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Abstract

Prosthetic hands are prescribed to patients who have suffered an amputation
of the upper limb due to an accident or a disease. This is done to allow patients
to regain functionality of their lost hands. Myoelectric prosthetic hands were
found to have the possibility of implementing intuitive controls based on op-
erator’s electromyogram (EMG) signals. These controls have been extensively
studied and developed. In recent years, development costs and maintainabil-
ity of prosthetic hands have been improved through 3D printing technology.
However, no previous studies have realized the advantages of EMG-based clas-
sification of multiple finger movements in conjunction with the introduction of
advanced control mechanisms based on human motion. This paper proposes

a 3D-printed myoelectric prosthetic hand and an accompanying control sys-
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tem. The muscle synergy-based motion determination method and biomimetic
impedance control are introduced in the proposed system, enabling the classi-
fication of unlearned combined motions and smooth and intuitive finger move-
ments of the prosthetic hand. We evaluate the proposed system through oper-
ational experiments performed on six healthy participants and an upper-limb
amputee participant. The experimental results demonstrate that our pros-
thetic hand system can successfully classify both learned single motions and
unlearned combined motions from EMG signals with a high degree of accu-
racy. Furthermore, applications to real-world uses of prosthetic hands are

demonstrated through control tasks conducted by the amputee participant.

Summary

Human muscle synergy- and impedance model-based control enables accurate and natural fin-

ger motions of a 3D-printed myoelectric hand.

Introduction

According to the latest statistics, there are approximately 540,000 and 82,000 upper-limb am-
putees in the USA (/) and Japan (2), respectively. Some reports suggested that at least 50-60%
of upper-limb amputees use prosthetic hands on a daily basis (3—5). There are three major
categories of upper-limb prostheses: cosmetic, body-powered, and externally powered (6—S8).
Myoelectric prosthetic hands are a type of externally powered prostheses and use electromyo-
gram (EMG) signals, which are generated by muscle contractions reflecting a human’s internal
state and motion intentions. Therefore, myoelectric prosthetic hands create the possibility for
amputees to control their prosthetics like actual human hands by extracting motion intent from

EMG signals.



Myoelectric prosthetic hands have been extensively studied and developed in both commer-
cial and research related applications. For example, MyoBock (9), developed by OttoBock,
is the most popular myoelectric prosthetic hand in the world and enables control of two hand
movements (grasp and open). More recently, advanced prosthetic hands that can drive each
finger have been developed. Commercially available examples include iLimb quantum (/0),
Vincent evolution 3 (/7), and Michelangelo (9). Within the field of research prosthetic hands
with five independently driven fingers have been developed (/2—16). However, these myoelec-
tric prosthetic hands are very expensive (from $25,000 to $75,000 for commercial prosthetic
hands (/7)), and their cost of maintenance and replacement makes access difficult for large
segments of the population.

In recent years, to improve the development cost and maintainability of prosthetic hands,
3D printing techniques have been utilized to produce the hardware components of prosthetic
hands (/8-21). There are some open-source projects for 3D-printed prostheses designs, which
are available online and aim to be more accessible to amputees (22-24). Although 3D-printed
prosthetic hands have resulted in a dramatic reduction in production and maintenance cost, there
are currently no examples of EMG-based motion classification and advanced control mecha-
nisms based on human motion characteristics.

Motion classification of myoelectric prosthetic hands is generally achieved by extracting
the operator’s intention from recorded multichannel EMG signals based on machine learning
techniques such as neural network and support vector machines. Some previous studies pro-
posed EMG classification methods that enable accurate classification of finger and hand move-
ments (25-28). Most of these methods, however, require large training datasets depending
on the number of target motions required to realize the classification of many hand movements,
resulting in an increased burden on users. It is therefore difficult to measure EMG signals corre-

sponding to all possible motions and to solve complicated control problems using EMG signals.



We believe that a practical prosthetic hand needs a mechanism classifying many motions from
a smaller dataset of learned motions.

This paper proposes a 3D-printed myoelectric prosthetic hand with five independently driven
fingers along with a control system. In the proposed system, the operator’s motions are deter-
mined based on muscle synergy theory (29, 30). The theory suggests that the human motor sys-
tem directly initiates movement through flexible combinations of muscle synergies. The term
muscle synergy refers to a constitutional unit of operation that adjusts the activation of multiple
muscles. There have been several attempts to extract muscle synergies from EMG and use them
as inputs for motion or task classification (31, 32). In this paper, we focus on the transition
and combination of extracted muscle synergies. Here, fundamental finger motions are regarded
as muscle synergies, and various finger motions are expressed by combinations of these. Fur-
thermore, the generation process of target movements is modeled using an event-driven model,
thereby predicting the operator’s motions from previous muscle synergy generation. In this
way, the proposed system supports the accurate prediction of unlearned combined motions us-
ing only learned single motions. Biomimetic control, based on an impedance model is used
to determine prosthetic hand control, enabling smooth prosthetic movements similar to that of
the human hand and captured by EMG signals. We experimentally evaluated the validity of the

developed prosthetic hand system in six healthy participants and an amputee participant.

Results

Figure 1 shows an overview of the proposed prosthetic hand system, which is composed of four
parts: EMG measurement, EMG signal processing, prosthetic hand control, and a myoelectric
prosthetic hand. Based on measured EMG signals, muscle exertion is estimated with EMG
signal processing. The motion of the operator is estimated based on muscle synergy extraction

using a recurrent neural network and a motion generation model, thereby allowing the expres-
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sion of the unlearned combined motions using only the single motions learned in advance. The
actuator commands are then determined using the biomimetic control based on the impedance
model. Subsequently, the finger flexion of the prosthetic hand can be performed using a PID
controller. The hardware of the proposed system consists of 3D-printed parts and a micro-
computer, such that the proposed system can have high maintainability and portability (Fig. 2).
EMG measurement, EMG signal processing, and prosthetic hand control are implemented in
the electrical apparatus which is composed of electrodes, a microcomputer, and a motor driver.
The prosthetic hand measures 200 mm in length, and weighs 430 g. The size of the developed
circuit is 90 mm x 80 mm.

We conducted operational experiments for the developed prosthetic hand and its control sys-
tem. The validity of the proposed system for controlling the five fingers was verified through
operational experiments conducted on six intact participants and an upper-limb amputee partic-

ipant.

Experiment 1

This experiment was performed on six healthy participants and designed to confirm the effec-
tiveness of the proposed system and the performance of its classification mechanism. In this
experiment, we used five electrodes to measure EMG signals. The participants were asked to
perform ten motions (M1-M10). It should be noted that motions M1-M5 are single motions
and motions M6-M10 are combined motions. First, the participants performed each single
motion, where motion was recorded as training data. Next, they performed all ten motions in-
cluding the unlearned combined motions, where classification accuracy was calculated. During
the experiment, the operation of the prosthetic hand was only conducted for Subs. 4—6; that is,
the feedback of the classification results was given for them in real time. In contrast, Subs. 1—

3 were not informed of the classification results. Example recordings in which control of the



prosthetic hand is tested are shown in movies S1 and S2.

With respect to the experiments examining the control of five fingers, Fig. 3A shows the
classified motion and normalized EMG signals for each channel, the force information Fgyc,
and the muscle contraction level «. Figure. 3B shows the classified motion and each motor
output angle in the following conditions: the equilibrium positions of the motor angle at zero
(rad) and the direction to finger flexion as positive. Note that the results of Figs. 3A and B were
measured simultaneously. The shaded areas represent the period of motion occurrence.

Figure 4 shows examples of muscle synergies decoded from measured EMG signals using
the proposed system. Regarding the single motions (M1-M5), the waveforms during execu-
tion of each motion are shown (Fig. 4A). Regarding combined motions (M6-M10), participants
performed each combined motion by superimposing single motions on the time direction, the
transition of normalized EMG signals and corresponding muscle synergies until the target mo-
tion is exerted is shown (Fig. 4B).

Figure 5A shows the confusion matrices for the classification of motions of all participants.
The rows and columns correspond to the actual motions conducted and the classification re-
sults, respectively. Every participant provided a classification accuracy > 90% on average over
all motions. In particular, Sub. 5 and Sub. 6 achieved an almost perfect classification accuracy
of > 98% in all motions. The average classification accuracies of the participants differed be-
tween the conditions without feedback and with feedback (Fig. 5B). In all motions, the average
accuracy was 91.7% without feedback and 97.3% with feedback. Figure 5C shows recorded

scenes during prosthetic hand control for all target motions.

Experiment 2

The operational experiment of the prosthetic hand was conducted for the amputee participant.

In this experiment, we developed a newly constructed myoelectric prosthetic hand system for



the amputee participant. Figure 6A shows the configuration of the experimental system. The
developed prosthetic hand was attached to the tip of a forearm socket which was specially
designed for the amputee participant. The control circuit and battery for prosthesis control
were installed on the outside of the socket. Figures 6B—D show photographs of the myoelectric
prosthetic hand system used in this experiment. Three electrodes for EMG measurement were
built on the inside of the socket (Fig. 6B).

The amputee participant was asked to perform five motions (M1-MS5). In this experiment,
motions M1-M4 were single motions, while motion M5 was a combined motion. For the sin-
gle motions, we selected motions which are not independent five finger motions, but rather
movements considered to be used frequently in everyday life. First, the single motions were
performed by the amputee participant then recorded as training data. Next, a classification
experiment for each motion was conducted to evaluate classification accuracy of the motions.
Finally, the amputee participant conducted control tasks assuming actual scenes of using a pros-
thetic hand.

Examples of the extracted muscle synergies for the single motions and the combined mo-
tions are shown in Figs. 7A and B, respectively. Figure 7C shows a confusion matrix for the
classification results of the motions. The average classification accuracy for all trials was 89.9%
in learned single motions, 100.0% in unlearned combined motions, and 91.9% in all motions
(Fig. 7D). Figure 7E shows the scenes during prosthetic hand control for all target motions.

Figure 8 shows recorded example participants undertaking the control tasks. The amputee
participant controlled the myoelectric prosthetic hand, picked up a block (Fig. 8A and movie
S3) and a plastic bottle (Fig. 8B and movie S4), and held a notebook (Fig. 8C and movie
S5). During the block and plastic bottle tasks, he controlled the prosthetic hand while freely
switching between the grasp motion and three finger pinch motion. During the notebook task,

he held the notebook by grabbing its left side with his normal hand and picking the right side



of it with three of the prosthetic hand’s fingers. Examples of the time-series changing of the
classified motions, force information, and corresponding photographs during the task of the
plastic bottle are shown in Fig. 8D. The amputee participant picked up the plastic bottle from
the table with three-finger pinch motion (2.3 s), put it down on the table, and then picked it up

again (6.6 s). He also picked it up with grasp motion (8.6 and 16.7 s).

Discussion

In experiment 1, the operator’s single motion was accurately classified by the proposed system
based on the EMG signals as shown in Fig. 3. Each motor rotation angle slowly approaches
the target angle when « increases rapidly, and then decreases slowly to the equilibrium position
when « quickly drops to zero (Fig. 3B). This result suggests that the motor rotation angles can be
determined smoothly when considering the human’s impedance property based on biomimetic
controls. In addition, although there were some instantaneous misclassified points (end points
of M2 and M3), the motor output angles rose gently to approximately 1-2 rad. Therefore, the
biomimetic control embedded in the developed system can restrain the influence of unexpected
incorrect motion when a misclassification of motion occurs instantaneously.

In Fig 4, the muscle synergies are successfully extracted from the measured EMG signals for
each motion. For single motions, the unique synergy composing each motion can be obtained
(Fig 4A). In the case of executing the combined motions, multiple synergies are extracted with
overlapping time series (Fig 4B). For example, motion M6 (combination of motions M1 and
M?2) is executed by the transition of muscle synergies (synergies 1 and 2) constituting motions
M1 and M2. This is because the participant performed such combined motions by transitionally
combining all single motions that compose the target motion. From the above, the proposed sys-
tem can classify unlearned combined motions based on the superimposed muscle synergies and

their transitions. EMG pattern classification generally requires the learning of all target motions



in advance. By contrast, the proposed system learns only basic motions and can combine them
to express more complex motions. This mechanism therefore has an advantage in controlling a
prosthetic hand that requires a lot of degrees of freedom.

The classification accuracy for healthy participants was investigated under conditions with-
out and with feedback of classification results (Figs. SA and B). The participants with feedback
(Subs. 4-6) showed higher accuracies than the participants without feedback (Subs. 1-3). This
is because the participants with feedback could adjust their EMG pattern according to the feed-
back of the classification results (i.e., the performed movement of the prosthetic hand), which
means that this situation is relatively closer to the actual scene of using a prosthesis. Such dif-
ferences due to the presence of the feedback are in agreement with previous studies (33, 34).
Even in the case without feedback, which is the more challenging condition, the average clas-
sification accuracy reached > 90%. Focusing on each participant’s motion, the classification
accuracies of some motions (M10 of Sub. 2 and M3 of Sub. 4) were relatively low, around 60%.
It is possible that this problem could be solved through sufficient training in the operation of the
myoelectric prosthetic hand control. These results show that the proposed system can classify
unlearned combined motions by using only learned single motions based on muscle synergy
extraction and the motion generation model.

The classification accuracy for the amputee participant was > 89% in both the single and
combined motions (Figs. 7C and D), meaning the motions of the amputee participants can be
classified with almost the same level of accuracy as that of the healthy participants. This sug-
gests that the proposed system can be applicable to amputee participants. However, when focus-
ing on each participant’s motion, only motion M4 had a low level of accuracy at approximately
66% (Fig. 7C). In this experiment, the participant performed motion M4 whilst co-contracting
wrist flexion and wrist extension movements (see Materials and Methods). The amputee partic-

ipant does not normally perform the co-contraction motion while using his own prosthetic hand



(MyoBock hand) in their day to day activities, thus this motion was unusual for him and may
have been difficult to perform. This can be confirmed from the results of the extracted muscle
synergies for M4 shown in Fig. 7A. Although M4 is a single motion, the extracted synergy
pattern varies greatly during motion. Similar to the healthy participants, there is a possibil-
ity that the classification accuracy will be improved by training to generate/control voluntary
EMG patterns. Such training may also provide an increase in the number of combined motions
performed by the participant.

Furthermore, we tested the applicability of the proposed system through the control task
conducted for the amputee participant. In this task, the participant was able to control the pros-
thetic hand while switching motions in response to different target objects (blocks, plastic bottle,
and notebook). In Fig. 8D and movie S4, whilst there were some momentary misclassifications,
its influence on the movement of the prosthetic hand was small due to smooth movements based
on the biomimetic control. These results indicate that the proposed system can presumably be

applied to situation where actual use of the prosthetic hands are likely to occur.

Conclusion

In this study, we proposed a 3D-printed myoelectric prosthetic hand with five independently
driven fingers. We also proposed a motion classification method based on muscle synergy the-
ory and a motion generation model, thereby allowing the classification of unlearned combined
motions using learned single motions. The biomimetic control based on an impedance model
was included in the proposed prosthetic hand system, so that the prosthetic hand can perform
smooth movements similar to human hand flexion depending on force information.

In the operation experiments conducted for six intact participants and an amputee partici-
pant, we showed that the proposed system can classify 10 motions, including combined finger

motions at about 95% accuracy for the intact participants and about 92% accuracy for the am-
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putee participant. The applicability of the proposed system to actual scenes showing use of the

prosthetic hand also demonstrated through control tasks conducted for the amputee participant.

Limitations and Future work

In this study, we evaluated the proposed system through the operation experiments conducted
for six intact participants and one amputee participant. The proposed next steps are 1) investi-
gating the long term applicability of the proposed system, 2) auto-optimization of preset param-
eters, 3) developing a training environment for the proposed control system, and 4) introduction
of sensory feedback.

The duration of the longest conducted experiment in this study was 60 s. To investigate the
real world applications of the prosthetic hand in detail, it is required to perform longer lasting
experiment (e.g., experiments that run for a few hours) and evaluate its performance on more
amputee participants. In addition, it has been known that the classification accuracy of EMG
patterns decreases because of sweat, electrodes shifting, and muscle fatigue with prolonged use
of the prosthetic hand, accordingly incorrect movements easily occur (35, 36). In the accuracy
evaluation experiments, the participants were instructed to maintain a certain posture. How-
ever, posture changes during use of prostheses have been known to cause skin/muscle shift,
influencing the classification performance (37, 38). Considering the above points, improving
the robustness of the EMG pattern classification should be prioritized in the future.

Meanwhile, in the proposed system, the prosthesis is in the open (no motion) state when
the operator relaxes, classified motion is executed when the operator executes an action with a
force higher than a specified threshold. The operator is therefore required to constantly exert
force in order to keep executing a single motion for a certain period, e.g. holding an object
with grasp. This may lead to an increase in the burden on the user over the long-sustained

use of the prosthesis. This was observed in the control task conducted for the amputee partic-
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ipant, misclassifications occurred after the 9 s mark and were not seen at the beginning of the
task (Fig. 8). We therefore plan to develop a control scheme that can dynamically change the
threshold according to classified motions.

In the proposed system, the values of the modifying vector in the motion generation model
have to be set in advance (see Materials and Methods). For the conducted experiments in this
paper, these vector values were determined by trial and error and were common in each exper-
iment. In experiment 1, the values were tuned for a certain participant and were reused with
other participants; nevertheless, the results showed relatively high classification accuracy. Al-
though this suggests that the modifying vector has transferability to some extent, there is still
room for optimization in the vector values. If we could implement a methodology to automat-
ically determine the modifying vectors during the training process of the system, it would be
possible to construct a motion determination scheme optimized for each user, resulting in more
accurate and intuitive control of the prosthetic hand.

Before amputees start using the prosthetic hand, it is generally required that they undergo
training at a medical institution. This is an important step for amputees to exert EMG patterns
and develop strong voluntary control. In the previous study, various training systems were
proposed for the prosthetic hand control (39-417). Therefore, we plan to develop a training
environment that conforms to the proposed prosthetic hand system.

Although the control task conducted in this study show the applicability of the proposed
system to actual scenes, the amputee must rely on visual feedback in order to adjust the motion
or exert the grasping force of the prosthetic hand. The introduction of sensory feedback into a
prosthesis is important both in movement execution and force regulation. In recent years, there
has been major progress in providing sensory feedback to prostheses via invasive means using
peripheral nerve electrodes (42, 43) and noninvasive means using vibration (44) or electrical

stimulation (45). This enables the amputee to perceive the sense of touch regarding the target
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object through the prosthetic hand. To develop a more practical and intuitively controllable

prosthetic hand, it is also necessary to incorporate such sensory feedback mechanisms.

Materials and Methods

System architecture

The full system and hardware structure are shown in Figs. 1 and 2. The exterior and many
other parts were printed using a 3D printer. To print the parts, we modified open source data
released by the Open Hand Project (24). The bipolar electrodes used for measuring EMG sig-
nals were the same as those used in MyoBock hand (OttoBock 13-E200, Otto Bock HealthCare
Deutschland GmbH). Each of the electrodes conducts differential amplification, bandwidth lim-
itation (90—450 Hz), full-wave rectification, and smoothing processing to extract the amplitude
information of EMG signals on its internal analog circuit.

The prosthetic hand control system uses a microcomputer (mbed LPC1768, ARM Ltd.) for
A/D conversion, feature extraction, motion classification, and control of the prosthetic hand.
This microcomputer outputs pulse width modulation (PWM) signals as control signals to the
actuators; regardless, its maximum output voltage is 3.3 V and insufficient to drive the actuators.
Therefore, we use the motor driver (DRV8835, Texas Instruments Inc.) to supply the drive
voltage.

Each finger of the prosthetic has a wire that is wound in a spool (fig. SIB and C). The
spool is then rotated with a DC motor by the actuator, so that the finger flexes. Moreover, the
wire is pressed to the spool and fastened with a spring. Each finger has a DC motor and the
same structure mentioned above, thus allowing the hand to drive each finger independently. In
addition, the prosthetic hand has a servo motor on the CM joint of the thumb (fig. S1C), giving

the hand six degrees of freedom.
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EMG signal processing

The EMG signal processing consists of four parts: feature extraction, muscle synergy extrac-

tion, a motion generation model, and motion determination.
Feature extraction

First, the EMG signals that are measured from the L number of the electrodes are digitized
by an A/D conversion at 200 Hz. Then, the processed EMG signals are filtered through the
second order Butterworth low-pass filters with a cut-off frequency of f. (Hz). These signals
are converted into E;(t) (I = 1,2,---, L), which is normalized by the maximum value of each

channel signal as follows:
_ EMGy(t) - EMG;"*
EMGP> — EMGY

where EMG;" is the mean value of E;(t) that is measured while the muscles are relaxed, and

Ey(t) )

EMG;"* is the maximum value of the EMG signals, which is configured beforehand. To esti-

mate the operator’s motion, £;(t) is then normalized to give the sum of £;(¢) as 1.0. These nor-

malized signals are defined as a time-series EMG pattern @ (t) = [z1(t), -+, x(t), - -,z (t)]T:
nlt) = 20 o)
> Eu(t)
r=1
Moreover, force information F'(t) is calculated from the EMG signals as
1 L
Feme(t) = I’ > E(t), (3)

'=1

which is used to determine a motion occurrence and control the prosthetic hand. When F(t) is

greater than the preset threshold F*!, it is recognized as an occurrence of motion.
Muscle synergy extraction (46)

In the muscle synergy extraction, the independent motion of each of the five fingers is regarded

as one of several single motions (muscle synergy) that make up a combined motion, such as
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the opening and closing of a hand. Each muscle synergy pattern w(t) is extracted from the

time-series EMG pattern [z(¢), z(t — 1), -+, x(t — T + 1)] € REXT,
u(t) = F"(x(t),z(t — 1), -+, x(t =T +1)). (4)

In addition, w(t) = [uy(t), -+, uc(t), -, uc(t)]t € RC (C is the number of single motions)

satisfies the following conditions:

c
S ult) = 1. 5)
c=1

F™ans(.) is a function that transforms the time-series EMG pattern [x.(t), z.(t — 1), -+, @ (t —

T +1)] of the c-th single motion into u.(t) = F"8S(x (t), z(t—1), -,z (t =T +1)) € R,
where wu..(t) is the unit vector whose c-th value is one. Considering w(t) during the combined
motion is represented by a linear combination of u.(t) that has combination ratio a. as a weight

coefficient, u(t) can be expressed as

C

ut) = D acu(t) (6)
c=1

= [Ah e Qe ...7dC]T’ (7)

because wu.(t) is an organized orthonormal system. Thus, if the function F*?"5(.) is found
from the time series EMG patterns of the single motions, the combination ratio a. of each
single motion can be calculated by converting the EMG patterns of the combined motion into
u(t). Here, the recurrent log-linearized Gaussian mixture network (R-LLGMN) proposed by
Tsuji et al. (47) is used for the derivation of F™"5(.). This network consists of a Gaussian
mixture model and a hidden Markov model and deals with the time-series characteristics of the
operator’s motions. This R-LLGMN was made to learn the time-series EMG pattern of single
motions, so that it is possible to obtain F"™#"%(.), which has learnt the relationship between the

operator’s EMG signals and muscle synergy.
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Motion generation model

When performing motions expressed by the combination of muscle synergies, it can be assumed
that all the synergies that constitute the motion are not generated simultaneously; rather, they are
generated serially through the combination of other individual synergies. That is, if movement
is broken down to the muscle synergy level and presumed respectively, the process of motion
generation can also be presumed. In the motion generation model, the operator’s motion is
predicted from the generation history of the muscle synergies extracted in the muscle synergy
extraction part, and a modifying vector according to the estimated process is output.

In this paper, the motion generation model for five finger movements presented is based on
an event-driven model (48) described using Petri net. The general form of the motion generation
model is shown in fig. S2. In the motion generation model, according to the operator’s motion

state, the modifying vector -, is selected and sent to the motion determination part:

Ym = [’Ym177m27"'7’7mg>"'7’YmG]T7 ()

where m (m = 0,1,2,---,G; G is the number of all motions for classification) is the index
of the current operator’s motion, and +,,,, indicates the modifying value from current operator’s
motion m to the next operator’s motion g. Note that m = 0 means an initial state, that is, a

no-motion state.
Motion determination

This part estimates the operator’s motion by using the muscle synergy pattern w(t) and the
modifying vector 7, obtained in the motion generation model part. The operator’s motion is
determined by comparing the muscle synergy pattern w(t) with the preset basis pattern (%)

corresponding to motion g. The degree of similarity for motion g is defined as

¢ 2
S,(t) =1— \}A > (uelt) — ). 9)

c=1
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Because the second term on the right hand side of equation (9) represents the distance between
u.(t) and 49, the degree of similarity is set to 1 when both patterns are in agreement. The
products of S,(¢) and the modifying vector ~,,, which is an output of the motion generation

model, is obtained as
S;(t) = 'Ymgsg(t)7 (10)

where S/ (t) is the degree of similarity taking into consideration the history of motion gener-
ation. The operator’s motion is determined by deriving a maximum S/ () motion. From the
above procedure, the operator’s motions can be classified by considering the muscle synergy

and the transition among motions.

Impedance model-based control

The prosthetic hand control system operates its motors based on information given by forces
on the prosthetic, the operator’s motion that was estimated by EMG signal processing, and
biomimetic control (49). The block diagram of the biomimetic control is shown in fig. S2.
First, the control motors are chosen based on the estimated operator’s motion. The command
angle of the motors is calculated based on the impedance model. Then, the motion equation for

the motor, j (7 = 1,2,---,J) is defined as follows:

Ijéj—i‘Bj (Oé)éj—i‘Kj (Oé) (9]—9?) :Tj—T?X, (11)

J

where [;, B; (o), and K («) are the inertia, the viscosity and the stiffness, respectively. 6,
and 6’? are each motor rotation angles and equilibrium positions of the angle. Here, B; («) and

K; («) are defined as
Bj (O[) = bjjl()ébj’2 + bj73, (12)
Kj (O[) = l{}j,lakj’Q + k’j73, (13)
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where {b;1,b;2,b;3} and {k; 1, kj2, kj3} are the impedance parameters. Moreover, 7; and 75*
are the motor torque and external torque, respectively. Here, the viscosity and stiffness are made
to change depending on the muscle contraction level, «, so that it can represent characteristics
accompanying muscle activity. a can be derived from F;"**, which is measured as Fguc (t)

during maximum muscle contraction.

_ Fene (1)

a <t> Fmax ?
9=g’

(14)

where ¢’ is the operator’s motion estimated by the EMG signal processing. Furthermore, the

torque 7; can be calculated as follows:
i) = o)™, (15)

where 7% is the preset maximum value of the torque. The command angle ¢; of motor j is
calculated by solving the above equation (10), thereby allowing the reflection of the inertia, the
viscosity, and the stiffness of human hands. Therefore, the prosthetic hand can be controlled

smoothly like a human hand.

Participants

Six intact young adults (males, right-handed, mean age: 23.7+0.58) and one upper limb am-
putee (male, age: 52, amputation site: 14 cm below the right elbow) were voluntarily recruited
in experiment 1 and experiment 2. The amputee participant had used a myoelectric prosthe-
sis (MyoBock hand) for 17 years. They were told the aim of the study and provided written
informed consent before participating in the experiments. This study was approved by the
Hiroshima University Ethics Committee (Registration number: E-840) and The Human Re-
search Ethics Committee of The Hyogo Institute of Assistive Technology (Registration number:

R1701B).
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Experiment 1

The six intact participants participated in experiment 1. The participants were seated in front of
a table during the experiment. The right elbow was flexed at 90° and placed on the table. The
participants were instructed to maintain the posture during EMG recordings. EMG signals were
measured from the five electrodes (L. = 5) attached to the right forearm (fig. S4A). The target
motions consisted of five single motions and five combined motions (table S1): thumb flexion
(M1), index finger flexion (M2), middle finger flexion (M3), ring and little finger flexion (M4),
grasp (M5), pinch with two fingers (M6), peace sign (M7), pinch with three fingers (M8), hold
up an index finger (M9), and thumbs-up (M10). To examine the influence of the feedback of
the classification results on the performance, we divided the participants into two groups based
on the presence of the feedback.

In the experiment, the participants first performed each single motion for 2 s, and training
data were recorded. For training of R-LLGMN, 20 samples randomly sampled from the training
data were used for each motion. The participants then performed the five single motions in
succession to confirm the relationship between the classified motion, normalized EMG signals
Ey(t), force information Fpyg(t), muscle contraction level «, and the motor rotation angle
6. After that, the participants performed all the ten motions including the unlearned combined
motions in random order. For the participants without feedback (Subs. 1-3), the prosthetic hand
did not operate during the experiment, meaning the classification results were not informed.
In contrast, the participants with feedback (Subs. 4-6) were able to ascertain the classification
results in real time because they carried out control of the prosthetic hand during the experiment.
Each motion was recorded for 10 s, and five trials were performed.

Classification accuracy was defined as the time when a participant’s motion corresponded
with the target motion after five seconds, and it was calculated after the experiments. In these

experiments, the cutoff frequency was f. = 1.0 Hz and the external torque was 77 = 0 Nm.
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The values of the modifying vectors were determined for the first participant (Sub. 1) by trial and
error and were set in common for the other participants (table S2). The impedance parameters
in the biomimetic control were set as shown in table S3, which were determined based on the
experimental results of the human wrist impedance measurement (49). Furthermore, the control
cycle of the microcomputer was 5.0 ms and a differential component was not used in the PID

controller.

Experiment 2

This experiment was performed on the amputee participant. The participant was seated com-
fortably in front of a table and mounted the myoelectric prosthetic hand system (Fig. 6). The
system used in this experiment was consist of the developed prosthetic hand, socket, battery,
control circuit, and circuit box. The socket was specially designed for the amputee participant.
The battery used in this system was OttoBock EnergyPack 757B21 (Otto Bock HealthCare
Deutschland GmbH, Duderstadt, Germany) which is the same battery as MyoBock hand. EMG
signals were measured from the three electrodes (L. = 3) embedded in the inside of the socket
(Fig. 6B). We carefully selected the electrode positions taking into consideration the amputation
site of the participant, following the instructions of the occupational therapist (fig. S4B). The
small pieces of silicone gel made from super soft urethane resin (shore hardness: 5) were glued
to all fingertips of the prosthetic hand to stable the holding ability for objects. In this experiment,
the target motions consisted of four single motions and one combined motion (table S4): pinch
with three finger (M1), index finger pointing with thumb-up (M2), thumb flexion (M3), grasp
(M4), and index finger pointing (MS5). These motions are not independent, five finger motions
but are motions that are considered to be used frequently in everyday life. This is because it was
difficult to realize many motions with the conditions of the residual muscle of the participant.

In addition, because the participant could not perform each motion while directly imagining the
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target motions, we asked him to associate the target motions with the execution motions that he
can imagine as follows: M1: wrist flexion; M2: wrist extension; M3: little finger flexion; M4:
co-contraction of wrist flexion and wrist extension.

First, the collection of the training samples of each single motion (M1-M4) was carried out
in the same way as experiment 1. The participant was then asked to attempt the following two
tasks: an evaluation task of classification accuracy and a control task of the prosthetic hand. In
the evaluation task, to evaluate classification accuracy of the single and combined motions, the
participant was asked to perform each motion including the combined motion for 10 seconds
over two trials. The classification accuracy of motions was then calculated as in experiment
1. During the training data collection and the evaluation task, the participant was instructed to
maintain his posture. In the control task, we gave the participant three types of objects—blocks,
a plastic bottle, and a note book—to be controlled. The participant was asked to pick up or hold
these objects with the prosthetic hand freely. The control task for each object was conducted
for 60 s. An arbitrary rest was taken between each task to avoid muscle fatigue. The cutoff
frequency f., external torque 7;*, impedance parameters, control cycle of the microcomputer,
and type of controller were also the same as in experiment 1. The values of the modifying

vectors used in this experiment were shown in table S5.

Supplementary Materials

Fig. S1. Exterior and inside of the prosthetic hand and structure of the finger.
Fig. S2. General form of motion generation model.

Fig. S3. Biomimetic impedance control system.

Fig. S4. Locations of electrodes.

Table S1. List of target motions for classification in experiment 1.

Table S2. List of modifying vectors used in experiment 1.
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Table S3. List of impedance parameters used in the experiments.
Table S4. List of target motions for classification in experiment 2.
Table S5. List of modifying vectors used in experiment 2.

Movie S1. Control of five fingers.

Movie S2. Grasping of plastic bottle.

Movie S3. Block picking task.

Movie S4. Plastic bottle picking task.

Movie S5. Notebook holding task.

References

1. K. Ziegler-Graham, E. J. MacKenzie, P. L. Ephraim, T. G. Travison, R. Brookmeyer, Es-
timating the prevalence of limb loss in the United States: 2005 to 2050, Arch. Phys. Med.
Rehabil. 89, 422429 (2008).

2. Annual Report on Government Measures for Persons with Disabilities, Situation of persons

with disabilities (Cabinet Office, Goverment of Japan, 2013).

3. T. W. Wright, A. D. Hagen, M. B. Wood, Prosthetic usage in major upper extremity ampu-
tations, J. Hand Surg. Am. 20, 619-622 (1995).

4. E. A. Biddiss, T. T. Chau, Upper limb prosthesis use and abandonment: A survey of the
last 25 years, Prosthet. Orthot. Int. 31, 236-257 (2007).

5. C. Behrend, W. Reizner, J. A. Marchessault, W. C. Hammert, Update on advances in upper

extremity prosthetics, J. Hand Surg. Am. 36, 1711-1717 (2011).

22



10.

1.

12.

13.

14.

15.

C. Light, P. Chappell, Development of a lightweight and adaptable multiple-axis hand pros-
thesis, Med. Eng. Phys. 22, 679—-684 (2000).

M. Atzori, H. Miiller, Control capabilities of myoelectric robotic prostheses by hand am-

putees: A scientific research and market overview, Front. Syst. Neurosci. 9, 1-7 (2015).

S. L. Carey, D. J. Lura, M. J. Highsmith, Differences in myoelectric and body-powered
upper-limb prostheses: Systematic literature review, J. Rehabil. Res. Dev. 52, 247-262

(2015).

OttoBock, OttoBock web page. http://www.ottobock.com/.

Touch Bionics, Touch Bionics web site. http://www.touchbionics.com/.
Vincent Systems, Vincent Systems web site. https://vincentsystems.de/en/.

Y. Kamikawa, T. Maeno, Underactuated five-finger prosthetic hand inspired by grasping
force distribution of humans, in Proceedings of the 2008 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IEEE, 2008), pp. 717-722.

T. Seki, T. Nakamura, R. Kato, S. Morishita, H. Yokoi, Development of five-finger multi-
DoF myoelectric hands with a power allocation mechanism, in Proceedings of the 2013

IEEE International Conference on Robotics and Automation (IEEE, 2013), pp. 2054-2059.

T. Zhang, Shaowei Fan, J. Zhao, L. Jiang, H. Liu, Design and control of a multisensory five-
finger prosthetic hand, in Proceedings of the 11th World Congress on Intelligent Control

and Automation (IEEE, 2014), pp. 3327-3332.

T. Takaki, K. Shima, N. Mukaidani, T. Tsuji, A. Otsuka, T. Chin, Electromyographic pros-
thetic hand using grasping-force-magnification mechanism with five independently driven

fingers, Adv. Robot. 29, 15861598 (2015).

23



16

17.

18.

19.

20.

21.

22.

23.

24.

25.

. N. Wang, K. Lao, X. Zhang, Design and myoelectric control of an anthropomorphic pros-

thetic hand, J. Bionic Eng. 14, 47-59 (2017).

L. Resnik, M. R. Meucci, S. Lieberman-Klinger, C. Fantini, D. L. Kelty, R. Disla, N. Sas-
son, Advanced upper limb prosthetic devices: Implications for upper limb prosthetic reha-

bilitation, Arch. Phys. Med. Rehabil. 93, 710-717 (2012).

C. O’Neill, An advanced, low cost prosthetic arm, in Proceedings of the IEEE SENSORS

2014 (IEEE, 2014), pp. 494-498.

G. P. Kontoudis, M. V. Liarokapis, A. G. Zisimatos, C. I. Mavrogiannis, K. J. Kyri-
akopoulos, Open-source, anthropomorphic, underactuated robot hands with a selectively
lockable differential mechanism: Towards affordable prostheses, in Proceedings of the
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE,
2015), pp. 5857-5862.

J. M. Zuniga, J. Peck, R. Srivastava, D. Katsavelis, A. Carson, An open source 3D-printed

transitional hand prosthesis for children, J. Prosthetics Orthot. 28, 103—108 (2016).

K. F. Gretsch, H. D. Lather, K. V. Peddada, C. R. Deeken, L. B. Wall, C. A. Goldfarb,
Development of novel 3D-printed robotic prosthetic for transradial amputees, Prosthet. Or-

thot. Int. 40, 400-403 (2016).

OpenBionics, OpenBionics web page. http://openbionics.org.

Exiii, Exiii web page. http://exiii.jp/.

J. Gibbard, Open Hand Project web page. http://www.openhandproject.org/.

R. N. Khushaba, S. Kodagoda, Electromyogram (EMG) feature reduction using Mutual

Components Analysis for multifunction prosthetic fingers control, in Proceedings of the

24



26.

27.

28.

29.

30.

31.

32.

33.

2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)

(IEEE, 2012), pp. 1534-15309.

R. N. Khushaba, S. Kodagoda, D. Liu, G. Dissanayake, Muscle computer interfaces for

driver distraction reduction, Comput. Methods Programs Biomed. 110, 137-149 (2013).

M. Atzori, M. Cognolato, H. Miiller, Deep learning with convolutional neural networks
applied to electromyography data: A resource for the classification of movements for pros-

thetic hands, Front. Neurorobot. 10, 1-10 (2016).

Y. Geng, Y. Ouyang, O. W. Samuel, S. Chen, X. Lu, C. Lin, G. Li, A robust sparse rep-
resentation based pattern recognition approach for myoelectric control, /EEE Access 6,

38326-38335 (2018).

M. C. Tresch, P. Saltiel, E. Bizzi, The construction of movement by the spinal cord, Nat.

Neurosci. 2, 162—-167 (1999).

A. D’Avella, P. Saltiel, E. Bizzi, Combinations of muscle synergies in the construction of a

natural motor behavior, Nat. Neurosci. 6, 300-308 (2003).

C. W. Antuvan, F. Bisio, F. Marini, S. C. Yen, E. Cambria, L. Masia, Role of muscle syner-
gies in real-time classification of upper limb motions using extreme learning machines, J.

Neuroeng. Rehabil. 13, 76 (2016).

G. Rasool, K. Igbal, N. Bouaynaya, G. White, Real-time task discrimination for myoelec-
tric control employing task-specific muscle synergies, IEEE Trans. Neural Syst. Rehabil.

Eng. 24, 98-108 (2016).

M. Khezri, M. Jahed, Real-time intelligent pattern recognition algorithm for surface EMG

signals, Biomed. Eng. Online 6, 45 (2007).

25



34

35.

36.

37.

38.

39.

40.

41.

. J. M. Hahne, M. Markovic, D. Farina, User adaptation in myoelectric man-machine inter-

faces, Sci. Rep. 7, 1-10 (2017).

M. Asghari Oskoei, H. Hu, Myoelectric control systems—A survey, Biomed. Signal Pro-

cess. Control 2, 275-294 (2007).

A. J. Young, L. J. Hargrove, T. A. Kuiken, Improving myoelectric pattern recognition ro-
bustness to electrode shift by changing interelectrode distance and electrode configuration,

IEEE Trans. Biomed. Eng. 59, 645-652 (2012).

A. Fougner, E. Scheme, A. D. Chan, K. Englehart, @. Stavdahl, Resolving the limb position
effect in myoelectric pattern recognition, /EEE Trans. Neural Syst. Rehabil. Eng. 19, 644—
651 (2011).

J. L. Betthauser, C. L. Hunt, L. E. Osborn, M. R. Masters, G. Levay, R. R. Kaliki, N. V.
Thakor, Limb position tolerant pattern recognition for myoelectric prosthesis control with

adaptive sparse representations from extreme learning, IEEE Trans. Biomed. Eng. 65, 770-

778 (2017).

O. Fukuda, T. Tsuji, A. Otsuka, M. Kaneko, An EMG-based rehabilitation aid for pros-
thetic control, in Proceedings of the IEEE International Workshop on Robot and Human

Communication RO-MAN’98 (IEEE, 1998), pp. 214-219.

T. Takeuchi, T. Wada, M. Mukobaru, S. Doi, A training system for myoelectric prosthetic
hand in virtual environment, in Proceedings of the 2007 IEEE/ICME International Confer-

ence on Complex Medical Engineering (IEEE, 2007), pp. 1351-1356.

G. Nakamura, T. Shibanoki, Y. Kurita, Y. Honda, A. Masuda, F. Mizobe, T. Chin, T. Tsuji,
A virtual myoelectric prosthesis training system capable of providing instructions on hand

operations, Int. J. Adv. Robot. Syst. 14, 1-10 (2017).

26



42.

43.

44.

45.

46.

47.

48.

49.

D. W. Tan, M. A. Schiefer, M. W. Keith, J. R. Anderson, J. Tyler, D. J. Tyler, A neural
interface provides long-term stable natural touch perception, Sci. Transl. Med. 6, 257ral38

(2014).

S. Wendelken, D. M. Page, T. Davis, H. A. C. Wark, D. T. Kluger, C. Duncan, D. J. War-
ren, D. T. Hutchinson, G. A. Clark, Restoration of motor control and proprioceptive and
cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted

Electrode Arrays (USEAs) implanted in residual peripheral arm nerves, J. Neuroeng. Re-

habil. 14, 121 (2017).

T. Rosenbaum-chou, W. Daly, R. Austin, P. Chaubey, D. A. Boone, Development and real

world use of a vibratory haptic, J. Prosthetics Orthot. 28, 8—10 (2016).

L. Osborn, J. Betthauser, R. Kaliki, N. Thakor, Live demonstration: Targeted transcuta-
neous electrical nerve stimulation for phantom limb sensory feedback, in Proceedings of

the 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS) (IEEE, 2017).

K. Shima, T. Tsuji, Classification of combined motions in human joints through learning of
individual motions based on muscle synergy theory, in Proceedings of the 2010 IEEE/SICE

International Symposium on System Integration (IEEE, 2010), pp. 323-328.

T. Tsuji, Nan Bu, O. Fukuda, M. Kaneko, A recurrent log-linearized gaussian mixture

network, IEEFE Trans. Neural Networks 14, 304-316 (2003).

O. Fukuda, T. Tsuji, K. Takahashi, M. Kaneko, Skill assistance for myoelectric control
using an event-driven task model, in Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and System (IEEE, 2002), pp. 1445-1450.

T. Tsuji, K. Shima, N. Bu, O. Fukuda, Biomimetic impedance control of an EMG-based
robotic hand, in Robot Manipulators (InTech, 2010), chap. 9, pp. 213-231.

27



Acknowledgments

We thank Y. Honda, F. Mizobe, T. Shibanoki, and T. Takaki for helpful comments leading to
design approaches; Y. Yamada for help in developing the control system; H. Hayashi for helpful

suggestions on the manuscript.

Funding: This work was partially supported by JSPS KAKENHI Grants-in-Aid for Scientific
Research C Number 26462242.

Author contributions: A.F. designed experiments, developed experimental programs, per-
formed experiment 2, analyzed data, and wrote the manuscript. S.E. designed and devel-
oped the prosthetic hand and control circuit, designed experiments, and wrote the initial
draft. K.N. and K.S. developed experimental programs and performed experiments 1 and
2. G.N. designed and performed experiment 2 and edited the manuscript. A.M. designed
and developed the socket for the prosthetic hand. T.C. and T.T. directed the study and

edited the manuscript.
Competing interests: The authors declare no competing financial interests.

Data and materials availability: All data needed to evaluate the conclusions in the paper are
present in the paper or the Supplementary Materials. Contact A.F. for source code and

other materials.

28



. Prosthetic
EMG measurement EMG processing hand control

I L 11 1

Muscle synergy extraction Motion
determination
EMG Signals RLLGMN g~y p————
()"&. O\ >0 >ingle. motions, —
= .5 OjO—O\Q\* : : S »
[T g g N e + : <] o) =
g g =05 |. ] i wl..nL El |3 2
; el |% =5\ " SlalElaf?
et 8 ol 00 E I B S 8 S
a E] 3| |2 2
< 3 Motion generation model % a
P £
Operator Combined motion Prosthetic
B | f hand
|
Encode value

Force information

Microcomputer

Fig. 1. Overview of the proposed prosthetic hand control system. The control system is
composed of four parts: EMG measurement, EMG signal processing, prosthetic hand control,
and a myoelectric prosthetic hand.
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§ Prosthetic hand

Electrodes

Fig. 2. Hardware structure of the proposed prosthetic hand control system. EMG mea-
surement, EMG signal processing, and prosthetic hand control are implemented in the electrical
apparatus, which is composed of electrodes, a microcomputer, and a motor driver. The exterior
and many other parts of the prosthetic hand are printed using a 3D printer. In order to print the
parts, we modified open source 3D data (24).
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Fig. 3. Experimental results of the control of five fingers. (A) Classified motion and corre-
sponding normalized EMG signals for each channel, force information, and muscle contraction
level. (B) Classified motion and corresponding motor output angle for each finger. In this exper-
iment, the motions conducted by the participant were: no motion (NoM), thumb flexion (M1),
index finger flexion (M2), middle finger flexion (M3), ring and little finger flexion (M4), and
grasp (M5).

31



Normalized EMG signals: —— Ch.1 = Ch.2 Ch.3 Ch.4 — Ch. 5

Extracted synergies: [] Synergy 1 [ Synergy 2 [ Synergy 3 [ Synergy 4 ] Synergy 5
A
M1 M2 M3 M4 M5
©21.0F 1.0F 1.0f 1.0p 1.0
owT
85 ’\\J\/j\/\/\\f,//\/\\ \\V\/vv\,_/\/\’\/\/\/\/\/
gg 0.5 0.5F 0.5} 0.5r 0.5 M
6= |hemomaN s e~ AAERERRNANES W
Zw o 2 10 : Y - 0 0
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
33 1'0:_’_\/\/’\/\/\[—_\ 1o — 1'0;\“/“\/’\/“\\/\/-/\/\/ 10~ —— 1.0
T o
g bé 0.5F 0.5F 0.5F 0.5F 0.5
5, a A 0 obea A AN on 0 VAU A
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
Time (s) Time (s) Time (s) Time (s) Time (s)
B
M6 (M1+M2) M7 (M1+M4) M8 (M1+M2+M3) 9 (M1+M3+M4) M10 (M2+M3+M4)
K] . 1.0
r JV
g g ) Y S N :/\\ M\ CZ ,\ \ ﬁ;\ \J\J\ /_’/\f\
= o AP
g E 1- 2- 0 /E\ ,—f\/\_"‘.

Extracted
synergies
o
o (&)
o
o (5
o b
o o
T i o
N
o
O U!

-Mmﬂi

Time (s) Time (s) Time (s) Tlme (s) Tlme (s)

Fig. 4. Examples of normalized EMG signals and corresponding muscle synergies es-
timated using the proposed system for each motion. (A) Results for the single motions
(M1-M5). (B) Results for the combination motions (M6-M10). These time-series results are
arbitrary two seconds cut out from data of a participant.
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Fig. 5. Experimental results for healthy participants. (A) Confusion matrix for the classi-
fication of motions of participants Subs. 1-6. The classified motions are: thumb flexion (M1),
index finger flexion (M2), middle finger flexion (M3), ring and little finger flexion (M4), grasp
(M5), pinch with two fingers (M6), peace sign (M7), pinch with three fingers (M8), index fin-
ger pointing (M9), and thumbs-up (M10). The motions M1-MS5 are the single motions, and
the motions M6-M10 are the combined motions. The color scale represents the accuracy in
classification between pairs of classes in the confusion matrix. Subs. 1-3 and Subs. 4-6 con-
ducted the experiments under conditions without and with the feedback of their classification
results, respectively. (B) Average classification accuracies over participants for the conditions
without and with the feedback of classification results. Blue and red bars represent the results
without and with feedback, respectively. Error bars represent standard error. (C) Scenes during
prosthetic hand control.
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Fig. 6. Prosthetic hand system for experiment 2. (A) The hardware composition of the
prosthetic hand system used in experiment 2. The socket is specially designed for the amputee
participant participating in the experiment. (B) Photograph of the prosthetic hand system. The
EMG electrodes are built in the inside of the socket. (C) The control circuit is inside of the
3D-printed box and attached on the outside of the socket. The battery is built into the outside
of the socket. (D) Photograph of the prosthetic hand fitted by the amputee participant.
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Fig. 7. Experimental results for amputee patient. (A, B) Examples of normalized EMG sig-
nals and corresponding muscle synergies estimated from the proposed system for each motion.
(A) Results for the single motions (M1-M4). (B) Results for the combined motions (M5). (C)
Confusion matrix for the classification of motions. The classified motions are: pinch with three
finger (M1), index finger pointing with thumb-up (M2), thumb flexion (M3), grasp (M4), and
index finger pointing (M5). The motions M1-M4 are the single motions, and the motion M5
is the combined motion (M2 + M3). The color scale represents the accuracy in classification
between pairs of classes in the confusion matrix. (D) Average classification accuracies for all
trials. Error bars represent standard errors. (E) Scenes during prosthetic hand control.
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Fig. 8. Scenes of the control tasks. (A) Photograph of the block picking task. (B) Photograph
of the plastic bottle picking task. (C) Photograph of the notebook holding task. (D) Examples
of the classified motions, force information, and corresponding photographs during the plastic
bottle picking task. Here, the amputee participant controlled the prosthetic hand and switched
its motions among the open (no motion; NoM), three-finger pinch (M1), and grasp (M4).
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The PDF file includes:

Fig. S1. Exterior and inside of the prosthetic hand and structure of the finger.
Fig. S2. General form of motion generation model.

Fig. S3. Biomimetic impedance control system.

Fig. S4. Locations of electrodes.

Table S1. List of target motions for classification in experiment 1.

Table S2. List of modifying vectors used in experiment 1.

Table S3. List of impedance parameters used in the experiments.

Table S4. List of target motions for classification in experiment 2.

Table S5. List of modifying vectors used in experiment 2.

Other Supplementary Material for this manuscript includes the following:

Movie S1. Control of five fingers.
Movie S2. Grasping of plastic bottle.
Movie S3. Block picking task.
Movie S4. Plastic bottle picking task.
Movie S5. Notebook holding task.
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Fig. S1. Exterior and inside of the prosthetic hand and structure of the finger. (A) Photo-
graph of the prosthetic hand. (B) Inside structure of the prosthetic hand. Each finger has a wire
and DC motor, allowing the hand to drive each finger independently. In addition, the thumb can
be rotated by a servo motor installed on the CM joint of thumb. (C) Structure of a finger. The
wire is wrapped around the spool through a component equipped with a spring. When the spool
rotates together with the motor serving as the actuator, the tension of the wire is generated and
the finger is flexed.
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Fig. S2. General form of motion generation model. The token denotes a no-motion state, and
the branch subnets connected to it represent the motion generation processes for each of the five
fingers.
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Fig. S3. Biomimetic impedance control system. The motor angle ¢; can be determined by
the mechanical impedance model encompassing stiffness K;(«), viscosity B;(«), and inertia
I;. The stiffness and viscosity are made to change depending on the muscle contraction level .
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Fig. S4. Locations of electrodes. (A) Healthy participants. Five electrodes were attached
to the flexor pollicis longus (Ch. 1), flexor digitorum superficialis (Ch. 2), flexor digitorum
profundus (Ch. 3), extensor digitorum (Ch. 4), and extensor carpi radialis brevis (Ch. 5). (B)
Amputee participant. The electrode positions were determined following the instructions of
the occupational therapist. Ch. 2 and Ch. 3 were attached near to the flexor carpi ulnaris and
near the extensor carpi radialis longus, respectively. The position of Ch. 1 was determined by
carefully searching where the signals can be easily detected while monitoring EMG waveforms
on the display.



Table S1. List of target motions for classification in experiment 1. There are five single
motions (M1-MS5) and five combined motions (M6-M10).

Motion Tareet motions Single motions composing target motions
number 8 MI | M2 | M3 | M4 | M5
MI Thumb flexion O
M2 | Index finger flexion O
M3 Middle finger flexion O
M4 Ring and little finger flexion O
M5 Grasp O
M6 Pinch with two fingers O O
M7 Pease sign O O
M8 Pinch with three finger O O O
M9 Index finger pointing O O O
M10 | Thumbs-up O O O




Table S2. List of modifying vectors used in experiments 1. Each modifying value among
motions including no-motion (NoM) was determined for the first participant by trial and error
and set in common for the other participants.

Motion " Modifying vector «,,

number “Ym1 Tm2 Ym3 Ym4 Ym5 Ymé Ym7 Yms8 Ym9 “Ym10
NoM | O 1 1 1 1 1 1 1 1 1 1
M1 1 10 01 01 01 1073 1 2 1 05 1073
M2 2 | 0.1 10 0.1 0.1 1073 1 1073 1 1072 2
M3 3101 0.1 10 0.1 1073 1073 1073 1 1.5 1
M4 4101 01 01 10 1073 1073 1 1073 1 1
M5 5(10* 100* 107* 10* 30 10°* 107* 107* 10°* 10°*
M6 6| 01 01 10% 100 1073 10 1073 1 1072 1073
M7 701 10°% 103 103 103 1072 15 1073 1 1073
M8 8 | 0.1 0.1 0.1 1073 1073 1 1072 25 107% 1073
M9 9|01 10 01 01 107* 1073 1 1073 25 1073
M10 |10,10* 01 01 01 10°* 107* 107* 107% 1073 25




Table S3. List of impedance parameters used in the experiments. Each parameter was
determined based on the experimental results of the human wrist impedance measurement (49).

Inertia /;

Viscosity B;(c)

Stiffness K;(«)

bja

bjz

bjs

kia

kjo

kjs

0.001

0.08

0.2

0.090

0.9

0.6

0.3




Table S4. List of target motions for classification in experiment 2. There are four single
motions (M1-M4) and a combined motion (M5).

Motion Tareet motions Single motions composing target motions
number g M1 M2 M3 M4
M1 Pinch with three finger O
M2 Index finger pointing with thumb-up O
M3 Thumb flexion O
M4 Grasp O
M5 Index finger pointing O O




Table SS. List of modification vectors used in experiments 2. Each modifying value among
motions including no-motion (NoM) was determined by trial and error during practice.

Motion m Modifying vector «,,
number Ym1 Ym2 Ym3 Yma Ym5
NoM | O 1 1 1 1 1
Ml 1 5 1072 1072 1.5 1073
M2 2 (1072 5 1072 0.5 1
M3 3101 0.1 5 1 1
M4 4 {1072 1073 10% 20 1073
M5 511073 0.1 0.1 1072 25
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