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We study the improvement of an effective potential by a renormalization group (RG) equation in a
two real scalar system. We clarify the logarithmic structure of the effective potential in this model.
Based on the analysis of the logarithmic structure of it, we find that the RG improved effective
potential up to Lth-to-leading log order can be calculated by the L-loop effective potential and
(L + 1)-loop β and γ functions. To obtain the RG improved effective potential, we choose
the mass eigenvalue as a renormalization scale. If another logarithm at the renormalization
scale is large, we decouple the heavy particle from the RG equation and we must modify the
RG improved effective potential. In this paper we treat such a situation and evaluate the RG
improved effective potential. Although this method was previously developed in a single scalar
case, we implement the method in a two real scalar system. The feature of this method is that
the choice of renormalization scale does not change even in a calculation of higher leading log
order. Following our method one can derive the RG improved effective potential in a multiple
scalar model.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction
Effective potentials improved by a renormalization group (RG) equation are widely applied in particle
physics. In Refs. [1–6], the stability of an electroweak vacuum is studied through the evaluation of
the RG improved effective potential on the high-energy scale. In addition, using the RG improved
effective potential, the authors of Refs. [7–18] investigate the possibility that spontaneous symmetry
breaking is realized by quantum correction to the effective potential. In this way, the RG improved
effective potential is frequently utilized.

There has been a great deal of research into the RG improvement of the effective potential since a
study by Coleman and Weinberg [7]. In Refs. [19–21], the RG improved effective potential in a single
field is derived. If utilizing the RG invariance of the effective potential, the renormalization scale µ is
set as a field-dependent mass M (φ, µ); the logarithm log(M (φ, µ)2/µ2) becomes zero. In that case,
the logarithmic perturbative expansion of the effective potential including (log(M (φ, µ)2/µ2))L

at the L-loop level is stable because of log(M (φ, µ)2/µ2) = 0. This is an essential point for the
construction of the RG improved effective potential. If the theory includes multiple fields, the sit-
uation is not so simple. Taking M (φ, µ) as a renormalization scale, one cannot guarantee that the
logarithm log(M ′(φ, µ)2/µ2) coming from another field is always small. If the logarithm is large,
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it leads to the breakdown of the perturbative expansion for the effective potential. In Refs. [22–
26], the methods of solving such a problem are studied. The methods are classified into two
types. In Refs. [22–24], multiple renormalization scales are introduced and each logarithm is sup-
pressed by the multiple renormalization scales. On the other hand, the decoupling theorem [27]
is applied in Refs. [25,26]. If a large logarithm appears in the calculation of the effective poten-
tial, the heavy particle is decoupled. Since the remaining logarithm is only one of a light field,
the calculation of the RG improved effective potential is the same as the method explained in
the single field case. Note that these methods are applied to theory including only a single scalar
field.

If multiple scalar fields are introduced, the analysis of the RG improved effective potential is
complicated because the masses appearing in the logarithms depend on multiple classical back-
ground fields such as M (φ1, φ2). The problem is addressed in Refs. [28–30]. In Ref. [28], the RG
improved effective potential is calculated with the introduction of the multiple renormalization scale.
In Ref. [29], which extends the method of Ref. [26], a step function for the automatic decoupling
of a heavy particle is introduced in the effective potential. Moreover, effective action is analyzed to
take wavefunction renormalization into account. In Ref. [30], a new method is suggested. The guid-
ing principle for the method is to choose the renormalization scale so that the total loop correction
vanishes. In Ref. [31] the RG improved effective potential in classical conformal theory is analyzed
based on the method of Ref. [30]. In the present paper, we also approach the problem for the RG
improvement of the effective potential.

In this paper, extending the method of Ref. [25], we construct the RG improved effective potential
in a two real scalar theory. Since the method of Ref. [25] is based on the analysis of the logarithmic
structure of the effective potential, we derive the expression of the effective potential expanded with
respect to all the logarithms appearing in a two real scalar system. Based on the analysis of the
logarithmic structure of the effective potential, we choose the field-dependent mass eigenvalue as a
renormalization scale so that one of the logarithms vanishes. If another logarithm at the renormal-
ization scale is small enough to be perturbative, the RG improved effective potential is calculated
with the choice of the renormalization scale. If the logarithm is large, we absorb the logarithm into
the new parameters defined in the low-energy scale and decouple the heavy particle from the theory.
Since the logarithm to be considered is only one of a light particle, we can easily evaluate the RG
improved effective potential. The advantages of this method are as follows. First, since this method
is based on the logarithmic structure of the effective potential at any loop order, the choice of the
renormalization scale does not need to be changed even at higher loop order. Second, we can derive
the RG improved effective potential without introducing multiple renormalization scales or a step
function for the decoupling. Finally, we can easily implement the decoupling theorem by expanding
the effective potential coming from quantum correction with respect to φ2/m2 (φ2 = φ2

1 + φ2
2 , m:

decoupling scale).
This paper is organized as follows: In Sect. 2, we clarify the logarithmic structure of the effective

potential and investigate the choice of the renormalization scale. In Sect. 3, the massless theory is
treated and the RG improved effective potential is calculated based on the analysis of Sect. 2. In
Sect. 4, we consider the massive model. In this section, we face a situation in which a large logarithm
occurs. We decouple the heavy particle and construct the RG improved effective potential on the
low-energy scale. In Sect. 5, we summarize the procedure of RG improvement in a multiple scalar
model and discuss applications to other models. In Appendix A, the β and γ functions at the 1-loop
level are given.
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2. Logarithmic structure of effective potential and RG improvement
In this section, we clarify the logarithmic structure of the effective potential based on Ref. [25]. We
then consider the choice of renormalization scale for the RG improvement of the effective potential.
For a more specific explanation, we consider a two real scalar system as an example. The Lagrangian
is given as follows:

L = 1
2
(∂σ )2 + 1

2
(∂χ)2 − m2

1
2

σ 2 − m2
2

2
χ2 − λ1

4! σ
4 − λ2

4! χ
4 − λ3

4
σ 2χ2 − (. (1)

We suppose that this model has Z2 × Z2 symmetry: σ → −σ and χ → −χ . Following Ref. [25],
we factor out a coupling constant 1/λ1 from the Lagrangian1

L = 1
λ1

(
1
2

{
∂(
√

λ1σ )
}2 + 1

2

{
∂(
√

λ1χ)
}2 − m2

1
2

(
√

λ1σ )2 − m2
2

2
(
√

λ1χ)2

− 1
4!(
√

λ1σ )4 − λ2/λ1

4! (
√

λ1χ)4 − λ3/λ1

4
(
√

λ1σ )2(
√

λ1χ)2 − λ1(

)
. (2)

Next, we shift the fields (σ , χ ) by classical background fields (φ1, φ2), respectively:

σ → φ1 + σ ,

χ → φ2 + χ ,

and then redefine the quantum fields
√

λ1σ and
√

λ1χ as σ and χ , respectively. After the shift and
the redefinition, the Lagrangian becomes

L = 1
λ1

(
1
2
(∂σ )2 + 1

2
(∂χ)2 − M 2

1
2

σ 2 − M 2
2

2
χ2 − M 2

3 σχ

− x1

3!σ
3 − x2y1

3! χ3 − y2

2
(x2σ + x1χ)σχ

− 1
4!σ

4 − y1

4!χ
4 − y2

4
σ 2χ2 − λ1V (0)

)
, (3)

where mass parameters (M 2
1 , M 2

2 , M 2
3 ), cubic coupling constants (x1, x2), and quartic coupling

constants (y1, y2) are introduced as follows:

M 2
1 = m2

1 + λ1

2
φ2

1 + λ3

2
φ2

2 ,

M 2
2 = m2

2 + λ3

2
φ2

1 + λ2

2
φ2

2 ,

M 2
3 = λ3φ1φ2,

x1 =
√

λ1φ1, x2 =
√

λ1φ2,

y1 = λ2

λ1
, y2 = λ3

λ1
,

1 In this paper, we assume that all the quartic coupling constants are comparable to each other (O(λ1) ∼
O(λ2) ∼ O(λ3)) and perturbative. Under this assumption, the choice of λ1 does not affect the final expression
(28). That is to say, factoring out λ2 (or λ3) replaced by λ1, one obtains the same result (28).
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PTEP 2019, 043B03 H. Okane

and V (0) is a tree-level effective potential:

V (0) = m2
1

2
φ2

1 + m2
2

2
φ2

2 + λ1

4! φ
4
1 + λ2

4! φ
4
2 + λ3

4
φ2

1φ2
2 + (. (4)

From the rewritten Lagrangian (3) and the tree potential (4), we can find that the theory is described
by the following parameters:

mass parameters : M 2
1 , M 2

2 , M 2
3 , (5)

cubic coupling constants : x1, x2, (6)

quartic coupling constants : λ1, y1, y2, (7)

constant term : (. (8)

Moreover, since it is inconvenient for the mass matrix not to be diagonal, we rotate the mass matrix
by introducing new states (σd and χd) and mixing angle (θ ):

(
σ

χ

)

=
(

cos θ − sin θ

sin θ cos θ

)(
σd

χd

)

, tan(2θ) = 2M 2
3

M 2
1 − M 2

2
,

and then the mass matrix is diagonalized:

(
σ χ

)(M 2
1 M 2

3
M 2

3 M 2
2

)(
σ

χ

)

=
(
σd χd

)(M 2
+ 0

0 M 2
−

)(
σd

χd

)

,

where the mass eigenvalues are

M 2
± = 1

2

(
M 2

1 + M 2
2 ±

√
(M 2

1 − M 2
2 )2 + 4M 4

3

)
.

For later discussion, the coordinate (φ1, φ2) is translated to the polar coordinate (φ, β):

φ2 = φ2
1 + φ2

2 , tan β = φ2

φ1
. (9)

From now on, the mass eigenvalues and the effective potential are written with the polar coordinate
(φ, β).

At this stage, we can replace the three mass parameters (M 2
1 , M 2

2 , M 2
3 ) in Eq. (5) by mass eigenvalues

(M 2
± ) and mixing angle (θ ). Namely, the model is described in terms of the following parameters:

mass eigenvalues : M 2
± , (10)

mixing angle : θ , (11)

cubic coupling constants : x1, x2, (12)

quartic coupling constants : λ1, y1, y2, (13)

constant term : (. (14)

This information is so important that using these parameters we can write down the effective potential
at the L-loop level as

V (L) = λL−1
1 M 4

−

[
function of log

(
M 2

−
µ2

)
, log

(
M 2

+
µ2

)
, P
]

, (15)
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where P is the generic term of (p1, . . . , p7):

p1 = M 2
+

M 2
−

, p2 = θ , p3 = x2
1

M 2
−

, p4 = x2
2

M 2
−

, (16)

p5 = y1, p6 = y2, p7 = λ1
(

M 4
−

. (17)

Let us explain why the L-loop effective potential can be written as Eq. (15). Since λ1 can be treated
like an ! in front of the action, the L-loop effective potential is proportional to λL−1

1 . The part in
the square brackets [· · · ] in Eq. (15) is dimensionless because M 4

− is extracted as a dimensionful
part of V (L). So since we introduce dimensionless parameters (p1, . . . , p7) based on Eqs. (10)–(14),
the part in the square brackets [· · · ] can be written in terms of two logarithms (log(M 2

−/µ2) and
log(M 2

+/µ2)) and dimensionless parameters (p1, . . . , p7).
As is well known, since the L-loop effective potential V (L) contains the Lth power of the logarithm

at most, one can express V (L) with respect to log(M 2
−/µ2) and log(M 2

+/µ2):

V (L) = M 4
−

λ1

L∑

l=0

L−l∑

k=0

λl
1v(L)

L−(k+l),k(P)sL−(l+k)
1 sk

2, (18)

where, multiplying each logarithm by λ1, we define s1 and s2:

s1 = λ1 log
(

M 2
−

µ2

)
, s2 = λ1 log

(
M 2

+
µ2

)
.

Finally, by summing up V (L) from L = 0 to L = ∞, we obtain the total effective potential expressed
in terms of s1 and s2:

V =
∞∑

L=0

V (L) = M 4
−

λ1

∞∑

l=0

λl
1fl(P, s1, s2), (19)

fl(P, s1, s2) =
∞∑

L=l

L−l∑

k=0

v(L)
L−(l+k),k(P)sL−(l+k)

1 sk
2. (20)

In this expression the power of λ1 gives the order of the leading log-series expansion. In this sense,
fl means the lth-to-leading log function of the effective potential.

Next, we consider the choice of renormalization scale. As is well known, the effective potential
satisfies the RG equation

DV = µ
d

dµ
V = 0, (21)

where the RG differential operator is given as

D = µ
d

dµ
= µ

∂

∂µ
−
∑

X

γX X
∂

∂X
+
∑

Y

βY
∂

∂Y
, (22)

where

γX = −µ

X
dX
dµ

, βY = µ
dY
dµ

,
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X = m2
1, m2

2, (, φ1, φ2, Y = λ1, λ2, λ3. (23)

These specific β and γ functions are given in Appendix A. We can then obtain the solution of the
RG equation as

V (φ, β, Q; µ2
0) = V

(
Ḡ(t, β)φ, β, Q̄(t); µ2

0e2t), (24)

where we use a shorthand notation Q(= m2
1, m2

2, λ1, λ2, λ3, () and introduce t to express the
renormalization scale µ2 as µ2(t) = µ2

0e2t . Also, Ḡ(β, t) is defined as

φ̄1(t)2 + φ2(t)
2 =

(
exp

[
−2

∫ t

0
dsγ̄φ1(s)

]
cos2 β + exp

[
−2

∫ t

0
dsγ̄φ2(s)

]
sin2 β

)
φ2

≡Ḡ(β, t)2φ2. (25)

However, because of γφ1 = γφ2 = 0, from now on, we set Ḡ(β, t) = 1. Q̄(t) is the solution of β or
γ function and satisfies an initial value Q at an initial renormalization scale µ2

0 or t = 0. The RG
solution of Eq. (24) for the effective potential means that it is independent of the renormalization
scale t. Since we can freely choose the renormalization scale, we look for the best choice of it. Let
us take the renormalization scale as follows:

µ2 = M̄−(t)2. (26)

Since this choice leads to s̄1(t) = 0, the RG improved effective potential expressed with Eq. (19)
becomes

V = M̄−(t)4
∞∑

l=0

λ̄1(t)l−1fl(P̄, s̄1 = 0, s̄2),

where from Eq. (20)

fl(P̄, s̄1 = 0, s̄2) =
∞∑

L=l

v(L)
0,L−l(P̄)s̄L−l

2 .

Here, if we assume s̄2 ! O
(
λ̄1
)
, one gets the lth-to-leading log function:

fl(P̄, s̄1 = 0, s̄2) = v(l)
0,0(P̄) + O

(
λ̄1
)

. (27)

If s̄2 ! O
(
λ̄1
)

and we would like to evaluate the effective potential up to Lth-to-leading log order,
the expression is written as

V = M̄−(t)4
L∑

l=0

λ̄1(t)l−1fl(P̄, s̄1 = 0, s̄2)

∣∣∣∣
s̄2!O

(
λ̄1

)

= M̄−(t)4
L∑

l=0

λ̄1(t)l−1v(l)
0,0(P̄)

∣∣∣∣
µ2=M̄ 2

−
+ O

(
λ̄L

1
)

=
L∑

l=0

V (l)(φ, β, Q̄(t); µ2
0e2t)

∣∣∣∣
µ2=M̄ 2

−
+ O

(
λ̄L

1
)

. (28)
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We notice that the term of O
(
λ̄1
)

in Eq. (27) contributes to the effective potential beyond the Lth-to-
leading log order. Note that the RG improved effective potential is exactly correct up to Lth-to-leading
log order only if the RG equations for the parameters are solved up to the (L + 1) loop level. In
summary, if one prepares the L-loop effective potential and (L + 1)-loop β and γ functions, one
can construct the RG improved effective potential (28) up to Lth-to-leading log order for the case of
s̄2 ! O

(
λ̄1
)
.

We comment on the variables of the effective potential. Originally, the effective potential has three
variables (φ, β, t). However, now that µ(t)2 is taken to be equal to M̄−(φ, β, t)2, these variables are
related. In our paper, we show that we can solve µ(t)2 = M̄−(φ, β, t)2 analytically with respect to
φ and construct the RG improved effective potential by using the solution of φ.2

Since the above prescription is correct only in the case of s̄2 ! O
(
λ̄1
)
, we must consider the

method of the RG improvement for the case of s̄2 > O
(
λ̄1
)
. In that case, as seen from the logarithm

log
(
M̄+(t)2/M̄−(t)2) of s̄2, the relative magnitude of the mass eigenvalues is large. In such a case,

we make use of the decoupling theorem [25]. The decoupling of the heavy particle means that the
logarithm of the particle is absorbed into the parameters defined in the effective theory. The remaining
logarithm is only one of a light particle. If the theory includes only a single logarithm, by setting the
renormalization scale as the light mass, the RG improved effective potential can be calculated. We
discuss this situation more specifically in Sect. 4.

3. RG improved effective potential in a two real scalar system (massless case)
We specifically calculate the RG improved effective potential by the method constructed in Sect. 2.
In this section we treat the two real scalar model without mass parameters. The procedure for the
construction of the RG effective potential is as follows. Because of taking the renormalization scale
as µ2

0e2t = M̄−(t)2, we solve it with respect to φ. Substituting the φ into the mass eigenvalue M 2
+

and the effective potential, we can evaluate log(M̄+(t)2/M̄−(t)2) and the effective potential. If the
logarithm is small enough for s̄2 to be of the order of λ̄1, we can use the expression of Eq. (28) as
the effective potential up to Lth-to-leading log order.

In order to obtain φ with µ2
0e2t = M̄−(t)2 satisfied, we solve it in terms of φ. In the present model,

the mass eigenvalues M 2
± are written as

M 2
± = φ2

4

(
(λ1 + λ3) cos2 β + (λ3 + λ2) sin2 β

±
√(

(λ1 − λ3) cos2 β + (λ3 − λ2) sin2 β
)2 + 16λ2

3 sin2 β cos2 β

)

≡λ± (β)φ2.

So we can easily obtain φ from µ2
0e2t = M̄−(t)2:

φ2 = µ2
0e2t

λ̄−(β, t)
. (29)

2 Moreover, note that although the dimensionless parameters P are introduced for the derivation of the
logarithmic structure of the effective potential, the final expression is written in terms of the parameters Q.
Namely, we do not use the dimensionless parameters P but the parameters Q for the calculation of the RG
improved effective potential (28) .
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PTEP 2019, 043B03 H. Okane

Fig. 1. A contour plot of log(M̄ 2
+/M̄ 2

−) in the regions of β ∈ (0, π) and t ∈ (−10, 0). We take λ1 = 0.7,
λ2 = 0.5, λ3 = 0.2, and φ = 10 at µ2

0 = M 2
− as an initial condition.

As mentioned above, now φ is not the variable of the effective potential and is determined by β and
t. The φ appearing in the mass eigenvalue M̄ 2

+ and the effective potential is calculated with Eq. (29).
The logarithm of s̄2 is written as

log
(

M̄+(t)2

µ(t)2

)∣∣∣∣
µ(t)2=M̄−(t)2

= log
(

λ̄+(β, t)

λ̄−(β, t)

)
, (30)

where φ is canceled out because of the massless model. At this stage we assign initial values of (λ1,
λ2, λ3) for performing the numerical calculation. Taking λ1 = 0.7, λ2 = 0.5, λ3 = 0.2, and φ = 10 at
µ2

0 = M 2
−, we calculate log(M̄+(t)2/M̄−(t)2) for the range of β ∈ (0, π) and t ∈ (−10, 0) by 1-loop

β functions in Fig. 1. In Fig. 1 we see that log(M̄+(t)2/M̄−(t)2) ≈ 1 in the regions of (β, t). Thus,
since we can conclude that s̄2 ≈ λ̄1, Eq. (28) can be used as the RG improved effective potential.
Using the tree-level effective potential and the 1-loop β function, the RG improved effective potential
at the leading log order is given as

V =
(

λ̄1(t)
4! cos4 β + λ̄2(t)

4! sin4 β + λ̄3(t)
4

sin2 β cos2 β

)
φ4 with φ2 = µ2

0e2t

λ̄−(β, t)
, (31)

where the condition for φ2 originates from the choice of the renormalization scale µ2 = M̄−(t)2, as
seen in Eq. (29). Clearly the RG improved effective potential is determined by β and t. In Fig. 2, the
RG improved effective potential is plotted as axes of (φ1/µ0, φ2/µ0) for the regions of β ∈ (0, π)

and t ∈ (−10, 0).
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Fig. 2. A 3D plot of the RG improved effective potential at the leading log order divided by the initial renor-
malization scale µ4

0 as axes of (φ1/µ0, φ2/µ0). This is plotted in the regions of β ∈ (0, π) and t ∈ (−10, 0).
The initial condition is the same as in Fig. 1.

4. RG improved effective potential in a two real scalar system (massive case)
In this section we consider the massive theory in a two real scalar model. In particular, we treat the
effective potential causing spontaneous symmetry breaking. The procedure for the construction of
the RG improved effective potential is the same as the previous method. We solve Eq. (26) for φ in
the massive case. In this case, because of the mass parameters, the equation is a little complicated
but it can be analytically solved. Equation (26) is written as follows:

A =
√

B, (32)

where

A = m2
1 + m2

2 − 2µ2 + 1
2

(
(λ1 + λ3) cos2 β + (λ2 + λ3) sin2 β

)
φ2,

B =
{

m2
1 − m2

2 + 1
2

(
(λ1 − λ3) cos2 β + (λ3 − λ2) sin2 β

)
φ2
}2

+ 4λ2
3 sin2 β cos2 βφ4.

Squaring both sides of A =
√

B, a quadratic equation for φ2 is given as

aφ4 + 2bφ2 + c = 0, (33)

where

a = λ1λ3 cos4 β + λ2λ3 sin4 β + (λ1λ2 − 3λ2
3) sin2 β cos2 β,
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b = (λ3 cos2 β + λ2 sin2 β)(m2
1 − µ2) + (λ1 cos2 β + λ3 sin2 β)(m2

2 − µ2),

c = 4(m2
1 − µ2)(m2

2 − µ2).

We can obtain the solution φ2 as

φ2 = −b ±
√

b2 − ac
a

. (34)

Since we solve the quadratic equation, there are two solutions for φ2. However, because the original
equation is A =

√
B, the solution satisfies the following conditions:

A > 0 and B > 0. (35)

Although it is difficult to analytically prove whether either solution satisfies the condition or not, by
using the initial values as inputs in the following subsections we confirm numerically the following
results:

φ2 = −b +
√

b2 − ac
a

→ A > 0 and B > 0,

φ2 = −b −
√

b2 − ac
a

→ A < 0 and B < 0.

Therefore we adopt the solution φ as

φ2 = −b +
√

b2 − ac
a

. (36)

Since we get the solution φ for Eq. (26), we can construct the RG improved effective potential.
The expression is provided at leading log order as

V = 1
2
(m̄1(t)2 cos2 β + m̄2(t)2 sin2 β)φ2

+ 1
4!(λ̄1(t) cos4 β + λ̄2(t) sin4 β + 6λ̄3(t) sin2 β cos2 β)φ4 + (̄(t)

with φ2 =
−b̄(β, t) +

√
b̄(β, t)2 − ā(β, t)c̄(t)

ā(β, t)
. (37)

In the following subsections, we consider two situations for inputting the initial value of the renor-
malization scale. First, taking (m2

1 < 0, m2
2 < 0, −m2

1 ∼ −m2
2) as the mass parameters, we set the

initial renormalization scale on the vacuum, which is determined by the stationary condition of the
effective potential. Increasing the renormalization scale from the low-energy scale at the vacuum, we
analyze the behavior of the RG improved effective potential in the high-energy region. Second, we
input the initial values of the parameters on the high-energy scale and decrease the renormalization
scale to the low-energy scale. Assuming (m2

1 < 0, m2
2 > 0, −m2

1 ≪ m2
2) for the mass parameters,

we investigate the RG improved effective potential in the low-energy region. As the renormalization
scale decreases, the mass eigenvalue M̄ 2

− also declines and reaches m2
2 at a scale. Since M̄ 2

− continues
to decline below the scale, we find the logarithm of s̄2 large. In order to avoid the breakdown of
the logarithmic perturbation, we utilize the decoupling theorem. Applying the decoupling theorem,
we derive the RG improved effective potential in the low-energy scale and visualize the behavior
including the minimum value of the RG improved effective potential.
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4.1. −m2
2 ∼ −m2

1

Since we set the initial condition on the vacuum in this subsection, we derive the stationary condition
for the effective potential. Introducing a convenient notation for the mass parameter and quartic
coupling constant:

m(β)2 = m2
1 cos2 β + m2

2 sin2 β,

λ(β) = λ1 cos4 β + λ2 sin4 β + 6λ3 sin2 β cos2 β,

we can write the effective potential at a tree level:

V (0) = m(β)2

2
φ2 + λ(β)

4! φ4 + (.

We calculate the stationary conditions for the effective potential:

∂V (0)

∂φ
= 0,

∂V (0)

∂β
= 0. (38)

From ∂V (0)

∂φ = 0, we derive the following condition:

φ2 = −6
m(β)2

λ(β)
. (39)

Combining this condition and ∂V (0)

∂β = 0, we get the stationary condition for β:

β = arccos
[

λ2m2
1 − 3λ3m2

2

(λ2 − 3λ3)m2
1 + (λ1 − 3λ3)m2

2

]
. (40)

Substituting this β for Eq. (39), we can obtain φ on the stationary point:

φ2 = −6
(λ2 − 3λ3)m2

1 + (λ1 − 3λ3)m2
2

λ1λ2 − 9λ2
3

. (41)

Using Eqs. (41)–(40), we can calculate the vacuum expectation value and also estimate the initial
renormalization scale µ2

0 = M̄−(t = 0)2 = M 2
−. For simplicity, in this section we impose ( = 0 at

the initial point.
Taking [λ1 = 0.7, λ2 = 0.5, λ3 = 0.1, m2

1 = −(160 GeV)2, and m2
2 = −(170 GeV)2] as

an initial condition, we get the vacuum expectation value (φ, β) = (591 GeV, 0.94), the initial
renormalization scale µ0 = M− = 135 GeV, and the mass eigenvalue M+ = 236 GeV. We regard
the vacuum expectation value and the initial renormalization scale as a starting point for the RG
improved effective potential and the running parameters. Then, we run log(M̄+(t)2/M̄−(t)2) by the
RG equations in the regions of t ∈ (0, 5) and β ∈ (0, π

2 ). Figure 3 shows the result of the logarithm.
On β = 0 and β = π

2 in Fig. 3, the logarithm takes 2–3 in the range of t = (0, 2) and less than 2
for t > 2. In β = π

4 , the logarithm is less than 1 for the whole scale of t. If the magnitude of the
logarithm as log(M̄ 2

−/M̄ 2
+) ! 3 is accepted in the context of a logarithmic perturbative expansion,

the RG improved effective potential is calculated with Eq. (37). The result is shown in Fig. 4. In the
left panel of Fig. 4, the dot-dashed green, dotted orange, and solid blue lines correspond to the RG
improved effective potential in β = 0, β = π

4 , and β = π
2 , respectively. In the right panel of Fig. 4,

the dot-dashed green, dotted orange, and solid blue lines correspond to φ in β = 0, β = π
4 , and
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Fig. 3. The logarithm of the ratio of M̄+(t)2 to M̄−(t)2 is plotted in the ranges of β ∈ (0, π
2 ) and t ∈ (0, 5).

The result is produced by taking λ1 = 0.7, λ2 = 0.5, λ3 = 0.1, m2
1 = −(160 GeV)2, and m2

2 = −(170 GeV)2

as an initial condition for the RG equation.

Fig. 4. Left: The dot-dashed green, dotted orange, and solid blue lines correspond to the RG improved effective
potential in β = 0, β = π

4 , and β = π
2 , respectively. Right: The dot-dashed green, dotted orange, and solid

blue lines correspond to φ in β = 0, β = π
4 , and β = π

2 , respectively. The initial condition for the RG equation
is the same as in Fig. 3.

β = π
2 , respectively (φ in β = 0 and π

2 are φ1 and φ2, respectively). In both panels of Fig. 4, the
lines at β = 0 and π

2 overlap with each other.
We give a more complete discussion for the logarithmic perturbative expansion. As explained

above, there are regions in which the logarithm is beyond 1. If the logarithm is considered to be
large, the heavy field with mass M̄+ should be decoupled from the theory. Due to this decoupling,
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Fig. 5. The logarithm of the ratio of M̄+(t)2 to M̄−(t)2 is plotted in the regions of β ∈ (0, π
2 ) and t ∈ (−6, 0).

The initial condition is given as λ1 = 0.7, λ2 = 0.6, λ3 = 0.4, m2
1 = −(200 GeV)2, m2

2 = (3000 GeV)2, ( =
0 at (φ, β) = (40 000 GeV, π

4 ).

the remaining logarithm is only log(M̄ 2
−/µ2). Since the single logarithm can be suppressed by using

the degree of freedom of the renormalization scale µ, the logarithmic perturbation is stable. Such a
procedure is explained in the next subsection.

4.2. m2
2 ≫ −m2

1

In this subsection we impose the initial condition at a high-energy scale and gradually decrease the
renormalization scale to a scale around −m2

1. Also we suppose that m2
2 ≫ −m2

1 > 0. Setting the
following initial condition:

λ1 = 0.7, λ2 = 0.6, λ3 = 0.4,

m2
1 = −(200 GeV)2, m2

2 = (3000 GeV)2, ( = 0,

at (φ, β) = (40 000 GeV, π
4 ), we evaluate the logarithm of the ratio of M̄+(t)2 to M̄−(t)2 in Fig. 5.

Clearly, the logarithm becomes large as the renormalization scale decreases to the low-energy scale.
This indicates the breakdown of the logarithmic perturbative expansion in the low-energy region.
For more detail, we evaluate the ratio of M̄−(t)2 to m̄2(t)2 in the left panel of Fig. 6. As seen from the
left panel in Fig. 6, M̄−(t) steadily falls with decreasing renormalization scale t. The ratio of M̄+(t)2

to m2
2 is calculated in the right panel of Fig. 6. In contrast to the figure on the left, the figure shows

that the value of M̄+(t) is comparable to m̄2(t) below t = −1. Therefore in Fig. 6 we find out that
the ratio of M̄+(t)2 to M̄−(t)2 increases with lower renormalization scale because M̄−(t) is smaller
than m̄2(t) while M̄+(t) is comparable to m̄2(t).

In order to avoid a large logarithm, we should modify the RG improved effective potential for
the low-energy scale. The way to modify the RG improvement is to utilize the decoupling theorem.
In the present case, since M̄+(t) is heavier than M̄−(t), the field with the mass M̄+(t) should be
decoupled. Moreover, as seen in the right panel of Fig. 6, since M̄+(t) is comparable to m̄2(t), we
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Fig. 6. Left: The logarithm of the ratio of M̄−(t)2 to m̄2(t)2 is evaluated in the regions of β ∈ (0, π
2 ) and

t ∈ (−6, 0). Right: The logarithm of the ratio of M̄+(t)2 to m̄2(t)2 is calculated in the regions of β ∈ (0, π
2 )

and t ∈ (−6, 0).

factor out m̄2(t)2 from the expression of M̄+(t)2. Hereafter we omit the bar of the parameters to
reduce the bother. To implement it, we expand M 2

+ with respect to φ2

m2
2
:

M 2
+ = m2

2(1 + +),

+ =
(

λ3

2
cos2 β + λ2

2
sin2 β

)
φ2

m2
2

+ λ2
3 sin2 β cos2 β

(
φ4

m4
2

)
.

Additionally, we expand the 1-loop effective potential with M 2
+ in terms of φ2

m2
2
:

V (1)
+ = M 4

+
64π2

(
log

(
M 2

+
µ2

)
− 3

2

)

= m4
2

64π2

(
log

(
m2

2
µ2

)
− 3

2

)
+ m2

2
64π2 (λ3 cos2 β + λ2 sin2 β)

(
log

(
m2

2
µ2

)
− 1

)
φ2

+ 1
64π2

{
2λ2

3 sin2 β cos2 β

(
log

(
m2

2
µ2

)
− 1

)
+ 1

4

(
λ3 cos2 β + λ2 sin2 β

)2

log
(

m2
2

µ2

)}
φ4

+ O
(

φ6

m2
2

)

. (42)

In this expression we see that log(m2
2/µ

2) leads to a large logarithm, which is not suppressed with
the choice of µ2 = M 2

−. The concept of the decoupling theorem is to absorb the large logarithm
into new parameters by the redefinition of the parameters. Hence we combine the 1-loop effective
potential with the tree effective potential and redefine the new parameters to renormalize the large
logarithm:

V (0) + V (1)
+ = φ2

2
(m̃2

1 cos2 β + m̃2
2 sin2 β)
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+ φ4

4! (λ̃1 cos4 β + λ̃2 sin4 β + 6λ̃3 sin2 β cos2 β) + (̃, (43)

where

m̃2
1 = m2

1 + λ3m2
2

32π2

(
log

(
m2

2
µ2

)
− 1

)
, (44)

m̃2
2 = m2

2 + λ2m2
2

32π2

(
log

(
m2

2
µ2

)
− 1

)
, (45)

λ̃1 = λ1 + 3λ2
3

32π2 log
(

m2
2

µ2

)
, (46)

λ̃2 = λ2 + 3λ2
2

32π2 log
(

m2
2

µ2

)
, (47)

λ̃3 = λ3 + λ2
3

8π2

(
log

(
m2

2
µ2

)
− 1

)
+ λ2λ3

32π2 log
(

m2
2

µ2

)
, (48)

(̃ = ( + m4
2

64π2

(
log

(
m2

2
µ2

)
− 3

2

)
. (49)

Note that because there is no contribution to the wavefunction renormalization in this model, the
classical background fields do not change:

φ̃1 = φ1, φ̃2 = φ2. (50)

Since we use the parameters in the low-energy effective theory below µ2 = m2
2, we derive the β and

γ functions for the redefined parameters. To derive them, the RG differential operator in Eq. (22) is
rewritten in terms of the new parameters:

D = µ
d

dµ
= (Dµ)

∂

∂µ
+
∑

X̃

(DX̃ )
∂

∂X̃
+
∑

Ỹ

(DỸ )
∂

∂Ỹ
,

= µ
∂

∂µ
−
∑

X̃

γX̃ X̃
∂

∂X̃
+
∑

Ỹ

βỸ
∂

∂Ỹ
, (51)

where

X̃ = m̃2
1, m̃2

2, (̃, φ̃1, φ̃2, Ỹ = λ̃1, λ̃2, λ̃3. (52)

Hence we can get the β and γ functions defined by the tilde parameters:

βλ̃1
= 3λ̃2

1
16π2 , βλ̃2

= 3λ̃2
3

16π2 , βλ̃3
= λ̃1λ̃3

16π2 , (53)

γm̃2
1

= − λ̃1

16π2 , γm̃2
2

= − λ̃3m̃2
1

16π2m̃2
2

, γ(̃ = − m̃4
1

32π2(̃
(54)

γφ̃1
= 0, γφ̃2

= 0. (55)

We notice that the effect of the heavy field disappears from the RG equation in Eqs. (53)–(55). In
this sense the heavy field is decoupled from theory in the low-energy scale. We can construct the RG
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Fig. 7. Left: The running of the quartic coupling constants is solved. The solid blue, dotted orange, and dot-
dashed green lines denote the running of λ1, λ2, and λ3, respectively. The vertical line is the decoupling scale
with t = −1.2. Right: The dependence of the mass eigenvalues (M 2

−, M 2
+) on the renormalization scale t is

plotted.

Fig. 8. Left: The 3D plot of the RG improved effective potential is evaluated as a function of (φ1, φ2). Right:
The RG improved effective potential is plotted as a function of φ1 with φ2 equal to zero (φ2 = 0). From
the minimum point of the RG improved effective potential, the vacuum expectation value is estimated as
(β = 0, t = −3.25).

improved effective potential by replacing the parameters with the tilde parameters for the effective
potential in Eq. (37).

Let us consider a decoupling point at which the theory is separated into the full theory and the
low-energy effective theory. From the left panel of Fig. 6, we see that M̄−(t) coincides with m̄2(t)
around t = −1. Actually, as we can identify the scale as t = −1.2 and M̄−(t) do not vary in the
range of β ∈ (0, π

2 ), we use (β, t) = (π
2 , −1.2) as a decoupling point. The choice of the decoupling

point is valid because the logarithm in Eqs. (44)–(50) is suppressed at the scale when M̄−(t) becomes
equal to m̄2(t). Now we can solve the RG equations for all the parameters from the initial scale to the
low-energy scale. In the left panel of Fig. 7, the quartic coupling constants are solved from t = 0 to
t = −4. We can confirm the slight threshold correction for λ̄3. The difference between λ̄3(t = −1.2)

and ¯̃λ3(t = −1.2) normalized by λ̄3(t = −1.2) is 0.02. In the right panel of Fig. 7, we run the
mass eigenvalues in the same range. The ¯̃M 2

− continues to decrease as the renormalization scale is

lowered, while the ¯̃M 2
+ converges to about 3000 GeV. In the left panel of Fig. 8, the RG improved
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effective potential is plotted as a function of (φ1, φ2). We can find the minimum value of the RG
improved effective potential. This point corresponds to the vacuum in the present model. The right
panel of Fig. 8 shows the behavior of the RG improved effective potential as a function of φ1 with
φ2 equal to zero (φ2 = 0). From the evaluation of the RG improved effective potential, the vacuum
expectation value corresponds to (β, t) = (0, −3.25). Substituting them into the mass eigenvalues,
we obtain the values of the masses:

¯̃M−

∣∣∣∣ β=0
t=−3.25

= 396 GeV, ¯̃M+

∣∣∣∣ β=0
t=−3.25

= 3007 GeV. (56)

5. Summary and discussion
In this paper we have studied the RG improvement of the effective potential in a two real scalar system.
In Sect. 2 we clarify the logarithmic structure of the effective potential. If we choose µ2

0e2t = M̄ 2
−(t)

as a renormalization scale and the logarithm of s̄2 is less than O(1), we find that the RG improved
effective potential up to Lth-to-leading log order can be calculated by an L-loop effective potential
and (L + 1)-loop β and γ functions. In Sects. 3 and 4, we solve µ2

0e2t = M̄ 2
−(t) with respect to

φ. This means that φ is not a variable of the effective potential but becomes a function of β and
t. By using φ we can evaluate the mass eigenvalue M̄ 2

+ and the RG improved effective potential.
Then, we examine if the logarithm of the ratio of M̄+(t)2 to M̄−(t)2 satisfies s̄2 ! O(λ̄1). If it is
satisfied, the RG improved effective potential can be obtained as mentioned above. On the other
hand, if s̄2 > O(λ̄1), the heavy particle should be decoupled. In Sect. 4, we study such a situation.
We absorb the large logarithm into the new parameters defined in the low-energy scale and derive the
RG equations described in terms of the redefined parameters. The RG improved effective potential
can then be constructed in the low-energy region.

There are three features in this method. First, we do not need to change the choice of the renormal-
ization scale beyond the leading log order. This is because, since we analyze the logarithmic structure
of the effective potential at any loop order, the choice µ2

0e2t = M̄−(t)2 is valid for the RG improve-
ment up to arbitrary lth-to-leading log order. Due to this, the φ that satisfies µ2

0e2t = M̄ 2
−(t) is the

same as the one in the leading log order. So we do not need to resolve µ2
0e2t = M̄−(t)2 with respect

to φ. Note that the RG equations must be solved in a loop level corresponding to the desired leading
log order. Second, we can derive the RG improved effective potential without introducing multiple
renormalization scales or a step function by which the heavy particle is automatically decoupled.
Third, we can decouple the heavy particle from the theory by expanding the quantum correction
to the effective potential with respect to φ2/m2. If the logarithm log

(
φ2/m2) is absorbed into the

parameters in the low-energy scale, we can derive the RG improved effective potential.
Our method can be applied to other multiple scalar models. If multiple scalar fields are introduced

in a model, one represents the classical background fields in terms of polar coordinates such as
(φ1, φ2) = (φ cos β, φ sin β). With µ2

0e2t = M̄lightest(t)2 chosen as a renormalization scale, the φ

corresponding to a radius of the polar coordinate becomes a function of the renormalization scale t
and angles in the polar coordinate apart from whether it can be solved analytically. If one reaches
this stage, one can implement the calculation of the RG improved effective potential in the same way
as in this paper. Finally, since the stability issue and the origin of spontaneous symmetry breaking
are investigated through the RG improved effective potential, our work contributes to such studies
in a multiple scalar theory.
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Appendix A. β and γ functions in a two real scalar model
In this appendix, we provide the β and γ functions in a two real single scalar model:

βλ1 = 3
16π2 (λ2

1 + λ2
3),

βλ2 = 3
16π2 (λ2

2 + λ2
3),

βλ3 = λ3

16π2 (λ1 + λ2 + 4λ3),

γm2
1

= − 1
16π2m2

1
(λ1m2

1 + λ3m2
2),

γm2
2

= − 1
16π2m2

2
(λ2m2

2 + λ3m2
1),

γ( = − 1
32π2(

(m4
1 + m4

2)

γφ1 = 0,

γφ2 = 0.
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Abstract: BaBar collaboration announced that they observed time reversal (T) asym-

metry through B meson system. In the experiment, time dependencies of two distinctive

processes, B− → B̄0 and B̄0 → B− (− expresses CP value) are compared with each other.

In our study, we examine event number difference of these two processes. In contrast to

the BaBar asymmetry, the asymmetry of events number includes the overall normalization

difference for rates. Time dependence of the asymmetry is more general and it includes

terms absent in one used by BaBar collaboration. Both of the BaBar asymmetry and ours

are naively thought to be T-odd since two processes compared are related with flipping

time direction. We investigate the time reversal transformation property of our asymme-

try. Using our notation, one can see that the asymmetry is not precisely a T-odd quantity,

taking into account indirect CP and CPT violation of K meson systems. The effect of

ϵK is extracted and gives rise to O(10−3) contribution. The introduced parameters are

invariant under rephasing of quarks so that the coefficients of our asymmetry are expressed

as phase convention independent quantities. Some combinations of the asymmetry enable

us to extract parameters for wrong sign decays of Bd meson, CPT violation, etc. We also

study the reason why the T-even terms are allowed to contribute to the asymmetry, and

find that several conditions are needed for the asymmetry to be a T-odd quantity.
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1 Introduction

T-symmetry is fundamental symmetry in particle physics. T-transformation exchanges an

initial state and final state, flipping the momentum and spin of particles. If some rate of a

process deviates from the rate of time reversed one, it implies T-violation. T-violation is

worth pursuit since it reflects the characterized feature of theory.

In EPR correlating B meson system, if one of a pair of B meson is tagged, another

side of B meson is determined as orthogonal state with tagged side B meson. In refs. [1]–

[3], a method to observe T-violation using B meson system is suggested. Their idea is

based on the difference of the time dependencies for two distinctive processes, B− → B̄0

and B̄0 → B−. In refs. [1]–[3], it is considered to be T-asymmetry since two distinctive

processes are related with flipping time direction. Then, BaBar collaboration announced [4]

– 1 –
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that they measured non-zero asymmetry and this observation is direct demonstration of

T-violation. A review for the BaBar asymmetry and the other T and CPT asymmetries is

given in ref. [5].

However, their statement includes ambiguity since we cannot exactly identify B meson

such as B̄0 or B−. In the BaBar experiment, two methods to identify B̄0 and B− are

implemented. The first one is referred as flavor tagging which enables one to identify B̄0,

using the semi-leptonic decay mode of B meson. Another one is referred as CP tagging

which allows us to identify B− with final state ψKS .

In ref. [6], it is pointed out that there exist subtleties in BaBar measurement. The

main point in ref. [6] is that they consider a process and its authentically time reversed

process. Note that the authentic time reversed process includes inverse decay such like

l−X → B̄0 and ψKL → B0. Since an authentic time reversed process is experimentally

hard to observe, they substitute another process which does not include inverse decays.

Therefore, they derive the conditions that BaBar asymmetry is identical with a T-odd

quantity, taking into account inverse decays. The derived conditions are (1) the absence

of the wrong sign semi-leptonic B meson decays, (2) the absence of the wrong strangeness

decays, (3) the absence of CPT violation of the strangeness changing decays. All the

conditions are derived by assuming that ψKS and ψKL are exact CP eigenstates.

In this paper, we conduct model-independent analysis of an event number asymmetry.

Our analysis is extension of the work [6], incorporating the difference of overall constants for

the rates that form the asymmetry into calculation. We also include the effect of indirect

CP and CPT violation of K meson system. Furthermore, the asymmetry is written in

terms of the phase convention independent parameters and one can find contribution of ϵK
explicitly. Some combinations of the coefficients enable one to constrain model-independent

parameters. We also discuss the T-even parts of the asymmetry. One can find that the

asymmetry is a T-odd quantity when several conditions are satisfied.

In section 2, we introduce the asymmetry of entangled B meson system. In section 3,

we define parameters which are definitively T-odd or T-even and describe the relation

between notation in [6] and ours. It is also shown that the parameters are phase convention

independent quantities. The method to extract the effect of indirect CP violation in Kaon

system is also considered in section 3. In section 4, we write the event number asymmetry

in terms of the parameters defined in section 3 and show that the asymmetry consists of not

only the T-odd part but also T-even part, using our notation. In sections 4.1–4.3, rather

than discussing T-transformation property of the asymmetry, some methods to extract the

parameters from the asymmetry are investigated. In section 5, we derive the conditions

that T-even parts of the asymmetry vanish and examine the intuitive reason why these

conditions are required. The conditions are categorized as two types. The first condition is

in regards to B meson states that appear in the processes. Including the effect of indirect

CP violation, we evaluate how the first condition is violated, in comparison with the result

in [6]. The second condition is in regards to overall constant which forms the asymmetry.

We find that the second condition is needed when one takes account of the difference of

overall constant of the two rates. Section 6 is devoted to summary of our study.

– 2 –
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2 Formula for asymmetry of entangled systems

In ref. [6], a formula for the time-dependent decay rate of the entangled BB̄ system is

derived. When f1 and f2 denote the final states of a tagging side and a signal side,

respectively, it is written as,

Γ(f1)⊥,f2 = e−Γ(t1+t2)N(1)⊥,2

[

κ(1)⊥,2 cosh(yΓt) + σ(1)⊥,2 sinh(yΓt)

+C(1)⊥,2 cos(xΓt) + S(1)⊥,2 sin(xΓt)
]

= e−Γ(t1+t2)N(1)⊥,2κ(1)⊥,2

[

cosh(yΓt) +
σ(1)⊥,2

κ(1)⊥,2
sinh(yΓt)

+
C(1)⊥,2

κ(1)⊥,2
cos(xΓt) +

S(1)⊥,2

κ(1)⊥,2
sin(xΓt)

]

, (2.1)

where

Γ =
ΓH + ΓL

2
, x =

mH −mL

Γ
, y =

ΓH − ΓL

2Γ
. (2.2)

The expressions for N(1)⊥,2,κ(1)⊥,2,σ(1)⊥,2, C(1)⊥,2 and S(1)⊥,2 are given in ref. [6]. For

the sake of completeness, we record their expressions in eqs. (A.1)–(A.5). Hereafter, we

evaluate an asymmetry including overall factor N(1)⊥,2κ(1)⊥,2 in eq. (2.1). One obtains a

generic formula for the event number asymmetry of the two distinctive sets for final states;

(f1, f2) versus (f3, f4) as,

A ≡
Γ(f1)⊥,f2 − Γ(f3)⊥,f4

Γ(f1)⊥,f2 + Γ(f3)⊥,f4

=

(

1√
NR

−
√
NR

)

cosh(yΓt) +∆σ sinh(yΓt) +∆S sin(xΓt) +∆C cos(xΓt)
(

1√
NR

+
√
NR

)

cosh(yΓt) + σ̂ sinh(yΓt) + Ŝ sin(xΓt) + Ĉ cos(xΓt)
, (2.3)

where

NR ≡
N(3)⊥,4κ(3)⊥,4

N(1)⊥,2κ(1)⊥,2
, (2.4)

∆X ≡ 1√
NR

X(1)⊥,2

κ(1)⊥,2
−
√

NR

X(3)⊥,4

κ(3)⊥,4
(forX = σ, C,S), (2.5)

X̂ ≡ 1√
NR

X(1)⊥,2

κ(1)⊥,2
+
√

NR

X(3)⊥,4

κ(3)⊥,4
(forX = σ, C,S). (2.6)

In eqs. (2.3)–(2.6), contribution from different overall factors in eq. (2.1) for two processes

are taken into account. Taking the limit NR → 1 and y → 0 in eq. (2.3), one finds an

asymmetry whose overall normalization is eliminated, used in [4]. In eq. (2.5)–(2.6), ∆S
(∆C) is equal to ∆S+

T (∆C+
T ) defined in [6] when one takes the limit NR → 1. In practice,

we only need to consider the time difference t within the interval [0, τB] where τB is the

life time of B meson. Therefore, the approximation sinh(yΓt) ≃ yΓt, cosh(yΓt) ≃ 1 is valid

– 3 –



J
H
E
P
0
2
(
2
0
1
5
)
1
7
4

since y ≪ 1 for neutral B meson system. Thus, we expand A with respect to yΓt,

A ≃
1√
NR

−
√
NR +∆σyΓt+∆S sin(xΓt) +∆C cos(xΓt)

1√
NR

+
√
NR + σ̂yΓt+ Ŝ sin(xΓt) + Ĉ cos(xΓt)

=
−∆NR

2
+

∆σ

2
yΓt+

∆S
2

sin(xΓt) +
∆C
2

cos(xΓt)

1 +
σ̂

2
yΓt+

Ŝ
2
sin(xΓt) +

Ĉ
2
cos(xΓt)

, (2.7)

where we denote

NR = 1 +∆NR. (2.8)

3 Parameter definitions in terms of flavor based state

In this section, we introduce parameters that reveal in the event number asymmetry in

eq. (2.7) which we consider. In the processes which form the asymmetry, final states of

B-decay are given as the same ones used for the BaBar experiment [4]. Mixing-parameters,

p, q, z, pK , qK and zK are defined in appendix B. Eqs. (B.3)–(B.4) lead the transformation

property of mixing parameter as, p
CP or T
! q, p

CPT−−−→ p, q
CPT−−−→ q. Similarly, we obtain

the transformation property of z as, z
CP−−→ −z, z

T−→ +z, z
CPT−−−→ −z. The transformation

properties of pK , qK and zK are the same as p, q and z, respectively.

Following [6], we introduce B meson decay amplitudes and inverse decay amplitudes,

Af ≡ ⟨f |T |B0⟩ , Āf ≡ ⟨f |T |B̄0⟩ , AID
f ≡ ⟨B0|T |fT ⟩ , ĀID

f ≡ ⟨B̄0|T |fT ⟩ , (3.1)

where fT is the time reversed state of f , i.e., the state with flipped momenta and spins.

Note that Af (Āf ) and AID
f (ĀID

f ) are exchanged under T-transformation. Throughout this

paper, we introduce the notation Gf , Sf and Cf which are written in terms of amplitude

ratio λf .

Gf =
2Reλf

1 + |λf |2
, Sf =

2Imλf
1 + |λf |2

, Cf =
1− |λf |2

1 + |λf |2
, (3.2)

G2
f + S2

f + C2
f = 1. (3.3)

Using notation (3.1), we can denote following parameters,

λψKS,L
≡ q

p

ĀψKS,L

AψKS,L

√

1 + θψKS,L

1− θψKS,L

=
q

p

AID
ψKS,L

ĀID
ψKS,L

√

1− θψKS,L

1 + θψKS,L

, (3.4)

θψKS,L
=

AψKS,L
AID
ψKS,L

− ĀψKS,L
ĀID
ψKS,L

AψKS,L
AID
ψKS,L

+ ĀψKS,L
ĀID
ψKS,L

. (3.5)

Note that ψKL and ψKS are not exact CP eigenstates. GψKS,L
, SψKS,L

and CψKS,L
are

parameters written in terms of λψKS,L
. θψKS,L

, GψKS,L
, SψKS,L

and CψKS,L
explicitly appear
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in coefficients of the master formula (A.1)–(A.5) for the processes. In eq. (3.4), λψKS,L
is

written in terms of the decay amplitude that the final state is the mass eigenstate ψKS,L.

A(ID)
ψKS,L

and Ā(ID)
ψKS,L

can be expanded with respect to amplitudes with a flavor eigenstate

as A(ID)
ψK0 , A

(ID)

ψK̄0
, Ā(ID)

ψK0 and Ā(ID)

ψK̄0
. The expressions of A(ID)

ψKS,L
and Ā(ID)

ψKS,L
are exhibited in

eqs. (B.12)–(B.19). Note that the wrong strangeness decay amplitudes given as,

AψK̄0 , AID
ψK̄0 , ĀψK0 , ĀID

ψK0 , (3.6)

are numerically smaller than the right strangeness decay amplitudes given as,

AψK0 , AID
ψK0 , ĀψK̄0 , ĀID

ψK̄0 , (3.7)

for the standard model. Thus, we ignore terms with higher power of A(ID)

ψK̄0
and Ā(ID)

ψK0 .

Using eqs. (B.12)–(B.19), we can calculate θψKS,L
as,

θψKS
≃ θK − zK , θψKL

≃ θK + zK , (3.8)

θK =
AψK0AID

ψK0 − ĀψK̄0ĀID
ψK̄0

AψK0AID
ψK0 + ĀψK̄0ĀID

ψK̄0

, (3.9)

where θK expresses CP and CPT violation in right strangeness decays of B meson and it

corresponds to θ̂ψK of [6]. Note that in [6] indirect CPT violation zK is not taken into

account. When deriving eq. (3.8), we calculated at linear order approximation with respect

to zK , θK and wrong strangeness decay amplitudes. Then, we can write λψKS,L
as,

λψKS
≃ λ(1−∆λwst), λψKL

≃ −λ(1 +∆λwst), (3.10)

λ ≡ q

p

pK
qK

ĀψK̄0

AψK0

√

1 + θK
1− θK

=
q

p

pK
qK

AID
ψK0

ĀID
ψK̄0

√

1− θK
1 + θK

, (3.11)

where ∆λwst consists of wrong strangeness decays as,

∆λwst = λwst
ψK̄0 − λ̄wst

ψK0 , (3.12)

λwst
ψK̄0 ≡ pK

qK

AψK̄0

AψK0

√

1 + θψK0

1− θψK0

=
pK
qK

ĀID
ψK0

ĀID
ψK̄0

√

1− θψK0

1 + θψK0

, (3.13)

λ̄wst
ψK0 ≡ qK

pK

ĀψK0

ĀψK̄0

√

√

√

√

1 + θ̄ψK̄0

1− θ̄ψK̄0

=
qK
pK

AID
ψK̄0

AID
ψK0

√

√

√

√

1− θ̄ψK̄0

1 + θ̄ψK̄0

, (3.14)

θψK0 ≡
AψK0ĀID

ψK0 −AψK̄0ĀID
ψK̄0

AψK0ĀID
ψK0 +AψK̄0ĀID

ψK̄0

, θ̄ψK̄0 ≡
ĀψK̄0AID

ψK̄0
− ĀψK0AID

ψK0

ĀψK̄0AID
ψK̄0

+ ĀψK0AID
ψK0

, (3.15)

where eq. (3.15) describes CPT violation in wrong strangeness decays. Similar to eq. (3.12),

we can define a parameter including wrong sign decay amplitudes as,

λ̂wst = λwst
ψK̄0 + λ̄wst

ψK0 . (3.16)
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Since wrong sign semi-leptonic decay amplitudes and CPT violation, θψK0 and θ̄ψK̄0 , are

small, we can expand eqs. (3.13), (3.14) as,

λwst
ψK̄0 ≃ pK

qK

AψK̄0

AψK0

≃ pK
qK

ĀID
ψK0

ĀID
ψK̄0

, λ̄wst
ψK0 ≃ qK

pK

ĀψK0

ĀψK̄0

≃ qK
pK

AID
ψK̄0

AID
ψK0

. (3.17)

Eq. (3.10) indicates that λψKS,L
is composed of the leading part λ and the sub-leading

part suppressed by wrong strangeness decay amplitude. Taking the CPT conserving limit

in eq. (3.10), one can obtain the relation in ref. [7]. Note that λ has the definitive trans-

formation property of T, CP and CPT, such as λ
T−→ (λ)−1, λ

CP−−→ (λ)−1, λ
CPT−−−→ λ. One

introduces G,S and C analogous to eq. (3.2) by replacing λf with λ. They are transformed

under T as,

G =
2Reλ

1 + |λ|2
T−→ 2Re(1/λ)

1 + |1/λ|2 =
2Reλ∗

|λ|2 + 1
= +G, (3.18)

S =
2Imλ

1 + |λ|2
T−→ 2Im(1/λ)

1 + |1/λ|2 =
2Imλ∗

|λ|2 + 1
= −S, (3.19)

C =
1− |λ|2

1 + |λ|2
T−→ 1− |1/λ|2

1 + |1/λ|2 =
|λ|2 − 1

|λ|2 + 1
= −C. (3.20)

The CP transformation property of G,S,C is the same as (3.18)–(3.20). Thus, the CPT

transformation property is also determined as G
CPT−−−→ +G,S

CPT−−−→ +S,C
CPT−−−→ +C. |λ|

is close to 1 since deviation of |q/p|, |pK/qK | and |ĀψK̄0/AψK0 | from 1 is small. Hence,

we can find that C is a small parameter. One can also derive the transformation prop-

erty of eqs. (3.13)–(3.14) such like λwst
ψK̄0

T−→ λ̄wst
ψK0 ,λwst

ψK̄0

CP−−→ λ̄wst
ψK0 and λwst

ψK̄0

CPT−−−→ λwst
ψK̄0

.

Therefore, the parameters in eqs. (3.12), (3.16) are transformed as,

∆λwst
T−→ −∆λwst, λ̂wst

T−→ λ̂wst. (3.21)

The CP transformation property of the parameter (3.12), (3.16) is the same as eq. (3.21).

Note that parameters GψKS,L
, SψKS,L

and CψKS,L
are related with the parameters G,S

and C as,

GψKS
≃ G+ S∆λIwst, GψKL

≃ −
(

G− S∆λIwst

)

, (3.22)

SψKS
≃ S −G∆λIwst, SψKL

≃ −
(

S +G∆λIwst

)

, (3.23)

CψKS
≃ C +∆λRwst, CψKL

≃ C −∆λRwst, (3.24)

where we use notation for an arbitrary complex number A, AR ≡ ReA,AI ≡ ImA, through-

out this paper. When deriving eqs. (3.22)–(3.24), we ignored higher order terms of C and

∆λwst. Eqs. (3.8), (3.22)–(3.24) lead relations given as,

θψKS
+ θψKL

= 2θK , θψKS
− θψKL

= −2zK , (3.25)

GψKS
−GψKL

= 2G, SψKS
− SψKL

= 2S, CψKS
+ CψKL

= 2C, (3.26)

GψKS
+GψKL

= 2S∆λIwst, SψKS
+ SψKL

= −2G∆λIwst, CψKS
− CψKL

= 2∆λRwst.

(3.27)
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Since we have included the effect of indirect CP violation of Kaon system, we show how

the correction due to ϵK arises. While the expression of G,C and S in eqs. (3.18)–(3.20)

is invariant under the arbitrary large rephasing such as ⟨K0| → e−iαK ⟨K0| and ⟨K̄0| →
eiαK ⟨K̄0| , the parametrization with ϵK ≪ 1 allows only the small rephasing αK ≪ 1.

pK
qK

=
1 + ϵK
1− ϵK

≃ 1 + 2ϵK . (3.28)

Keeping only the terms which are linear to ϵK , G,S and C are expanded as follows,

G = G′ − 2S′ϵIK ,

S = S′ + 2G′ϵIK ,

C = C ′ − 2ϵRK , (3.29)

where G′, S′ and C ′ are obtained by taking the limit pK
qK

→ 1 in G,S and C. Namely, they

are defined by replacing λ with λ′ in the expression for G,S and C.

λ′ =
q

p

ĀψK̄0

AψK0

√

1 + θK
1− θK

, C ′ =
1− |λ′|2

1 + |λ′|2 . (3.30)

As shown in table (1), (G′, S′, C ′) equal to (ĜψK , ŜψK , ĈψK) defined in [6] where indirect

CP violation ϵK is neglected. When one changes the phase convention of states as, the

phase of λ′ changes as follows,

λ′ → λ′e2iαK . (3.31)

Assuming the phase αK is small, G′, S′, and ϵIK change as,

G′ → G′ − 2αKS′,

S′ → S′ + 2αKG′,

ϵIK → ϵIK − αK , (3.32)

while C ′ and ϵRK are invariant,

C ′ → C ′, ϵRK → ϵRK . (3.33)

Hereafter, we expand C in terms of C ′ and ϵRK as shown in eq. (3.29) and we do not expand

S and G since they are invariant under the rephasing. The numerical significance of ϵRK
will be discussed in the next section.

We turn to definition for parameters including semi-leptonic decay amplitudes of B

meson. In the following, from eq. (3.34) to eq. (3.38), we adopt the notations of [6]. Right

sign semi-leptonic decay amplitudes are denoted as,

Al+ = ⟨l+X|T |B0⟩ , AID
l+ = ⟨B0|T |(l+X)T ⟩ ,

Āl− = ⟨l−X|T |B̄0⟩ , ĀID
l− = ⟨B̄0|T |(l−X)T ⟩ . (3.34)

Wrong sign semi-leptonic decay amplitudes are similarly given as,

Al− = ⟨l−X|T |B0⟩ , AID
l− = ⟨B0|T |(l−X)T ⟩ ,

Āl+ = ⟨l+X|T |B̄0⟩ , ĀID
l+ = ⟨B̄0|T |(l+X)T ⟩ . (3.35)
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Notation of this paper Notation of [6] Notatin of [6] Notation of this paper

λψKS

pK
qK
λψK1

λψK1
λ′(1−∆λwst)

λψKL

pK
qK
λψK2

λψK2
−λ′(1 +∆λwst)

GψKS
GψK1

− 2SψK1
ϵIK ĜψK =

GψK1
−GψK2

2 G′

SψKS
SψK1

+ 2GψK1
ϵIK ŜψK =

SψK1
−SψK2

2 S′

CψKS
CψK1

− 2ϵRK ĈψK =
CψK1

+CψK2

2 C ′

GψKL
GψK2

− 2SψK2
ϵIK ∆GψK =

GψK1
+GψK2

2 S′∆λIwst

SψKL
SψK2

+ 2GψK2
ϵIK ∆SψK =

SψK1
+SψK2

2 −G′∆λIwst

CψKL
CψK2

− 2ϵRK ∆CψK =
CψK1

−CψK2

2 ∆λRwst

θK θ̂ψK =
θψK1+θψK2

2 ∆θψK =
θψK1−θψK2

2 0

Table 1. The correspondence of parameters in this paper and those of [6]. In this paper, ψK1

corresponds to ψKS and ψK2 corresponds to ψKL respectively in [6] where indirect CP violation
parameter ϵK is neglected. In this paper, ψKL and ψKS include the effect of indirect CP and CPT
violation. The first column shows the quantities defined for mass eigenstates (KL,KS). From the
third row to the eighth row in the second column, the quantities in the first column are expanded up
to the first order of ϵK and are written in terms of the quantities for CP eigenstates K1,K2. In the
third column and in the fourth column, we show how (ĜψK , ŜψK , ĈψK) and (∆GψK ,∆SψK ,∆CψK)
in [6] are related to (G′, S′, C ′,∆λwst) defined in this paper. About CPT violation parameter of
strangeness changing decay, one can show θψK1 = θψK2 = θK . Therefore θ̂ψK = θK and ∆θψK = 0.

For the case of the standard model, wrong sign semi-leptonic decay amplitudes are smaller

than right sign decay amplitudes. Thus, we ignore higher powers of wrong sign decay ampli-

tudes than linear order. We define parameters including semi-leptonic decay amplitudes as,

λl+ ≡ q

p

Āl+

Al+

√

1 + θl+

1− θl+
=

q

p

AID
l−

ĀID
l−

√

1− θl+

1 + θl+
, θl+ =

Al+A
ID
l−

− Āl+Ā
ID
l−

Al+A
ID
l−

+ Āl+Ā
ID
l−

, (3.36)

λl− ≡ q

p

Āl−

Al−

√

1 + θl−

1− θl−
=

q

p

AID
l+

ĀID
l+

√

1− θl−

1 + θl−
, θl− =

Al−A
ID
l+

− Āl−Ā
ID
l+

Al−A
ID
l+

− Āl−Ā
ID
l+

, (3.37)

where θl± expresses CPT violation in semi-leptonic decays of B meson. One can find the

transformation law such like λl+
T−→ (λl−)

−1, λl+
CP−−→ (λl−)

−1, λl+
CPT−−−→ λl+ by its defini-

tion (3.36)–(3.37). We assume that CPT violating parameter θl± is small. At linear order

approximation of θl± and wrong sign semi-leptonic decay amplitudes, we obtain,

λl+ ≃ q

p

Āl+

Al+
≃ q

p

AID
l−

ĀID
l−

, λ−1
l−

≃ p

q

Al−

Āl−
≃ p

q

ĀID
l+

AID
l+

, (3.38)

where we can see that contribution of θl± approximately vanishes in eq. (3.38). Following

ref. [6], we also define Gl± , Sl± and Cl± analogous to eq. (3.2) by replacing λf with λl± . The

parameters Gl± , Sl± and Cl± explicitly appear in coefficients of master formula (A.1)–(A.5)
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for the processes in which the final states are given as l±X. Eq. (3.38) gives approximate

expressions for Gl± , Sl± and Cl± as,

Gl+ =
2Reλl+

1 + |λl+ |2
≃ 2Reλl+ , Gl− =

2Reλl−

1 + |λl− |2
≃ 2Re(λ−1

l−
), Cl± =

1− |λl± |2

1 + |λl± |2
≃ ±1,

Sl+ =
2Imλl+

1 + |λl+ |2
≃ 2Imλl+ , Sl− =

2Imλl−

1 + |λl− |2
≃ −2Im(λ−1

l−
). (3.39)

Note that eq. (3.39) implies that Gl± and Sl± are small numbers since λl+ and λ−1
l−

are

suppressed. We can find the relations,

Gl+ +Gl− = 2λ̂Rl , Sl+ − Sl− = 2λ̂Il , (3.40)

Gl+ −Gl− = 2∆λRl , Sl+ + Sl− = 2∆λIl , (3.41)

where λ̂l and ∆λl are defined as,

λ̂l ≡ λl+ + λ−1
l−

, ∆λl ≡ λl+ − λ−1
l−

. (3.42)

They transform definitively under CP, T and CPT. One obtains the transformation prop-

erty of T as,

λ̂l
T−→ (λl−)

−1 + λl+ = +λ̂l, ∆λl
T−→ (λl−)

−1 − λl+ = −∆λl. (3.43)

The CP transformation property of λ̂l and ∆λl is the same as (3.43). Hence, the CPT

transformation property of λ̂l and ∆λl is also determined as λ̂l
CPT−−−→ λ̂l,∆λl

CPT−−−→ ∆λl.

Eqs. (3.22)–(3.24), (3.40)–(3.41) enable one to write down the asymmetry in eq. (2.3) for

the BaBar experiment in terms of parameters which are exactly T-odd or T-even. Similarly,

one defines,

RM ≡ |p|2 − |q|2

|p|2 + |q|2 , ξl ≡
Āl−A

ID
l+

−Al+Ā
ID
l−

Āl−A
ID
l+

+Al+Ā
ID
l−

, C l
ξ,≡

1− |λlξ|2

1 + |λlξ|2
, (3.44)

λlξ ≡ Al+

Āl−

√

1 + ξl
1− ξl

=
AID

l+

ĀID
l−

√

1− ξl
1 + ξl

. (3.45)

In eq. (3.44), RM expresses mixing-induced CP and T violation for B meson system [6]

and is a small number. As for newly introduced parameters, ξl implies CP and T violation

in right sign semi-leptonic decays and we also assume ξl is a small number. The expres-

sion of λlξ (3.45) includes right sign semi-leptonic decay amplitude ratio and we assume

|Al+/Āl− | ≃ 1. Therefore, C l
ξ is a small number compared with O(1). The parameters

defined in eq. (3.44) also appear in the asymmetry in eq. (2.3).

Hereafter, we describe some significant points of the parameters defined in this section.

Note that the parameters given as,

S,C,G, θK , RM , z, zK , λ̂l,∆λl, ξl, C
l
ξ, λ̂wst and∆λwst, (3.46)

have definitive transformation properties exhibited in table 2. In the processes which we

consider, KS,L is included as a final state, and the effect of mixing induced T and CP

– 9 –



J
H
E
P
0
2
(
2
0
1
5
)
1
7
4

S C G θK RM z zK λ̂l ∆λl ξl C l
ξ λ̂wst ∆λwst

T − − + + − + + + − − + + −

CP − − + − − − − + − − − + −

CPT + + + − + − − + + + − + +

Table 2. Transformation property of the parameters definitively transformed under T, CP
and CPT.

p/q pK/qK θψK0 θl+ λ λwst
ψK̄0

λl+ λlξ

T q/p qK/pK −θ̄ψK̄0 θl− (λ)−1 λ̄wst
ψK0 (λl−)

−1 λlξ

CP q/p qK/pK θ̄ψK̄0 −θl− (λ)−1 λ̄wst
ψK0 (λl−)

−1 (λlξ)
−1

CPT p/q pK/qK −θψK0 −θl+ λ λwst
ψK̄0

λl+ (λlξ)
−1

Table 3. Transformation property of the parameters devoted to keep the definitive transformation
property of the parameters in table 2.

violation, pK/qK , appears in the expressions of G,S,C, λ̂wst and ∆λwst. Mixing-induced

CP and CPT violation in K meson system, zK , reveals in the asymmetry as well. In the

next section, the asymmetry is written in terms of parameters (3.46) and it can be explicitly

separated as T-odd parts and T-even parts.

The parameters defined as,

p/q, pK/qK , θψK0 , θ̄ψK̄0 , θl± ,λ,λ
wst
ψK̄0 , λ̄

wst
ψK0 ,λl± , and λ

l
ξ, (3.47)

are dedicated to keep the definitive transformation property of parameters that reveal in

table 2. The transformation property of the parameters (3.47) is exhibited in table 3.

The parameters given as,

θψK0 , θ̄ψK̄0 , θl± , C, θK , RM , z, zK , λ̂l,∆λl, ξl, C
l
ξ, λ̂wst and∆λwst, (3.48)

are small numbers, and our calculation is based on linear order approximation with respect

to the parameters (3.48) throughout this paper.

4 Time dependent asymmetry including the overall constants

In this section, we apply the event number asymmetry defined in eq. (2.7) to processes

for B-meson decays. One should be aware of that the asymmetry considered in this paper

includes the effect of different normalization for two rates; non-zero value of ∆NR defined

in eq. (2.8). As the BaBar asymmetry investigated in [4], we also assign f1, f2, f3, f4 with

ψKL, l−X, l+X,ψKS , respectively. We call this process as I. We also consider the other

three processes which can be obtained by interchanging l−X with l+X and ψKS with ψKL
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in the process I. Therefore we identify the four processes as,

(I) (f1, f2, f3, f4) =
(

ψKL, l
−X, l+X,ψKS

)

,

(II) (f1, f2, f3, f4) =
(

ψKS , l
−X, l+X,ψKL

)

,

(III) (f1, f2, f3, f4) =
(

ψKL, l
+X, l−X,ψKS

)

,

(IV) (f1, f2, f3, f4) =
(

ψKS , l
+X, l−X,ψKL

)

. (4.1)

For all the processes which we consider, we can find ∆NR,∆σ, yΓt,∆C, Ŝ, Ĉ are small

numbers compared with O(1). Expanding eq. (2.7) with respect to the small parameters,

one obtains the asymmetry at linear order approximation,

A ≃ RT + CT cos(xΓt) + ST sin(xΓt)

+BT sin2(xΓt) +DT sin(xΓt) cos(xΓt) + ET (yΓt) sin(xΓt), (4.2)

where,

RT = −∆NR

2
+

∆σ

2
yΓt ≃ −∆NR

2
, (4.3)

CT =
∆C
2

, ST =
∆S
2

, (4.4)

BT = −∆S
4

Ŝ, DT = −∆S
4

Ĉ, (4.5)

ET = −∆S
4
σ̂. (4.6)

We ignore ∆σy in eqs. (4.3)–(4.6). σ̂ and ∆S are O(1) parameters and σ̂y gives rise to

small contribution. The model independent parametrization in eq. (4.2) without the last

term can be found in [6]. In each process, we compute the asymmetry and the coefficients

(RT , CT , ST , BT , DT , ET ). We label suffix I ∼ IV on the quantities corresponding to each

process to distinguish them. Below and in table 4, we show the asymmetry and the

coefficients for the process I. For the other processes, we show them in tables 5–7. We first

investigate ∆NR in eq. (2.8) for the process I. With eq. (D.4), one obtains,

∆N I
R = 2

[

−SzI +RM + λ̂Rwst −Gλ̂Rl − C l
ξ − ξRl

]

. (4.7)

With eq. (4.7) and eqs. (D.5)–(D.9), one can also derive the coefficients in the asymmetry,

RI
T = −∆N I

R

2
= SzI −RM − λ̂Rwst +Gλ̂Rl + C l

ξ + ξRl , (4.8)

CI
T =

∆CI

2
= C − SzI + θRK + S∆λIl = C ′ − 2ϵRK − SzI + θRK + S∆λIl , (4.9)

SI
T =

∆SI

2
= −[S(1−GzR)−GθIK +GS∆λRl ], (4.10)

BI
T = −∆SI

4
ŜI ≃ S

2
ŜI

= S[G(zIK −∆λIwst)− zI + SRM + Sλ̂Rwst − SC l
ξ − SξRl ], (4.11)

DI
T = −∆SI

4
ĈI ≃ S

2
ĈI = S[zRK −∆λRwst −GzR − Sλ̂Il ], (4.12)

EI
T = −∆SI

4
σ̂I ≃ GS. (4.13)
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Note that C ′ and ϵRK are phase convention independent parameters due to definition of C ′.

Therefore, we state that all of eqs. (4.8)–(4.13) are expressed as phase convention indepen-

dent parameters. In eq. (4.9), effect of indirect CP violation in K meson system explicitly

appears and gives rise to O(10−3) contribution to CI
T . Assuming |q/p|−1, |ĀψK̄0/AψK0 |−1,

|1 + θK |− 1 are small numbers, we can expand C ′ in eq. (3.30) as,

C ′ ≃ 2−
∣

∣

∣

∣

q

p

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

ĀψK̄0

AψK0

∣

∣

∣

∣

∣

− θRK ,

∣

∣

∣

∣

q

p

∣

∣

∣

∣

≃ 1− 1

2
Im

(

Γd
12

Md
12

)

. (4.14)

A theoretical prediction for the imaginary part of Γd
12/M

d
12 is calculated [8], and it shows

Im(Γd
12/M

d
12) ∼ O(10−4). Direct CP violation in B0

d → ψK0 is 1 − |ĀψK̄0/AψK0 | ≃
O(10−3) [9]–[10]. Hence, ϵRK , |ĀψK̄0/AψK0 | ∼ O(10−3) are dominant in CI

T , if CPT viola-

tions and the wrong sign decay in B → lX in eq. (4.9) are also negligible.

If RT , CT , ST , BT and DT were genuine T-odd quantities, they would vanish in the

limit of T-symmetry. In other words, if there are non-vanishing contributions in the limit

of T-symmetry, RT , CT , ST , BT and DT are not T-odd quantities. From eqs. (4.8)–(4.13),

we find the T-even contributions. Some of them do not vanish in the limit of T-symmetry

and they include C l
ξ, λ̂

R
wstθ

R
K , etc. The others are quadratic with respect to T-odd quantities

and they vanish in the limit of T-symmetry. They include S∆λIl , S∆λ
R
wst, S

2λ̂Il , etc.

Now we study condition that the asymmetry becomes a T-odd quantity. The following

equations are needed for T-even terms in each coefficient to vanish,

λ̂Rwst = 0, Gλ̂Rl = 0, C l
ξ = 0 → RI

T : T− odd, (4.15)

θRK = 0, S∆λIl = 0 → CI
T : T− odd, (4.16)

GθIK = 0, GS∆λRl = 0 → SI
T : T− odd, (4.17)

SG∆λIwst = 0, S2λ̂Rwst = 0, S2C l
ξ = 0 → BI

T : T− odd, (4.18)

S∆λRwst = 0, S2λ̂Il = 0 → DI
T : T− odd. (4.19)

When the real part and imaginary part of λ do not vanish, both G and S are non-zero and

the conditions that all the eqs. (4.15)–(4.19) are satisfied become,

θK = ∆λwst = ∆λl = λ̂l = λ̂Rwst = C l
ξ = 0. (4.20)

The conditions except C l
ξ = 0 agree with ones obtained in [6]. The additional condition is

required since we take account of the overall constants in the asymmetry.

In the first column of table 4, we show how each coefficient of the asymmetry in

eq. (4.2) depends on T-odd combination of the parameters and in the other columns we

show the dependence on T-even combination of the parameters. As for T-even contribution,

we identify the sources of T-even contribution to the coefficients. In the second column,

the contribution of θK which is CP and CPT violation in right strangeness decays is

shown. In the third column, the contribution of C l
ξ which is CP and CPT violation in

the right sign semi-leptonic decays is shown. In the fourth and the fifth column, T-even

contribution from the wrong strangeness decays and the wrong sign semi-leptonic decays

are shown, respectively. In tables 5–7, we show the coefficients for the processes (II)–(IV).

In appendix E, we show a rule useful for deriving them.
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T-odd terms θK ≠ 0 C l
ξ ≠ 0 AψK̄0 ≠ 0, ĀψK0 ≠ 0 Āl+ ≠ 0, Al− ≠ 0

RI
T SzI −RM + ξRl 0 C l

ξ −λ̂Rwst Gλ̂Rl

CI
T C − SzI θRK 0 0 S∆λIl

SI
T −S

[

1−GzR
]

GθIK 0 0 −GS∆λRl

BI
T S

[

GzIK − zI + SRM − SξRl
]

0 −S2C l
ξ S2λ̂Rwst − SG∆λIwst 0

DI
T S

[

zRK −GzR
]

0 0 −S∆λRwst −S2λ̂Il

EI
T GS 0 0 0 0

Table 4. The coefficients of the asymmetry for the process I with the final state (f1, f2, f3, f4) =
(ψKL, l−X, l+X,ψKS) and the sources which give rise to the non-vanishing contribution to the
asymmetry. The sources of the first column corresponds to T-odd terms and the other correspond
to T-even terms.

T-odd terms θK ≠ 0 C l
ξ ≠ 0 AψK̄0 ≠ 0, ĀψK0 ≠ 0 Āl+ ≠ 0, Al− ≠ 0

RII
T −SzI −RM + ξRl 0 C l

ξ λ̂Rwst −Gλ̂Rl

CII
T C + SzI θRK 0 0 −S∆λIl

SII
T S

[

1 +GzR
]

−GθIK 0 0 −GS∆λRl

BII
T −S

[

GzIK − zI − SRM + SξRl
]

0 −S2C l
ξ −S2λ̂Rwst + SG∆λIwst 0

DII
T S

[

zRK −GzR
]

0 0 −S∆λRwst −S2λ̂Il

EII
T GS 0 0 0 0

Table 5. The coefficients of the asymmetry for the process II with the final state (f1, f2, f3, f4) =
(ψKS , l−X, l+X,ψKL) and the sources which give rise to the non-vanishing contribution to the
asymmetry. The sources of the first column corresponds to T-odd terms and the other correspond
to T-even terms.

T-odd terms θK ≠ 0 C l
ξ ≠ 0 AψK̄0 ≠ 0, ĀψK0 ≠ 0 Āl+ ≠ 0, Al− ≠ 0

RIII
T SzI +RM − ξRl 0 −C l

ξ −λ̂Rwst Gλ̂Rl

CIII
T −C − SzI −θRK 0 0 S∆λIl

SIII
T S

[

1 +GzR
]

−GθIK 0 0 −GS∆λRl

BIII
T S

[

GzIK − zI − SRM + SξRl
]

0 S2C l
ξ S2λ̂Rwst − SG∆λIwst 0

DIII
T S

[

zRK −GzR
]

0 0 −S∆λRwst −S2λ̂Il

EIII
T −GS 0 0 0 0

Table 6. The coefficients of the asymmetry for the process III with the final states (f1, f2, f3, f4) =
(ψKL, l+X, l−X,ψKS) and the sources which give rise to the non-vanishing contribution to the
asymmetry. The sources of the first column corresponds to T-odd terms and the other correspond
to T-even terms.
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T-odd terms θK ≠ 0 C l
ξ ≠ 0 AψK̄0 ≠ 0, ĀψK0 ≠ 0 Āl+ ≠ 0, Al− ≠ 0

RIV
T −SzI +RM − ξRl 0 −C l

ξ λ̂Rwst −Gλ̂Rl

CIV
T −C + SzI −θRK 0 0 −S∆λIl

SIV
T −S

[

1−GzR
]

GθIK 0 0 −GS∆λRl

BIV
T S

[

−GzIK + zI − SRM + SξRl
]

0 S2C l
ξ −S2λ̂Rwst + SG∆λIwst 0

DIV
T S

[

zRK −GzR
]

0 0 −S∆λRwst −S2λ̂Il

EIV
T −GS 0 0 0 0

Table 7. The coefficients of the asymmetry for the process IV with the final states (f1, f2, f3, f4) =
(ψKS , l+X, l−X,ψKL) and the sources which give rise to the non-vanishing contribution to the
asymmetry. The sources of the first column corresponds to T-odd terms and the other correspond
to T-even terms.

Although the asymmetry in eq. (4.2) is not exactly T-asymmetry, the measurement

of the coefficients are useful for constraining S and G as well as various non-standard

interactions. Non-standard interactions include wrong sign decay and CPT violation. In

the following subsections, we show how one can determine S and G and also show how

one can constrain the various non-standard interactions. We first study the case without

any assumption and in later subsections, we investigate two physically interesting cases,

one corresponding to the case that CPT is a good symmetry and the other is the case

without wrong sign decays. Since there are relations among the coefficients for different

processes, we first identify the independent coefficients. From tables 4–7, one finds the

following relations among the coefficients for the different processes.

RIV
T = −RI

T , RIII
T = −RII

T ,

CIII
T = −CII

T , CIV
T = −CI

T ,

SIII
T = SII

T , SIV
T = SI

T ,

BIII
T = −BII

T , BIV
T = −BI

T ,

DI
T = DII

T = DIII
T = DIV

T ,

EI
T = EII

T = −EIII
T = −EIV

T .

They imply that there are ten independent coefficients. In table 8, we show how ten

independent combination of the coefficients can be written in terms of CPT even , CPT

odd, and wrong sign decay parameters. Since there are eighteen parameters, the number

of the independent coefficients is not enough to extract the parameters. However, one can

still constrain the combination of the parameters. Below we investigate how to extract the

parameters for the three cases.

4.1 Extracting the parameters from the coefficients: general case

Let us first examine how one can determine the parameters from the measurements of the

coefficients shown in table 8. Hereafter, we discuss a method to determine the values for G

and S through observing ET . Since ET is multiplied by y in eq. (4.2), one cannot extract
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CPT even parameters CPT violating parameters wrong sign decays

RI
T+RII

T
2 −RM + ξRl +C l

ξ 0

RI
T−RII

T
2 0 SzI −λ̂Rwst +Gλ̂Rl

CI
T+CII

T
2 C θRK 0

CI
T−CII

T
2 0 −SzI S∆λIl

SI
T+SII

T
2 0 SGzR −SG∆λRl

SI
T−SII

T
2 −S GθIK 0

BI
T+BII

T
2 S2

(

RM − ξRl
)

−S2C l
ξ 0

BI
T−BII

T
2 0 S

(

GzIK − zI
)

S(Sλ̂Rwst −G∆λIwst)

DI
T 0 S

(

zRK −GzR
)

−S
(

∆λRwst + Sλ̂Il

)

EI
T GS 0 0

BI
T+BII

T

RI
T+RII

T

−S2 0 0

Table 8. Combinations of the independent coefficients in the asymmetry. The sources which
contribute to each combination are classified in three categories.

the value of ET solely from the measurement of the asymmetry. Therefore, we need to

determine the value of y through the other experiment. y defined in eq. (2.2) is regarding

to the width difference of B meson mass eigenstate, and a method to measure y cosβ ≃ Gy is

suggested in refs. [11]–[12]. Combining the measurement of EI
T y ≃ GSy, one can determine

S. Since S and G in their leading order satisfy S2 +G2 ≃ 1−O(C2), the measurement of

ET determines (±G,S) within the two-fold ambiguity. The ambiguity would be removed if

we assume that the standard model contribution is dominant for the width difference. (See

figure 1) As an alternative way to determine S, one can use the relation
BI

T+BII
T

RI
T+RII

T

= −S2,

and determine |S|. The sign ambiguity for S can be removed because in the leading order

S is equal to
SII
T −SI

T
2 . Excluding the case that the sub-leading contribution changes the sign

of the leading term, one can determine the sign for S through observing
SII
T −SI

T
2 . Having

determined G and S, we consider constraining the other parameters.

We note that the following relation is satisfied,

RI
T −RII

T

2
+

CI
T − CII

T

2
= −λ̂Rwst +Gλ̂Rl + S∆λIl . (4.21)

Since the right-hand side is independent of CPT violating parameters, non-vanishing con-

tribution implies the unambiguous evidence of the presence of the wrong sign decay. Fur-

thermore, since S is determined, one can write the CPT violating parameter θIK as,

θIK =
SI
T−SII

T
2 + S

G
. (4.22)
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!1.0 !0.5 0.5 1.0
G

!1.0

!0.5

0.5

1.0
S

Figure 1. Determination of G and S. Due to G2 + S2 ≃ 1, G and S are on the circle of unit
length. Once S is known, G is determined within two-fold ambiguity.

If the right-hand side is non-zero, it implies CPT violation in the right strangeness decay.

However, the real part of θK cannot be singly extracted, since

θRK + C =
CI
T + CII

T

2
. (4.23)

One also notes the relation,

−RM + ξRl + C l
ξ =

RI
T +RII

T

2
. (4.24)

If any one of the combinations,
RI

T−RII
T

2 ,
CI

T−CII
T

2 ,
SI
T+SII

T
2 ,

BI
T−BII

T
2 , and DI

T is non-zero, it

implies CPT violation and/or wrong sign decay. However, if the cancellation between CPT

violation and wrong sign decay occurs, they can vanish.

4.2 Extracting the parameters from the coefficients: CPT conserving limit

Next we consider the case in the limit of CPT symmetry. In the limit of CPT symmetry,

all the contribution in the second column vanishes in table 8. Since all the wrong sign

decay parameters are CPT even, the third column of table 8 does not vanish. In the limit

C, S and RM − ξRl can be determined as,

C =
CI
T + CII

T

2
, (4.25)

S =
SII
T − SI

T

2
, (4.26)

RM − ξRl = −RI
T +RII

T

2
. (4.27)

Moreover T-odd wrong sign semi-leptonic decay ∆λl can be determine as,

∆λIl =
CI
T − CII

T

2S
, (4.28)

∆λRl = −SI
T + SII

T

2GS
. (4.29)
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For the other five wrong sign decay parameters λ̂Rwst, λ̂
R,I
l ∆λR,I

wst, one obtains the following

three constraints.

RI
T −RII

T

2
= −λ̂Rwst +Gλ̂Rl , (4.30)

BI
T −BII

T

2
= S

(

Sλ̂Rwst −G∆λIwst

)

, (4.31)

DI
T = −S

(

∆λRwst + Sλ̂Il

)

. (4.32)

4.3 Extracting the parameters from the coefficients: case without wrong

sign decay

Lastly, we consider the case without wrong sign decays. The relations in eqs. (4.22)–(4.24)

are satisfied in this case. The right-hand side of eq. (4.21) vanishes. In addition to these,

CP and CPT violation of the mixing parameters in B meson system is determined by

zI =
RI

T −RII
T

2S
, zR =

SI
T + SII

T

2GS
. (4.33)

CP and CPT violation in the neutral K meson system is also determined as,

zIK =
DI

T +
SI
T+SII

T
2

S
, zRK =

BI
T −BII

T −
(

CI
T − CII

T

)

2SG
. (4.34)

The five parameters C l
ξ, θ

R
K , C,RM and ξRl satisfy the two constraints eqs. (4.23)–(4.24).

5 Conditions for authentic time reversed process

In section 4, we showed the expression of the asymmetry that describes event number

difference of figure 2 and figure 3. However, rather than figure 3, figure 4 is an authentic

time reversed process of figure 2, since the two processes of figure 2 and figure 4 are related

with flipping time direction. In discussion given in refs. [1]–[3], one substituted figure 3 for

figure 4 because signal sides of figure 2 and figure 3 are deemed to be a time reversed process

to each other. Since figure 3 is not an authentic time reversed process, the asymmetry is

slightly deviated from T-odd.

In this section, we clarify why T-even parts are included in the coefficients eqs. (4.8)–

(4.12), although it is naively thought to be a T-odd quantity.

One can show that, when the following conditions are simultaneously satisfied, figure 3

plays the role as a time reversed process of figure 2 and the coefficients eqs. (4.8)–(4.12)

become T-odd.

1. Equivalence conditions of B meson states.

2. ∆N e
R = 0.

Here we denote ∆NR = ∆No
R +∆N e

R and ∆N e
R (∆No

R) is the T-even (odd) part.
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The equivalence conditions indicate that the initial (final) B meson states of signal side

in figures 3–4 are the same as each other. The equivalence conditions are described as,

{

|B(→l+X)⊥⟩ ∝ |Bl−X→⟩
|B→ψKS

⟩ ∝ |B(ψKL→)⊥⟩
. (5.1)

Eq. (5.1) shows that B meson states in figures 3–4 are equivalent. Similarly, figure 5 is the

authentic time reversed process of figure 3. When we apply the same condition to B meson

states in figures 2–5, one obtains,

{

|B(→l−X)⊥⟩ ∝ |B(l+X→)⟩
|B(→ψKL)⟩ ∝ |B(ψKS→)⊥⟩

. (5.2)

Violation of the conditions (5.1)–(5.2) is originally calculated in ref. [6]. Including overall

factors and using our notation, we show the violation of the conditions (5.1)–(5.2) as follows,

⎧

⎪

⎨

⎪

⎩

⟨B(ψKL→)⊥|B(→ψKS)⊥⟩ = N(→ψKS)⊥N(ψKL→)⊥

(

AψK0AID
ψK0 + ĀψK̄0ĀID

ψK̄0

)θK+∆λwst

2
⟨B(l−X→)⊥|B(→l+X)⊥⟩ = 2N(l−→)⊥N(→l+)⊥Al+Ā

ID
l−

p

q
λl+ ,

(5.3)
⎧

⎪

⎨

⎪

⎩

⟨B(ψKS→)⊥|B(→ψKL)⊥⟩ = N(→ψKL)⊥N(ψKS→)⊥

(

AψK0AID
ψK0 + ĀψK̄0ĀID

ψK̄0

)θK−∆λwst

2
⟨B(l+X→)⊥|B(→l−X)⊥⟩ = 2N(l+→)⊥N(→l−)⊥Āl−A

ID
l+

q

p
λ−1
l−

,

(5.4)

where we used the expression for states defined in eqs. (F.1)–(F.4), (F.6)–(F.9). In eqs. (5.3)–

(5.4), effect of mixing-induced CP violation in K meson system is included in terms of our

notation ∆λwst ≃
pK
qK

AψK̄0

AψK0

− qK
pK

ĀψK0

ĀψK̄0

in comparison with ref. [6].

⟨B(l−X→)⊥|B(→l+X)⊥⟩ ≠ 0 and ⟨B(l+X→)⊥|B(→l−X)⊥⟩ ≠ 0 indicate that one cannot

exactly conduct the flavor tagging in the presence of wrong sign semi-leptonic decays.

Similarly, ⟨B(→ψKS)⊥|B(ψKL→)⊥⟩ ≠ 0 and ⟨B(ψKS→)⊥|B(→ψKL)⊥⟩ ≠ 0 imply that one

cannot exactly carry out the CP tagging in the presence of CPT violation in decays and

wrong sign strangeness decays. Therefore, eqs. (5.3)–(5.4) describe that semi-leptonic

decays and strangeness changing decays yield tagging ambiguities, and that are expressed

in terms of state non-orthogonality.

Then, we turn to explanation of the second condition, ∆N e
R = 0. We define the

following quantities for the expedient sake.

Xo =
X(ψKL)⊥,l+X

κ(ψKL)⊥,l+X

−
X(l−X)⊥,ψKS

κ(l−X)⊥,ψKS

, Xe =
X(ψKL)⊥,l+X

κ(ψKL)⊥,l+X

+
X(l−X)⊥,ψKS

κ(l−X)⊥,ψKS

, (5.5)

where X = σ, C and S are given in eqs. (A.3)–(A.5). Consider the case that the equivalence

conditions are satisfied to demonstrate that violation of ∆N e
R = 0 gives rise to T-even
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Figure 2. A process with (f1, f2) = (ψKL, l−X).

Figure 3. A process with (f3, f4) = (l+X,ψKS). Figure 2 and figure 3 are referred as (I) in
eq. (4.1). Event number asymmetry of figure 2 and figure 3. is calculated as eqs. (4.8)–(4.13).

Figure 4. A process with inverse decays of B meson. Figure 2 and figure 4 are related with flipping
time direction.

Figure 5. A process with inverse decays of B meson. Figure 3 and figure 5 are related with flipping
time direction.
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contribution to the asymmetry. For that case, we can find that Xo(Xe) defined in eq. (5.5)

is T-odd (even) due to expressions given as follows,

So = −2S
(

1−GzR
)

, Co = 2
[

C − SzI
]

, (σo)l = 0, (5.6)

Se = 2
[

GzIK +
(

S2 − 1
)

zI
]

, Ce = 2
[

zRK −GzR
]

, (σe)l = 2G, (5.7)

where for ∆σ and σ̂, we write down only the leading part since small parts of ∆σ and σ̂

are neglected when multiplied by y in the asymmetry (2.7). For the process (I), ∆X and

X̂ defined in eqs. (2.5)–(2.6) are written as,

∆X ≃ Xo − ∆NR

2
Xe =

(

Xo − ∆No
R

2
Xe

)

− ∆N e
R

2
Xe, (5.8)

X̂ ≃ Xe − ∆NR

2
Xo =

(

Xe − ∆No
R

2
Xo

)

− ∆N e
R

2
Xo. (5.9)

One finds that the T-even part of ∆NR leads T-even contribution to ∆X in eq. (5.8).

The same applies to X̂, and it is shown that ∆X (X̂) deviates from T-odd (even) when

∆N e
R has non-zero value. Therefore, we can demonstrate that ∆N e

R gives rise to T-even

contribution to the asymmetry given in eqs. (4.3)–(4.6).

6 Conclusion

In this paper, the precise meaning of the time reversal-like asymmetry is investigated,

based on the most general time dependence of the asymmetry in eq. (4.2). In analysis

of BaBar [4] and [6], the difference of the overall constants for the rates is eliminated.

The ratio of the overall constants for the two decay rates is deviated from unity, and the

deviation ∆NR = NR − 1 is taken into account in our analysis. If one takes the limits

∆NR = 0 and y = 0 in our analysis, the asymmetry of BaBar collaboration [4] is obtained.

In our analysis, since the final states ψKS,L are not the exact CP eigenstates, one can find

the effect of mixing-induced CP violation in K meson system. The effect of ϵK is extracted

and it gives rise to O(10−3) contribution to CT , the coefficient of cos(xΓt). ϵRK and direct

CP violation |ĀψK̄0/AψK0 | are dominant in CT , if the wrong sign semi-leptonic decay and

CPT violations are negligible. As well as ϵK , the contribution from CPT violation in Kaon

system zK is estimated.

We introduced the parameters which have the specific property under CP, T and CPT

transformations, including the effect of indirect CP violation in K meson system. Taking

account of the difference for overall constants, the coefficients of each time-dependent

function are written in terms of such parameters, and one can find that the asymmetry

consists of not only T-odd terms, but also T-even terms in the most general time dependent

function for the asymmetry. Furthermore, the introduced parameters are invariant under

rephasing of quarks. We also found that the asymmetry is expressed as phase convention

independent quantities.

We obtained the coefficients of the asymmetry for the processes (I-IV) and studied how

to extract the parameters. Assuming that the value of y, i.e., the width difference of Bd
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meson mass eigenstates is known, the three cases to constrain the parameters are discussed.

For the most general case, combining the coefficients for different processes enables one to

determine the parameters, S and G. We also find that non-zero value of some combination

of the coefficient signals either CPT violation or the presence of the wrong sign decays.

The other two cases correspond to CPT-conserving limit and the absence of wrong sign

decays. In the CPT-conserving case, the coefficients constrain the parameters for wrong

sign decays. In the absence of wrong sign decays, indirect CPT violation for B meson and

K meson is constrained.

Moreover, we discussed T-even parts in the asymmetry. We found that T-even terms

in the asymmetry vanish when several conditions are satisfied. These derived conditions

are categorized as two parts. The first one is referred as equivalence conditions, regarding

to B meson states for a time reversal-like process and an authentic time reversed process.

As suggested in [6], B mesons for the two processes are not equivalent to each other, and

we also showed the violation of the equivalence conditions, including the effects of mixing

in K meson system. Since non-zero ∆NR is taken into account in our study, ∆NR can

be the origin of T-even contribution to the asymmetry. We investigated that the second

condition, which requires that T-even parts of ∆NR are zero, is needed for the asymmetry

to become a T-odd quantity.

A Coefficients of master formula

We record coefficients of the master formula for the time-dependent decay rate of ref. [6].

N(i)⊥,j =
1

4
NiNj

{

1 + (Ci + Cj)
(

RM − zR
)}

, Ni = |Ai|2 + |Āi|2, (A.1)

κ(i)⊥,j = (1−GiGj)

+ [(Ci + Cj)(1−GiGj) + CjGi + CiGj ] z
R − (Si + Sj)z

I

+GiGj

(

Ciθ
R
i + Cjθ

R
j

)

−GiSjθ
I
j −GjSiθ

I
i , (A.2)

σ(i)⊥,j = Gj −Gi

+[Ci(1 +Gj −Gi)− Cj(1−Gj +Gi)]z
R + (GiSj −GjSi)z

I

−CjGjθ
R
j + Sjθ

I
j + CiGiθ

R
i − Siθ

I
i , (A.3)

C(i)⊥,j = −CiCj − SiSj

−[(Ci + Cj)(CiCj + SiSj) + CiGj + CjGi]z
R + (Si + Sj)z

I

+GjSiθ
I
j −

[

Ci

(

1− C2
j

)

− CjSiSj

]

θRj

+GiSjθ
I
i −

[

Cj

(

1− C2
i

)

− CiSiSj

]

θRi , (A.4)

S(i)⊥,j = CiSj − CjSi

+
[

CiCj(Sj − Si)−
(

C2
j +Gj

)

Si +
(

C2
i +Gi

)

Sj

]

zR + (Cj − Ci)z
I

−CiGjθ
I
j +

[(

C2
j − 1

)

Si − CiCjSj

]

θRj

+CjGiθ
I
i −

[(

C2
i − 1

)

Sj − CiCjSi

]

θRi , (A.5)

where Ai and Āi in eq. (A.1) are defined in eq. (3.1). i and j represent the final state of

tagging side (fi) and signal side(fj) for a pair of B meson decaying respectively.
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B Incoming mass eigenstates and outgoing mass eigenstates in B meson
and K meson system

Throughout this paper, the time reversal process of B meson decay often appears. To

describe the inverse decay amplitudes, as out-states of B mesons, the reciprocal base must

be used for Non-Hermitian Hamiltonian system. This is formulated in several literatures,

refs. [13]–[17]. In this appendix, we show the definition of incoming states and outgoing

states which are used in this paper.

The incoming mass eigenstates of effective Hamiltonian in B meson system are

|Bin
H⟩ = p

√
1 + z |B0⟩ − q

√
1− z |B̄0⟩ , (B.1)

|Bin
L ⟩ = p

√
1− z |B0⟩+ q

√
1 + z |B̄0⟩ , (B.2)

where p, q are mixing parameters in indirect CP violation and z is a mixing parameter in

indirect CP, CPT violation. In terms of matrix elements of effective Hamiltonian, these

parameters are written as

p

q
=

√

M12 − i
2Γ12

M∗
12 − i

2Γ
∗
12

, (B.3)

z =
M11 −M22 − i

2(Γ11 − Γ22)

mL −mH − i
2(ΓL − ΓH)

. (B.4)

These expressions help us understand the transformation property of λ, S, G, C, etc. Then,

outgoing mass states are determined to fulfill the following conditions,

⟨Bout
H |Bin

H⟩ = 1, ⟨Bout
H |Bin

L ⟩ = 0, ⟨Bout
L |Bin

L ⟩ = 1, ⟨Bout
L |Bin

H⟩ = 0. (B.5)

Thus, outgoing mass eigenstates are

⟨Bout
H | = 1

2pq

(

q
√
1 + z ⟨B0|− p

√
1− z ⟨B̄0|

)

, (B.6)

⟨Bout
L | = 1

2pq

(

q
√
1− z ⟨B0|+ p

√
1 + z ⟨B̄0|

)

. (B.7)

For K meson system, similarly,

|K in
L ⟩ = pK

√
1 + zK |K0⟩ − qK

√
1− zK |K̄0⟩ , (B.8)

|K in
S ⟩ = pK

√
1− zK |K0⟩+ qK

√
1 + zK |K̄0⟩ , (B.9)

⟨Kout
L | = 1

2pKqK

(

qK
√
1 + zK ⟨K0|− pK

√
1− zK ⟨K̄0|

)

, (B.10)

⟨Kout
S | = 1

2pKqK

(

qK
√
1− zK ⟨K0|+ pK

√
1 + zK ⟨K̄0|

)

. (B.11)

Since these mass eigenstates in K meson system are shown in flavor states, we specifi-

cally can calculate the amplitudes of transition from incoming states B meson to outgoing
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states ψKL,S

AψKS
= ⟨ψKout

S |Bin
0 ⟩ = 1

2pKqK

(

qK
√
1− zKAψK0 + pK

√
1 + zKAψK̄0

)

, (B.12)

AψKL
= ⟨ψKout

L |Bin
0 ⟩ = 1

2pKqK

(

qK
√
1 + zKAψK0 − pK

√
1− zKAψK̄0

)

, (B.13)

ĀψKS
= ⟨ψKout

S |B̄in
0 ⟩ = 1

2pKqK

(

qK
√
1− zKĀψK0 + pK

√
1 + zKĀψK̄0

)

, (B.14)

ĀψKL
= ⟨ψKout

L |B̄in
0 ⟩ = 1

2pKqK

(

qK
√
1 + zKĀψK0 − pK

√
1− zKĀψK̄0

)

. (B.15)

Hence, we can obtain eqs. (3.11), (3.22), (3.23) and (3.24). We also can write down inverse

decay amplitudes of eqs. (B.12)–(B.15)

AID
ψKS

= ⟨Bout
0 |ψK in

S ⟩ =
(

pK
√
1− zKAID

ψK0 + qK
√
1 + zKAID

ψK̄0

)

, (B.16)

AID
ψKL

= ⟨Bout
0 |ψK in

L ⟩ =
(

pK
√
1 + zKAID

ψK0 − qK
√
1− zKAID

ψK̄0

)

, (B.17)

ĀID
ψKS

= ⟨B̄out
0 |ψK in

S ⟩ =
(

pK
√
1− zKĀID

ψK0 + qK
√
1 + zKĀID

ψK̄0

)

, (B.18)

ĀID
ψKL

= ⟨B̄out
0 |ψK in

L ⟩ =
(

pK
√
1 + zKĀID

ψK0 − qK
√
1− zKĀID

ψK̄0

)

. (B.19)

C List of coefficients of time dependent decay rates for process (I)

In this appendix, we show the coefficients of the time dependent decay rates in eq. (2.1)

which are needed for calculation of the asymmetry of process (I).

S(ψKL)⊥,l−X = SψKL
− SψKL

zR − zI −GψKL
θIψKL

, (C.1)

S(l+X)⊥,ψKS
= SψKS

+ SψKS
zR − zI −GψKS

θIψKS
, (C.2)

C(ψKL)⊥,l−X = CψKL
− SψKL

Sl− +GψKL
zR + SψKL

zI + θRψKL
, (C.3)

C(l+X)⊥,ψKS
= −CψKS

− SψKS
Sl+ −GψKS

zR + SψKS
zI − θRψKS

, (C.4)

κ(ψKL)⊥,l−X = 1−GψKL
Gl− − (GψKL

+ 1)zR − SψKL
zI , (C.5)

κ(l+X)⊥,ψKS
= 1−GψKS

Gl+ + (GψKS
+ 1)zR − SψKS

zI , (C.6)

σ(ψKL)⊥,l−X = Gl− −GψKL
+ (1 +GψKL

)zR − SψKL
θIψKL

, (C.7)

σ(l+X)⊥ψKS
= GψKS

−Gl+ + (1 +GψKS
)zR + SψKS

θIψKS
, (C.8)

S(ψKL)⊥,l−X

κ(ψKL)⊥,l−X

= SψKL
+ SψKL

GψKL
Gl− + SψKL

GψKL
zR +

(

S2
ψKL

− 1
)

zI −GψKL
θIψKL

,

(C.9)
S(l+X)⊥,ψKS

κ(l+X)⊥,ψKS

= SψKS
+ SψKS

GψKS
Gl+ − SψKS

GψKS
zR +

(

S2
ψKS

− 1
)

zI −GψKS
θIψKS

,

(C.10)
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C(ψKL)⊥,l−X

κ(ψKL)⊥,l−X

≃ C(ψKL)⊥,l−X , (C.11)

C(l+X)⊥,ψKS

κ(l+X)⊥,ψKS

≃ C(l+X)⊥,ψKS
, (C.12)

σ(ψKL)⊥,l−X

κ(ψKL)⊥,l−X

≃ −GψKL
, (C.13)

σ(l+X)⊥,ψKS

κ(l+X)⊥,ψKS

≃ GψKS
, (C.14)

where we keep only the leading term for σ
κ , since it will be multiplied by a small number

y in the formulae of the decay rate eq. (2.1).

D Expressions for NR,∆S,∆C,∆σ, σ̂, Ŝ and Ĉ

The quantity NR, defined in eq. (2.4), denotes the ratio of a normalization for rates. Since

we compute the asymmetry including the effect of NR, its expression should be clarified.

In this appendix section, we calculate NR, and obtain the expressions of parameters as

∆S,∆C,∆σ, σ̂, Ŝ and Ĉ for the process (I). In deriving formulae, we use eqs. (C.1)–(C.14).

Expanding NR with respect to small parameters, we obtain the general structure of NR at

first order approximation.

NR =
N(3)⊥,4

N(1)⊥,2

κ(3)⊥,4

κ(1)⊥,2

=
N3N4

[

1 + (C3 + C4)
(

RM − zR
)]

N1N2 [1 + (C1 + C2) (RM − zR)]

κl(3)⊥,4

(

1 +
∆κ(3)⊥,4

κl(3)⊥,4

)

κl(1)⊥,2

(

1 +
∆κ(1)⊥,2

κl(1)⊥,2

)

≃ N3N4

N1N2

κl(3)⊥,4

κl(1)⊥,2

[

1 + (C3 + C4 − C1 − C2)
(

RM − zR
)

+
∆κ(3)⊥,4

κl(3)⊥,4

−
∆κ(1)⊥,2

κl(1)⊥,2

]

,

(D.1)

where superscript l expresses the leading part and ∆ expresses the small part such as,

κ(1)⊥,2 = κl(1)⊥,2 + ∆κ(1)⊥,2 and κ(3)⊥,4 = κl(3)⊥,4 + ∆κ(3)⊥,4. For the processes given in

eq. (4.1), κl(1)⊥,2 = κl(3)⊥,4 = 1 (f1 = ψKL, f2 = l−X, f3 = l+X, f4 = ψKS for process (I))

is satisfied and N I
R is written as,

N I
R =

Nl+XNψKS

NψKL
Nl−X

[

1 + (CψKS
− CψKL

+ Cl+ − Cl−)
(

RM − zR
)

+ ∆κ(l+X)⊥,ψKS
−∆κ(ψKL)⊥,l−X

]

≃
NψKS

Nl+X

NψKL
Nl−X

[

1 + 2
(

RM − zR
)

+ 2
(

zR − SzI −Gλ̂Rl

)]

=
NψKS

Nl+X

NψKL
Nl−X

[

1 + 2
(

−SzI +RM −Gλ̂Rl

)]

. (D.2)
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Deviation of Nl+X/Nl−X and NψKS
/NψKL

from 1 is written in terms of small parame-

ters as,

Nl+X

Nl−X

= 1− 2
(

C l
ξ + ξRl

)

,
NψKS

NψKL

= 1 + 2λ̂Rwst. (D.3)

N I
R = 1 +∆N I

R = 1 + 2
[

−SzI +RM + λ̂Rwst −Gλ̂Rl − C l
ξ − ξRl

]

. (D.4)

Note that ∆N I
R is a small number.

We can also write down the expressions of ∆SI and ∆CI .

∆SI =

(

S(ψKL)⊥,l−X

κ(ψKL)⊥,l−X

−
S(l+X)⊥,ψKS

κ(l+X)⊥,ψKS

)

− ∆N I
R

2

(

S(ψKL)⊥,l−X

κ(ψKL)⊥,l−X

+
S(l+X)⊥,ψKS

κ(l+X)⊥,ψKS

)

≃
S(ψKL)⊥,l−X

κ(ψKL)⊥,l−X

−
S(l+X)⊥,ψKS

κ(l+X)⊥,ψKS

= −2
[

S
(

1−GzR
)

−GθIK +GS∆λRl
]

, (D.5)

∆CI ≃
C(ψKL)⊥,l−X

κ(ψKL)⊥,l−X

−
C(l+X)⊥,ψKS

κ(l+X)⊥,ψKS

= 2
[

C − SzI + θRK + S∆λIl
]

. (D.6)

We calculate only the leading part of ∆σI and σ̂I , since the sub-leading part of ∆σI and

σ̂I is suppressed when multiplied with yΓt.

∆σIl = 0, σ̂Il = 2G. (D.7)

We write down the expressions for ŜI and ĈI as follows,

ŜI =

(

S(ψKL)⊥,l−X

κ(ψKL)⊥,l−X

+
S(l+X)⊥,ψKS

κ(l+X)⊥,ψKS

)

− ∆N I
R

2

(

S(ψKL)⊥,l−X

κ(ψKL)⊥,l−X

−
S(l+X)⊥,ψKS

κ(l+X)⊥,ψKS

)

≃ 2G
(

zIK −∆λIwst

)

+ 2
(

S2 − 1
)

zI + 2GSλ̂Rl + S∆N I
R

= 2
[

G
(

zIK −∆λIwst

)

− zI + SRM + Sλ̂Rwst − SC l
ξ − SξRl

]

, (D.8)

ĈI ≃
C(ψKL)⊥,l−X

κ(ψKL)⊥,l−X

+
C(l+X)⊥,ψKS

κ(l+X)⊥,ψKS

= 2
[

zRK −∆λRwst −GzR − Sλ̂Il

]

. (D.9)

E The relation among coefficients of the asymmetries for processes (I)–
(IV)

In this appendix, we show the relation among the coefficients for different processes (I-IV).

First, we note the coefficients of the process II(IV) are obtained by changing the sign of

the mixing parameter qK and zK of I(III). The change of the sign of qK leads to the change

of the sign for S,G and λwst. Next, we show a simple rule which enables one to obtain

the coefficients for table 5, with the coefficients of table 7. For this purpose we do not
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substitute ±1 for Cl± respectively and write the coefficients of asymmetry for process IV,

RIV
T = −SzI +

1

2
(Cl+ − Cl−)RM − ξRl − C l

ξ + λ̂Rwst −Gλ̂Rl , (E.1)

CIV
T =

1

2
(Cl− − Cl+)C + SzI +

1

2

(

Cl−θ
R
KL

− Cl+θ
R
KS

)

− S∆λIl , (E.2)

SIV
T =

1

2
(Cl− − Cl+)S + SGzR +

G

2

(

Cl+θ
I
KS

− Cl−θ
I
KL

)

(E.3)

−GS
(

Cl+Re [λl+ ] + Cl−Re
[

λ−1
l−

])

, (E.4)

BIV
T = S

[

−GzIK + zI +
Cl− − Cl+

2
SRM + SξRl

]

+ S2C l
ξ − S2λ̂Rwst + SG∆λIwst, (E.5)

DIV
T = S

[

zRK −GzR
]

− S∆λRwst +
Cl− − Cl+

2
S2λ̂Il , (E.6)

EIV
T =

Cl− − Cl+

2
GS. (E.7)

When l+ and l− in eq. (D.3) are exchanged, the sign of C l
ξ and ξ

R
l is reversed. According to

eqs. (3.40)–(3.41), the sign of λ̂Il and ∆λRl also changes. Additionally, one needs to inter-

change Cl+ and Cl− in eqs. (E.1)–(E.7) and one can obtain the coefficients of asymmetry

for process II.

F Calculation of equivalence conditions

In this appendix, we give the derivation of eqs. (5.3)–(5.4). The expression of the final

state of signal side in figure (2) is,

|B(→ψKS)⊥⟩ = N(→ψKS)⊥
(

ĀψKS
|B0⟩ −AψKS

|B̄0⟩
)

, (F.1)

since the state is orthogonal to ⟨ψKS |. The state orthogonal to |ψKL⟩ is

⟨B(ψKL→)⊥| = N(ψKL→)⊥
(

ĀID
ψKL

⟨B0|−AID
ψKL

⟨B̄0|
)

. (F.2)

Similarly, one can write down,

⟨B(ψKS→)⊥| = N(ψKS→)⊥
(

ĀID
ψKS

⟨B0|−AID
ψKS

⟨B̄0|
)

, (F.3)

|B(→ψKL)⊥⟩ = N(→ψKL)⊥
(

ĀψKL
|B0⟩ −AψKL

|B̄0⟩
)

. (F.4)

Calculating the inner product of eqs. (F.1) and (F.2), we obtain

⟨B(ψKL→)⊥|B(→ψKS)⊥⟩ = N(→ψKS)⊥N(ψKL→)⊥
(

ĀψKS
ĀID
ψKL

+AψKS
AID
ψKL

)

=
1

2
N(→ψKS)⊥N(ψKL→)⊥

[

AψK0AID
ψK0−ĀψK̄0ĀID

ψK̄0

− qK
pK

(

AψK0AID
ψK̄0+ĀID

ψK̄0ĀψK0

)

+
pK
qK

(

AψK̄0AID
ψK0+ĀψK̄0ĀID

ψK0

)]

=
N(→ψKS)⊥N(ψKL→)⊥

2

(

AψK0AID
ψK0+ĀψK̄0ĀID

ψK̄0

)

[θK +∆λwst] ,

(F.5)
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where we used eqs. (B.12)–(B.19). The inner product in eq. (F.5) was previously obtained

in [6]. In eq. (F.5), we compute it with our notation including the normalization constant

and have ignored the second order of small parameters zK , θψK0 , θ̄ψK̄0 , λ̂wst and ∆λwst.

Next, we show the derivation of the first line of eq. (5.3) and the second line of eq. (5.4).

The states are given as,

⟨B(l−X→)⊥| = N(l−→)⊥
(

ĀID
l− ⟨B0|−AID

l− ⟨B̄0|
)

, (F.6)

|B(→l+X)⊥⟩ = N(→l+)⊥
(

Āl+ |B0⟩ −Al+ |B̄0⟩
)

, (F.7)

⟨B(l+X→)⊥| = N(l+→)⊥
(

ĀID
l+ ⟨B0|−AID

l+ ⟨B̄0|
)

, (F.8)

|B(→l−X)⊥⟩ = N(→l−)⊥
(

Āl− |B0⟩ −Al− |B̄0⟩
)

. (F.9)

Their inner product is,

⟨B(l−X→)⊥|B(→l+X)⊥⟩ = N(l−→)⊥N(→l+)⊥
(

ĀID
l− Āl+ +AID

l−Al+
)

= 2N(l−→)⊥N(→l+)⊥Al+Ā
ID
l−

p

q
λl+ . (F.10)

The proportionality to the wrong sign decay amplitude λl+ is derived in [6].
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Abstract: We discuss a supersymmetric model with discrete flavor symmetry A4£Z3. The additional scalar

fields which contribute masses of leptons in the Yukawa terms are introduced in this model. We analyze their scalar

potential and find that they have various vacuum structures. We show the relations among 24 diÆerent vacua and

classify them into two types. We derive expressions of the lepton mixing angles, Dirac CP violating phase and

Majorana phases for the two types. The model parameters which are allowed by the experimental data of the lepton

mixing angles are diÆerent for each type. We also study the constraints on the model parameters which are related

to Majorana phases. The diÆerent allowed regions of the model parameters for the two types are shown numerically

for a given region of two combinations of the CP violating phases.

Keywords: flavor symmetry, non-Abelian discrete group, neutrino flavor model

PACS: 14.60.Pq, 14.60.St DOI: 10.1088/1674-1137/42/2/023102

1 Introduction

Although all the elementary particles in the standard
model (SM) have now been discovered, with the discov-
ery of the Higgs boson, there still exist phenomena which
cannot be explained in the framework of the SM. One
of these is the neutrino oscillation phenomenon, which
implies two non-zero neutrino mass squared diÆerences
and two large lepton mixing angles. In order to explain
this, many authors propose a neutrino flavor model with
non-Abelian discrete flavor symmetry in the lepton sec-
tor (for reviews see [1–4]). Even before the discovery of
the non-zero µ13 [5–7], a few authors suggested a tiny
mixing angle µ13 based on non-Abelian discrete flavor
symmetry [8]. Recent results from the T2K and NO∫A
experiments [9, 10] imply CP violation through the Dirac
CP phase. They studied electron neutrino appearance
in a muon neutrino beam. The Majorana phases are also
sources of the CP violating phases if neutrinos are Ma-

jorana particles. The KamLAND-Zen experiment [11] is
searching for neutrinoless double beta (0∫ØØ) decay to
check the Majorana nature of neutrinos. Therefore, it is
important to predict not only mixing angles but also CP
phases with the non-Abelian discrete flavor model.

The non-Abelian discrete flavor symmetry can easily
explain large lepton mixing angles, e. g. tri-bimaximal
mixing (TBM) [12, 13], which is a simple framework for
the lepton mixing angles. Indeed, Altarelli and Feruglio
(AF) proposed a simple flavor model and predicted TBM
by using A4 discrete flavor symmetry [14, 15]. They
introduced SU(2) gauge singlet scalar fields, so-called
“flavons”, and derived the TBM in the lepton sector.
The non-zero µ13 can be realized by another A4 non-
trivial singlet flavon [8] in addition to the flavons intro-
duced by AF. The origin of non-vanishing µ13 is related
to a new contribution to the mass matrices. Matrices
which have the same structure as that in Ref. [8] also
appear in extra-dimensional models with the S3 and S4
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flavor symmetries [16, 17]. The ¢(27) model also in-
cludes these matrices [18].

In this paper, we study phenomenological aspects of
a supersymmetric model with A4£Z3 symmetries. The
three generations of the left-handed leptons are expressed
as the A4 triplet, l = (le,lµ,lø ), while the right-handed
charged leptons eR, µR, and øR are A4 singlets denoted
as 1, 100, and 10 respectively. Three right-handed neu-
trinos are also described as the triplet of A4. We in-
troduce the SU(2) gauge singlet flavons of A4 triplets,
¡T =(¡T1,¡T2,¡T3) and ¡S =(¡S1,¡S2,¡S3). In addition,
ª and ª0 are also introduced as the SU(2) gauge singlet
flavons with the two kinds of singlet representations of
A4, 1 and 10 respectively.

We focus on the vacuum structure of the flavor model.
The scalar sectors of this model consist of many flavons
in addition to the SM Higgs boson. Then, we analyze the
scalar potential and show the 24 diÆerent sets of VEVs
which come from 24 combinations of 4 (6) possible VEVs
of the flavon ¡T (¡S). The 24 diÆerent vacua are classi-
fied into two types which are not related to each other
under the transformations A4. Therefore, we expect that
the two types of vacua have diÆerent expressions for the
physical observables in terms of the model parameters
such as Yukawa couplings. We ask the following ques-
tion: whether these diÆerent vacua are physically dis-
tinct from each other. The purpose of this paper is to

clarify the diÆerences and relations among the VEVs and
their physical consequences. In particular, we investi-
gate the mixing angles, CP violating phase, and eÆective
mass for neutrinoless double beta (0∫ØØ) decay.

This paper is organized as follows. In Section 2, we
introduce the supersymmetric model with A4£Z3 sym-
metry. In Section 3, we study the classification of vacua
and derive the formulae for the mixing angles and CP
phases. In Section 4, we discuss the phenomenological
aspects for mixing angles and CP violating phases. The
numerical analyses for the eÆective mass of 0∫ØØ decay
are presented. Section 5 is devoted to a summary. In
Appendix , we show the multiplication rule of the A4

group.

2 Supersymmetric model with A4 £Z3

symmetry

In this section, we introduce a supersymmetric model
with A4£Z3 symmetry. We analyze the scalar potential
and derive the mass matrices of the lepton sector.

2.1 Model

We introduce three heavy right-handed Majorana
neutrinos. The leptons and scalars in our model are
listed in Table 1.

Table 1. The representations of SU(2)L and A4, and the charge assignment of Z3 and U(1)R for leptons and scalars:

le,µ,ø , {e,µ,ø}R, {∫e,∫µ,µø}R, and hu,d denote left-handed leptons, right-handed charged leptons, right-handed

neutrinos, and Higgs fields, respectively. The other scalars are gauge singlet flavons and denoted as ¡T , ¡S , ª, and

ª0. ! is the Z3 charge and stands for e2ºi/3
.

l=

0

B@
le
lµ
lø

1

CA eR µR øR ∫R=

0

B@
∫eR

∫µR

∫øR

1

CA hu,d ¡T =

0

B@
¡T1

¡T2

¡T3

1

CA ¡S =

0

B@
¡S1

¡S2

¡S3

1

CA ª ª0

SU(2)L 2 1 1 1 1 2 1 1 1 1

A4 3 1 100 10 3 1 3 3 1 10

Z3 ! !2 !2 !2 !2 1 1 !2 !2 !2

U(1)R 1 1 1 1 1 0 0 0 0 0

The superpotential of Yukawa interactions is

wY =wl+wD+wR, (1)

where wl,wD and wR are Yukawa interactions for charged
lepton, Dirac neutrino and Majorana neutrino sectors re-
spectively:

wl=ye(¡T l)1eRhd/§+yµ(¡T l)10µRhd/§
+yø (¡T l)100øRhd/§+h.c., (2)

wD=yD(l∫R)1hu+h.c., (3)
wR=y¡S

¡S(∫R∫R)3+yªª(∫R∫R)1+yª0ª0(∫R∫R)100+h.c.,
(4)

where the lower indices denote A4 representations. More-

over, the y’s and § denote the Yukawa coupling constants
and cut-oÆ scale respectively. The multiplication rule for
A4 representations is shown in Appendix A.

In order to obtain the mass matrices of these leptons,
we analyze the following superpotential of the scalar
fields:

wd¥wT
d +wS

d , (5)

where

wT
d =°M(¡T

0 ¡T )1+g¡T
0 (¡T ¡T )3, (6)

wS
d =g1¡

S
0 (¡S¡S)3+g2(¡S

0 ¡S)1ª+g02(¡
S
0 ¡S)100ª0

+g3(¡S¡S)1ª0°g4ª0ªª. (7)
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Table 2. The driving fields and their representa-

tions and charge assignment.

¡T
0 =

0

B@
¡T

01

¡T
02

¡T
03

1

CA ¡S
0 =

0

B@
¡S

01

¡S
02

¡S
03

1

CA ª0

SU(2) 1 1 1

A4 3 3 1

Z3 1 !2 !2

U(1)R 2 2 2

We have introduced the additional SU(2) gauge singlet

fields, ¡T
0 , ¡S

0 and ª0, which are called “driving fields”.
The charge assignments of these fields are summarized
in Table 2.

2.2 Potential analysis

In this subsection, we derive the VEVs for the scalar
fields ¡T ,¡S,ª,ª0,¡T

0 ,¡S
0 ,ª0. One can derive the scalar po-

tential from the superpotentials in Eqs. (6) and (7) as

V =VT +VS, (8)

where

VT =
X

X

ØØØØ
@wT

d

@X

ØØØØ
2

=
ØØØØ°M¡T1+

2
3
g(¡2

T1°¡T2¡T3)
ØØØØ
2

+
ØØØØ°M¡T3+

2
3
g(¡2

T2°¡T3¡T1)
ØØØØ
2

+
ØØØØ°M¡T2+

2
3
g(¡2

T3°¡T1¡T2)
ØØØØ
2

+
ØØØØ°M¡T

01+
2
3
g(2¡T

01¡T1°¡T
03¡T2°¡T

02¡T3)
ØØØØ
2

+
ØØØØ°M¡T

03+
2
3
g(2¡T

02¡T2°¡T
01¡T3°¡T

03¡T1)
ØØØØ
2

+
ØØØØ°M¡T

02+
2
3
g(2¡T

03¡T3°¡T
02¡T1°¡T

01¡T2)
ØØØØ
2

, (9)

and

VS =
X

Y

ØØØØ
@wS

d

@Y

ØØØØ
2

=
ØØØØ
2
3
g1(¡2

S1°¡S2¡S3)°g2¡S1ª+g02¡S3ª
0
ØØØØ
2

+
ØØØØ
2
3
g1(¡2

S2°¡S3¡S1)°g2¡S3ª+g02¡S2ª
0
ØØØØ
2

+
ØØØØ
2
3
g1(¡2

S3°¡S1¡S2)°g2¡S2ª+g02¡S1ª
0
ØØØØ
2

+
ØØØØ
2
3
g1(2¡S

01¡S1°¡S
03¡S2°¡S

02¡S3)°g2¡
S
01ª+g02¡

S
03ª

0+2g3¡S1ª0

ØØØØ
2

+
ØØØØ
2
3
g1(2¡S

02¡S2°¡S
01¡S3°¡S

03¡S1)°g2¡
S
03ª+g02¡

S
02ª

0+2g3¡S3ª0

ØØØØ
2

+
ØØØØ
2
3
g1(2¡S

03¡S3°¡S
02¡S1°¡S

01¡S2)°g2¡
S
02ª+g02¡

S
01ª

0+2g3¡S2ª0

ØØØØ
2

+
ØØ°g2(¡S

01¡S1+¡S
03¡S2+¡S

02¡S3)°2g4ªª0

ØØ2+
ØØg02(¡S

02¡S2+¡S
01¡S3+¡S

03¡S1)
ØØ2

+|g3(¡2
s1+2¡S2¡S3)°g4ª

2|2 . (10)

The sum for X,Y runs over all the scalar fields:

X={¡T1,¡T2,¡T3,¡
T
01,¡

T
02,¡

T
03} ,

Y ={¡S1,¡S2,¡S3,¡
S
01,¡

S
02,¡

S
03,ª,ª

0,ª0}.

The scalar potential V is minimized at V =VT =VS =0.
There are several solutions for the minimization condi-
tion. We obtain sets of solutions denoted as ¥m and ∏±n
(m=1-4, n=1-3), where ¥m and ∏±n are the solutions of
VT =0 and VS =0 respectively. Hereafter, we call them
the set of VEV alignments and show them explicitly as
follows:

¥1¥

8
><

>:
h¡T i=vT

0

B@
1
0
0

1

CA, h¡T
0 i=

0

B@
0
0
0

1

CA

9
>=

>;
, (11)

¥2¥

8
><

>:
h¡T i=

vT

3

0

B@
°1
2
2

1

CA, h¡T
0 i=

0

B@
0
0
0

1

CA

9
>=

>;
, (12)

¥3¥

8
><

>:
h¡T i=

vT

3

0

B@
°1
2!

2!2

1

CA, h¡T
0 i=

0

B@
0
0
0

1

CA

9
>=

>;
, (13)

¥4¥

8
><

>:
h¡T i=

vT

3

0

B@
°1
2!2

2!

1

CA, h¡T
0 i=

0

B@
0
0
0

1

CA

9
>=

>;
, (14)

023102-3



Chinese Physics C Vol. 42, No. 2 (2018) 023102

∏±1 ¥

8
><

>:
h¡Si=±vS

0

B@
1
1
1

1

CA, hª0i=u0, h¡S
0 i=

0

B@
0
0
0

1

CA

9
>=

>;
, (15)

∏±2 ¥

8
><

>:
h¡Si=±vS

0

B@
1
!

!2

1

CA, hª0i=!u0, h¡S
0 i=

0

B@
0
0
0

1

CA

9
>=

>;
,

(16)

∏±3 ¥

8
><

>:
h¡Si=±vS

0

B@
1
!2

!

1

CA, hª0i=!2u0, h¡S
0 i=

0

B@
0
0
0

1

CA

9
>=

>;
,

(17)

where vT = 3M
2g

, vS =
q

g4
3g3

u, u0= g2
g0
2
u and u is the VEV

of ª, hªi=u1). The superscript of ∏± denotes the over-
all sign of the VEV h¡Si. In total, we obtain 24 sets of
vacua, since there are four sets of alignment for ¥m and
six sets for ∏±n .

2.3 Mass matrix for charged leptons and neu-
trinos

We derive charged lepton mass matrices and neutrino
mass matrices from the Yukawa interactions in Eqs. (2),
(3), and (4). These matrices are expressed in vari-
ous forms corresponding to the VEV alignments. The
charged lepton mass matrices Ml

(m) for Eqs. (11)–(14)
are

Ml
(1)=

vdvT

§

0

B@
ye 0 0
0 yµ 0
0 0 yø

1

CA, (18)

Ml
(2)=

vdvT

3§

0

B@
°ye 2yµ 2yø

2ye °yµ 2yø

2ye 2yµ °yø

1

CA=SMl
(1), (19)

Ml
(3)=

vdvT

3§

0

B@
°ye 2!yµ 2!2yø

2!2ye °yµ 2!yø

2!ye 2!2yµ °yø

1

CA=T †STMl
(1), (20)

Ml
(4)=

vdvT

3§

0

B@
°ye 2!2yµ 2!yø

2!ye °yµ 2!2yø

2!2ye 2!yµ °yø

1

CA=TST †Ml
(1), (21)

respectively, where the matrices S and T are

S=
1
3

0

B@
°1 2 2
2 °1 2
2 2 °1

1

CA , T =

0

B@
1 0 0
0 ! 0
0 0 !2

1

CA. (22)

The Dirac mass matrix for neutrinos obtained from
Eq. (3) is

MD=yDvu

0

B@
1 0 0
0 0 1
0 1 0

1

CA. (23)

It is noted that the Dirac mass matrix is determined
independently of the VEV alignments. The Majorana
mass matrices M (n)

R

±
for the corresponding set of solu-

tions Eqs. (15)–(17) are given as follows:

M (1)
R

±
=±1

3
y¡S

vS

0

B@
2 °1 °1
°1 2 °1
°1 °1 2

1

CA+yªu

0

B@
1 0 0
0 0 1
0 1 0

1

CA

+yª0u0

0

B@
0 0 1
0 1 0
1 0 0

1

CA, (24)

M (2)
R

±
=±1

3
y¡S

vS

0

B@
2 °!2 °!

°!2 2! °1
°! °1 2!2

1

CA+yªu

0

B@
1 0 0
0 0 1
0 1 0

1

CA

+!yª0u0

0

B@
0 0 1
0 1 0
1 0 0

1

CA=T †M (1)
R

±
T †, (25)

M (3)
R

±
=±1

3
y¡S

vS

0

B@
2 °! °!2

°! 2!2 °1
°!2 °1 2!

1

CA+yªu

0

B@
1 0 0
0 0 1
0 1 0

1

CA

+!2yª0u0

0

B@
0 0 1
0 1 0
1 0 0

1

CA=TM (1)
R

±
T. (26)

In order to generate the light neutrino mass matrices,
we adopt the seesaw mechanism [19–21]. The eÆective
neutrino mass matrices are given by the well-known for-
mula, M∫ =°MDM°1

R MT
D, through the seesaw mecha-

nism. We obtain the 6 diÆerent eÆective neutrino mass

1) There are still other solutions for V =0, including the trivial solution which makes all the VEVs vanish. It leads to the vanishing of
all the lepton masses and mixing angles. In addition to the trivial solution, there are solutions with non-zero VEVs of the driving fields.
This case leads to the breakdown of U(1)R symmetry. In this paper, we only discuss the vacua where U(1)R symmetry is conserved.
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matrices from Eqs. (23)-(26) as follows:

M (1)
∫

±=±a

0

B@
1 0 0
0 1 0
0 0 1

1

CA+b±

0

B@
1 1 1
1 1 1
1 1 1

1

CA

+c

0

B@
1 0 0
0 0 1
0 1 0

1

CA+d

0

B@
0 0 1
0 1 0
1 0 0

1

CA, (27)

M (2)
∫

±=T †M (1)
∫

±
T †, (28)

M (3)
∫

±=TM (1)
∫

±
T, (29)

where

a=ky¡S
vS,

c=k(yª0u0°yªu),
d=kyª0u0,

b±=®a

3
+

a2

2d°c

µ
1
3
°d2

a2

∂
,

k=
yD

2vu
2

y2
ªu2+y2

ª0u02°(y2
¡S

v2
S+yªuy0ªu0)

.

3 Classification of vacua and PMNS
mixing matrix

In this section, we classify the 24 diÆerent vacua
and derive the lepton mixing matrix UPMNS, called the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing ma-
trix. In order to classify the vacua, we discuss the rela-
tions among the VEV alignments with the transforma-
tions of A4. We show that the 24 vacua are classified into
two types in the following subsection. Then, one finds
the two diÆerent PMNS matrices with diagonalizing ma-
trices for the charged lepton and eÆective neutrino mass
matrices Eqs. (18)–(21), and (27)–(29).

3.1 Relations among sets of VEV alignments

The generators of A4 are expressed as the following
forms for the representations 1,10,100 and 3,

S(1)=S(10)=S(100)=1 , S(3)=
1
3

0

B@
°1 2 2
2 °1 2
2 2 °1

1

CA,

(30)

T (1)=1, T (10)=!, T (100)=!2 , T (3)=

0

B@
1 0 0
0 ! 0
0 0 !2

1

CA.

(31)

The sets of VEV alignment ¥m,∏±n are associated through
the transformations of these generators. As an example,
we show the T transformation on ∏+

1 :

T [∏+
1 ]¥

8
><

>:
h¡Si=T (3)vS

0

B@
1
1
1

1

CA,hª0i=T (10)u0,h¡S
0 i=T (3)

0

B@
0
0
0

1

CA

9
>=

>;
=

8
><

>:
h¡Si=vS

0

B@
1
!

!2

1

CA,hª0i=!u0, h¡S
0 i=

0

B@
0
0
0

1

CA

9
>=

>;
=∏+

2 .

(32)

The S and T transformations on all the sets of the VEV
alignment are summarized in Fig. 1. Some transforma-
tions preserve the VEVs of either ¥m or ∏±n . These vacua
have Z3 or Z2 symmetries as the residual symmetries of
A4 respectively. For the VEVs described as ¥m, they are
invariant under the following transformation,

T [¥1]=T°1 [¥1]=¥1 , TST [¥2]=(TST )°1 [¥2]=¥2 ,

ST [¥3]=(ST )°1 [¥3]=¥3 , TS [¥4]=(TS)°1 [¥4]=¥4 .
(33)

It is easy to confirm that such transformations corre-
spond to Z3 symmetries:

T 3=(TST )3=(ST )3=(TS)3=1. (34)

Each ∏±n has Z2 symmetry as follows:

S [∏±1 ]=∏±1 , TST 2 [∏±2 ]=∏±2 , T 2ST [∏±3 ]=∏±3 , (35)

where

S2=(TST 2)2=(T 2ST )2=1. (36)

Fig. 1. (color online) Map of the transitions among

the VEV alignments under the transformations S
and T : The solid arrow corresponds to the tran-

sition due to T transformation and the dashed

two headed arrow shows the transition due to S
transformation. In the map, ¥1 is invariant under

T transformation while ∏±1 are invariant under S
transformation.
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3.2 Classification of 24 vacua

In this subsection, we show the relations among the
24 diÆerent Lagrangians derived from the 24 diÆerent
combinations of VEV alignments in Eqs. (11)–(17). We
find the two sets of 12 equivalent Lagrangians with the
appropriate field redefinitions. Then, the 24 Lagrangians
are classified into two types. For simplicity, we write the
Lagrangian of this model in a short form:

L(√,¡1,¡2), (37)

where √ represents the fermion fields such as l and ∫R.
¡1 and ¡2 represent the scalar fields, which should have
their VEVs written as ¥m and ∏±n respectively. We write
the Lagrangian in the broken phase for the VEV align-
ment (¥m, ∏±n ) with fluctuations h1 and h2 as

L±mn(√,h1,h2)¥L(√,¥m+h1,∏
±
n +h2). (38)

Then, we prove the following equation:

L(√0,¥m+h0
1,∏

±
n +h0

2)=L(√,G°1¥m+h1,G
°1∏±n +h2),

(39)

where G denotes the transformation composed of S and
T in Eqs. (30) and (31). There are 12 independent trans-
formations including the identity element:

G;{e, T, T 2, S, TS, T 2S, ST, ST 2, T 2ST,

TST, TST 2, T 2ST 2}. (40)

The redefined fields are written as follows,

√0=G√ , h0
i=Ghi (i=1,2). (41)

The right-hand side of Eq. (39) corresponds to the La-
grangian for the vacuum (G°1¥m,G°1∏±n ) while the left-
hand side is the Lagrangian for the vacuum (¥m,∏±n ) in
terms of the redefined fields. In the symmetric phase, the
Lagrangian L(√,¡1,¡2) is invariant under the G transfor-
mation,

L(G√,G¡1,G¡2)=L(√,¡1,¡2). (42)

One obtains the following equation from Eq. (42) for the
vacuum (G°1¥m,G°1∏±n ),

L(G√,¥m+Gh1,∏
±
n +Gh2)=L(√,G°1¥m+h1,G

°1∏±n +h2).
(43)

Finally, one obtains the relation Eq. (39) by apply-
ing the field definition Eq. (41) to the left-hand side
of Eq. (43). The relation Eq. (39) implies the equal-
ity of the Lagrangians for the two vacua (¥m,∏±n ) and
(G°1¥m,G°1∏±n ).

Here, we briefly show how to find the equivalent vacua
with Fig. 1. For example, let us consider the T trans-
formation in terms of the vacuum of (¥1,∏

+
1 ). One finds

that ¥1 is invariant and ∏+
1 transfers to ∏+

2 under the
T transformation. Therefore, L+

11 and L+
12 are equiva-

lent. One can find 12 equivalent vacua by applying 12

independent transformations in Eq. (40) to the vacuum
(¥1,∏

+
1 ). Then, we classify the 24 Lagrangians into two

types:

Type I;
{L+

11,L+
12,L+

13,L+
21,L+

32,L+
43,L°

22,L°
23,L°

31,L°
33,L°

41,L°
42},

(44)
Type II;
{L°

11,L°
12,L°

13,L°
21,L°

32,L°
43,L+

22,L+
23,L+

31,L+
33,L+

41,L+
42}.

(45)

Type I and type II are disconnected because of the ab-
sence of a transformation which relates one type to the
other. Since all the Lagrangians which belong to the
same type lead to the same physical consequences, we
consider only L+

11 and L°
11 as the representatives of their

types:

LI¥L+
11 , LII¥L°

11. (46)

We also define the representative mass matrices for
charged leptons and neutrinos as

Ml¥M (1)
l , M I

∫¥M (1)
∫

+
, M II

∫ ¥M (1)
∫

°
. (47)

It is noted that the charged lepton mass matrix M (1)
l is

diagonal.

3.3 PMNS matrices for two types

In this subsection, we construct the PMNS matrices
for the two types, LI and LII. Since the charged lepton
mass matrix Ml is diagonal, the PMNS matrix is deter-
mined so that it diagonalizes the neutrino mass matrices
in Eq. (27):

(U I
PMNS)

†M I
∫(U

I
PMNS)

§=(U II
PMNS)

†M II
∫ (U II

PMNS)
§

=

0

B@
m1

m2

m3

1

CA, (48)

where the left-handed neutrino masses m1,m2 and m3

are positive. The PMNS matrices are expressed as the
following forms for the two types:

U I
PMNS=UTBMU13(µ,æ)

0

B@
ei¡1

ei¡2

ei¡3

1

CA, (49)

U II
PMNS=UTBM

0

B@
°i

1
i

1

CAU13(µ,æ)

0

B@
ei¡1

ei¡2

ei¡3

1

CA,

=UTBMU§
13

≥
µ+

º

2
,æ

¥
0

B@
°iei(¡1+æ)

ei¡2

°iei(¡3°æ)

1

CA.

(50)

023102-6



Chinese Physics C Vol. 42, No. 2 (2018) 023102

The unitary matrix UTBM is the tri-bimaximal mixing
matrix and U13(µ,æ) denotes the unitary rotation ma-
trix:

UTBM=

0

B@
2/
p

6 1/
p

3 0
°1/

p
6 1/

p
3 °1/

p
2

°1/
p

6 1/
p

3 1/
p

2

1

CA, (51)

U13(µ,æ)=

0

B@
cosµ 0 e°iæsinµ

0 1 0
°eiæsinµ 0 cosµ

1

CA. (52)

We have introduced the parameters µ,æ and ¡i (i=1,2,3).
They are written in terms of the complex parameters of
the neutrino mass matrix, a,b,c and d, in Eq. (27)1). In
the rest of this subsection, we derive the explicit forms of
the parameters µ,æ and ¡i in terms of the model param-
eters a,b,c and d. In the first step, one rotates M∫M †

∫

with the tri-bimaximal mixing matrix.

U †
TBMM I

∫(M
I
∫)
†UTBM=

0

B@
A 0 B

0 C 0
B§ 0 D

1

CA, (53)

U †
TBMM II

∫ (M II
∫ )†UTBM=

0

B@
D 0 °B§

0 C 0
°B 0 A

1

CA. (54)

where

A=
ØØØØa+c°d

2

ØØØØ
2

+

ØØØØØ

p
3

2
d

ØØØØØ

2

, (55)

B=
µ

a+c°d

2

∂p
3

2
d§+

p
3

2
d

µ
a°c+

d

2

∂§

¥|B|ei'B , (56)

C=
ØØØØ
a2°(c2°cd+d2)

2d°c

ØØØØ
2

, (57)

D=
ØØØØa°c+

d

2

ØØØØ
2

+

ØØØØØ

p
3

2
d

ØØØØØ

2

. (58)

The mass eigenvalues are determined as

m2
1=

A+D

2
®1

2
p

(A°D)2+4|B|2, (59)

m2
2=C, (60)

m2
3=

A+D

2
±1

2
p

(A°D)2+4|B|2, (61)

where the upper and lower signs in these mass eigenval-
ues correspond to the normal hierarchy (NH) and the in-
verted hierarchy (IH). Next, we diagonalize the rotated
mass matrices, Eqs. (53) and (54), with U13(µ,æ) and
U§

13(µ+
º
2
,æ) respectively:

U13(µ,æ)†

0

B@
A 0 B

0 C 0
B§ 0 D

1

CAU13(µ,æ)=

0

B@
m2

1

m2
2

m2
3

1

CA, (62)

U13

≥
µ+

º

2
,æ

¥T

0

B@
D 0 °B§

0 C 0
°B 0 A

1

CAU13

≥
µ+

º

2
,æ

¥§

=

0

B@
m2

1

m2
2

m2
3

1

CA, (63)

where µ and æ are determined as,

tan2µ=
2|B|
D°A

, æ=°'B. (64)

Finally, the other parameters ¡i are determined as fol-
lows,

¡1=
1
2

2

6664
tan°1

2

6664

µ
Im[a]+Im

∑
c°d

2

∏
cos2µ

∂
cosæ+

µ
Re[a]cos2µ+Re

∑
c°d

2

∏∂
sinæ°

p
3

2
Im[d]sin2µ

µ
Re[a]+Re

∑
c°d

2

∏
cos2µ

∂
cosæ°

µ
Im[a]cos2µ+Im

∑
c°d

2

∏∂
sinæ°

p
3

2
Re[d]sin2µ

3

7775
°æ

3

7775
, (65)

¡2=
1
2
tan°1

∑
Im[a2°(c2°cd+d2)]Re[2d°c]°Re[a2°(c2°cd+d2)]Im[2d°c]
Re[a2°(c2°cd+d2)]Re[2d°c]+Im[a2°(c2°cd+d2)]Im[2d°c]

∏
, (66)

¡3=
1
2

2

6664
tan°1

2

6664

µ
Im[a]°Im

∑
c°d

2

∏
cos2µ

∂
cosæ°

µ
Re[a]cos2µ°Re

∑
c°d

2

∏∂
sinæ+

p
3

2
Im[d]sin2µ

µ
Re[a]°Re

∑
c°d

2

∏
cos2µ

∂
cosæ+

µ
Im[a]cos2µ°Im

∑
c°d

2

∏∂
sinæ+

p
3

2
Re[d]sin2µ

3

7775
+æ

3

7775
. (67)

1) There are six real parameters since b is written by using a,c,d.
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We briefly explain the derivation of ¡i for the mass ma-
trix M I

∫ . We first diagonalize M I
∫ with the unitary matri-

ces UTBM and U13(µ,æ) according to Eq. (48). However,
the diagonalized neutrino mass matrix consists of com-
plex elements. Then, the parameters ¡i are determined
so that all the elements of the diagonalized matrix are
real and positive.

4 Phenomenological aspects

We study the phenomenological aspects of this model
and show the diÆerences between the two types of vacua.

The observables, such as mixing angles and CP violat-
ing phases, are described with the model parameters in
diÆerent forms for the two types. In the following sub-
sections, we discuss the relation between the observables
and model parameters. The numerical analyses are also
shown in this section.

4.1 Mixing angles and CP violating phases

In this subsection, we discuss the lepton mixing an-
gles, CP violating phases and the eÆective mass for 0∫ØØ
decay. At first, we introduce the PDG parametrization
of the PMNS matrix:

UPDG
PMNS=

0

B@
c12c13 s12c13 s13e°i±CP

°s12c23°c12s23s13ei±CP c12c23°s12s23s13ei±CP s23c13

s12c23°c12c23s13ei±CP °c12s23°s12c23s13ei±CP c23c13

1

CA

0

B@
eiÆ

eiØ

1

1

CA, (68)

where sij and cij denote the lepton mixing angles sinµij

and cosµij , respectively. They are written in terms of
the PMNS matrix elements:

sin2µ12=
|Ue2|2

1°|Ue3|2
, sin2µ23=

|Uµ3|2

1°|Ue3|2
, sin2µ13=|Ue3|2,

(69)

where UÆi denote the PMNS matrix elements. The Dirac
CP violating phase ±CP can be obtained with the Jarl-
skog invariant

sin±CP =
JCP

s23c23s12c12s13c2
13

, (70)

JCP =Im
£
Ue1Uµ2U

§
µ1U

§
e2

§
. (71)

In order to obtain these parameters from our model, we
substitute the PMNS matrix elements in Eqs. (49) and

(50). For the type I case, the matrix elements are given
as follows:

Ue1=
2p
6
ei¡1 cosµ, (72)

Ue2=Uµ2=
1p
3
ei¡2 , (73)

Ue3=
2p
6
e°i(æ°¡3)sinµ, (74)

Uµ1=
µ
° 1p

6
cosµ+

1p
2
eiæ sinµ

∂
ei¡1 , (75)

Uµ3=
µ
° 1p

6
e°iæ sinµ° 1p

2
cosµ

∂
ei¡3 . (76)

The mixing angles, Dirac CP violating phase and Majo-
rana phases for both types are listed in Table 3.

Table 3. Mixing angles, Dirac CP phase and Majorana phases for the two types of vacua.

Type I Type II

sin2µ12
1

2+cos2µ

1

2°cos2µ

sin2µ23
1

2

√
1+

p
3sin2µ

2+cos2µ
cosæ

!
1

2

√
1°
p

3sin2µ

2°cos2µ
cosæ

!

sin2µ13
1

3
(1°cos2µ)

1

3
(1+cos2µ)

sin±CP °
sin2µ

|sin2µ|
(2+cos2µ)sinæ

p
(2+cos2µ)2°3sin22µcos2æ

°
sin2µ

|sin2µ|
(2°cos2µ)sinæ

p
(2°cos2µ)2°3sin22µcos2æ

Æ+±CP ¡1°¡3+æ ¡1°¡3+æ

Ø+±CP ¡2°¡3+æ ¡2°¡3+
º

2

One can adopt either of the two types to predict the
mixing angles and the Dirac CP violating phases, since
both types give the same predictions. However, we note
the following two facts. First, if one fixes cos2µ'1 to ob-

tain small sin2µ13 in type I, sin2µ13 in type II reaches 2/3,
which is disfavored in the experiments. Second, as shown
in Subsection 3.3, the model parameters µ, æ and ¡i are
expressed in the same forms for the two types with a, b,
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c and d of Eq. (27). Therefore, those parameters have
common values for both types. Hence, the two types can
not realize the experimental results simultaneously.

Next, we discuss the eÆective mass for 0∫ØØ decay,
mee=

P
imiU2

ei, and the Majorana phases, Æ and Ø. The
eÆective mass is given as follows:

ØØmI
ee

ØØ=1
3
ØØm1(1+cos2µ)e2i¡1+m2e2i¡2

+m3(1°cos2µ)e2i(¡3°æ)
ØØ, (77)

ØØmII
ee

ØØ=1
3
ØØm1(1°cos2µ)e2i(¡1+æ)°m2e2i¡2

+m3(1+cos2µ)e2i¡3
ØØ, (78)

where the superscripts I and II denote the types of vac-
uum. Equivalently, one can rewrite Eqs. (77) and (78)
as

ØØmI
ee

ØØ=1
3
ØØm1(1+cos2µ)e2i(¡1°¡3+æ)+m2e2i(¡2°¡3+æ)

+m3(1°cos2µ)
ØØ, (79)

ØØmII
ee

ØØ=1
3
ØØm1(1°cos2µ)e2i(¡1°¡3+æ)°m2e2i(¡2°¡3)

+m3(1+cos2µ)
ØØ, (80)

On the other hand, the eÆective mass in the PDG
parametrization is written as

|mee|=
ØØm1c

2
13c

2
12e

2i(Æ+±CP )+m2c
2
13s

2
12e

2i(Ø+±CP )+m3s
2
13

ØØ.
(81)

One can obtain the Majorana CP violating phases Æ and
Ø by comparing Eqs (79)-(81),

(Type I) Æ+±CP =¡1°¡3+æ , Ø+±CP =¡2°¡3+æ,

(82)

(Type II) Æ+±CP =¡1°¡3+æ , Ø+±CP =¡2°¡3+
º

2
.

(83)

4.2 Numerical analysis

In this subsection, we show numerical analysis to find
the diÆerence between two types. We use recent experi-
mental results with 3æ range [22], as summarized in Ta-
ble 4.

Table 4. The experimental data for the mass

squared diÆerences and mixing angles with 3æ
range [22].

normal hierarchy (NH) inverted hierarchy (IH)

¢m2
21/eV2 (7.03ª8.09)£10°5 (7.03ª8.09)£10°5

¢m2
31/eV2 (2.407ª2.643)£10°3 °(2.565ª2.318)£10°3

sin2µ12 0.271ª0.345 0.271ª0.345

sin2µ23 0.385ª0.635 0.393ª0.640

sin2µ13 0.01934ª0.02392 0.01953ª0.02408

As we have shown in the previous subsection, the
mixing angles and Dirac CP phase are expressed in terms

of the model parameters µ and æ in diÆerent forms for
the two types.

The experimental data for sin2µ13 in Table 4 is real-
ized by the following value of µ with NH or IH:

Type I; 9.81±6|µ|610.9± (NH), 9.86±6|µ|611.0± (IH),
(84)

Type II; 79.1±6|µ|680.2± (NH), 79.0±6|µ|680.1± (IH).
(85)

The value of æ is allowed in °180±6æ6180± for both of
the two types, since the error of sin2µ23 from the exper-
iments is large.

Next, we discuss the parameters ¡i in the expres-
sions of the Majorana phases of Eqs. (82) and (83). The
eÆective mass |mee| in Eq. (81) depends on the two com-
binations of Dirac and Majorana phases, 2(Æ+±CP ) and
2(Ø+±CP ). If we determine both |mee| and the lightest
neutrino mass, we obtain the constraints on these two
combinations. In order to find how the numerical con-
straints on ¡i are diÆerent in the two types, we consider a
specific situation. As an example, we assume that |mee|
is predicted in the region as shown in Fig. 3. We note
that the lightest neutrino mass is constrained from the
cosmological upper bound for the neutrino mass sum,P

imi < 0.16 eV [23]. This plot is obtained when the
Dirac and Majorana phases are randomly chosen from
the region A1 in Fig. 2,

0<Æ+±CP <º/4 , 0<Ø+±CP <º/4. (86)

In this situation, the phase diÆerences ¡1°¡3 and ¡2°¡3

for one type can be distinguished from those for the other
type. The constraints on the phase diÆerences are shown
in Fig. 4. For type I, the phase diÆerence ¡2°¡3 is pro-
portional to ¡1°¡3. However, for type II, ¡2°¡3 is in-
dependent of the value of ¡1°¡3 because æ is absent in
the expression of ¡2°¡3 in Eq. (83).

Fig. 2. (color online) 16 divided regions for 2(Æ+

±CP ) and 2(Ø+±CP ).
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Fig. 3. (color online) The prediction of eÆective

mass for 0∫ØØ decay in region A1 of Fig. 2. The

upper region corresponds to the IH case , while

the lower one corresponds to the NH case.
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Fig. 4. (color online) The allowed regions of the

model parameters, ¡1°¡3 and ¡2°¡3 for both

types of vacua. These plots correspond to region

A1 of Fig. 2.

5 Summary

We have studied phenomenological aspects of a su-
persymmetric model with A4£Z3 symmetry. We found
24 degenerate vacua at the 24 minima of the scalar po-
tential. Then, we discussed the relations among the
24 diÆerent vacua and classified them into two types.
Both types consist of 12 vacua which are related to each
other by transformations of A4. We proved that the 12
vacua are equivalent and lead to the same physical con-
sequences. However, we found that we obtain diÆerent
physical consequences from the vacua of diÆerent types.
Therefore, we analyzed the two types of vacua to find
the diÆerent phenomenological consequences of the two
types. In particular, we investigated observables such as
mixing angles, Dirac CP phase, Majorana phases and
eÆective mass for 0∫ØØ decay.

These observables are expressed in terms of the model
parameters µ, æ and ¡i. The angle µ and phase æ are de-
termined by the deviation from the tri-bimaximal mix-
ing matrix. The two types lead to diÆerent expressions
for the mixing angles and Dirac CP violating phase in
terms of µ and æ. Therefore, one should take diÆer-
ent model parameters in each type in order to realize
the experimental results. Although one can adopt both
of the two types to predict the observable parameters,
the two types cannot realize the current experimental
data simultaneously. The Majorana phases Æ and Ø are
parametrized in the diÆerent expressions for each type
by the model parameters ¡i in addition to µ and æ. In
order to find numerical diÆerences between the two types
of Majorana phase, we considered the specific situation
where the lightest mass and eÆective mass for the 0∫ØØ
decay are determined in a certain region. We showed
the allowed regions of the phase diÆerences, ¡1°¡3 and
¡2°¡3. The regions are quite diÆerent for the two types:
the phase diÆerences for type I are proportional to each
other, while those for type II are not.

The VEVs ¥m and ∏±n transfer to the diÆerent VEVs
by transformations of A4. However, the transformations
for ¥m and ∏±n are closed diÆerently since they have the
Z3 and Z2 residual symmetries from A4 respectively. We
have pointed out that some combinations of the VEVs
can lead to diÆerent physical consequences. When we
consider models with two or more flavons, we should take
account of the combination of VEVs.
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Appendix A

Multiplication rule of A4 group

In this appendix, we show the multiplication of the A4 group. The multiplication rule of the triplets is written as follows;

0

B@
a1

a2

a3

1

CA

3

≠

0

B@
b1

b2

b3

1

CA

3

=(a1b1+a2b3+a3b2)1©(a3b3+a1b2+a2b1)10©(a2b2+a1b3+a3b1)100©
1

3

0

B@
2a1b1°a2b3°a3b2

2a3b3°a1b2°a2b1

2a2b2°a1b3°a3b1

1

CA

3

©1

2

0

B@
a2b3°a3b2

a1b2°a2b1

a3b1°a1b3

1

CA

3 ,

(A1)

while that for singlets is,

1
0≠1

00
=1. (A2)

In order to derive the A4 invariant superpotential in Eq. (1), we have used the multiplication rules. Their derivation is shown

in the reviews in Refs. [1–4].
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