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Chapter 1: General Introduction 

 

1.1 Environmental impacts of automobile emission 

The emission from automobile has affected the urban air and human health with the 

industrial growing. The most significant emissions to the atmosphere are carbon 

dioxide (CO2) and water vapor (H2O) from the complete combustion of the fuel. 

However, depending on the combustion condition and the composition of the fuel, a 

small fraction of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen 

oxides (NOX) and particulate matters are emitted. And, for example, sulfur dioxide 

(SO2), NOx and some hydrocarbons cause ‘acid rain’, and CO2, methane, N2O and 

fluorocarbons cause ‘Greenhouse effect’ [1-4].   

The first emission regulation was established in the 1970s in the United States, and 

was subsequently implemented in Europe and Japan. From the point of view of 

worldwide environmental protection, the emission regulation is getting stricter and 

stricter. To meet this present stringent regulation for automobile emission even after 

longtime driving for example 150 kmile in USA and to achieve the aim at ‘Paris  

Agreement’, catalyst technology plays a very important role in purifying exhaust 

gases [5]. 
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Now, the automobile industry will undertake a big revolution in near future. Main 

cause is a request for reduction of CO2 emissions. The aim at Paris Agreement 

adopted by COP21 in 2015 is to hold down the world average temperature rising to 

less than 2 degrees, same as before the Industrial Revolution. To realize this, the 

target in Japan is to reduce 26% of Green House Effect emission in 2013 by 2030, 

and more 90% by 2050. Therefore, development of the catalyst with higher 

conversion is emergent task [6].  

 

1.2 Three-way catalysts 

Three-way catalysts (TWC) have to promote the antagonizing reactions, oxidation of 

CO and HC and reduction of NOx giving the following reactions simultaneously [7]. 

CyHn + (1 + n/4) O2  yCO2 + n/2 H2O                     

(1) 

CO + 1/2 O2  CO2                                                     

(2) 

CO + H2O  CO2 + 1/2 N2 + CO2                                             (3) 

NO (or NO2) + CO  1/2 N2 + CO2                                           (4) 

NO (or NO2) + H2  1/2 N2 + H2O                                            (5) 
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 (2 + n/2) NO (or NO2) + CyHn  (1 + n/4) N2 + yCO2 + n/2 H2O       (6) 

Fig.1-1 shows the typical example of the conversion of three main gases for air/fuel 

ratio. The effective removal of three gases can be achieved at the stoichiometric ratio, 

that is air by fuel (A/F) of 14.7. And it indicates that O2 concentration in the exhaust 

gas strongly affects the three-way catalytic activity. 

The catalyst support is made of cordierite honeycomb or sometimes metallic 

monolith coated with a thin activated washcoat which is made of Al2O3, OSC 

component and some other additives loading some active components, for example 

Platinum (Pt), Palladium (Pd) and rhodium (Rh) so on. For NO reduction, Rh is the 

essential precious metal as the active site [7-9].  

 

 

Fig.1-1. Conversion efficiency of NO, CO and HC as function of the air-fuel 
ration in a three way catalytic converter [7]. 
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1.3 Demand for the three-way catalyst for HCCI engine 

From the viewpoint of the prevention of global warming and the energy security, 

improvement in automobile fuel economy is strongly required and also improvement 

in thermal efficiency of internal combustion energies is urgently required. From 

many studies, increase of the expansion ratio or lean burn has shown effective for 

improving the thermal efficiency of gasoline engines in the Otto cycle [10, 11]. 

Therefore, there is a possibility that the form of engine combustion will shift from 

conventional SI combustion to lean burn in the future.  

Demand for the three-way catalysis reaction has been changed with the engine 

development. As the exhaust emission becomes lower temperature and lean condition, 

performance of NO conversion is the key to meet the emission regulation. And 

catalysts need drastic changes to get over this object. 

Rh shows excellent catalytic activity compared with the other precious metals (Pt, Pd, 

Ir and Ag), especially in NOx conversion [8,12,13]. Because Rh shows high 

activities towards NO dissociation which is the elementary step of NOx reduction, 

NOx is removed by reduction with CO or hydrocarbons [14]. However, the amount 

of Rh production is very small compared to other precious metals. The automotive 

industry uses almost 100% of the Rh production as exhaust catalysts. Therefore, in 
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view of resource saving, minimizing Rh amount is desirable. In other words, we need 

to enhance the catalytic activity of Rh using minimum amount of Rh.  

And one way to make Rh more effective in NO reduction is minimizing the Rh 

particle size to maximize the number of reaction sites. As the metal particle size 

decreases below 10 nm, both different geometric and electronic properties can be 

observed in comparison with those of the bulk material. This is because surface 

activity is improved not only by increasing the surface area but also by introducing 

many surface structures having unsaturated bonds such as edges. And the bulk 

materials have a continuous electron level. On the other hand, nanoparticles have a 

discrete one and the band gap increases called “Kubo effect”. By using this effect, 

the band gap of the semiconductor nanoparticles is controlled by the particle 

diameter, and the wavelength region in which the light emitting and receiving 

element can be changed. [15-19]. 

Another way to make Rh more effective in NO reduction is to control the electronic 

states relating to “adsorption and desorption behavior” of the reactant gases, which is 

the elementary step and plays significant role of catalytic reaction. For controlling 

the electronic state, nanoparticle/support interactions play a significant role affecting 

(i) the electronic structure of the nanoparticles through charge transfer processes, (ii) 
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the crystalline and electronic structure of the nanoparticles due to induced strain at 

the nanoparticle/support interface, or (iii) properties of interfacial sites (metal atoms 

at the perimeter of the nanoparticle in contact with the support) [16, 20-24].   

1.4 Development of new catalyst for HCCI engine 

The three-way catalyst for the next generation engine “HCCI” whose exhaust 

emission becomes lower temperature and lean condition must be developed, and this 

needs a drastic technical breakthrough. From now on, in order to improve the 

function of the material dramatically, it is not a conventional trial and error 

development, but Model Base Research (MBR), which is to clarify the mechanism of 

phenomenon and to develop a new material by modeling the ideal state, has become 

essential. The key to this is “analysis technology that can capture phenomena 

accurately” and “modeling calculation”. In “Analytical technology”, improving 

accuracy of analysis instruments, Synchrotron Radiation technology, in-situ 

analytical technologies and so on have enabled to understand the phenomenon more 

accurately. At the same time, in recent years, computer hardware and software in 

modeling calculation have leveled up to treat the part of the practical catalysts (a 

several precious metals and support material) [25-28]. 

As a first step for this study, it is necessary to understand “NO adsorption– 
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desorption behavior” which is the rate determining step of NO reduction and the 

relationship between its behavior with the electronic property of Rh used for active 

sites. 

 

1.4.1   Characterization for understanding of catalytic performance  

The first concern is the intrinsic properties of Rh nanoparticles(NPs). For this 

characterization of the electronic property, in-situ X-ray photoelectron 

spectroscopy (XPS) is adopted, as it is the suitable analytical method, excluding 

the influence of any adsorbed components. The second concern is the properties 

of Rh nanoparticles in a practical condition. A three-way catalyst operates under at 

ambient pressure under oxygen-rich condition as written in section 1.3. Oxygen 

atoms initially chemisorb on the metal surface and above a critical oxygen 

coverage, chemisorbed oxygen induces surface restructuring and the formation of 

surface oxides. Moreover, continued oxygen adsorption causes the surface oxide 

to transform to a multilayer bulk oxide. Because oxides and their parent metals 

usually have very different chemical properties, the transformation of a metal 

surface to a metal oxide shows the drastic change of catalytic performance [29-31]. 

For the above reason, the influence of oxygen for the electronic properties was 
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clarified.  

Synchrotron radiation is an electromagnetic wave generated when electrons going 

straight at almost the speed of light are changed by a magnet or the like in the 

traveling direction. Synchrotron radiation has five main features. (i) High 

Brightness (ii) Including a wide wavelength range from X-rays to infrared rays 

(iii) Thinned narrowly, hard to spread (iv) Polarized (v) Repetition of a short pulse 

light. For analysis written above, synchrotron radiation is an effective method for 

(i) and (ii).  

In this study, fabrication by the evaporation method using the He gas in the Rh 

evaporation chamber, connected with the pre-evacuation chamber of Beam Line at 

Synchrotron Radiation XPS (SR-XPS) enabled this in-situ analysis. About 

samples for evaluation, a practical catalyst will be complicated and the structural 

factor and its influence for the electronic property are included. Therefore, 

simplified materials which were precious metal NPs fabricated on the Si wafer 

coated with oxide thin layer were used as a sample. 

Moreover, changing photon energy enables to evaluate not only the adsorption gas 

but also from Rh surface near the adsorption point to the deeper area near the 

support material that is based on the practical catalyst. Additionally, the influence 
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of oxygen for NO adsorption is also studied [14, 32-37]. In the former studies, the 

behavior of the adsorption gas and Rh surface near the adsorption point were 

analyzed by Near Ambient Pressure (NAP) XPS. In a NAP system, the pressure of 

the adsorption gas was about 100 mTorr, for instance. This was far from the 

practical condition, 760 Torr, and was difficult to regard a same condition as a 

practical one. On the contrary, in this study, the load lock chamber of the Beam 

Line was used as a reaction chamber, the behavior of the adsorption gas could be 

evaluated at 760 Torr without ambient atmosphere.  

1.4.2     Computational modeling and calculation for characterization 

Knowledge of the atomic structure, that is the surface composition and geometry, 

is indispensable for analyzing and understanding the electronic property and the 

mechanism for each reaction. In this respect, the experimental techniques of 

ultrahigh-vacuum (UHV) have significantly helped our understanding of surface 

science. However, the clarification for the mechanism cannot be accomplished by 

this experimental investigation alone. Theoretical calculations are also powerful 

tools for clarification of the mechanism, because it provides detailed information 

about the behavior of electrons and the resulting interactions, reaction kinetics as 

well as the thermodynamics of the reactants, products, intermediates and 
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transition states. Modern electronic structure theory methods like 

density-functional theory (DFT) have matured to a standard tool. These 

techniques are referred to as first-principle to indicate that they do not rely on 

empirical or fitted parameters and obtain the physical property based on the 

elements consisted of a molecule or a crystal and its structure. That is to say, 

physical properties can be predicted by the electronic state calculations [38-40]. In 

this study, computational modeling and calculations are carried out to provide the 

thermodynamic and kinetic properties for theoretical insights by DFT.  

1.5 Purpose of this thesis 

As the first step of MBR for more effective catalyst development, mechanism of NO 

adsorption–desorption behavior” and the relationship between NO 

adsorption-desorption behavior and the electronic property of Rh used for active sites 

are clarified.  

The first chapter shows the result of the characterization for Rh NP itself. Rh NPs 

have been fabricated by the evaporation method using the He gas in the Rh 

evaporation chamber, connected with the pre-evacuation chamber of BL6N1 at Aichi 

Synchrotron Radiation Center (Aichi SR). The electronic and geometric properties of 

the Rh NPs have been verified without atmosphere exposure (in-situ XPS) and after 



22 
 

atmosphere exposure (ex-situ XPS) using SR-XPS and TEM. 

The second chapter shows the result of the characterization for NO adsorption on Rh 

NPs. After Rh NPs were deposited with a same method as in chapter 1, Rh NPs were 

exposed to NO with and without an ambient atmosphere to study the effect of O2 on 

the electronic properties of the Rh NPs and the behavior of NO molecules using 

SR-XPS.  

The third chapter shows the influence of the support material for NO adsorption on 

Rh NPs. After Rh NPs were deposited on a silicon wafer and CeO2 thin layer on a 

silicon wafer with a same method as in chapter 1 and were exposed to NO, the 

influence of the support material for NO adsorption on Rh NPs was verified. 

Moreover, a combination with theoretical calculations enables to understand the 

behaviors thermodynamically.  
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Chapter 2: Experimental 

 

2.1 Sample preparation 

Rh nanoparticles (NPs) were fabricated by gas evaporation method [1,2]. Fig.2-1 

shows the schematic view of the Rh NPs fabrication. This equipment consists of 2 

chambers, “Forming chamber” and “Deposition chamber”, and 2 chambers are 

connected with 1/8 inch pipe of stainless. Rh twisted pair wire was used as the 

evaporation source and was introduced in the forming chamber. After all this 

equipment were evacuated by the rotary pump or turbo molecular pump, evacuation 

for the forming chamber stopped and He gas was introduced. Rh wire was charged 

and then evaporated. When evaporated Rh atoms crushed on He atoms, they were 

cooled and agglomerated to form nanoparticles. As the deposition chamber was 

evaporated, the formed NPs are transformed by He gas to the evaporation chamber 

through the 1/8 inch pipe because of the difference of pressure between 2 chambers. 

And the evaporated Rh NPs were fabricated on the Si wafer set near the exit of the 

pipe. Fig.2-2 shows the fabrication equipment in HiSOR. 
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Fig.2-2. Fabrication equipment in HiSOR. 

Fig.2-1. Schematic view of chamber of fabrication chamber.   view of chamber of fabric

b
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2.2   Characterization 

2.2.1     X-ray photoelectron spectroscopy (XPS) 

2.2.1.1     Principle [3,4] 

X-ray photoelectron spectroscopy refers to experimental manipulations based on 

the photoelectric effect. Fig. 2-3 illustrates the principle of the XPS experiment. 

The photon impacts on the sample (photoemissive material) and an electron is 

exited and escapes to the vacuum by the photoelectric effects. The following 

equation holds.  

EB = h  Ek  

, where h  stands for the energy of the irradiated X-ray, EB stands for the 

binding energy of the escaping photoelectron in a sample calibrated at Fermi level, 

Fig.2-3. Schematic view of the principle of the XPS experiment. The analyzer 
determines the energy and momentum of the charged particle using several 
methods depending on the instrument.  
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the kinetic energy of the photoelectron stands for Ek and the work function of the 

energy analyzer stands for . Fig.2-4 shows a schematic display of the relation 

between the energy levels in a solid and the photoelectron energy distribution for 

a fixed photon energy h . Fermi level is at the highest occupied energy level of 

the band and taken to have EB =0 and kinetic energy measured from the vacuum 

level. An actual energy distribution of the photoelectrons would be usually 

proportional to the electron energy distribution in the solid, so-called the density 

of the states (DOS).  

The binding energy is determined by the element and the electron level, but it 

varies depending on the chemical environment around atoms. This is used to 

Fig.2-4. XPS from a metallic surface: a schematic plot of the energy levels in 
a solid vs the photoelectron energy distribution for a photon of energy h .  
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identify the type and chemical state of the element. The mean free path is given as 

a function of its kinetic energy, as shown in Fig.2-5. Changing the photon energy 

enables to change the escape depth of photonelectrons of the material. 

  

2.2.1.2     Synchrotron Radiation(SR)- XPS [5] 

In this study, chemical states of the Rh NP have been investigated by SR-XPS at 

BL6N1 in Aichi Synchrotron Radiation Center (AichiSR). Its accumulated 

electron energy is 1.2 GeV, accumulated current is 300 mA and perimeter is 72 m. 

Fig.2-6 shows a layout of AichiSR and its photon spectrum in Fig.2-7. The 

BL6N1 is for soft X-ray XAFS and XPS. Fig.2-8 shows a schematic view of 

Fig.2-5. Universal curve for the mean free path with respect to the electron 
kinetic energy [3].  
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BL6N1. XPS can be performed with the photon energy from 1.75 keV to 5 keV 

(Fig.2-9). Therefore, , to characterize the electronic property in the depth direction, 

XPS analysis with SR were adopted because its phton energy is able to change.  

 Fig.2-6. The layout of AichiSR. 
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Fig.2-7. The photon spectrum of AichiSR. 

Fig.2-8. The schematic view of AichiSR BL6N1. 
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2.2.1.3     in-situ XPS analysis [5] 

NPs fabricated by gas evaporation method are oxidized due to atmosphere 

exposure. Our first concern is intrinsic property of Rh NPs. For this 

characterization of the electronic property, in-situ XPS is the suitable analytical 

method because it can exclude the effect of any adsorbed species including 

oxygen.  

Because BL6N1 has a load-lock chamber and a sample transfer system,  the 

evaporation chamber for Rh NPs was connected to the load-lock chamber of the 

endstation and Rh NP could be able to be analyzed without exposure to ambient 

Fig.2-8 The schematic view of AichiSR BL6N1. 

Fig.2-9. The photon flux of AichiSR BL6N1. 
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air (Fig.2-10). 

 

2.2.2     Transmission electron microscopy (TEM) 

2.2.2.1     Principle [6] 

Transmission electron microscopy is an observation technique that the accelerated 

electrons pass through the electronic lens and irradiate to specimen thinned to 100 

nm or less and transmitted electrons are magnified and projected onto a 

fluorescent screen or CCD camera. And it realizes filming images smoothly for a 

wide range of magnifications from tens of microns (observation over the entire 

part of cells) to sub nanometer size (observation for the atomic arrangement). 

Fig.2-10. The end station at Aichi SR and schematic view of chamber of 
fabrication chamber.  
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Contrast is due to dispersion and diffraction of the electron beam, and mainly 

TEM observation provides the fine structural information, moreover, the 

information about dislocation, stacking fault, particle diameter and so on as well. 

In addition, by the change of the observation mode, the electon diffraction pattern 

is able to be obtained to get information about the crystal structureand the 

crystallinity (Fig.2-11).  

 

2.2.2.2     Procesure of TEM observation 

In this study, the particle diameter of Rh nanoparticles were evaluated by TEM 

using JEOL JEM-3000F with accelarated voltage 300kV at Hiroshima Prefectural 

Technology Research Institute (Fig.2-12). Rh NPs were fabricated for a short time 

on a TEM grid for evaluation.     
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Fig.2-11. General layout of a TEM describing the path of electron beam in a TEM [6].  

Fig.2-12. JEM-3000F at Hiroshima Prefectural Technology Research Institute [8].  
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2.3     Computational modeling and calculation for characterization 

Electronic structure calculations were performed within a density functional theory 

(DFT) method, using Dmol3 in Material Studio (version 7) of Accelrys Inc.. In the 

DMol3 methods, the physical wave functions are expanded in terms of accurate 

numerical basis sets. I used the double-numeric quality basis set with polarization 

functions (DNP). Perdew-Burke-Ernzerhof exchange correlation functional with 

revised parameters (RPBE functional) was employed as the the gradient-corrected 

GGA functional. A Fermi smearing of 0.002 hartree (1 hartree = 27.2114 eV) and a 

real-space cutoff of 4  were used to improve computationap performance. Periodic 

surface slabs of four layers’ thickness were used, with a 15 of vacuum region 

between the slabs. Adsorbate and the two top layers of metal were allowed to relax in 

all the geometry optimization calculations without symmetry restriction. The 

tolerances of energy, gradient, and displacement convergence were 2 10-5 hartree, 4

10-3 hartree/ , and 5 10-3 respectively. The maximum gradient for most of 

the optimized structures was less than  2 10-3 hartree/

The slab model of CeO2 was cut from the bulk cubic (Fm3m) CaF2-like structure 

using the optimized parameter a0 of 5.526 , in good agreement with reference a0 

of 5.40 The slab model of SiO2 was cut from the bulk alpha-quartz SiO2 structure 
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using the optimized parameter a0 and b0 of 5.069 and c0 of 5.572 , in good 

agreement with reference a0 and b0 of 4.9137 and c0 of 5.4047  

I focused on the following three reactions (eq 1-3), which constitute the key 

elementary steps 

NO adsorption:  NO + M  NO-M     (1) 

NO dissociation: NO-M  N-, O-M     (2) 

NO2 formation: NO-M + O-M  NO2 + M     (3) 

The adsorption energy (Ead) for an adsorbate A was calculated using the equation 

Ead = E(surf –A) – [E(surf) + E(A)]     (4) 

Where E(surf –A), E(A) and E(surf) are the electronic energy contributions from the 

surface –adsorbate system, the adsorbate and the surface, respectively. According to 

this definition, negetive Ead corresponds to stable adsorption on the surface. 
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Chapter 3 Fabrication and in/ex–situ XPS characterization 

of Rh nanoparticles 

 

3.1 Introduction 

To meet the present stringent regulation for automobile emission, catalysts play an 

important role in purifying exhaust gases. For NO reduction, rhodium (Rh) is the 

essential precious metal as the active site [1-3]. To make Rh more effective for NO 

reduction, Rh particle must be as small as it can be to increase the number of reaction 

site. As the metal particle size decreases below 10 nm, both different electronic and 

geometric properties can be observed in comparison with those of the bulk material 

[4-7]. 

Our first concern is the intrinsic properties of Rh nanoparticles. For this 

characterization of the electronic property, in-situ X-ray photoelectron spectroscopy 

(XPS) is the suitable analytical method, excluding the influence of any adsorbed 

components. On the other side, catalysts for purifying the exhaust gases are used 

under atmosphere. Therefore, our second concern is the properties of nanoparticles in 

practical use condition. Ex-situ XPS, that is XPS analysis after atmosphere exposure, 
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clarifies this issue. In the process of NO reduction, NO molecules adsorb on the 

metallic Rh surface. Under atmosphere, Rh oxide layer is on the surface of Rh 

particle and the thickness of the oxide layer influences its performance [8-10]. In the 

case of XPS analysis in laboratory, using Al Kα radiation (1486.6 eV), calculated 

inelastic mean free path of Rh is 1.9 nm [11], less than or equal to about one Rh 

oxide layer. In the case of XPS analysis in Synchrotron radiation (SR), increasing a 

photon energy enables the inelastic mean free path to increase. In this paper, XPS 

analysis with SR is adopted to characterize the electronic property of Rh nanoparticle 

in the depth direction. 

The purpose of this paper is to reveal the geometric and electronic properties of Rh 

nanoparticles by using both TEM and in/ex-situ XPS with SR. 

 

3.2.2 Analysis of Rh nanoparticle 

TEM experiments were carried out using JEOL JEM-3000F, accelarating energy at 

300 kV. To evaluate the size of Rh nanoparticles, another sample of the TEM grid 

with a short time fabrication was prepared.  

Chemical states of the Rh nanoparticle were investigated by XPS at BL6N1 in Aichi 

Synchrotron Radiation Center. As the evaporation chamber for Rh nanoparticles was 
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connected with the pre-evacuation chamber of the endstation, Rh nanoparticle was 

able to be analyzed without atmosphere exposure. A photon energy for XPS analysis 

was set at 2.0 keV or 3.5 keV. The spectra were calibrated by the peak position of Au 

4f7/2 (83.95 eV). The binding energies of Rh3d5/2 for metallic Rh, Rh2O3 and RhO2 

are set at 307.2 eV, 308.2 eV and 309.5 eV, respectively [12-14]. The deconvolution 

analysis of the Rh3d5/2 peaks was performed by CASA XPS [15] and each area of the 

Rh component with a different oxidation state were calculated as the existing ratio.  

In/ex-situ XPS conditions are 3 patterns; (a) Rh nanoparticles without atmosphere 

exposure (in-situ XPS) (b) air exposed for 10 minutes (c) air exposed for a month.   

 

3.3  Results and Discussions 

3.3.1 TEM studies of Rh nanoparticle 

TEM image of the Rh nanoparticles deposited with the same condition as the XPS 

sample shows in Figure 3-1. Rh nanoparticles have spherical shape and were 

deposited with the structural property of nanoparticles indicating Rh didn’t form the 

agglomerate. Using Figure 3-2, the size of Rh nanoparticles was evaluated and the 

size distribution of the Rh nanoparticles is also shown in Figure 3-3. The diameter 

of the Rh nanoparticles is in the region about 1-3.5 nm in diameter. The estimated 
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average size and standard deviation (S.D.) are 1.8 0.5 nm.  

 

 

Fig.3-1. TEM image of Rh nanoparticles. 

 

Fig.3-2. TEM image of Rh nanoparticles for the evaluation of the size of Rh 

nanoparticles. 
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Fig.3-3. Size distribution of Rh nanoparticles. 

 

3.3.2 XPS analysis  

From the in-situ XPS survey spectrum of Rh nanoparticles for (a) with the photon 

energy of 2.0 keV, not shown in here, the peaks of Rh3d, Rh3p and valence band 

can be found. The peaks of O1s and C1s cannot be found. It means that the 

nanoparticles without atmosphere exposure are metallic state and no 

contaminations. Also the peaks of the substrate silicon cannot be detected. This 

and TEM results indicate that the Rh nanoparticle is deposited like a thin film and 

in this paper, this is called ‘Rh nanoparticles’. From the ex-situ XPS survey 

spectra, Rh nanoparticles for (c) have the peaks of Rh3d, Rh3p, valence band, O1s 

derived from Rh oxides and C1s derived from contaminations. It indicates that the 
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Rh oxides exist on the surface of the Rh nanoparticles. Rh nanoparticles for (b) 

have the small peaks of O1s and C1s. It indicates that even a small amount of O2 

changes the surface to Rh oxides. 

Figure 3-4 shows the Rh3d5/2 and Rh3d3/2 spectra of three samples (a)-(c) 

measured by 2.0 keV XPS and the components analysis is summarized from Table 

3-1 to Table 3-3. The peak top of Rh nanoparticles in the case of in-situ XPS of 

Rh3d5/2 for (a) is at 307.4 eV. Judging from the result of the deconvolution 

analysis, Rh nanoparticles are in a metallic state. However, in the case of ex-situ 

XPS for (b), the peak top is at 307.5 eV with a shoulder at 308.5 eV including 

17 % of Rh2O3. These results indicate that the part of the Rh surface changes to 

Rh oxides by atmosphere exposure even for a short time. Moreover, in the case of 

ex-situ XPS for (c), the peak top is at 309.5 eV. The result of the deconvolution 

analysis indicates that 37 % of Rh2O3, 38 % of RhO2 whose 3d5/2 peak position is 

309.2 eV and 13 % of Rh metal exist. This suggests that long time atmosphere 

exposure proceeds some Rh oxidations. Moreover, the peak with lower binding 

energy than that of Rh metal is also observed. One possibility of Rh state with 

lower binding energy might be the formation of hydrides compounds, reacting 

with H2O in the air [16, 17]. We will confirm it by the experiment of pure O2 
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exposure with Rh nanoparticles whether this Rh compound will be formed or not 

near future. 
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Fig.3-4. Result of the deconvolution analysis of Rh3d spectra at 2.0 keV. 
(a) in-situ XPS (b) ex-situ XPS exposure for 10 minutes (c) ex-situ XPS exposure for 

a month. 
 

Table 3-1: Result of the deconvolution analysis of Rh3d5/2 of (a) in-situ XPS analysis 
at 2.0 keV. 

 

 

Table 3-2: Result of the deconvolution analysis of Rh3d5/2 of (b) ex-situ XPS analysis 
exposure for 10 minutes at 2.0 keV.
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Table 3-3: Result of the deconvolution analysis of 3d5/2 of (c) ex-situ XPS analysis 
exposure for a month at 2.0 keV. 

 

 

Subsequently, the electronic properties of Rh nanoparticles in the depth direction 

of the thin layer are verified by using the photon energy at 3.5 keV. Figure 3-5 

shows the Rh3d of three samples (a)-(c) measured by 3.5 keV XPS and the 

components analysis is summarized from Table 3-4 to Table 3-6. The calculated 

inelastic mean free path of Rh at 2.0 keV or 3.5 keV is 2.4 nm or 3.7 nm [11], 

respectively. The peak top position and the shape of Rh3d spectrum of Rh 

nanoparticles in the case of in-situ XPS for (a) is the same as with 2.0 keV. This 

indicates that metallic Rh exists in depth region within the mean free path of 3.7 

nm for 3.5 keV.  

From the result of the deconvolution analysis in the case of ex-situ XPS for (b) 

with 2 keV, metallic Rh and Rh2O3 exist as 83 % and 17 %, respectively (Table 2). 

Table 3-5 shows the metallic Rh component increases to 87 %. Because the higher 

photon energy enables to detect the deeper region of Rh nanoparticles, the 

metallic component in the deeper region add to the spectrum. This indicates that 
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the outermost surface of the layer of Rh nanoparticles is Rh2O3. On the other hand, 

the peak top positions in the case of ex-situ XPS for (c) with 3.5 keV shift to the 

higher binding energy than the Rh3d spectrum with 2.0 keV. In the comparison 

between 2.0 keV and 3.5 keV spectra for (c) (see in Table 3-3 and Table 3-6) the 

oxide components of Rh3d spectra at the higher binding energy than that of 

metallic states increase 75 % to 81 %. And Rh spectrum with the higher binding 

energy (310.2 eV) than that of RhO2 assigned in Table 6 can be found. In general, 

the positive core level shift attributes to the particle size effect [6, 7, 13, 18-21] or 

the metal-support interaction [22, 23] and so on. In this case, the particle size 

effect is excluded because this behavior cannot be seen at analysis with 2.0 keV. 

Moreover this result suggests that the Rh oxide increases in the depth direction, 

and the deep area is in the higher oxidation state. One possibility of this result 

would be the metal-support effect, as Rh oxidation state with the higher binding 

energy can exist at Rh on Al2O3 after aging with high temperature in air [24, 25]. 

If a substrate has the oxide layer on its surface, Rh might has the possibility to 

become the higher oxidation state. We will have the further investigation and 

characterize this Rh state. 
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Fig.3-5 Result of the deconvolution analysis of Rh3d spectra. 
(a) in-situ XPS (b) ex-situ XPS exposure for 10 minutes (c) ex-situ XPS exposure for 

a month. 

 

Table 3-4: Result of the deconvolution analysis of Rh3d5/2 of (a) in-situ XPS analysis 
at 3.5 keV. 

 

 

Table 3-5: Result of the deconvolution analysis of Rh3d5/2 of (b) ex-situ XPS analysis 
exposure for 10 minutes at 3.5 keV. 
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Table 3-6: Result of the deconvolution analysis of Rh3d5/2 of (c) ex-situ XPS analysis 
exposure for a month at 3.5 keV. 

 

 

3.4. Conclusions 

Rh nanoparticles have been fabricated by the evaporation method. These size are 

estimated 1.8 0.5 nm in diameter. Judging from the result of the in-situ XPS 

analysis with SR, the Rh nanoparticles without atmosphere exposure is the Rh 

metallic state. On the other hand, by the ex-situ XPS analysis, the outermost surface 

changes into Rh2O3 and RhO2. Changing a photon energy for XPS analysis from 2.0 

keV to 3.5 keV enabled to analyze the chemical state in the depth direction.  

     

References 

[1] H. Muraki, and G. Zhang, Catal. Today 63, 337 (2000). 

[2] H.S. Gandhi, G.W. Graham, and R.W. McCabe, J. Catal. 216, 433 (2003).  

[3] Q. Zheng, R. Farrauto, M.Deeba, and I. Valsamakis, Catalysts 5, 1770 (2015). 

[4] M. Vallden, X.Lai, and D.W. Goodman, Science 281, 1647 (1998). 



56 
 

[5] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, and B. Delmon, 

J. Catal. 144, 175 (1993). 

[6] I. Lopez-Salido, D.C. Lim, and Y.D. Kim, Surf. Science 588, 6 (2005). 

[7] D.C. Lim, I. Lopez-Salido, and Y.D. Kim, Surf. Science 598, 96 (2005).  

[8] H. Kawabata, Y. Koda, H. Sumida, M. Shigetsu, A. Takami and K. Inumaru, 

Chem. Commun. 49, 4015 (2014). 

[9] H. Kawabata, Y. Koda, H. Sumida, M. Shigetsu, A. Takami and K. Inumaru, 

Catal. Sci. Technol. 4, 697 (2014). 

[10]J. G. Nunan, H. J. Robota, M. J. Cohn and S. A. Bradley, J. Catal. 133, 309 

(1992). 

[11] calculated using QUASES-IMFP-TPP2M Ver.3.0. S. Tanuma, C. J. Powell, D. R. 

Penn, Surf. Interf. Anal. 21, 165 (1994).  

[12] J. F. Moulder, W. F. Stickle, P.E. Sobol and K. D. Bomber, HANDBOOK OF 

X-RAY SPECTROSCOPY, Perkin Elmer Corporation (1992). 

[13] S. Kim, K. Qadir, S. Jin, A. S. Reddy, B. Seo, B. S. Mun, S. H. Joo and J. Y. 

Park, Catalysis Today 185, 131 (2012). 

[14] M. E. Grass, Y. Zhang, D. R. Butcher, J. Y. Park, Y. Li, H. Bluhm, K. M. Bratlie, 

T. Zhang and G. A. Somorjai, Angew. Chem. Int. Ed. 47, 8893 (2008). 



57 
 

[15] http://www.casaxps.com/ 

[16] S. Ogawa, T. Fujimoto, T. Kanai, N. Uchiyama, C. Tsukada, T. Yoshida, S. Yagi, 

e-J. Surf. Sci. Nanotech. 13, 343 (2015). 

[17] A.M. Venezia, A. Rossi, D. Duca, A. Martorana, G. De-ganello, Appl. Catal. A: 

General 125, 113 (1995).

[18] D. C. Lim, I. Lopez-Salido and Y. D. Kim, Appl. Surf. Sci. 253 959 (2006). 

[19] Radnik, C. Mohr and P. Claus, Phys. Chem. Chem. Phys. 5, 172 (2003). 

[20] P. Zhang and T. K. Sham, Phys. Rev. Lett. 90, 245502 (2003). 

[21] H.-G. Boyen, A. Ethirajan, G. Kästle, F. Weigl, P. Ziemann, G. Schmid, M. G. 

Garnier, M. Büttner, and P. Oelhafen, Phys. Rev. Lett. 94, 016804 (2005). 

[22] V. Vijayakrishnan, A. Chainani, D. D. Sarma and C. N. R. Rao, J. Phys. Chem. 

96, 8679 (1992). 

[23] V. I. Bukhtiyarov, A. F. Carley, L. A. Dollard and M. W. Roberts, Surf. Science 

381, L605 (1997). 

[24] K. Dohmae, Y. Hirose, M. Kimura, R&D Review of Toyota CRDL 1, 75 (1997). 

[25] B. Zhao, R. Ran, Y. Cao, X. Wu, D. Weng, J. Fan and X. Wu, Applied Surface 

Science 308, 230 (2014).  

 



58 
 

 

Chapter 4 
 

 

 

 

Characterization by 
synchrotron-radiation X-ray 

photoelectron spectroscopy of NO 
adsorption on Rh nanoparticles  
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4.1. Introduction 

Catalysts play an important role in purifying exhaust gases to meet the stringent 

regulations for automobile emissions. From the point of view of fuel efficiency, 

automobile engines are required to operate under lean condition (high air-to-fuel 

ratio) which means that maintaining the performance in NO reduction becomes a 

serious issue. Rhodium is a precious metal that is essential to cutting NO emission by 

reducing nitrogen oxides to nitrogen and oxygen [1-3], and one way to make Rh 

more effective in NO reduction is minimizing the Rh particle size to maximize the 

number of reaction sites. As the metal particle size decreases below 10 nm, electronic 

and geometric properties that are different from those of the bulk material can be 

observed [4-7]. Another way to boost NO reduction is exploiting the Rh surface, 

whose electronic properties are suitable for NO adsorption. Table 4-1 shows my 

result of the calculation of NO adsorption energy for Rh bulk material and Rh NP. 

NO adsorption energy of Rh NO is lower than that of Rh bulk material. This means 

that NO adsorbs on Rh NP easier than Rh bulk material, implying Rh NP is more 

active. This coincides with the earlier studies [8]. Moreover, NO molecules adsorbed 

on Rh bulk material stay display no reaction at room temperature, for example, NO 

dissociation reaction [9,10]. 
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Table 4-1 Result of the calculation of NO adsorption energy. 

 

In respond to these results, the first concern regarding effective use of Rh is 

understanding the intrinsic properties of Rh nanoparticles. In-situ X-ray 

photoelectron spectroscopy (XPS) is a suitable analytical method for characterization 

of the electronic properties of Rh because it can exclude the effect of any adsorbed 

species. On the other hand, the catalysts for purification of exhaust gases are used in 

ambient air. Therefore, the second concern is understanding the properties of 

nanoparticles under practical application conditions. Ex-situ XPS, that is XPS 

analysis conducted after exposure to atmospheric air, clarifies this issue. In previous 

studies, a Rh oxide layer was observed on the surface of Rh particles after exposure 

to ambient air, and the thickness of this oxide layer was found to affect its 

performance [11-14]. In our previous work, using synchrotron radiation (SR) XPS, 

we revealed that Rh nanoparticles that were not exposed to ambient air were in the 

metallic state, but they were oxidized into Rh2O3 and RhO2 on the outermost surface 

upon exposure to the atmosphere [15].  

The purpose of this paper is to report effect of ambient O2 on the electronic 

properties of Rh nanoparticles and the behavior of NO molecules using in-situ or ex- 
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situ XPS with SR.  
 

4.2. Experimental 

4.2.1 Preparation of Rh nanoparticles  

Rh nanoparticles were fabricated by the evaporation method [16] in a Rh 

evaporation chamber. The evaporation chamber was connected to the load-lock 

chamber of BL6N1 at the Aichi Synchrotron Radiation Center (Aichi SR) in Japan. 

A Rh wire (4N) was evaporated to release Rh atoms and the Rh nanoparticles were 

grown under 50 Torr of high-purity He gas (5N5). The nanoparticles were 

transferred to the deposition chamber through a stainless steel pipe and deposited 

on a grid and an n-type Si wafer with <100> orientation. The Si wafer had been 

cleaned by only ultrasonic waves with an ethanol solution. The grid and the Si 

wafer were set in the depostion chamber as the substrates of the transmission 

electron microscopy (TEM) and XPS samples, respectively. 

 

4.2.2 Analysis of Rh nanoparticles under different conditions 

TEM experiments were carried out using a transmission electron microscope 

( JEM-3000F, JEOL, Hiroshima Prefectural Technology Research Institute ) at an 
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accelerating voltage of 300 kV. To evaluate the size of the Rh nanoparticles, the 

dispersed Rh nanoparticles were deposited on the grid within a short period of time.  

The chemical states of the Rh nanoparticles under different conditions were 

investigated by SR-XPS at BL6N1 in Aichi SR. The photon energy for XPS 

analysis was set at lower enrgy 2.0 keV to evaluate the surface of Rh nanoparticles 

which has the NO adsorption point. As the evaporation chamber for Rh 

nanoparticles was connected to the load-lock chamber, the Rh nanoparticles could 

be analyzed without exposure to ambient air. A NO (2% in He) gas cylinder was 

connected to the evaporation chamber and the NO gas was introduced after 

deposition of the Rh nanoparticles. X-ray photoelectron spectra were collected for 

three different samples of Rh nanoparticles: (a) before exposure to NO; (b) after 

exposure to NO for 5 min; (c) after exposure to NO for 5 min in ambient air. The 

spectra were calibrated against the peak of Au 4f7/2 at 83.95 eV [17]. The binding 

energies of Rh 3d5/2 for metallic Rh, Rh2O3, and RhO2 are 307.2, 308.2, and 309.5 

eV, respectively [18-20], and the difference between Rh 3d5/2 and Rh 3d3/2 is 4.74 

eV. The deconvolution analysis of the Rh 3d5/2 peaks was performed by CASA XPS 

[21], and each area of the Rh species with a different oxidation state was estimated 

as the fraction of that species in the deposited Rh nanoparticles. 
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4.3. Results and Discussions 

4.3.1 TEM study  

The TEM image of the Rh particles in Figure 4-1 shows that particles with 

spherical shape were deposited. Using Figure 4-1, the size of the Rh particles was 

evaluated, and the size distribution of the Rh particles is shown in Figure 4-2. The 

diameter of the Rh particles varied from 1.7 to 4.8 nm, and the estimated average 

size was 2.7 0.6 nm, where the standard deviation (S.D.) was used for the 

uncertainty.  

 
Fig.4-1. TEM image of Rh nanoparticles. 
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Fig.4-2. Size distribution of Rh nanoparticles. 

 

4.3.2 XPS analysis  

The peaks of Rh 3d and Rh 3p, and the valence band can be found in the in- situ 

XPS survey spectrum of Rh nanoparticles for sample (a), which is not shown here. 

The peaks of O 1s and C 1s are absent, which means that the nanoparticles that 

were not exposed to ambient air were in the metallic state and there was no 

contamination. The peaks of the silicon substrate are also absent. These XPS 

results and the TEM images indicate that the Rh nanoparticles were deposited like 

a thin film on the substrate. Here after, the deposited film is referred to as the “Rh 

nanoparticles”.  

Figures 4-3 and 4-4 show the Rh 3d and N 1s spectra of sample (a), and the 
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components corresponding to the Rh 3d5/2 spectrum are summarized in Table 4-1. 

The peak in the Rh 3d5/2 spectrum of sample (a) is located at 307.3 eV. The 

deconvolution analysis indicates that the Rh nanoparticles in sample (a) were in the 

metallic state. In the N 1s spectrum, the small peak at 397.5 eV corresponds to 

atomic N, which might be related to contaminants [22, 23].  

 

Table 4-1: Result of deconvolution analysis of Rh 3d5/2 spectrum of sample (a) before 
exposure to NO. 

Rh species Position (eV) Fraction of species (%) 
Rh metal 307.3 100 
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Fig.4-3. Analysis of deconvolved Rh 3d spectrum of sample (a) before exposure to 
NO. 

 
Fig.4-4. XPS N 1s spectrum of sample (a) before exposure to NO. 
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Next, NO gas was introduced to the deposited Rh nanoparticles without exposing 

the sample to ambient air. The electronic properties of sample (b) were measured, 

and Figures 4-5 and 4-6 show the Rh 3d and N 1s spectra of the sample. The peak 

top in the Rh 3d5/2 spectrum of sample (b) is located at 307.4 eV, and it is wider 

than the same peak in the Rh 3d5/2 spectrum of sample (a). When the Rh 3d5/2 

spectrum for sample (b) was deconvolved, the resolved peaks of sample (a) fit 

those of sample (b), which means that, the Rh nanoparticles of sample (b) were 

also in the metallic state, including 7% of Rh2O3 (Table 2). These results indicate 

that part of the Rh surface changed to the Rh3+ state upon exposure to NO. In the 

N 1s spectrum of sample (b), three peaks appear at 397.5, 400,  and 403.5 eV, 

which correspond to atomic N, chemisorbed NO, and chemisorbed NO2, 

respectively, according to the results of previous works [22, 23]. These results 

suggest that some NO molecules were directly chemisorbed on Rh metal, while 

others dissociated into atomic N and O, where the O atoms reacted with incoming 

NO molecules to form NO2. Since NO2 had the electron-withdrawing effect of 

oxygen at the surface, the surface of Rh nanoparticles could have had a different 

oxidation state [22, 23]. 
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Table 4-2: Result of deconvolution analysis of Rh 3d5/2 spectrum of sample (b) after 
exposure to NO without ambient air.

Rh species Position (eV) Fraction of species (%) 
Rh metal 307.4 93 

Rh2O3 308.4 7 

 

 
Fig.4-5 Analysis of deconvolved Rh 3d spectrum of sample (b) after exposure to NO without 

ambient air. 
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Fig.4-6. XPS N 1s spectrum of sample (b) after exposure to NO without ambient 
air. 

Finally, the effect of ambient air on NO adsorption was examined. Figures 4-7 and 

4-8 show the Rh 3d and N 1s spectra of the Rh nanoparticles, and the components 

corresponding to the for Rh 3d5/2 spectrum are summarized in Table 4-3. The peak 

in the Rh3 d5/2 spectrum of sample (c) is located at 307.5 eV, with a peak at 308.6 

eV. The deconvolution analysis indicates that the Rh nanoparticles in sample (c) 

were in the metallic state, including 13% of Rh2O3. In the N 1s spectrum, only a 

small peak corresponding to NO2 appears at 403.0 eV possibly because the 

surface of the Rh nanoparticles was preferentially oxidized by O2 from the 

ambient air, and a small amount of adsorbed NO reacted with the surface oxygen 
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to form NO2. 

Table 4-3: Result of deconvolution analysis of Rh 3d5/2 of spectrum (c) after 
exposure to NO in ambient air.

Rh species Position (eV) Fraction of species (%) 
Rh metal 307.5 87 

Rh2O3 308.6 13 

 

 
Fig.4-7. Analysis of deconvolved Rh 3d spectrum of sample (c) after exposure to 
NO in ambient air. 
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Fig.4-8. XPS N 1s spectrum of sample (c) after exposure to NO in ambient air. 

 

4.4 Conclusions 

Adsorption of NO occurred when the surface of Rh nanoparticles remained in the 

metallic state. The in-situ SR-XPS analysis showed that chemisorbed NO, atomic N, 

and NO2 were present on the Rh nanoparticles, and part of the Rh surface changed to 

the Rh3+ state. The presence of ambient O2 led to a difference in the adsorption of 

NO on the Rh nanoparticles because O2 preferentially oxidized the surface of the Rh 

nanopaticles and inhibited NO adsorption. Ex-situ XPS analysis showed that only a 

small amount of adsorbed NO reacted with the surface oxygen to form NO2.     
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Chapter 5 Characterization by synchrotron-radiation X-ray 

photoelectron spectroscopy of NO adsorption on Rh 

- Effect of support material – 

 

5.1. Introduction 

Catalysts play an important role in purifying exhaust gases to meet the stringent 

regulations for automobile emissions. From the point of view of fuel efficiency, 

automobile engines are required to operate under lean condition (high air-to-fuel 

ratio) which means that maintaining the performance in NO reduction becomes a 

serious issue. Rhodium is a precious metal that is essential to cutting NO emission by 

reducing nitrogen oxides to nitrogen and oxygen [1-3], and one way to make Rh 

more effective in NO reduction is minimizing the Rh particle size to maximize the 

number of reaction sites. As the metal particle size decreases below 10 nm, electronic 

and geometric properties that are different from those of the bulk material can be 

observed [4-7]. Another way to boost NO reduction is exploiting the Rh surface, 

whose electronic properties are suitable for NO adsorption. The first concern 

regarding effective use of Rh is understanding the intrinsic properties of Rh 

nanoparticles. In-situ X-ray photoelectron spectroscopy (XPS) is a suitable analytical 
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method for characterization of the electronic properties of Rh because it can exclude 

the effect of any adsorbed species. In our previous work, using synchrotron radiation 

(SR) XPS, we revealed that Rh nanoparticles that were not exposed to ambient air 

were in the metallic state [8]. After NO adsorption, part of the Rh surface changed to 

the Rh3+ state on the outermost surface and chemisorbed NO, atomic N, and NO2 

were present on the Rh nanoparticles [9]. Practical three-way catalysts are comprised 

of particles of precious metals such as platinum or palladium or rhodium, metal 

particles are supported on metal oxides, for example Al2O3, ZrO2, and CeO2 and so 

on [1-3]. Because not only they maintain their surface area and prevent the sintering 

of precious metals, but also control the reactivity by the interaction between metals 

and support materials. In the past studies, these interactions are due to the 

donating-accepting electrons between the metal nano-cluster and the oxide support 

materials, the active cite on these boundaries, the dispersive electronic state of the 

metal nano-cluster, the low coordination number of the surface atoms and so on [10, 

11]. This interaction has been applied to commercial catalysts. Therefore, the effect 

of this interaction for the electronic property and NO adsorption behavior has to be 

clarified for development the next generation TWC.  

To understand these mechanisms, a modeled catalyst using such as a wafer and a 
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size-controlled metal excluding the structural effect, in-situ analysis excluding the 

effect of other adsorbates provide us very clear answers. Moreover, a combination 

with theoretical calculations enables to understand the behaviors thermodynamically.     

The purpose of this paper is to report effect of support materials on the electronic 

properties of Rh nanoparticles and the behavior of NO molecules using in-situ XPS 

with SR and theoretical calculations. 

 

5.2. Experimental 

5.2.1 Preparation of Rh nanoparticles  

Rh nanoparticles were fabricated by the evaporation method [12] in a Rh 

evaporation chamber. The evaporation chamber was connected to the load-lock 

chamber of BL6N1 at the Aichi Synchrotron Radiation Center (Aichi SR) in Japan. 

A Rh wire (4N) was evaporated to release Rh atoms and the Rh nanoparticles were 

grown under 50 Torr of high-purity He gas (5N5). The nanoparticles were 

transferred to the deposition chamber through a stainless steel pipe and deposited 

on a grid, an n-type Si wafer with <100> orientation (SiO2/Si wafer) and a CeO2 

thin film of about 10 nm thickness on an n-type Si wafer (CeO2/Si wafer). The grid, 

SiO2/Si wafer and CeO2/Si wafer were set in the depostion chamber as the 
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substrates of the transmission electron microscopy (TEM) and XPS samples, 

respectively. 

 

5.2.2 Analysis of Rh nanoparticles under different conditions 

TEM experiments were carried out using a transmission electron microscope 

( JEM-3000F, JEOL, Japan) at an accelerating voltage of 300 kV. To evaluate the 

size of the Rh nanoparticles, the dispersed Rh nanoparticles were deposited on the 

grid within a short period of time.  

The chemical states of the Rh nanoparticles under different conditions were 

investigated by SR-XPS at BL6N1 in Aichi SR. The photon energy for XPS 

analysis was set at 2.0 keV. As the evaporation chamber for Rh nanoparticles was 

connected to the load-lock chamber, the Rh nanoparticles could be analyzed 

without exposure to ambient air. A NO (2% in He) gas cylinder was connected to 

the evaporation chamber and the NO gas was introduced after deposition of the Rh 

nanoparticles. X-ray photoelectron spectra were collected for two different samples 

of Rh nanoparticles: (a) before exposure to NO; (b) afteexposure to NO for 5 min.. 

The spectra were calibrated against the peak of Au 4f7/2 at 83.95 eV [13]. The 

binding energies of Rh 3d5/2 for metallic Rh, Rh2O3, and RhO2 are 307.2, 308.2, and 
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309.5 eV, respectively [14-16], and the difference between Rh 3d5/2 and Rh 3d3/2 is 

4.74 eV. The deconvolution analysis of the Rh 3d5/2 peaks was performed by CASA 

XPS [17], and each area of the Rh species with a different oxidation state was 

estimated as the fraction of that species in the deposited Rh nanoparticles. As a 

control experiment, a CeO2/Si wafer without Rh nanoparticles was performed under 

same experiment to evaluate NO adsorption.  

 

5.2.3 Theoretical calculations 

All DFT calculations were performed by using DMol3 version 7.0 software. We 

carried out the spin-restricted calculation and employed the double numerical basis 

set with polarization functions and effective core pseudopotentials generated by 

fitting all-electron relativistic DFT results. As for the exchange-correlation functional, 

the generalized gradient approximation, RPBE, was used. For the CeO2 surface, we 

used the 4 x 3 (111) surface consisting of six atomic layers and fixed bottom three 

layers of them during the structure optimization. Whereas for the SiO2 surface, the 2 

x 2 alpha-quartz (001) surface fully hydroxylated was used with fixing bottom six 

atomic layers of eleven layers in total except for hydrogen during the optimization. 

In both surface models, we used a vacuum layer of 15  and determined lattice 
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constants from previous unit-cell optimization of each oxide: a=b=c=5.526 for CeO2, 

and a=b=5.069, c=5.572 for alpha-quartz SiO2. In the Brillouin-zone integration, 2 x 

2 x 1 and 2 x 3 x 1 Monkhorst-Pack k-point meshes were set for the CeO2 system 

and SiO2 one, respectively. 

NO adsorbed on three-fold site of Rh4 cluster, and one layer of surface of the 

substrates and adsorbed NO were allowed to relax. 

 

5.3. Results and Discussions 

5.3.1 TEM study  

The image and structural analysis of Rh nanoparticles on a SiO2/Si wafer are in 

chapter 4. The TEM image of the Rh particles on a CeO2/Si wafer in Figure 1 

shows that particles with spherical shape were deposited. Using Figure 5-1, the size 

of the Rh particles was evaluated, and the size distribution of the Rh particles is 

shown in Figure 5-2. The diameter of the Rh particles varied from 2.1 to 5.5 nm, 

and the estimated average size was 3.6 0.9 nm, where the standard deviation 

(S.D.) was used for the uncertainty.  
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Fig.5-1. TEM image of Rh nanoparticles. 

 

Fig.5-2. Size distribution of Rh nanoparticles. 

 

5.3.2 XPS analysis  

The peaks of Rh 3d and Rh 3p, and the valence band can be found in the in- situ 

XPS survey spectrum for sample (a) of Rh nanoparticles on a CeO2/Si wafer, which 

is not shown here. The peaks of O 1s and C 1s are absent, which means that the 
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nanoparticles that were not exposed to ambient air were in the metallic state and 

there was no contamination. This result is same as Rh nanoparticles on a SiO2/Si 

wafer reported in Chapter 4. TEM images indicate that the Rh nanoparticles were 

deposited like a thin film on the substrate as same as Rh nanoparticles on SiO2/Si. 

Here after, these are referred to as the “Rh nanoparticles”.  

Figures 5-3 and 5-4 show the Rh 3d and N 1s spectra of sample (a) of Rh 

nanoparticles on a CeO2/Si wafer, and the components corresponding to the Rh 

3d5/2 spectrum are summarized in Table 5-1. The peak in the Rh 3d5/2 spectrum of 

sample (a) is located at 307.3 eV. The deconvolution analysis indicates that the Rh 

nanoparticles in sample (a) were in the metallic state. This result is same as Rh 

nanoparticles on a SiO2/Si wafer reported in Chapter 4. In the N 1s spectrum, no 

peaks could be found.  

 

Table 5-1: Result of deconvolution analysis of Rh 3d5/2 spectrum of sample (a) before 
exposure to NO. 

Rh species Position (eV) Fraction of species (%) 
Rh metal 307.3 100 
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Fig.5-3. Analysis of deconvolved Rh 3d spectrum of sample (a) before exposure to 
NO. 

 
Fig.5-4. XPS N 1s spectrum of sample (a) before exposure to NO. 
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Next, NO gas was introduced to the deposited Rh nanoparticles without exposing 

the sample to ambient air. The electronic properties of sample (b) of Rh 

nanoparticles on a CeO2/Si wafer were measured, and Figures 5-5 and 5-6 show the 

Rh 3d and N 1s spectra of the sample. The peak top in the Rh 3d5/2 spectrum of 

sample (b) is located at 307.3 eV, and it is wider than the same peak in the Rh 3d5/2 

spectrum of sample (a). When the Rh 3d5/2 spectrum for sample (b) was 

deconvolved, the resolved peaks of sample (a) fit those of sample (b), which means 

that, the Rh nanoparticles of sample (b) were also in the metallic state, including 

11% of Rh2O3 and 5% of RhO2 (Table 5-2). 

 

Table 5-2: Result of deconvolution analysis of Rh 3d5/2 spectrum of sample (b) after 
exposure to NO without ambient air.

Rh species Position (eV) Fraction of species (%) 
Rh metal 307.3 84 

Rh2O3 308.3 11 
RhO2 309.6 5 
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Fig.5-5. Analysis of deconvolved Rh 3d spectrum of sample (b) after exposure to 
NO without ambient air. 

 
Fig.5-6. XPS N 1s spectrum of sample (b) after exposure to NO without ambient 
air. 
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These results indicate that part of the Rh surface changed to the higher oxidation 

state of Rh upon exposure to NO. This result is same as Rh nanoparticles on a 

SiO2/Si wafer reported in Chapter 4. But compared with Rh nanoparticles on a 

SiO2/Si wafer and Rh nanoparticles on a CeO2/Si wafer, Rh nanoparticles on a 

CeO2/Si wafer has higher oxidation state than that of Rh nanoparticles on a SiO2/Si 

wafer. In the N 1s spectrum of sample (b) of Rh nanoparticles on a CeO2/Si wafer, 

two peaks appear at 400 and 403.6 eV, which correspond to chemisorbed NO and 

chemisorbed NO2, respectively, according to the results of previous works [18, 19], 

but atomic N can’t be found which appears on a SiO2/Si wafer. These results 

suggest that some NO molecules were directly chemisorbed on Rh metal, while 

others dissociated into atomic N and O, where the O atoms reacted with incoming 

NO molecules to form NO2. Since NO2 had the electron-withdrawing effect of 

oxygen at the surface, the surface of Rh nanoparticles could have had a different 

oxidation state [18, 19]. And compared with these results, rate of the dissociation 

reaction from NO to N and O seemed to be higher on Rh nanoparticles on a 

CeO2/Si wafer than those of a SiO2/Si wafer. For a control experiment, we 

performed a same experiment with a CeO2/Si wafer without Rh NP. Fig.5-7 shows 

the N 1s spectrum of sample (b) of a CeO2/Si wafer. No peaks are found and this 
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indicates that peaks in Fig.5-6 were derived from absorbed NO and NO2 on Rh NP. 

 

 
Fig.5-7. XPS N 1s spectrum of sample (b) of a CeO2/Si wafer after exposure to NO 
without ambient air. 

 

5.3.3 Theoretical calculations 

For the result of XPS analyses, reactions are assumed as follows. Firstly, reactions 

caused by introduced NO are  

NO adsorption; NO + Surface  NO-Surf     (a) 

NO dissociation; NO-surf.  N-Surf + O-Surf     (b) 

NO oxidation; Surf-O + NO → NO2    (c) 
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Secondly, reactions related to the lattice oxygens of support material are 

Adsorbed NO + surface oxygen of support material → adsorbed NO2;  

Surf-NO + Surf(MOx) → Surf-NO2 + Surf(MO2-Vo)   (d) 

Adsorbed N + surface oxygen of support material → adsorbed NO; 

Surf-N + Surf(MOx) → Surf-NO + Surf(MO2-Vo)   (e) 

 

Therefore, it is supposed that reactions (b) and (e) which are related to the 

formation of atomic N are influenced by the support materials.  

Moreover, we will explain these behaviors thermodynamically by the theoretical 

calculations. We evaluated the reaction possibility by DFT calculations focusing on 

the reaction energy of reaction (b) and (e). In the previous study, it has been 

reported that even a small number of noble metal atoms can provide to sufficient 

effect to reproduce NO adsorption behavior. For this reason, four Rh atoms cluster 

on the support material has been adopted as a calculation model in this study. CeO2 

(111) or alpha-quartz SiO2(001) were used for the support materials, and 

calculations were performed by Dmol3 (Ver. 7.0 sp1). Each of The adsorption 

energy is calculated according equation (1) – (3) and the reaction energy is 

calculated according equation (4) and (5).  

E(NOad) = E(Surf-NO) – [ E(Surf) + E(NO)]    (1) 

E(Nad) = E(Surf-N) + E(Surf) – 1/2 E(N2) (2) 
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E(Oad) = E(Surf-O) + E(Surf) – 1/2 E(O2) (3) 

E(NO dissociation) = E(Nad) + (Oad) – E(Surf) - E(NOad) (4) 

E(NO formation) = E(Surf(MO2-vo-NO) – E(Surf-N) (5) 

The smaller the adsorption energy is, the stronger the gas molecule adsorbed. And 

the smaller the reaction energy is, the easier these reactions progress to the right side. 

In other words, in formula (4), NO is easy to dissociate. Part of reaction model is 

shown in Fig.5-8 and 5-9. In Table 5-3, the smallest reaction energy which means 

that NO dissociation is most likely to proceed among the calculation results of 

adsorption energies (formula (1) to (3)) was shown. Using these adsorption energy, 

the dissociation energy (b) [formura(4)] was calculated. As a result, under the 

condition that the reaction energy is smallest, which means most likely to disociate, 

the NO dissociation energies turned to be -1.52 eV for Rh4/SiO2 and -1.47 eV for 

Rh4/CeO2 (Table 5-6). This suggested that Rh4/SiO2 has a process which NO 

dissociation progress a little easier than Rh4/CeO2. 

 

 

 

 

Fig.5-8 NO dissociation model of Rh4/SiO2 
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Fig.9 NO dissociation model of Rh4/CeO2

 

Table 3 Adsorption energies and reaction energies calculated by DFT 

 

 

For the next step, the reaction energy of (e) was calculated. For formula (5), the 

first term on the right side indicates the energy of NO adsorption on Rh4 and the 

second term indicates the energy of N adsorption on Rh4, resulting that the energy 

for the oxidation of N with the surface oxygen of the support material. In this study, 

the structures which N and NO adsorb on the hollow site of Rh4 were adoped. And 

the oxygen of support material nearest N without bond to Rh4 was removed 

(Fig.5-10, 5-11). 

 Because all surface oxygen of SiO2 were hydrated, in oxidation N, the hydrogen 
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was assumed to bind Si where oxygen exists. As a result of these calculations, the 

reaction energies turned to be 2.02 eV for Rh4/SiO2 and 1.08 eV for Rh4/CeO2 

shown in Table 5-4. The reaction energy for Rh4/CeO2 was about 1 eV lower than 

Rh4/SiO2 and this means N on Rh4/CeO2 was oxidised much easier than Rh4/SiO2. 

In this study, as the adsorption site of N and NO and the position of oxygen 

vacancy were fixed, the calculated energies seem to have some vatiations. Because 

the adsorption energies calculated from farmula (1) – (3) have variaions of about 

0.01eV order, we have supposed that the conclusion written above maintains. 

 

 

 

Table 5-4 Reaction energies calculated by DFT 

 
 

 

Fig.5-10 NO-Rh4/SiO2 model whose an O of support 

surface was removed. a dotted line circle indicates a place where 

an oxygen was removed and a new Si-H bond formed.  

Fig.5-11 NO-Rh4/CeO2 model whose an O of support 

surface was removed. a dotted line circle indicates a place where 

an oxygen was removed.  
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As a result of these calculations, it turned to be more difficult for Rh4/CeO2 to have 

atomic N on Rh4 than Rh4/SiO2. And this result has a same tendency of the result 

of the in-situ XPS. 

In this study, the thermodynamic stability of each state was discussed by the 

reaction, which is the energy difference at the start and the end of the reaction. This 

is an advantageous method for evaluating the existence the existence probability of 

each state in the steady state. On the other hand, considering the activation energy 

which is the height of the energy barrier on the reaction coordinates connecting the 

start point and the end point, it seems that the phenomenon can be understood from 

the viewpoint of the reaction rate. Therefore, we will also evaluate activaion energy 

by DFT calculation in the future. At this time, the result of NO adsorption behavior 

obtained by in-situ XPS analysis could be explained by the adsorption stability 

(energy of each state) by DFT calculation. Furthermore, by carrying out detailed 

electronic state analysis such as the electron density of state, we will improve the 

accuracy of machnism clarificatkon and material development.  
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5.4. Conclusions  

It has become clear that the behavior of NO molecules on Rh nanoparticles were 

different due to the support material by in-situ XPS analysis. Reaction energy 

regarding for atomic N was calculated using DFT method and these results 

correspond to the results of the analysis. The structural and electronic properties 

obtained by DFT calculations are useful for the machanism clarification and catalyst 

development.    
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Chapter 6 Summary and General Conclusion 

 

6.1  Summary of each Chapter 

The subject of this thesis is to clarify the interaction between NO 

adsorption-desorption behavior which is the rate determining step of NO reduction 

and the electronic property of Rh used for active sites. Because the three-way 

catalyst for the next generation engine “HCCI” whose exhaust emission requires the 

higher performance at lower temperature under lean condition must be developed 

and this needs a drastic technical breakthrough, it is necessary to understand the true 

nature of the phenomenon as the first step for more effective catalyst development.  

Here are the summarized results obtained in each chapter. 

 

6.1.1 Summary of Chapter 3 

In Chapter 3, I characterize Rh nanoparticle itself. Rh nanoparticles have been 

fabricated by the evaporation method using the He gas in the Rh evaporation 

chamber, connected with the pre-evacuation chamber of BL6N1 at Aichi 

Synchrotron Radiation Center (Aichi SR) and the electronic and geometric 

properties of the Rh nanoparticles have been verified by in-situ XPS and ex-situ 
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XPS. Judging from the result of the in-situ XPS analysis, the Rh nanoparticles 

without atmosphere exposure is the Rh metallic state. On the other hand, by the 

ex-situ XPS analysis changing a photon energy, it became clear that the outermost 

surface changed into Rh2O3 and RhO2.  

 

6.1.2 Summary of Chapter 4 

In Chapter 4, I characterized NO adsorption on Rh nanoparticles. Adsorption of NO 

occurred only when the surface of Rh nanoparticles remained in the metallic state. 

The in-situ SR-XPS analysis showed that chemisorbed NO, atomic N, and NO2 

were present on the Rh nanoparticles, and part of the Rh surface changed to the 

Rh3+ state. The presence of ambient O2 led to a difference in the adsorption of NO 

on the Rh nanoparticles because O2 preferentially oxidized the surface of the Rh 

nanopaticles and inhibited NO adsorption. Ex-situ XPS analysis showed that only a 

small amount of adsorbed NO reacted with the surface oxygen to form NO2.  

 

6.1.3 Summary of Chapter 5 

In Chapter 5, I clarified the influence of the support material for NO adsorption on 

Rh nanoparticles. After Rh nanoparticles were deposited on a silicon wafer and 
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CeO2 thin layer on a silicon wafer with a same method as in chapter 1 and were 

exposed to NO, the influence of the support material for NO adsorption on Rh 

nanoparticles was clarified. On the Rh nanoparticles on a SiO2/Si wafer, 

chemisorbed NO, atomic N, and NO2 were present. On the other hand, on the Rh 

nanoparticles on a CeO2/Si wafer, chemisorbed NO and chemisorbed NO2 were 

present. Futhermore, Rh nanoparticles on a CeO2/Si wafer has higher oxidation 

state than that of Rh nanoparticles on a SiO2/Si wafer after NO adsorption. These 

results show that CeO2 tends to oxidize existence on its surface easier than SiO2, in 

other words, CeO2 has higher oxygen donating property than SiO2. Moreover, 

reaction energy for NO dissciation was calculated using DFT method and these 

results correspond to the results of the analysis. This indicates that a combination 

with theoretical calculations enables to understand the behaviors 

thermodynamically. 

 

6.2 General Conclusion 

From the summary of each chapter, I will emphasize these clarifications written 

below. 
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Fabrication chamber is connected with the pre-evacuation chamber of Beam Line at 

Synchrotron Radiation XPS, and this enabled in-situ SR XPS analysis excluding the 

influence of any adsorbed components. Moreover, the load lock chamber of the 

Beam Line was used as a reaction chamber and the behavior of the adsorption gas 

could be evaluated at 760 Torr without ambient atmosphere. Analyses using these 

technique have revealed these results written below; 

 

In-situ and ex-situ SR XPS reveals that the surface of the Rh nanoparticles 

can easily change from the metallic state into Rh2O3 and RhO2 itself.  

 Adsorption of NO occurred only when the surface of Rh nanoparticles 

remained in the metallic state. The presence of ambient O2 preferentially oxidized 

the surface into Rh2O3 and RhO2 of the Rh nanopaticles and inhibited NO 

adsorption. 

 The support material influences NO adsorption-desorption behavior of Rh 

nanoparticles. Reaction energy regarding for atomic N was calculated using DFT 

method and these results correspond to the results of the analysis. The structural 

and electronic properties obtained by DFT calculations are useful for the 

machanism clarification and catalyst development. Changing photon energy of SR 
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soft XPS enables to evaluate not only the adsorption gas but also from Rh surface 

near the adsorption point to the deeper area near the support material that is based 

on the practical catalyst. Analyses using these techniques have revealed that in 

oxidation condition the surface of Rh NP changes into Rh2O3 and RhO2 and the 

deeper area near the support material changes into higher oxidation state. This 

result indicates Rh-support material interaction can be evaluated by SR XPS. 

 

 

These findings about the intrinsic properties of Rh nanoparticles become valuable for 

development of the next-generation three-way catalyst. Moreover, our strategy for 

clarification of the mechanism with combination analyzes and theoretical 

calculations can represent a first possible step toward material model base research. 

From now on, I will contribute to improve characterization accuracy and modeling 

calculation to clarify the electronic property accelerating MBR for material 

development. 
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