bias4. Now, Bias2 and Bias4 are expressed as follows:

Bias2 = E, [ﬁ*(ﬁA)} —E,[£7(Bo)]

= E, (Yi /Lz) Zi} — fi) Z — Hio) ; > (Ui — Mio)
=1 =1
= 2 Z(yi — pi0) Zig (o — i)
i=1
+By | Y (o — i) Big (pio — i) |
=1

Biasd = E, {L(ﬁo, Bf)] ~E, {c(é, Bf)}
S (yi — mi0) AT(BHRTN B AT (Br) (s m,ows-l(éf)]

- E, lDyz-m)’A;“(éf) BAT (B (i — -)ésl(ﬁ})]

o[22 o) AT BOR By A By)

(Nz 0 — )¢ (/Gf)‘|

n

S (wio — i) AT (BRUBr) AT (By)

=1

_Ey

(i — ﬂi)él(/éf)] :

Hence, Bias2 + Bias4 is

Bias2 + Bias4
=E, 22 — 1i0) { o - AT BHRNBHA; (B (Bf)}
(a0 — fi) (Al.1)
By | Yo — i) {Zig - AT BB B)AT (B By
=1

(pio — 1) | (A1.2)

25



In order to evaluate these expectations, we perform the stochastic expansion of
A;l/z(f)'f)7 R7Y(By), i(By), B and ¢(Bf). We expand B as with the expan-
sion of 3 in section 2. The expansion is as follows:

By — Bro = H; . os5n(Bro)+0p(n~") =byo+0p(n~"),

where By ¢ is the true value of By. Here, Hy,, o is

n
Hfno=)Y_ D, 0A "R (o)A * Dy,

i=1

where Dy; = Ai(B)Ai(Br)X ., Dyio = AioAioXy; and R; is the working
correlation matrix of the full model. In addition, as with the expansion of fi; in
section 3, we expand p;(By) as follows:

pi(Bs) — pio = Dyiobso+ Op(n7h).

Furthermore, ay;(3y) is the m-dimensional vector consisting of the diagonal
components of Agol/Q(ﬂf), ie., diag(ay:(By)) = A;l/Q(ﬂf). Then, we can
perform Taylor expansion of a fﬂ-(ﬁff) around ﬁf = By, as follows:

asi(Bf) = asi(Bro) + A obso+ Op(n™),
where

0

A% o= =ay:(By)

f1170 6/8} ﬂf:,Bf,o.

Therefore, we can expand Ai_l/ 2 (B ¢) as follows:

A7 (By) = ding(azi(Br)) = Arg? + diag(A7; 0bro) + Op(n ).
Note that byo = Op(n=/2), Dy;obso = Op(n~1/2) and diag(A}, zbro) =
0,(n~/2). Moreover, we can expand ¢(8;) as follows:
$(Br) = do + Op(n™'/?).
Furthermore, R(Bf) is expanded as follows:
R(3y) = = 3" AT (3w — By s — s B)) ATV (605 (5y)
i=1

I, _ .
= > {A5y"" +ding(A},; 0bro) Hyi — (o + Dy.iobro)}
i=1

A{yi — (pio + Dyiobro)} {A;a"” + diag(A}, 0bro)}
(oot + 07 (By) — b0 )
+ Op(nil)

’

1 . —1/2
R ZAi,o/ {(Dy,i,0b5,0)(yi — pio)
=1
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+ (yi — 1) (Dyiobro) YA, 0

I~ —1/2
— A,
+ -~ ;:1 o (Y

1 n . .
+ o Z diag(A},; 0bro)(yi
i=1
+ - ZA 2 (i — i) (yi —
- IJJi,O)(yi -

—1/2
+ ” Z Ai,O/ (y
i—1

+O0,(n7h).

By Lindberg central limit theorem, the first term of (A1.3) is O,(n

- /in,O)(yi

- Ni,o)(yi

ra—1/2 ,—
— pio0) Ai,O/ o !

- Ni,O) 1/2¢0

pi0) diag(A%; 0br.o)dg "
pio) Ay (671 (By) — é5 )
(A1.3)

~—1). Then,

we get the following expansion with using above expansions:

Ry’ R(B)R, '

=Ly — I + R_l/QZAZS/Q(yi—ui,o)(yi—ui,o)'AZS/QRal/%al
=1
Lo 128 o as 1212
+ R i > diag(A},; 0br.o) (¥ — ki) (Yi — Hio) A PRyt
=1
+ R 1/2ZA 2 (y ll’i,O)(yi_Ni,O)ldiag(A;,i,Obf,O)Ral/z(ﬁgl
i=1
1. 1o~ ,— f1, 4 _
+ Ry YT AP (g — i) (i — i) Ay PRy 67 (By) - )
=1
+0,(n~h)
ZIm—R51/2{R0 ZA V2 (i — paio) (i — mio) Ary o
J .
= > diag(Aj;0bro) (yi — i) (Yi — min) Apo 05
=1
1o~ _ . i B
- AP (yi — pio)(yi — i) diag(A%, obro)ey
1=1
I ,—1/2 1/2 c 1,5 —1/2
— = AL i — o)y — i) AP (67 (By) — 00 ) By
=1
JrOp(7fl)

Therefore, the inverse matrix of R, 2R3 Ry /2 can be expanded as follows:

Ry/*R™'(By)Ry/”

- m+R51/2{

27

Z Az (}/2

1/2

Ni,O)(yi - Ni,o) %



I . D12
— = > diag(A} 5 0b10) (Ui — o) (i — Hio) Ay
i=1

—= Z AP (yi — pio)(yi — pao) diag(A%, 0br.o)dy
T Z A &/2 — 1i0)(Yi — ll'i70) i &/2(03 (51“) - %_1)}1%1/2
+ op( b. (A1.4)

Therefore, R1is expanded as follows:

R™'(By)
. - e ,_ S
=R Ry 1{R0 n Z Ai701/2(yi = Kio)(Yi — Kio) Ai)ol/2¢0 !
=1
1 . i}
T Zdlag(Af,i,Obf,0)<yi — pio)(Yi — Ni,O) . 3/2%
i1

- = Z AP (yi — pi0) (yi — pao) diag(AG 0bs.o) by

- LS AL o) 0~ as) A By) - o)} Ry
i=1
+ O, (n7h). (A1.5)

Note that the second term of (A1.5) is O,(n~1/2). Then, we have

St — A7V (B8R (B A (Br)d T (By)

s

=371~ {A; ) +diag(A}, 0bo)}

,0

Ry + Ry {RO——ZA_1/2 — 1i0)(yi — pio) Ay P05

1, . 1 2
T Z dlag(Af,i,obf,O)(yz’ — pio)(yi — Hz‘,o) / ¢0

i=1
1 A1/2 . oy ,d' A% . b —1

Z Isz,O)(yz IJ/z,O) iag( £,4,0 f,0)¢0
S Z A_l/2 — i0)(Yi — lldi,o)/A;&/Q(é_l(ﬁAf) - ¢01)}R011

{A7 e + diag(AF; 0bs0)Hog ' + (67 (Br) — 66 )}
+Op(n 1)
= —diag(A}, obso) Ry Ar 65t — A;/* Ry 'diag (A}, 0br.o)dy !

— ARy {R - - Z AP (i — pio) (i — mio) Ary 205"

28



RN . V1
- > " diag(A7; 0byo) (i — pio)(yi — tio) Ai,3/2¢0 !
i=1

I . . -
T n Z A@(}/Q(yi — Hi0)(Yi — pio) diag(A}; obro)dg '
i=1

1~ ,— PP _ _
T Z Ai,&m(yi — pio)(yi — ll'i70) i 3/2(¢ (5f) ) 1)}R0 1Az (}/2% '
— ARy AL 0T (By) — 65}
+O0,(nh).

Note that 35,0 — A;"*(B1)R™1(B7) A7 *(B1)d~ 1 (By) = Op(n~1/?) and fu; -
wio=D;ob1o= Op(n_l/Q). Then, (A1.2) is calculated as follows:

By | Y(mio — ) {55 — AT BNRT B AT (B By
i=1
(a0 — fri)

=0(n™).

In addition, we calculate (A1.1) as follows:

lzz ) {2;&A;”Q(Bfﬂ%1<Bf>A;”2<Bf>é1<Bf>}

: (Ni,o - ﬂz)]
=E, |2 zn:(yz - Hi,O)/ {diag<A?,i,obﬁO)R0 1/2%
=1
+ A 1/2R01diag(A}7iﬁobf’0)¢>O1}Di,0b170]
B, > - i) ARy S AL - ), 11y0)
i=1 j=1
' Aj_,é/QR(?l¢52A23/2D¢,obl,0]
-k, zn:(yi - Ui,O)/A;S/2REI% z”: diag(A},j,obf,o)(yj — 50)(y; — Mj,o),
i=1 j=1
~A_1/2R0 b 2AZ_Ol/ i,Obl,O]
n
“By | Y (i — i) AT PRG ZA o (g — 130 (w5 — 1s0)
=1
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- diag(A} ; obro) Ry ‘o2 A,/ 2Di,ob1,o]

B[S s o) ALY "Ry S ALy — o)y — ) A7
i=1 j=1
{1 (By) - ¢51}R51AZ&/2¢51D1‘,051,0]
+E, 2Z — pio) A" Ry AP0 (By) asal}Di,obl,o]
+E, 2i —pi0) ATVPRG AL P95 Db | + O(n7Y). (A1.6)

Note that E[(y;, — ti0) @ (Y5 — 15.0) (Y — pr.0)] = O (n0t i = j = k), s0 we
can calculate the first term of (A1.6) as follows:

2 Z — Mip) {diag(A},i,obf,O)Ro 1/2%

+ Ai_’é/2R0_1diag(A;7i70bf’o) }Di,Obl,O]

22 — 1) {diag(A},i,obf,z-,o)Ra1A;&/2¢51

+ A 1/2R01diag(A}’i’0bf}iv())}Di70b1}0‘|
=0(n1), (ALT)
where by ;0 = fn 0 (ﬂf 0)V; (ﬂﬁo)(yi — 1;(By0)). Similarly, because of

Ey[(yi — pio) (45— ko) (Y5 — l”j,O),(yk — Hi,0)] = 0 (unless i = k), the second
term of (A1.6) is calculated as follows:

12 /
S (i — pio) A PRy ZA o/ (y5 = 10) (w5 — 10)

CA; o PRy 652 Ay’ Dy oby 0]

- 2 < ,
=—Ey lZ(y pio) Ao "Ry~ - S ALy pi0) (s — mio)
i=1 Jj=1,i#j
-Aj 1/2R0 bo 2A 1/ Dzobu}ol
+0(n™h

:—E lQZ NlO EzODzObllO +O( )
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= —2p—|—0(n_1), (A18)

Here, we define notations of summation as follows:

ZZZ

1=1 j=1
LIS
i#j i=1j=1i#j

It holds that By [(y;—#i,0) (45— #5,0)® (Y —11,0) ) (Y= Br.0) @ (Y1—p1,0))] = 0
unless the following condition:

i=j=lori=j#k=lori=l#k=jorj=1#k=1.
Thus, the third term of (A1.6) is calculated as follows:

By | S s - o) ALY "Ry'2 S ding(A.ob1) (s — )0 — )
i=1 j=1
' A;3/2R51¢52AZ§/2D17017170]
= By | Y (yi — pio) AR d1ag<Afj 0b1.0)(W; — 15.0) (Y — 150)
]
A 1/2R0 by 2A / i,0b1,0‘|
=-E, zn:(y — o) A;, 1/QRo —diag(Aj;0br0)(yi — pio)(yi — Hio)

i=1
’ A;&/2RO1¢02A;(}/2Di,0b1,0]
r1/2 12 ., . )
i
' A;é/2R61¢52AZS/2Di,Ob1j,O]
! —1/2 - 2 4 * ’
- E, [Z(yz — Miy0) Ai,o/ R; 1Edlag(Af,j,0bf,j,0)(yj — 1.0)(Y; — 1j0)
i#£j

' A;é/QRE1¢52A;é/2Di,Obli,0]

+0(n™)
=0(n ). (A1.9)
Similarly, the forth term of (A1.6) is calculated as follows:
n 2 ,
— By | Y (i — mio) Ay Ry Z A7 (g — 10)(yj — y.0)
i=1
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- diag(A} ; 0bso) Ry 652 A; /> Di by o
=0(nh). (A1.10)
The fifth term of (A1.6) is calculated as follows:

n 1/ g 2 - —1/2 f4a—1/2
-k, lZ(yz - Mi,o) Ai,O/ R, 15 Z Aj,o/ (yj - Hj,o)(yj - Hj,o) Aj,O/

i=1 j=1

{71 (By) — ¢ IRy 1A_1/2¢o 1Di,0b1,0]

=-E, zn:(y pio) A;, 1/zR_ A;(}m(yi — pio)(yi — Mi,o)/A;,ol/z
i=1
' a(é([if) brjoRy Ay 265 Dy obijo
Bs=Bs.0
~E, i:(y ~ o) A PR ZA (5 — 1i0) (w5 — i) sy
=1
. 6?%” bfﬂi)oRo_lAi’é/2¢0_1Di,Ob1i,0‘|
Br=Br.0
By | S (s - i) A7 Ry Z A5 13.0) (w5 — 1) Agg”
=1
. 3‘;{’)2” brioRy Ary > ¢y Diobujg
1=Br.0
- E, 2":(% - M,o)/A;(}/QRal% E”: A;é/Q(yj — Hj0)(Y; — N’j,O)/Aj_,é/Q
i=1 j=1
. 8(;;(5?) B bfyj,oRo 1/2% 'D; 0b1i0
=0(n1 e (A1.11)

The sixth term of (A1.6) is calculated as follows:

lQZ — i) Ay PRy A 1/2{¢<éf>—¢al}Di,ob1,o]

_ _1/20
22 — i) A PRy AL 2(6) bs.i.0Di0b1io
By s
+=Bs.0

=0(n™) (A1.12)

=L,

Furthermore, the seventh term of (A1.6) is calculated as with (3.10).

E

Yy

n
2 Z(y [J/l 0) A 1/2R0 114 1/2¢0 1Di70b1,0] = 2p (A113)

i=1
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By (A1.7)-(A1.13), (Al.1) is calculated as follows:

By [22(% - ui,o>’{2i,& - AZ-“2<ﬁf>R-1<ﬁf>Ai”2<Bf><z3—1<ﬂf>}

: (ﬂi,O - I:Lz)

=0(n1).

Thus, we have Bias2 + Bias4 = O(n™1).

A.2 Proof of Theorem 2 and Theorem 3

We prove the Theorem 2 and Theorem 3, simultaneously. In the proof of this
section, the notations used in section 3 and A.1 are used again, but with some
changes, they are redefined.

Proof. By applying Taylor’s expansion around ﬁ = By to the equation s,,, (,é) =
0,, Snm(0) is expanded as follows:

08nm(B)

op ’ﬁ:ﬁo
1 - ’ 0 6snm(/8) 3
+5{(B=B0) @I} <55 ® 8,6) ’g:g*(ﬁ - Bo)

- Snm,O - Dnm,O(Ip + Dl,O + DQ,O)(ﬁ - /60)
+ 5B Bo) ® L5 )(5 - o)

D>

(B - Bo)

Snm,0 +

=0

where 3* lies between By and B, and Snm,0 = Snm(Bo). Here, L1(8%), Dm0,
D and Dy are defined as follows:

k) i as”m(ﬁ) — - ! -1 .
Ll(IB ) - (8ﬁ 02y 8,6/ ) ‘B:ﬁ*v’Dnm,O - ;DLOFZ‘,QDL(M

n , 9
_ —1 —1
Dio=-"D,mo ; D,, (85’ @I, (ﬂ)‘ﬂzﬁ[) {I, ® (yi — pip)},

n (9 ,
_ _m—1 Y ; -1 .
D2p= Do) ( 55 © D (ﬁ)\ﬁ_ﬁo) [T, @ {T55 (wi — i)}

where I'; o = I';(Bo). By Lindberg central limit theorem, it holds that L, (8*) =
Op(nm) and B— By = Op(m/+/n). Furthermore, if R, (cag) = Ry, we have
L1(B*) = Op(nm'/?) and B— By = O,(1/+/n). Moreover, R;;* (é) is expanded
as follows:

R, (&) = R, (o) + R, () {Ru () — Ru(0)} R, () + Op(m? /).
(A2.1)

33



By Taylor’s theorem, since &g — a9 = Op(m/+/n), it holds that

| Ru(es) — Ru()]| < Ha

da © me)L_MH o = exoll = Op(m/ /),

ie, Ry(ag) — Ry(dg) = Op(m/+/n), where a* lies between o and éq. If
R, (o) = Ry, we have Ry, (cvg) — Ry(Go) = Op(1/+/n) and the third term of
(A2.1) is Op(1/n). Hence, it holds that

Dnm,O = i D;,OI‘;(}Divo
121
=Y DioA; *(Bo) R, (60) A7 (B0)D
i=1
=H,mo+ Op(m2n1/2).
Thus, by using the fact that S,.,0 = Gnm,0 + Op(m?), B is expanded as follows:

'8 ﬂO nvannm0+O ( 3/”)251,o+0p(m3/n),
where dnm,0 = Qnm (,30) AISO, since

(55 @ R0, ) ~E| 5 o ReA@@.86)| |

= Op(m/v/n),
the GEE substituted in 8y is expanded as follows:

San
= - ZDl 0 Ao PRy (o) {Ru (o) — Ru(60)} Ry (o) A (i — prio)
+ Hypo(I, + H,,\ (Bio+H, .Bso+H,, (Bs0)(3— Bo)

+ZD1 oA Ry () {Ru () — Ru(éo) YRy (@0) A7y * Dio(B — Bo)

=1

- %{(,é —Bo) @ L8104+ (L1(Bo) — S1,0)}(B — Bo)

b on (o (ol

H{(B—=Bo)® (B - Bo)}, (A2.2)

where 8** lies between 3y and 3, and S1,0 = E[L1(8o)]. We define B9, Ba,o
and Bs g as follows:

n , P _ 3
Buo= 3% (g oA, ) e AR G0A - mo),

n
/ 0
Bz,o=ZXiAi,o( ; Ai”(ﬁ)]
=1

3 ) {1 © BN @) Ay (yi — o))
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U 0 _
Buo =3 X Al o) (50 A0

i=1
Here, we calculate the rate of B .

n P
/8A o _
ElB1.0B) o lZ S x,2248) g1z g1 (60) AT s — i)

i=1 k=1

(v~ i) A Ry (@ )Ai,{f“i(mxi]

9Pk
n p /8A‘(ﬁ) 1/2 8A(,@)
— X, T2 AVZ R (G0 )Ry R () AV 2220 x
i:1; i aﬁk 3,0 *tw (ao) 0Lty (aO) %,0 aﬁk
P /8A OA,;
< m{Amax (R (é0))}2 ZZ X, Aio aﬂ(ﬂ)xi
1 k=1 k
= O(nm?).

Thus, By g = O,(n'/?m). Similarly, we calculate By o = O,(n'/?m) and Bs g =
Op(n*/?m). Furthermore, if R, () = Ro, we have By = O,(n'/?m!/?),
By = 0,(n'/?m'/?) and Bz o = O,(n'/?>m'/?). By (A2.2), we have

H,o(I, + H,,) Bio+H,, ,Boo+ H,,) ;Bs0) (8- B)

= qnm,0

+ZD20A;&”R (@0){Ru(@0) — Ru(é0) )Ry (@0)A; o * (yi — pio)

i=1

~ 3" D; A PRy () {Ru(ao) — Ru(60)} Ry (00) Ao/ 2 Ds ob1 o

=1
1 .

+ §(b1,o ® I,)81,0b10
Op(m*/\/n)

From the above, we expand ,@ — Bo as follows:

~ _ 1 3
B—Bo= Hn#z,oqnm,o + = 5 nm O(bl 0 ® I )8170b170 + HTLT}I,,O(Bl7O + B270
+ B370)H7:7}p,,0qnm,0 + hl,O + jl,O + Op(m4/n3/2),

where
J1,0
H,}!, ZDZ 0A; o * Ry (o) { Ru(a) — Ru(é0)} Ry (o) Ay

: (yi - /Ji,o),
hi

=H,,, Z D; A "Ry, (@) {Ru(cg) — Ru(éo)} Ry () A; o Dy obi o
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Denote
baoo = Hyp o(Bio + Bao + B3.0) Hyp, 0nm. 0,
bso = H,,} (b ®I,)S10b10/2 + k1o + j10.

Note that above by is different from by ¢ in section 3, and the sum of above
byo and b3 is equal to by ¢ in section 3. Hence, we have

B —Bo=big+bag+bso+ Oy(m*/n*?) (A2.3)
Note that, by o = Op(m/y/n), ba o = Op(m?/n) and bz o = O,(m?/n). Further-
more, if R, (ag) = Rp, we have

B —Bo =bio+bag + bz + Op(m?/n/?),

where by o = O,(1/y/n), bao = Oy(m/n) and bs g = O,(m/n).
We calculated the asymptotic bias of the PMSEG as follows:

Bias = PMSE — E,[£(8, 8;)]
= {Riskp — E,[£"(B)]} + {Ey[£*(8)] — E, [£"]}

+{By[L£7] = By [L(B))]} +{E,y[L£7(B))] — By [£(B, 8))]}
= Biasl + Bias2 + Bias3 + Bias4

We evaluate Biasl, Bias2, Bias3 and Bias4 separately.
Biasl is expanded as follows:

Biasl
=Ey |E: [ f1i) Big (2 — i) Z(?Jz — i) B0 (yi — i)
1=1 i=0
n
:Ey E. [Z i,0 T Hio — I«Lz) 2171( i_Ni,0+”i,0_lli)
=1
- Z(yz — a0+ pio — i) B0 (Yi — pio + Mio — 1)
i=1
=E. | Y (2 — o) Tig(zi — pio) | + By | D (io — ) ig (pio — faa)
i=1 i=1
—Ey | D (i — pi0) Big (i — mio) | = 2By | D (9 — pio) Sig (ka0 — fa)
i=1 i=1
- E, Z(Hi,o — ;) 2;&(ui,o — ;)
i=1
= 2B, Z(yi - Hi,o)lzi_,é(ﬂz’ — i) (A2.4)
i=1

Since fi1; is the function of ,C:L by applying Taylor’s expansion around B = Bo,
fu; is expanded as follows:

i — Hi0
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_ o (B)

- 6/3/ ,3:,30(18 _/60)
Lo a ' 9 _ opi(B) 3
+§{(ﬁ—50) ® I} (8[3® o3 ) ’ﬁ:ﬁo(ﬁ—ﬁo)
1.4 ' 0 0 _ 0pi(B)
+6{(5—ﬂ0) ®Im}{aﬁf® (8ﬂ® 93 )} o

H{(B-Bo)®(B-Bo)}
= Dio(B - Bo) + 5{(B~ Bo) @ L} DB~ Bo) + Op(m™/2/??) (A2.5)

where 3*** lies between 3y and B, and DE}O) is defined by

w_(9 op.
D) = (8ﬂ ®D2(6)> )ﬁ:ﬁo.

By substituting (A2.3) for (A2.5), we can expand fi; as follows:

N 1,
i — i 0 = Di’o(b170 + bg,o + b3,0) + §(b1’0 & Im)Dz(,lo)bl,O + Op(m7/2/n3/2).

(A2.6)
By using (A2.4) and (A2.6), we get the following expansion:
1_. n fa 1A
§B1a31 =E, Z(yi = i) ;o (i — pio)
i=1
=E, lZ(yz - Ni,o),ziéDi,Obl,O]
=1
+Ey Z(yz - Hi,o)/zi,&Di,Obz,o]
Li=1
n
+ By Z(yi — Mio) EZéDi,obs,o]
Li=1
+By [ (g — pio) Big(by o ® Immg}gbl,ol
Li=1
+ E,[0,(nY2m/?)). (A2.7)

Same as Inatsu and Sato [9], the first term of (A2.7) is calculated as follows:
Ey [Z(yz - Ni,O)/Ei,&Di,Obl,O] =p.
i=1

Since the data from different two subjects are independent, we calculate the
second term of (A2.7) as follows:

n
E, lZ(yz — Hio) ZgéDi,ObQ,o]

i=1
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n

(i — ko) =i DioH,,

nm,0
=1

n
-1
—tI‘<Z an an zO‘fzoDl(J)

=Ey GoH,,,, oD, oV, (yi — pio)

where Gy = By + B2+ Bso. If R, () = Ry, the second term of (A2.7)
is O(m?/n). Similarly, the orders of the third and the forth term of (A2.7) are
evaluated as follows:

n

Z — i) Di70b3,0

=O0(m"?/n)

n

Z ~ Hio) (blo®I )Dflol’w] = O(m*?/n).

Furthermore, if R,, (o) = Ry, the order of the third term of (A2.7) is O(m?3/2 /n)
and the order of the forth term of (A2.7) is O(v/m/n). Under the regularity
conditions, the limit of expectation is equal to the expectation of limit. Fur-
thermore, in many cases, a moment of statistic can be expanded as power series
in n~! (e.g., Hall [5]). Therefore, we obtain

Biasl = 2p + O(m"/%/n).
If R,(cg) = Ry, we have
Biasl = 2p + O(m3/?/n).

Similarly, we calculate Bias2 + Bias4. Now, Bias2 and Bias4 are expressed
as follows:

Bias2 = E,[L*(B8)] — E,[L"(B0)]

n n
=By | Y (i — ) Sy (yi — ) — Y (i — pi0) Sig (i — pio)
=1 =1
=Ey 22(% — pio) Big (pio — i)
=1
+ Ey Z(Hz‘,o — i) T (pio — i) |
=1

Biasd = E, [ﬁ(ﬁo, Bf)} ~E, [ﬁ(B, Bf)}

:Ey

> (yi — wio) ATV2BHRTN B AT (Br) (yi — i) b 1@)]

i=1

~E, [Z@i — ) ATBHRT (B A (Br) (yi — m)é*(ﬁ»]

=1
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“ By | D (o — ) AT (B RN B) AT (By)
(M0 — ﬂz)él(/éf)‘| :

Hence, Bias2 + Bias4 is
Bias2 + Bias4

~E, 22 — o) { B0 — ATVABORTBAT (Bé T (By) |
(i — i) (A2.8)
+E, Z(u — i) {3 - AT PBO R B A B By
“(Hi0 — 1) |- (A2.9)

Then, we perform the stochastic expansion of AZ._1/2(Bf)7 Rfl(ﬁff), ui(Bf),ﬁf
and ¢(By). The expansion of ,éf is as follows:

Br —Bro=H;}\ @rnm(Bro) + Op(m®/n) = by + Op(m?/n),

where By, is the true value of B¢, by = Hf,rllm,oqf,nm(:@f,o)a

a5.nm(By) = ZDL (Br)Vi (B, 0up0) (i — 1i(By),

ag is the hmltlng value of a correlation parameter in the full model and
Dyi(Br) = Ai(Br)Ai(By) Xy Here, Hpnm o is

Hf,erO_ZszoAlO/zR_ (afp)A; /2 Dy.i0,
=1

where Dy ;o0 = A;0Q;0Xy,; and Ri_l(af) is a working correlation matrix
which can be chosen freely including a nuisance correlation parameter ay. Fur-
thermore, if R, () = Ry, we have

B = Bro = Himo8snm(Bro) + Op(m/n) = bro + Oplm/n).
Thus, we can expand p;(3 ¢) as follows:

pi(By) — tio = Dyiobso + Op(m™?/n).
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If R,(ag) = Ry, we have

wi(Bs) — pio = Dyiobyso+ O0p(m?/?/n).

Furthermore, ay;(8y) is the m-dimensional vector consisting of the diagonal
components of A;&ﬂ(ﬁf), ie., diag(ay:(By)) = Ai_l/z(,@f). Then, we can
perform Taylor’s expansion of a fl(/éf) around Bf = By, as follows:

ayri(Br) =ayi(Bro) + A} iobro+ Op(m?®/n),

where

0
A* . = —Qf; .
10 = 57 % B1)l4, s,

Therefore, we can expand A;l/ 2 (Bf) as follows:

ATV2(By) = diag(ayi(By) = A;y/? + diag(A%, gbyro) + Op(m?/n).

Note that byo = Op(m/y/n), Dyiobro = Oy(m®?/y/n) and diag(A}, zby.0)
= Op(m/\/ﬁ) If Rw(ao) = Ro, we have bfo = 0 (1/f) szObe =
Op(v/m/+/n) and diag(A%} ; ybr0) = Op(1/y/n). Moreover, we can expand o(By)

as follows:

3(Br) = o + Op(m/V/n).

Furthermore, same as Inatsu and Sato [9], R_l(,@f) is expanded as follows:
R'(By)

_ _ 1~ - 12,
=R, + Ry 1{R0 n > AP (yi = pi0) (Wi — mi0) Ay Pop !

i=1

R .
- Z diag(A7}; 0br.0)(Yi — wio)(Yi — 1i, 0) A 1/2%

i=1

1 _ ’. % _
-=> Ai,3/2(yz' — i 0) (Y — pip) diag(AF,; obro)og

n

1 - - A _ _
== AL - o)y — mio) AP (07 (By) - o) Ry
O,(m?/n). (A2.10)
Note that the second term of (A2.10) is Op(m/y/n). Then, we have

L= ATVBRTNBr) AP (Br)d N (By)
- Ef(} — {A 1/2 + dlag(Afl oby, 0)}

) 1 .
R;' + Ry {RO “n Z Ao (i — i0) (i — mio) Ao g5

=1
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RN . V1
- > " diag(A7; 0byo) (i — pio)(yi — tio) Ai,3/2¢0 !
i=1

- Z A_l/2 — 1i0) (i — o) diag(A},; 0bro)dg

i=1

- ZA;,ol/Q(yi — pio) (i — pio) A (<13 Y(By) - ¢01)}R01]

A7 + diag(AG, 0bro) Hog !t + (671 (By) — dp )}

+ Op(mg/n)
= —diag(A},i,obf70)Ro i &/2% - Ay, é/QRaldiag(A’]z)mbm)(éal
_ _ 1 B
— AR 1{R0 0 Z Ao (i — o) (wi — mio) Ar 05"
i=1
Ly~ " 1/2
- Zdlag(Af,i,obf,O)(yi — pio)(Ys — i, 0) %
=1
1 n B - ) .
T Z Ai,&/z(yi — 1i,0)(Yi — pio) diag(A%; obyo)dg 1
i=1
I e— ,_ )
D AP i) — i) A6 (Br) — 00 ) [ Ry A ey
i=1
— A 1/2R61Ai—1/2{¢3_1(6f) —¢61}
P(m /n)7

where 3§ — A7 (B R (B) A7 (B7)a(By) = O, (m)/v/n) and fui —pi0 =
D, oby o = O,(m3/2/\/n). Then, (A2.9) is calculated as follows:

n

S o — i) {Ei0 - AT BORBAT (B (B}

i=1

E,

“(Ki0 — i)
=E, [Op(mél/\/ﬁ)}
= O(m*/n).
Furthermore, if R,,(ag) = Ry, we have
0 — AP BORT(BAT (BB = 0,(1/ V),

and f1; — pi0 = D;ob1,0 = Op(v/m/y/n). Thus, the order of (A2.9) is O(m/n).
In addition, we calculate (A2.8).

[22 ~ i) {z;g—A;“?(ﬁﬂR1<Bf>A;”2<Bf>¢31(@)}

- (mi0 — i)
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:Ey

2 " (yi — pio) {diag(A;,i,obf,())Ra1A;&/Q¢al

i=1

+ A;,(}/zRE1diag(A},i,obf,O)¢51 }Di,obm]

- By i(y —pio) Ay Ry = ZA o (w5 — 1.0)(y; — o)
i=1
A 1/2R0 b2 A;, 0/ i,0b1,0‘|
~E, i(y — pio) AR Z diag(AF ; 0by.0) (¥ — tj0)(Y; — Kj0)
i=1 ] 1
CA; 1/2R0 lox 2Al 0 i obl,ol
B | S o) AL "Ry S ALy — )y — )
i=1 j=1
- diag(A} obro) Ry 105 2A; o/ 2Dl,obl_,o}
B> - o) ARy S ATy - )~ o) A7
i=1 j=1
{1 (By) - ¢51}R61A;()1/2¢61Di,0b1,0]
+E, |2 fj( — mio) Ajo PRy AL {671 (By) - qsal}Di,obl,o]
=1
+Ey 2i<y pio) A7 PRGVA 295 Dygbo | + O(m/n). (A2.11)
i=1

Note that E[(y;, — t1,0) ® (45 — 115.0) (Yr — pr.0)] = Oy (00t i = j = k), so we
can expand the first term of (A2.11) as follows:

22 ”’LO {dlag(Aszbf O)RO lA’L (}/2¢0_1

+ A, 1/2Ra1diag(A}7i,0bf,0)¢al }Di,()bl,()]

22 ~ i) {diag(A},i,obf,i,())RalA;&%a1

+ A 1/2Raldiag(A}7i70bf,i7o)¢a1}owLo]

= O(m*/n), (A2.12)
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where by ; o = Hﬁim,oD},i(ﬁf,o)‘/fl(ﬁf,o)(yi—ﬂi(ﬁf,o))- Moreover, if R,, ()
= Ry, the order of the first term of (A2.11) is O(m?/n). Similarly, since E,[(y;—

wio) (yi — 15.0)(y; — t5.0) (Ye — pro)] = 0 (unless i = k), the second term of
(A2.11) is expanded as follows:

n

_ 12 _ /
> (i — pio) ARy ZA o/ (Y5 — 10) (95 — 1i0)

i=1

_Ey

'A_1/2R0 ¢02A:&/ i,Obl,O]

n 1 5 2 n 1 2 ,
=-E, [Z(y pio) A; o *Ry ln S AL - 10y — 1io)
i=1 Jj=1,i#j
CA; o PRy 052 A; )’ Dy oby; 0]

+0(m* /n)

22 — M) EzoDzobuo

+0(m* /n)

=2+ O(m4/n), (A2.13)

where by; 0 = Hnm oDz oVio Y(y; — pio) = Op(m/n). If R, (cp) = Ry, we have

n 2 ,
> (i — pio) Ary "Ry Z Ao (w5 = 10) (w5 — 10)
i=1

_Ey

AR AL QDZ-,obl,o}
= —2p+ O(m?/n).

It holds that E,[(y; — Mi,o),(yj -

M0 @ Yr — .u';c,())(yk — o @Y — o) =0
unless the following condition:

i=j=lori=j#k=lori=l#k=jorj=1l#k=1.
Thus, the third term of (A2.11) is calculated as follows:

n

— By | Y (i — pio) Ary°R Zdlag A3 obro) (s — 10) (Y — i.0)
i=1 ] 1
-A; 1/2R0 by 2A;0/ i,0b1,0‘|

= By | Y (i — pio) Ary 2R0 —diag(Aj ;0bs.0)(¥; — 10) (Y5 — Bi0)

4]

- A 1/2R0 bo 2A10/ i,0b1,0‘|
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’

’ _ _ 2 . %
> (i — o) ARy 15dlag(Af,i,obf,0)(yz‘ — 1i,0)(Yi — i)

A7 1/2R_ by 2A;[,/ i,0b1,0‘|
- E, lZ(y pio) Ay’ R dlag(AfJ 0b£:.0) (Wi — 15,0) (Y5 — tj0)
it
A 1/2R0 ¢ A, o/’D i,ob1j70]
- E, lZ(y 1io) A;, 1/230 diag(Aj ;0by.j.0) (Y5 — 1j0) (Y5 — o)
it
-A; 1/2R0 by 2A 1/ D; obu,o]

+ O(m*/n)
= O(m*/n). (A2.14)

If R,(cp) = Ry, the order of the third term of (A2.11) is O(m?/n). Similarly,
the forth term of (A2.11) is expanded as follows:

~ / — _ 2 n — ’
— By | Y (i — pin) Ay ° Ry 15 ST A P (s — w0) (s — mi0)
i=1 j=1
- diag(A%}; obr.0) Ry ' 652 ALy 2Dz,obl,o}
= O(m*/n). (A2.15)

If R, () = Ry, the order of the forth term of (A2.11) is O(m?/n). The fifth
term of (A2.11) is calculated as follows:

n
_ .2 _ ;o
—Ey[Dy pio) Ay "Ry ZA o 2y — 150) (w5 — 1j0) Ay

=1

Ao HBs) — ¢5 IRy, 1/2¢01Di,0b1,o]

= By | S~ i) Ay PRy S A~ o) (i o) AL
i—1
d¢ 1 a—1)2
' g(ﬁﬂf) byjoR, 1Ai,3/2¢0 'D; ob1j0
f Br=Bs,0
- 1/2 2 1/2 ro1)2
-k, Z(Z’Jz - ll'i70) i, 0/ Ry ! ZAJ 0/ — 15,0)(Y; — Kj0) Aj,é/
i=1
a0
: g(gﬂf) brioRyA;, 1/2¢01Di,0b1i,0]
! Bs=Bs.0
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- ;o 12~ . _
- B, Z(?/z‘ — Hio) Ai,()1/2R0 15 Z Aj,é/Q(yj — 10)(Y; — 1y, 0) A 3/2
i=1 j=1
D¢ L1 a—1)2
¢(ﬁf) bf77j7OR0 1Ai 3/2(250 1Di,0b1j70
0By _ ’
Br=Brs.0
" 2 ;o
—Ey | Y (i — mio) Ay "Ry ZA (s — 15.0)(y; — i) Az
i=1
54
. ¢(13f) b I ORO 1A 1/2¢0 1Di,0b1i,0
0By _
Bf=Br¢,0
_ O(m4/n) (A2.16)

The sixth term of (A2.11) is calculated as follows:

[22 Mo 1/2R01A 1/2{¢( By) — ¢01}Di,0b1,01

=E,

n _ _ B 8A
2§: — o) Ay PRy ALY g(ﬁf) bs.ioDiobiio
L -
f=Pf0

= 0(m?/n) (A2.17)

Furthermore, the seventh term of (A2.11) is calculated as follows:

2 Z — M, 0 1/2R0 1A;3/2¢01D1‘70b110‘| = 2p (A218)

y (A2.12)-(A2.18), (A2.8) is calculated as follows:
lzz ~ pig {z;& - A;”Q(BHR1<Bf>A;”2<Bf>a%1(@)}

(i — f1i)

= O(m*/n).
If R, (o) = Ry, the order of (A2.8) is O(m?/n). Thus, we have
Bias2 + Bias4 = O(m*/n),

If R,(cg) = Ry, we have Bias2 + Bias4 = O(m?/n). From the above, the bias
is expanded as follows:

Bias = 2p + Bias3 + O(m*/n).
If R,(ag) = Ry, the bias is expanded as follows:
Bias = 2p + Bias3 + O(m?/n).

Note that Bias3 does not depend on the candidate model. If we ignore Bias3,
the asymptotic bias of the PMSEG goes to 0 with the rate of m*/n or faster.
Furthermore, if we use the true correlation structure as a working correlation,
the asymptotic bias of the PMSEG goes to 0 with the rate of m?/n or faster. [
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