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Summary 
Recently, there has been an increased attention to circulating tumor cells (CTCs) analysis, 
also known as liquid biopsy, owing to its potential benefits in cancer diagnosis and 
treatment. CTCs are released from primary tumor lesions into the blood stream and 
eventually metastasize to distant body organs. However, a major hurdle with CTC 
analysis is their natural scarcity. Existing methods lack sensitivity, specificity or 
reproducibility required in CTC characterization and detection. Here, we report 
untargeted molecular profiling of single CTCs obtained from gastric cancer (GC) and 
colorectal cancer (CRC) patients, using live single cell mass spectrometry (LSC-MS) 
integrated with microfluidics-based cell enrichment technique. Using this approach, we 
demonstrated the difference in the metabolomic profile between CTCs originating from 
different cancer groups. Moreover, potential biomarkers were putatively annotated to be 
specific to each cancer type. 
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Abbreviations: 
CTCs, circulating tumor cells; GC, gastric cancer; CRC, colorectal cancer; LSC-MS, live 
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discriminant analysis; KEGG, Kyoto encyclopedia of genes and genomics; HMDB, 
human metabolome database; %RSD, percent relative standard deviation; GPLs, 
glycerophospholipids; SLs, sterol lipids; FAs, fatty acyls; PLs, prenol lipids; TCA cycle, 
tricarboxylic acid cycle; MUFAs, monounsaturated fatty acids; PUFAs, polyunsaturated 
fatty acids; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, 
phosphatidylserine  
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Introduction 
Recent studies have shown that cancer cells are highly heterogeneous on the single cell 

level, which might be one of the factors contributing to tumor relapse and increased 
incidence of metastasis1-3. However, studying cancer on the single cell level poses several 
challenges such as the difficulty of getting tumor samples in large scale clinical studies. 
Aside from imaging techniques for diagnostic purposes, the only reliable way of studying 
cancer cells in a clinical setting is to perform a surgical biopsy on the tumor site, a process 
that is inconvenient for the patient because of its invasive nature. Moreover, such invasive 
examination is unsuitable for large scale studies to monitor the biological behavior in real 
time, which can be altered under the pressure of various therapeutic agents. 

An alternative procedure termed ‘liquid biopsy’ has been introduced as a possible 
method that can allow access to molecular information of cancer cells without the need 
for invasive procedures4-8. Liquid biopsy is a simple, non-invasive technique that targets 
circulating free nucleic acids (cfDNA and cfRNA) or circulating tumor cells (CTCs) 
which are often found in the peripheral blood of cancer patients. CTCs in particular, 
present wide-ranging features of phenotypic and genotypic variation depending on their 
primary tumor source9. CTCs are cells that shed from the primary tumor into the 
vasculature after undergoing epithelial-mesenchymal transition (EMT)10, which is a 
phenotypic conversion of epithelial cells to gain more mesenchymal features allowing 
them to circulate through the blood stream and potentially metastasize to various body 
organs. Accordingly, they ought to have insightful and essential information on the 
primary tumor which will be of great importance for differential cancer diagnoses. 

Previous CTC studies have mainly focused on enumerating their presence in peripheral 
blood, which can act as a predictive biomarker for early detection of tumor metastasis as 
well as monitoring the therapeutic efficacy and response of anticancer drugs11. Despite 
the prognostic value of CTC enumeration, it is still not enough to gain a comprehensive 
understanding of the tumor nature and its characteristics. Recent studies have reported 
genome and transcriptome analysis of single CTCs using next generation sequencer12. 
CTC sequencing proved to be an efficient liquid biopsy tool that can monitor the variation 
in gene expression among different cancer stages which could be used to investigate 
tumor origin, evolution and tumor progression during treatment. However, there’s an 
untapped potential that lies in CTC metabolomic profiling which can shed light on the 
heterogeneity of cancer cells as well as the possible role played by CTCs in cancer 
progression and metastasis. In addition, analysis of CTCs provides the capability of 
getting a snapshot on the functional state of endogenous metabolites, thus, playing an 
essential role in filling the “genotype-phenotype gap”. Furthermore, the metabolic profile 
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as a whole is considered as a complex biomarker which can be of great value in the field 
of oncology9,13-18. 

However, CTC metabolomic profiling is often a difficult task. The number of CTCs 
obtained per patient could greatly vary depending on the cancer type and the clinical stage. 
In general, the number of CTCs usually varies between zero to few hundreds or even 
more in approximately 7.5 mLs of peripheral blood18,19. Therefore, obtaining sufficient 
numbers of CTCs suitable for carrying out analysis still remains a great challenge. On 
this background, achieving efficient CTC enrichment with minimal sample loss is an issue 
for CTC metabolic profiling. Among the methods used for CTC enrichment are size-
based filtration, immune-mediated capturing20 and fluorescence assisted cell sorting 
(FACS)21. However, multi-step processes with harsh conditions could result in low 
throughput, CTC recovery, and cell viability. To overcome such problems, a microfluidics 
device that relies on differences in size and deformability of CTCs and blood cells for 
CTC separation was developed, which ensures accurate and effective label-free approach 
that maintains cell viability for further downstream analysis22. 

Another issue is selection of suitable analytical techniques. Conventional metabolomic 
techniques such as liquid/gas chromatography are unsuitable due to their insufficient 
sensitivity and inapplicability to small volumes associated with single cells. Live single-
cell mass spectrometry (LSC-MS)23 has been developed as a promising technique that has 
enough sensitivity for single cell metabolic profiling. In LSC-MS, a single cell is collected 
into a tapered glass micro-capillary under video-microscopy, which is then ionized and 
directly introduced to a mass spectrometer. LSC-MS was successfully applied to plant 
cells24, mammalian cells25, and CTCs21, albeit with focus on targeted analysis for a limited 
number of compounds. To achieve molecular characterization of CTCs for future 
diagnostics, untargeted analysis must be achieved to gain a comprehensive metabolomic 
information about the primary tumor. 

In this study, by integrating LSC-MS and microfluidics-based CTC enrichment 
technique, untargeted analysis was performed for CTCs obtained from two cancer types, 
gastric cancer (GC) and colorectal cancer (CRC) (Figure 1). We explored the possibility 
of discriminating between CTCs and lymphocytes obtained from the same patients, as 
well as discriminating between CTCs obtained from different cancer types and patients 
on the single cell level. 
 
Materials and Methods 
Patients and peripheral blood samples. Participants comprised 10 patients with 
advanced gastric cancer (GC) and colorectal cancer (CRC). The patients’ information is 
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summarized in Table 1. Once informed consent was secured from these patients, their 
blood samples were processed for CTCs analysis. Peripheral blood was collected in 5 mL 
EDTA vacutainers or Streck tubes (TERUMO, Tokyo, Japan) and processed within 24 
hours. This study was approved by the ethics committee of the National Cancer Center 
(2013-001; the term is during 2013-2022) and RIKEN (Kobe1 2017-07; the term is during 
2017-2022). 

 
CTCs enrichment. The ClearCell® FX system (ClearBridge Biomedics, Singapore) was 
used to capture and enrich CTCs from peripheral blood samples according to the 
manufacturer’s protocol. Five mL of blood was mixed with 15 mL of red blood cell lysis 
buffer (G-Biosciences, St. Louis, MO, USA) at room temperature for 10 min. After 
incubation, the samples were centrifuged at 500 g for 10 min followed by aspiration of 
supernatant, and finally resuspended in 4.3 mL of suspension reagent supplied by the 
manufacturer. The samples were then processed through the ClearCell® FX system. The 
ClearCell® FX system is an automated CTCs enrichment system driven by the CTChip® 
FR1, a microfluidic biochip to isolate CTCs based on size, deformability and inertia. The 
isolation principle takes advantage of the inherent Dean vortex flows present in 
curvilinear channels for CTCs enrichment, termed dean flow fractionation (DFF)22. 

 
Single-cell sampling. The enriched CTCs samples were centrifuged at 500 g for 10 min 
followed by aspiration of supernatant and resuspended in 300 μL PBS. After 
reconstitution, CTC sample solution was transferred to a Cell Imaging Dish 145 μm, 35 
mm × 10 mm (Eppendorf, Germany) for microscopic visualization. The samples were 
stained with fluorescent antibody, mouse anti-human CD45-FITC (130-080-202, 
Miltenyi, Germany, Figure S1). A single CD45 negative CTC was chosen under 
microscope and sucked into a Cellomics tip (CT-2, Humanix, Japan) using a 
micromanipulator and piston syringe. Similarly, a single CD45 positive lymphocytes 
were also sucked into a tip as a control. Single CTCs and lymphocytes were selected by 
morphology. Afterwards, the samples were frozen at -80°C until subsequent mass 
spectrometry analysis. 

 
Sample preparation. The collected samples were thawed, and the organic solvent was 
introduced from the rear end of the Cellomics tip. The organic solvent consisted of 80% 
methanol, 10% dimethyl sulfoxide, and 0.1% formic acid. All the reagents used in the 
organic solvent were of LC-MS grade and were obtained from Sigma-Aldrich, USA. 
Ultra-sonication was then applied to the Cellomics tips containing the cells using a 
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homogenizer rod (UR-20P, Seiko CO., Japan) outfitted with an in-house attachment for 
the tips. Sonicating the tips before mass spectrometry measurement enhances the 
extraction of metabolites and lipids in addition to improving robustness by reducing tip 
plugging21. 

 
Mass spectrometry measurement. Mass spectrometry measurement was done using 
LTQ orbitrap Velos pro instrument (Thermo Fisher Scientific Inc., USA) equipped with a 
nanospray source (Nanospray Flex, Thermo Fisher Scientific Inc., USA). The distance 
between the Cellomics tip and the inlet of the instrument was set to 2 mm and the inlet 
capillary temperature was set to 200°C. The spray voltage was chosen to be 1 ~ 1.5 kV 
maintaining a spray current between 100 nA ~ 150 nA. The resolution was set to 100,000 
FWHM. Since the mass spectrometer used is LTQ orbitrap Velos pro, which requires 90 
minutes stabilization time after switching the polarity between positive and negative 
modes, positive mode was selected in this study to ensure wider metabolite and lipid 
coverage. Generally, positive ion mode exhibits overall more exhaustiveness than 
negative mode due to the higher efficiency of protonation compared to deprotonation 
process26,27. Despite using positive mode, several lipids that are usually detected in 
negative mode (i.e., Fatty acyls), could still be detected by our method as cationic ion-
conjugates (potassium and sodium adducts)28,29. These adducts are readily formed and 
observed in electrospray ionization analyses30. For untargeted analysis, the instrument 
was set to selective ion monitoring (SIM) mode and it scanned from 100 m/z to 2,000 m/z 
in 50 m/z increments. This method of ‘SIM stitching’ allows for higher dynamic range as 
well as lower overall signal to noise ratios without compromising mass accuracy, thus 
improving the number of metabolites and lipids detected31. 

 
Data handling. The data generated from the mass spectrometer was converted from 
Thermo’s raw proprietary format to text files using an in-house script, peak alignment 
was done using MarkerView® software (AB SCIEX, USA). Afterwards, text files were 
imported to R statistical software for further processing. Peaks with signal to noise ratio 
of less than 3 were eliminated. In addition, peaks appearing in less than 4 samples (10% 
of the total number of samples) have been removed as a pre-processing step to eliminate 
any noise or insignificant peaks. Furthermore, log transformation was applied to the 
spectra, followed by total ion count (TIC) normalization by using the MALDI-quant 
package32. 

 
Statistical analysis. To visualize the metabolomic differences across multiple samples in 
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a reduced dimensional space, a supervised approach utilizing principle component 
analysis followed by discriminant analysis (PCA-DA) was performed using 
MarkerView® software. The loading plots for all PCA-DA performed are shown in Figure 
S2-S4. Furthermore, to discern the possible unique peaks to the different groups, Welch’s 
t-test was done between CTCs and lymphocytes (control) and between GC CTCs and 
CRC CTCs, the test was done on R statistical software. Peaks with more than 1 log2 
foldchange or less than -1 log2 foldchange and with p-value less than 0.05 were selected 
(Figure S5). For peak identification, we followed a two-pronged approach depending on 
the accurate mass (m/z less than 5 ppm) and isotopic pattern following the   
metabolomics standard initiative33. The significant peaks were run through an in-house 
script that matches possible peaks against Kyoto encyclopedia of genes and genomics 
(KEGG)34, human metabolome database (HMDB)35, and LIPID MAPS structure 
database36. All the annotation of putatively identified lipids was done by using the 
shorthand lipid notation system suggested by Liegbisch et al.37, except for eicosanoids 
lipids, where common names were used. Lipid candidates were annotated on the fatty 
acyl/alkyl position level, since exact mass measurements are incapable of determining the 
stereochemistry, and double bond geometry. 

 
Results 
Identification of unique metabolic profile between CTCs and lymphocytes. 

We enriched the CTCs using microfluidics-based enrichment technique and cytosolic 
metabolite was harvested from single cell CTCs according to the processes which was 
described in Materials and Methods (Figure 1 and Figure S1). To examine whether LSC-
MS can detect the metabolomic profile difference between a single CTC and other control 
cells, we analyzed CTCs and lymphocytes collected from the same patient. After peak 
alignment and normalization, we performed supervised PCA followed by DA to visualize 
the samples in a reduced dimensional space. (Figure 2 and Figure S6). The supervised 
PCA-DA showed clear clustering behavior between three groups; CTCs, lymphocytes 
and the organic solvent blank per cancer (Figure 2) and per patient (Figure S6). Due to 
the limited number of cells obtained per patient, supervised PCA-DA was only performed 
on patients’ samples, in which the number of CTCs and lymphocytes analyzed is more 
than 2. Detailed information about the patients and obtained samples is shown in Table 
1. 
 
Possible biomarkers for CTCs. 

It is known that there are aberrant profiles with the presence of unique metabolites or 
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lipids in malignant cells compared with normal cells38-40. Accordingly, we investigated 
the biomarkers found in all CTCs compared to the control lymphocyte cells. Since the 
sample numbers have unequal size and variance, Welch’s t-test was used to determine 
which metabolites are present only in CTCs across all patients. The comparison was 
performed between CTCs (n = 22) and lymphocytes collected from all patients regardless 
of a cancer type (n = 16), after subtracting solvent peaks from both groups. The resulting 
peaks were filtered by selecting statistically significant peaks (p-value < 0.05). 

In total, 119 peaks were putatively identified that were specific to CTCs by using their 
respective exact mass values with mean error of less than 5 ppm (Figure 3). Interestingly 
enough, out of the 119 peaks found, 75 were identified as glycerophospholipids. 
Considering their function in the cell as a structural component in biological membranes, 
the possible unique membrane profile common to CTCs can be shown. A table with the 
putatively identified metabolites and lipids unique to CTCs with p-value, percent relative 
standard deviation (%RSD), chemical formula and class for each compound is shown in 
Table S1. 

 
Single cell profiling of gastric cancer and colorectal cancer CTCs. 

Several studies have suggested that unique metabolomic profiles were observed in the 
primary site of different cancer types41-43. However, to the best of our knowledge, the 
metabolomic profiles of single CTCs in several cancer types has never been reported. In 
addition, CTCs are easily accessible from peripheral blood and their molecular 
characterization may have significant prognostic and diagnostic values44-46, especially if 
metabolic differences can be discerned between CTCs originating from different cancer 
types. To investigate this further, we compared the CTCs obtained from GC patients to 
those obtained from CRC patients to visualize the unique cellular profiles of each group. 

To this end, supervised PCA-DA was performed on GC and CRC CTCs as well as the 
blank. Despite the heterogeneity caused by samples obtained from different patients, 
significant clustering could still be observed where CTCs appear to cluster in two distinct 
groups corresponding to their cancer type as shown in Figure 4a, suggesting the potential 
of CTC metabolome characterization as a future tool for cancer diagnosis. 

Upon further inspection of the data, a trend was noticed in the frequency of peaks 
distributed along the m/z scale, especially in the case of GC, in which a higher incidence 
of high m/z peaks was detected. This was demonstrated by comparing the histograms of 
the average spectra of GC CTCs versus those of CRC, as shown in Figure 4b. Since most 
metabolites have relatively low molecular weight, the increased incidence of relatively 
high molecular weight peaks in GC CTCs suggest a distinctive metabolic “finger print” 
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of this cancer that most likely involves a higher distribution of lipids which can be used 
in the future as a biomarker for GC. 
 
Possible biomarkers for colorectal cancer and gastric cancer CTCs. 
To identify possible metabolites or lipids that are unique to GC or CRC CTCs, a Welch’s 
t-test was done on the two groups (n = 9 and n = 13, respectively). In total, 155 significant 
peaks were extracted according to their log2 based foldchange (more than 1 or less than 
-1 log2 foldchange) and p-value less than 0.05 (Figure 5a, S5). Among those peaks, 69 
were present in GC CTCs, while 86 peaks were suggested to be specific to CRC CTCs. 
A histogram of the m/z distribution of potential biomarkers to each cancer type is shown 
in Figure 5b. A summary with the putatively identified metabolites and lipids unique to 
GC CTCs and CRC CTCs with p-value, %RSD, chemical formula and class for each 
compound is shown in Table S2 and Table S3, respectively. 

Among the statistically significant peaks found, acyl carnitine metabolites as well as 
sterol lipids were elevated in CRC. Furthermore, eicosanoids were also observed to be 
more abundant in CRC CTCs, which is further corroborated with other studies done on 
this cancer type47. On the other hand, glycerophospholipids were noticed to be elevated 
in GC CTCs which matches with recent literature48. 
 
Discussion 

Previous studies in genomics12, transcriptomics49 and proteomics50 succeeded in 
depicting the effective role of CTC analyses in monitoring tumor progression and 
prognosis as well as its clinical impact. Since metabolomics is the final frontier of omics, 
it is essential to study the metabolic phenotypes of CTCs to gain a compressive 
understanding on the primary and metastatic tumor biology. However, metabolomics still 
faces several challenges arising from its inherent complexity and variability especially on 
the single cell level. As a result, dimensional reduction techniques followed by 
discriminant analysis are required to simplify obtained data and reveal significant 
biological meanings. This could possibly be achieved by using PCA followed by 
discriminant analysis (DA) a process we term PCA-DA. In which, PCA provides 
unsupervised dimensionality reduction that simplifies the data and enhances its 
visualization51, while discriminant analysis highlights the metabolomic differences (i.e., 
metabolic fingerprint) among different cell types originating from different cancer 
phenotypes52. Nonetheless, there are limitations associated with discriminant analysis as 
it may provide overly optimistic results, mainly due to the lack of suitable statistical 
validation and use by non-experts without considering its potential pitfalls53. 
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In this paper, our results demonstrated the metabolic differences between CTCs and 
lymphocytes derived from the same patients (Figure 2). In which, PCA-DA showed clear 
clustering behavior between CTCs and lymphocytes per cancer, which gives credence to 
the theory that despite cellular heterogeneity, overall metabolomic differences between 
cancer cells and control cells are evident even on a single cell scale. Furthermore, the 
metabolic difference among different cancer types (GC and CRC) was depicted in Figure 
4a, where CTCs clustered into two distinct groups corresponding to their cancer type, 
suggesting the potential of CTC metabolome characterization as a future tool for cancer 
diagnosis. The difference in phenotype was further confirmed by a histogram, showing 
the discrepancy in the frequency of peaks distribution across the m/z scale of different 
cancer types (Figure 4b).  

The important role of lipids’ synthesis and metabolism in tumorigenesis and tumor 
progression has been showcased in previous studies40,54–56. Hence, targeting specific 
lipids or blocking certain pathways is a promising therapeutic strategy for cancer 
treatment57. Accordingly, we focused in our study on detecting mainly lipids to explore 
their role in both cancer types (GC and CRC). This was done by optimizing and tuning 
our mass spectrometry method to focus on the higher m/z ranges and including DMSO 
in our ionization solvent. DMSO is known to improve the overall ionization 
performance of lipids in mass spectrometry58. In addition, applying ultra-sonication on 
the capillaries containing single cells proved to improve exhaustiveness and lipid 
coverage21. Consequently, most of the potential biomarkers detected in this study were 
mainly lipids such as: glycerophospholipids (GPLs), fatty acyls (FAs), acyl carnitines, 
sterol lipids (SLs) and prenol lipids (PLs). In addition, different abundance and 
distribution of lipid classes took place in each cancer type (Figure S7). As for the case of 
CRC CTCs, SLs were highly elevated compared to other lipid classes. Previous studies 
showed the correlation between high levels of SLs and distant metastasis in CRC 
patients59, which is consistent with our study subjects. Moreover, since chronic 
inflammation is associated with the development of CRC, it was expected to detect 
eicosanoids in relatively high levels. In which, eicosanoids are believed to affect CRC 
development and progression by inflammation induction, regulation of cellular oxidative 
stress, and alteration of membrane dynamics60. Furthermore, low levels of FAs and GPLs 
were detected in CRC CTCs. This could be due to the increased catabolism of GPLs to 
FAs followed by the subsequent degradation of FAs during the β -oxidation process61,62. 
Since β-oxidation usually takes place in the mitochondria, FAs then bind to acylcarnitines 
(carriers) that transport FAs to the mitochondria. Therefore, higher levels of acylcarnitines 
are thought to be specific to CRC (in contrast to GC)63, which is supported by our results. 
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In GC CTCs, FAs and GPLs were preeminent. This is probably due to the increased de 
novo synthesis and elongation of FAs and GPLs64–67. In which, GPLs synthesis was 
proved to be a key factor in cancer proliferation as its responsible mainly for membrane 
and energy production68. Since GPLs synthesis requires acetyl-CoA, and citrate is an 
acetyl-CoA donor for this process, higher lipid metabolism can be associated with 
elevated tricarboxylic acid cycle (TCA cycle) activity in GC69,70. As previously 
mentioned, GC exhibited overall higher levels of FAs than CRC. Specifically, saturated 
fatty acids (SFAs) were found to be relatively elevated in comparison to monounsaturated 
fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs)71. Recent studies 
demonstrated that SFAs can act as a source of energy in tumor cells, enhancing tumor 
proliferation and survival and also might affect tumor resistance to treatment72,73. Withal, 
numerous metabolites/lipids were detected to be common in all CTC samples vs 
lymphocytes. Chief among them are several GPLs that are believed to have biological 
significance in cancer physiology including, PC(32:1), PC(34:1), PS(38:5), PE(38:6), 
PC(32:3) and PC(34:2)5,74. Detailed information about identified lipids and metabolites 
for each cancer group are shown in Supplementary Tables ST1-3. As a result, lipid 
profiling of CTCs may be used as biomarkers for the diagnosis and prognosis of CRC and 
GC as well as novel targets for their treatment. However, the specific impact of lipids 
on tumor development, progression and metastasis is not yet fully understood75, which 
highlights the need for precise monitoring of any alterations in lipid metabolism in cancer 
cells. Along with our results, this presents a new avenue for the diagnostics and treatment 
of cancer. 

Previous studies utilized human serum and plasma to perform untargeted analysis and 
discriminate between different cancer types76–79. However, to the best of our knowledge, 
our study is the first to achieve this utilizing CTCs at the single cell level. Besides the 
previously mentioned advantages of CTC molecular profiling, our method can be used to 
investigate new potential biomarkers on the single cell level that could not be detected 
using the conventional methods, highlighting the novelty of this method in cancer 
research. Nevertheless, it is worth noting that the aim of this paper is not to provide a be 
all and end all definitive list of biomarkers that can be used in clinical diagnosis today. 
Instead, we aim to highlight the untapped potential of CTC molecular characterization in 
both clinical and research settings using LSC-MS. Moreover, despite using exact mass 
with a high degree of accuracy (less than 5 ppm) in this paper for annotation, additional 
verification techniques must be used such as tandem mass spectrometry (MS/MS), 
capillary electrophoresis or HPLC for positive compound identification. However, 
performing MS/MS on signals obtained from a single cell in a robust manner is still a 
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challenging task that needs to be addressed with improvements in the instrumentation 
itself or by incorporating an enrichment step before analysis. 

In summary, untargeted analysis of human derived CTCs at the single cell level was 
performed for the first time utilizing LSC-MS. CTCs and lymphocytes obtained from the 
same patient could be successfully discriminated as well as CTCs of different cancer types. 
In addition, the possible role played by lipids and higher molecular weight compounds 
distribution on the single cell level in classifying different cancer types based on their 
“metabolic fingerprint” was highlighted. Several promising biomarkers were putatively 
annotated that are mostly specific to GC CTCs, CRC CTCs, and CTCs in general. Finally, 
due to the scarcity of human derived samples, especially in inherently rare cells such as 
CTCs, we hope that this paper and its results spur the much-needed collaborative efforts 
to upscale CTC characterization to established large scale studies that will possibly aid in 
the clinical applications in the near future. 
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Figure Legends 
Figure 1. Schematic of single cell analysis of CTCs using LSC-MS. Blood samples 
were collected from GC and CRC patients. CTCs were isolated and enriched using 
microfluidics technique. Single CTCs were sampled and analyzed using the LSC-MS 
system. Finally, data processing and statistical analysis (t-test and PCA) was done. 
 
Figure 2. PCA-DA of CTCs and lymphocytes. (a) The difference in the metabolic 
profile between CTCs and lymphocytes collected from GC patients. (b) CRC patients 
CTCs and lymphocytes metabolic profile. Each dot corresponds to a single cell. 
 
Figure 3 Heatmap of significant peaks found in all collected CTCs in comparison 
with lymphocytes. The p-value of each annotated peak is shown above the figure. 
 
Figure 4 Single cell profiling of GC and CRC CTCs. (a) PCA-DA discriminating 
between GC CTCs, CRC CTCs and blank. Each dot corresponds to a single cell. (b) 
Histogram of the frequency of peaks distribution across the m/z scale of different cancer 
types. 
 
Figure 5. Characterization of significant peaks found in both GC and CRC CTCs. 
(a) Heatmap of significant peaks found in both GC CTCs and CRC CTCs. The p-value 
of each annotated peak is shown above the figure. (b) Histogram showing the frequency 
of the unique peaks (potential biomarkers) to each cancer type distribution across the m/z 
scale of the two cancer types. 
 
Table 1. Clinical characteristics for study subjects. 
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Supporting information 
Figure S1 Live single cell mass spectrometry. Microscopic image of the sampling 
processes of (a) single CD45 negative CTC and (b) single CD45 positive lymphocytes 
are shown. 

 
Figure S2. PCA-DA loadings plot for PCA-DA discriminating between GC CTCs 
and CRC CTCs. 
 
Figure S3. PCA-DA loadings plot for (a) PCA-DA of GC CTCs vs lymphocytes and 
(b) CRC CTCs vs lymphocytes. 
 
Figure S4. PCA-DA loadings plot for per patient PCA-DA of CTCs and lymphocytes 
of CRC and GC patients. 
 
Figure S5. Volcano plot of significant and insignificant m/z peaks. Values with 
threshold more than 1 log2 fold change or less than -1 log2 foldchange and p-value less 
than 0.05 are shown. 
 
Figure S6. Per-patient PCA-DA of CTCs and lymphocytes of CRC and GC patients. 
 
Figure S7. Bar plot showing the unique distribution of lipid classes and lipid 
pathways related classes across CTC samples of GC and CRC. 
 
Table S1 Putatively identified metabolites and lipids unique to CTCs. Statistically 
significant p = < 0.05 peaks of CTCs when compared to lymphocytes are shown. 
 
Table S2 Putatively identified metabolites and lipids unique to GC CTCs. 
Statistically significant p = < 0.05 peaks of GC CTCs in comparison to CRC CTCs are 
shown. 
 
Table S3 Putatively identified metabolites and lipids unique to CRC CTCs. 
Statistically significant p = < 0.05 peaks of CRC CTCs in comparison to GC CTCs are 
shown. 
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