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Abstract

A GPU (Graphics Processing Unit) is a specialized circuit designed to accelerate compu-

tation for building and manipulating images. Since latest GPUs are designed for general

purpose computing and can perform computation in applications traditionally handled by

the CPU, GPUs have recently attracted the attention of many application developers.

Some applications need to compute many instances. The computation of Summed Area

Table (SAT) is needed many prefix-sum computations. In control design problems, the

computation of large number of the small eigenvalue problem is necessary. However, GPU

can not efficiently compute these computation due to programming issues.

The first contribution of our works is to present the Look-back Column-wise Prefix-

sum (LCP) algorithm, which computes the column-wise prefix-sums of a matrix very effi-

ciently on the GPU. It partitions the matrix into small tiles and the column-wise sums and

prefix-sums of every tile are computed using one CUDA block for each tile in parallel. The

LCP algorithm does not perform stride access to the global memory, shared memory ac-

cess with bank conflicts, or separated kernel calls for global synchronization, which involve

large overhead. Clearly, no GPU implementation of column-wise prefix-sum computation

of an n × n matrix can be faster than matrix duplication, in which n2 elements are read and

written. Thus, we can say that a column-wise prefix-sum algorithm is optimal if the com-

puting time is equal to matrix duplication. Quite surprisingly, the experimental results on

NVIDIA TITAN X GPU show that our LCP algorithm runs only 2-6% slower than matrix

duplication. Thus, our LCP algorithm is almost optimal.
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The second contribution of our works is to propose a GPU implementation of bulk com-

putation of eigenvalues of small, non-symmetric, real matrices of maximum size 30 × 30.

In our GPU implementation, we considered programming issues of the GPU architecture

including warp divergence, coalesced access of the global memory, utilization of the shared

memory, and so forth. We focused on the thread assignment to obtain the optimal parallel

execution with many threads on the GPU. In our GPU implementation, the optimal pa-

rameters have been obtained by evaluating the computation time for various parameters.

Also, to improve the memory access efficiency, we introduce memory arrangements in

the device memory on the GPU for each of the thread assignments. Furthermore, to hide

CPU-GPU data transfer latency, overlapping computation on the GPU with the transfer is

employed. We evaluated the performance of computing eigenvalues of 500000 matrices

of size 5 × 5 to 30 × 30. The experimental results on NVIDIA TITAN X show that our

GPU implementation attains a speed-up factor of up to 83.50 and 17.67 over the sequential

CPU implementation and the parallel CPU implementation with eight threads on Intel Core

i7-6700K, respectively.
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Chapter 1

Introduction

1.1 Background and Motivation

A GPU (Graphics Processing Unit) is a specialized circuit designed to accelerate com-

putation for building and manipulating images[2, 3]. Since latest GPUs are designed for

general purpose computing and can perform computation in applications traditionally han-

dled by the CPU, GPUs have recently attracted the attention of many application develop-

ers [2, 4, 5, 6, 7]. CUDA (Compute Unified Device Architecture)[8] is a parallel comput-

ing architecture provided by NVIDIA and we can develop the general purpose applications

running on the GPU with scalability.

Some applications need to compute many instances. The computation of the row-wise

and the column-wise prefix-sum which have many applications in the area of image pro-

cessing and deep learning [9] needs many prefix-sum computations. Summed Area Ta-

ble (SAT) [10, 11, 12] can be computed by computing the row-wise prefix-sums and the

column-wise prefix-sums. If we compute SAT of 4096×4096 matrix, 4096 row-wise prefix-

sum and 4096 column-wise prefix-sums should be computed. Since GPU has thousands

of cores and high memory bandwidth, GPU can compute many prefix-sums at the same
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time. GPU can efficiently compute the row-wise prefix-sum because each row is stored

in consecutive memory address. On the other hand, GPU can not efficiently compute the

column-wise prefix-sum because each column is stored in non-consecutive memory ad-

dress.

Control design problems or MRI need to compute large number of the small eigenvalue

problems[1, 13]. Especially, the computation of large number of the small non-symmetric

eigenvalue problems needs long time. Namely, accelerating of computation of large num-

ber of the small non-symmetric eigenvalue problems are necessary. However, there are no

GPU implementations of computing large number of the small non-symmetric eigenvalue

problem, because the non-symmetric eigenvalue problem computation is too complicated

algorithm.

1.2 Contributions

In this dissertation, we present the following two GPU implementations of computations.

1.2.1 The column-wise prefix-sums computation

The main contribution of this work is to present the Look-back Column-wise Prefix-sum (LCP)

algorithm, which computes the column-wise prefix-sums of a matrix very efficiently on the

GPU. It partitions the matrix into small tiles and the column-wise sums and prefix-sums of

every tile are computed using one CUDA block for each tile in parallel. The LCP algorithm

involves several GPU computing techniques including the warp prefix scan [14], the diag-

onal arrangement of a matrix [15], and the decoupled look-back [16] to minimize memory

access and synchronization overhead. The LCP algorithm does not perform stride access to
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the global memory, shared memory access with bank conflicts, or separated kernel calls for

global synchronization, which involve large overhead. Clearly, no GPU implementation of

column-wise prefix-sum computation of an n × n matrix can be faster than matrix dupli-

cation, in which n2 elements are read and written. Thus, we can say that a column-wise

prefix-sum algorithm is optimal if the computing time is equal to matrix duplication. Quite

surprisingly, the experimental results on NVIDIA TITAN X GPU show that our LCP algo-

rithm runs only 2-6% slower than matrix duplication. Thus, our LCP algorithm is almost

optimal.

1.2.2 The eigenvalues computation for many small matrices

The main contribution of this work is to propose a GPU implementation of bulk compu-

tation of eigenvalues of small, non-symmetric, real matrices of maximum size 30 × 30.

Many works have been devoted to accelerating the eigenvalue computation and countless

computer languages, systems, and environments supporting matrix manipulation offer li-

braries/function calls for this task. Some of them are optimized for computation of the

eigenvalues of a very large matrix by parallel processing. However, such libraries/function

calls are not aimed at accelerating the eigenvalues computation for a lot of small matri-

ces. In the eigenvalue computation, several parallel algorithms have been proposed such

as small bulge multi shift QR algorithm and two-tone QR sweep [17, 18]. These methods

are to concurrently perform the iteration, called QR sweep, not to destroy the order of the

iterations. Actually, in LAPACK [19], that is a linear algebra library, small bulge multi

shift QR algorithm is employed [20]. These parallel algorithms can be applied to any size
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of matrices. However, the number of parallel executions for an n × n matrix is limited

to at most n. Therefore, it is difficult for small matrix efficiently to utilize all processing

cores on the CPU and the GPU. Also, since the computing time increases with the cube

of n, the overhead cost of launching multiple threads cannot be ignored when the size of a

matrix is small. Thus, in the existing software libraries/function calls, when the eigenvalue

computation is executed for a small matrix, the sequential algorithm is used or the parallel

algorithm is performed inefficiently. On the other hand, several fundamental operations in

linear algebra that are often used for a large set of small matrices are supported by recent

libraries. For example, MAGMA [21] supports parallel computation of matrix multiplica-

tion, LU factorization, and so forth. However, there is no libraries/function calls do not

support eigenvalue computation for many small matrices. In our GPU implementation,

we considered programming issues of the GPU architecture including warp divergence,

coalesced access of the global memory, utilization of the shared memory, and so forth.

We focused on the thread assignment to obtain the optimal parallel execution with many

threads on the GPU. Apparently, running parallel threads as much as possible is an easy

way to achieve high performance computation. However, this is not always correct due to

various factors such as memory access latency and utilization of local registers [22]. Addi-

tionally, the optimal parameters including the number of threads and utilized shared mem-

ory differ among GPU architectures. To obtain optimal parameters automatically, auto-

tuning techniques have been proposed [23, 24, 25]. Consequently, in this work, we propose

two thread-assignment methods to perform the bulk execution of eigenvalues computation,

single-warp-based (SWB) method and multiple-warp-based (MWB) method. In our GPU
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implementation, the optimal parameters have been obtained by evaluating the computation

time for various parameters. Also, to improve the memory access efficiency, we introduce

memory arrangements in the device memory on the GPU for each of the thread assign-

ments. Furthermore, to hide CPU-GPU data transfer latency, overlapping computation on

the GPU with the transfer is employed. We evaluated the performance of computing eigen-

values of 500000 matrices of size 5 × 5 to 30 × 30. The experimental results on NVIDIA

TITAN X show that our GPU implementation attains a speed-up factor of up to 83.50 and

17.67 over the sequential CPU implementation and the parallel CPU implementation with

eight threads on Intel Core i7-6700K, respectively.

1.3 Dissertation Organization

This dissertion is organized as followes. In Chapter 2, we describe GPU and CUDA. In

Chapter 3, we show the GPU implementation of column-wise prefix-sum computation, ans

its performance. In Chapter 4, we show the GPU implementation of the eigenvalue problem

for many small real non-symmetric matrices, and the performance evaluations. Finalliy, we

conclude this dissertion in Chapter 5.
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Chapter 2

GPU and CUDA

In this chapter, the GPU architecture and CUDA programming guide are described. Figure

2.1 shows the outline of GPU. GPU has one or more Streaming Multiprocessors (SMs) and

the global memory. Each SM consists of multiple cores , the register file and the shared

memory. For example, NVIDIA TITAN X [26] has 28 SMs with 128 core and 96KB

shared memory each and 12 GB global memory which has 480GB/s bandwidth. Each SM

can access the global memory but the latency of the global memory access is quite large.

Cores in a SM can access the shared memory in only the same SM, however, the latency

of the shared memory access is quite small. That is, the appropriate usage of the shared

memory is the key to achieve high GPU computing performance.

CUDA (Compute Unified Device Architecture)[8] is a parallel computing architecture

provided by NVIDIA and we can develop the general purpose applications running on the

GPU with scalability. CUDA has a hierarchy of threads groups, a CUDA block is a group of

up to 1024 threads and a CUDA kernel is a group of one or more CUDA blocks 2.4. When

a CUDA kernel is lunched, a CUDA kernel executes one or more CUDA blocks. Each

CUDA block is assigned to one of the SMs and threads in a CUDA block are assigned
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Figure 2.1: The outline of the GPU

to a core. Up to 2048 threads can be assigned cores in a SM at the same time, so large

number of CUDA blocks cannot be assigned to a SM simultaneously. A CUDA block can

be assigned to a SM after another CUDA block process is completed. Threads can access

the Shared memory in a CUDA block Threads in a CUDA block is partitioned into several

groups of 32 threads called warp. All threads in a warp work synchronously and execute

the same instruction.

Threads in a warp can execute the different instruction using if-statement. We assume

that threads in a warp execute instructions such as Figure 2.2. Even-numbered threads exe-

cute instructions A and the other threads execute instructions B. Odd-numbered threads ex-

ecute instructions B after even-numbered threads execute instructions A because all threads

in a warp work synchronously (Figure 2.2). Such execution is called warp divergence and

warp divergence decreases the performance. On the other hands, it is not warp divergence
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if all threads in a warp execute the same instruction like fig. 2.3.

Figure 2.2: If warp divergence is occured, instructuions are executed in serial.

Threads in different warps work asynchronously so may not be executed the same in-

struction simultaneously. syncthreads() guarantees that threads in a CUDA block are

synchronized. syncthreads() has a overhead so the frequent usage of syncthreads() de-

creases the performance.

Since the shared memory has small capacity but the latency is quite low, the appropriate

usage of the shared memory improves the overall performance. The shared memory con-

sists of 32 memory banks, and two or more threads access different address in the same

bank decreases the shared memory access performance, it is called bank conflict. If bank

conflict is occurred, the shared memory access to the bank is serialized. That is, bank

conflict should be avoided.
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Figure 2.3: Not warp divergence

Figure 2.4: A hierarchy of threads groups
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The global memory has large capacity but the latency is large. So Efficient access to

the global memory improves the overall performance. Multiple threads on GPU simultane-

ously access global memory. So, there are two memory access patterns, coalesced access

and stride access. We suppose that Elements in a matrix are stored in row major order. Coa-

lesced access (Figure 2.5) is threads in the same warp access the same row at the same time

that is, threads simultaneously access the consecutive addresses of the global memory . All

threads get data in the same time. So, coalesced access is efficiently. Stride access (Figure

2.6) is threads in the same warp access the same column at the same time that is, threads

simultaneously access distinct location of the global memory Threads get data sequentially.

So, stride access is not efficiently.

Figure 2.5: Coalesced access

The latest GPUs such as NVIDIA TITAN X support warp shuffle functions which threads

in a warp can exchange data. Threads in a warp can get data of register a of i-th thread with

shfl(a,i). Also, k-th thread can get data of register a of (k+i)-th threads in a warp using

shfl up(a,i).
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Figure 2.6: Stride access

Since multiple threads on GPU simultaneously access the global memory or the shared

memory, atomic functions are supported. atomicAdd(&c,1), which is one of atomic func-

tions, exclusively increments c ans returns the value of c before addition.

To reduce CPU-GPU communication overhead, recent GPUs can perform an asynchronous

memory copy to or from the GPU concurrently with kernel execution [27, 28]. The asyn-

chronous memory copy is to hide CPU-GPU transfer latency by overlapping computation

on the GPU with the transfer. CUDA defines a stream as a sequence of operations that are

guaranteed to sequentially execute on the GPU. In general, a stream consists of memory

copy of input data from host to device (H2D), execution of kernels (Computation), and

memory copy of the results from device to host (D2H). Operations in different streams can

be interleaved and concurrently run whenever possible as illustrated in Figure 2.7. The data

transfer hidden improves the performance if the data communication overhead is not small.
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Stream 1

Stream 2

Stream 3

H2D Computation D2H

H2D Computation D2H

Figure 2.7: Overlapped execution on the GPU using multiple streams
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Chapter 3

A GPU implementation of column-wise
prefix-sum computation

3.1 Introduction

Let a0, a1, . . ., an−1 be n numbers. The prefix-sums â of a are n numbers such that

âi = a0 + a1 + · · · + ai for all i (0 ≤ i ≤ n − 1). Suppose that each variable A[i] stores

ai. After executing A[i] ← A[i] + A[i − 1] for all i (1 ≤ i ≤ n − 1) in turn, each A[i] stores

the prefix-sum âi. The computation of the prefix-sums of a 1-dimensional array is one of

the most important computation for many algorithms. For example, list ranking problem

which determines the position of each item in a linked list can be solved by computing the

prefix-sums. It is also used for computing the positions of keys in radix sort. In [14], sev-

eral fundamental algorithms for computing the prefix-sums on the GPU have been shown.

Also, Merrill et al. [29, 16] has presented a more sophisticated GPU implementation for

the prefix-sums using decoupled look-back technique. The source program of this GPU

implementation is available in [29]. As far as we know this algorithm is the most efficient

GPU implementation for computing the prefix-sums of a 1-dimensional array. For later

reference, we call this algorithm CUB-prefix in this paper.
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Suppose that a matrix a with n × n elements ai, j (0 ≤ i, j ≤ n − 1) is given. As usual, we

assume that each ai, j is an element in the i-th row and j-th column. The row-wise prefix-

sums correspond to a matrix r of the same size such that ri, j = ai,0 + ai,1 + · · · + ai, j for all

i and j (0 ≤ i, j ≤ n − 1). Similarly, the column-wise prefix-sums correspond to a matrix c

such that ci, j = a0, j+a1, j+ · · ·+ai, j for all i and j (0 ≤ i, j ≤ n−1). Figure 3.1 illustrates the

row-wise and the column-wise prefix-sums of a 4× 4 matrix. They have many applications

in the area of image processing. For example, the summed area table [10, 11, 12] can be

obtained by computing the row-wise prefix-sums and the column-wise prefix-sums. Also,

in the computation of Euclidean distance map of a binary image, the column-wise prefix-

minima is computed [30].

1 2 1 3

3 2 3 1

2 1 0 1

1 3 1 2

1 3 4 7

3 5 8 9

2 3 3 4

1 4 5 7

1 2 1 3

4 4 4 4

6 5 4 5

7 8 5 7

input matrix row-wise prifix-sums column-wise prefix-sums

Figure 3.1: Row-wise and column-wise prefix-sums of a 4 × 4 matrix

The row-wise and the column-wise prefix-sums of an n × n matrix stored in the global

memory can be computed in an obvious way using n threads on the GPU. More specifically,

we assign a thread to each row/each column and compute the prefix-sums of each row/each

column as illustrated in Figure 3.1. Since an n × n matrix is arranged in row-major order,

memory access to the same row is coalesced. Thus, memory access by n threads to the
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same row is coalesced and the column-wise prefix-sums can be computed efficiently by

coalesced memory access to the global memory (Figure 3.2). On the other hands, thus,

memory access by n threads to the same column is stride and the row-wise prefix-sums can

be computed nonefficiently by stride memory access to the global memory (Figure 3.3).

However, since only n threads are used, the latency overhead of the global memory

access is not negligible. Thus, we should use cn2 threads for some constant c > 0 to hide

the latency overhead.

Figure 3.2: Coalesced access to the global memory (the column-wise prefix-sums)

Figure 3.3: Stride access to the global memory (the row-wise prefix-sums)

To reduce the latency overhead, we can use CUB-prefix to compute the row-wise/column-
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wise prefix sums on the GPU. The row-wise prefix-sums can be computed very efficiently

by executing CUB-prefix for each row in parallel on the GPU. Since memory access to the

global memory is coalesced, this approach works very efficiently (Figure 3.4). Similarly,

the column-wise prefix-sums can be computed by executing CUB-prefix for each column

in parallel. However, memory access is not coalesced (Figure 3.5), it runs much slower

than the row-wise prefix-sum computation by CUB-prefix. Hence, it is not obvious to find

an efficient GPU algorithm for computing the column-wise prefix-sums.

Figure 3.4: Coalesced access to the global memory (CUB-prefix for each row)

Figure 3.5: Stride access to the global memory (CUB-prefix for each column)

The main contribution of this paper is to present the Look-back Column-wise Prefix-
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sum (LCP) algorithm, which computes the column-wise prefix-sums of a matrix very ef-

ficiently on the GPU. It partitions the matrix into small tiles and the column-wise sums

and prefix-sums of every tile are computed using one CUDA block for each tile in parallel.

The LCP algorithm involves several GPU computing techniques including the warp prefix

scan [14], the diagonal arrangement of a matrix [15], and the decoupled look-back [16]

to minimize memory access and synchronization overhead. The LCP algorithm does not

perform stride access to the global memory, shared memory access with bank conflicts, or

separated kernel calls for global synchronization, which involve large overhead. Clearly,

no GPU implementation of column-wise prefix-sum computation of an n × n matrix can

be faster than matrix duplication, in which n2 elements are read and written. Thus, we can

say that a column-wise prefix-sum algorithm is optimal if the computing time is equal to

matrix duplication.

3.2 Preliminary

This section shows several fundamental techniques on the GPU necessary to understand

our LCP algorithm and naive algorithms for computing the column-wise prefix-sums.

For theoretical analysis of the performance, we use the memory machine model [15],

which capture the essence of global memory access on the GPU. Let w be the number of

threads of a warp. For simplicity, we assume that the bandwidth of the global memory is

also w, that is, the global memory is partitioned into groups of w numbers in consecutive

addresses, and w numbers in the same group can be accessed at the same time. Also, let l be

the latency of the global memory, that is, memory access requests to the global memory are

17



processed through l-stage pipeline registers, in which each stage can store wmemory access

requests to the same address group. As a simple example, we evaluate the time necessary to

duplicate an n×n 2-dimensional array in the global memory. We use n2 threads for this task

such that each thread duplicates an element in an obvious way. For reading n2 elements, n2

w

warps send memory access requests though the l-stage pipeline registers. All read requests

can be completed in at most n2

w
+ l time units. Similarly, writing n2 elements by n2

w
warps

takes n2

w
+ l time units. Thus, an n × n 2-dimensional array in the global memory can be

duplicated in at most 2 n2

w
+ 2l time units.

Let A be an n × n 2-dimensional array in the global memory storing a matrix of n × n

numbers. We assume that each A[i][ j] storing ai, j is arranged in offset i ·n+ j of the memory

space for A. Suppose that A stores the values of an n × n matrix a. Let Ri (0 ≤ i ≤ n − 1)

be a register of thread i. The row-wise prefix-sums of a can be computed using n threads

as follows:

[Naive row-wise prefix-sum algorithm]

for i ← 0 to n − 1 do in parallel

thread i performs Ri ← A[i][0];

for j ← 1 to n − 1 do

thread i performs Ri ← Ri + A[i][ j]; A[i][ j] ← Ri;

Clearly, n threads read A[0][ j], A[1][ j], . . . , A[n − 1][ j] for each i (0 ≤ i ≤ n − 1). Also,

they write in A[0][ j], A[1][ j], . . . , A[n − 1][ j] for each i (1 ≤ i ≤ n − 1). If n ≥ w, then

these n variables are in distinct groups of the global memory, and each pipeline stage can

store one read access request. Thus, access to these n numbers takes n + l time. Since such

18



memory access is performed 2n− 1 times, the naive row-wise prefix-sum algorithm runs in

2(n − 1)(n + l) < 2n2 + nl time units using n threads.

The column-wise prefix-sums can be computed in the same way. In the naive column-

wise prefix-sum algorithm, memory access to A[i][0], A[i][1], . . . , A[i][n− 1] is performed

for each i. Clearly, such memory access is coalesced, it takes at most n
w
+ l time units

to access these numbers. Thus, the column-wise prefix-sum algorithm runs at most takes

2n2

w
+ 2nl time units using n threads.

Suppose that each thread in a warp has a register a storing a number and we write A[i]

(0 ≤ i ≤ w − 1) to denote register A of thread i. We assume that a 1-dimensional array a of

size w are stored in register A’s such that each A[i] stores ai. The prefix-sums of a can be

computed in log2 w steps as follows:

[Warp prefix scan]

for k ← 0 to log2 w − 1 do

for i ← 0 to w − 1 do in parallel

thread i performs A[i] ← A[i] + A[i − 2k] if i ≥ 2k;

Figure 3.6 illustrates how the warp prefix scan computes the prefix-sums. The reader should

refer [14, 31, 32] for the details. In the warp prefix scan, each thread i (0 ≤ i ≤ w− 1) must

read register A[i − 2k] of thread i − 2k. This register read can be done very efficiently by

warp shuffle function shfl up(A,2k), which directly reads the value of register A of thread

i − 2k. Since no memory access to the shared memory or the global memory is performed,

the warp prefix scan runs very efficiently on a streaming multiprocessor of the GPU.

Suppose that we have a w × w 2-dimensional array A stored in the shared memory with
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warp prefix scan diagonal arrangement

Figure 3.6: Illustrating warp prefix scan and diagonal arrangement for w = 8

w memory banks. Each A[i][ j] is in offset wi + j of S , which is arranged in bank (wi +

j) mod w = j. Thus, the row-wise memory access to A[i][0], A[i][1], . . . , A[i][w − 1] has

no bank conflict while the column-wise memory access to A[0][ j], A[1][ j], . . . , A[w− 1][ j]

is destined for the same bank j. By the diagonal arrangement which maps each A[i][ j]

to offset wi + ((i + j) mod w), both the row-wise memory access and the column-wise

memory access have no bank conflict. Figure 3.6 illustrates the diagonal arrangement for

w = 8. Since w elements A[i][0], A[i][1], . . . , A[i][w − 1] are arranged in banks i mod w,

(i+ 1) mod w, . . ., (i+w− 1) mod w, respectively, the row-wise memory access is conflict-

free. Similarly, the column-wise memory access has no bank conflict. Thus, the column-

wise/row-wise prefix-sums can be computed very efficiently by executing warp prefix scan

for each column/row in parallel. For later reference, we call the column-wise prefix-sum

computation by this technique column-wise warp scan.

As we have mentioned, the CUB-based row-wise prefix-sum computation runs very ef-

ficiently, while the CUB-based column-wise prefix-sum performs stride memory access
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with large overhead. To avoid stride memory access, we can transpose the input matrix

in advance. More specifically, the column-wise prefix-sums can be computed, by matrix

transposition, the row-wise prefix-sum computation, and matrix-transposition. Since ma-

trix transposition can be done very efficiently by coalesced memory access to the global

memory [15], this 3-step algorithm may run more efficiently on the GPU.

3.3 The Look-back Column-wise Prefix-sums (LCP) algo-
rithm on the GPU

This section shows our LCP algorithm that computes the column-wise prefix-sums on the

GPU. Again, let w = 32 denote the number of threads. We use CUDA blocks with w2 =

1024 threads each and let ti, j (0 ≤ i, j ≤ w − 1) denote thread j in warp i, i.e. thread iw + j

in a CUDA block. Suppose that an n × n matrix a in the global memory is partitioned

into n
wd × n

w
tiles of size wd × w each as illustrated in Figure 3.7, where d ≥ 1 is an integer

parameter. Let T (i, j) (0 ≤ i ≤ n
wd −1 and 0 ≤ j ≤ n

w
−1) denote a tile. We assume that serial

numbers from 0 to n2

w2d − 1 are assigned to tiles in row major order, that is, each T (i, j) is

assigned a serial number i n
w
+ j. We also call T (i, j) tile k for k = i n

w
+ j and the computation

performed for tile k task k. Each tile is further partitioned into w strips 0, 1, . . ., w − 1 of

size d × w each as illustrated in Figure 3.7.

Each tile k (0 ≤ k ≤ n2

w2d − 1) is assigned a CUDA block, which performs task k in three

steps. Let a[i][ j] (α ≤ i ≤ α+wd−1 and β ≤ j ≤ β+w−1) be elements of tile k. In Step 1 of

task k, the local column-wise sums (LS) of tile k, a[α][ j]+a[α+1][ j]+ · · ·+a[α+wd−1][ j]

for all j (β ≤ j ≤ β + w − 1), are computed and written in the global memory. Step 2
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Figure 3.7: Serial numbers assigned to tiles

computes the global column-wise sums (GS), a[0][ j]+a[1][ j]+ · · ·+a[α+wd−1][ j] for all

j (β ≤ j ≤ β+w−1) and writes them in the global memory. Finally, the global column-wise

prefix-sums (GP), a[0][ j] + a[1][ j] + · · · + a[i][ j] for all i and j (α ≤ i ≤ α + wd − 1 and

β ≤ j ≤ β + w − 1) are computed and written in the global memory in Step 3. Thus, when

Step 3 of all tasks is completed, all column-wise prefix-sums of a are stored in the global

memory. Figure 3.8 illustrates the LS, the GS, and the GP of a tile.

For later reference, we define the state of a tile in the LCP. Initially, all tiles are in null

state. A tile changes to State LS when values of the LS are written in the global memory in

Step 1. After that, it changes to State GS when values of the GS are written in the global

memory in Step 2. The LCP algorithm uses a 2-dimensional array of size n
wd × n

w
in the

global memory to store the states of all n
wd × n

w
tiles. A CUDA block assigned to a tile

updates the corresponding element of this 2-dimensional array when the tile changes the

22



w

wd

local (column-wise) sums (LS)

global (column-wise) sums (GS)

global (column-wise) prefix-sums (GP)

LS

Step 1 Step 2.1 Step 3

GS

LS

LS GS

GS

Step 2.2

GP

Figure 3.8: The LS, the GS, and the GP of a tile and the computation of three steps

state.

A CUDA block is assigned to one of the tiles in increasing order of serial number in

turn. For this purpose, a global counter c initialized by zero in the global memory is used.

A CUDA kernel for the LCP algorithm invokes min( n2

w2d ,m) CUDA blocks, where m is the

maximum number of CUDA blocks that can be dispatched in the GPU at the same time. For

example, NVIDIA TITAN X has 28 streaming multiprocessors with 2048 resident threads

each and the LCP uses CUDA blocks with 1024 threads each, we have m = 28·2048
1024

= 56.

The first thread 0 of every CUDA block performs atomicAdd(&c,1), which exclusively

increments c and returns the value of c before addition. Thus, atomicAdd(&c,1) returns 0,
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1, . . . in turn and no two threads receive the same return value. A CUDA block with the

first thread receiving return value k performs task k for tile k if k < n2

w2d . It terminates if

k ≥ n2

w2d . After task k is completed, it executes k ←atomicAdd(&c,1) again and performs

task k provided that return value k satisfies k < n2

w2d . Otherwise, it terminates. The same

procedure is repeated as long as return value k satisfies k < n2

w2d .

We first show how w2 threads in a CUDA block perform task 0 for tile 0. Tasks 1, 2,

. . ., n
w
− 1 can be done in the same way. Let a[i][ j] (0 ≤ i ≤ wd − 1 and 0 ≤ j ≤ w − 1)

be elements in tile 0. A CUDA block assigned to tile 0 uses a w × w 2-dimensional array

E with the diagonal arrangement. Thus, the row-wise/column-wise memory access to E is

conflict-free. The details of the algorithm are spelled out as follows:

Step 1.1 Each thread ti, j (0 ≤ i, j ≤ w − 1) reads d elements a[id][ j], a[id + 1][ j], . . .,

a[id + d − 1][ j] one by one and store them in d registers.

Step 1.2 Each thread ti, j computes the sum a[id][ j] + a[id + 1][ j] + · · · + a[id + d − 1][ j]

of the d registers and write it in E[i][ j] in the shared memory.

Step 1.3 Execute the column-wise warp prefix scan for E. Clearly, each E[i][ j] stores the

value of a[0][ j] + a[1][ j] + · · · + a[id + d − 1][ j] for all i and j.

Step 1.4 and 2 The LS of tile 0, the values stored in E[w − 1][0], E[w − 1][1], . . ., E[w −

1][w − 1] are written in the global memory. Since tile 0 is in the topmost row, they

are also the GS of tile 0.

Step 3 Each thread ti, j (0 ≤ i, j ≤ w − 1) computes the prefix-sums of E[i − 1][ j] +

a[id][ j], a[id + 1][ j], a[id + 2][ j], . . . , a[id + d − 1][ j] in an obvious way, and writes
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them in the global memory. For simplicity, we assume E[−1][ j] = 0 for all j. Since

E[i − 1][ j] = a[0][ j] + a[1][ j] + · · · + a[id − 1][ j], these prefix-sums thus obtained

are the GP of tile 0.

Clearly, all memory access operations to the global memory are coalesced, and those to the

shared memory are conflict-free.

Next, we will show how tasks n
w

and larger are performed. For simplicity, we show the

algorithm for task r n
w

for tile T (r, 0) such that 1 ≤ r ≤ n
wd − 1. The other tasks can be done

in the same way. Step 1, which computes the LS, can be done in the same way as task 0 for

tile 0. Steps 2 and 3 of task r n
w

are spelled out as follows:

Step 2.1 The GS of tile T (r − 1, 0), a[0][ j] + a[1][ j] + · · · + a[rwd − 1][ j] for all j (0 ≤

j ≤ w − 1), are computed and stored in registers. We will show how these values are

computed later. Let g[ j] = a[0][ j] + a[1][ j] + · · · + a[rwd − 1][ j] be the GS of tile

T (r − 1, 0) thus obtained.

Step 2.2 Each thread tw−1, j (0 ≤ j ≤ w − 1) computes g[ j] + E[w − 1][ j], which is equal to

the GS of tile T (r, 0), a[0][ j]+ a[1][ j]+ · · ·+ a[(r + 1)wd − 1][ j], and writes it in the

global memory.

Step 3 Each thread ti, j (0 ≤ i, j ≤ w − 1) computes the prefix-sums of g[ j] + E[i − 1][ j] +

a[rwd+ id][ j], a[rwd+ id+1][ j], a[rwd+ id+2][ j], . . . , a[rwd+ id+d−1][ j], which

are equal to the GP of tile T (r, 0), and writes them in the global memory.

The reader should refer to Figure 3.8 illustrating computation performed in three steps.

Step 2.1 is implemented by looking back above tiles. If T (r − 1, 0) is in State GS, then the
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GS of T (r − 1, 0) can be obtained simply by reading the global memory. If not, it waits

until T (r− 1, 0) is in State LS, and read the LS of T (r− 1, 0). After that we repeat the same

procedure for T (r − 2). If T (r − 2, 0) is in State GS, then the GS of T (r − 2, 0) are read.

By computing the pairwise sum of the GS of T (r − 2, 0) and the LS of T (r − 1, 0), we can

obtain the GS of T (r − 1, 0). If not, it waits until T (r − 2, 0) is in State LS, and read the LS

of T (r − 2, 0). Again, we repeat the same procedure upwards. Let tile T (r′, 0) (r′ ≤ r − 1)

be the first tile in State GS. The GS of tile T (r − 1, 0) can be computed by summing the GS

of T (r′, 0), the LS of T (r′ + 1, 0), the LS of T (r′ + 2, 0), . . ., and the LS of T (r − 1, 0).

Let us evaluate the performance of this algorithm. Since the local computation performed

in this algorithm is quite light, the memory access to the global memory is dominant in

the computing time. Thus, we evaluate the time for the global memory access by this

algorithm. In Step 1.1, each of n2

d threads reads d numbers in the global memory. Since

memory access is coalesced, it takes n2

dw + l time units to read n2

d numbers in the global

memory by n2

d threads. This is repeated d times and Step 1.1 takes d( n2

dw + l) = n2

w
+ dl time

units. In Steps 1.2 and 1.3, no thread accesses the global memory. In Step 1.4, w threads

assigned for each warp writes w numbers. Thus, totally n2

dw2 threads write n2

dw2 numbers in the

global memory. This takes n2

dw2+l time units. In Step 2.1, the above tile is always in State GS

in our experiment shown in Section 3.4. Thus, only the GS of the above tile is read if this is

the case. Since less than n2

dw2 threads writes one number in the global memory, Step 2.1 takes

n2

dw2 + l time units. In Step 2.2, each of n2

dw2 threads writes one number in the global memory

in n2

dw2 + l time units. Similarly to Step 1, Step 3 writes n2 numbers by n2

d threads in n2

w
+ dl

time units. Consequently the LCP runs in at most 2( n2

w
+dl)+3( n2

dw2+l) = 2 n2

w
+3 n2

dw2+(2d+3)l

26



time units. Note that we can select the value of d to minimize the running time of the LCP.

The running time is minimized when 3 n2

dw2 = 2dl, that is, d =
√

3n2

2w2l .

3.4 Experimental results

We have used NVIDIA TITAN X GPU, which has 28 streaming multiprocessors with 128

processor cores each to evaluate GPU implementations of column-wise prefix-sum compu-

tation.

Table 3.1 shows the running time in milliseconds for an n × n matrix with 4-byte single

precision floating point numbers from n =1K (1024) to 32K (32768). In “duplicate” the

input matrix is duplicated using cudaMemcpy, which reads all n2 elements of the matrix

and writes them in another space of the global memory. As we have shown in Section 3.2,

“duplicate” takes 2 n2

w
+2l time units. Clearly, no column-wise prefix-sum algorithm cannot

be faster than “duplicate”, we can say that the running time of “duplicate” is the lower

bound of that of any column-wise prefix-sum computation.

In “naive”, the naive column-wise prefix-sum algorithm executed using n
w

CUDA blocks

with w = 32 threads each. As we have shown in Section 3.2, it runs 2 n2

w
+ 2nl time units.

In the table, “ratio” is the running time ratio over “duplicate”, that is, the running time

of “naive” divided by that of “duplicate.” Thus, the ratio indicates the overhead, that is,

the algorithm has ε overhead if it is 1 + ε. From theoretical analysis, the ratio is
2 n2

w +2nl

2 n2

w +2l
.

The latency overhead 2nl of “naive” is dominant for smaller n. Since “naive” uses only n

threads, the ratio is much larger than 1. In particular, the ratio is more than 10 when n = 1K,

because it uses only 1024 threads on the GPU with 3584 cores. Since fewer threads iterate
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Table 3.1: The running time (in milliseconds) on TITAN X of the column-wise prefix-

sums computation for a n × n matrix and the ratio of the running time over that of matrix

duplication
n 1K 2K 4K 8K 16K 32K

duplicate time 0.0274 0.0974 0.379 1.50 6.00 22.3

naive time 0.277 0.557 1.26 3.12 8.48 41.0

ratio 10.1 5.72 3.33 2.07 1.41 1.84

column-wise time 0.138 0.376 1.38 5.25 20.5 83.3

CUB ratio 5.04 3.86 3.64 3.49 3.41 3.74

transposed transpose time 0.101 0.246 0.877 3.90 15.8 61.9

CUB row-wise time 0.0527 0.125 0.433 1.62 6.32 25.6

total time 0.154 0.370 1.31 5.52 22.1 87.5

ratio 5.60 3.80 3.46 3.67 3.68 3.93

LCP time 0.0281 0.101 0.392 1.58 6.33 23.5

ratio 1.02 1.04 1.04 1.05 1.05 1.06

global memory access, the latency overhead degrades the performance.

Table 3.2: The running time (in milliseconds) of the LCP with parameter d for n× n matrix
d \n 1K 2K 4K 8K 16K 32K

1 0.0591 0.207 0.813 3.24 13.1 52.8

2 0.0349 0.126 0.497 1.92 7.72 29.4

4 0.0286 0.105 0.404 1.59 6.46 24.1

8 0.0281 0.101 0.392 1.58 6.33 23.5

16 0.0316 0.104 0.404 1.59 6.35 24.2

32 0.0321 0.102 0.395 1.67 6.65 27.1

In “column-wise CUB”, CUB-prefix is executed for every column in parallel. Since

memory access performed by “column-wise CUB’ is not coalesced it takes at least 2n2

time units to read/write n2 numbers. Thus, the ratio is more than 3 for all n. In “transposed

CUB”, matrix transpose, row-wise CUB, and matrix transpose are executed to compute the

column-wise prefix-sums. We can implement matrix transposition by block-wise matrix

transposition. Each of n2 numbers in the global memory is read and write once, and all

memory access operations are coalesced. Thus, the matrix transposition can be done in
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2n2

w
+ 2l time units. Also, “row-wise CUB” takes at least 2 n2

w
+ 2l time unit. In the table,

“transpose time” is the time for performing matrix transpose twice and “row-wise time”

is that for executing CUB-prefix for every row in parallel. Therefore, “transposed CUB”

takes 6 n2

w
+ 6l time units and the ratio is also more than 3 as shown in the table.

To implement our LCP in NVIDIA TITAN X, we invoked min( n2

dw2 , 56) CUDA blocks

with 1024 threads each, because each of 28 streaming multiprocessors has 2048 resident

threads. We have measured the running time with parameter d = 1, 2, 4, 8, 16 and 32 as

shown in Table 3.2. We can see that the running time is minimized when d = 8 for all

n. From Table 3.1, we can see that the LCP is much faster than “naive”, “column-wise

CUB”, and “transposed CUB.” In particular, the ratio is very close to 1 and the overhead is

only 2-6%. Thus, we can say that computation performed by our LCP is almost hidden by

necessary coalesced memory access to the global memory.
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Chapter 4

A GPU implementation of the eigenvalue
problem for many small real
non-symmetric matrices

4.1 Introduction

Given an n × n matrix A, the eigenvalue problem is to find all eigenvalues λ satisfying

Ax = λx,

where x is a nonzero vector of size n. The computation of eigenvalues has many applica-

tions in the field of science and engineering such as image processing, control engineering,

quantum mechanics, economics, among others .

In control system design, the computation of the eigenvalue problem is widely used, e.g.

stability analysis and Riccati equation. The numerical algorithm is well-developed and the

eigenvalue problem of a single matrix can be solved efficiently. The computation of the

eigenvalue problem for single matrix can be solved efficiently. However, the computation

of eigenvalues for real matrices is a time-consuming task.

For example, such issue occurs in the parameter space design method with volume ren-
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dering proposed in [1]. In this novel method, a scalar index for a design specification is

calculated for each grid point in 3D space to get volume data and the permissible set is

visualized as iso-surfaces in 3D space by volume rendering (Figure 4.1). The designer

can visually select an appropriate parameter using the result of the volume rendering. The

black point in the figure shows one of the parameter sets visually selected by the designer.

The parameter meets a condition in the target control system. This numerical method is

expected to treat more practical specifications than the previous analytical method in [33].

For further details of this method, the interested reader may refer to [31] and the references

within.

Control design problems are reduced to problems of finding a controller that satisfies de-

sign specifications of pole assignment, transient response, and frequency response. In [1],

the method with rendering is studied for the specification of transient response.

This method can also be adapted for pole assignment. It requires calculation of the

eigenvalues of non-symmetric, real matrices, for all the grid points.

The matrix size is small, e.g. 15 × 15, and the number of grid points is more than

ten-thousands, e.g. 503 = 125000. Therefore, the eigenvalue problem for many matrices

needs to be computed, and the computing time of the eigenvalue problems dominates the

processing time in the parameter space design with volume rendering. Thus, accelerating

the computation of the eigenvalue problem for large number of small, non-symmetric real

matrices is of great interest.

In classical numerical linear algebra, to compute eigenvalues of a non-symmetric matrix,

the QR algorithm [34, 35] is usually employed. This algorithm is based on the factorization,
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Figure 4.1: Volume rendering of the parameter space design in the pole assignment prob-

lems [1] using eigenvalues obtained by the proposed method
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called the QR decomposition, of a matrix A by division as a product of an orthogonal

matrix Q and an upper triangular matrix R, that is, A = QR. To reduce the computing

time of the QR algorithm, variants have been proposed [36, 35]. Especially, in this work,

we use the implicit double-shift QR algorithm [36] used in modern computational practice.

The implicit double-shift QR algorithm is based on the implicit Q theorem. Instead of

the iterative QR decomposition, in this algorithm, the double-shift QR sweep is repeatedly

applied.

4.2 Related work

Several works have been devoted to accelerate the computation for matrix calculations for

many small matrices using GPUs [37, 38, 39, 40]. Anderson et al. [37] presented imple-

mentations of parallel computation of the LU decomposition and the QR decomposition

for many small matrices on the GPU. In this paper, two parallel implementations have been

proposed. The first implementation assigns one thread to each matrix and each thread per-

forms the computation in a serial fashion. The second implementation assigns one thread

block to each matrix and threads in a block perform the computation in parallel. In [40], a

GPU implementation for the QR decomposition of many small dense matrices is presented.

The GPU implementation reduces the memory access latency by increasing data locality.

Dong et al. [39] proposed a GPU implementation of the LU decomposition with pivoting

for many dense matrices. Also, Cosnuau [38] proposed a GPU implementation of comput-

ing eigenvalues for many small matrices. However, the GPU implementation can compute

eigenvalues only for Hermitian matrices.
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Software libraries and tools for numerical linear algebra are widely available and can

be used to accelerate matrix multiplication. Indeed, GSL [41] and Intel MKL [42] are

software libraries for the CPU implementations. These libraries support the computation

of matrix factorizations, multiplications, eigenvalues, and so forth. For GPU implementa-

tions, MAGMA [21] , cuBLAS [43] and cuSOLVER [44] are available. In cuBLAS, we can

use to compute matrix factorizations and multiplications for a large matrix. Also, cuBLAS

supports the bulk computation of matrix factorizations for many matrices, where the bulk

computation is to compute a problem for many different inputs in turn or at the same time.

However, it does not include the computation of the eigenvalue problem. Besides, cu-

SOLVER supports the computation of a pair of the maximum eigenvalue and eigenvector

for a sparse matrix. However, it cannot be used for dense matrices and the computation

of all eigenvalues. MAGMA [21] is a software library for heterogeneous computing plat-

forms with multicore CPUs and GPUs. It supports the computation of eigenvalues for dense

matrices and bulk computation of the computation of matrix multiplications and the LU de-

composition for many matrices. Although it supports the bulk computation for many ma-

trices, the computation of eigenvalues is not included. We can also utilize MATLAB [45]

to compute the eigenvalue problem as a linear algebra software. MATLAB supports the

computation of the eigenvalue problem for a matrix, but it does not support the bulk com-

putation of the eigenvalue problem. The Intel MKL, MAGMA, and MATLAB that support

eigenvalue computation. They select the optimum algorithm and parameters including the

number of threads in parallel computation depending on the size of matrices.
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4.3 Eigenvalues Computation of a Non-symmetric Real Ma-
trix

This section reviews the QR algorithm to compute the eigenvalues of a matrix [35]. Espe-

cially, we focus on the eigenvalues computation for a square, non-symmetric real matrix.

There are several algorithms of computing eigenvalues for non-symmetric matrices. In

this work, we use the implicit double-shift QR algorithm [36, 46]. This algorithm uses the

double-shift QR sweep instead of the QR decomposition to reduce the computation cost.

For further details on this algorithm, the interested reader may refer to [36, 35, 46] and the

references within.

The implicit double-shift QR algorithm consists of three steps:

Step 1: Perform the Hessenberg reduction

Step 2: Repeat the following operations until the size of the matrices becomes 1 × 1 or

2 × 2

– Iterate the double-shift QR sweep until a subdiagonal element is sufficiently small

– Split into two smaller matrices by deflation and apply Step 2 recursively

Step 3: Directly compute eigenvalues of the matrices of size 1 × 1 or 2 × 2

In Step 1, the Hessenberg reduction makes a square matrix to an upper Hessenberg form

matrix. An upper Hessenberg form matrix has zero entries below the first subdiagonal as

shown in Figure 4.2. In other words, an n×n matrix A = ai, j (1 ≤ i, j ≤ n) such that ai, j = 0

(i > j + 1) is upper Hessenberg form.
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Figure 4.2: The Hessenberg reduction for a square matrix of size 6 × 6

In Step 2, we repeatedly execute the iterative double-shift QR sweep and deflation. The

double-shift QR sweep consists of two steps: bulge-generating and bulge-chasing. Fig-

ure 4.3 shows the outline of the double-shift QR sweep. Bulge-generating transforms a

Hessenberg form matrix to a matrix such that a bulge is added to the top left corner of a

Hessenberg form matrix shown in Figure 4.3(a). After that, bulge-chasing moves the bulge

down and to the right until it disappears (Figure 4.3(b)-(e)). By repeatedly performing the

double-shift QR sweep, a value of a subdiagonal element converges to zero. After converg-
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Figure 4.3: Bulge-generating and bulge-chasing in the double-shift QR sweep

ing, we split the matrix into the two smaller matrices by deflation. Deflation is decompos-

ing an upper Hessenberg form matrix into the two smaller upper Hessenberg form matrices

when a subdiagonal element converges to zero as illustrated in Figure 4.4. However, due

36



to a computational error, the value may not become zero exactly. Therefore, in general, we

consider a subdiagonal element converges to zero when the value is sufficiently small by

comparing with the two neighboring diagonal elements. More specifically, a subdiagonal

element ak+1,k (1 ≤ k ≤ n − 1) converges to zero when |ak+1,k| � |ak,k| + |ak+1,k+1|.ܽ ܽ ܽ ܽ ݔ ܽݔ ܽ ܽ ܽ ݔ 0ݔ ܽ ܽ ܽ ݔ 0ݔ 0 ܽ ܽ ݔ 0ݔ 0 0 ૙ ܾ ܾ0 0 0 0 ܾ ܾ
ܽ ܽ ܽ ܽܽ ܽ ܽ ܽ0 ܽ ܽ ܽ0 0 ܽ ܽ ܾ ܾܾ ܾ

Figure 4.4: Matrix division by deflation

In Step 3, eigenvalues of the deflated matrices are computed one by one. Since the size

of the matrices is 1 × 1 and 2 × 2, the eigenvalues can be computed easily.

Before the explanation in details about the above steps, we introduce Householder trans-

formation and similarity transformation to be used in matrix transformations in the Hes-

senberg reduction and the double-shift QR sweep. Householder transformation is a linear

transformation defined by a Householder matrix Q in the following equations;

Q = I − 2vvT

v =
x − y
||x − y||

where x and y are two distinct vectors such that ||x|| = ||y||, I is a unit matrix, and v is

called a Householder vector. The Householder matrix obtained by the above is symmet-

ric and orthogonal. Namely, for a Householder matrix Q, we have Q = Q−1 = QT . On

the other hand, similarity transformation is a transformation such that a square matrix A is
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transformed by A ← BAB−1, where B is a regular matrix. The characteristic of this trans-

formation is holding the eigenvalues before and after the transformation. In the following,

we use Householder transformation to transform a matrix by multiplying the Householder

matrix from left. However, the eigenvalues are changed by the transformation. Therefore,

after that, to hold the eigenvalues, similarity transformation is applied to the matrix by

multiplying the Householder matrix from right. We note that since a Householder matrix

is identical to its inverse matrix, it is not necessary to compute the inverse matrix to per-

form similarity transformation. In the following, we explain the details of each step with

Householder transformation and similarity transformation.

4.3.1 The Hessenberg Reduction

The Hessenberg reduction transforms a square matrix A of size n × n to a Hessenberg

form matrix H. In the Hessenberg reduction, we change the values of elements below the

subdiagonal to zero from left to right as shown in Figure 4.2. More specifically, an input

matrix A is reduced to the Hessenberg form matrix H by Householder transformations from

left and similarity transformations from right:

H = Qn−2Qn−3 · · ·Q2Q1AQ−1
1 Q−1

2 · · ·Q−1
n−3Q−1

n−2,

where each Qk (1 ≤ k ≤ n − 2) is a Householder matrix to change the values of elements

below the subdiagonal in k-th column to zero by Householder transformation and similarity

transformation. This transformation matrix Qk can be computed only from the elements in

k-th column of A. The reader can find that each Qk is identical to the identity matrix except

the (n − k) × (n − k) sub-matrix at the right-bottom elements.
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Algorithm 1 shows the Hessenberg reduction by Householder transformation and simi-

larity transformation, where vk is a Householder vector for k-th column. Let Aa:b,c:d denote

the sub-matrix of A of which the top-left element is aa,c and the right-bottom element is

ab,d. In the following, for simplicity, if the range that denotes a sub-matrix is out of the size

of the matrix, the range is reduced to the size of the matrix. In this algorithm, we transform

the input matrix such that the values of elements below the subdiagonal are changed to

zero from left to right as shown in Figure 4.2. Since each Qk is identical to the identity

matrix except the (n−k)× (n−k) sub-matrix at the right-bottom elements in Qk, we apply a

Householder vector v without directly multiplying a Householder matrix Qk. In lines 2–4,

a Householder vector v is computed. Using v, Householder transformation and similarity

transformation are performed in lines 5 and 6, by multiplying v from left and right, re-

spectively. In these two transformations, we compute only the elements of which values

have changed. After performing the above operations for k = 1, . . . , n − 2, we obtain the

Hessenberg form matrix of the input matrix.

Algorithm 1 The Hessenberg reduction

Input: n × n non-symmetric matrix A
Output: n × n Hessenberg form matrix H

1: for k = 1 to n − 2 do
2: v ← Ak+1:n,k

3: v ← v + sign(v1)||v||e1

4: v ← v
||v|| � Householder vector

5: Ak+1:n,k:n ← Ak+1:n,k:n − 2v(vT Ak+1:n,k:n) � Householder transformation

6: A1:n,k+1:n ← A1:n,k+1:n − 2(A1:n,k+1:nv)vT � Similarity transformation

7: end for
8: return H ← A
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4.3.2 The double-shift QR sweep

The double-shift QR sweep first makes an initial transformation that produces a bulge at

the top in a Hessenberg form matrix (bulge-generating). After that, it sweeps the matrix

from the top to bottom by chasing the bulge (bulge-chasing). Once the sweep is finished,

the matrix is returned to upper Hessenberg form. By repeating the sweep, some element in

subdiagonal converges to zero. However, due to a computational error, the value may not

become zero exactly. Therefore, if a subdiagonal element becomes sufficiently small, we

divide the matrix by deflation.

In bulge-generating, first, a 2×2 sub-matrix from the lower-right corner of H is extracted

and its two eigenvalues σ1 and σ2 are computed. After that, we obtain a Householder

matrix R0 such that the first column of (H − σ1I)(H − σ2I) except the diagonal element is

introduced to zero. This operation is used to reduce the number of iterations of the sweeps.

The Householder matrix R0 is an n × n matrix such that

R0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1,1 r1,2 r1,3

r2,1 r2,2 r2,3 O

r3,1 r3,2 r3,3

1

O . . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since R0 is a Householder matrix, we have R−1
0 = R0. Therefore, we perform Householder

transformation and similarity transformation to H by multiplying R0 from left and right,

respectively. The structure of B obtained by these transformations is Hessenberg form with
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three non-zero elements in b3,1, b4,1, and b4,2, called a bulge, as shown in Figure 4.3(a).

Algorithm 2 shows bulge-generating by Householder transformation and similarity trans-

formation, where v is a Householder vector. In Algorithm 2, a Householder vector v is

computed in lines 1–5. We directly compute only the values to be used in the following

computation without the computation of eigenvalues σ1 and σ2, and the matrix multiplica-

tion (H − σ1I)(H − σ2I). We also apply the Householder vector v without directly multi-

plying a Householder matrix R0 in the same way as Algorithm 1. After that, Householder

transformation and similarity transformation are performed in lines 6 and 7, by multiplying

v from left and right, respectively. After the above operations, we obtain the Hessenberg

form matrix with a bulge. We note that if the size of the input matrix is 3 × 3, the range of

the sub-matrix is beyond the size of the matrix. The elements out of the matrix need not to

be computed.

Algorithm 2 Bulge-generating

Input: n × n Hessenberg form matrix H
Output: n × n Hessenberg form matrix with a bulge B

1: x1 ← (h1,1 − hn,n)(h1,1 − hn−1,n−1) − hn−1,nhn,n−1 + h1,2h2,1

2: x2 ← h2,1(h1,1 + h2,2 − hn−1,n−1 − hn,n)

3: x3 ← h2,1h3,2

4: v ← x + sign(x1)||x||e1

5: v ← v
||v|| � Householder vector

6: H1:3,1:n ← H1:3,1:n − 2v(vT H1:3,1:n) � Householder transformation

7: H1:4,1:3 ← H1:4,1:3 − 2(H1:4,1:3v)vT � Similarity transformation

8: return B ← H

Bulge-chasing sweeps the matrix obtained by bulge-generating from the top to bottom

by chasing the bulge as shown in Figure 4.3. To chase the bulge, we perform Householder
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transformations from left and similarity transformations from right:

H = Rn−2Rn−3 · · ·R2R1BR−1
1 R−1

2 · · ·R−1
n−3R−1

n−2,

where each Rk (1 ≤ k ≤ n−2) is a Householder matrix to move the bulge to the bottom one

by one. Each Householder matrix Rk is a square matrix of size n × n such that

Rk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

. . . O O

1
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1
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Since Rk is a Householder matrix, we perform Householder transformation and similarity

transformation to B by multiplying Rk from left and right, respectively. Algorithm 3 shows

bulge-chasing by Householder transformation and similarity transformation, where v is a

Householder vector. In Algorithm 3, a Householder vector v is computed in lines 2–4. We

also apply Householder vectors v without directly multiplying Householder matrices Rk in

the same way as bulge-generating. Householder transformation and similarity transforma-

tion in lines 5 and 6 are performed by multiplying v from left and right, respectively. After

the above operations, we obtain the Hessenberg form matrix without the bulge. We note

that when the size of the input matrix is 3 × 3 and/or k ≥ n − 3, the range of the sub-matrix
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is beyond the size of the matrix. In such case, the computation of the elements out of the

matrix is skipped.

Algorithm 3 Bulge-chasing

Input: n × n Hessenberg form matrix with a bulge B
Output: n × n Hessenberg form matrix H

1: for k = 1 to n − 2 do
2: v ← Bk+1:k+3,k

3: v ← v + sign(v1)||v||e1

4: v ← v
||v|| � Householder vector

5: Bk+1:k+3,k:n ← Bk+1:k+3,k:n − 2vk(vT
k Bk+1:k+3,k:n) � Householder transformation

6: B1:k+4,k+1:k+3 ← B1:k+4,k+1:k+3 − 2(B1:k+4,k+1:k+3v)vT � Similarity transformation

7: end for
8: return H ← B

4.4 GPU Implementation

This section presents the main contribution of this work, a GPU implementation of the

implicit double-shift QR algorithm for many small matrices. In the following, let N be the

number of input matrices and each size of matrix is n × n. Also, we use a 64-bit floating

point number as a real number and two 64-bit floating point numbers as a complex number.

In our implementation, we use only real numbers in Steps 1 and 2 during the computation.

From Step 3, we use complex numbers.

Before the explanation about parallel execution on the GPU, we introduce three data ar-

rangements for many matrices in the memory, matrix-wise (MW), element-wise (EW), and

row-wise (RW). These three data arrangements show how to store multiple two-dimensional

arrays in the memory that is a one-dimensional memory. In the MW arrangement, each ma-

trix is stored one by one and elements of each matrix are stored in column-major order as

shown in Figure 4.5(a). This arrangement is generally used in numeric linear algebra tools
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and software libraries [21, 42, 45]. Therefore, in this paper, the input data of matrices are

stored to the main memory in the MW arrangement. In the EW arrangement, each element

picked from the matrices in row-major order is stored element by element as illustrated in

Figure 4.5(b). On the other hand, in the RW arrangement, each row taken from the matri-

ces is stored row by row as illustrated in Figure 4.5(c). Two arrangements EW and RW are

used in the global memory to make the memory access efficient.

ܽଵଵ ܽଵଶ ܽଵଷܽଶଵ ܽଶଶ ܽଶଷܽଷଵ ܽଷଶ ܽଷଷ
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ܿଵଵ ܿଵଶ ܿଵଷܿଶଵ ܿଶଶ ܿଶଷܿଷଵ ܿଷଶ ܿଷଷ
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(b) Element-wise arrangement (EW)

(c) Row-wise arrangement (RW)
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(a) Matrix-wise arrangement (MW)

Figure 4.5: Data arrangement for multiple matrices in the global memory

Recall that according to Algorithms 1, 2, and 3, these algorithms mainly consist of

Householder vector generation, Householder transformation, and similarity transforma-

tion. We consider that those computations are carried out on the GPU. A GPU can em-
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ploy many threads working concurrently. Apparently, running parallel threads as much

as possible is the easiest way to achieve high performance computation. However, this

is not always correct due to various factors such as memory access latency and utiliza-

tion of local registers [22]. Additionally, the optimal parameters such as the number of

threads differ among GPU architectures. To obtain optimal parameters automatically, auto-

tuning techniques have been proposed [23, 24, 25]. Consequently, in this work, we propose

two thread-assignment methods to perform the bulk execution of eigenvalues computation,

single-warp-based (SWB) method and multiple-warp-based (MWB) method. The idea of

our approach is that the better method is selected step by step, and the best number of

threads that compute one matrix is utilized by evaluating the computation time with vari-

ous conditions. We explain these two methods using the above three data arrangements as

follows.

SWB method In the SWB method, every warp is used to compute eigenvalues of one or

more matrices as shown in Figure 4.6. More specifically, we allocate p (1 ≤ p ≤ n) threads

to one matrix and every warp works for � 32
p � matrices in parallel. In this method, when 32

p

is indivisible, 32 − p� 32
p � threads in every warp are not employed. For example, when 7

threads are used to compute each matrix, in each warp, �32
7
� = 4 matrices are computed in

parallel. In this case, the remaining 4 threads are not used.

In this method, the access to the global memory is made coalesced using the RW arrange-

ment. Since the number of matrices for each warp is smaller than the MWB method, only

in this method, all data of matrices can be located on the shared memory. Therefore, first
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Figure 4.6: Single-warp-based method (SWB)

of all the processes in this method, the data of matrices are loaded from the global memory

to the shared memory. To make the access to the global memory coalesced, the matrix data

loading from the global memory to the shared memory is performed by multiple threads

as illustrated in Figure 4.7. We note that the eigenvalues computation of one matrix is per-

formed by p threads. However, if the data loading is performed for each matrix using p

threads, the memory access is not coalesced when p � n. Therefore, the data loading is

performed regardless the number of p as shown in Figure 4.7. The following computation

is performed on the shared memory until the resulting eigenvalues are stored to the global

memory.

In Step 1, this method performs the computation as follows. To obtain ||v||, the sum

of squared values of v is computed. We use the parallel sum reduction method [47] on

the shared memory. After that, the Householder vector is computed by one thread and

stored to the shared memory. In Householder transformation, we assign p threads to one

column each, and repeat it until all columns are computed as illustrated in Figure 4.8(a).
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Figure 4.7: Matrix data loading from the global memory to the shared memory with coa-

lesced access in SWB

Namely, the computation of the transformation is concurrently performed using p threads.

In the parallel computation, each thread computes the multiplication of the elements in the

assigned column from top to bottom. In similarity transformation, we assign p threads to

one row each, and repeat it until all rows are computed as illustrated in Figure 4.8(b). Each

thread computes the multiplication of the elements in the row from left to right.

Thread 0 Thread 1 Thread 0 Thread 1 Thread 0 Thread 1

Thread 0

Thread 1

Thread 0

Thread 1

Thread 0

Thread 1

(a) Householder transformation (b) Similarity transformation

Figure 4.8: Thread assignment in SWB and MWB for n = 6 and p = 2

On the other hand, in Step 2, the sum of only three squared values is computed to obtain

the Householder vector. Therefore, the sum is directly computed instead of the parallel sum

reduction method unlike Step 1. After that, in Householder transformation and similarity
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transformation, p threads are assigned to columns and rows, and work in the same way

as Step 1. If a matrix is divided into smaller matrices by deflation, bulge-generating and

bulge-chasing are repeatedly performed using p threads for each smaller matrix.

After all the matrices divided by deflation becomes 1 × 1 or 2 × 2, one thread computes

eigenvalues of the matrices in serial. The resulting eigenvalues are temporarily stored to the

shared memory. After that, all the threads within the warp store them to the global memory

with the MW arrangement using coalesced access.

MWB method In the MWB method, p (1 ≤ p ≤ n) warps are used to compute eigen-

values of 32 matrices as illustrated in Figure 4.9. More specifically, we allocate p threads

in p different warps to one matrix computation. Each matrix is computed in parallel us-

ing p threads each of which is in p distinct warps. Since only the number of warps is

depended on p, all threads in a warp are employed for any p unlike the SWB method.

The parallel execution by p threads in the MWB method is the same as that in the SWB

method except that the execution is basically performed on the global memory. Regarding

the parallel execution with p threads, the thread-assignment and the computation are the

same as the SWB method illustrated in Figure 4.8. Also, since multiple warps are used, it

is necessary to synchronize the execution between warps using syncthreads() function.

However, although multiple warps cooperate, the function is not frequently called. The

synchronization is performed in Householder vector generation several times. After that,

the execution needs to be synchronized only at the end of Householder transformation and

similarity transformation each. Additionally, in this method, to access the global memory
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with coalesced access, we arrange data in the global memory using the EW arrangement.

Thread Thread Thread

p warps Thread Thread Thread

Thread Thread Thread

32 matrices

ܽଵ,ଵ ⋯ ܽଵ,௡⋮ ⋱ ⋮ܽ௡,ଵ ⋯ ܽ௡,௡
ܽଵ,ଵ ⋯ ܽଵ,௡⋮ ⋱ ⋮ܽ௡,ଵ ⋯ ܽ௡,௡

ܽଵ,ଵ ⋯ ܽଵ,௡⋮ ⋱ ⋮ܽ௡,ଵ ⋯ ܽ௡,௡

Figure 4.9: Multiple-warp-based method (MWB)

We assume that the input data of matrices are stored in the main memory on the host

PC in the MW arrangement. The data are transferred to the global memory on the GPU

as it is. In the above two methods, the data arrangement in the global memory needs to

be rearranged for each utilized method. Therefore, we implemented kernels that mutually

rearrange between the MW, EW, and RW arrangements on the global memory. In these

kernels, we use the idea of the matrix transpose technique proposed in [48]. The idea is to

efficiently transpose a two-dimensional array on the global memory with coalesced access

using the shared memory. The rearrangements are not transposing, but this technique can

be applied with small modification. In the next section, we evaluate the processing time of

the rearrangement.

In our problem, the bulk computation of eigenvalues problem, we compute eigenvalues
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for a lot of matrices. Since the matrices are independent from each other, we can eas-

ily compute eigenvalues in parallel such that several streams are invoked and each stream

computes eigenvalues of part of the matrices. Using such parallel computation with multi-

ple streams, we hide CPU-GPU transfer latency by overlapping computation on the GPU

with the transfer as described in Section 2.

4.5 Performance Evaluation

The main purpose of this section is to show the performance evaluation of the proposed

GPU implementation for the eigenvalues computation. We have used NVIDIA TITAN X,

which has 3584 cores in running on 1.531GHz [26]. Also, we have used Intel Core i7-

6700K running on 4.2GHz, which has 4 physical cores each of which acts 2 logical cores

by hyper-threading technology, on the host PC. In the following, the running time is average

of 10 times execution of computing eigenvalues for 500000 matrices of size from 5 × 5 to

30 × 30 that are dense matrices randomly generated.

First, we evaluate the performance of Step 1, the Hessenberg reduction, using the pro-

posed SWB and MWB methods. Figure 4.10 shows the computing time of the Hessenberg

reduction. The evaluation has been carried out for different values of p. We note that when

p is small, the SWB method cannot be executed due to the limitation of the shared memory.

The computing time does not include data transfer time between the main memory in the

CPU and the device memory in the GPU. Also, input matrices in the global memory are

stored by the appropriate arrangement for each method as shown in Figure 4.5. Namely,

we use the EW arrangement for the MWB method and the RW arrangement for the SWB
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method. Furthermore, in the SWB method, when p is small, the size of utilized shared

memory in a warp is large since the number of matrices in a warp is large. Hence, for

larger than 10 × 10 matrices, we could not evaluate the computing time due to the limita-

tion of size of the shared memory when p is small. This limitation is applied to the next

evaluation of Steps 2 and 3.

According to the graphs, the SWB method is faster for 15 × 15 or larger matrices on the

whole, since the computation in the SWB method is carried out on the shared memory. On

the other hand, since the memory access is not performed frequently for small matrices, the

benefit of the computation on the shared memory is very small. Therefore, since the cost of

the memory copy to the shared memory cannot be ignored, the computing time of the SWB

method is longer than that of the MWB. In addition, when p is small in the SWB method,

the number of matrices to be computed in one warp is large. Due to the large amount of

used shared memory, the occupancy decreases. Therefore, the computing time of the SWB

method is long when p is small.

Figure 4.11 shows the computing time of Steps 2 and 3 for 500000 matrices of size from

5 × 5 to 30 × 30. Similarly, the computing time does not include data transfer time. Also,

input data in the global memory are stored by the appropriate arrangement in Figure 4.5 for

each method.

According to the graphs, the MWB method is faster than the SWB in most cases. This

is because in Step 2, the number of active threads becomes small whenever matrices are

divided by deflation and their size becomes small. In the SWB method, although the num-

ber of active threads is small, at least one thread in every warp is always active due to the
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Figure 4.10: The computing time of Step 1 for 500000 matrices of size 5 × 5 to 30 × 30
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Table 4.1: The computing time (in milliseconds) of our GPU implementations of the eigen-

value problem for 500000 matrices
size 5 × 5 10 × 10 15 × 15 20 × 20 25 × 25 30 × 30

data transfer
21.22 80.81 178.15 314.37 494.52 714.42

(host to device)

data rearrangement
time 0.64 2.54 5.89 10.03 15.00 21.65

arrange MW→EW MW→EW MW→RW MW→RW MW→RW MW→RW

Step 1
time 1.21 10.87 42.80 110.83 207.23 339.44

method MWB MWB SWB SWB SWB SWB

data rearrangement
time — — 6.27 10.39 15.36 22.03

arrange — — RW→EW RW→EW RW→EW RW→EW

Steps 2 and 3
time 16.35 95.20 269.98 580.21 1048.09 1767.47

method MWB MWB MWB MWB MWB MWB

data rearrangement
time 0.23 0.46 0.68 0.91 1.14 1.36

arrange EW→MW EW→MW EW→MW EW→MW EW→MW EW→MW

data transfer
9.65 17.60 27.30 35.99 44.37 59.74

(device to host)

total 49.30 207.48 531.07 1062.73 1825.72 2926.11

assignment of threads. On the other hand, in the MWB method, although the number of

active threads assigned to one matrix computation is small, it is possible that every thread

in several warps becomes inactive, that is, no warp divergence occurs in such warps. There-

fore, the warp divergence in the SWB method occurs more frequently than that in the MWB

method. Thus, the MWB method is faster than the SWB in Step 2.

Table 4.1 shows the computing time of our GPU implementation for 500000 matrices of

size n × n. We assume that all input data are stored in the main memory on the host PC

using the data arrangement in the MW arrangement. The input data are transferred from

the main memory on the CPU to the global memory on the GPU as it is. In Step 1 and

Steps 2 and 3, according to the result in the above, we select the fastest method for each

size of the matrix. Therefore, we rearrange the data in the global memory to the appropriate

arrangement before launching the kernels if necessary. We note that we select the methods

by considering the computing time including the rearranging time.

As regards the data transfer time between the CPU and the GPU, you can find that it

is not small from the table. Especially, when the size of matrix is small, the data transfer
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Figure 4.11: The computing time of Steps 2 and 3 for 500000 matrices of size 5 × 5 to

30 × 30
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Table 4.2: The computing time (in milliseconds) of eigenvalues for 500000 matrices using

multiple streams each of which computes k matrices

k 5 × 5 10 × 10 15 × 15 20 × 20 25 × 25 30 × 30

1024 46.79 189.74 414.11 863.00 1498.60 2479.38

2048 33.16 156.94 369.96 804.59 1448.53 2350.33

4096 25.53 140.92 343.55 764.63 1337.03 2194.36

8192 22.64 132.22 338.79 758.22 1374.25 2191.16

16384 20.89 128.85 347.84 757.34 1367.70 2232.39

32768 20.01 126.85 350.80 751.42 1342.78 2215.02

65536 24.08 125.61 347.13 766.55 1568.12 2586.04

131072 27.00 150.85 406.32 870.03 1590.94 2627.18

262144 29.51 159.82 423.45 902.12 1649.10 2713.23

time accounts for more than half of the total computing time. Therefore, we evaluate the

overlapped execution by multiple streams shown in Section 2. Table 4.2 shows the com-

puting time of eigenvalues for 500000 matrices using multiple streams when each stream

computes eigenvalues of 1024 to 262144. According to the table, the running time is long

when the number of matrices per stream is both small and large. This is because the over-

lapped execution is small since the computation time and the data transfer time is larger

than the other, respectively. On the other hand, if the optimal number of matrices is se-

lected, almost data transfer time can be hidden from Tables 4.1 and 4.2. According to

the results, the computation time is reduced by approximately 25% to 59% using multiple

streams. In the following, the GPU implementation selects the optimal number of matrices

obtained by this evaluation.

To compare the performance of our method, we have evaluated the computation time

of Intel MKL 2017 Update 1 [42], MAGMA version 2.0.2 [21], and MATLAB version

R2016b [45]. Table 4.3 shows the computing time of eigenvalues for 500000 matrices us-
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ing existing tools and software libraries. Intel MKL supports two types of implementation,

Table 4.3: The computing time (in milliseconds) of eigenvalues for 500000 matrices using

existing tools and software libraries
5 × 5 10 × 10 15 × 15 20 × 20 25 × 25 30 × 30

Intel MKL (sequential) 1670.56 5765.72 13610.48 22867.30 38025.77 53680.96

Intel MKL (parallel) 1867.66 6588.52 14953.56 25720.05 41688.86 59750.73

Intel MKL (sequential+OpenMP) 353.56 1214.61 2854.39 4875.80 7915.52 11442.21

MAGMA 192925.18 227177.54 236115.41 270104.45 270104.45 371107.56

MATLAB 2663.68 7026.19 30586.44 54662.29 90959.14 127717.43

sequential and parallel execution for computing eigenvalues of a matrix. In the sequential

execution, one thread is invoked and the thread computes eigenvalues in serial. On the

other hand, the parallel execution, eigenvalues of one matrix are computed using multiple

threads. According to the table, the parallel execution is slower than the sequential execu-

tion though multiple threads are used. This is because in the parallel execution, whenever

eigenvalues are computed for each matrix, threads are invoked. Since the size of matrices

is too small, the overhead caused by invoking threads cannot be ignored compared with the

computing time of eigenvalues. Due to the result, we have implemented another parallel

execution using Intel MKL and OpenMP 2.0 [49]. In the parallel execution, since a lot of

matrices are computed, we have parallelized the bulk execution such that multiple threads

are invoked and each thread performs the sequential execution in parallel using OpenMP.

The behavior of each thread is equivalent to the thread in the sequential implementation.

In the table, Intel MKL (sequential+OpenMP) corresponds to this parallel execution using

OpenMP. In the evaluation, we have used 8 threads since the utilized CPU has 8 logical

cores.

On the other hand, MAGMA and MATLAB support parallel computation of the eigen-

value problem with multi-threads on the CPU. MAGMA also supports parallel computation

56



on the GPU. However, since the size of matrices is too small in this experiment, MAGMA

automatically selected the CPU execution without the GPU. Actually, since MAGMA ba-

sically expects computation on the GPU, whenever functions of MAGMA are called, some

overhead to the GPU is necessary. Therefore, MAGMA is much slower than Intel MKL.

Furthermore, since Intel MKL, MAGMA and MATLAB do not support bulk computation

of the eigenvalue problem, a procedure that computes eigenvalues is called for each matrix.

Due to such execution, multiple threads are launched and stopped before and after each

procedure call, respectively. Therefore, there is an overhead between each procedure call

and it is not negligible.

Table 4.4 shows the comparison between CPU sequential and parallel implementations

and our GPU implementation. In the GPU implementation, the appropriate parameters in

Tables 1 and 2 have been selected. According to the table, our GPU implementation attains

a speed-up factor of up to 83.50 and 17.67 over the sequential CPU implementation and

the parallel CPU implementation, respectively.

Table 4.4: The total computing time (in milliseconds) of eigenvalues for 500000 matrices
5 × 5 10 × 10 15 × 15 20 × 20 25 × 25 30 × 30

CPU1 (Intel MKL sequential) 1670.56 5765.72 13610.48 22867.30 38025.77 53680.96

CPU2 (Intel MKL+OpenMP) 353.56 1214.61 2854.39 4875.80 7915.52 11442.21

GPU (proposed method) 20.01 125.61 338.79 751.42 1337.03 2191.16

speed-up (CPU1/GPU) 83.50 45.90 40.17 30.43 28.44 24.50

speed-up (CPU2/GPU) 17.67 9.67 8.43 6.49 5.92 5.22
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Chapter 5

Conclusion

In this dissertation, we have presented efficient GPU implementations for column-wise

prefix sum computation and bulk computation of the eigenvalue problem for many small

real non-symmetric matrices.

In Chapter 3, we have presented an almost optimal GPU implementation for column-

wise prefix sum computation. The LCP algorithm involves several GPU computing tech-

niques including the warp prefix scan, the diagonal arrangement of a matrix, and the decou-

pled look-back to minimize memory access and synchronization overhead. Quite surpris-

ingly, experimental results using NVIDIA TITAN X show that our column-wise prefix-sum

algorithm runs only 2-6% slower than matrix duplication. Thus, our column-wise prefix

sum algorithm is almost optimal.

In Chapter 4, we have presented an efficient GPU implementations for bulk computation

of the eigenvalue problem for many small real non-symmetric matrices. The ideas are

to use the appropriate thread assignment and data arrangement for multiple matrices in

the global memory. Also, data transfer hidden between host and device contributes to

improve the performance. Experimental results on NVIDIA TITAN X show that our GPU
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implementation attains a speed-up factor of up to 83.50 and 17.67 over the sequential CPU

implementation and the parallel CPU implementation with eight threads on Intel Core i7-

6700K, respectively.
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wise Prefix-sum Computation on the GPU, in Proc. of 12th International Conference

of Parallel Processing and Applied Mathematics (PPAM 2017, LNCS 10778), pp.
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• Chapter 3: An GPU implementation of column-wise prefix-sum computation

C-2: Hiroki Tokura, Takumi Honda, Yasuaki Ito, Koji Nakano, Mitsuya Nishino, Yushiro

Hirota and Masami Saeki, GPU-Accelerated Bulk Computation of the Eigenvalue

Problem for Many Small Real Non-symmetric Matrices, Proc. of International Sym-
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• Chapter 4: An GPU implementation of the eigenvalue problem for many small

real non-symmetric matrices

Invited Talks
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• Chapter 4: An GPU implementation of the eigenvalue problem for many small

real non-symmetric matrices

Others

C-3: Yutaro Emoto, Shunji Funasaka, Hiroki Tokura, Takumi Honda, Koji Nakano and

Yasuaki Ito, An Optimal Parallel Algorithm for Computing the Summed Area Table

on the GPU, Proc. of International Parallel and Distributed Processing Symposium

Workshops, pp. 763-772, Vancouver, Canada, May 2018.
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C-4: Hiroki Tokura, Yuki Kuroda, Yasuaki Ito, and Koji Nakano, A Square Pointillism

Image Generation, and its GPU Acceleration, in Proc. of International Symposium

on Computing and Networking (CANDAR), pp. 38-47, Aomori, Japan, November

2017.

C-5: Naoki Matsumura, Hiroki Tokura, Yuki Kuroda, Yasuaki Ito, Koji Nakano, Tile Art

Image Generation Using Conditional Generative Adversarial Networks, in Proc. of

International Symposium on Computing and Networking Workshops, pp. 209-215,

Takayama, Japan, November 2018.
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